]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/ext4/extents.c
ext4: Wait for proper transaction commit on fsync
[mirror_ubuntu-eoan-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46
47
48 /*
49 * ext_pblock:
50 * combine low and high parts of physical block number into ext4_fsblk_t
51 */
52 ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 {
54 ext4_fsblk_t block;
55
56 block = le32_to_cpu(ex->ee_start_lo);
57 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
58 return block;
59 }
60
61 /*
62 * idx_pblock:
63 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 */
65 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 {
67 ext4_fsblk_t block;
68
69 block = le32_to_cpu(ix->ei_leaf_lo);
70 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
71 return block;
72 }
73
74 /*
75 * ext4_ext_store_pblock:
76 * stores a large physical block number into an extent struct,
77 * breaking it into parts
78 */
79 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 {
81 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
82 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
83 }
84
85 /*
86 * ext4_idx_store_pblock:
87 * stores a large physical block number into an index struct,
88 * breaking it into parts
89 */
90 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 {
92 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
93 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
94 }
95
96 static int ext4_ext_truncate_extend_restart(handle_t *handle,
97 struct inode *inode,
98 int needed)
99 {
100 int err;
101
102 if (!ext4_handle_valid(handle))
103 return 0;
104 if (handle->h_buffer_credits > needed)
105 return 0;
106 err = ext4_journal_extend(handle, needed);
107 if (err <= 0)
108 return err;
109 err = ext4_truncate_restart_trans(handle, inode, needed);
110 /*
111 * We have dropped i_data_sem so someone might have cached again
112 * an extent we are going to truncate.
113 */
114 ext4_ext_invalidate_cache(inode);
115
116 return err;
117 }
118
119 /*
120 * could return:
121 * - EROFS
122 * - ENOMEM
123 */
124 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
125 struct ext4_ext_path *path)
126 {
127 if (path->p_bh) {
128 /* path points to block */
129 return ext4_journal_get_write_access(handle, path->p_bh);
130 }
131 /* path points to leaf/index in inode body */
132 /* we use in-core data, no need to protect them */
133 return 0;
134 }
135
136 /*
137 * could return:
138 * - EROFS
139 * - ENOMEM
140 * - EIO
141 */
142 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 int err;
146 if (path->p_bh) {
147 /* path points to block */
148 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
149 } else {
150 /* path points to leaf/index in inode body */
151 err = ext4_mark_inode_dirty(handle, inode);
152 }
153 return err;
154 }
155
156 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
157 struct ext4_ext_path *path,
158 ext4_lblk_t block)
159 {
160 struct ext4_inode_info *ei = EXT4_I(inode);
161 ext4_fsblk_t bg_start;
162 ext4_fsblk_t last_block;
163 ext4_grpblk_t colour;
164 ext4_group_t block_group;
165 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
166 int depth;
167
168 if (path) {
169 struct ext4_extent *ex;
170 depth = path->p_depth;
171
172 /* try to predict block placement */
173 ex = path[depth].p_ext;
174 if (ex)
175 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
176
177 /* it looks like index is empty;
178 * try to find starting block from index itself */
179 if (path[depth].p_bh)
180 return path[depth].p_bh->b_blocknr;
181 }
182
183 /* OK. use inode's group */
184 block_group = ei->i_block_group;
185 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
186 /*
187 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
188 * block groups per flexgroup, reserve the first block
189 * group for directories and special files. Regular
190 * files will start at the second block group. This
191 * tends to speed up directory access and improves
192 * fsck times.
193 */
194 block_group &= ~(flex_size-1);
195 if (S_ISREG(inode->i_mode))
196 block_group++;
197 }
198 bg_start = (block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
199 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
200 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
201
202 /*
203 * If we are doing delayed allocation, we don't need take
204 * colour into account.
205 */
206 if (test_opt(inode->i_sb, DELALLOC))
207 return bg_start;
208
209 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
210 colour = (current->pid % 16) *
211 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
212 else
213 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
214 return bg_start + colour + block;
215 }
216
217 /*
218 * Allocation for a meta data block
219 */
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 struct ext4_ext_path *path,
223 struct ext4_extent *ex, int *err)
224 {
225 ext4_fsblk_t goal, newblock;
226
227 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
229 return newblock;
230 }
231
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
233 {
234 int size;
235
236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 / sizeof(struct ext4_extent);
238 if (!check) {
239 #ifdef AGGRESSIVE_TEST
240 if (size > 6)
241 size = 6;
242 #endif
243 }
244 return size;
245 }
246
247 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
248 {
249 int size;
250
251 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
252 / sizeof(struct ext4_extent_idx);
253 if (!check) {
254 #ifdef AGGRESSIVE_TEST
255 if (size > 5)
256 size = 5;
257 #endif
258 }
259 return size;
260 }
261
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
263 {
264 int size;
265
266 size = sizeof(EXT4_I(inode)->i_data);
267 size -= sizeof(struct ext4_extent_header);
268 size /= sizeof(struct ext4_extent);
269 if (!check) {
270 #ifdef AGGRESSIVE_TEST
271 if (size > 3)
272 size = 3;
273 #endif
274 }
275 return size;
276 }
277
278 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
279 {
280 int size;
281
282 size = sizeof(EXT4_I(inode)->i_data);
283 size -= sizeof(struct ext4_extent_header);
284 size /= sizeof(struct ext4_extent_idx);
285 if (!check) {
286 #ifdef AGGRESSIVE_TEST
287 if (size > 4)
288 size = 4;
289 #endif
290 }
291 return size;
292 }
293
294 /*
295 * Calculate the number of metadata blocks needed
296 * to allocate @blocks
297 * Worse case is one block per extent
298 */
299 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
300 {
301 int lcap, icap, rcap, leafs, idxs, num;
302 int newextents = blocks;
303
304 rcap = ext4_ext_space_root_idx(inode, 0);
305 lcap = ext4_ext_space_block(inode, 0);
306 icap = ext4_ext_space_block_idx(inode, 0);
307
308 /* number of new leaf blocks needed */
309 num = leafs = (newextents + lcap - 1) / lcap;
310
311 /*
312 * Worse case, we need separate index block(s)
313 * to link all new leaf blocks
314 */
315 idxs = (leafs + icap - 1) / icap;
316 do {
317 num += idxs;
318 idxs = (idxs + icap - 1) / icap;
319 } while (idxs > rcap);
320
321 return num;
322 }
323
324 static int
325 ext4_ext_max_entries(struct inode *inode, int depth)
326 {
327 int max;
328
329 if (depth == ext_depth(inode)) {
330 if (depth == 0)
331 max = ext4_ext_space_root(inode, 1);
332 else
333 max = ext4_ext_space_root_idx(inode, 1);
334 } else {
335 if (depth == 0)
336 max = ext4_ext_space_block(inode, 1);
337 else
338 max = ext4_ext_space_block_idx(inode, 1);
339 }
340
341 return max;
342 }
343
344 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
345 {
346 ext4_fsblk_t block = ext_pblock(ext);
347 int len = ext4_ext_get_actual_len(ext);
348
349 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
350 }
351
352 static int ext4_valid_extent_idx(struct inode *inode,
353 struct ext4_extent_idx *ext_idx)
354 {
355 ext4_fsblk_t block = idx_pblock(ext_idx);
356
357 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
358 }
359
360 static int ext4_valid_extent_entries(struct inode *inode,
361 struct ext4_extent_header *eh,
362 int depth)
363 {
364 struct ext4_extent *ext;
365 struct ext4_extent_idx *ext_idx;
366 unsigned short entries;
367 if (eh->eh_entries == 0)
368 return 1;
369
370 entries = le16_to_cpu(eh->eh_entries);
371
372 if (depth == 0) {
373 /* leaf entries */
374 ext = EXT_FIRST_EXTENT(eh);
375 while (entries) {
376 if (!ext4_valid_extent(inode, ext))
377 return 0;
378 ext++;
379 entries--;
380 }
381 } else {
382 ext_idx = EXT_FIRST_INDEX(eh);
383 while (entries) {
384 if (!ext4_valid_extent_idx(inode, ext_idx))
385 return 0;
386 ext_idx++;
387 entries--;
388 }
389 }
390 return 1;
391 }
392
393 static int __ext4_ext_check(const char *function, struct inode *inode,
394 struct ext4_extent_header *eh,
395 int depth)
396 {
397 const char *error_msg;
398 int max = 0;
399
400 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
401 error_msg = "invalid magic";
402 goto corrupted;
403 }
404 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
405 error_msg = "unexpected eh_depth";
406 goto corrupted;
407 }
408 if (unlikely(eh->eh_max == 0)) {
409 error_msg = "invalid eh_max";
410 goto corrupted;
411 }
412 max = ext4_ext_max_entries(inode, depth);
413 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
414 error_msg = "too large eh_max";
415 goto corrupted;
416 }
417 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
418 error_msg = "invalid eh_entries";
419 goto corrupted;
420 }
421 if (!ext4_valid_extent_entries(inode, eh, depth)) {
422 error_msg = "invalid extent entries";
423 goto corrupted;
424 }
425 return 0;
426
427 corrupted:
428 ext4_error(inode->i_sb, function,
429 "bad header/extent in inode #%lu: %s - magic %x, "
430 "entries %u, max %u(%u), depth %u(%u)",
431 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
432 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
433 max, le16_to_cpu(eh->eh_depth), depth);
434
435 return -EIO;
436 }
437
438 #define ext4_ext_check(inode, eh, depth) \
439 __ext4_ext_check(__func__, inode, eh, depth)
440
441 int ext4_ext_check_inode(struct inode *inode)
442 {
443 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
444 }
445
446 #ifdef EXT_DEBUG
447 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
448 {
449 int k, l = path->p_depth;
450
451 ext_debug("path:");
452 for (k = 0; k <= l; k++, path++) {
453 if (path->p_idx) {
454 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
455 idx_pblock(path->p_idx));
456 } else if (path->p_ext) {
457 ext_debug(" %d:[%d]%d:%llu ",
458 le32_to_cpu(path->p_ext->ee_block),
459 ext4_ext_is_uninitialized(path->p_ext),
460 ext4_ext_get_actual_len(path->p_ext),
461 ext_pblock(path->p_ext));
462 } else
463 ext_debug(" []");
464 }
465 ext_debug("\n");
466 }
467
468 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
469 {
470 int depth = ext_depth(inode);
471 struct ext4_extent_header *eh;
472 struct ext4_extent *ex;
473 int i;
474
475 if (!path)
476 return;
477
478 eh = path[depth].p_hdr;
479 ex = EXT_FIRST_EXTENT(eh);
480
481 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
482
483 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
484 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
485 ext4_ext_is_uninitialized(ex),
486 ext4_ext_get_actual_len(ex), ext_pblock(ex));
487 }
488 ext_debug("\n");
489 }
490 #else
491 #define ext4_ext_show_path(inode, path)
492 #define ext4_ext_show_leaf(inode, path)
493 #endif
494
495 void ext4_ext_drop_refs(struct ext4_ext_path *path)
496 {
497 int depth = path->p_depth;
498 int i;
499
500 for (i = 0; i <= depth; i++, path++)
501 if (path->p_bh) {
502 brelse(path->p_bh);
503 path->p_bh = NULL;
504 }
505 }
506
507 /*
508 * ext4_ext_binsearch_idx:
509 * binary search for the closest index of the given block
510 * the header must be checked before calling this
511 */
512 static void
513 ext4_ext_binsearch_idx(struct inode *inode,
514 struct ext4_ext_path *path, ext4_lblk_t block)
515 {
516 struct ext4_extent_header *eh = path->p_hdr;
517 struct ext4_extent_idx *r, *l, *m;
518
519
520 ext_debug("binsearch for %u(idx): ", block);
521
522 l = EXT_FIRST_INDEX(eh) + 1;
523 r = EXT_LAST_INDEX(eh);
524 while (l <= r) {
525 m = l + (r - l) / 2;
526 if (block < le32_to_cpu(m->ei_block))
527 r = m - 1;
528 else
529 l = m + 1;
530 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
531 m, le32_to_cpu(m->ei_block),
532 r, le32_to_cpu(r->ei_block));
533 }
534
535 path->p_idx = l - 1;
536 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
537 idx_pblock(path->p_idx));
538
539 #ifdef CHECK_BINSEARCH
540 {
541 struct ext4_extent_idx *chix, *ix;
542 int k;
543
544 chix = ix = EXT_FIRST_INDEX(eh);
545 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
546 if (k != 0 &&
547 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
548 printk(KERN_DEBUG "k=%d, ix=0x%p, "
549 "first=0x%p\n", k,
550 ix, EXT_FIRST_INDEX(eh));
551 printk(KERN_DEBUG "%u <= %u\n",
552 le32_to_cpu(ix->ei_block),
553 le32_to_cpu(ix[-1].ei_block));
554 }
555 BUG_ON(k && le32_to_cpu(ix->ei_block)
556 <= le32_to_cpu(ix[-1].ei_block));
557 if (block < le32_to_cpu(ix->ei_block))
558 break;
559 chix = ix;
560 }
561 BUG_ON(chix != path->p_idx);
562 }
563 #endif
564
565 }
566
567 /*
568 * ext4_ext_binsearch:
569 * binary search for closest extent of the given block
570 * the header must be checked before calling this
571 */
572 static void
573 ext4_ext_binsearch(struct inode *inode,
574 struct ext4_ext_path *path, ext4_lblk_t block)
575 {
576 struct ext4_extent_header *eh = path->p_hdr;
577 struct ext4_extent *r, *l, *m;
578
579 if (eh->eh_entries == 0) {
580 /*
581 * this leaf is empty:
582 * we get such a leaf in split/add case
583 */
584 return;
585 }
586
587 ext_debug("binsearch for %u: ", block);
588
589 l = EXT_FIRST_EXTENT(eh) + 1;
590 r = EXT_LAST_EXTENT(eh);
591
592 while (l <= r) {
593 m = l + (r - l) / 2;
594 if (block < le32_to_cpu(m->ee_block))
595 r = m - 1;
596 else
597 l = m + 1;
598 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
599 m, le32_to_cpu(m->ee_block),
600 r, le32_to_cpu(r->ee_block));
601 }
602
603 path->p_ext = l - 1;
604 ext_debug(" -> %d:%llu:[%d]%d ",
605 le32_to_cpu(path->p_ext->ee_block),
606 ext_pblock(path->p_ext),
607 ext4_ext_is_uninitialized(path->p_ext),
608 ext4_ext_get_actual_len(path->p_ext));
609
610 #ifdef CHECK_BINSEARCH
611 {
612 struct ext4_extent *chex, *ex;
613 int k;
614
615 chex = ex = EXT_FIRST_EXTENT(eh);
616 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
617 BUG_ON(k && le32_to_cpu(ex->ee_block)
618 <= le32_to_cpu(ex[-1].ee_block));
619 if (block < le32_to_cpu(ex->ee_block))
620 break;
621 chex = ex;
622 }
623 BUG_ON(chex != path->p_ext);
624 }
625 #endif
626
627 }
628
629 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
630 {
631 struct ext4_extent_header *eh;
632
633 eh = ext_inode_hdr(inode);
634 eh->eh_depth = 0;
635 eh->eh_entries = 0;
636 eh->eh_magic = EXT4_EXT_MAGIC;
637 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
638 ext4_mark_inode_dirty(handle, inode);
639 ext4_ext_invalidate_cache(inode);
640 return 0;
641 }
642
643 struct ext4_ext_path *
644 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
645 struct ext4_ext_path *path)
646 {
647 struct ext4_extent_header *eh;
648 struct buffer_head *bh;
649 short int depth, i, ppos = 0, alloc = 0;
650
651 eh = ext_inode_hdr(inode);
652 depth = ext_depth(inode);
653
654 /* account possible depth increase */
655 if (!path) {
656 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
657 GFP_NOFS);
658 if (!path)
659 return ERR_PTR(-ENOMEM);
660 alloc = 1;
661 }
662 path[0].p_hdr = eh;
663 path[0].p_bh = NULL;
664
665 i = depth;
666 /* walk through the tree */
667 while (i) {
668 int need_to_validate = 0;
669
670 ext_debug("depth %d: num %d, max %d\n",
671 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
672
673 ext4_ext_binsearch_idx(inode, path + ppos, block);
674 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
675 path[ppos].p_depth = i;
676 path[ppos].p_ext = NULL;
677
678 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
679 if (unlikely(!bh))
680 goto err;
681 if (!bh_uptodate_or_lock(bh)) {
682 if (bh_submit_read(bh) < 0) {
683 put_bh(bh);
684 goto err;
685 }
686 /* validate the extent entries */
687 need_to_validate = 1;
688 }
689 eh = ext_block_hdr(bh);
690 ppos++;
691 BUG_ON(ppos > depth);
692 path[ppos].p_bh = bh;
693 path[ppos].p_hdr = eh;
694 i--;
695
696 if (need_to_validate && ext4_ext_check(inode, eh, i))
697 goto err;
698 }
699
700 path[ppos].p_depth = i;
701 path[ppos].p_ext = NULL;
702 path[ppos].p_idx = NULL;
703
704 /* find extent */
705 ext4_ext_binsearch(inode, path + ppos, block);
706 /* if not an empty leaf */
707 if (path[ppos].p_ext)
708 path[ppos].p_block = ext_pblock(path[ppos].p_ext);
709
710 ext4_ext_show_path(inode, path);
711
712 return path;
713
714 err:
715 ext4_ext_drop_refs(path);
716 if (alloc)
717 kfree(path);
718 return ERR_PTR(-EIO);
719 }
720
721 /*
722 * ext4_ext_insert_index:
723 * insert new index [@logical;@ptr] into the block at @curp;
724 * check where to insert: before @curp or after @curp
725 */
726 int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
727 struct ext4_ext_path *curp,
728 int logical, ext4_fsblk_t ptr)
729 {
730 struct ext4_extent_idx *ix;
731 int len, err;
732
733 err = ext4_ext_get_access(handle, inode, curp);
734 if (err)
735 return err;
736
737 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
738 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
739 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
740 /* insert after */
741 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
742 len = (len - 1) * sizeof(struct ext4_extent_idx);
743 len = len < 0 ? 0 : len;
744 ext_debug("insert new index %d after: %llu. "
745 "move %d from 0x%p to 0x%p\n",
746 logical, ptr, len,
747 (curp->p_idx + 1), (curp->p_idx + 2));
748 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
749 }
750 ix = curp->p_idx + 1;
751 } else {
752 /* insert before */
753 len = len * sizeof(struct ext4_extent_idx);
754 len = len < 0 ? 0 : len;
755 ext_debug("insert new index %d before: %llu. "
756 "move %d from 0x%p to 0x%p\n",
757 logical, ptr, len,
758 curp->p_idx, (curp->p_idx + 1));
759 memmove(curp->p_idx + 1, curp->p_idx, len);
760 ix = curp->p_idx;
761 }
762
763 ix->ei_block = cpu_to_le32(logical);
764 ext4_idx_store_pblock(ix, ptr);
765 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
766
767 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
768 > le16_to_cpu(curp->p_hdr->eh_max));
769 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
770
771 err = ext4_ext_dirty(handle, inode, curp);
772 ext4_std_error(inode->i_sb, err);
773
774 return err;
775 }
776
777 /*
778 * ext4_ext_split:
779 * inserts new subtree into the path, using free index entry
780 * at depth @at:
781 * - allocates all needed blocks (new leaf and all intermediate index blocks)
782 * - makes decision where to split
783 * - moves remaining extents and index entries (right to the split point)
784 * into the newly allocated blocks
785 * - initializes subtree
786 */
787 static int ext4_ext_split(handle_t *handle, struct inode *inode,
788 struct ext4_ext_path *path,
789 struct ext4_extent *newext, int at)
790 {
791 struct buffer_head *bh = NULL;
792 int depth = ext_depth(inode);
793 struct ext4_extent_header *neh;
794 struct ext4_extent_idx *fidx;
795 struct ext4_extent *ex;
796 int i = at, k, m, a;
797 ext4_fsblk_t newblock, oldblock;
798 __le32 border;
799 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
800 int err = 0;
801
802 /* make decision: where to split? */
803 /* FIXME: now decision is simplest: at current extent */
804
805 /* if current leaf will be split, then we should use
806 * border from split point */
807 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
808 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
809 border = path[depth].p_ext[1].ee_block;
810 ext_debug("leaf will be split."
811 " next leaf starts at %d\n",
812 le32_to_cpu(border));
813 } else {
814 border = newext->ee_block;
815 ext_debug("leaf will be added."
816 " next leaf starts at %d\n",
817 le32_to_cpu(border));
818 }
819
820 /*
821 * If error occurs, then we break processing
822 * and mark filesystem read-only. index won't
823 * be inserted and tree will be in consistent
824 * state. Next mount will repair buffers too.
825 */
826
827 /*
828 * Get array to track all allocated blocks.
829 * We need this to handle errors and free blocks
830 * upon them.
831 */
832 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
833 if (!ablocks)
834 return -ENOMEM;
835
836 /* allocate all needed blocks */
837 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
838 for (a = 0; a < depth - at; a++) {
839 newblock = ext4_ext_new_meta_block(handle, inode, path,
840 newext, &err);
841 if (newblock == 0)
842 goto cleanup;
843 ablocks[a] = newblock;
844 }
845
846 /* initialize new leaf */
847 newblock = ablocks[--a];
848 BUG_ON(newblock == 0);
849 bh = sb_getblk(inode->i_sb, newblock);
850 if (!bh) {
851 err = -EIO;
852 goto cleanup;
853 }
854 lock_buffer(bh);
855
856 err = ext4_journal_get_create_access(handle, bh);
857 if (err)
858 goto cleanup;
859
860 neh = ext_block_hdr(bh);
861 neh->eh_entries = 0;
862 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
863 neh->eh_magic = EXT4_EXT_MAGIC;
864 neh->eh_depth = 0;
865 ex = EXT_FIRST_EXTENT(neh);
866
867 /* move remainder of path[depth] to the new leaf */
868 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
869 /* start copy from next extent */
870 /* TODO: we could do it by single memmove */
871 m = 0;
872 path[depth].p_ext++;
873 while (path[depth].p_ext <=
874 EXT_MAX_EXTENT(path[depth].p_hdr)) {
875 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
876 le32_to_cpu(path[depth].p_ext->ee_block),
877 ext_pblock(path[depth].p_ext),
878 ext4_ext_is_uninitialized(path[depth].p_ext),
879 ext4_ext_get_actual_len(path[depth].p_ext),
880 newblock);
881 /*memmove(ex++, path[depth].p_ext++,
882 sizeof(struct ext4_extent));
883 neh->eh_entries++;*/
884 path[depth].p_ext++;
885 m++;
886 }
887 if (m) {
888 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
889 le16_add_cpu(&neh->eh_entries, m);
890 }
891
892 set_buffer_uptodate(bh);
893 unlock_buffer(bh);
894
895 err = ext4_handle_dirty_metadata(handle, inode, bh);
896 if (err)
897 goto cleanup;
898 brelse(bh);
899 bh = NULL;
900
901 /* correct old leaf */
902 if (m) {
903 err = ext4_ext_get_access(handle, inode, path + depth);
904 if (err)
905 goto cleanup;
906 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
907 err = ext4_ext_dirty(handle, inode, path + depth);
908 if (err)
909 goto cleanup;
910
911 }
912
913 /* create intermediate indexes */
914 k = depth - at - 1;
915 BUG_ON(k < 0);
916 if (k)
917 ext_debug("create %d intermediate indices\n", k);
918 /* insert new index into current index block */
919 /* current depth stored in i var */
920 i = depth - 1;
921 while (k--) {
922 oldblock = newblock;
923 newblock = ablocks[--a];
924 bh = sb_getblk(inode->i_sb, newblock);
925 if (!bh) {
926 err = -EIO;
927 goto cleanup;
928 }
929 lock_buffer(bh);
930
931 err = ext4_journal_get_create_access(handle, bh);
932 if (err)
933 goto cleanup;
934
935 neh = ext_block_hdr(bh);
936 neh->eh_entries = cpu_to_le16(1);
937 neh->eh_magic = EXT4_EXT_MAGIC;
938 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
939 neh->eh_depth = cpu_to_le16(depth - i);
940 fidx = EXT_FIRST_INDEX(neh);
941 fidx->ei_block = border;
942 ext4_idx_store_pblock(fidx, oldblock);
943
944 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
945 i, newblock, le32_to_cpu(border), oldblock);
946 /* copy indexes */
947 m = 0;
948 path[i].p_idx++;
949
950 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
951 EXT_MAX_INDEX(path[i].p_hdr));
952 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
953 EXT_LAST_INDEX(path[i].p_hdr));
954 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
955 ext_debug("%d: move %d:%llu in new index %llu\n", i,
956 le32_to_cpu(path[i].p_idx->ei_block),
957 idx_pblock(path[i].p_idx),
958 newblock);
959 /*memmove(++fidx, path[i].p_idx++,
960 sizeof(struct ext4_extent_idx));
961 neh->eh_entries++;
962 BUG_ON(neh->eh_entries > neh->eh_max);*/
963 path[i].p_idx++;
964 m++;
965 }
966 if (m) {
967 memmove(++fidx, path[i].p_idx - m,
968 sizeof(struct ext4_extent_idx) * m);
969 le16_add_cpu(&neh->eh_entries, m);
970 }
971 set_buffer_uptodate(bh);
972 unlock_buffer(bh);
973
974 err = ext4_handle_dirty_metadata(handle, inode, bh);
975 if (err)
976 goto cleanup;
977 brelse(bh);
978 bh = NULL;
979
980 /* correct old index */
981 if (m) {
982 err = ext4_ext_get_access(handle, inode, path + i);
983 if (err)
984 goto cleanup;
985 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
986 err = ext4_ext_dirty(handle, inode, path + i);
987 if (err)
988 goto cleanup;
989 }
990
991 i--;
992 }
993
994 /* insert new index */
995 err = ext4_ext_insert_index(handle, inode, path + at,
996 le32_to_cpu(border), newblock);
997
998 cleanup:
999 if (bh) {
1000 if (buffer_locked(bh))
1001 unlock_buffer(bh);
1002 brelse(bh);
1003 }
1004
1005 if (err) {
1006 /* free all allocated blocks in error case */
1007 for (i = 0; i < depth; i++) {
1008 if (!ablocks[i])
1009 continue;
1010 ext4_free_blocks(handle, inode, 0, ablocks[i], 1,
1011 EXT4_FREE_BLOCKS_METADATA);
1012 }
1013 }
1014 kfree(ablocks);
1015
1016 return err;
1017 }
1018
1019 /*
1020 * ext4_ext_grow_indepth:
1021 * implements tree growing procedure:
1022 * - allocates new block
1023 * - moves top-level data (index block or leaf) into the new block
1024 * - initializes new top-level, creating index that points to the
1025 * just created block
1026 */
1027 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1028 struct ext4_ext_path *path,
1029 struct ext4_extent *newext)
1030 {
1031 struct ext4_ext_path *curp = path;
1032 struct ext4_extent_header *neh;
1033 struct ext4_extent_idx *fidx;
1034 struct buffer_head *bh;
1035 ext4_fsblk_t newblock;
1036 int err = 0;
1037
1038 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1039 if (newblock == 0)
1040 return err;
1041
1042 bh = sb_getblk(inode->i_sb, newblock);
1043 if (!bh) {
1044 err = -EIO;
1045 ext4_std_error(inode->i_sb, err);
1046 return err;
1047 }
1048 lock_buffer(bh);
1049
1050 err = ext4_journal_get_create_access(handle, bh);
1051 if (err) {
1052 unlock_buffer(bh);
1053 goto out;
1054 }
1055
1056 /* move top-level index/leaf into new block */
1057 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1058
1059 /* set size of new block */
1060 neh = ext_block_hdr(bh);
1061 /* old root could have indexes or leaves
1062 * so calculate e_max right way */
1063 if (ext_depth(inode))
1064 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1065 else
1066 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1067 neh->eh_magic = EXT4_EXT_MAGIC;
1068 set_buffer_uptodate(bh);
1069 unlock_buffer(bh);
1070
1071 err = ext4_handle_dirty_metadata(handle, inode, bh);
1072 if (err)
1073 goto out;
1074
1075 /* create index in new top-level index: num,max,pointer */
1076 err = ext4_ext_get_access(handle, inode, curp);
1077 if (err)
1078 goto out;
1079
1080 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1081 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1082 curp->p_hdr->eh_entries = cpu_to_le16(1);
1083 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1084
1085 if (path[0].p_hdr->eh_depth)
1086 curp->p_idx->ei_block =
1087 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1088 else
1089 curp->p_idx->ei_block =
1090 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1091 ext4_idx_store_pblock(curp->p_idx, newblock);
1092
1093 neh = ext_inode_hdr(inode);
1094 fidx = EXT_FIRST_INDEX(neh);
1095 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1096 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1097 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
1098
1099 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1100 err = ext4_ext_dirty(handle, inode, curp);
1101 out:
1102 brelse(bh);
1103
1104 return err;
1105 }
1106
1107 /*
1108 * ext4_ext_create_new_leaf:
1109 * finds empty index and adds new leaf.
1110 * if no free index is found, then it requests in-depth growing.
1111 */
1112 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1113 struct ext4_ext_path *path,
1114 struct ext4_extent *newext)
1115 {
1116 struct ext4_ext_path *curp;
1117 int depth, i, err = 0;
1118
1119 repeat:
1120 i = depth = ext_depth(inode);
1121
1122 /* walk up to the tree and look for free index entry */
1123 curp = path + depth;
1124 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1125 i--;
1126 curp--;
1127 }
1128
1129 /* we use already allocated block for index block,
1130 * so subsequent data blocks should be contiguous */
1131 if (EXT_HAS_FREE_INDEX(curp)) {
1132 /* if we found index with free entry, then use that
1133 * entry: create all needed subtree and add new leaf */
1134 err = ext4_ext_split(handle, inode, path, newext, i);
1135 if (err)
1136 goto out;
1137
1138 /* refill path */
1139 ext4_ext_drop_refs(path);
1140 path = ext4_ext_find_extent(inode,
1141 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1142 path);
1143 if (IS_ERR(path))
1144 err = PTR_ERR(path);
1145 } else {
1146 /* tree is full, time to grow in depth */
1147 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1148 if (err)
1149 goto out;
1150
1151 /* refill path */
1152 ext4_ext_drop_refs(path);
1153 path = ext4_ext_find_extent(inode,
1154 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1155 path);
1156 if (IS_ERR(path)) {
1157 err = PTR_ERR(path);
1158 goto out;
1159 }
1160
1161 /*
1162 * only first (depth 0 -> 1) produces free space;
1163 * in all other cases we have to split the grown tree
1164 */
1165 depth = ext_depth(inode);
1166 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1167 /* now we need to split */
1168 goto repeat;
1169 }
1170 }
1171
1172 out:
1173 return err;
1174 }
1175
1176 /*
1177 * search the closest allocated block to the left for *logical
1178 * and returns it at @logical + it's physical address at @phys
1179 * if *logical is the smallest allocated block, the function
1180 * returns 0 at @phys
1181 * return value contains 0 (success) or error code
1182 */
1183 int
1184 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1185 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1186 {
1187 struct ext4_extent_idx *ix;
1188 struct ext4_extent *ex;
1189 int depth, ee_len;
1190
1191 BUG_ON(path == NULL);
1192 depth = path->p_depth;
1193 *phys = 0;
1194
1195 if (depth == 0 && path->p_ext == NULL)
1196 return 0;
1197
1198 /* usually extent in the path covers blocks smaller
1199 * then *logical, but it can be that extent is the
1200 * first one in the file */
1201
1202 ex = path[depth].p_ext;
1203 ee_len = ext4_ext_get_actual_len(ex);
1204 if (*logical < le32_to_cpu(ex->ee_block)) {
1205 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1206 while (--depth >= 0) {
1207 ix = path[depth].p_idx;
1208 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1209 }
1210 return 0;
1211 }
1212
1213 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1214
1215 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1216 *phys = ext_pblock(ex) + ee_len - 1;
1217 return 0;
1218 }
1219
1220 /*
1221 * search the closest allocated block to the right for *logical
1222 * and returns it at @logical + it's physical address at @phys
1223 * if *logical is the smallest allocated block, the function
1224 * returns 0 at @phys
1225 * return value contains 0 (success) or error code
1226 */
1227 int
1228 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1229 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1230 {
1231 struct buffer_head *bh = NULL;
1232 struct ext4_extent_header *eh;
1233 struct ext4_extent_idx *ix;
1234 struct ext4_extent *ex;
1235 ext4_fsblk_t block;
1236 int depth; /* Note, NOT eh_depth; depth from top of tree */
1237 int ee_len;
1238
1239 BUG_ON(path == NULL);
1240 depth = path->p_depth;
1241 *phys = 0;
1242
1243 if (depth == 0 && path->p_ext == NULL)
1244 return 0;
1245
1246 /* usually extent in the path covers blocks smaller
1247 * then *logical, but it can be that extent is the
1248 * first one in the file */
1249
1250 ex = path[depth].p_ext;
1251 ee_len = ext4_ext_get_actual_len(ex);
1252 if (*logical < le32_to_cpu(ex->ee_block)) {
1253 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1254 while (--depth >= 0) {
1255 ix = path[depth].p_idx;
1256 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1257 }
1258 *logical = le32_to_cpu(ex->ee_block);
1259 *phys = ext_pblock(ex);
1260 return 0;
1261 }
1262
1263 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1264
1265 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1266 /* next allocated block in this leaf */
1267 ex++;
1268 *logical = le32_to_cpu(ex->ee_block);
1269 *phys = ext_pblock(ex);
1270 return 0;
1271 }
1272
1273 /* go up and search for index to the right */
1274 while (--depth >= 0) {
1275 ix = path[depth].p_idx;
1276 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1277 goto got_index;
1278 }
1279
1280 /* we've gone up to the root and found no index to the right */
1281 return 0;
1282
1283 got_index:
1284 /* we've found index to the right, let's
1285 * follow it and find the closest allocated
1286 * block to the right */
1287 ix++;
1288 block = idx_pblock(ix);
1289 while (++depth < path->p_depth) {
1290 bh = sb_bread(inode->i_sb, block);
1291 if (bh == NULL)
1292 return -EIO;
1293 eh = ext_block_hdr(bh);
1294 /* subtract from p_depth to get proper eh_depth */
1295 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1296 put_bh(bh);
1297 return -EIO;
1298 }
1299 ix = EXT_FIRST_INDEX(eh);
1300 block = idx_pblock(ix);
1301 put_bh(bh);
1302 }
1303
1304 bh = sb_bread(inode->i_sb, block);
1305 if (bh == NULL)
1306 return -EIO;
1307 eh = ext_block_hdr(bh);
1308 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1309 put_bh(bh);
1310 return -EIO;
1311 }
1312 ex = EXT_FIRST_EXTENT(eh);
1313 *logical = le32_to_cpu(ex->ee_block);
1314 *phys = ext_pblock(ex);
1315 put_bh(bh);
1316 return 0;
1317 }
1318
1319 /*
1320 * ext4_ext_next_allocated_block:
1321 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1322 * NOTE: it considers block number from index entry as
1323 * allocated block. Thus, index entries have to be consistent
1324 * with leaves.
1325 */
1326 static ext4_lblk_t
1327 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1328 {
1329 int depth;
1330
1331 BUG_ON(path == NULL);
1332 depth = path->p_depth;
1333
1334 if (depth == 0 && path->p_ext == NULL)
1335 return EXT_MAX_BLOCK;
1336
1337 while (depth >= 0) {
1338 if (depth == path->p_depth) {
1339 /* leaf */
1340 if (path[depth].p_ext !=
1341 EXT_LAST_EXTENT(path[depth].p_hdr))
1342 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1343 } else {
1344 /* index */
1345 if (path[depth].p_idx !=
1346 EXT_LAST_INDEX(path[depth].p_hdr))
1347 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1348 }
1349 depth--;
1350 }
1351
1352 return EXT_MAX_BLOCK;
1353 }
1354
1355 /*
1356 * ext4_ext_next_leaf_block:
1357 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1358 */
1359 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1360 struct ext4_ext_path *path)
1361 {
1362 int depth;
1363
1364 BUG_ON(path == NULL);
1365 depth = path->p_depth;
1366
1367 /* zero-tree has no leaf blocks at all */
1368 if (depth == 0)
1369 return EXT_MAX_BLOCK;
1370
1371 /* go to index block */
1372 depth--;
1373
1374 while (depth >= 0) {
1375 if (path[depth].p_idx !=
1376 EXT_LAST_INDEX(path[depth].p_hdr))
1377 return (ext4_lblk_t)
1378 le32_to_cpu(path[depth].p_idx[1].ei_block);
1379 depth--;
1380 }
1381
1382 return EXT_MAX_BLOCK;
1383 }
1384
1385 /*
1386 * ext4_ext_correct_indexes:
1387 * if leaf gets modified and modified extent is first in the leaf,
1388 * then we have to correct all indexes above.
1389 * TODO: do we need to correct tree in all cases?
1390 */
1391 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1392 struct ext4_ext_path *path)
1393 {
1394 struct ext4_extent_header *eh;
1395 int depth = ext_depth(inode);
1396 struct ext4_extent *ex;
1397 __le32 border;
1398 int k, err = 0;
1399
1400 eh = path[depth].p_hdr;
1401 ex = path[depth].p_ext;
1402 BUG_ON(ex == NULL);
1403 BUG_ON(eh == NULL);
1404
1405 if (depth == 0) {
1406 /* there is no tree at all */
1407 return 0;
1408 }
1409
1410 if (ex != EXT_FIRST_EXTENT(eh)) {
1411 /* we correct tree if first leaf got modified only */
1412 return 0;
1413 }
1414
1415 /*
1416 * TODO: we need correction if border is smaller than current one
1417 */
1418 k = depth - 1;
1419 border = path[depth].p_ext->ee_block;
1420 err = ext4_ext_get_access(handle, inode, path + k);
1421 if (err)
1422 return err;
1423 path[k].p_idx->ei_block = border;
1424 err = ext4_ext_dirty(handle, inode, path + k);
1425 if (err)
1426 return err;
1427
1428 while (k--) {
1429 /* change all left-side indexes */
1430 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1431 break;
1432 err = ext4_ext_get_access(handle, inode, path + k);
1433 if (err)
1434 break;
1435 path[k].p_idx->ei_block = border;
1436 err = ext4_ext_dirty(handle, inode, path + k);
1437 if (err)
1438 break;
1439 }
1440
1441 return err;
1442 }
1443
1444 int
1445 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1446 struct ext4_extent *ex2)
1447 {
1448 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1449
1450 /*
1451 * Make sure that either both extents are uninitialized, or
1452 * both are _not_.
1453 */
1454 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1455 return 0;
1456
1457 if (ext4_ext_is_uninitialized(ex1))
1458 max_len = EXT_UNINIT_MAX_LEN;
1459 else
1460 max_len = EXT_INIT_MAX_LEN;
1461
1462 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1463 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1464
1465 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1466 le32_to_cpu(ex2->ee_block))
1467 return 0;
1468
1469 /*
1470 * To allow future support for preallocated extents to be added
1471 * as an RO_COMPAT feature, refuse to merge to extents if
1472 * this can result in the top bit of ee_len being set.
1473 */
1474 if (ext1_ee_len + ext2_ee_len > max_len)
1475 return 0;
1476 #ifdef AGGRESSIVE_TEST
1477 if (ext1_ee_len >= 4)
1478 return 0;
1479 #endif
1480
1481 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1482 return 1;
1483 return 0;
1484 }
1485
1486 /*
1487 * This function tries to merge the "ex" extent to the next extent in the tree.
1488 * It always tries to merge towards right. If you want to merge towards
1489 * left, pass "ex - 1" as argument instead of "ex".
1490 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1491 * 1 if they got merged.
1492 */
1493 int ext4_ext_try_to_merge(struct inode *inode,
1494 struct ext4_ext_path *path,
1495 struct ext4_extent *ex)
1496 {
1497 struct ext4_extent_header *eh;
1498 unsigned int depth, len;
1499 int merge_done = 0;
1500 int uninitialized = 0;
1501
1502 depth = ext_depth(inode);
1503 BUG_ON(path[depth].p_hdr == NULL);
1504 eh = path[depth].p_hdr;
1505
1506 while (ex < EXT_LAST_EXTENT(eh)) {
1507 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1508 break;
1509 /* merge with next extent! */
1510 if (ext4_ext_is_uninitialized(ex))
1511 uninitialized = 1;
1512 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1513 + ext4_ext_get_actual_len(ex + 1));
1514 if (uninitialized)
1515 ext4_ext_mark_uninitialized(ex);
1516
1517 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1518 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1519 * sizeof(struct ext4_extent);
1520 memmove(ex + 1, ex + 2, len);
1521 }
1522 le16_add_cpu(&eh->eh_entries, -1);
1523 merge_done = 1;
1524 WARN_ON(eh->eh_entries == 0);
1525 if (!eh->eh_entries)
1526 ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1527 "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1528 }
1529
1530 return merge_done;
1531 }
1532
1533 /*
1534 * check if a portion of the "newext" extent overlaps with an
1535 * existing extent.
1536 *
1537 * If there is an overlap discovered, it updates the length of the newext
1538 * such that there will be no overlap, and then returns 1.
1539 * If there is no overlap found, it returns 0.
1540 */
1541 unsigned int ext4_ext_check_overlap(struct inode *inode,
1542 struct ext4_extent *newext,
1543 struct ext4_ext_path *path)
1544 {
1545 ext4_lblk_t b1, b2;
1546 unsigned int depth, len1;
1547 unsigned int ret = 0;
1548
1549 b1 = le32_to_cpu(newext->ee_block);
1550 len1 = ext4_ext_get_actual_len(newext);
1551 depth = ext_depth(inode);
1552 if (!path[depth].p_ext)
1553 goto out;
1554 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1555
1556 /*
1557 * get the next allocated block if the extent in the path
1558 * is before the requested block(s)
1559 */
1560 if (b2 < b1) {
1561 b2 = ext4_ext_next_allocated_block(path);
1562 if (b2 == EXT_MAX_BLOCK)
1563 goto out;
1564 }
1565
1566 /* check for wrap through zero on extent logical start block*/
1567 if (b1 + len1 < b1) {
1568 len1 = EXT_MAX_BLOCK - b1;
1569 newext->ee_len = cpu_to_le16(len1);
1570 ret = 1;
1571 }
1572
1573 /* check for overlap */
1574 if (b1 + len1 > b2) {
1575 newext->ee_len = cpu_to_le16(b2 - b1);
1576 ret = 1;
1577 }
1578 out:
1579 return ret;
1580 }
1581
1582 /*
1583 * ext4_ext_insert_extent:
1584 * tries to merge requsted extent into the existing extent or
1585 * inserts requested extent as new one into the tree,
1586 * creating new leaf in the no-space case.
1587 */
1588 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1589 struct ext4_ext_path *path,
1590 struct ext4_extent *newext, int flag)
1591 {
1592 struct ext4_extent_header *eh;
1593 struct ext4_extent *ex, *fex;
1594 struct ext4_extent *nearex; /* nearest extent */
1595 struct ext4_ext_path *npath = NULL;
1596 int depth, len, err;
1597 ext4_lblk_t next;
1598 unsigned uninitialized = 0;
1599
1600 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1601 depth = ext_depth(inode);
1602 ex = path[depth].p_ext;
1603 BUG_ON(path[depth].p_hdr == NULL);
1604
1605 /* try to insert block into found extent and return */
1606 if (ex && (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1607 && ext4_can_extents_be_merged(inode, ex, newext)) {
1608 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1609 ext4_ext_is_uninitialized(newext),
1610 ext4_ext_get_actual_len(newext),
1611 le32_to_cpu(ex->ee_block),
1612 ext4_ext_is_uninitialized(ex),
1613 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1614 err = ext4_ext_get_access(handle, inode, path + depth);
1615 if (err)
1616 return err;
1617
1618 /*
1619 * ext4_can_extents_be_merged should have checked that either
1620 * both extents are uninitialized, or both aren't. Thus we
1621 * need to check only one of them here.
1622 */
1623 if (ext4_ext_is_uninitialized(ex))
1624 uninitialized = 1;
1625 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1626 + ext4_ext_get_actual_len(newext));
1627 if (uninitialized)
1628 ext4_ext_mark_uninitialized(ex);
1629 eh = path[depth].p_hdr;
1630 nearex = ex;
1631 goto merge;
1632 }
1633
1634 repeat:
1635 depth = ext_depth(inode);
1636 eh = path[depth].p_hdr;
1637 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1638 goto has_space;
1639
1640 /* probably next leaf has space for us? */
1641 fex = EXT_LAST_EXTENT(eh);
1642 next = ext4_ext_next_leaf_block(inode, path);
1643 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1644 && next != EXT_MAX_BLOCK) {
1645 ext_debug("next leaf block - %d\n", next);
1646 BUG_ON(npath != NULL);
1647 npath = ext4_ext_find_extent(inode, next, NULL);
1648 if (IS_ERR(npath))
1649 return PTR_ERR(npath);
1650 BUG_ON(npath->p_depth != path->p_depth);
1651 eh = npath[depth].p_hdr;
1652 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1653 ext_debug("next leaf isnt full(%d)\n",
1654 le16_to_cpu(eh->eh_entries));
1655 path = npath;
1656 goto repeat;
1657 }
1658 ext_debug("next leaf has no free space(%d,%d)\n",
1659 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1660 }
1661
1662 /*
1663 * There is no free space in the found leaf.
1664 * We're gonna add a new leaf in the tree.
1665 */
1666 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1667 if (err)
1668 goto cleanup;
1669 depth = ext_depth(inode);
1670 eh = path[depth].p_hdr;
1671
1672 has_space:
1673 nearex = path[depth].p_ext;
1674
1675 err = ext4_ext_get_access(handle, inode, path + depth);
1676 if (err)
1677 goto cleanup;
1678
1679 if (!nearex) {
1680 /* there is no extent in this leaf, create first one */
1681 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1682 le32_to_cpu(newext->ee_block),
1683 ext_pblock(newext),
1684 ext4_ext_is_uninitialized(newext),
1685 ext4_ext_get_actual_len(newext));
1686 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1687 } else if (le32_to_cpu(newext->ee_block)
1688 > le32_to_cpu(nearex->ee_block)) {
1689 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1690 if (nearex != EXT_LAST_EXTENT(eh)) {
1691 len = EXT_MAX_EXTENT(eh) - nearex;
1692 len = (len - 1) * sizeof(struct ext4_extent);
1693 len = len < 0 ? 0 : len;
1694 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1695 "move %d from 0x%p to 0x%p\n",
1696 le32_to_cpu(newext->ee_block),
1697 ext_pblock(newext),
1698 ext4_ext_is_uninitialized(newext),
1699 ext4_ext_get_actual_len(newext),
1700 nearex, len, nearex + 1, nearex + 2);
1701 memmove(nearex + 2, nearex + 1, len);
1702 }
1703 path[depth].p_ext = nearex + 1;
1704 } else {
1705 BUG_ON(newext->ee_block == nearex->ee_block);
1706 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1707 len = len < 0 ? 0 : len;
1708 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1709 "move %d from 0x%p to 0x%p\n",
1710 le32_to_cpu(newext->ee_block),
1711 ext_pblock(newext),
1712 ext4_ext_is_uninitialized(newext),
1713 ext4_ext_get_actual_len(newext),
1714 nearex, len, nearex + 1, nearex + 2);
1715 memmove(nearex + 1, nearex, len);
1716 path[depth].p_ext = nearex;
1717 }
1718
1719 le16_add_cpu(&eh->eh_entries, 1);
1720 nearex = path[depth].p_ext;
1721 nearex->ee_block = newext->ee_block;
1722 ext4_ext_store_pblock(nearex, ext_pblock(newext));
1723 nearex->ee_len = newext->ee_len;
1724
1725 merge:
1726 /* try to merge extents to the right */
1727 if (flag != EXT4_GET_BLOCKS_DIO_CREATE_EXT)
1728 ext4_ext_try_to_merge(inode, path, nearex);
1729
1730 /* try to merge extents to the left */
1731
1732 /* time to correct all indexes above */
1733 err = ext4_ext_correct_indexes(handle, inode, path);
1734 if (err)
1735 goto cleanup;
1736
1737 err = ext4_ext_dirty(handle, inode, path + depth);
1738
1739 cleanup:
1740 if (npath) {
1741 ext4_ext_drop_refs(npath);
1742 kfree(npath);
1743 }
1744 ext4_ext_invalidate_cache(inode);
1745 return err;
1746 }
1747
1748 int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1749 ext4_lblk_t num, ext_prepare_callback func,
1750 void *cbdata)
1751 {
1752 struct ext4_ext_path *path = NULL;
1753 struct ext4_ext_cache cbex;
1754 struct ext4_extent *ex;
1755 ext4_lblk_t next, start = 0, end = 0;
1756 ext4_lblk_t last = block + num;
1757 int depth, exists, err = 0;
1758
1759 BUG_ON(func == NULL);
1760 BUG_ON(inode == NULL);
1761
1762 while (block < last && block != EXT_MAX_BLOCK) {
1763 num = last - block;
1764 /* find extent for this block */
1765 path = ext4_ext_find_extent(inode, block, path);
1766 if (IS_ERR(path)) {
1767 err = PTR_ERR(path);
1768 path = NULL;
1769 break;
1770 }
1771
1772 depth = ext_depth(inode);
1773 BUG_ON(path[depth].p_hdr == NULL);
1774 ex = path[depth].p_ext;
1775 next = ext4_ext_next_allocated_block(path);
1776
1777 exists = 0;
1778 if (!ex) {
1779 /* there is no extent yet, so try to allocate
1780 * all requested space */
1781 start = block;
1782 end = block + num;
1783 } else if (le32_to_cpu(ex->ee_block) > block) {
1784 /* need to allocate space before found extent */
1785 start = block;
1786 end = le32_to_cpu(ex->ee_block);
1787 if (block + num < end)
1788 end = block + num;
1789 } else if (block >= le32_to_cpu(ex->ee_block)
1790 + ext4_ext_get_actual_len(ex)) {
1791 /* need to allocate space after found extent */
1792 start = block;
1793 end = block + num;
1794 if (end >= next)
1795 end = next;
1796 } else if (block >= le32_to_cpu(ex->ee_block)) {
1797 /*
1798 * some part of requested space is covered
1799 * by found extent
1800 */
1801 start = block;
1802 end = le32_to_cpu(ex->ee_block)
1803 + ext4_ext_get_actual_len(ex);
1804 if (block + num < end)
1805 end = block + num;
1806 exists = 1;
1807 } else {
1808 BUG();
1809 }
1810 BUG_ON(end <= start);
1811
1812 if (!exists) {
1813 cbex.ec_block = start;
1814 cbex.ec_len = end - start;
1815 cbex.ec_start = 0;
1816 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1817 } else {
1818 cbex.ec_block = le32_to_cpu(ex->ee_block);
1819 cbex.ec_len = ext4_ext_get_actual_len(ex);
1820 cbex.ec_start = ext_pblock(ex);
1821 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1822 }
1823
1824 BUG_ON(cbex.ec_len == 0);
1825 err = func(inode, path, &cbex, ex, cbdata);
1826 ext4_ext_drop_refs(path);
1827
1828 if (err < 0)
1829 break;
1830
1831 if (err == EXT_REPEAT)
1832 continue;
1833 else if (err == EXT_BREAK) {
1834 err = 0;
1835 break;
1836 }
1837
1838 if (ext_depth(inode) != depth) {
1839 /* depth was changed. we have to realloc path */
1840 kfree(path);
1841 path = NULL;
1842 }
1843
1844 block = cbex.ec_block + cbex.ec_len;
1845 }
1846
1847 if (path) {
1848 ext4_ext_drop_refs(path);
1849 kfree(path);
1850 }
1851
1852 return err;
1853 }
1854
1855 static void
1856 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1857 __u32 len, ext4_fsblk_t start, int type)
1858 {
1859 struct ext4_ext_cache *cex;
1860 BUG_ON(len == 0);
1861 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1862 cex = &EXT4_I(inode)->i_cached_extent;
1863 cex->ec_type = type;
1864 cex->ec_block = block;
1865 cex->ec_len = len;
1866 cex->ec_start = start;
1867 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1868 }
1869
1870 /*
1871 * ext4_ext_put_gap_in_cache:
1872 * calculate boundaries of the gap that the requested block fits into
1873 * and cache this gap
1874 */
1875 static void
1876 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1877 ext4_lblk_t block)
1878 {
1879 int depth = ext_depth(inode);
1880 unsigned long len;
1881 ext4_lblk_t lblock;
1882 struct ext4_extent *ex;
1883
1884 ex = path[depth].p_ext;
1885 if (ex == NULL) {
1886 /* there is no extent yet, so gap is [0;-] */
1887 lblock = 0;
1888 len = EXT_MAX_BLOCK;
1889 ext_debug("cache gap(whole file):");
1890 } else if (block < le32_to_cpu(ex->ee_block)) {
1891 lblock = block;
1892 len = le32_to_cpu(ex->ee_block) - block;
1893 ext_debug("cache gap(before): %u [%u:%u]",
1894 block,
1895 le32_to_cpu(ex->ee_block),
1896 ext4_ext_get_actual_len(ex));
1897 } else if (block >= le32_to_cpu(ex->ee_block)
1898 + ext4_ext_get_actual_len(ex)) {
1899 ext4_lblk_t next;
1900 lblock = le32_to_cpu(ex->ee_block)
1901 + ext4_ext_get_actual_len(ex);
1902
1903 next = ext4_ext_next_allocated_block(path);
1904 ext_debug("cache gap(after): [%u:%u] %u",
1905 le32_to_cpu(ex->ee_block),
1906 ext4_ext_get_actual_len(ex),
1907 block);
1908 BUG_ON(next == lblock);
1909 len = next - lblock;
1910 } else {
1911 lblock = len = 0;
1912 BUG();
1913 }
1914
1915 ext_debug(" -> %u:%lu\n", lblock, len);
1916 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1917 }
1918
1919 static int
1920 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1921 struct ext4_extent *ex)
1922 {
1923 struct ext4_ext_cache *cex;
1924 int ret = EXT4_EXT_CACHE_NO;
1925
1926 /*
1927 * We borrow i_block_reservation_lock to protect i_cached_extent
1928 */
1929 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1930 cex = &EXT4_I(inode)->i_cached_extent;
1931
1932 /* has cache valid data? */
1933 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1934 goto errout;
1935
1936 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1937 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1938 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1939 ex->ee_block = cpu_to_le32(cex->ec_block);
1940 ext4_ext_store_pblock(ex, cex->ec_start);
1941 ex->ee_len = cpu_to_le16(cex->ec_len);
1942 ext_debug("%u cached by %u:%u:%llu\n",
1943 block,
1944 cex->ec_block, cex->ec_len, cex->ec_start);
1945 ret = cex->ec_type;
1946 }
1947 errout:
1948 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1949 return ret;
1950 }
1951
1952 /*
1953 * ext4_ext_rm_idx:
1954 * removes index from the index block.
1955 * It's used in truncate case only, thus all requests are for
1956 * last index in the block only.
1957 */
1958 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1959 struct ext4_ext_path *path)
1960 {
1961 int err;
1962 ext4_fsblk_t leaf;
1963
1964 /* free index block */
1965 path--;
1966 leaf = idx_pblock(path->p_idx);
1967 BUG_ON(path->p_hdr->eh_entries == 0);
1968 err = ext4_ext_get_access(handle, inode, path);
1969 if (err)
1970 return err;
1971 le16_add_cpu(&path->p_hdr->eh_entries, -1);
1972 err = ext4_ext_dirty(handle, inode, path);
1973 if (err)
1974 return err;
1975 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1976 ext4_free_blocks(handle, inode, 0, leaf, 1,
1977 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1978 return err;
1979 }
1980
1981 /*
1982 * ext4_ext_calc_credits_for_single_extent:
1983 * This routine returns max. credits that needed to insert an extent
1984 * to the extent tree.
1985 * When pass the actual path, the caller should calculate credits
1986 * under i_data_sem.
1987 */
1988 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1989 struct ext4_ext_path *path)
1990 {
1991 if (path) {
1992 int depth = ext_depth(inode);
1993 int ret = 0;
1994
1995 /* probably there is space in leaf? */
1996 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1997 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
1998
1999 /*
2000 * There are some space in the leaf tree, no
2001 * need to account for leaf block credit
2002 *
2003 * bitmaps and block group descriptor blocks
2004 * and other metadat blocks still need to be
2005 * accounted.
2006 */
2007 /* 1 bitmap, 1 block group descriptor */
2008 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2009 return ret;
2010 }
2011 }
2012
2013 return ext4_chunk_trans_blocks(inode, nrblocks);
2014 }
2015
2016 /*
2017 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2018 *
2019 * if nrblocks are fit in a single extent (chunk flag is 1), then
2020 * in the worse case, each tree level index/leaf need to be changed
2021 * if the tree split due to insert a new extent, then the old tree
2022 * index/leaf need to be updated too
2023 *
2024 * If the nrblocks are discontiguous, they could cause
2025 * the whole tree split more than once, but this is really rare.
2026 */
2027 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2028 {
2029 int index;
2030 int depth = ext_depth(inode);
2031
2032 if (chunk)
2033 index = depth * 2;
2034 else
2035 index = depth * 3;
2036
2037 return index;
2038 }
2039
2040 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2041 struct ext4_extent *ex,
2042 ext4_lblk_t from, ext4_lblk_t to)
2043 {
2044 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2045 int flags = EXT4_FREE_BLOCKS_FORGET;
2046
2047 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2048 flags |= EXT4_FREE_BLOCKS_METADATA;
2049 #ifdef EXTENTS_STATS
2050 {
2051 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2052 spin_lock(&sbi->s_ext_stats_lock);
2053 sbi->s_ext_blocks += ee_len;
2054 sbi->s_ext_extents++;
2055 if (ee_len < sbi->s_ext_min)
2056 sbi->s_ext_min = ee_len;
2057 if (ee_len > sbi->s_ext_max)
2058 sbi->s_ext_max = ee_len;
2059 if (ext_depth(inode) > sbi->s_depth_max)
2060 sbi->s_depth_max = ext_depth(inode);
2061 spin_unlock(&sbi->s_ext_stats_lock);
2062 }
2063 #endif
2064 if (from >= le32_to_cpu(ex->ee_block)
2065 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2066 /* tail removal */
2067 ext4_lblk_t num;
2068 ext4_fsblk_t start;
2069
2070 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2071 start = ext_pblock(ex) + ee_len - num;
2072 ext_debug("free last %u blocks starting %llu\n", num, start);
2073 ext4_free_blocks(handle, inode, 0, start, num, flags);
2074 } else if (from == le32_to_cpu(ex->ee_block)
2075 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2076 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2077 from, to, le32_to_cpu(ex->ee_block), ee_len);
2078 } else {
2079 printk(KERN_INFO "strange request: removal(2) "
2080 "%u-%u from %u:%u\n",
2081 from, to, le32_to_cpu(ex->ee_block), ee_len);
2082 }
2083 return 0;
2084 }
2085
2086 static int
2087 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2088 struct ext4_ext_path *path, ext4_lblk_t start)
2089 {
2090 int err = 0, correct_index = 0;
2091 int depth = ext_depth(inode), credits;
2092 struct ext4_extent_header *eh;
2093 ext4_lblk_t a, b, block;
2094 unsigned num;
2095 ext4_lblk_t ex_ee_block;
2096 unsigned short ex_ee_len;
2097 unsigned uninitialized = 0;
2098 struct ext4_extent *ex;
2099
2100 /* the header must be checked already in ext4_ext_remove_space() */
2101 ext_debug("truncate since %u in leaf\n", start);
2102 if (!path[depth].p_hdr)
2103 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2104 eh = path[depth].p_hdr;
2105 BUG_ON(eh == NULL);
2106
2107 /* find where to start removing */
2108 ex = EXT_LAST_EXTENT(eh);
2109
2110 ex_ee_block = le32_to_cpu(ex->ee_block);
2111 ex_ee_len = ext4_ext_get_actual_len(ex);
2112
2113 while (ex >= EXT_FIRST_EXTENT(eh) &&
2114 ex_ee_block + ex_ee_len > start) {
2115
2116 if (ext4_ext_is_uninitialized(ex))
2117 uninitialized = 1;
2118 else
2119 uninitialized = 0;
2120
2121 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2122 uninitialized, ex_ee_len);
2123 path[depth].p_ext = ex;
2124
2125 a = ex_ee_block > start ? ex_ee_block : start;
2126 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2127 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2128
2129 ext_debug(" border %u:%u\n", a, b);
2130
2131 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2132 block = 0;
2133 num = 0;
2134 BUG();
2135 } else if (a != ex_ee_block) {
2136 /* remove tail of the extent */
2137 block = ex_ee_block;
2138 num = a - block;
2139 } else if (b != ex_ee_block + ex_ee_len - 1) {
2140 /* remove head of the extent */
2141 block = a;
2142 num = b - a;
2143 /* there is no "make a hole" API yet */
2144 BUG();
2145 } else {
2146 /* remove whole extent: excellent! */
2147 block = ex_ee_block;
2148 num = 0;
2149 BUG_ON(a != ex_ee_block);
2150 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2151 }
2152
2153 /*
2154 * 3 for leaf, sb, and inode plus 2 (bmap and group
2155 * descriptor) for each block group; assume two block
2156 * groups plus ex_ee_len/blocks_per_block_group for
2157 * the worst case
2158 */
2159 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2160 if (ex == EXT_FIRST_EXTENT(eh)) {
2161 correct_index = 1;
2162 credits += (ext_depth(inode)) + 1;
2163 }
2164 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2165
2166 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2167 if (err)
2168 goto out;
2169
2170 err = ext4_ext_get_access(handle, inode, path + depth);
2171 if (err)
2172 goto out;
2173
2174 err = ext4_remove_blocks(handle, inode, ex, a, b);
2175 if (err)
2176 goto out;
2177
2178 if (num == 0) {
2179 /* this extent is removed; mark slot entirely unused */
2180 ext4_ext_store_pblock(ex, 0);
2181 le16_add_cpu(&eh->eh_entries, -1);
2182 }
2183
2184 ex->ee_block = cpu_to_le32(block);
2185 ex->ee_len = cpu_to_le16(num);
2186 /*
2187 * Do not mark uninitialized if all the blocks in the
2188 * extent have been removed.
2189 */
2190 if (uninitialized && num)
2191 ext4_ext_mark_uninitialized(ex);
2192
2193 err = ext4_ext_dirty(handle, inode, path + depth);
2194 if (err)
2195 goto out;
2196
2197 ext_debug("new extent: %u:%u:%llu\n", block, num,
2198 ext_pblock(ex));
2199 ex--;
2200 ex_ee_block = le32_to_cpu(ex->ee_block);
2201 ex_ee_len = ext4_ext_get_actual_len(ex);
2202 }
2203
2204 if (correct_index && eh->eh_entries)
2205 err = ext4_ext_correct_indexes(handle, inode, path);
2206
2207 /* if this leaf is free, then we should
2208 * remove it from index block above */
2209 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2210 err = ext4_ext_rm_idx(handle, inode, path + depth);
2211
2212 out:
2213 return err;
2214 }
2215
2216 /*
2217 * ext4_ext_more_to_rm:
2218 * returns 1 if current index has to be freed (even partial)
2219 */
2220 static int
2221 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2222 {
2223 BUG_ON(path->p_idx == NULL);
2224
2225 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2226 return 0;
2227
2228 /*
2229 * if truncate on deeper level happened, it wasn't partial,
2230 * so we have to consider current index for truncation
2231 */
2232 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2233 return 0;
2234 return 1;
2235 }
2236
2237 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2238 {
2239 struct super_block *sb = inode->i_sb;
2240 int depth = ext_depth(inode);
2241 struct ext4_ext_path *path;
2242 handle_t *handle;
2243 int i = 0, err = 0;
2244
2245 ext_debug("truncate since %u\n", start);
2246
2247 /* probably first extent we're gonna free will be last in block */
2248 handle = ext4_journal_start(inode, depth + 1);
2249 if (IS_ERR(handle))
2250 return PTR_ERR(handle);
2251
2252 ext4_ext_invalidate_cache(inode);
2253
2254 /*
2255 * We start scanning from right side, freeing all the blocks
2256 * after i_size and walking into the tree depth-wise.
2257 */
2258 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2259 if (path == NULL) {
2260 ext4_journal_stop(handle);
2261 return -ENOMEM;
2262 }
2263 path[0].p_hdr = ext_inode_hdr(inode);
2264 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2265 err = -EIO;
2266 goto out;
2267 }
2268 path[0].p_depth = depth;
2269
2270 while (i >= 0 && err == 0) {
2271 if (i == depth) {
2272 /* this is leaf block */
2273 err = ext4_ext_rm_leaf(handle, inode, path, start);
2274 /* root level has p_bh == NULL, brelse() eats this */
2275 brelse(path[i].p_bh);
2276 path[i].p_bh = NULL;
2277 i--;
2278 continue;
2279 }
2280
2281 /* this is index block */
2282 if (!path[i].p_hdr) {
2283 ext_debug("initialize header\n");
2284 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2285 }
2286
2287 if (!path[i].p_idx) {
2288 /* this level hasn't been touched yet */
2289 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2290 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2291 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2292 path[i].p_hdr,
2293 le16_to_cpu(path[i].p_hdr->eh_entries));
2294 } else {
2295 /* we were already here, see at next index */
2296 path[i].p_idx--;
2297 }
2298
2299 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2300 i, EXT_FIRST_INDEX(path[i].p_hdr),
2301 path[i].p_idx);
2302 if (ext4_ext_more_to_rm(path + i)) {
2303 struct buffer_head *bh;
2304 /* go to the next level */
2305 ext_debug("move to level %d (block %llu)\n",
2306 i + 1, idx_pblock(path[i].p_idx));
2307 memset(path + i + 1, 0, sizeof(*path));
2308 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2309 if (!bh) {
2310 /* should we reset i_size? */
2311 err = -EIO;
2312 break;
2313 }
2314 if (WARN_ON(i + 1 > depth)) {
2315 err = -EIO;
2316 break;
2317 }
2318 if (ext4_ext_check(inode, ext_block_hdr(bh),
2319 depth - i - 1)) {
2320 err = -EIO;
2321 break;
2322 }
2323 path[i + 1].p_bh = bh;
2324
2325 /* save actual number of indexes since this
2326 * number is changed at the next iteration */
2327 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2328 i++;
2329 } else {
2330 /* we finished processing this index, go up */
2331 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2332 /* index is empty, remove it;
2333 * handle must be already prepared by the
2334 * truncatei_leaf() */
2335 err = ext4_ext_rm_idx(handle, inode, path + i);
2336 }
2337 /* root level has p_bh == NULL, brelse() eats this */
2338 brelse(path[i].p_bh);
2339 path[i].p_bh = NULL;
2340 i--;
2341 ext_debug("return to level %d\n", i);
2342 }
2343 }
2344
2345 /* TODO: flexible tree reduction should be here */
2346 if (path->p_hdr->eh_entries == 0) {
2347 /*
2348 * truncate to zero freed all the tree,
2349 * so we need to correct eh_depth
2350 */
2351 err = ext4_ext_get_access(handle, inode, path);
2352 if (err == 0) {
2353 ext_inode_hdr(inode)->eh_depth = 0;
2354 ext_inode_hdr(inode)->eh_max =
2355 cpu_to_le16(ext4_ext_space_root(inode, 0));
2356 err = ext4_ext_dirty(handle, inode, path);
2357 }
2358 }
2359 out:
2360 ext4_ext_drop_refs(path);
2361 kfree(path);
2362 ext4_journal_stop(handle);
2363
2364 return err;
2365 }
2366
2367 /*
2368 * called at mount time
2369 */
2370 void ext4_ext_init(struct super_block *sb)
2371 {
2372 /*
2373 * possible initialization would be here
2374 */
2375
2376 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2377 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2378 printk(KERN_INFO "EXT4-fs: file extents enabled");
2379 #ifdef AGGRESSIVE_TEST
2380 printk(", aggressive tests");
2381 #endif
2382 #ifdef CHECK_BINSEARCH
2383 printk(", check binsearch");
2384 #endif
2385 #ifdef EXTENTS_STATS
2386 printk(", stats");
2387 #endif
2388 printk("\n");
2389 #endif
2390 #ifdef EXTENTS_STATS
2391 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2392 EXT4_SB(sb)->s_ext_min = 1 << 30;
2393 EXT4_SB(sb)->s_ext_max = 0;
2394 #endif
2395 }
2396 }
2397
2398 /*
2399 * called at umount time
2400 */
2401 void ext4_ext_release(struct super_block *sb)
2402 {
2403 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2404 return;
2405
2406 #ifdef EXTENTS_STATS
2407 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2408 struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2410 sbi->s_ext_blocks, sbi->s_ext_extents,
2411 sbi->s_ext_blocks / sbi->s_ext_extents);
2412 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2413 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2414 }
2415 #endif
2416 }
2417
2418 static void bi_complete(struct bio *bio, int error)
2419 {
2420 complete((struct completion *)bio->bi_private);
2421 }
2422
2423 /* FIXME!! we need to try to merge to left or right after zero-out */
2424 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2425 {
2426 int ret = -EIO;
2427 struct bio *bio;
2428 int blkbits, blocksize;
2429 sector_t ee_pblock;
2430 struct completion event;
2431 unsigned int ee_len, len, done, offset;
2432
2433
2434 blkbits = inode->i_blkbits;
2435 blocksize = inode->i_sb->s_blocksize;
2436 ee_len = ext4_ext_get_actual_len(ex);
2437 ee_pblock = ext_pblock(ex);
2438
2439 /* convert ee_pblock to 512 byte sectors */
2440 ee_pblock = ee_pblock << (blkbits - 9);
2441
2442 while (ee_len > 0) {
2443
2444 if (ee_len > BIO_MAX_PAGES)
2445 len = BIO_MAX_PAGES;
2446 else
2447 len = ee_len;
2448
2449 bio = bio_alloc(GFP_NOIO, len);
2450 bio->bi_sector = ee_pblock;
2451 bio->bi_bdev = inode->i_sb->s_bdev;
2452
2453 done = 0;
2454 offset = 0;
2455 while (done < len) {
2456 ret = bio_add_page(bio, ZERO_PAGE(0),
2457 blocksize, offset);
2458 if (ret != blocksize) {
2459 /*
2460 * We can't add any more pages because of
2461 * hardware limitations. Start a new bio.
2462 */
2463 break;
2464 }
2465 done++;
2466 offset += blocksize;
2467 if (offset >= PAGE_CACHE_SIZE)
2468 offset = 0;
2469 }
2470
2471 init_completion(&event);
2472 bio->bi_private = &event;
2473 bio->bi_end_io = bi_complete;
2474 submit_bio(WRITE, bio);
2475 wait_for_completion(&event);
2476
2477 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2478 ret = 0;
2479 else {
2480 ret = -EIO;
2481 break;
2482 }
2483 bio_put(bio);
2484 ee_len -= done;
2485 ee_pblock += done << (blkbits - 9);
2486 }
2487 return ret;
2488 }
2489
2490 #define EXT4_EXT_ZERO_LEN 7
2491 /*
2492 * This function is called by ext4_ext_get_blocks() if someone tries to write
2493 * to an uninitialized extent. It may result in splitting the uninitialized
2494 * extent into multiple extents (upto three - one initialized and two
2495 * uninitialized).
2496 * There are three possibilities:
2497 * a> There is no split required: Entire extent should be initialized
2498 * b> Splits in two extents: Write is happening at either end of the extent
2499 * c> Splits in three extents: Somone is writing in middle of the extent
2500 */
2501 static int ext4_ext_convert_to_initialized(handle_t *handle,
2502 struct inode *inode,
2503 struct ext4_ext_path *path,
2504 ext4_lblk_t iblock,
2505 unsigned int max_blocks)
2506 {
2507 struct ext4_extent *ex, newex, orig_ex;
2508 struct ext4_extent *ex1 = NULL;
2509 struct ext4_extent *ex2 = NULL;
2510 struct ext4_extent *ex3 = NULL;
2511 struct ext4_extent_header *eh;
2512 ext4_lblk_t ee_block;
2513 unsigned int allocated, ee_len, depth;
2514 ext4_fsblk_t newblock;
2515 int err = 0;
2516 int ret = 0;
2517
2518 depth = ext_depth(inode);
2519 eh = path[depth].p_hdr;
2520 ex = path[depth].p_ext;
2521 ee_block = le32_to_cpu(ex->ee_block);
2522 ee_len = ext4_ext_get_actual_len(ex);
2523 allocated = ee_len - (iblock - ee_block);
2524 newblock = iblock - ee_block + ext_pblock(ex);
2525 ex2 = ex;
2526 orig_ex.ee_block = ex->ee_block;
2527 orig_ex.ee_len = cpu_to_le16(ee_len);
2528 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2529
2530 err = ext4_ext_get_access(handle, inode, path + depth);
2531 if (err)
2532 goto out;
2533 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2534 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2535 err = ext4_ext_zeroout(inode, &orig_ex);
2536 if (err)
2537 goto fix_extent_len;
2538 /* update the extent length and mark as initialized */
2539 ex->ee_block = orig_ex.ee_block;
2540 ex->ee_len = orig_ex.ee_len;
2541 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2542 ext4_ext_dirty(handle, inode, path + depth);
2543 /* zeroed the full extent */
2544 return allocated;
2545 }
2546
2547 /* ex1: ee_block to iblock - 1 : uninitialized */
2548 if (iblock > ee_block) {
2549 ex1 = ex;
2550 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2551 ext4_ext_mark_uninitialized(ex1);
2552 ex2 = &newex;
2553 }
2554 /*
2555 * for sanity, update the length of the ex2 extent before
2556 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2557 * overlap of blocks.
2558 */
2559 if (!ex1 && allocated > max_blocks)
2560 ex2->ee_len = cpu_to_le16(max_blocks);
2561 /* ex3: to ee_block + ee_len : uninitialised */
2562 if (allocated > max_blocks) {
2563 unsigned int newdepth;
2564 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2565 if (allocated <= EXT4_EXT_ZERO_LEN) {
2566 /*
2567 * iblock == ee_block is handled by the zerouout
2568 * at the beginning.
2569 * Mark first half uninitialized.
2570 * Mark second half initialized and zero out the
2571 * initialized extent
2572 */
2573 ex->ee_block = orig_ex.ee_block;
2574 ex->ee_len = cpu_to_le16(ee_len - allocated);
2575 ext4_ext_mark_uninitialized(ex);
2576 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2577 ext4_ext_dirty(handle, inode, path + depth);
2578
2579 ex3 = &newex;
2580 ex3->ee_block = cpu_to_le32(iblock);
2581 ext4_ext_store_pblock(ex3, newblock);
2582 ex3->ee_len = cpu_to_le16(allocated);
2583 err = ext4_ext_insert_extent(handle, inode, path,
2584 ex3, 0);
2585 if (err == -ENOSPC) {
2586 err = ext4_ext_zeroout(inode, &orig_ex);
2587 if (err)
2588 goto fix_extent_len;
2589 ex->ee_block = orig_ex.ee_block;
2590 ex->ee_len = orig_ex.ee_len;
2591 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2592 ext4_ext_dirty(handle, inode, path + depth);
2593 /* blocks available from iblock */
2594 return allocated;
2595
2596 } else if (err)
2597 goto fix_extent_len;
2598
2599 /*
2600 * We need to zero out the second half because
2601 * an fallocate request can update file size and
2602 * converting the second half to initialized extent
2603 * implies that we can leak some junk data to user
2604 * space.
2605 */
2606 err = ext4_ext_zeroout(inode, ex3);
2607 if (err) {
2608 /*
2609 * We should actually mark the
2610 * second half as uninit and return error
2611 * Insert would have changed the extent
2612 */
2613 depth = ext_depth(inode);
2614 ext4_ext_drop_refs(path);
2615 path = ext4_ext_find_extent(inode,
2616 iblock, path);
2617 if (IS_ERR(path)) {
2618 err = PTR_ERR(path);
2619 return err;
2620 }
2621 /* get the second half extent details */
2622 ex = path[depth].p_ext;
2623 err = ext4_ext_get_access(handle, inode,
2624 path + depth);
2625 if (err)
2626 return err;
2627 ext4_ext_mark_uninitialized(ex);
2628 ext4_ext_dirty(handle, inode, path + depth);
2629 return err;
2630 }
2631
2632 /* zeroed the second half */
2633 return allocated;
2634 }
2635 ex3 = &newex;
2636 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2637 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2638 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2639 ext4_ext_mark_uninitialized(ex3);
2640 err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2641 if (err == -ENOSPC) {
2642 err = ext4_ext_zeroout(inode, &orig_ex);
2643 if (err)
2644 goto fix_extent_len;
2645 /* update the extent length and mark as initialized */
2646 ex->ee_block = orig_ex.ee_block;
2647 ex->ee_len = orig_ex.ee_len;
2648 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2649 ext4_ext_dirty(handle, inode, path + depth);
2650 /* zeroed the full extent */
2651 /* blocks available from iblock */
2652 return allocated;
2653
2654 } else if (err)
2655 goto fix_extent_len;
2656 /*
2657 * The depth, and hence eh & ex might change
2658 * as part of the insert above.
2659 */
2660 newdepth = ext_depth(inode);
2661 /*
2662 * update the extent length after successful insert of the
2663 * split extent
2664 */
2665 orig_ex.ee_len = cpu_to_le16(ee_len -
2666 ext4_ext_get_actual_len(ex3));
2667 depth = newdepth;
2668 ext4_ext_drop_refs(path);
2669 path = ext4_ext_find_extent(inode, iblock, path);
2670 if (IS_ERR(path)) {
2671 err = PTR_ERR(path);
2672 goto out;
2673 }
2674 eh = path[depth].p_hdr;
2675 ex = path[depth].p_ext;
2676 if (ex2 != &newex)
2677 ex2 = ex;
2678
2679 err = ext4_ext_get_access(handle, inode, path + depth);
2680 if (err)
2681 goto out;
2682
2683 allocated = max_blocks;
2684
2685 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2686 * to insert a extent in the middle zerout directly
2687 * otherwise give the extent a chance to merge to left
2688 */
2689 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2690 iblock != ee_block) {
2691 err = ext4_ext_zeroout(inode, &orig_ex);
2692 if (err)
2693 goto fix_extent_len;
2694 /* update the extent length and mark as initialized */
2695 ex->ee_block = orig_ex.ee_block;
2696 ex->ee_len = orig_ex.ee_len;
2697 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2698 ext4_ext_dirty(handle, inode, path + depth);
2699 /* zero out the first half */
2700 /* blocks available from iblock */
2701 return allocated;
2702 }
2703 }
2704 /*
2705 * If there was a change of depth as part of the
2706 * insertion of ex3 above, we need to update the length
2707 * of the ex1 extent again here
2708 */
2709 if (ex1 && ex1 != ex) {
2710 ex1 = ex;
2711 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2712 ext4_ext_mark_uninitialized(ex1);
2713 ex2 = &newex;
2714 }
2715 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2716 ex2->ee_block = cpu_to_le32(iblock);
2717 ext4_ext_store_pblock(ex2, newblock);
2718 ex2->ee_len = cpu_to_le16(allocated);
2719 if (ex2 != ex)
2720 goto insert;
2721 /*
2722 * New (initialized) extent starts from the first block
2723 * in the current extent. i.e., ex2 == ex
2724 * We have to see if it can be merged with the extent
2725 * on the left.
2726 */
2727 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2728 /*
2729 * To merge left, pass "ex2 - 1" to try_to_merge(),
2730 * since it merges towards right _only_.
2731 */
2732 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2733 if (ret) {
2734 err = ext4_ext_correct_indexes(handle, inode, path);
2735 if (err)
2736 goto out;
2737 depth = ext_depth(inode);
2738 ex2--;
2739 }
2740 }
2741 /*
2742 * Try to Merge towards right. This might be required
2743 * only when the whole extent is being written to.
2744 * i.e. ex2 == ex and ex3 == NULL.
2745 */
2746 if (!ex3) {
2747 ret = ext4_ext_try_to_merge(inode, path, ex2);
2748 if (ret) {
2749 err = ext4_ext_correct_indexes(handle, inode, path);
2750 if (err)
2751 goto out;
2752 }
2753 }
2754 /* Mark modified extent as dirty */
2755 err = ext4_ext_dirty(handle, inode, path + depth);
2756 goto out;
2757 insert:
2758 err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2759 if (err == -ENOSPC) {
2760 err = ext4_ext_zeroout(inode, &orig_ex);
2761 if (err)
2762 goto fix_extent_len;
2763 /* update the extent length and mark as initialized */
2764 ex->ee_block = orig_ex.ee_block;
2765 ex->ee_len = orig_ex.ee_len;
2766 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2767 ext4_ext_dirty(handle, inode, path + depth);
2768 /* zero out the first half */
2769 return allocated;
2770 } else if (err)
2771 goto fix_extent_len;
2772 out:
2773 ext4_ext_show_leaf(inode, path);
2774 return err ? err : allocated;
2775
2776 fix_extent_len:
2777 ex->ee_block = orig_ex.ee_block;
2778 ex->ee_len = orig_ex.ee_len;
2779 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2780 ext4_ext_mark_uninitialized(ex);
2781 ext4_ext_dirty(handle, inode, path + depth);
2782 return err;
2783 }
2784
2785 /*
2786 * This function is called by ext4_ext_get_blocks() from
2787 * ext4_get_blocks_dio_write() when DIO to write
2788 * to an uninitialized extent.
2789 *
2790 * Writing to an uninitized extent may result in splitting the uninitialized
2791 * extent into multiple /intialized unintialized extents (up to three)
2792 * There are three possibilities:
2793 * a> There is no split required: Entire extent should be uninitialized
2794 * b> Splits in two extents: Write is happening at either end of the extent
2795 * c> Splits in three extents: Somone is writing in middle of the extent
2796 *
2797 * One of more index blocks maybe needed if the extent tree grow after
2798 * the unintialized extent split. To prevent ENOSPC occur at the IO
2799 * complete, we need to split the uninitialized extent before DIO submit
2800 * the IO. The uninitilized extent called at this time will be split
2801 * into three uninitialized extent(at most). After IO complete, the part
2802 * being filled will be convert to initialized by the end_io callback function
2803 * via ext4_convert_unwritten_extents().
2804 *
2805 * Returns the size of uninitialized extent to be written on success.
2806 */
2807 static int ext4_split_unwritten_extents(handle_t *handle,
2808 struct inode *inode,
2809 struct ext4_ext_path *path,
2810 ext4_lblk_t iblock,
2811 unsigned int max_blocks,
2812 int flags)
2813 {
2814 struct ext4_extent *ex, newex, orig_ex;
2815 struct ext4_extent *ex1 = NULL;
2816 struct ext4_extent *ex2 = NULL;
2817 struct ext4_extent *ex3 = NULL;
2818 struct ext4_extent_header *eh;
2819 ext4_lblk_t ee_block;
2820 unsigned int allocated, ee_len, depth;
2821 ext4_fsblk_t newblock;
2822 int err = 0;
2823
2824 ext_debug("ext4_split_unwritten_extents: inode %lu,"
2825 "iblock %llu, max_blocks %u\n", inode->i_ino,
2826 (unsigned long long)iblock, max_blocks);
2827 depth = ext_depth(inode);
2828 eh = path[depth].p_hdr;
2829 ex = path[depth].p_ext;
2830 ee_block = le32_to_cpu(ex->ee_block);
2831 ee_len = ext4_ext_get_actual_len(ex);
2832 allocated = ee_len - (iblock - ee_block);
2833 newblock = iblock - ee_block + ext_pblock(ex);
2834 ex2 = ex;
2835 orig_ex.ee_block = ex->ee_block;
2836 orig_ex.ee_len = cpu_to_le16(ee_len);
2837 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2838
2839 /*
2840 * If the uninitialized extent begins at the same logical
2841 * block where the write begins, and the write completely
2842 * covers the extent, then we don't need to split it.
2843 */
2844 if ((iblock == ee_block) && (allocated <= max_blocks))
2845 return allocated;
2846
2847 err = ext4_ext_get_access(handle, inode, path + depth);
2848 if (err)
2849 goto out;
2850 /* ex1: ee_block to iblock - 1 : uninitialized */
2851 if (iblock > ee_block) {
2852 ex1 = ex;
2853 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2854 ext4_ext_mark_uninitialized(ex1);
2855 ex2 = &newex;
2856 }
2857 /*
2858 * for sanity, update the length of the ex2 extent before
2859 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2860 * overlap of blocks.
2861 */
2862 if (!ex1 && allocated > max_blocks)
2863 ex2->ee_len = cpu_to_le16(max_blocks);
2864 /* ex3: to ee_block + ee_len : uninitialised */
2865 if (allocated > max_blocks) {
2866 unsigned int newdepth;
2867 ex3 = &newex;
2868 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2869 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2870 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2871 ext4_ext_mark_uninitialized(ex3);
2872 err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2873 if (err == -ENOSPC) {
2874 err = ext4_ext_zeroout(inode, &orig_ex);
2875 if (err)
2876 goto fix_extent_len;
2877 /* update the extent length and mark as initialized */
2878 ex->ee_block = orig_ex.ee_block;
2879 ex->ee_len = orig_ex.ee_len;
2880 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2881 ext4_ext_dirty(handle, inode, path + depth);
2882 /* zeroed the full extent */
2883 /* blocks available from iblock */
2884 return allocated;
2885
2886 } else if (err)
2887 goto fix_extent_len;
2888 /*
2889 * The depth, and hence eh & ex might change
2890 * as part of the insert above.
2891 */
2892 newdepth = ext_depth(inode);
2893 /*
2894 * update the extent length after successful insert of the
2895 * split extent
2896 */
2897 orig_ex.ee_len = cpu_to_le16(ee_len -
2898 ext4_ext_get_actual_len(ex3));
2899 depth = newdepth;
2900 ext4_ext_drop_refs(path);
2901 path = ext4_ext_find_extent(inode, iblock, path);
2902 if (IS_ERR(path)) {
2903 err = PTR_ERR(path);
2904 goto out;
2905 }
2906 eh = path[depth].p_hdr;
2907 ex = path[depth].p_ext;
2908 if (ex2 != &newex)
2909 ex2 = ex;
2910
2911 err = ext4_ext_get_access(handle, inode, path + depth);
2912 if (err)
2913 goto out;
2914
2915 allocated = max_blocks;
2916 }
2917 /*
2918 * If there was a change of depth as part of the
2919 * insertion of ex3 above, we need to update the length
2920 * of the ex1 extent again here
2921 */
2922 if (ex1 && ex1 != ex) {
2923 ex1 = ex;
2924 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2925 ext4_ext_mark_uninitialized(ex1);
2926 ex2 = &newex;
2927 }
2928 /*
2929 * ex2: iblock to iblock + maxblocks-1 : to be direct IO written,
2930 * uninitialised still.
2931 */
2932 ex2->ee_block = cpu_to_le32(iblock);
2933 ext4_ext_store_pblock(ex2, newblock);
2934 ex2->ee_len = cpu_to_le16(allocated);
2935 ext4_ext_mark_uninitialized(ex2);
2936 if (ex2 != ex)
2937 goto insert;
2938 /* Mark modified extent as dirty */
2939 err = ext4_ext_dirty(handle, inode, path + depth);
2940 ext_debug("out here\n");
2941 goto out;
2942 insert:
2943 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2944 if (err == -ENOSPC) {
2945 err = ext4_ext_zeroout(inode, &orig_ex);
2946 if (err)
2947 goto fix_extent_len;
2948 /* update the extent length and mark as initialized */
2949 ex->ee_block = orig_ex.ee_block;
2950 ex->ee_len = orig_ex.ee_len;
2951 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2952 ext4_ext_dirty(handle, inode, path + depth);
2953 /* zero out the first half */
2954 return allocated;
2955 } else if (err)
2956 goto fix_extent_len;
2957 out:
2958 ext4_ext_show_leaf(inode, path);
2959 return err ? err : allocated;
2960
2961 fix_extent_len:
2962 ex->ee_block = orig_ex.ee_block;
2963 ex->ee_len = orig_ex.ee_len;
2964 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2965 ext4_ext_mark_uninitialized(ex);
2966 ext4_ext_dirty(handle, inode, path + depth);
2967 return err;
2968 }
2969 static int ext4_convert_unwritten_extents_dio(handle_t *handle,
2970 struct inode *inode,
2971 struct ext4_ext_path *path)
2972 {
2973 struct ext4_extent *ex;
2974 struct ext4_extent_header *eh;
2975 int depth;
2976 int err = 0;
2977 int ret = 0;
2978
2979 depth = ext_depth(inode);
2980 eh = path[depth].p_hdr;
2981 ex = path[depth].p_ext;
2982
2983 err = ext4_ext_get_access(handle, inode, path + depth);
2984 if (err)
2985 goto out;
2986 /* first mark the extent as initialized */
2987 ext4_ext_mark_initialized(ex);
2988
2989 /*
2990 * We have to see if it can be merged with the extent
2991 * on the left.
2992 */
2993 if (ex > EXT_FIRST_EXTENT(eh)) {
2994 /*
2995 * To merge left, pass "ex - 1" to try_to_merge(),
2996 * since it merges towards right _only_.
2997 */
2998 ret = ext4_ext_try_to_merge(inode, path, ex - 1);
2999 if (ret) {
3000 err = ext4_ext_correct_indexes(handle, inode, path);
3001 if (err)
3002 goto out;
3003 depth = ext_depth(inode);
3004 ex--;
3005 }
3006 }
3007 /*
3008 * Try to Merge towards right.
3009 */
3010 ret = ext4_ext_try_to_merge(inode, path, ex);
3011 if (ret) {
3012 err = ext4_ext_correct_indexes(handle, inode, path);
3013 if (err)
3014 goto out;
3015 depth = ext_depth(inode);
3016 }
3017 /* Mark modified extent as dirty */
3018 err = ext4_ext_dirty(handle, inode, path + depth);
3019 out:
3020 ext4_ext_show_leaf(inode, path);
3021 return err;
3022 }
3023
3024 static int
3025 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3026 ext4_lblk_t iblock, unsigned int max_blocks,
3027 struct ext4_ext_path *path, int flags,
3028 unsigned int allocated, struct buffer_head *bh_result,
3029 ext4_fsblk_t newblock)
3030 {
3031 int ret = 0;
3032 int err = 0;
3033 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3034
3035 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3036 "block %llu, max_blocks %u, flags %d, allocated %u",
3037 inode->i_ino, (unsigned long long)iblock, max_blocks,
3038 flags, allocated);
3039 ext4_ext_show_leaf(inode, path);
3040
3041 /* DIO get_block() before submit the IO, split the extent */
3042 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3043 ret = ext4_split_unwritten_extents(handle,
3044 inode, path, iblock,
3045 max_blocks, flags);
3046 /*
3047 * Flag the inode(non aio case) or end_io struct (aio case)
3048 * that this IO needs to convertion to written when IO is
3049 * completed
3050 */
3051 if (io)
3052 io->flag = DIO_AIO_UNWRITTEN;
3053 else
3054 EXT4_I(inode)->i_state |= EXT4_STATE_DIO_UNWRITTEN;
3055 goto out;
3056 }
3057 /* async DIO end_io complete, convert the filled extent to written */
3058 if (flags == EXT4_GET_BLOCKS_DIO_CONVERT_EXT) {
3059 ret = ext4_convert_unwritten_extents_dio(handle, inode,
3060 path);
3061 if (ret >= 0)
3062 ext4_update_inode_fsync_trans(handle, inode, 1);
3063 goto out2;
3064 }
3065 /* buffered IO case */
3066 /*
3067 * repeat fallocate creation request
3068 * we already have an unwritten extent
3069 */
3070 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3071 goto map_out;
3072
3073 /* buffered READ or buffered write_begin() lookup */
3074 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3075 /*
3076 * We have blocks reserved already. We
3077 * return allocated blocks so that delalloc
3078 * won't do block reservation for us. But
3079 * the buffer head will be unmapped so that
3080 * a read from the block returns 0s.
3081 */
3082 set_buffer_unwritten(bh_result);
3083 goto out1;
3084 }
3085
3086 /* buffered write, writepage time, convert*/
3087 ret = ext4_ext_convert_to_initialized(handle, inode,
3088 path, iblock,
3089 max_blocks);
3090 if (ret >= 0)
3091 ext4_update_inode_fsync_trans(handle, inode, 1);
3092 out:
3093 if (ret <= 0) {
3094 err = ret;
3095 goto out2;
3096 } else
3097 allocated = ret;
3098 set_buffer_new(bh_result);
3099 map_out:
3100 set_buffer_mapped(bh_result);
3101 out1:
3102 if (allocated > max_blocks)
3103 allocated = max_blocks;
3104 ext4_ext_show_leaf(inode, path);
3105 bh_result->b_bdev = inode->i_sb->s_bdev;
3106 bh_result->b_blocknr = newblock;
3107 out2:
3108 if (path) {
3109 ext4_ext_drop_refs(path);
3110 kfree(path);
3111 }
3112 return err ? err : allocated;
3113 }
3114 /*
3115 * Block allocation/map/preallocation routine for extents based files
3116 *
3117 *
3118 * Need to be called with
3119 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3120 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3121 *
3122 * return > 0, number of of blocks already mapped/allocated
3123 * if create == 0 and these are pre-allocated blocks
3124 * buffer head is unmapped
3125 * otherwise blocks are mapped
3126 *
3127 * return = 0, if plain look up failed (blocks have not been allocated)
3128 * buffer head is unmapped
3129 *
3130 * return < 0, error case.
3131 */
3132 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
3133 ext4_lblk_t iblock,
3134 unsigned int max_blocks, struct buffer_head *bh_result,
3135 int flags)
3136 {
3137 struct ext4_ext_path *path = NULL;
3138 struct ext4_extent_header *eh;
3139 struct ext4_extent newex, *ex;
3140 ext4_fsblk_t newblock;
3141 int err = 0, depth, ret, cache_type;
3142 unsigned int allocated = 0;
3143 struct ext4_allocation_request ar;
3144 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3145
3146 __clear_bit(BH_New, &bh_result->b_state);
3147 ext_debug("blocks %u/%u requested for inode %lu\n",
3148 iblock, max_blocks, inode->i_ino);
3149
3150 /* check in cache */
3151 cache_type = ext4_ext_in_cache(inode, iblock, &newex);
3152 if (cache_type) {
3153 if (cache_type == EXT4_EXT_CACHE_GAP) {
3154 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3155 /*
3156 * block isn't allocated yet and
3157 * user doesn't want to allocate it
3158 */
3159 goto out2;
3160 }
3161 /* we should allocate requested block */
3162 } else if (cache_type == EXT4_EXT_CACHE_EXTENT) {
3163 /* block is already allocated */
3164 newblock = iblock
3165 - le32_to_cpu(newex.ee_block)
3166 + ext_pblock(&newex);
3167 /* number of remaining blocks in the extent */
3168 allocated = ext4_ext_get_actual_len(&newex) -
3169 (iblock - le32_to_cpu(newex.ee_block));
3170 goto out;
3171 } else {
3172 BUG();
3173 }
3174 }
3175
3176 /* find extent for this block */
3177 path = ext4_ext_find_extent(inode, iblock, NULL);
3178 if (IS_ERR(path)) {
3179 err = PTR_ERR(path);
3180 path = NULL;
3181 goto out2;
3182 }
3183
3184 depth = ext_depth(inode);
3185
3186 /*
3187 * consistent leaf must not be empty;
3188 * this situation is possible, though, _during_ tree modification;
3189 * this is why assert can't be put in ext4_ext_find_extent()
3190 */
3191 BUG_ON(path[depth].p_ext == NULL && depth != 0);
3192 eh = path[depth].p_hdr;
3193
3194 ex = path[depth].p_ext;
3195 if (ex) {
3196 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3197 ext4_fsblk_t ee_start = ext_pblock(ex);
3198 unsigned short ee_len;
3199
3200 /*
3201 * Uninitialized extents are treated as holes, except that
3202 * we split out initialized portions during a write.
3203 */
3204 ee_len = ext4_ext_get_actual_len(ex);
3205 /* if found extent covers block, simply return it */
3206 if (iblock >= ee_block && iblock < ee_block + ee_len) {
3207 newblock = iblock - ee_block + ee_start;
3208 /* number of remaining blocks in the extent */
3209 allocated = ee_len - (iblock - ee_block);
3210 ext_debug("%u fit into %u:%d -> %llu\n", iblock,
3211 ee_block, ee_len, newblock);
3212
3213 /* Do not put uninitialized extent in the cache */
3214 if (!ext4_ext_is_uninitialized(ex)) {
3215 ext4_ext_put_in_cache(inode, ee_block,
3216 ee_len, ee_start,
3217 EXT4_EXT_CACHE_EXTENT);
3218 goto out;
3219 }
3220 ret = ext4_ext_handle_uninitialized_extents(handle,
3221 inode, iblock, max_blocks, path,
3222 flags, allocated, bh_result, newblock);
3223 return ret;
3224 }
3225 }
3226
3227 /*
3228 * requested block isn't allocated yet;
3229 * we couldn't try to create block if create flag is zero
3230 */
3231 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3232 /*
3233 * put just found gap into cache to speed up
3234 * subsequent requests
3235 */
3236 ext4_ext_put_gap_in_cache(inode, path, iblock);
3237 goto out2;
3238 }
3239 /*
3240 * Okay, we need to do block allocation.
3241 */
3242
3243 /* find neighbour allocated blocks */
3244 ar.lleft = iblock;
3245 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3246 if (err)
3247 goto out2;
3248 ar.lright = iblock;
3249 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3250 if (err)
3251 goto out2;
3252
3253 /*
3254 * See if request is beyond maximum number of blocks we can have in
3255 * a single extent. For an initialized extent this limit is
3256 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3257 * EXT_UNINIT_MAX_LEN.
3258 */
3259 if (max_blocks > EXT_INIT_MAX_LEN &&
3260 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3261 max_blocks = EXT_INIT_MAX_LEN;
3262 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
3263 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3264 max_blocks = EXT_UNINIT_MAX_LEN;
3265
3266 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
3267 newex.ee_block = cpu_to_le32(iblock);
3268 newex.ee_len = cpu_to_le16(max_blocks);
3269 err = ext4_ext_check_overlap(inode, &newex, path);
3270 if (err)
3271 allocated = ext4_ext_get_actual_len(&newex);
3272 else
3273 allocated = max_blocks;
3274
3275 /* allocate new block */
3276 ar.inode = inode;
3277 ar.goal = ext4_ext_find_goal(inode, path, iblock);
3278 ar.logical = iblock;
3279 ar.len = allocated;
3280 if (S_ISREG(inode->i_mode))
3281 ar.flags = EXT4_MB_HINT_DATA;
3282 else
3283 /* disable in-core preallocation for non-regular files */
3284 ar.flags = 0;
3285 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3286 if (!newblock)
3287 goto out2;
3288 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3289 ar.goal, newblock, allocated);
3290
3291 /* try to insert new extent into found leaf and return */
3292 ext4_ext_store_pblock(&newex, newblock);
3293 newex.ee_len = cpu_to_le16(ar.len);
3294 /* Mark uninitialized */
3295 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3296 ext4_ext_mark_uninitialized(&newex);
3297 /*
3298 * io_end structure was created for every async
3299 * direct IO write to the middle of the file.
3300 * To avoid unecessary convertion for every aio dio rewrite
3301 * to the mid of file, here we flag the IO that is really
3302 * need the convertion.
3303 * For non asycn direct IO case, flag the inode state
3304 * that we need to perform convertion when IO is done.
3305 */
3306 if (flags == EXT4_GET_BLOCKS_DIO_CREATE_EXT) {
3307 if (io)
3308 io->flag = DIO_AIO_UNWRITTEN;
3309 else
3310 EXT4_I(inode)->i_state |=
3311 EXT4_STATE_DIO_UNWRITTEN;;
3312 }
3313 }
3314 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3315 if (err) {
3316 /* free data blocks we just allocated */
3317 /* not a good idea to call discard here directly,
3318 * but otherwise we'd need to call it every free() */
3319 ext4_discard_preallocations(inode);
3320 ext4_free_blocks(handle, inode, 0, ext_pblock(&newex),
3321 ext4_ext_get_actual_len(&newex), 0);
3322 goto out2;
3323 }
3324
3325 /* previous routine could use block we allocated */
3326 newblock = ext_pblock(&newex);
3327 allocated = ext4_ext_get_actual_len(&newex);
3328 set_buffer_new(bh_result);
3329
3330 /*
3331 * Cache the extent and update transaction to commit on fdatasync only
3332 * when it is _not_ an uninitialized extent.
3333 */
3334 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3335 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
3336 EXT4_EXT_CACHE_EXTENT);
3337 ext4_update_inode_fsync_trans(handle, inode, 1);
3338 } else
3339 ext4_update_inode_fsync_trans(handle, inode, 0);
3340 out:
3341 if (allocated > max_blocks)
3342 allocated = max_blocks;
3343 ext4_ext_show_leaf(inode, path);
3344 set_buffer_mapped(bh_result);
3345 bh_result->b_bdev = inode->i_sb->s_bdev;
3346 bh_result->b_blocknr = newblock;
3347 out2:
3348 if (path) {
3349 ext4_ext_drop_refs(path);
3350 kfree(path);
3351 }
3352 return err ? err : allocated;
3353 }
3354
3355 void ext4_ext_truncate(struct inode *inode)
3356 {
3357 struct address_space *mapping = inode->i_mapping;
3358 struct super_block *sb = inode->i_sb;
3359 ext4_lblk_t last_block;
3360 handle_t *handle;
3361 int err = 0;
3362
3363 /*
3364 * probably first extent we're gonna free will be last in block
3365 */
3366 err = ext4_writepage_trans_blocks(inode);
3367 handle = ext4_journal_start(inode, err);
3368 if (IS_ERR(handle))
3369 return;
3370
3371 if (inode->i_size & (sb->s_blocksize - 1))
3372 ext4_block_truncate_page(handle, mapping, inode->i_size);
3373
3374 if (ext4_orphan_add(handle, inode))
3375 goto out_stop;
3376
3377 down_write(&EXT4_I(inode)->i_data_sem);
3378 ext4_ext_invalidate_cache(inode);
3379
3380 ext4_discard_preallocations(inode);
3381
3382 /*
3383 * TODO: optimization is possible here.
3384 * Probably we need not scan at all,
3385 * because page truncation is enough.
3386 */
3387
3388 /* we have to know where to truncate from in crash case */
3389 EXT4_I(inode)->i_disksize = inode->i_size;
3390 ext4_mark_inode_dirty(handle, inode);
3391
3392 last_block = (inode->i_size + sb->s_blocksize - 1)
3393 >> EXT4_BLOCK_SIZE_BITS(sb);
3394 err = ext4_ext_remove_space(inode, last_block);
3395
3396 /* In a multi-transaction truncate, we only make the final
3397 * transaction synchronous.
3398 */
3399 if (IS_SYNC(inode))
3400 ext4_handle_sync(handle);
3401
3402 out_stop:
3403 up_write(&EXT4_I(inode)->i_data_sem);
3404 /*
3405 * If this was a simple ftruncate() and the file will remain alive,
3406 * then we need to clear up the orphan record which we created above.
3407 * However, if this was a real unlink then we were called by
3408 * ext4_delete_inode(), and we allow that function to clean up the
3409 * orphan info for us.
3410 */
3411 if (inode->i_nlink)
3412 ext4_orphan_del(handle, inode);
3413
3414 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3415 ext4_mark_inode_dirty(handle, inode);
3416 ext4_journal_stop(handle);
3417 }
3418
3419 static void ext4_falloc_update_inode(struct inode *inode,
3420 int mode, loff_t new_size, int update_ctime)
3421 {
3422 struct timespec now;
3423
3424 if (update_ctime) {
3425 now = current_fs_time(inode->i_sb);
3426 if (!timespec_equal(&inode->i_ctime, &now))
3427 inode->i_ctime = now;
3428 }
3429 /*
3430 * Update only when preallocation was requested beyond
3431 * the file size.
3432 */
3433 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3434 if (new_size > i_size_read(inode))
3435 i_size_write(inode, new_size);
3436 if (new_size > EXT4_I(inode)->i_disksize)
3437 ext4_update_i_disksize(inode, new_size);
3438 }
3439
3440 }
3441
3442 /*
3443 * preallocate space for a file. This implements ext4's fallocate inode
3444 * operation, which gets called from sys_fallocate system call.
3445 * For block-mapped files, posix_fallocate should fall back to the method
3446 * of writing zeroes to the required new blocks (the same behavior which is
3447 * expected for file systems which do not support fallocate() system call).
3448 */
3449 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
3450 {
3451 handle_t *handle;
3452 ext4_lblk_t block;
3453 loff_t new_size;
3454 unsigned int max_blocks;
3455 int ret = 0;
3456 int ret2 = 0;
3457 int retries = 0;
3458 struct buffer_head map_bh;
3459 unsigned int credits, blkbits = inode->i_blkbits;
3460
3461 /*
3462 * currently supporting (pre)allocate mode for extent-based
3463 * files _only_
3464 */
3465 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3466 return -EOPNOTSUPP;
3467
3468 /* preallocation to directories is currently not supported */
3469 if (S_ISDIR(inode->i_mode))
3470 return -ENODEV;
3471
3472 block = offset >> blkbits;
3473 /*
3474 * We can't just convert len to max_blocks because
3475 * If blocksize = 4096 offset = 3072 and len = 2048
3476 */
3477 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3478 - block;
3479 /*
3480 * credits to insert 1 extent into extent tree
3481 */
3482 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3483 mutex_lock(&inode->i_mutex);
3484 retry:
3485 while (ret >= 0 && ret < max_blocks) {
3486 block = block + ret;
3487 max_blocks = max_blocks - ret;
3488 handle = ext4_journal_start(inode, credits);
3489 if (IS_ERR(handle)) {
3490 ret = PTR_ERR(handle);
3491 break;
3492 }
3493 map_bh.b_state = 0;
3494 ret = ext4_get_blocks(handle, inode, block,
3495 max_blocks, &map_bh,
3496 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3497 if (ret <= 0) {
3498 #ifdef EXT4FS_DEBUG
3499 WARN_ON(ret <= 0);
3500 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3501 "returned error inode#%lu, block=%u, "
3502 "max_blocks=%u", __func__,
3503 inode->i_ino, block, max_blocks);
3504 #endif
3505 ext4_mark_inode_dirty(handle, inode);
3506 ret2 = ext4_journal_stop(handle);
3507 break;
3508 }
3509 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3510 blkbits) >> blkbits))
3511 new_size = offset + len;
3512 else
3513 new_size = (block + ret) << blkbits;
3514
3515 ext4_falloc_update_inode(inode, mode, new_size,
3516 buffer_new(&map_bh));
3517 ext4_mark_inode_dirty(handle, inode);
3518 ret2 = ext4_journal_stop(handle);
3519 if (ret2)
3520 break;
3521 }
3522 if (ret == -ENOSPC &&
3523 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3524 ret = 0;
3525 goto retry;
3526 }
3527 mutex_unlock(&inode->i_mutex);
3528 return ret > 0 ? ret2 : ret;
3529 }
3530
3531 /*
3532 * This function convert a range of blocks to written extents
3533 * The caller of this function will pass the start offset and the size.
3534 * all unwritten extents within this range will be converted to
3535 * written extents.
3536 *
3537 * This function is called from the direct IO end io call back
3538 * function, to convert the fallocated extents after IO is completed.
3539 * Returns 0 on success.
3540 */
3541 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3542 loff_t len)
3543 {
3544 handle_t *handle;
3545 ext4_lblk_t block;
3546 unsigned int max_blocks;
3547 int ret = 0;
3548 int ret2 = 0;
3549 struct buffer_head map_bh;
3550 unsigned int credits, blkbits = inode->i_blkbits;
3551
3552 block = offset >> blkbits;
3553 /*
3554 * We can't just convert len to max_blocks because
3555 * If blocksize = 4096 offset = 3072 and len = 2048
3556 */
3557 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3558 - block;
3559 /*
3560 * credits to insert 1 extent into extent tree
3561 */
3562 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3563 while (ret >= 0 && ret < max_blocks) {
3564 block = block + ret;
3565 max_blocks = max_blocks - ret;
3566 handle = ext4_journal_start(inode, credits);
3567 if (IS_ERR(handle)) {
3568 ret = PTR_ERR(handle);
3569 break;
3570 }
3571 map_bh.b_state = 0;
3572 ret = ext4_get_blocks(handle, inode, block,
3573 max_blocks, &map_bh,
3574 EXT4_GET_BLOCKS_DIO_CONVERT_EXT);
3575 if (ret <= 0) {
3576 WARN_ON(ret <= 0);
3577 printk(KERN_ERR "%s: ext4_ext_get_blocks "
3578 "returned error inode#%lu, block=%u, "
3579 "max_blocks=%u", __func__,
3580 inode->i_ino, block, max_blocks);
3581 }
3582 ext4_mark_inode_dirty(handle, inode);
3583 ret2 = ext4_journal_stop(handle);
3584 if (ret <= 0 || ret2 )
3585 break;
3586 }
3587 return ret > 0 ? ret2 : ret;
3588 }
3589 /*
3590 * Callback function called for each extent to gather FIEMAP information.
3591 */
3592 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3593 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3594 void *data)
3595 {
3596 struct fiemap_extent_info *fieinfo = data;
3597 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
3598 __u64 logical;
3599 __u64 physical;
3600 __u64 length;
3601 __u32 flags = 0;
3602 int error;
3603
3604 logical = (__u64)newex->ec_block << blksize_bits;
3605
3606 if (newex->ec_type == EXT4_EXT_CACHE_GAP) {
3607 pgoff_t offset;
3608 struct page *page;
3609 struct buffer_head *bh = NULL;
3610
3611 offset = logical >> PAGE_SHIFT;
3612 page = find_get_page(inode->i_mapping, offset);
3613 if (!page || !page_has_buffers(page))
3614 return EXT_CONTINUE;
3615
3616 bh = page_buffers(page);
3617
3618 if (!bh)
3619 return EXT_CONTINUE;
3620
3621 if (buffer_delay(bh)) {
3622 flags |= FIEMAP_EXTENT_DELALLOC;
3623 page_cache_release(page);
3624 } else {
3625 page_cache_release(page);
3626 return EXT_CONTINUE;
3627 }
3628 }
3629
3630 physical = (__u64)newex->ec_start << blksize_bits;
3631 length = (__u64)newex->ec_len << blksize_bits;
3632
3633 if (ex && ext4_ext_is_uninitialized(ex))
3634 flags |= FIEMAP_EXTENT_UNWRITTEN;
3635
3636 /*
3637 * If this extent reaches EXT_MAX_BLOCK, it must be last.
3638 *
3639 * Or if ext4_ext_next_allocated_block is EXT_MAX_BLOCK,
3640 * this also indicates no more allocated blocks.
3641 *
3642 * XXX this might miss a single-block extent at EXT_MAX_BLOCK
3643 */
3644 if (ext4_ext_next_allocated_block(path) == EXT_MAX_BLOCK ||
3645 newex->ec_block + newex->ec_len - 1 == EXT_MAX_BLOCK) {
3646 loff_t size = i_size_read(inode);
3647 loff_t bs = EXT4_BLOCK_SIZE(inode->i_sb);
3648
3649 flags |= FIEMAP_EXTENT_LAST;
3650 if ((flags & FIEMAP_EXTENT_DELALLOC) &&
3651 logical+length > size)
3652 length = (size - logical + bs - 1) & ~(bs-1);
3653 }
3654
3655 error = fiemap_fill_next_extent(fieinfo, logical, physical,
3656 length, flags);
3657 if (error < 0)
3658 return error;
3659 if (error == 1)
3660 return EXT_BREAK;
3661
3662 return EXT_CONTINUE;
3663 }
3664
3665 /* fiemap flags we can handle specified here */
3666 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3667
3668 static int ext4_xattr_fiemap(struct inode *inode,
3669 struct fiemap_extent_info *fieinfo)
3670 {
3671 __u64 physical = 0;
3672 __u64 length;
3673 __u32 flags = FIEMAP_EXTENT_LAST;
3674 int blockbits = inode->i_sb->s_blocksize_bits;
3675 int error = 0;
3676
3677 /* in-inode? */
3678 if (EXT4_I(inode)->i_state & EXT4_STATE_XATTR) {
3679 struct ext4_iloc iloc;
3680 int offset; /* offset of xattr in inode */
3681
3682 error = ext4_get_inode_loc(inode, &iloc);
3683 if (error)
3684 return error;
3685 physical = iloc.bh->b_blocknr << blockbits;
3686 offset = EXT4_GOOD_OLD_INODE_SIZE +
3687 EXT4_I(inode)->i_extra_isize;
3688 physical += offset;
3689 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3690 flags |= FIEMAP_EXTENT_DATA_INLINE;
3691 } else { /* external block */
3692 physical = EXT4_I(inode)->i_file_acl << blockbits;
3693 length = inode->i_sb->s_blocksize;
3694 }
3695
3696 if (physical)
3697 error = fiemap_fill_next_extent(fieinfo, 0, physical,
3698 length, flags);
3699 return (error < 0 ? error : 0);
3700 }
3701
3702 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3703 __u64 start, __u64 len)
3704 {
3705 ext4_lblk_t start_blk;
3706 ext4_lblk_t len_blks;
3707 int error = 0;
3708
3709 /* fallback to generic here if not in extents fmt */
3710 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
3711 return generic_block_fiemap(inode, fieinfo, start, len,
3712 ext4_get_block);
3713
3714 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
3715 return -EBADR;
3716
3717 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
3718 error = ext4_xattr_fiemap(inode, fieinfo);
3719 } else {
3720 start_blk = start >> inode->i_sb->s_blocksize_bits;
3721 len_blks = len >> inode->i_sb->s_blocksize_bits;
3722
3723 /*
3724 * Walk the extent tree gathering extent information.
3725 * ext4_ext_fiemap_cb will push extents back to user.
3726 */
3727 down_read(&EXT4_I(inode)->i_data_sem);
3728 error = ext4_ext_walk_space(inode, start_blk, len_blks,
3729 ext4_ext_fiemap_cb, fieinfo);
3730 up_read(&EXT4_I(inode)->i_data_sem);
3731 }
3732
3733 return error;
3734 }
3735