]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
ext4: race-condition protection for ext4_convert_unwritten_extents_endio
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44
45 #include <trace/events/ext4.h>
46
47 /*
48 * used by extent splitting.
49 */
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
54
55 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
56 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
57
58 static __le32 ext4_extent_block_csum(struct inode *inode,
59 struct ext4_extent_header *eh)
60 {
61 struct ext4_inode_info *ei = EXT4_I(inode);
62 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
63 __u32 csum;
64
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
66 EXT4_EXTENT_TAIL_OFFSET(eh));
67 return cpu_to_le32(csum);
68 }
69
70 static int ext4_extent_block_csum_verify(struct inode *inode,
71 struct ext4_extent_header *eh)
72 {
73 struct ext4_extent_tail *et;
74
75 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
76 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
77 return 1;
78
79 et = find_ext4_extent_tail(eh);
80 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
81 return 0;
82 return 1;
83 }
84
85 static void ext4_extent_block_csum_set(struct inode *inode,
86 struct ext4_extent_header *eh)
87 {
88 struct ext4_extent_tail *et;
89
90 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
91 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
92 return;
93
94 et = find_ext4_extent_tail(eh);
95 et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97
98 static int ext4_split_extent(handle_t *handle,
99 struct inode *inode,
100 struct ext4_ext_path *path,
101 struct ext4_map_blocks *map,
102 int split_flag,
103 int flags);
104
105 static int ext4_split_extent_at(handle_t *handle,
106 struct inode *inode,
107 struct ext4_ext_path *path,
108 ext4_lblk_t split,
109 int split_flag,
110 int flags);
111
112 static int ext4_ext_truncate_extend_restart(handle_t *handle,
113 struct inode *inode,
114 int needed)
115 {
116 int err;
117
118 if (!ext4_handle_valid(handle))
119 return 0;
120 if (handle->h_buffer_credits > needed)
121 return 0;
122 err = ext4_journal_extend(handle, needed);
123 if (err <= 0)
124 return err;
125 err = ext4_truncate_restart_trans(handle, inode, needed);
126 if (err == 0)
127 err = -EAGAIN;
128
129 return err;
130 }
131
132 /*
133 * could return:
134 * - EROFS
135 * - ENOMEM
136 */
137 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
138 struct ext4_ext_path *path)
139 {
140 if (path->p_bh) {
141 /* path points to block */
142 return ext4_journal_get_write_access(handle, path->p_bh);
143 }
144 /* path points to leaf/index in inode body */
145 /* we use in-core data, no need to protect them */
146 return 0;
147 }
148
149 /*
150 * could return:
151 * - EROFS
152 * - ENOMEM
153 * - EIO
154 */
155 #define ext4_ext_dirty(handle, inode, path) \
156 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
157 static int __ext4_ext_dirty(const char *where, unsigned int line,
158 handle_t *handle, struct inode *inode,
159 struct ext4_ext_path *path)
160 {
161 int err;
162 if (path->p_bh) {
163 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
164 /* path points to block */
165 err = __ext4_handle_dirty_metadata(where, line, handle,
166 inode, path->p_bh);
167 } else {
168 /* path points to leaf/index in inode body */
169 err = ext4_mark_inode_dirty(handle, inode);
170 }
171 return err;
172 }
173
174 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
175 struct ext4_ext_path *path,
176 ext4_lblk_t block)
177 {
178 if (path) {
179 int depth = path->p_depth;
180 struct ext4_extent *ex;
181
182 /*
183 * Try to predict block placement assuming that we are
184 * filling in a file which will eventually be
185 * non-sparse --- i.e., in the case of libbfd writing
186 * an ELF object sections out-of-order but in a way
187 * the eventually results in a contiguous object or
188 * executable file, or some database extending a table
189 * space file. However, this is actually somewhat
190 * non-ideal if we are writing a sparse file such as
191 * qemu or KVM writing a raw image file that is going
192 * to stay fairly sparse, since it will end up
193 * fragmenting the file system's free space. Maybe we
194 * should have some hueristics or some way to allow
195 * userspace to pass a hint to file system,
196 * especially if the latter case turns out to be
197 * common.
198 */
199 ex = path[depth].p_ext;
200 if (ex) {
201 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
202 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
203
204 if (block > ext_block)
205 return ext_pblk + (block - ext_block);
206 else
207 return ext_pblk - (ext_block - block);
208 }
209
210 /* it looks like index is empty;
211 * try to find starting block from index itself */
212 if (path[depth].p_bh)
213 return path[depth].p_bh->b_blocknr;
214 }
215
216 /* OK. use inode's group */
217 return ext4_inode_to_goal_block(inode);
218 }
219
220 /*
221 * Allocation for a meta data block
222 */
223 static ext4_fsblk_t
224 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
225 struct ext4_ext_path *path,
226 struct ext4_extent *ex, int *err, unsigned int flags)
227 {
228 ext4_fsblk_t goal, newblock;
229
230 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
231 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
232 NULL, err);
233 return newblock;
234 }
235
236 static inline int ext4_ext_space_block(struct inode *inode, int check)
237 {
238 int size;
239
240 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
241 / sizeof(struct ext4_extent);
242 #ifdef AGGRESSIVE_TEST
243 if (!check && size > 6)
244 size = 6;
245 #endif
246 return size;
247 }
248
249 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
250 {
251 int size;
252
253 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
254 / sizeof(struct ext4_extent_idx);
255 #ifdef AGGRESSIVE_TEST
256 if (!check && size > 5)
257 size = 5;
258 #endif
259 return size;
260 }
261
262 static inline int ext4_ext_space_root(struct inode *inode, int check)
263 {
264 int size;
265
266 size = sizeof(EXT4_I(inode)->i_data);
267 size -= sizeof(struct ext4_extent_header);
268 size /= sizeof(struct ext4_extent);
269 #ifdef AGGRESSIVE_TEST
270 if (!check && size > 3)
271 size = 3;
272 #endif
273 return size;
274 }
275
276 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
277 {
278 int size;
279
280 size = sizeof(EXT4_I(inode)->i_data);
281 size -= sizeof(struct ext4_extent_header);
282 size /= sizeof(struct ext4_extent_idx);
283 #ifdef AGGRESSIVE_TEST
284 if (!check && size > 4)
285 size = 4;
286 #endif
287 return size;
288 }
289
290 /*
291 * Calculate the number of metadata blocks needed
292 * to allocate @blocks
293 * Worse case is one block per extent
294 */
295 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
296 {
297 struct ext4_inode_info *ei = EXT4_I(inode);
298 int idxs;
299
300 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
301 / sizeof(struct ext4_extent_idx));
302
303 /*
304 * If the new delayed allocation block is contiguous with the
305 * previous da block, it can share index blocks with the
306 * previous block, so we only need to allocate a new index
307 * block every idxs leaf blocks. At ldxs**2 blocks, we need
308 * an additional index block, and at ldxs**3 blocks, yet
309 * another index blocks.
310 */
311 if (ei->i_da_metadata_calc_len &&
312 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
313 int num = 0;
314
315 if ((ei->i_da_metadata_calc_len % idxs) == 0)
316 num++;
317 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
318 num++;
319 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
320 num++;
321 ei->i_da_metadata_calc_len = 0;
322 } else
323 ei->i_da_metadata_calc_len++;
324 ei->i_da_metadata_calc_last_lblock++;
325 return num;
326 }
327
328 /*
329 * In the worst case we need a new set of index blocks at
330 * every level of the inode's extent tree.
331 */
332 ei->i_da_metadata_calc_len = 1;
333 ei->i_da_metadata_calc_last_lblock = lblock;
334 return ext_depth(inode) + 1;
335 }
336
337 static int
338 ext4_ext_max_entries(struct inode *inode, int depth)
339 {
340 int max;
341
342 if (depth == ext_depth(inode)) {
343 if (depth == 0)
344 max = ext4_ext_space_root(inode, 1);
345 else
346 max = ext4_ext_space_root_idx(inode, 1);
347 } else {
348 if (depth == 0)
349 max = ext4_ext_space_block(inode, 1);
350 else
351 max = ext4_ext_space_block_idx(inode, 1);
352 }
353
354 return max;
355 }
356
357 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
358 {
359 ext4_fsblk_t block = ext4_ext_pblock(ext);
360 int len = ext4_ext_get_actual_len(ext);
361
362 if (len == 0)
363 return 0;
364 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
365 }
366
367 static int ext4_valid_extent_idx(struct inode *inode,
368 struct ext4_extent_idx *ext_idx)
369 {
370 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
371
372 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
373 }
374
375 static int ext4_valid_extent_entries(struct inode *inode,
376 struct ext4_extent_header *eh,
377 int depth)
378 {
379 unsigned short entries;
380 if (eh->eh_entries == 0)
381 return 1;
382
383 entries = le16_to_cpu(eh->eh_entries);
384
385 if (depth == 0) {
386 /* leaf entries */
387 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
388 while (entries) {
389 if (!ext4_valid_extent(inode, ext))
390 return 0;
391 ext++;
392 entries--;
393 }
394 } else {
395 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
396 while (entries) {
397 if (!ext4_valid_extent_idx(inode, ext_idx))
398 return 0;
399 ext_idx++;
400 entries--;
401 }
402 }
403 return 1;
404 }
405
406 static int __ext4_ext_check(const char *function, unsigned int line,
407 struct inode *inode, struct ext4_extent_header *eh,
408 int depth)
409 {
410 const char *error_msg;
411 int max = 0;
412
413 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
414 error_msg = "invalid magic";
415 goto corrupted;
416 }
417 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
418 error_msg = "unexpected eh_depth";
419 goto corrupted;
420 }
421 if (unlikely(eh->eh_max == 0)) {
422 error_msg = "invalid eh_max";
423 goto corrupted;
424 }
425 max = ext4_ext_max_entries(inode, depth);
426 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
427 error_msg = "too large eh_max";
428 goto corrupted;
429 }
430 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
431 error_msg = "invalid eh_entries";
432 goto corrupted;
433 }
434 if (!ext4_valid_extent_entries(inode, eh, depth)) {
435 error_msg = "invalid extent entries";
436 goto corrupted;
437 }
438 /* Verify checksum on non-root extent tree nodes */
439 if (ext_depth(inode) != depth &&
440 !ext4_extent_block_csum_verify(inode, eh)) {
441 error_msg = "extent tree corrupted";
442 goto corrupted;
443 }
444 return 0;
445
446 corrupted:
447 ext4_error_inode(inode, function, line, 0,
448 "bad header/extent: %s - magic %x, "
449 "entries %u, max %u(%u), depth %u(%u)",
450 error_msg, le16_to_cpu(eh->eh_magic),
451 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
452 max, le16_to_cpu(eh->eh_depth), depth);
453
454 return -EIO;
455 }
456
457 #define ext4_ext_check(inode, eh, depth) \
458 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
459
460 int ext4_ext_check_inode(struct inode *inode)
461 {
462 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
463 }
464
465 static int __ext4_ext_check_block(const char *function, unsigned int line,
466 struct inode *inode,
467 struct ext4_extent_header *eh,
468 int depth,
469 struct buffer_head *bh)
470 {
471 int ret;
472
473 if (buffer_verified(bh))
474 return 0;
475 ret = ext4_ext_check(inode, eh, depth);
476 if (ret)
477 return ret;
478 set_buffer_verified(bh);
479 return ret;
480 }
481
482 #define ext4_ext_check_block(inode, eh, depth, bh) \
483 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
484
485 #ifdef EXT_DEBUG
486 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
487 {
488 int k, l = path->p_depth;
489
490 ext_debug("path:");
491 for (k = 0; k <= l; k++, path++) {
492 if (path->p_idx) {
493 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
494 ext4_idx_pblock(path->p_idx));
495 } else if (path->p_ext) {
496 ext_debug(" %d:[%d]%d:%llu ",
497 le32_to_cpu(path->p_ext->ee_block),
498 ext4_ext_is_uninitialized(path->p_ext),
499 ext4_ext_get_actual_len(path->p_ext),
500 ext4_ext_pblock(path->p_ext));
501 } else
502 ext_debug(" []");
503 }
504 ext_debug("\n");
505 }
506
507 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
508 {
509 int depth = ext_depth(inode);
510 struct ext4_extent_header *eh;
511 struct ext4_extent *ex;
512 int i;
513
514 if (!path)
515 return;
516
517 eh = path[depth].p_hdr;
518 ex = EXT_FIRST_EXTENT(eh);
519
520 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
521
522 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
523 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
524 ext4_ext_is_uninitialized(ex),
525 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
526 }
527 ext_debug("\n");
528 }
529
530 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
531 ext4_fsblk_t newblock, int level)
532 {
533 int depth = ext_depth(inode);
534 struct ext4_extent *ex;
535
536 if (depth != level) {
537 struct ext4_extent_idx *idx;
538 idx = path[level].p_idx;
539 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
540 ext_debug("%d: move %d:%llu in new index %llu\n", level,
541 le32_to_cpu(idx->ei_block),
542 ext4_idx_pblock(idx),
543 newblock);
544 idx++;
545 }
546
547 return;
548 }
549
550 ex = path[depth].p_ext;
551 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
552 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
553 le32_to_cpu(ex->ee_block),
554 ext4_ext_pblock(ex),
555 ext4_ext_is_uninitialized(ex),
556 ext4_ext_get_actual_len(ex),
557 newblock);
558 ex++;
559 }
560 }
561
562 #else
563 #define ext4_ext_show_path(inode, path)
564 #define ext4_ext_show_leaf(inode, path)
565 #define ext4_ext_show_move(inode, path, newblock, level)
566 #endif
567
568 void ext4_ext_drop_refs(struct ext4_ext_path *path)
569 {
570 int depth = path->p_depth;
571 int i;
572
573 for (i = 0; i <= depth; i++, path++)
574 if (path->p_bh) {
575 brelse(path->p_bh);
576 path->p_bh = NULL;
577 }
578 }
579
580 /*
581 * ext4_ext_binsearch_idx:
582 * binary search for the closest index of the given block
583 * the header must be checked before calling this
584 */
585 static void
586 ext4_ext_binsearch_idx(struct inode *inode,
587 struct ext4_ext_path *path, ext4_lblk_t block)
588 {
589 struct ext4_extent_header *eh = path->p_hdr;
590 struct ext4_extent_idx *r, *l, *m;
591
592
593 ext_debug("binsearch for %u(idx): ", block);
594
595 l = EXT_FIRST_INDEX(eh) + 1;
596 r = EXT_LAST_INDEX(eh);
597 while (l <= r) {
598 m = l + (r - l) / 2;
599 if (block < le32_to_cpu(m->ei_block))
600 r = m - 1;
601 else
602 l = m + 1;
603 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
604 m, le32_to_cpu(m->ei_block),
605 r, le32_to_cpu(r->ei_block));
606 }
607
608 path->p_idx = l - 1;
609 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
610 ext4_idx_pblock(path->p_idx));
611
612 #ifdef CHECK_BINSEARCH
613 {
614 struct ext4_extent_idx *chix, *ix;
615 int k;
616
617 chix = ix = EXT_FIRST_INDEX(eh);
618 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
619 if (k != 0 &&
620 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
621 printk(KERN_DEBUG "k=%d, ix=0x%p, "
622 "first=0x%p\n", k,
623 ix, EXT_FIRST_INDEX(eh));
624 printk(KERN_DEBUG "%u <= %u\n",
625 le32_to_cpu(ix->ei_block),
626 le32_to_cpu(ix[-1].ei_block));
627 }
628 BUG_ON(k && le32_to_cpu(ix->ei_block)
629 <= le32_to_cpu(ix[-1].ei_block));
630 if (block < le32_to_cpu(ix->ei_block))
631 break;
632 chix = ix;
633 }
634 BUG_ON(chix != path->p_idx);
635 }
636 #endif
637
638 }
639
640 /*
641 * ext4_ext_binsearch:
642 * binary search for closest extent of the given block
643 * the header must be checked before calling this
644 */
645 static void
646 ext4_ext_binsearch(struct inode *inode,
647 struct ext4_ext_path *path, ext4_lblk_t block)
648 {
649 struct ext4_extent_header *eh = path->p_hdr;
650 struct ext4_extent *r, *l, *m;
651
652 if (eh->eh_entries == 0) {
653 /*
654 * this leaf is empty:
655 * we get such a leaf in split/add case
656 */
657 return;
658 }
659
660 ext_debug("binsearch for %u: ", block);
661
662 l = EXT_FIRST_EXTENT(eh) + 1;
663 r = EXT_LAST_EXTENT(eh);
664
665 while (l <= r) {
666 m = l + (r - l) / 2;
667 if (block < le32_to_cpu(m->ee_block))
668 r = m - 1;
669 else
670 l = m + 1;
671 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
672 m, le32_to_cpu(m->ee_block),
673 r, le32_to_cpu(r->ee_block));
674 }
675
676 path->p_ext = l - 1;
677 ext_debug(" -> %d:%llu:[%d]%d ",
678 le32_to_cpu(path->p_ext->ee_block),
679 ext4_ext_pblock(path->p_ext),
680 ext4_ext_is_uninitialized(path->p_ext),
681 ext4_ext_get_actual_len(path->p_ext));
682
683 #ifdef CHECK_BINSEARCH
684 {
685 struct ext4_extent *chex, *ex;
686 int k;
687
688 chex = ex = EXT_FIRST_EXTENT(eh);
689 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
690 BUG_ON(k && le32_to_cpu(ex->ee_block)
691 <= le32_to_cpu(ex[-1].ee_block));
692 if (block < le32_to_cpu(ex->ee_block))
693 break;
694 chex = ex;
695 }
696 BUG_ON(chex != path->p_ext);
697 }
698 #endif
699
700 }
701
702 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
703 {
704 struct ext4_extent_header *eh;
705
706 eh = ext_inode_hdr(inode);
707 eh->eh_depth = 0;
708 eh->eh_entries = 0;
709 eh->eh_magic = EXT4_EXT_MAGIC;
710 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
711 ext4_mark_inode_dirty(handle, inode);
712 ext4_ext_invalidate_cache(inode);
713 return 0;
714 }
715
716 struct ext4_ext_path *
717 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
718 struct ext4_ext_path *path)
719 {
720 struct ext4_extent_header *eh;
721 struct buffer_head *bh;
722 short int depth, i, ppos = 0, alloc = 0;
723
724 eh = ext_inode_hdr(inode);
725 depth = ext_depth(inode);
726
727 /* account possible depth increase */
728 if (!path) {
729 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
730 GFP_NOFS);
731 if (!path)
732 return ERR_PTR(-ENOMEM);
733 alloc = 1;
734 }
735 path[0].p_hdr = eh;
736 path[0].p_bh = NULL;
737
738 i = depth;
739 /* walk through the tree */
740 while (i) {
741 ext_debug("depth %d: num %d, max %d\n",
742 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
743
744 ext4_ext_binsearch_idx(inode, path + ppos, block);
745 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
746 path[ppos].p_depth = i;
747 path[ppos].p_ext = NULL;
748
749 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
750 if (unlikely(!bh))
751 goto err;
752 if (!bh_uptodate_or_lock(bh)) {
753 trace_ext4_ext_load_extent(inode, block,
754 path[ppos].p_block);
755 if (bh_submit_read(bh) < 0) {
756 put_bh(bh);
757 goto err;
758 }
759 }
760 eh = ext_block_hdr(bh);
761 ppos++;
762 if (unlikely(ppos > depth)) {
763 put_bh(bh);
764 EXT4_ERROR_INODE(inode,
765 "ppos %d > depth %d", ppos, depth);
766 goto err;
767 }
768 path[ppos].p_bh = bh;
769 path[ppos].p_hdr = eh;
770 i--;
771
772 if (ext4_ext_check_block(inode, eh, i, bh))
773 goto err;
774 }
775
776 path[ppos].p_depth = i;
777 path[ppos].p_ext = NULL;
778 path[ppos].p_idx = NULL;
779
780 /* find extent */
781 ext4_ext_binsearch(inode, path + ppos, block);
782 /* if not an empty leaf */
783 if (path[ppos].p_ext)
784 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
785
786 ext4_ext_show_path(inode, path);
787
788 return path;
789
790 err:
791 ext4_ext_drop_refs(path);
792 if (alloc)
793 kfree(path);
794 return ERR_PTR(-EIO);
795 }
796
797 /*
798 * ext4_ext_insert_index:
799 * insert new index [@logical;@ptr] into the block at @curp;
800 * check where to insert: before @curp or after @curp
801 */
802 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
803 struct ext4_ext_path *curp,
804 int logical, ext4_fsblk_t ptr)
805 {
806 struct ext4_extent_idx *ix;
807 int len, err;
808
809 err = ext4_ext_get_access(handle, inode, curp);
810 if (err)
811 return err;
812
813 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
814 EXT4_ERROR_INODE(inode,
815 "logical %d == ei_block %d!",
816 logical, le32_to_cpu(curp->p_idx->ei_block));
817 return -EIO;
818 }
819
820 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
821 >= le16_to_cpu(curp->p_hdr->eh_max))) {
822 EXT4_ERROR_INODE(inode,
823 "eh_entries %d >= eh_max %d!",
824 le16_to_cpu(curp->p_hdr->eh_entries),
825 le16_to_cpu(curp->p_hdr->eh_max));
826 return -EIO;
827 }
828
829 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
830 /* insert after */
831 ext_debug("insert new index %d after: %llu\n", logical, ptr);
832 ix = curp->p_idx + 1;
833 } else {
834 /* insert before */
835 ext_debug("insert new index %d before: %llu\n", logical, ptr);
836 ix = curp->p_idx;
837 }
838
839 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
840 BUG_ON(len < 0);
841 if (len > 0) {
842 ext_debug("insert new index %d: "
843 "move %d indices from 0x%p to 0x%p\n",
844 logical, len, ix, ix + 1);
845 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
846 }
847
848 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
849 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
850 return -EIO;
851 }
852
853 ix->ei_block = cpu_to_le32(logical);
854 ext4_idx_store_pblock(ix, ptr);
855 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
856
857 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
858 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
859 return -EIO;
860 }
861
862 err = ext4_ext_dirty(handle, inode, curp);
863 ext4_std_error(inode->i_sb, err);
864
865 return err;
866 }
867
868 /*
869 * ext4_ext_split:
870 * inserts new subtree into the path, using free index entry
871 * at depth @at:
872 * - allocates all needed blocks (new leaf and all intermediate index blocks)
873 * - makes decision where to split
874 * - moves remaining extents and index entries (right to the split point)
875 * into the newly allocated blocks
876 * - initializes subtree
877 */
878 static int ext4_ext_split(handle_t *handle, struct inode *inode,
879 unsigned int flags,
880 struct ext4_ext_path *path,
881 struct ext4_extent *newext, int at)
882 {
883 struct buffer_head *bh = NULL;
884 int depth = ext_depth(inode);
885 struct ext4_extent_header *neh;
886 struct ext4_extent_idx *fidx;
887 int i = at, k, m, a;
888 ext4_fsblk_t newblock, oldblock;
889 __le32 border;
890 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
891 int err = 0;
892
893 /* make decision: where to split? */
894 /* FIXME: now decision is simplest: at current extent */
895
896 /* if current leaf will be split, then we should use
897 * border from split point */
898 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
899 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
900 return -EIO;
901 }
902 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
903 border = path[depth].p_ext[1].ee_block;
904 ext_debug("leaf will be split."
905 " next leaf starts at %d\n",
906 le32_to_cpu(border));
907 } else {
908 border = newext->ee_block;
909 ext_debug("leaf will be added."
910 " next leaf starts at %d\n",
911 le32_to_cpu(border));
912 }
913
914 /*
915 * If error occurs, then we break processing
916 * and mark filesystem read-only. index won't
917 * be inserted and tree will be in consistent
918 * state. Next mount will repair buffers too.
919 */
920
921 /*
922 * Get array to track all allocated blocks.
923 * We need this to handle errors and free blocks
924 * upon them.
925 */
926 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
927 if (!ablocks)
928 return -ENOMEM;
929
930 /* allocate all needed blocks */
931 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
932 for (a = 0; a < depth - at; a++) {
933 newblock = ext4_ext_new_meta_block(handle, inode, path,
934 newext, &err, flags);
935 if (newblock == 0)
936 goto cleanup;
937 ablocks[a] = newblock;
938 }
939
940 /* initialize new leaf */
941 newblock = ablocks[--a];
942 if (unlikely(newblock == 0)) {
943 EXT4_ERROR_INODE(inode, "newblock == 0!");
944 err = -EIO;
945 goto cleanup;
946 }
947 bh = sb_getblk(inode->i_sb, newblock);
948 if (!bh) {
949 err = -EIO;
950 goto cleanup;
951 }
952 lock_buffer(bh);
953
954 err = ext4_journal_get_create_access(handle, bh);
955 if (err)
956 goto cleanup;
957
958 neh = ext_block_hdr(bh);
959 neh->eh_entries = 0;
960 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
961 neh->eh_magic = EXT4_EXT_MAGIC;
962 neh->eh_depth = 0;
963
964 /* move remainder of path[depth] to the new leaf */
965 if (unlikely(path[depth].p_hdr->eh_entries !=
966 path[depth].p_hdr->eh_max)) {
967 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
968 path[depth].p_hdr->eh_entries,
969 path[depth].p_hdr->eh_max);
970 err = -EIO;
971 goto cleanup;
972 }
973 /* start copy from next extent */
974 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
975 ext4_ext_show_move(inode, path, newblock, depth);
976 if (m) {
977 struct ext4_extent *ex;
978 ex = EXT_FIRST_EXTENT(neh);
979 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
980 le16_add_cpu(&neh->eh_entries, m);
981 }
982
983 ext4_extent_block_csum_set(inode, neh);
984 set_buffer_uptodate(bh);
985 unlock_buffer(bh);
986
987 err = ext4_handle_dirty_metadata(handle, inode, bh);
988 if (err)
989 goto cleanup;
990 brelse(bh);
991 bh = NULL;
992
993 /* correct old leaf */
994 if (m) {
995 err = ext4_ext_get_access(handle, inode, path + depth);
996 if (err)
997 goto cleanup;
998 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
999 err = ext4_ext_dirty(handle, inode, path + depth);
1000 if (err)
1001 goto cleanup;
1002
1003 }
1004
1005 /* create intermediate indexes */
1006 k = depth - at - 1;
1007 if (unlikely(k < 0)) {
1008 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1009 err = -EIO;
1010 goto cleanup;
1011 }
1012 if (k)
1013 ext_debug("create %d intermediate indices\n", k);
1014 /* insert new index into current index block */
1015 /* current depth stored in i var */
1016 i = depth - 1;
1017 while (k--) {
1018 oldblock = newblock;
1019 newblock = ablocks[--a];
1020 bh = sb_getblk(inode->i_sb, newblock);
1021 if (!bh) {
1022 err = -EIO;
1023 goto cleanup;
1024 }
1025 lock_buffer(bh);
1026
1027 err = ext4_journal_get_create_access(handle, bh);
1028 if (err)
1029 goto cleanup;
1030
1031 neh = ext_block_hdr(bh);
1032 neh->eh_entries = cpu_to_le16(1);
1033 neh->eh_magic = EXT4_EXT_MAGIC;
1034 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1035 neh->eh_depth = cpu_to_le16(depth - i);
1036 fidx = EXT_FIRST_INDEX(neh);
1037 fidx->ei_block = border;
1038 ext4_idx_store_pblock(fidx, oldblock);
1039
1040 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1041 i, newblock, le32_to_cpu(border), oldblock);
1042
1043 /* move remainder of path[i] to the new index block */
1044 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1045 EXT_LAST_INDEX(path[i].p_hdr))) {
1046 EXT4_ERROR_INODE(inode,
1047 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1048 le32_to_cpu(path[i].p_ext->ee_block));
1049 err = -EIO;
1050 goto cleanup;
1051 }
1052 /* start copy indexes */
1053 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1054 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1055 EXT_MAX_INDEX(path[i].p_hdr));
1056 ext4_ext_show_move(inode, path, newblock, i);
1057 if (m) {
1058 memmove(++fidx, path[i].p_idx,
1059 sizeof(struct ext4_extent_idx) * m);
1060 le16_add_cpu(&neh->eh_entries, m);
1061 }
1062 ext4_extent_block_csum_set(inode, neh);
1063 set_buffer_uptodate(bh);
1064 unlock_buffer(bh);
1065
1066 err = ext4_handle_dirty_metadata(handle, inode, bh);
1067 if (err)
1068 goto cleanup;
1069 brelse(bh);
1070 bh = NULL;
1071
1072 /* correct old index */
1073 if (m) {
1074 err = ext4_ext_get_access(handle, inode, path + i);
1075 if (err)
1076 goto cleanup;
1077 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1078 err = ext4_ext_dirty(handle, inode, path + i);
1079 if (err)
1080 goto cleanup;
1081 }
1082
1083 i--;
1084 }
1085
1086 /* insert new index */
1087 err = ext4_ext_insert_index(handle, inode, path + at,
1088 le32_to_cpu(border), newblock);
1089
1090 cleanup:
1091 if (bh) {
1092 if (buffer_locked(bh))
1093 unlock_buffer(bh);
1094 brelse(bh);
1095 }
1096
1097 if (err) {
1098 /* free all allocated blocks in error case */
1099 for (i = 0; i < depth; i++) {
1100 if (!ablocks[i])
1101 continue;
1102 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1103 EXT4_FREE_BLOCKS_METADATA);
1104 }
1105 }
1106 kfree(ablocks);
1107
1108 return err;
1109 }
1110
1111 /*
1112 * ext4_ext_grow_indepth:
1113 * implements tree growing procedure:
1114 * - allocates new block
1115 * - moves top-level data (index block or leaf) into the new block
1116 * - initializes new top-level, creating index that points to the
1117 * just created block
1118 */
1119 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1120 unsigned int flags,
1121 struct ext4_extent *newext)
1122 {
1123 struct ext4_extent_header *neh;
1124 struct buffer_head *bh;
1125 ext4_fsblk_t newblock;
1126 int err = 0;
1127
1128 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1129 newext, &err, flags);
1130 if (newblock == 0)
1131 return err;
1132
1133 bh = sb_getblk(inode->i_sb, newblock);
1134 if (!bh) {
1135 err = -EIO;
1136 ext4_std_error(inode->i_sb, err);
1137 return err;
1138 }
1139 lock_buffer(bh);
1140
1141 err = ext4_journal_get_create_access(handle, bh);
1142 if (err) {
1143 unlock_buffer(bh);
1144 goto out;
1145 }
1146
1147 /* move top-level index/leaf into new block */
1148 memmove(bh->b_data, EXT4_I(inode)->i_data,
1149 sizeof(EXT4_I(inode)->i_data));
1150
1151 /* set size of new block */
1152 neh = ext_block_hdr(bh);
1153 /* old root could have indexes or leaves
1154 * so calculate e_max right way */
1155 if (ext_depth(inode))
1156 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1157 else
1158 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1159 neh->eh_magic = EXT4_EXT_MAGIC;
1160 ext4_extent_block_csum_set(inode, neh);
1161 set_buffer_uptodate(bh);
1162 unlock_buffer(bh);
1163
1164 err = ext4_handle_dirty_metadata(handle, inode, bh);
1165 if (err)
1166 goto out;
1167
1168 /* Update top-level index: num,max,pointer */
1169 neh = ext_inode_hdr(inode);
1170 neh->eh_entries = cpu_to_le16(1);
1171 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1172 if (neh->eh_depth == 0) {
1173 /* Root extent block becomes index block */
1174 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1175 EXT_FIRST_INDEX(neh)->ei_block =
1176 EXT_FIRST_EXTENT(neh)->ee_block;
1177 }
1178 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1179 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1180 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1181 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1182
1183 le16_add_cpu(&neh->eh_depth, 1);
1184 ext4_mark_inode_dirty(handle, inode);
1185 out:
1186 brelse(bh);
1187
1188 return err;
1189 }
1190
1191 /*
1192 * ext4_ext_create_new_leaf:
1193 * finds empty index and adds new leaf.
1194 * if no free index is found, then it requests in-depth growing.
1195 */
1196 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1197 unsigned int flags,
1198 struct ext4_ext_path *path,
1199 struct ext4_extent *newext)
1200 {
1201 struct ext4_ext_path *curp;
1202 int depth, i, err = 0;
1203
1204 repeat:
1205 i = depth = ext_depth(inode);
1206
1207 /* walk up to the tree and look for free index entry */
1208 curp = path + depth;
1209 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1210 i--;
1211 curp--;
1212 }
1213
1214 /* we use already allocated block for index block,
1215 * so subsequent data blocks should be contiguous */
1216 if (EXT_HAS_FREE_INDEX(curp)) {
1217 /* if we found index with free entry, then use that
1218 * entry: create all needed subtree and add new leaf */
1219 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1220 if (err)
1221 goto out;
1222
1223 /* refill path */
1224 ext4_ext_drop_refs(path);
1225 path = ext4_ext_find_extent(inode,
1226 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1227 path);
1228 if (IS_ERR(path))
1229 err = PTR_ERR(path);
1230 } else {
1231 /* tree is full, time to grow in depth */
1232 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1233 if (err)
1234 goto out;
1235
1236 /* refill path */
1237 ext4_ext_drop_refs(path);
1238 path = ext4_ext_find_extent(inode,
1239 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1240 path);
1241 if (IS_ERR(path)) {
1242 err = PTR_ERR(path);
1243 goto out;
1244 }
1245
1246 /*
1247 * only first (depth 0 -> 1) produces free space;
1248 * in all other cases we have to split the grown tree
1249 */
1250 depth = ext_depth(inode);
1251 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1252 /* now we need to split */
1253 goto repeat;
1254 }
1255 }
1256
1257 out:
1258 return err;
1259 }
1260
1261 /*
1262 * search the closest allocated block to the left for *logical
1263 * and returns it at @logical + it's physical address at @phys
1264 * if *logical is the smallest allocated block, the function
1265 * returns 0 at @phys
1266 * return value contains 0 (success) or error code
1267 */
1268 static int ext4_ext_search_left(struct inode *inode,
1269 struct ext4_ext_path *path,
1270 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1271 {
1272 struct ext4_extent_idx *ix;
1273 struct ext4_extent *ex;
1274 int depth, ee_len;
1275
1276 if (unlikely(path == NULL)) {
1277 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1278 return -EIO;
1279 }
1280 depth = path->p_depth;
1281 *phys = 0;
1282
1283 if (depth == 0 && path->p_ext == NULL)
1284 return 0;
1285
1286 /* usually extent in the path covers blocks smaller
1287 * then *logical, but it can be that extent is the
1288 * first one in the file */
1289
1290 ex = path[depth].p_ext;
1291 ee_len = ext4_ext_get_actual_len(ex);
1292 if (*logical < le32_to_cpu(ex->ee_block)) {
1293 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1294 EXT4_ERROR_INODE(inode,
1295 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1296 *logical, le32_to_cpu(ex->ee_block));
1297 return -EIO;
1298 }
1299 while (--depth >= 0) {
1300 ix = path[depth].p_idx;
1301 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1302 EXT4_ERROR_INODE(inode,
1303 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1304 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1305 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1306 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1307 depth);
1308 return -EIO;
1309 }
1310 }
1311 return 0;
1312 }
1313
1314 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1315 EXT4_ERROR_INODE(inode,
1316 "logical %d < ee_block %d + ee_len %d!",
1317 *logical, le32_to_cpu(ex->ee_block), ee_len);
1318 return -EIO;
1319 }
1320
1321 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1322 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1323 return 0;
1324 }
1325
1326 /*
1327 * search the closest allocated block to the right for *logical
1328 * and returns it at @logical + it's physical address at @phys
1329 * if *logical is the largest allocated block, the function
1330 * returns 0 at @phys
1331 * return value contains 0 (success) or error code
1332 */
1333 static int ext4_ext_search_right(struct inode *inode,
1334 struct ext4_ext_path *path,
1335 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1336 struct ext4_extent **ret_ex)
1337 {
1338 struct buffer_head *bh = NULL;
1339 struct ext4_extent_header *eh;
1340 struct ext4_extent_idx *ix;
1341 struct ext4_extent *ex;
1342 ext4_fsblk_t block;
1343 int depth; /* Note, NOT eh_depth; depth from top of tree */
1344 int ee_len;
1345
1346 if (unlikely(path == NULL)) {
1347 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1348 return -EIO;
1349 }
1350 depth = path->p_depth;
1351 *phys = 0;
1352
1353 if (depth == 0 && path->p_ext == NULL)
1354 return 0;
1355
1356 /* usually extent in the path covers blocks smaller
1357 * then *logical, but it can be that extent is the
1358 * first one in the file */
1359
1360 ex = path[depth].p_ext;
1361 ee_len = ext4_ext_get_actual_len(ex);
1362 if (*logical < le32_to_cpu(ex->ee_block)) {
1363 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1364 EXT4_ERROR_INODE(inode,
1365 "first_extent(path[%d].p_hdr) != ex",
1366 depth);
1367 return -EIO;
1368 }
1369 while (--depth >= 0) {
1370 ix = path[depth].p_idx;
1371 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1372 EXT4_ERROR_INODE(inode,
1373 "ix != EXT_FIRST_INDEX *logical %d!",
1374 *logical);
1375 return -EIO;
1376 }
1377 }
1378 goto found_extent;
1379 }
1380
1381 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1382 EXT4_ERROR_INODE(inode,
1383 "logical %d < ee_block %d + ee_len %d!",
1384 *logical, le32_to_cpu(ex->ee_block), ee_len);
1385 return -EIO;
1386 }
1387
1388 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1389 /* next allocated block in this leaf */
1390 ex++;
1391 goto found_extent;
1392 }
1393
1394 /* go up and search for index to the right */
1395 while (--depth >= 0) {
1396 ix = path[depth].p_idx;
1397 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1398 goto got_index;
1399 }
1400
1401 /* we've gone up to the root and found no index to the right */
1402 return 0;
1403
1404 got_index:
1405 /* we've found index to the right, let's
1406 * follow it and find the closest allocated
1407 * block to the right */
1408 ix++;
1409 block = ext4_idx_pblock(ix);
1410 while (++depth < path->p_depth) {
1411 bh = sb_bread(inode->i_sb, block);
1412 if (bh == NULL)
1413 return -EIO;
1414 eh = ext_block_hdr(bh);
1415 /* subtract from p_depth to get proper eh_depth */
1416 if (ext4_ext_check_block(inode, eh,
1417 path->p_depth - depth, bh)) {
1418 put_bh(bh);
1419 return -EIO;
1420 }
1421 ix = EXT_FIRST_INDEX(eh);
1422 block = ext4_idx_pblock(ix);
1423 put_bh(bh);
1424 }
1425
1426 bh = sb_bread(inode->i_sb, block);
1427 if (bh == NULL)
1428 return -EIO;
1429 eh = ext_block_hdr(bh);
1430 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1431 put_bh(bh);
1432 return -EIO;
1433 }
1434 ex = EXT_FIRST_EXTENT(eh);
1435 found_extent:
1436 *logical = le32_to_cpu(ex->ee_block);
1437 *phys = ext4_ext_pblock(ex);
1438 *ret_ex = ex;
1439 if (bh)
1440 put_bh(bh);
1441 return 0;
1442 }
1443
1444 /*
1445 * ext4_ext_next_allocated_block:
1446 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1447 * NOTE: it considers block number from index entry as
1448 * allocated block. Thus, index entries have to be consistent
1449 * with leaves.
1450 */
1451 static ext4_lblk_t
1452 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1453 {
1454 int depth;
1455
1456 BUG_ON(path == NULL);
1457 depth = path->p_depth;
1458
1459 if (depth == 0 && path->p_ext == NULL)
1460 return EXT_MAX_BLOCKS;
1461
1462 while (depth >= 0) {
1463 if (depth == path->p_depth) {
1464 /* leaf */
1465 if (path[depth].p_ext &&
1466 path[depth].p_ext !=
1467 EXT_LAST_EXTENT(path[depth].p_hdr))
1468 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1469 } else {
1470 /* index */
1471 if (path[depth].p_idx !=
1472 EXT_LAST_INDEX(path[depth].p_hdr))
1473 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1474 }
1475 depth--;
1476 }
1477
1478 return EXT_MAX_BLOCKS;
1479 }
1480
1481 /*
1482 * ext4_ext_next_leaf_block:
1483 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1484 */
1485 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1486 {
1487 int depth;
1488
1489 BUG_ON(path == NULL);
1490 depth = path->p_depth;
1491
1492 /* zero-tree has no leaf blocks at all */
1493 if (depth == 0)
1494 return EXT_MAX_BLOCKS;
1495
1496 /* go to index block */
1497 depth--;
1498
1499 while (depth >= 0) {
1500 if (path[depth].p_idx !=
1501 EXT_LAST_INDEX(path[depth].p_hdr))
1502 return (ext4_lblk_t)
1503 le32_to_cpu(path[depth].p_idx[1].ei_block);
1504 depth--;
1505 }
1506
1507 return EXT_MAX_BLOCKS;
1508 }
1509
1510 /*
1511 * ext4_ext_correct_indexes:
1512 * if leaf gets modified and modified extent is first in the leaf,
1513 * then we have to correct all indexes above.
1514 * TODO: do we need to correct tree in all cases?
1515 */
1516 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1517 struct ext4_ext_path *path)
1518 {
1519 struct ext4_extent_header *eh;
1520 int depth = ext_depth(inode);
1521 struct ext4_extent *ex;
1522 __le32 border;
1523 int k, err = 0;
1524
1525 eh = path[depth].p_hdr;
1526 ex = path[depth].p_ext;
1527
1528 if (unlikely(ex == NULL || eh == NULL)) {
1529 EXT4_ERROR_INODE(inode,
1530 "ex %p == NULL or eh %p == NULL", ex, eh);
1531 return -EIO;
1532 }
1533
1534 if (depth == 0) {
1535 /* there is no tree at all */
1536 return 0;
1537 }
1538
1539 if (ex != EXT_FIRST_EXTENT(eh)) {
1540 /* we correct tree if first leaf got modified only */
1541 return 0;
1542 }
1543
1544 /*
1545 * TODO: we need correction if border is smaller than current one
1546 */
1547 k = depth - 1;
1548 border = path[depth].p_ext->ee_block;
1549 err = ext4_ext_get_access(handle, inode, path + k);
1550 if (err)
1551 return err;
1552 path[k].p_idx->ei_block = border;
1553 err = ext4_ext_dirty(handle, inode, path + k);
1554 if (err)
1555 return err;
1556
1557 while (k--) {
1558 /* change all left-side indexes */
1559 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1560 break;
1561 err = ext4_ext_get_access(handle, inode, path + k);
1562 if (err)
1563 break;
1564 path[k].p_idx->ei_block = border;
1565 err = ext4_ext_dirty(handle, inode, path + k);
1566 if (err)
1567 break;
1568 }
1569
1570 return err;
1571 }
1572
1573 int
1574 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1575 struct ext4_extent *ex2)
1576 {
1577 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1578
1579 /*
1580 * Make sure that either both extents are uninitialized, or
1581 * both are _not_.
1582 */
1583 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1584 return 0;
1585
1586 if (ext4_ext_is_uninitialized(ex1))
1587 max_len = EXT_UNINIT_MAX_LEN;
1588 else
1589 max_len = EXT_INIT_MAX_LEN;
1590
1591 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1592 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1593
1594 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1595 le32_to_cpu(ex2->ee_block))
1596 return 0;
1597
1598 /*
1599 * To allow future support for preallocated extents to be added
1600 * as an RO_COMPAT feature, refuse to merge to extents if
1601 * this can result in the top bit of ee_len being set.
1602 */
1603 if (ext1_ee_len + ext2_ee_len > max_len)
1604 return 0;
1605 #ifdef AGGRESSIVE_TEST
1606 if (ext1_ee_len >= 4)
1607 return 0;
1608 #endif
1609
1610 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1611 return 1;
1612 return 0;
1613 }
1614
1615 /*
1616 * This function tries to merge the "ex" extent to the next extent in the tree.
1617 * It always tries to merge towards right. If you want to merge towards
1618 * left, pass "ex - 1" as argument instead of "ex".
1619 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1620 * 1 if they got merged.
1621 */
1622 static int ext4_ext_try_to_merge_right(struct inode *inode,
1623 struct ext4_ext_path *path,
1624 struct ext4_extent *ex)
1625 {
1626 struct ext4_extent_header *eh;
1627 unsigned int depth, len;
1628 int merge_done = 0;
1629 int uninitialized = 0;
1630
1631 depth = ext_depth(inode);
1632 BUG_ON(path[depth].p_hdr == NULL);
1633 eh = path[depth].p_hdr;
1634
1635 while (ex < EXT_LAST_EXTENT(eh)) {
1636 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1637 break;
1638 /* merge with next extent! */
1639 if (ext4_ext_is_uninitialized(ex))
1640 uninitialized = 1;
1641 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1642 + ext4_ext_get_actual_len(ex + 1));
1643 if (uninitialized)
1644 ext4_ext_mark_uninitialized(ex);
1645
1646 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1647 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1648 * sizeof(struct ext4_extent);
1649 memmove(ex + 1, ex + 2, len);
1650 }
1651 le16_add_cpu(&eh->eh_entries, -1);
1652 merge_done = 1;
1653 WARN_ON(eh->eh_entries == 0);
1654 if (!eh->eh_entries)
1655 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1656 }
1657
1658 return merge_done;
1659 }
1660
1661 /*
1662 * This function does a very simple check to see if we can collapse
1663 * an extent tree with a single extent tree leaf block into the inode.
1664 */
1665 static void ext4_ext_try_to_merge_up(handle_t *handle,
1666 struct inode *inode,
1667 struct ext4_ext_path *path)
1668 {
1669 size_t s;
1670 unsigned max_root = ext4_ext_space_root(inode, 0);
1671 ext4_fsblk_t blk;
1672
1673 if ((path[0].p_depth != 1) ||
1674 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1675 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1676 return;
1677
1678 /*
1679 * We need to modify the block allocation bitmap and the block
1680 * group descriptor to release the extent tree block. If we
1681 * can't get the journal credits, give up.
1682 */
1683 if (ext4_journal_extend(handle, 2))
1684 return;
1685
1686 /*
1687 * Copy the extent data up to the inode
1688 */
1689 blk = ext4_idx_pblock(path[0].p_idx);
1690 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1691 sizeof(struct ext4_extent_idx);
1692 s += sizeof(struct ext4_extent_header);
1693
1694 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1695 path[0].p_depth = 0;
1696 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1697 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1698 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1699
1700 brelse(path[1].p_bh);
1701 ext4_free_blocks(handle, inode, NULL, blk, 1,
1702 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1703 }
1704
1705 /*
1706 * This function tries to merge the @ex extent to neighbours in the tree.
1707 * return 1 if merge left else 0.
1708 */
1709 static void ext4_ext_try_to_merge(handle_t *handle,
1710 struct inode *inode,
1711 struct ext4_ext_path *path,
1712 struct ext4_extent *ex) {
1713 struct ext4_extent_header *eh;
1714 unsigned int depth;
1715 int merge_done = 0;
1716
1717 depth = ext_depth(inode);
1718 BUG_ON(path[depth].p_hdr == NULL);
1719 eh = path[depth].p_hdr;
1720
1721 if (ex > EXT_FIRST_EXTENT(eh))
1722 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1723
1724 if (!merge_done)
1725 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1726
1727 ext4_ext_try_to_merge_up(handle, inode, path);
1728 }
1729
1730 /*
1731 * check if a portion of the "newext" extent overlaps with an
1732 * existing extent.
1733 *
1734 * If there is an overlap discovered, it updates the length of the newext
1735 * such that there will be no overlap, and then returns 1.
1736 * If there is no overlap found, it returns 0.
1737 */
1738 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1739 struct inode *inode,
1740 struct ext4_extent *newext,
1741 struct ext4_ext_path *path)
1742 {
1743 ext4_lblk_t b1, b2;
1744 unsigned int depth, len1;
1745 unsigned int ret = 0;
1746
1747 b1 = le32_to_cpu(newext->ee_block);
1748 len1 = ext4_ext_get_actual_len(newext);
1749 depth = ext_depth(inode);
1750 if (!path[depth].p_ext)
1751 goto out;
1752 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1753 b2 &= ~(sbi->s_cluster_ratio - 1);
1754
1755 /*
1756 * get the next allocated block if the extent in the path
1757 * is before the requested block(s)
1758 */
1759 if (b2 < b1) {
1760 b2 = ext4_ext_next_allocated_block(path);
1761 if (b2 == EXT_MAX_BLOCKS)
1762 goto out;
1763 b2 &= ~(sbi->s_cluster_ratio - 1);
1764 }
1765
1766 /* check for wrap through zero on extent logical start block*/
1767 if (b1 + len1 < b1) {
1768 len1 = EXT_MAX_BLOCKS - b1;
1769 newext->ee_len = cpu_to_le16(len1);
1770 ret = 1;
1771 }
1772
1773 /* check for overlap */
1774 if (b1 + len1 > b2) {
1775 newext->ee_len = cpu_to_le16(b2 - b1);
1776 ret = 1;
1777 }
1778 out:
1779 return ret;
1780 }
1781
1782 /*
1783 * ext4_ext_insert_extent:
1784 * tries to merge requsted extent into the existing extent or
1785 * inserts requested extent as new one into the tree,
1786 * creating new leaf in the no-space case.
1787 */
1788 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1789 struct ext4_ext_path *path,
1790 struct ext4_extent *newext, int flag)
1791 {
1792 struct ext4_extent_header *eh;
1793 struct ext4_extent *ex, *fex;
1794 struct ext4_extent *nearex; /* nearest extent */
1795 struct ext4_ext_path *npath = NULL;
1796 int depth, len, err;
1797 ext4_lblk_t next;
1798 unsigned uninitialized = 0;
1799 int flags = 0;
1800
1801 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1802 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1803 return -EIO;
1804 }
1805 depth = ext_depth(inode);
1806 ex = path[depth].p_ext;
1807 if (unlikely(path[depth].p_hdr == NULL)) {
1808 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1809 return -EIO;
1810 }
1811
1812 /* try to insert block into found extent and return */
1813 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1814 && ext4_can_extents_be_merged(inode, ex, newext)) {
1815 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1816 ext4_ext_is_uninitialized(newext),
1817 ext4_ext_get_actual_len(newext),
1818 le32_to_cpu(ex->ee_block),
1819 ext4_ext_is_uninitialized(ex),
1820 ext4_ext_get_actual_len(ex),
1821 ext4_ext_pblock(ex));
1822 err = ext4_ext_get_access(handle, inode, path + depth);
1823 if (err)
1824 return err;
1825
1826 /*
1827 * ext4_can_extents_be_merged should have checked that either
1828 * both extents are uninitialized, or both aren't. Thus we
1829 * need to check only one of them here.
1830 */
1831 if (ext4_ext_is_uninitialized(ex))
1832 uninitialized = 1;
1833 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1834 + ext4_ext_get_actual_len(newext));
1835 if (uninitialized)
1836 ext4_ext_mark_uninitialized(ex);
1837 eh = path[depth].p_hdr;
1838 nearex = ex;
1839 goto merge;
1840 }
1841
1842 depth = ext_depth(inode);
1843 eh = path[depth].p_hdr;
1844 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1845 goto has_space;
1846
1847 /* probably next leaf has space for us? */
1848 fex = EXT_LAST_EXTENT(eh);
1849 next = EXT_MAX_BLOCKS;
1850 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1851 next = ext4_ext_next_leaf_block(path);
1852 if (next != EXT_MAX_BLOCKS) {
1853 ext_debug("next leaf block - %u\n", next);
1854 BUG_ON(npath != NULL);
1855 npath = ext4_ext_find_extent(inode, next, NULL);
1856 if (IS_ERR(npath))
1857 return PTR_ERR(npath);
1858 BUG_ON(npath->p_depth != path->p_depth);
1859 eh = npath[depth].p_hdr;
1860 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1861 ext_debug("next leaf isn't full(%d)\n",
1862 le16_to_cpu(eh->eh_entries));
1863 path = npath;
1864 goto has_space;
1865 }
1866 ext_debug("next leaf has no free space(%d,%d)\n",
1867 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1868 }
1869
1870 /*
1871 * There is no free space in the found leaf.
1872 * We're gonna add a new leaf in the tree.
1873 */
1874 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1875 flags = EXT4_MB_USE_ROOT_BLOCKS;
1876 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1877 if (err)
1878 goto cleanup;
1879 depth = ext_depth(inode);
1880 eh = path[depth].p_hdr;
1881
1882 has_space:
1883 nearex = path[depth].p_ext;
1884
1885 err = ext4_ext_get_access(handle, inode, path + depth);
1886 if (err)
1887 goto cleanup;
1888
1889 if (!nearex) {
1890 /* there is no extent in this leaf, create first one */
1891 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1892 le32_to_cpu(newext->ee_block),
1893 ext4_ext_pblock(newext),
1894 ext4_ext_is_uninitialized(newext),
1895 ext4_ext_get_actual_len(newext));
1896 nearex = EXT_FIRST_EXTENT(eh);
1897 } else {
1898 if (le32_to_cpu(newext->ee_block)
1899 > le32_to_cpu(nearex->ee_block)) {
1900 /* Insert after */
1901 ext_debug("insert %u:%llu:[%d]%d before: "
1902 "nearest %p\n",
1903 le32_to_cpu(newext->ee_block),
1904 ext4_ext_pblock(newext),
1905 ext4_ext_is_uninitialized(newext),
1906 ext4_ext_get_actual_len(newext),
1907 nearex);
1908 nearex++;
1909 } else {
1910 /* Insert before */
1911 BUG_ON(newext->ee_block == nearex->ee_block);
1912 ext_debug("insert %u:%llu:[%d]%d after: "
1913 "nearest %p\n",
1914 le32_to_cpu(newext->ee_block),
1915 ext4_ext_pblock(newext),
1916 ext4_ext_is_uninitialized(newext),
1917 ext4_ext_get_actual_len(newext),
1918 nearex);
1919 }
1920 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1921 if (len > 0) {
1922 ext_debug("insert %u:%llu:[%d]%d: "
1923 "move %d extents from 0x%p to 0x%p\n",
1924 le32_to_cpu(newext->ee_block),
1925 ext4_ext_pblock(newext),
1926 ext4_ext_is_uninitialized(newext),
1927 ext4_ext_get_actual_len(newext),
1928 len, nearex, nearex + 1);
1929 memmove(nearex + 1, nearex,
1930 len * sizeof(struct ext4_extent));
1931 }
1932 }
1933
1934 le16_add_cpu(&eh->eh_entries, 1);
1935 path[depth].p_ext = nearex;
1936 nearex->ee_block = newext->ee_block;
1937 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1938 nearex->ee_len = newext->ee_len;
1939
1940 merge:
1941 /* try to merge extents */
1942 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1943 ext4_ext_try_to_merge(handle, inode, path, nearex);
1944
1945
1946 /* time to correct all indexes above */
1947 err = ext4_ext_correct_indexes(handle, inode, path);
1948 if (err)
1949 goto cleanup;
1950
1951 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1952
1953 cleanup:
1954 if (npath) {
1955 ext4_ext_drop_refs(npath);
1956 kfree(npath);
1957 }
1958 ext4_ext_invalidate_cache(inode);
1959 return err;
1960 }
1961
1962 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1963 ext4_lblk_t num, ext_prepare_callback func,
1964 void *cbdata)
1965 {
1966 struct ext4_ext_path *path = NULL;
1967 struct ext4_ext_cache cbex;
1968 struct ext4_extent *ex;
1969 ext4_lblk_t next, start = 0, end = 0;
1970 ext4_lblk_t last = block + num;
1971 int depth, exists, err = 0;
1972
1973 BUG_ON(func == NULL);
1974 BUG_ON(inode == NULL);
1975
1976 while (block < last && block != EXT_MAX_BLOCKS) {
1977 num = last - block;
1978 /* find extent for this block */
1979 down_read(&EXT4_I(inode)->i_data_sem);
1980 path = ext4_ext_find_extent(inode, block, path);
1981 up_read(&EXT4_I(inode)->i_data_sem);
1982 if (IS_ERR(path)) {
1983 err = PTR_ERR(path);
1984 path = NULL;
1985 break;
1986 }
1987
1988 depth = ext_depth(inode);
1989 if (unlikely(path[depth].p_hdr == NULL)) {
1990 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1991 err = -EIO;
1992 break;
1993 }
1994 ex = path[depth].p_ext;
1995 next = ext4_ext_next_allocated_block(path);
1996
1997 exists = 0;
1998 if (!ex) {
1999 /* there is no extent yet, so try to allocate
2000 * all requested space */
2001 start = block;
2002 end = block + num;
2003 } else if (le32_to_cpu(ex->ee_block) > block) {
2004 /* need to allocate space before found extent */
2005 start = block;
2006 end = le32_to_cpu(ex->ee_block);
2007 if (block + num < end)
2008 end = block + num;
2009 } else if (block >= le32_to_cpu(ex->ee_block)
2010 + ext4_ext_get_actual_len(ex)) {
2011 /* need to allocate space after found extent */
2012 start = block;
2013 end = block + num;
2014 if (end >= next)
2015 end = next;
2016 } else if (block >= le32_to_cpu(ex->ee_block)) {
2017 /*
2018 * some part of requested space is covered
2019 * by found extent
2020 */
2021 start = block;
2022 end = le32_to_cpu(ex->ee_block)
2023 + ext4_ext_get_actual_len(ex);
2024 if (block + num < end)
2025 end = block + num;
2026 exists = 1;
2027 } else {
2028 BUG();
2029 }
2030 BUG_ON(end <= start);
2031
2032 if (!exists) {
2033 cbex.ec_block = start;
2034 cbex.ec_len = end - start;
2035 cbex.ec_start = 0;
2036 } else {
2037 cbex.ec_block = le32_to_cpu(ex->ee_block);
2038 cbex.ec_len = ext4_ext_get_actual_len(ex);
2039 cbex.ec_start = ext4_ext_pblock(ex);
2040 }
2041
2042 if (unlikely(cbex.ec_len == 0)) {
2043 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
2044 err = -EIO;
2045 break;
2046 }
2047 err = func(inode, next, &cbex, ex, cbdata);
2048 ext4_ext_drop_refs(path);
2049
2050 if (err < 0)
2051 break;
2052
2053 if (err == EXT_REPEAT)
2054 continue;
2055 else if (err == EXT_BREAK) {
2056 err = 0;
2057 break;
2058 }
2059
2060 if (ext_depth(inode) != depth) {
2061 /* depth was changed. we have to realloc path */
2062 kfree(path);
2063 path = NULL;
2064 }
2065
2066 block = cbex.ec_block + cbex.ec_len;
2067 }
2068
2069 if (path) {
2070 ext4_ext_drop_refs(path);
2071 kfree(path);
2072 }
2073
2074 return err;
2075 }
2076
2077 static void
2078 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2079 __u32 len, ext4_fsblk_t start)
2080 {
2081 struct ext4_ext_cache *cex;
2082 BUG_ON(len == 0);
2083 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2084 trace_ext4_ext_put_in_cache(inode, block, len, start);
2085 cex = &EXT4_I(inode)->i_cached_extent;
2086 cex->ec_block = block;
2087 cex->ec_len = len;
2088 cex->ec_start = start;
2089 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2090 }
2091
2092 /*
2093 * ext4_ext_put_gap_in_cache:
2094 * calculate boundaries of the gap that the requested block fits into
2095 * and cache this gap
2096 */
2097 static void
2098 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2099 ext4_lblk_t block)
2100 {
2101 int depth = ext_depth(inode);
2102 unsigned long len;
2103 ext4_lblk_t lblock;
2104 struct ext4_extent *ex;
2105
2106 ex = path[depth].p_ext;
2107 if (ex == NULL) {
2108 /* there is no extent yet, so gap is [0;-] */
2109 lblock = 0;
2110 len = EXT_MAX_BLOCKS;
2111 ext_debug("cache gap(whole file):");
2112 } else if (block < le32_to_cpu(ex->ee_block)) {
2113 lblock = block;
2114 len = le32_to_cpu(ex->ee_block) - block;
2115 ext_debug("cache gap(before): %u [%u:%u]",
2116 block,
2117 le32_to_cpu(ex->ee_block),
2118 ext4_ext_get_actual_len(ex));
2119 } else if (block >= le32_to_cpu(ex->ee_block)
2120 + ext4_ext_get_actual_len(ex)) {
2121 ext4_lblk_t next;
2122 lblock = le32_to_cpu(ex->ee_block)
2123 + ext4_ext_get_actual_len(ex);
2124
2125 next = ext4_ext_next_allocated_block(path);
2126 ext_debug("cache gap(after): [%u:%u] %u",
2127 le32_to_cpu(ex->ee_block),
2128 ext4_ext_get_actual_len(ex),
2129 block);
2130 BUG_ON(next == lblock);
2131 len = next - lblock;
2132 } else {
2133 lblock = len = 0;
2134 BUG();
2135 }
2136
2137 ext_debug(" -> %u:%lu\n", lblock, len);
2138 ext4_ext_put_in_cache(inode, lblock, len, 0);
2139 }
2140
2141 /*
2142 * ext4_ext_in_cache()
2143 * Checks to see if the given block is in the cache.
2144 * If it is, the cached extent is stored in the given
2145 * cache extent pointer.
2146 *
2147 * @inode: The files inode
2148 * @block: The block to look for in the cache
2149 * @ex: Pointer where the cached extent will be stored
2150 * if it contains block
2151 *
2152 * Return 0 if cache is invalid; 1 if the cache is valid
2153 */
2154 static int
2155 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2156 struct ext4_extent *ex)
2157 {
2158 struct ext4_ext_cache *cex;
2159 struct ext4_sb_info *sbi;
2160 int ret = 0;
2161
2162 /*
2163 * We borrow i_block_reservation_lock to protect i_cached_extent
2164 */
2165 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2166 cex = &EXT4_I(inode)->i_cached_extent;
2167 sbi = EXT4_SB(inode->i_sb);
2168
2169 /* has cache valid data? */
2170 if (cex->ec_len == 0)
2171 goto errout;
2172
2173 if (in_range(block, cex->ec_block, cex->ec_len)) {
2174 ex->ee_block = cpu_to_le32(cex->ec_block);
2175 ext4_ext_store_pblock(ex, cex->ec_start);
2176 ex->ee_len = cpu_to_le16(cex->ec_len);
2177 ext_debug("%u cached by %u:%u:%llu\n",
2178 block,
2179 cex->ec_block, cex->ec_len, cex->ec_start);
2180 ret = 1;
2181 }
2182 errout:
2183 trace_ext4_ext_in_cache(inode, block, ret);
2184 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2185 return ret;
2186 }
2187
2188 /*
2189 * ext4_ext_rm_idx:
2190 * removes index from the index block.
2191 */
2192 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2193 struct ext4_ext_path *path)
2194 {
2195 int err;
2196 ext4_fsblk_t leaf;
2197
2198 /* free index block */
2199 path--;
2200 leaf = ext4_idx_pblock(path->p_idx);
2201 if (unlikely(path->p_hdr->eh_entries == 0)) {
2202 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2203 return -EIO;
2204 }
2205 err = ext4_ext_get_access(handle, inode, path);
2206 if (err)
2207 return err;
2208
2209 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2210 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2211 len *= sizeof(struct ext4_extent_idx);
2212 memmove(path->p_idx, path->p_idx + 1, len);
2213 }
2214
2215 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2216 err = ext4_ext_dirty(handle, inode, path);
2217 if (err)
2218 return err;
2219 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2220 trace_ext4_ext_rm_idx(inode, leaf);
2221
2222 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2223 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2224 return err;
2225 }
2226
2227 /*
2228 * ext4_ext_calc_credits_for_single_extent:
2229 * This routine returns max. credits that needed to insert an extent
2230 * to the extent tree.
2231 * When pass the actual path, the caller should calculate credits
2232 * under i_data_sem.
2233 */
2234 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2235 struct ext4_ext_path *path)
2236 {
2237 if (path) {
2238 int depth = ext_depth(inode);
2239 int ret = 0;
2240
2241 /* probably there is space in leaf? */
2242 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2243 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2244
2245 /*
2246 * There are some space in the leaf tree, no
2247 * need to account for leaf block credit
2248 *
2249 * bitmaps and block group descriptor blocks
2250 * and other metadata blocks still need to be
2251 * accounted.
2252 */
2253 /* 1 bitmap, 1 block group descriptor */
2254 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2255 return ret;
2256 }
2257 }
2258
2259 return ext4_chunk_trans_blocks(inode, nrblocks);
2260 }
2261
2262 /*
2263 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2264 *
2265 * if nrblocks are fit in a single extent (chunk flag is 1), then
2266 * in the worse case, each tree level index/leaf need to be changed
2267 * if the tree split due to insert a new extent, then the old tree
2268 * index/leaf need to be updated too
2269 *
2270 * If the nrblocks are discontiguous, they could cause
2271 * the whole tree split more than once, but this is really rare.
2272 */
2273 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2274 {
2275 int index;
2276 int depth = ext_depth(inode);
2277
2278 if (chunk)
2279 index = depth * 2;
2280 else
2281 index = depth * 3;
2282
2283 return index;
2284 }
2285
2286 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2287 struct ext4_extent *ex,
2288 ext4_fsblk_t *partial_cluster,
2289 ext4_lblk_t from, ext4_lblk_t to)
2290 {
2291 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2292 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2293 ext4_fsblk_t pblk;
2294 int flags = 0;
2295
2296 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2297 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2298 else if (ext4_should_journal_data(inode))
2299 flags |= EXT4_FREE_BLOCKS_FORGET;
2300
2301 /*
2302 * For bigalloc file systems, we never free a partial cluster
2303 * at the beginning of the extent. Instead, we make a note
2304 * that we tried freeing the cluster, and check to see if we
2305 * need to free it on a subsequent call to ext4_remove_blocks,
2306 * or at the end of the ext4_truncate() operation.
2307 */
2308 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2309
2310 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2311 /*
2312 * If we have a partial cluster, and it's different from the
2313 * cluster of the last block, we need to explicitly free the
2314 * partial cluster here.
2315 */
2316 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2317 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2318 ext4_free_blocks(handle, inode, NULL,
2319 EXT4_C2B(sbi, *partial_cluster),
2320 sbi->s_cluster_ratio, flags);
2321 *partial_cluster = 0;
2322 }
2323
2324 #ifdef EXTENTS_STATS
2325 {
2326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2327 spin_lock(&sbi->s_ext_stats_lock);
2328 sbi->s_ext_blocks += ee_len;
2329 sbi->s_ext_extents++;
2330 if (ee_len < sbi->s_ext_min)
2331 sbi->s_ext_min = ee_len;
2332 if (ee_len > sbi->s_ext_max)
2333 sbi->s_ext_max = ee_len;
2334 if (ext_depth(inode) > sbi->s_depth_max)
2335 sbi->s_depth_max = ext_depth(inode);
2336 spin_unlock(&sbi->s_ext_stats_lock);
2337 }
2338 #endif
2339 if (from >= le32_to_cpu(ex->ee_block)
2340 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2341 /* tail removal */
2342 ext4_lblk_t num;
2343
2344 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2345 pblk = ext4_ext_pblock(ex) + ee_len - num;
2346 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2347 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2348 /*
2349 * If the block range to be freed didn't start at the
2350 * beginning of a cluster, and we removed the entire
2351 * extent, save the partial cluster here, since we
2352 * might need to delete if we determine that the
2353 * truncate operation has removed all of the blocks in
2354 * the cluster.
2355 */
2356 if (pblk & (sbi->s_cluster_ratio - 1) &&
2357 (ee_len == num))
2358 *partial_cluster = EXT4_B2C(sbi, pblk);
2359 else
2360 *partial_cluster = 0;
2361 } else if (from == le32_to_cpu(ex->ee_block)
2362 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2363 /* head removal */
2364 ext4_lblk_t num;
2365 ext4_fsblk_t start;
2366
2367 num = to - from;
2368 start = ext4_ext_pblock(ex);
2369
2370 ext_debug("free first %u blocks starting %llu\n", num, start);
2371 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2372
2373 } else {
2374 printk(KERN_INFO "strange request: removal(2) "
2375 "%u-%u from %u:%u\n",
2376 from, to, le32_to_cpu(ex->ee_block), ee_len);
2377 }
2378 return 0;
2379 }
2380
2381
2382 /*
2383 * ext4_ext_rm_leaf() Removes the extents associated with the
2384 * blocks appearing between "start" and "end", and splits the extents
2385 * if "start" and "end" appear in the same extent
2386 *
2387 * @handle: The journal handle
2388 * @inode: The files inode
2389 * @path: The path to the leaf
2390 * @start: The first block to remove
2391 * @end: The last block to remove
2392 */
2393 static int
2394 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2395 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2396 ext4_lblk_t start, ext4_lblk_t end)
2397 {
2398 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2399 int err = 0, correct_index = 0;
2400 int depth = ext_depth(inode), credits;
2401 struct ext4_extent_header *eh;
2402 ext4_lblk_t a, b;
2403 unsigned num;
2404 ext4_lblk_t ex_ee_block;
2405 unsigned short ex_ee_len;
2406 unsigned uninitialized = 0;
2407 struct ext4_extent *ex;
2408
2409 /* the header must be checked already in ext4_ext_remove_space() */
2410 ext_debug("truncate since %u in leaf to %u\n", start, end);
2411 if (!path[depth].p_hdr)
2412 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2413 eh = path[depth].p_hdr;
2414 if (unlikely(path[depth].p_hdr == NULL)) {
2415 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2416 return -EIO;
2417 }
2418 /* find where to start removing */
2419 ex = EXT_LAST_EXTENT(eh);
2420
2421 ex_ee_block = le32_to_cpu(ex->ee_block);
2422 ex_ee_len = ext4_ext_get_actual_len(ex);
2423
2424 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2425
2426 while (ex >= EXT_FIRST_EXTENT(eh) &&
2427 ex_ee_block + ex_ee_len > start) {
2428
2429 if (ext4_ext_is_uninitialized(ex))
2430 uninitialized = 1;
2431 else
2432 uninitialized = 0;
2433
2434 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2435 uninitialized, ex_ee_len);
2436 path[depth].p_ext = ex;
2437
2438 a = ex_ee_block > start ? ex_ee_block : start;
2439 b = ex_ee_block+ex_ee_len - 1 < end ?
2440 ex_ee_block+ex_ee_len - 1 : end;
2441
2442 ext_debug(" border %u:%u\n", a, b);
2443
2444 /* If this extent is beyond the end of the hole, skip it */
2445 if (end < ex_ee_block) {
2446 ex--;
2447 ex_ee_block = le32_to_cpu(ex->ee_block);
2448 ex_ee_len = ext4_ext_get_actual_len(ex);
2449 continue;
2450 } else if (b != ex_ee_block + ex_ee_len - 1) {
2451 EXT4_ERROR_INODE(inode,
2452 "can not handle truncate %u:%u "
2453 "on extent %u:%u",
2454 start, end, ex_ee_block,
2455 ex_ee_block + ex_ee_len - 1);
2456 err = -EIO;
2457 goto out;
2458 } else if (a != ex_ee_block) {
2459 /* remove tail of the extent */
2460 num = a - ex_ee_block;
2461 } else {
2462 /* remove whole extent: excellent! */
2463 num = 0;
2464 }
2465 /*
2466 * 3 for leaf, sb, and inode plus 2 (bmap and group
2467 * descriptor) for each block group; assume two block
2468 * groups plus ex_ee_len/blocks_per_block_group for
2469 * the worst case
2470 */
2471 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2472 if (ex == EXT_FIRST_EXTENT(eh)) {
2473 correct_index = 1;
2474 credits += (ext_depth(inode)) + 1;
2475 }
2476 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2477
2478 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2479 if (err)
2480 goto out;
2481
2482 err = ext4_ext_get_access(handle, inode, path + depth);
2483 if (err)
2484 goto out;
2485
2486 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2487 a, b);
2488 if (err)
2489 goto out;
2490
2491 if (num == 0)
2492 /* this extent is removed; mark slot entirely unused */
2493 ext4_ext_store_pblock(ex, 0);
2494
2495 ex->ee_len = cpu_to_le16(num);
2496 /*
2497 * Do not mark uninitialized if all the blocks in the
2498 * extent have been removed.
2499 */
2500 if (uninitialized && num)
2501 ext4_ext_mark_uninitialized(ex);
2502 /*
2503 * If the extent was completely released,
2504 * we need to remove it from the leaf
2505 */
2506 if (num == 0) {
2507 if (end != EXT_MAX_BLOCKS - 1) {
2508 /*
2509 * For hole punching, we need to scoot all the
2510 * extents up when an extent is removed so that
2511 * we dont have blank extents in the middle
2512 */
2513 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2514 sizeof(struct ext4_extent));
2515
2516 /* Now get rid of the one at the end */
2517 memset(EXT_LAST_EXTENT(eh), 0,
2518 sizeof(struct ext4_extent));
2519 }
2520 le16_add_cpu(&eh->eh_entries, -1);
2521 } else
2522 *partial_cluster = 0;
2523
2524 err = ext4_ext_dirty(handle, inode, path + depth);
2525 if (err)
2526 goto out;
2527
2528 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2529 ext4_ext_pblock(ex));
2530 ex--;
2531 ex_ee_block = le32_to_cpu(ex->ee_block);
2532 ex_ee_len = ext4_ext_get_actual_len(ex);
2533 }
2534
2535 if (correct_index && eh->eh_entries)
2536 err = ext4_ext_correct_indexes(handle, inode, path);
2537
2538 /*
2539 * If there is still a entry in the leaf node, check to see if
2540 * it references the partial cluster. This is the only place
2541 * where it could; if it doesn't, we can free the cluster.
2542 */
2543 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2544 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2545 *partial_cluster)) {
2546 int flags = EXT4_FREE_BLOCKS_FORGET;
2547
2548 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2549 flags |= EXT4_FREE_BLOCKS_METADATA;
2550
2551 ext4_free_blocks(handle, inode, NULL,
2552 EXT4_C2B(sbi, *partial_cluster),
2553 sbi->s_cluster_ratio, flags);
2554 *partial_cluster = 0;
2555 }
2556
2557 /* if this leaf is free, then we should
2558 * remove it from index block above */
2559 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2560 err = ext4_ext_rm_idx(handle, inode, path + depth);
2561
2562 out:
2563 return err;
2564 }
2565
2566 /*
2567 * ext4_ext_more_to_rm:
2568 * returns 1 if current index has to be freed (even partial)
2569 */
2570 static int
2571 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2572 {
2573 BUG_ON(path->p_idx == NULL);
2574
2575 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2576 return 0;
2577
2578 /*
2579 * if truncate on deeper level happened, it wasn't partial,
2580 * so we have to consider current index for truncation
2581 */
2582 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2583 return 0;
2584 return 1;
2585 }
2586
2587 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2588 ext4_lblk_t end)
2589 {
2590 struct super_block *sb = inode->i_sb;
2591 int depth = ext_depth(inode);
2592 struct ext4_ext_path *path = NULL;
2593 ext4_fsblk_t partial_cluster = 0;
2594 handle_t *handle;
2595 int i = 0, err = 0;
2596
2597 ext_debug("truncate since %u to %u\n", start, end);
2598
2599 /* probably first extent we're gonna free will be last in block */
2600 handle = ext4_journal_start(inode, depth + 1);
2601 if (IS_ERR(handle))
2602 return PTR_ERR(handle);
2603
2604 again:
2605 ext4_ext_invalidate_cache(inode);
2606
2607 trace_ext4_ext_remove_space(inode, start, depth);
2608
2609 /*
2610 * Check if we are removing extents inside the extent tree. If that
2611 * is the case, we are going to punch a hole inside the extent tree
2612 * so we have to check whether we need to split the extent covering
2613 * the last block to remove so we can easily remove the part of it
2614 * in ext4_ext_rm_leaf().
2615 */
2616 if (end < EXT_MAX_BLOCKS - 1) {
2617 struct ext4_extent *ex;
2618 ext4_lblk_t ee_block;
2619
2620 /* find extent for this block */
2621 path = ext4_ext_find_extent(inode, end, NULL);
2622 if (IS_ERR(path)) {
2623 ext4_journal_stop(handle);
2624 return PTR_ERR(path);
2625 }
2626 depth = ext_depth(inode);
2627 /* Leaf not may not exist only if inode has no blocks at all */
2628 ex = path[depth].p_ext;
2629 if (!ex) {
2630 if (depth) {
2631 EXT4_ERROR_INODE(inode,
2632 "path[%d].p_hdr == NULL",
2633 depth);
2634 err = -EIO;
2635 }
2636 goto out;
2637 }
2638
2639 ee_block = le32_to_cpu(ex->ee_block);
2640
2641 /*
2642 * See if the last block is inside the extent, if so split
2643 * the extent at 'end' block so we can easily remove the
2644 * tail of the first part of the split extent in
2645 * ext4_ext_rm_leaf().
2646 */
2647 if (end >= ee_block &&
2648 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2649 int split_flag = 0;
2650
2651 if (ext4_ext_is_uninitialized(ex))
2652 split_flag = EXT4_EXT_MARK_UNINIT1 |
2653 EXT4_EXT_MARK_UNINIT2;
2654
2655 /*
2656 * Split the extent in two so that 'end' is the last
2657 * block in the first new extent
2658 */
2659 err = ext4_split_extent_at(handle, inode, path,
2660 end + 1, split_flag,
2661 EXT4_GET_BLOCKS_PRE_IO |
2662 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2663
2664 if (err < 0)
2665 goto out;
2666 }
2667 }
2668 /*
2669 * We start scanning from right side, freeing all the blocks
2670 * after i_size and walking into the tree depth-wise.
2671 */
2672 depth = ext_depth(inode);
2673 if (path) {
2674 int k = i = depth;
2675 while (--k > 0)
2676 path[k].p_block =
2677 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2678 } else {
2679 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2680 GFP_NOFS);
2681 if (path == NULL) {
2682 ext4_journal_stop(handle);
2683 return -ENOMEM;
2684 }
2685 path[0].p_depth = depth;
2686 path[0].p_hdr = ext_inode_hdr(inode);
2687 i = 0;
2688
2689 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2690 err = -EIO;
2691 goto out;
2692 }
2693 }
2694 err = 0;
2695
2696 while (i >= 0 && err == 0) {
2697 if (i == depth) {
2698 /* this is leaf block */
2699 err = ext4_ext_rm_leaf(handle, inode, path,
2700 &partial_cluster, start,
2701 end);
2702 /* root level has p_bh == NULL, brelse() eats this */
2703 brelse(path[i].p_bh);
2704 path[i].p_bh = NULL;
2705 i--;
2706 continue;
2707 }
2708
2709 /* this is index block */
2710 if (!path[i].p_hdr) {
2711 ext_debug("initialize header\n");
2712 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2713 }
2714
2715 if (!path[i].p_idx) {
2716 /* this level hasn't been touched yet */
2717 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2718 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2719 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2720 path[i].p_hdr,
2721 le16_to_cpu(path[i].p_hdr->eh_entries));
2722 } else {
2723 /* we were already here, see at next index */
2724 path[i].p_idx--;
2725 }
2726
2727 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2728 i, EXT_FIRST_INDEX(path[i].p_hdr),
2729 path[i].p_idx);
2730 if (ext4_ext_more_to_rm(path + i)) {
2731 struct buffer_head *bh;
2732 /* go to the next level */
2733 ext_debug("move to level %d (block %llu)\n",
2734 i + 1, ext4_idx_pblock(path[i].p_idx));
2735 memset(path + i + 1, 0, sizeof(*path));
2736 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2737 if (!bh) {
2738 /* should we reset i_size? */
2739 err = -EIO;
2740 break;
2741 }
2742 if (WARN_ON(i + 1 > depth)) {
2743 err = -EIO;
2744 break;
2745 }
2746 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2747 depth - i - 1, bh)) {
2748 err = -EIO;
2749 break;
2750 }
2751 path[i + 1].p_bh = bh;
2752
2753 /* save actual number of indexes since this
2754 * number is changed at the next iteration */
2755 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2756 i++;
2757 } else {
2758 /* we finished processing this index, go up */
2759 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2760 /* index is empty, remove it;
2761 * handle must be already prepared by the
2762 * truncatei_leaf() */
2763 err = ext4_ext_rm_idx(handle, inode, path + i);
2764 }
2765 /* root level has p_bh == NULL, brelse() eats this */
2766 brelse(path[i].p_bh);
2767 path[i].p_bh = NULL;
2768 i--;
2769 ext_debug("return to level %d\n", i);
2770 }
2771 }
2772
2773 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2774 path->p_hdr->eh_entries);
2775
2776 /* If we still have something in the partial cluster and we have removed
2777 * even the first extent, then we should free the blocks in the partial
2778 * cluster as well. */
2779 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2780 int flags = EXT4_FREE_BLOCKS_FORGET;
2781
2782 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2783 flags |= EXT4_FREE_BLOCKS_METADATA;
2784
2785 ext4_free_blocks(handle, inode, NULL,
2786 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2787 EXT4_SB(sb)->s_cluster_ratio, flags);
2788 partial_cluster = 0;
2789 }
2790
2791 /* TODO: flexible tree reduction should be here */
2792 if (path->p_hdr->eh_entries == 0) {
2793 /*
2794 * truncate to zero freed all the tree,
2795 * so we need to correct eh_depth
2796 */
2797 err = ext4_ext_get_access(handle, inode, path);
2798 if (err == 0) {
2799 ext_inode_hdr(inode)->eh_depth = 0;
2800 ext_inode_hdr(inode)->eh_max =
2801 cpu_to_le16(ext4_ext_space_root(inode, 0));
2802 err = ext4_ext_dirty(handle, inode, path);
2803 }
2804 }
2805 out:
2806 ext4_ext_drop_refs(path);
2807 kfree(path);
2808 if (err == -EAGAIN) {
2809 path = NULL;
2810 goto again;
2811 }
2812 ext4_journal_stop(handle);
2813
2814 return err;
2815 }
2816
2817 /*
2818 * called at mount time
2819 */
2820 void ext4_ext_init(struct super_block *sb)
2821 {
2822 /*
2823 * possible initialization would be here
2824 */
2825
2826 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2827 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2828 printk(KERN_INFO "EXT4-fs: file extents enabled"
2829 #ifdef AGGRESSIVE_TEST
2830 ", aggressive tests"
2831 #endif
2832 #ifdef CHECK_BINSEARCH
2833 ", check binsearch"
2834 #endif
2835 #ifdef EXTENTS_STATS
2836 ", stats"
2837 #endif
2838 "\n");
2839 #endif
2840 #ifdef EXTENTS_STATS
2841 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2842 EXT4_SB(sb)->s_ext_min = 1 << 30;
2843 EXT4_SB(sb)->s_ext_max = 0;
2844 #endif
2845 }
2846 }
2847
2848 /*
2849 * called at umount time
2850 */
2851 void ext4_ext_release(struct super_block *sb)
2852 {
2853 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2854 return;
2855
2856 #ifdef EXTENTS_STATS
2857 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2858 struct ext4_sb_info *sbi = EXT4_SB(sb);
2859 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2860 sbi->s_ext_blocks, sbi->s_ext_extents,
2861 sbi->s_ext_blocks / sbi->s_ext_extents);
2862 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2863 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2864 }
2865 #endif
2866 }
2867
2868 /* FIXME!! we need to try to merge to left or right after zero-out */
2869 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2870 {
2871 ext4_fsblk_t ee_pblock;
2872 unsigned int ee_len;
2873 int ret;
2874
2875 ee_len = ext4_ext_get_actual_len(ex);
2876 ee_pblock = ext4_ext_pblock(ex);
2877
2878 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2879 if (ret > 0)
2880 ret = 0;
2881
2882 return ret;
2883 }
2884
2885 /*
2886 * ext4_split_extent_at() splits an extent at given block.
2887 *
2888 * @handle: the journal handle
2889 * @inode: the file inode
2890 * @path: the path to the extent
2891 * @split: the logical block where the extent is splitted.
2892 * @split_flags: indicates if the extent could be zeroout if split fails, and
2893 * the states(init or uninit) of new extents.
2894 * @flags: flags used to insert new extent to extent tree.
2895 *
2896 *
2897 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2898 * of which are deterimined by split_flag.
2899 *
2900 * There are two cases:
2901 * a> the extent are splitted into two extent.
2902 * b> split is not needed, and just mark the extent.
2903 *
2904 * return 0 on success.
2905 */
2906 static int ext4_split_extent_at(handle_t *handle,
2907 struct inode *inode,
2908 struct ext4_ext_path *path,
2909 ext4_lblk_t split,
2910 int split_flag,
2911 int flags)
2912 {
2913 ext4_fsblk_t newblock;
2914 ext4_lblk_t ee_block;
2915 struct ext4_extent *ex, newex, orig_ex;
2916 struct ext4_extent *ex2 = NULL;
2917 unsigned int ee_len, depth;
2918 int err = 0;
2919
2920 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2921 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2922
2923 ext_debug("ext4_split_extents_at: inode %lu, logical"
2924 "block %llu\n", inode->i_ino, (unsigned long long)split);
2925
2926 ext4_ext_show_leaf(inode, path);
2927
2928 depth = ext_depth(inode);
2929 ex = path[depth].p_ext;
2930 ee_block = le32_to_cpu(ex->ee_block);
2931 ee_len = ext4_ext_get_actual_len(ex);
2932 newblock = split - ee_block + ext4_ext_pblock(ex);
2933
2934 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2935
2936 err = ext4_ext_get_access(handle, inode, path + depth);
2937 if (err)
2938 goto out;
2939
2940 if (split == ee_block) {
2941 /*
2942 * case b: block @split is the block that the extent begins with
2943 * then we just change the state of the extent, and splitting
2944 * is not needed.
2945 */
2946 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2947 ext4_ext_mark_uninitialized(ex);
2948 else
2949 ext4_ext_mark_initialized(ex);
2950
2951 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2952 ext4_ext_try_to_merge(handle, inode, path, ex);
2953
2954 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2955 goto out;
2956 }
2957
2958 /* case a */
2959 memcpy(&orig_ex, ex, sizeof(orig_ex));
2960 ex->ee_len = cpu_to_le16(split - ee_block);
2961 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2962 ext4_ext_mark_uninitialized(ex);
2963
2964 /*
2965 * path may lead to new leaf, not to original leaf any more
2966 * after ext4_ext_insert_extent() returns,
2967 */
2968 err = ext4_ext_dirty(handle, inode, path + depth);
2969 if (err)
2970 goto fix_extent_len;
2971
2972 ex2 = &newex;
2973 ex2->ee_block = cpu_to_le32(split);
2974 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2975 ext4_ext_store_pblock(ex2, newblock);
2976 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2977 ext4_ext_mark_uninitialized(ex2);
2978
2979 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2980 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2981 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2982 if (split_flag & EXT4_EXT_DATA_VALID1)
2983 err = ext4_ext_zeroout(inode, ex2);
2984 else
2985 err = ext4_ext_zeroout(inode, ex);
2986 } else
2987 err = ext4_ext_zeroout(inode, &orig_ex);
2988
2989 if (err)
2990 goto fix_extent_len;
2991 /* update the extent length and mark as initialized */
2992 ex->ee_len = cpu_to_le16(ee_len);
2993 ext4_ext_try_to_merge(handle, inode, path, ex);
2994 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2995 goto out;
2996 } else if (err)
2997 goto fix_extent_len;
2998
2999 out:
3000 ext4_ext_show_leaf(inode, path);
3001 return err;
3002
3003 fix_extent_len:
3004 ex->ee_len = orig_ex.ee_len;
3005 ext4_ext_dirty(handle, inode, path + depth);
3006 return err;
3007 }
3008
3009 /*
3010 * ext4_split_extents() splits an extent and mark extent which is covered
3011 * by @map as split_flags indicates
3012 *
3013 * It may result in splitting the extent into multiple extents (upto three)
3014 * There are three possibilities:
3015 * a> There is no split required
3016 * b> Splits in two extents: Split is happening at either end of the extent
3017 * c> Splits in three extents: Somone is splitting in middle of the extent
3018 *
3019 */
3020 static int ext4_split_extent(handle_t *handle,
3021 struct inode *inode,
3022 struct ext4_ext_path *path,
3023 struct ext4_map_blocks *map,
3024 int split_flag,
3025 int flags)
3026 {
3027 ext4_lblk_t ee_block;
3028 struct ext4_extent *ex;
3029 unsigned int ee_len, depth;
3030 int err = 0;
3031 int uninitialized;
3032 int split_flag1, flags1;
3033
3034 depth = ext_depth(inode);
3035 ex = path[depth].p_ext;
3036 ee_block = le32_to_cpu(ex->ee_block);
3037 ee_len = ext4_ext_get_actual_len(ex);
3038 uninitialized = ext4_ext_is_uninitialized(ex);
3039
3040 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3041 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3042 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3043 if (uninitialized)
3044 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3045 EXT4_EXT_MARK_UNINIT2;
3046 if (split_flag & EXT4_EXT_DATA_VALID2)
3047 split_flag1 |= EXT4_EXT_DATA_VALID1;
3048 err = ext4_split_extent_at(handle, inode, path,
3049 map->m_lblk + map->m_len, split_flag1, flags1);
3050 if (err)
3051 goto out;
3052 }
3053
3054 ext4_ext_drop_refs(path);
3055 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3056 if (IS_ERR(path))
3057 return PTR_ERR(path);
3058
3059 if (map->m_lblk >= ee_block) {
3060 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3061 EXT4_EXT_DATA_VALID2);
3062 if (uninitialized)
3063 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3064 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3065 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3066 err = ext4_split_extent_at(handle, inode, path,
3067 map->m_lblk, split_flag1, flags);
3068 if (err)
3069 goto out;
3070 }
3071
3072 ext4_ext_show_leaf(inode, path);
3073 out:
3074 return err ? err : map->m_len;
3075 }
3076
3077 /*
3078 * This function is called by ext4_ext_map_blocks() if someone tries to write
3079 * to an uninitialized extent. It may result in splitting the uninitialized
3080 * extent into multiple extents (up to three - one initialized and two
3081 * uninitialized).
3082 * There are three possibilities:
3083 * a> There is no split required: Entire extent should be initialized
3084 * b> Splits in two extents: Write is happening at either end of the extent
3085 * c> Splits in three extents: Somone is writing in middle of the extent
3086 *
3087 * Pre-conditions:
3088 * - The extent pointed to by 'path' is uninitialized.
3089 * - The extent pointed to by 'path' contains a superset
3090 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3091 *
3092 * Post-conditions on success:
3093 * - the returned value is the number of blocks beyond map->l_lblk
3094 * that are allocated and initialized.
3095 * It is guaranteed to be >= map->m_len.
3096 */
3097 static int ext4_ext_convert_to_initialized(handle_t *handle,
3098 struct inode *inode,
3099 struct ext4_map_blocks *map,
3100 struct ext4_ext_path *path)
3101 {
3102 struct ext4_sb_info *sbi;
3103 struct ext4_extent_header *eh;
3104 struct ext4_map_blocks split_map;
3105 struct ext4_extent zero_ex;
3106 struct ext4_extent *ex;
3107 ext4_lblk_t ee_block, eof_block;
3108 unsigned int ee_len, depth;
3109 int allocated, max_zeroout = 0;
3110 int err = 0;
3111 int split_flag = 0;
3112
3113 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3114 "block %llu, max_blocks %u\n", inode->i_ino,
3115 (unsigned long long)map->m_lblk, map->m_len);
3116
3117 sbi = EXT4_SB(inode->i_sb);
3118 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3119 inode->i_sb->s_blocksize_bits;
3120 if (eof_block < map->m_lblk + map->m_len)
3121 eof_block = map->m_lblk + map->m_len;
3122
3123 depth = ext_depth(inode);
3124 eh = path[depth].p_hdr;
3125 ex = path[depth].p_ext;
3126 ee_block = le32_to_cpu(ex->ee_block);
3127 ee_len = ext4_ext_get_actual_len(ex);
3128 allocated = ee_len - (map->m_lblk - ee_block);
3129
3130 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3131
3132 /* Pre-conditions */
3133 BUG_ON(!ext4_ext_is_uninitialized(ex));
3134 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3135
3136 /*
3137 * Attempt to transfer newly initialized blocks from the currently
3138 * uninitialized extent to its left neighbor. This is much cheaper
3139 * than an insertion followed by a merge as those involve costly
3140 * memmove() calls. This is the common case in steady state for
3141 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3142 * writes.
3143 *
3144 * Limitations of the current logic:
3145 * - L1: we only deal with writes at the start of the extent.
3146 * The approach could be extended to writes at the end
3147 * of the extent but this scenario was deemed less common.
3148 * - L2: we do not deal with writes covering the whole extent.
3149 * This would require removing the extent if the transfer
3150 * is possible.
3151 * - L3: we only attempt to merge with an extent stored in the
3152 * same extent tree node.
3153 */
3154 if ((map->m_lblk == ee_block) && /*L1*/
3155 (map->m_len < ee_len) && /*L2*/
3156 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3157 struct ext4_extent *prev_ex;
3158 ext4_lblk_t prev_lblk;
3159 ext4_fsblk_t prev_pblk, ee_pblk;
3160 unsigned int prev_len, write_len;
3161
3162 prev_ex = ex - 1;
3163 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3164 prev_len = ext4_ext_get_actual_len(prev_ex);
3165 prev_pblk = ext4_ext_pblock(prev_ex);
3166 ee_pblk = ext4_ext_pblock(ex);
3167 write_len = map->m_len;
3168
3169 /*
3170 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3171 * upon those conditions:
3172 * - C1: prev_ex is initialized,
3173 * - C2: prev_ex is logically abutting ex,
3174 * - C3: prev_ex is physically abutting ex,
3175 * - C4: prev_ex can receive the additional blocks without
3176 * overflowing the (initialized) length limit.
3177 */
3178 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3179 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3180 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3181 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3182 err = ext4_ext_get_access(handle, inode, path + depth);
3183 if (err)
3184 goto out;
3185
3186 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3187 map, ex, prev_ex);
3188
3189 /* Shift the start of ex by 'write_len' blocks */
3190 ex->ee_block = cpu_to_le32(ee_block + write_len);
3191 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3192 ex->ee_len = cpu_to_le16(ee_len - write_len);
3193 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3194
3195 /* Extend prev_ex by 'write_len' blocks */
3196 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3197
3198 /* Mark the block containing both extents as dirty */
3199 ext4_ext_dirty(handle, inode, path + depth);
3200
3201 /* Update path to point to the right extent */
3202 path[depth].p_ext = prev_ex;
3203
3204 /* Result: number of initialized blocks past m_lblk */
3205 allocated = write_len;
3206 goto out;
3207 }
3208 }
3209
3210 WARN_ON(map->m_lblk < ee_block);
3211 /*
3212 * It is safe to convert extent to initialized via explicit
3213 * zeroout only if extent is fully insde i_size or new_size.
3214 */
3215 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3216
3217 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3218 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3219 inode->i_sb->s_blocksize_bits;
3220
3221 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3222 if (max_zeroout && (ee_len <= max_zeroout)) {
3223 err = ext4_ext_zeroout(inode, ex);
3224 if (err)
3225 goto out;
3226
3227 err = ext4_ext_get_access(handle, inode, path + depth);
3228 if (err)
3229 goto out;
3230 ext4_ext_mark_initialized(ex);
3231 ext4_ext_try_to_merge(handle, inode, path, ex);
3232 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3233 goto out;
3234 }
3235
3236 /*
3237 * four cases:
3238 * 1. split the extent into three extents.
3239 * 2. split the extent into two extents, zeroout the first half.
3240 * 3. split the extent into two extents, zeroout the second half.
3241 * 4. split the extent into two extents with out zeroout.
3242 */
3243 split_map.m_lblk = map->m_lblk;
3244 split_map.m_len = map->m_len;
3245
3246 if (max_zeroout && (allocated > map->m_len)) {
3247 if (allocated <= max_zeroout) {
3248 /* case 3 */
3249 zero_ex.ee_block =
3250 cpu_to_le32(map->m_lblk);
3251 zero_ex.ee_len = cpu_to_le16(allocated);
3252 ext4_ext_store_pblock(&zero_ex,
3253 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3254 err = ext4_ext_zeroout(inode, &zero_ex);
3255 if (err)
3256 goto out;
3257 split_map.m_lblk = map->m_lblk;
3258 split_map.m_len = allocated;
3259 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3260 /* case 2 */
3261 if (map->m_lblk != ee_block) {
3262 zero_ex.ee_block = ex->ee_block;
3263 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3264 ee_block);
3265 ext4_ext_store_pblock(&zero_ex,
3266 ext4_ext_pblock(ex));
3267 err = ext4_ext_zeroout(inode, &zero_ex);
3268 if (err)
3269 goto out;
3270 }
3271
3272 split_map.m_lblk = ee_block;
3273 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3274 allocated = map->m_len;
3275 }
3276 }
3277
3278 allocated = ext4_split_extent(handle, inode, path,
3279 &split_map, split_flag, 0);
3280 if (allocated < 0)
3281 err = allocated;
3282
3283 out:
3284 return err ? err : allocated;
3285 }
3286
3287 /*
3288 * This function is called by ext4_ext_map_blocks() from
3289 * ext4_get_blocks_dio_write() when DIO to write
3290 * to an uninitialized extent.
3291 *
3292 * Writing to an uninitialized extent may result in splitting the uninitialized
3293 * extent into multiple initialized/uninitialized extents (up to three)
3294 * There are three possibilities:
3295 * a> There is no split required: Entire extent should be uninitialized
3296 * b> Splits in two extents: Write is happening at either end of the extent
3297 * c> Splits in three extents: Somone is writing in middle of the extent
3298 *
3299 * One of more index blocks maybe needed if the extent tree grow after
3300 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3301 * complete, we need to split the uninitialized extent before DIO submit
3302 * the IO. The uninitialized extent called at this time will be split
3303 * into three uninitialized extent(at most). After IO complete, the part
3304 * being filled will be convert to initialized by the end_io callback function
3305 * via ext4_convert_unwritten_extents().
3306 *
3307 * Returns the size of uninitialized extent to be written on success.
3308 */
3309 static int ext4_split_unwritten_extents(handle_t *handle,
3310 struct inode *inode,
3311 struct ext4_map_blocks *map,
3312 struct ext4_ext_path *path,
3313 int flags)
3314 {
3315 ext4_lblk_t eof_block;
3316 ext4_lblk_t ee_block;
3317 struct ext4_extent *ex;
3318 unsigned int ee_len;
3319 int split_flag = 0, depth;
3320
3321 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3322 "block %llu, max_blocks %u\n", inode->i_ino,
3323 (unsigned long long)map->m_lblk, map->m_len);
3324
3325 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3326 inode->i_sb->s_blocksize_bits;
3327 if (eof_block < map->m_lblk + map->m_len)
3328 eof_block = map->m_lblk + map->m_len;
3329 /*
3330 * It is safe to convert extent to initialized via explicit
3331 * zeroout only if extent is fully insde i_size or new_size.
3332 */
3333 depth = ext_depth(inode);
3334 ex = path[depth].p_ext;
3335 ee_block = le32_to_cpu(ex->ee_block);
3336 ee_len = ext4_ext_get_actual_len(ex);
3337
3338 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3339 split_flag |= EXT4_EXT_MARK_UNINIT2;
3340 if (flags & EXT4_GET_BLOCKS_CONVERT)
3341 split_flag |= EXT4_EXT_DATA_VALID2;
3342 flags |= EXT4_GET_BLOCKS_PRE_IO;
3343 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3344 }
3345
3346 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3347 struct inode *inode,
3348 struct ext4_map_blocks *map,
3349 struct ext4_ext_path *path)
3350 {
3351 struct ext4_extent *ex;
3352 ext4_lblk_t ee_block;
3353 unsigned int ee_len;
3354 int depth;
3355 int err = 0;
3356
3357 depth = ext_depth(inode);
3358 ex = path[depth].p_ext;
3359 ee_block = le32_to_cpu(ex->ee_block);
3360 ee_len = ext4_ext_get_actual_len(ex);
3361
3362 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3363 "block %llu, max_blocks %u\n", inode->i_ino,
3364 (unsigned long long)ee_block, ee_len);
3365
3366 /* If extent is larger than requested then split is required */
3367 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3368 err = ext4_split_unwritten_extents(handle, inode, map, path,
3369 EXT4_GET_BLOCKS_CONVERT);
3370 if (err < 0)
3371 goto out;
3372 ext4_ext_drop_refs(path);
3373 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3374 if (IS_ERR(path)) {
3375 err = PTR_ERR(path);
3376 goto out;
3377 }
3378 depth = ext_depth(inode);
3379 ex = path[depth].p_ext;
3380 }
3381
3382 err = ext4_ext_get_access(handle, inode, path + depth);
3383 if (err)
3384 goto out;
3385 /* first mark the extent as initialized */
3386 ext4_ext_mark_initialized(ex);
3387
3388 /* note: ext4_ext_correct_indexes() isn't needed here because
3389 * borders are not changed
3390 */
3391 ext4_ext_try_to_merge(handle, inode, path, ex);
3392
3393 /* Mark modified extent as dirty */
3394 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3395 out:
3396 ext4_ext_show_leaf(inode, path);
3397 return err;
3398 }
3399
3400 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3401 sector_t block, int count)
3402 {
3403 int i;
3404 for (i = 0; i < count; i++)
3405 unmap_underlying_metadata(bdev, block + i);
3406 }
3407
3408 /*
3409 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3410 */
3411 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3412 ext4_lblk_t lblk,
3413 struct ext4_ext_path *path,
3414 unsigned int len)
3415 {
3416 int i, depth;
3417 struct ext4_extent_header *eh;
3418 struct ext4_extent *last_ex;
3419
3420 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3421 return 0;
3422
3423 depth = ext_depth(inode);
3424 eh = path[depth].p_hdr;
3425
3426 /*
3427 * We're going to remove EOFBLOCKS_FL entirely in future so we
3428 * do not care for this case anymore. Simply remove the flag
3429 * if there are no extents.
3430 */
3431 if (unlikely(!eh->eh_entries))
3432 goto out;
3433 last_ex = EXT_LAST_EXTENT(eh);
3434 /*
3435 * We should clear the EOFBLOCKS_FL flag if we are writing the
3436 * last block in the last extent in the file. We test this by
3437 * first checking to see if the caller to
3438 * ext4_ext_get_blocks() was interested in the last block (or
3439 * a block beyond the last block) in the current extent. If
3440 * this turns out to be false, we can bail out from this
3441 * function immediately.
3442 */
3443 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3444 ext4_ext_get_actual_len(last_ex))
3445 return 0;
3446 /*
3447 * If the caller does appear to be planning to write at or
3448 * beyond the end of the current extent, we then test to see
3449 * if the current extent is the last extent in the file, by
3450 * checking to make sure it was reached via the rightmost node
3451 * at each level of the tree.
3452 */
3453 for (i = depth-1; i >= 0; i--)
3454 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3455 return 0;
3456 out:
3457 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3458 return ext4_mark_inode_dirty(handle, inode);
3459 }
3460
3461 /**
3462 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3463 *
3464 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3465 * whether there are any buffers marked for delayed allocation. It returns '1'
3466 * on the first delalloc'ed buffer head found. If no buffer head in the given
3467 * range is marked for delalloc, it returns 0.
3468 * lblk_start should always be <= lblk_end.
3469 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3470 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3471 * block sooner). This is useful when blocks are truncated sequentially from
3472 * lblk_start towards lblk_end.
3473 */
3474 static int ext4_find_delalloc_range(struct inode *inode,
3475 ext4_lblk_t lblk_start,
3476 ext4_lblk_t lblk_end,
3477 int search_hint_reverse)
3478 {
3479 struct address_space *mapping = inode->i_mapping;
3480 struct buffer_head *head, *bh = NULL;
3481 struct page *page;
3482 ext4_lblk_t i, pg_lblk;
3483 pgoff_t index;
3484
3485 if (!test_opt(inode->i_sb, DELALLOC))
3486 return 0;
3487
3488 /* reverse search wont work if fs block size is less than page size */
3489 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3490 search_hint_reverse = 0;
3491
3492 if (search_hint_reverse)
3493 i = lblk_end;
3494 else
3495 i = lblk_start;
3496
3497 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3498
3499 while ((i >= lblk_start) && (i <= lblk_end)) {
3500 page = find_get_page(mapping, index);
3501 if (!page)
3502 goto nextpage;
3503
3504 if (!page_has_buffers(page))
3505 goto nextpage;
3506
3507 head = page_buffers(page);
3508 if (!head)
3509 goto nextpage;
3510
3511 bh = head;
3512 pg_lblk = index << (PAGE_CACHE_SHIFT -
3513 inode->i_blkbits);
3514 do {
3515 if (unlikely(pg_lblk < lblk_start)) {
3516 /*
3517 * This is possible when fs block size is less
3518 * than page size and our cluster starts/ends in
3519 * middle of the page. So we need to skip the
3520 * initial few blocks till we reach the 'lblk'
3521 */
3522 pg_lblk++;
3523 continue;
3524 }
3525
3526 /* Check if the buffer is delayed allocated and that it
3527 * is not yet mapped. (when da-buffers are mapped during
3528 * their writeout, their da_mapped bit is set.)
3529 */
3530 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3531 page_cache_release(page);
3532 trace_ext4_find_delalloc_range(inode,
3533 lblk_start, lblk_end,
3534 search_hint_reverse,
3535 1, i);
3536 return 1;
3537 }
3538 if (search_hint_reverse)
3539 i--;
3540 else
3541 i++;
3542 } while ((i >= lblk_start) && (i <= lblk_end) &&
3543 ((bh = bh->b_this_page) != head));
3544 nextpage:
3545 if (page)
3546 page_cache_release(page);
3547 /*
3548 * Move to next page. 'i' will be the first lblk in the next
3549 * page.
3550 */
3551 if (search_hint_reverse)
3552 index--;
3553 else
3554 index++;
3555 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3556 }
3557
3558 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3559 search_hint_reverse, 0, 0);
3560 return 0;
3561 }
3562
3563 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3564 int search_hint_reverse)
3565 {
3566 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3567 ext4_lblk_t lblk_start, lblk_end;
3568 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3569 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3570
3571 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3572 search_hint_reverse);
3573 }
3574
3575 /**
3576 * Determines how many complete clusters (out of those specified by the 'map')
3577 * are under delalloc and were reserved quota for.
3578 * This function is called when we are writing out the blocks that were
3579 * originally written with their allocation delayed, but then the space was
3580 * allocated using fallocate() before the delayed allocation could be resolved.
3581 * The cases to look for are:
3582 * ('=' indicated delayed allocated blocks
3583 * '-' indicates non-delayed allocated blocks)
3584 * (a) partial clusters towards beginning and/or end outside of allocated range
3585 * are not delalloc'ed.
3586 * Ex:
3587 * |----c---=|====c====|====c====|===-c----|
3588 * |++++++ allocated ++++++|
3589 * ==> 4 complete clusters in above example
3590 *
3591 * (b) partial cluster (outside of allocated range) towards either end is
3592 * marked for delayed allocation. In this case, we will exclude that
3593 * cluster.
3594 * Ex:
3595 * |----====c========|========c========|
3596 * |++++++ allocated ++++++|
3597 * ==> 1 complete clusters in above example
3598 *
3599 * Ex:
3600 * |================c================|
3601 * |++++++ allocated ++++++|
3602 * ==> 0 complete clusters in above example
3603 *
3604 * The ext4_da_update_reserve_space will be called only if we
3605 * determine here that there were some "entire" clusters that span
3606 * this 'allocated' range.
3607 * In the non-bigalloc case, this function will just end up returning num_blks
3608 * without ever calling ext4_find_delalloc_range.
3609 */
3610 static unsigned int
3611 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3612 unsigned int num_blks)
3613 {
3614 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3615 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3616 ext4_lblk_t lblk_from, lblk_to, c_offset;
3617 unsigned int allocated_clusters = 0;
3618
3619 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3620 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3621
3622 /* max possible clusters for this allocation */
3623 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3624
3625 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3626
3627 /* Check towards left side */
3628 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3629 if (c_offset) {
3630 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3631 lblk_to = lblk_from + c_offset - 1;
3632
3633 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3634 allocated_clusters--;
3635 }
3636
3637 /* Now check towards right. */
3638 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3639 if (allocated_clusters && c_offset) {
3640 lblk_from = lblk_start + num_blks;
3641 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3642
3643 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3644 allocated_clusters--;
3645 }
3646
3647 return allocated_clusters;
3648 }
3649
3650 static int
3651 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3652 struct ext4_map_blocks *map,
3653 struct ext4_ext_path *path, int flags,
3654 unsigned int allocated, ext4_fsblk_t newblock)
3655 {
3656 int ret = 0;
3657 int err = 0;
3658 ext4_io_end_t *io = ext4_inode_aio(inode);
3659
3660 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3661 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3662 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3663 flags, allocated);
3664 ext4_ext_show_leaf(inode, path);
3665
3666 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3667 newblock);
3668
3669 /* get_block() before submit the IO, split the extent */
3670 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3671 ret = ext4_split_unwritten_extents(handle, inode, map,
3672 path, flags);
3673 if (ret <= 0)
3674 goto out;
3675 /*
3676 * Flag the inode(non aio case) or end_io struct (aio case)
3677 * that this IO needs to conversion to written when IO is
3678 * completed
3679 */
3680 if (io)
3681 ext4_set_io_unwritten_flag(inode, io);
3682 else
3683 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3684 if (ext4_should_dioread_nolock(inode))
3685 map->m_flags |= EXT4_MAP_UNINIT;
3686 goto out;
3687 }
3688 /* IO end_io complete, convert the filled extent to written */
3689 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3690 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3691 path);
3692 if (ret >= 0) {
3693 ext4_update_inode_fsync_trans(handle, inode, 1);
3694 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3695 path, map->m_len);
3696 } else
3697 err = ret;
3698 goto out2;
3699 }
3700 /* buffered IO case */
3701 /*
3702 * repeat fallocate creation request
3703 * we already have an unwritten extent
3704 */
3705 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3706 goto map_out;
3707
3708 /* buffered READ or buffered write_begin() lookup */
3709 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3710 /*
3711 * We have blocks reserved already. We
3712 * return allocated blocks so that delalloc
3713 * won't do block reservation for us. But
3714 * the buffer head will be unmapped so that
3715 * a read from the block returns 0s.
3716 */
3717 map->m_flags |= EXT4_MAP_UNWRITTEN;
3718 goto out1;
3719 }
3720
3721 /* buffered write, writepage time, convert*/
3722 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3723 if (ret >= 0)
3724 ext4_update_inode_fsync_trans(handle, inode, 1);
3725 out:
3726 if (ret <= 0) {
3727 err = ret;
3728 goto out2;
3729 } else
3730 allocated = ret;
3731 map->m_flags |= EXT4_MAP_NEW;
3732 /*
3733 * if we allocated more blocks than requested
3734 * we need to make sure we unmap the extra block
3735 * allocated. The actual needed block will get
3736 * unmapped later when we find the buffer_head marked
3737 * new.
3738 */
3739 if (allocated > map->m_len) {
3740 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3741 newblock + map->m_len,
3742 allocated - map->m_len);
3743 allocated = map->m_len;
3744 }
3745
3746 /*
3747 * If we have done fallocate with the offset that is already
3748 * delayed allocated, we would have block reservation
3749 * and quota reservation done in the delayed write path.
3750 * But fallocate would have already updated quota and block
3751 * count for this offset. So cancel these reservation
3752 */
3753 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3754 unsigned int reserved_clusters;
3755 reserved_clusters = get_reserved_cluster_alloc(inode,
3756 map->m_lblk, map->m_len);
3757 if (reserved_clusters)
3758 ext4_da_update_reserve_space(inode,
3759 reserved_clusters,
3760 0);
3761 }
3762
3763 map_out:
3764 map->m_flags |= EXT4_MAP_MAPPED;
3765 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3766 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3767 map->m_len);
3768 if (err < 0)
3769 goto out2;
3770 }
3771 out1:
3772 if (allocated > map->m_len)
3773 allocated = map->m_len;
3774 ext4_ext_show_leaf(inode, path);
3775 map->m_pblk = newblock;
3776 map->m_len = allocated;
3777 out2:
3778 if (path) {
3779 ext4_ext_drop_refs(path);
3780 kfree(path);
3781 }
3782 return err ? err : allocated;
3783 }
3784
3785 /*
3786 * get_implied_cluster_alloc - check to see if the requested
3787 * allocation (in the map structure) overlaps with a cluster already
3788 * allocated in an extent.
3789 * @sb The filesystem superblock structure
3790 * @map The requested lblk->pblk mapping
3791 * @ex The extent structure which might contain an implied
3792 * cluster allocation
3793 *
3794 * This function is called by ext4_ext_map_blocks() after we failed to
3795 * find blocks that were already in the inode's extent tree. Hence,
3796 * we know that the beginning of the requested region cannot overlap
3797 * the extent from the inode's extent tree. There are three cases we
3798 * want to catch. The first is this case:
3799 *
3800 * |--- cluster # N--|
3801 * |--- extent ---| |---- requested region ---|
3802 * |==========|
3803 *
3804 * The second case that we need to test for is this one:
3805 *
3806 * |--------- cluster # N ----------------|
3807 * |--- requested region --| |------- extent ----|
3808 * |=======================|
3809 *
3810 * The third case is when the requested region lies between two extents
3811 * within the same cluster:
3812 * |------------- cluster # N-------------|
3813 * |----- ex -----| |---- ex_right ----|
3814 * |------ requested region ------|
3815 * |================|
3816 *
3817 * In each of the above cases, we need to set the map->m_pblk and
3818 * map->m_len so it corresponds to the return the extent labelled as
3819 * "|====|" from cluster #N, since it is already in use for data in
3820 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3821 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3822 * as a new "allocated" block region. Otherwise, we will return 0 and
3823 * ext4_ext_map_blocks() will then allocate one or more new clusters
3824 * by calling ext4_mb_new_blocks().
3825 */
3826 static int get_implied_cluster_alloc(struct super_block *sb,
3827 struct ext4_map_blocks *map,
3828 struct ext4_extent *ex,
3829 struct ext4_ext_path *path)
3830 {
3831 struct ext4_sb_info *sbi = EXT4_SB(sb);
3832 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3833 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3834 ext4_lblk_t rr_cluster_start;
3835 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3836 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3837 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3838
3839 /* The extent passed in that we are trying to match */
3840 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3841 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3842
3843 /* The requested region passed into ext4_map_blocks() */
3844 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3845
3846 if ((rr_cluster_start == ex_cluster_end) ||
3847 (rr_cluster_start == ex_cluster_start)) {
3848 if (rr_cluster_start == ex_cluster_end)
3849 ee_start += ee_len - 1;
3850 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3851 c_offset;
3852 map->m_len = min(map->m_len,
3853 (unsigned) sbi->s_cluster_ratio - c_offset);
3854 /*
3855 * Check for and handle this case:
3856 *
3857 * |--------- cluster # N-------------|
3858 * |------- extent ----|
3859 * |--- requested region ---|
3860 * |===========|
3861 */
3862
3863 if (map->m_lblk < ee_block)
3864 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3865
3866 /*
3867 * Check for the case where there is already another allocated
3868 * block to the right of 'ex' but before the end of the cluster.
3869 *
3870 * |------------- cluster # N-------------|
3871 * |----- ex -----| |---- ex_right ----|
3872 * |------ requested region ------|
3873 * |================|
3874 */
3875 if (map->m_lblk > ee_block) {
3876 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3877 map->m_len = min(map->m_len, next - map->m_lblk);
3878 }
3879
3880 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3881 return 1;
3882 }
3883
3884 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3885 return 0;
3886 }
3887
3888
3889 /*
3890 * Block allocation/map/preallocation routine for extents based files
3891 *
3892 *
3893 * Need to be called with
3894 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3895 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3896 *
3897 * return > 0, number of of blocks already mapped/allocated
3898 * if create == 0 and these are pre-allocated blocks
3899 * buffer head is unmapped
3900 * otherwise blocks are mapped
3901 *
3902 * return = 0, if plain look up failed (blocks have not been allocated)
3903 * buffer head is unmapped
3904 *
3905 * return < 0, error case.
3906 */
3907 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3908 struct ext4_map_blocks *map, int flags)
3909 {
3910 struct ext4_ext_path *path = NULL;
3911 struct ext4_extent newex, *ex, *ex2;
3912 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3913 ext4_fsblk_t newblock = 0;
3914 int free_on_err = 0, err = 0, depth, ret;
3915 unsigned int allocated = 0, offset = 0;
3916 unsigned int allocated_clusters = 0;
3917 struct ext4_allocation_request ar;
3918 ext4_io_end_t *io = ext4_inode_aio(inode);
3919 ext4_lblk_t cluster_offset;
3920 int set_unwritten = 0;
3921
3922 ext_debug("blocks %u/%u requested for inode %lu\n",
3923 map->m_lblk, map->m_len, inode->i_ino);
3924 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3925
3926 /* check in cache */
3927 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3928 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3929 if ((sbi->s_cluster_ratio > 1) &&
3930 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3931 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3932
3933 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3934 /*
3935 * block isn't allocated yet and
3936 * user doesn't want to allocate it
3937 */
3938 goto out2;
3939 }
3940 /* we should allocate requested block */
3941 } else {
3942 /* block is already allocated */
3943 if (sbi->s_cluster_ratio > 1)
3944 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3945 newblock = map->m_lblk
3946 - le32_to_cpu(newex.ee_block)
3947 + ext4_ext_pblock(&newex);
3948 /* number of remaining blocks in the extent */
3949 allocated = ext4_ext_get_actual_len(&newex) -
3950 (map->m_lblk - le32_to_cpu(newex.ee_block));
3951 goto out;
3952 }
3953 }
3954
3955 /* find extent for this block */
3956 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3957 if (IS_ERR(path)) {
3958 err = PTR_ERR(path);
3959 path = NULL;
3960 goto out2;
3961 }
3962
3963 depth = ext_depth(inode);
3964
3965 /*
3966 * consistent leaf must not be empty;
3967 * this situation is possible, though, _during_ tree modification;
3968 * this is why assert can't be put in ext4_ext_find_extent()
3969 */
3970 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3971 EXT4_ERROR_INODE(inode, "bad extent address "
3972 "lblock: %lu, depth: %d pblock %lld",
3973 (unsigned long) map->m_lblk, depth,
3974 path[depth].p_block);
3975 err = -EIO;
3976 goto out2;
3977 }
3978
3979 ex = path[depth].p_ext;
3980 if (ex) {
3981 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3982 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3983 unsigned short ee_len;
3984
3985 /*
3986 * Uninitialized extents are treated as holes, except that
3987 * we split out initialized portions during a write.
3988 */
3989 ee_len = ext4_ext_get_actual_len(ex);
3990
3991 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3992
3993 /* if found extent covers block, simply return it */
3994 if (in_range(map->m_lblk, ee_block, ee_len)) {
3995 newblock = map->m_lblk - ee_block + ee_start;
3996 /* number of remaining blocks in the extent */
3997 allocated = ee_len - (map->m_lblk - ee_block);
3998 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3999 ee_block, ee_len, newblock);
4000
4001 /*
4002 * Do not put uninitialized extent
4003 * in the cache
4004 */
4005 if (!ext4_ext_is_uninitialized(ex)) {
4006 ext4_ext_put_in_cache(inode, ee_block,
4007 ee_len, ee_start);
4008 goto out;
4009 }
4010 ret = ext4_ext_handle_uninitialized_extents(
4011 handle, inode, map, path, flags,
4012 allocated, newblock);
4013 return ret;
4014 }
4015 }
4016
4017 if ((sbi->s_cluster_ratio > 1) &&
4018 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
4019 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4020
4021 /*
4022 * requested block isn't allocated yet;
4023 * we couldn't try to create block if create flag is zero
4024 */
4025 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4026 /*
4027 * put just found gap into cache to speed up
4028 * subsequent requests
4029 */
4030 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4031 goto out2;
4032 }
4033
4034 /*
4035 * Okay, we need to do block allocation.
4036 */
4037 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4038 newex.ee_block = cpu_to_le32(map->m_lblk);
4039 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4040
4041 /*
4042 * If we are doing bigalloc, check to see if the extent returned
4043 * by ext4_ext_find_extent() implies a cluster we can use.
4044 */
4045 if (cluster_offset && ex &&
4046 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4047 ar.len = allocated = map->m_len;
4048 newblock = map->m_pblk;
4049 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4050 goto got_allocated_blocks;
4051 }
4052
4053 /* find neighbour allocated blocks */
4054 ar.lleft = map->m_lblk;
4055 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4056 if (err)
4057 goto out2;
4058 ar.lright = map->m_lblk;
4059 ex2 = NULL;
4060 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4061 if (err)
4062 goto out2;
4063
4064 /* Check if the extent after searching to the right implies a
4065 * cluster we can use. */
4066 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4067 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4068 ar.len = allocated = map->m_len;
4069 newblock = map->m_pblk;
4070 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4071 goto got_allocated_blocks;
4072 }
4073
4074 /*
4075 * See if request is beyond maximum number of blocks we can have in
4076 * a single extent. For an initialized extent this limit is
4077 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4078 * EXT_UNINIT_MAX_LEN.
4079 */
4080 if (map->m_len > EXT_INIT_MAX_LEN &&
4081 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4082 map->m_len = EXT_INIT_MAX_LEN;
4083 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4084 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4085 map->m_len = EXT_UNINIT_MAX_LEN;
4086
4087 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4088 newex.ee_len = cpu_to_le16(map->m_len);
4089 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4090 if (err)
4091 allocated = ext4_ext_get_actual_len(&newex);
4092 else
4093 allocated = map->m_len;
4094
4095 /* allocate new block */
4096 ar.inode = inode;
4097 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4098 ar.logical = map->m_lblk;
4099 /*
4100 * We calculate the offset from the beginning of the cluster
4101 * for the logical block number, since when we allocate a
4102 * physical cluster, the physical block should start at the
4103 * same offset from the beginning of the cluster. This is
4104 * needed so that future calls to get_implied_cluster_alloc()
4105 * work correctly.
4106 */
4107 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4108 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4109 ar.goal -= offset;
4110 ar.logical -= offset;
4111 if (S_ISREG(inode->i_mode))
4112 ar.flags = EXT4_MB_HINT_DATA;
4113 else
4114 /* disable in-core preallocation for non-regular files */
4115 ar.flags = 0;
4116 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4117 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4118 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4119 if (!newblock)
4120 goto out2;
4121 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4122 ar.goal, newblock, allocated);
4123 free_on_err = 1;
4124 allocated_clusters = ar.len;
4125 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4126 if (ar.len > allocated)
4127 ar.len = allocated;
4128
4129 got_allocated_blocks:
4130 /* try to insert new extent into found leaf and return */
4131 ext4_ext_store_pblock(&newex, newblock + offset);
4132 newex.ee_len = cpu_to_le16(ar.len);
4133 /* Mark uninitialized */
4134 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4135 ext4_ext_mark_uninitialized(&newex);
4136 /*
4137 * io_end structure was created for every IO write to an
4138 * uninitialized extent. To avoid unnecessary conversion,
4139 * here we flag the IO that really needs the conversion.
4140 * For non asycn direct IO case, flag the inode state
4141 * that we need to perform conversion when IO is done.
4142 */
4143 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4144 set_unwritten = 1;
4145 if (ext4_should_dioread_nolock(inode))
4146 map->m_flags |= EXT4_MAP_UNINIT;
4147 }
4148
4149 err = 0;
4150 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4151 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4152 path, ar.len);
4153 if (!err)
4154 err = ext4_ext_insert_extent(handle, inode, path,
4155 &newex, flags);
4156
4157 if (!err && set_unwritten) {
4158 if (io)
4159 ext4_set_io_unwritten_flag(inode, io);
4160 else
4161 ext4_set_inode_state(inode,
4162 EXT4_STATE_DIO_UNWRITTEN);
4163 }
4164
4165 if (err && free_on_err) {
4166 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4167 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4168 /* free data blocks we just allocated */
4169 /* not a good idea to call discard here directly,
4170 * but otherwise we'd need to call it every free() */
4171 ext4_discard_preallocations(inode);
4172 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4173 ext4_ext_get_actual_len(&newex), fb_flags);
4174 goto out2;
4175 }
4176
4177 /* previous routine could use block we allocated */
4178 newblock = ext4_ext_pblock(&newex);
4179 allocated = ext4_ext_get_actual_len(&newex);
4180 if (allocated > map->m_len)
4181 allocated = map->m_len;
4182 map->m_flags |= EXT4_MAP_NEW;
4183
4184 /*
4185 * Update reserved blocks/metadata blocks after successful
4186 * block allocation which had been deferred till now.
4187 */
4188 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4189 unsigned int reserved_clusters;
4190 /*
4191 * Check how many clusters we had reserved this allocated range
4192 */
4193 reserved_clusters = get_reserved_cluster_alloc(inode,
4194 map->m_lblk, allocated);
4195 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4196 if (reserved_clusters) {
4197 /*
4198 * We have clusters reserved for this range.
4199 * But since we are not doing actual allocation
4200 * and are simply using blocks from previously
4201 * allocated cluster, we should release the
4202 * reservation and not claim quota.
4203 */
4204 ext4_da_update_reserve_space(inode,
4205 reserved_clusters, 0);
4206 }
4207 } else {
4208 BUG_ON(allocated_clusters < reserved_clusters);
4209 /* We will claim quota for all newly allocated blocks.*/
4210 ext4_da_update_reserve_space(inode, allocated_clusters,
4211 1);
4212 if (reserved_clusters < allocated_clusters) {
4213 struct ext4_inode_info *ei = EXT4_I(inode);
4214 int reservation = allocated_clusters -
4215 reserved_clusters;
4216 /*
4217 * It seems we claimed few clusters outside of
4218 * the range of this allocation. We should give
4219 * it back to the reservation pool. This can
4220 * happen in the following case:
4221 *
4222 * * Suppose s_cluster_ratio is 4 (i.e., each
4223 * cluster has 4 blocks. Thus, the clusters
4224 * are [0-3],[4-7],[8-11]...
4225 * * First comes delayed allocation write for
4226 * logical blocks 10 & 11. Since there were no
4227 * previous delayed allocated blocks in the
4228 * range [8-11], we would reserve 1 cluster
4229 * for this write.
4230 * * Next comes write for logical blocks 3 to 8.
4231 * In this case, we will reserve 2 clusters
4232 * (for [0-3] and [4-7]; and not for [8-11] as
4233 * that range has a delayed allocated blocks.
4234 * Thus total reserved clusters now becomes 3.
4235 * * Now, during the delayed allocation writeout
4236 * time, we will first write blocks [3-8] and
4237 * allocate 3 clusters for writing these
4238 * blocks. Also, we would claim all these
4239 * three clusters above.
4240 * * Now when we come here to writeout the
4241 * blocks [10-11], we would expect to claim
4242 * the reservation of 1 cluster we had made
4243 * (and we would claim it since there are no
4244 * more delayed allocated blocks in the range
4245 * [8-11]. But our reserved cluster count had
4246 * already gone to 0.
4247 *
4248 * Thus, at the step 4 above when we determine
4249 * that there are still some unwritten delayed
4250 * allocated blocks outside of our current
4251 * block range, we should increment the
4252 * reserved clusters count so that when the
4253 * remaining blocks finally gets written, we
4254 * could claim them.
4255 */
4256 dquot_reserve_block(inode,
4257 EXT4_C2B(sbi, reservation));
4258 spin_lock(&ei->i_block_reservation_lock);
4259 ei->i_reserved_data_blocks += reservation;
4260 spin_unlock(&ei->i_block_reservation_lock);
4261 }
4262 }
4263 }
4264
4265 /*
4266 * Cache the extent and update transaction to commit on fdatasync only
4267 * when it is _not_ an uninitialized extent.
4268 */
4269 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4270 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4271 ext4_update_inode_fsync_trans(handle, inode, 1);
4272 } else
4273 ext4_update_inode_fsync_trans(handle, inode, 0);
4274 out:
4275 if (allocated > map->m_len)
4276 allocated = map->m_len;
4277 ext4_ext_show_leaf(inode, path);
4278 map->m_flags |= EXT4_MAP_MAPPED;
4279 map->m_pblk = newblock;
4280 map->m_len = allocated;
4281 out2:
4282 if (path) {
4283 ext4_ext_drop_refs(path);
4284 kfree(path);
4285 }
4286
4287 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4288 newblock, map->m_len, err ? err : allocated);
4289
4290 return err ? err : allocated;
4291 }
4292
4293 void ext4_ext_truncate(struct inode *inode)
4294 {
4295 struct address_space *mapping = inode->i_mapping;
4296 struct super_block *sb = inode->i_sb;
4297 ext4_lblk_t last_block;
4298 handle_t *handle;
4299 loff_t page_len;
4300 int err = 0;
4301
4302 /*
4303 * finish any pending end_io work so we won't run the risk of
4304 * converting any truncated blocks to initialized later
4305 */
4306 ext4_flush_unwritten_io(inode);
4307
4308 /*
4309 * probably first extent we're gonna free will be last in block
4310 */
4311 err = ext4_writepage_trans_blocks(inode);
4312 handle = ext4_journal_start(inode, err);
4313 if (IS_ERR(handle))
4314 return;
4315
4316 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4317 page_len = PAGE_CACHE_SIZE -
4318 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4319
4320 err = ext4_discard_partial_page_buffers(handle,
4321 mapping, inode->i_size, page_len, 0);
4322
4323 if (err)
4324 goto out_stop;
4325 }
4326
4327 if (ext4_orphan_add(handle, inode))
4328 goto out_stop;
4329
4330 down_write(&EXT4_I(inode)->i_data_sem);
4331 ext4_ext_invalidate_cache(inode);
4332
4333 ext4_discard_preallocations(inode);
4334
4335 /*
4336 * TODO: optimization is possible here.
4337 * Probably we need not scan at all,
4338 * because page truncation is enough.
4339 */
4340
4341 /* we have to know where to truncate from in crash case */
4342 EXT4_I(inode)->i_disksize = inode->i_size;
4343 ext4_mark_inode_dirty(handle, inode);
4344
4345 last_block = (inode->i_size + sb->s_blocksize - 1)
4346 >> EXT4_BLOCK_SIZE_BITS(sb);
4347 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4348
4349 /* In a multi-transaction truncate, we only make the final
4350 * transaction synchronous.
4351 */
4352 if (IS_SYNC(inode))
4353 ext4_handle_sync(handle);
4354
4355 up_write(&EXT4_I(inode)->i_data_sem);
4356
4357 out_stop:
4358 /*
4359 * If this was a simple ftruncate() and the file will remain alive,
4360 * then we need to clear up the orphan record which we created above.
4361 * However, if this was a real unlink then we were called by
4362 * ext4_delete_inode(), and we allow that function to clean up the
4363 * orphan info for us.
4364 */
4365 if (inode->i_nlink)
4366 ext4_orphan_del(handle, inode);
4367
4368 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4369 ext4_mark_inode_dirty(handle, inode);
4370 ext4_journal_stop(handle);
4371 }
4372
4373 static void ext4_falloc_update_inode(struct inode *inode,
4374 int mode, loff_t new_size, int update_ctime)
4375 {
4376 struct timespec now;
4377
4378 if (update_ctime) {
4379 now = current_fs_time(inode->i_sb);
4380 if (!timespec_equal(&inode->i_ctime, &now))
4381 inode->i_ctime = now;
4382 }
4383 /*
4384 * Update only when preallocation was requested beyond
4385 * the file size.
4386 */
4387 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4388 if (new_size > i_size_read(inode))
4389 i_size_write(inode, new_size);
4390 if (new_size > EXT4_I(inode)->i_disksize)
4391 ext4_update_i_disksize(inode, new_size);
4392 } else {
4393 /*
4394 * Mark that we allocate beyond EOF so the subsequent truncate
4395 * can proceed even if the new size is the same as i_size.
4396 */
4397 if (new_size > i_size_read(inode))
4398 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4399 }
4400
4401 }
4402
4403 /*
4404 * preallocate space for a file. This implements ext4's fallocate file
4405 * operation, which gets called from sys_fallocate system call.
4406 * For block-mapped files, posix_fallocate should fall back to the method
4407 * of writing zeroes to the required new blocks (the same behavior which is
4408 * expected for file systems which do not support fallocate() system call).
4409 */
4410 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4411 {
4412 struct inode *inode = file->f_path.dentry->d_inode;
4413 handle_t *handle;
4414 loff_t new_size;
4415 unsigned int max_blocks;
4416 int ret = 0;
4417 int ret2 = 0;
4418 int retries = 0;
4419 int flags;
4420 struct ext4_map_blocks map;
4421 unsigned int credits, blkbits = inode->i_blkbits;
4422
4423 /*
4424 * currently supporting (pre)allocate mode for extent-based
4425 * files _only_
4426 */
4427 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4428 return -EOPNOTSUPP;
4429
4430 /* Return error if mode is not supported */
4431 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4432 return -EOPNOTSUPP;
4433
4434 if (mode & FALLOC_FL_PUNCH_HOLE)
4435 return ext4_punch_hole(file, offset, len);
4436
4437 trace_ext4_fallocate_enter(inode, offset, len, mode);
4438 map.m_lblk = offset >> blkbits;
4439 /*
4440 * We can't just convert len to max_blocks because
4441 * If blocksize = 4096 offset = 3072 and len = 2048
4442 */
4443 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4444 - map.m_lblk;
4445 /*
4446 * credits to insert 1 extent into extent tree
4447 */
4448 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4449 mutex_lock(&inode->i_mutex);
4450 ret = inode_newsize_ok(inode, (len + offset));
4451 if (ret) {
4452 mutex_unlock(&inode->i_mutex);
4453 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4454 return ret;
4455 }
4456 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4457 if (mode & FALLOC_FL_KEEP_SIZE)
4458 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4459 /*
4460 * Don't normalize the request if it can fit in one extent so
4461 * that it doesn't get unnecessarily split into multiple
4462 * extents.
4463 */
4464 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4465 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4466
4467 /* Prevent race condition between unwritten */
4468 ext4_flush_unwritten_io(inode);
4469 retry:
4470 while (ret >= 0 && ret < max_blocks) {
4471 map.m_lblk = map.m_lblk + ret;
4472 map.m_len = max_blocks = max_blocks - ret;
4473 handle = ext4_journal_start(inode, credits);
4474 if (IS_ERR(handle)) {
4475 ret = PTR_ERR(handle);
4476 break;
4477 }
4478 ret = ext4_map_blocks(handle, inode, &map, flags);
4479 if (ret <= 0) {
4480 #ifdef EXT4FS_DEBUG
4481 WARN_ON(ret <= 0);
4482 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4483 "returned error inode#%lu, block=%u, "
4484 "max_blocks=%u", __func__,
4485 inode->i_ino, map.m_lblk, max_blocks);
4486 #endif
4487 ext4_mark_inode_dirty(handle, inode);
4488 ret2 = ext4_journal_stop(handle);
4489 break;
4490 }
4491 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4492 blkbits) >> blkbits))
4493 new_size = offset + len;
4494 else
4495 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4496
4497 ext4_falloc_update_inode(inode, mode, new_size,
4498 (map.m_flags & EXT4_MAP_NEW));
4499 ext4_mark_inode_dirty(handle, inode);
4500 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4501 ext4_handle_sync(handle);
4502 ret2 = ext4_journal_stop(handle);
4503 if (ret2)
4504 break;
4505 }
4506 if (ret == -ENOSPC &&
4507 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4508 ret = 0;
4509 goto retry;
4510 }
4511 mutex_unlock(&inode->i_mutex);
4512 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4513 ret > 0 ? ret2 : ret);
4514 return ret > 0 ? ret2 : ret;
4515 }
4516
4517 /*
4518 * This function convert a range of blocks to written extents
4519 * The caller of this function will pass the start offset and the size.
4520 * all unwritten extents within this range will be converted to
4521 * written extents.
4522 *
4523 * This function is called from the direct IO end io call back
4524 * function, to convert the fallocated extents after IO is completed.
4525 * Returns 0 on success.
4526 */
4527 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4528 ssize_t len)
4529 {
4530 handle_t *handle;
4531 unsigned int max_blocks;
4532 int ret = 0;
4533 int ret2 = 0;
4534 struct ext4_map_blocks map;
4535 unsigned int credits, blkbits = inode->i_blkbits;
4536
4537 map.m_lblk = offset >> blkbits;
4538 /*
4539 * We can't just convert len to max_blocks because
4540 * If blocksize = 4096 offset = 3072 and len = 2048
4541 */
4542 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4543 map.m_lblk);
4544 /*
4545 * credits to insert 1 extent into extent tree
4546 */
4547 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4548 while (ret >= 0 && ret < max_blocks) {
4549 map.m_lblk += ret;
4550 map.m_len = (max_blocks -= ret);
4551 handle = ext4_journal_start(inode, credits);
4552 if (IS_ERR(handle)) {
4553 ret = PTR_ERR(handle);
4554 break;
4555 }
4556 ret = ext4_map_blocks(handle, inode, &map,
4557 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4558 if (ret <= 0) {
4559 WARN_ON(ret <= 0);
4560 ext4_msg(inode->i_sb, KERN_ERR,
4561 "%s:%d: inode #%lu: block %u: len %u: "
4562 "ext4_ext_map_blocks returned %d",
4563 __func__, __LINE__, inode->i_ino, map.m_lblk,
4564 map.m_len, ret);
4565 }
4566 ext4_mark_inode_dirty(handle, inode);
4567 ret2 = ext4_journal_stop(handle);
4568 if (ret <= 0 || ret2 )
4569 break;
4570 }
4571 return ret > 0 ? ret2 : ret;
4572 }
4573
4574 /*
4575 * Callback function called for each extent to gather FIEMAP information.
4576 */
4577 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4578 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4579 void *data)
4580 {
4581 __u64 logical;
4582 __u64 physical;
4583 __u64 length;
4584 __u32 flags = 0;
4585 int ret = 0;
4586 struct fiemap_extent_info *fieinfo = data;
4587 unsigned char blksize_bits;
4588
4589 blksize_bits = inode->i_sb->s_blocksize_bits;
4590 logical = (__u64)newex->ec_block << blksize_bits;
4591
4592 if (newex->ec_start == 0) {
4593 /*
4594 * No extent in extent-tree contains block @newex->ec_start,
4595 * then the block may stay in 1)a hole or 2)delayed-extent.
4596 *
4597 * Holes or delayed-extents are processed as follows.
4598 * 1. lookup dirty pages with specified range in pagecache.
4599 * If no page is got, then there is no delayed-extent and
4600 * return with EXT_CONTINUE.
4601 * 2. find the 1st mapped buffer,
4602 * 3. check if the mapped buffer is both in the request range
4603 * and a delayed buffer. If not, there is no delayed-extent,
4604 * then return.
4605 * 4. a delayed-extent is found, the extent will be collected.
4606 */
4607 ext4_lblk_t end = 0;
4608 pgoff_t last_offset;
4609 pgoff_t offset;
4610 pgoff_t index;
4611 pgoff_t start_index = 0;
4612 struct page **pages = NULL;
4613 struct buffer_head *bh = NULL;
4614 struct buffer_head *head = NULL;
4615 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4616
4617 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4618 if (pages == NULL)
4619 return -ENOMEM;
4620
4621 offset = logical >> PAGE_SHIFT;
4622 repeat:
4623 last_offset = offset;
4624 head = NULL;
4625 ret = find_get_pages_tag(inode->i_mapping, &offset,
4626 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4627
4628 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4629 /* First time, try to find a mapped buffer. */
4630 if (ret == 0) {
4631 out:
4632 for (index = 0; index < ret; index++)
4633 page_cache_release(pages[index]);
4634 /* just a hole. */
4635 kfree(pages);
4636 return EXT_CONTINUE;
4637 }
4638 index = 0;
4639
4640 next_page:
4641 /* Try to find the 1st mapped buffer. */
4642 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4643 blksize_bits;
4644 if (!page_has_buffers(pages[index]))
4645 goto out;
4646 head = page_buffers(pages[index]);
4647 if (!head)
4648 goto out;
4649
4650 index++;
4651 bh = head;
4652 do {
4653 if (end >= newex->ec_block +
4654 newex->ec_len)
4655 /* The buffer is out of
4656 * the request range.
4657 */
4658 goto out;
4659
4660 if (buffer_mapped(bh) &&
4661 end >= newex->ec_block) {
4662 start_index = index - 1;
4663 /* get the 1st mapped buffer. */
4664 goto found_mapped_buffer;
4665 }
4666
4667 bh = bh->b_this_page;
4668 end++;
4669 } while (bh != head);
4670
4671 /* No mapped buffer in the range found in this page,
4672 * We need to look up next page.
4673 */
4674 if (index >= ret) {
4675 /* There is no page left, but we need to limit
4676 * newex->ec_len.
4677 */
4678 newex->ec_len = end - newex->ec_block;
4679 goto out;
4680 }
4681 goto next_page;
4682 } else {
4683 /*Find contiguous delayed buffers. */
4684 if (ret > 0 && pages[0]->index == last_offset)
4685 head = page_buffers(pages[0]);
4686 bh = head;
4687 index = 1;
4688 start_index = 0;
4689 }
4690
4691 found_mapped_buffer:
4692 if (bh != NULL && buffer_delay(bh)) {
4693 /* 1st or contiguous delayed buffer found. */
4694 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4695 /*
4696 * 1st delayed buffer found, record
4697 * the start of extent.
4698 */
4699 flags |= FIEMAP_EXTENT_DELALLOC;
4700 newex->ec_block = end;
4701 logical = (__u64)end << blksize_bits;
4702 }
4703 /* Find contiguous delayed buffers. */
4704 do {
4705 if (!buffer_delay(bh))
4706 goto found_delayed_extent;
4707 bh = bh->b_this_page;
4708 end++;
4709 } while (bh != head);
4710
4711 for (; index < ret; index++) {
4712 if (!page_has_buffers(pages[index])) {
4713 bh = NULL;
4714 break;
4715 }
4716 head = page_buffers(pages[index]);
4717 if (!head) {
4718 bh = NULL;
4719 break;
4720 }
4721
4722 if (pages[index]->index !=
4723 pages[start_index]->index + index
4724 - start_index) {
4725 /* Blocks are not contiguous. */
4726 bh = NULL;
4727 break;
4728 }
4729 bh = head;
4730 do {
4731 if (!buffer_delay(bh))
4732 /* Delayed-extent ends. */
4733 goto found_delayed_extent;
4734 bh = bh->b_this_page;
4735 end++;
4736 } while (bh != head);
4737 }
4738 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4739 /* a hole found. */
4740 goto out;
4741
4742 found_delayed_extent:
4743 newex->ec_len = min(end - newex->ec_block,
4744 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4745 if (ret == nr_pages && bh != NULL &&
4746 newex->ec_len < EXT_INIT_MAX_LEN &&
4747 buffer_delay(bh)) {
4748 /* Have not collected an extent and continue. */
4749 for (index = 0; index < ret; index++)
4750 page_cache_release(pages[index]);
4751 goto repeat;
4752 }
4753
4754 for (index = 0; index < ret; index++)
4755 page_cache_release(pages[index]);
4756 kfree(pages);
4757 }
4758
4759 physical = (__u64)newex->ec_start << blksize_bits;
4760 length = (__u64)newex->ec_len << blksize_bits;
4761
4762 if (ex && ext4_ext_is_uninitialized(ex))
4763 flags |= FIEMAP_EXTENT_UNWRITTEN;
4764
4765 if (next == EXT_MAX_BLOCKS)
4766 flags |= FIEMAP_EXTENT_LAST;
4767
4768 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4769 length, flags);
4770 if (ret < 0)
4771 return ret;
4772 if (ret == 1)
4773 return EXT_BREAK;
4774 return EXT_CONTINUE;
4775 }
4776 /* fiemap flags we can handle specified here */
4777 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4778
4779 static int ext4_xattr_fiemap(struct inode *inode,
4780 struct fiemap_extent_info *fieinfo)
4781 {
4782 __u64 physical = 0;
4783 __u64 length;
4784 __u32 flags = FIEMAP_EXTENT_LAST;
4785 int blockbits = inode->i_sb->s_blocksize_bits;
4786 int error = 0;
4787
4788 /* in-inode? */
4789 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4790 struct ext4_iloc iloc;
4791 int offset; /* offset of xattr in inode */
4792
4793 error = ext4_get_inode_loc(inode, &iloc);
4794 if (error)
4795 return error;
4796 physical = iloc.bh->b_blocknr << blockbits;
4797 offset = EXT4_GOOD_OLD_INODE_SIZE +
4798 EXT4_I(inode)->i_extra_isize;
4799 physical += offset;
4800 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4801 flags |= FIEMAP_EXTENT_DATA_INLINE;
4802 brelse(iloc.bh);
4803 } else { /* external block */
4804 physical = EXT4_I(inode)->i_file_acl << blockbits;
4805 length = inode->i_sb->s_blocksize;
4806 }
4807
4808 if (physical)
4809 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4810 length, flags);
4811 return (error < 0 ? error : 0);
4812 }
4813
4814 /*
4815 * ext4_ext_punch_hole
4816 *
4817 * Punches a hole of "length" bytes in a file starting
4818 * at byte "offset"
4819 *
4820 * @inode: The inode of the file to punch a hole in
4821 * @offset: The starting byte offset of the hole
4822 * @length: The length of the hole
4823 *
4824 * Returns the number of blocks removed or negative on err
4825 */
4826 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4827 {
4828 struct inode *inode = file->f_path.dentry->d_inode;
4829 struct super_block *sb = inode->i_sb;
4830 ext4_lblk_t first_block, stop_block;
4831 struct address_space *mapping = inode->i_mapping;
4832 handle_t *handle;
4833 loff_t first_page, last_page, page_len;
4834 loff_t first_page_offset, last_page_offset;
4835 int credits, err = 0;
4836
4837 /*
4838 * Write out all dirty pages to avoid race conditions
4839 * Then release them.
4840 */
4841 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4842 err = filemap_write_and_wait_range(mapping,
4843 offset, offset + length - 1);
4844
4845 if (err)
4846 return err;
4847 }
4848
4849 mutex_lock(&inode->i_mutex);
4850 /* It's not possible punch hole on append only file */
4851 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4852 err = -EPERM;
4853 goto out_mutex;
4854 }
4855 if (IS_SWAPFILE(inode)) {
4856 err = -ETXTBSY;
4857 goto out_mutex;
4858 }
4859
4860 /* No need to punch hole beyond i_size */
4861 if (offset >= inode->i_size)
4862 goto out_mutex;
4863
4864 /*
4865 * If the hole extends beyond i_size, set the hole
4866 * to end after the page that contains i_size
4867 */
4868 if (offset + length > inode->i_size) {
4869 length = inode->i_size +
4870 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4871 offset;
4872 }
4873
4874 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4875 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4876
4877 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4878 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4879
4880 /* Now release the pages */
4881 if (last_page_offset > first_page_offset) {
4882 truncate_pagecache_range(inode, first_page_offset,
4883 last_page_offset - 1);
4884 }
4885
4886 /* Wait all existing dio workers, newcomers will block on i_mutex */
4887 ext4_inode_block_unlocked_dio(inode);
4888 err = ext4_flush_unwritten_io(inode);
4889 if (err)
4890 goto out_dio;
4891 inode_dio_wait(inode);
4892
4893 credits = ext4_writepage_trans_blocks(inode);
4894 handle = ext4_journal_start(inode, credits);
4895 if (IS_ERR(handle)) {
4896 err = PTR_ERR(handle);
4897 goto out_dio;
4898 }
4899
4900
4901 /*
4902 * Now we need to zero out the non-page-aligned data in the
4903 * pages at the start and tail of the hole, and unmap the buffer
4904 * heads for the block aligned regions of the page that were
4905 * completely zeroed.
4906 */
4907 if (first_page > last_page) {
4908 /*
4909 * If the file space being truncated is contained within a page
4910 * just zero out and unmap the middle of that page
4911 */
4912 err = ext4_discard_partial_page_buffers(handle,
4913 mapping, offset, length, 0);
4914
4915 if (err)
4916 goto out;
4917 } else {
4918 /*
4919 * zero out and unmap the partial page that contains
4920 * the start of the hole
4921 */
4922 page_len = first_page_offset - offset;
4923 if (page_len > 0) {
4924 err = ext4_discard_partial_page_buffers(handle, mapping,
4925 offset, page_len, 0);
4926 if (err)
4927 goto out;
4928 }
4929
4930 /*
4931 * zero out and unmap the partial page that contains
4932 * the end of the hole
4933 */
4934 page_len = offset + length - last_page_offset;
4935 if (page_len > 0) {
4936 err = ext4_discard_partial_page_buffers(handle, mapping,
4937 last_page_offset, page_len, 0);
4938 if (err)
4939 goto out;
4940 }
4941 }
4942
4943 /*
4944 * If i_size is contained in the last page, we need to
4945 * unmap and zero the partial page after i_size
4946 */
4947 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4948 inode->i_size % PAGE_CACHE_SIZE != 0) {
4949
4950 page_len = PAGE_CACHE_SIZE -
4951 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4952
4953 if (page_len > 0) {
4954 err = ext4_discard_partial_page_buffers(handle,
4955 mapping, inode->i_size, page_len, 0);
4956
4957 if (err)
4958 goto out;
4959 }
4960 }
4961
4962 first_block = (offset + sb->s_blocksize - 1) >>
4963 EXT4_BLOCK_SIZE_BITS(sb);
4964 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4965
4966 /* If there are no blocks to remove, return now */
4967 if (first_block >= stop_block)
4968 goto out;
4969
4970 down_write(&EXT4_I(inode)->i_data_sem);
4971 ext4_ext_invalidate_cache(inode);
4972 ext4_discard_preallocations(inode);
4973
4974 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4975
4976 ext4_ext_invalidate_cache(inode);
4977 ext4_discard_preallocations(inode);
4978
4979 if (IS_SYNC(inode))
4980 ext4_handle_sync(handle);
4981
4982 up_write(&EXT4_I(inode)->i_data_sem);
4983
4984 out:
4985 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4986 ext4_mark_inode_dirty(handle, inode);
4987 ext4_journal_stop(handle);
4988 out_dio:
4989 ext4_inode_resume_unlocked_dio(inode);
4990 out_mutex:
4991 mutex_unlock(&inode->i_mutex);
4992 return err;
4993 }
4994 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4995 __u64 start, __u64 len)
4996 {
4997 ext4_lblk_t start_blk;
4998 int error = 0;
4999
5000 /* fallback to generic here if not in extents fmt */
5001 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5002 return generic_block_fiemap(inode, fieinfo, start, len,
5003 ext4_get_block);
5004
5005 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5006 return -EBADR;
5007
5008 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5009 error = ext4_xattr_fiemap(inode, fieinfo);
5010 } else {
5011 ext4_lblk_t len_blks;
5012 __u64 last_blk;
5013
5014 start_blk = start >> inode->i_sb->s_blocksize_bits;
5015 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5016 if (last_blk >= EXT_MAX_BLOCKS)
5017 last_blk = EXT_MAX_BLOCKS-1;
5018 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5019
5020 /*
5021 * Walk the extent tree gathering extent information.
5022 * ext4_ext_fiemap_cb will push extents back to user.
5023 */
5024 error = ext4_ext_walk_space(inode, start_blk, len_blks,
5025 ext4_ext_fiemap_cb, fieinfo);
5026 }
5027
5028 return error;
5029 }