]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/ext4/extents.c
Merge branch 'perm-fix' into omap-for-v4.19/fixes-v2
[mirror_ubuntu-eoan-kernel.git] / fs / ext4 / extents.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4 * Written by Alex Tomas <alex@clusterfs.com>
5 *
6 * Architecture independence:
7 * Copyright (c) 2005, Bull S.A.
8 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 */
10
11 /*
12 * Extents support for EXT4
13 *
14 * TODO:
15 * - ext4*_error() should be used in some situations
16 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
17 * - smart tree reduction
18 */
19
20 #include <linux/fs.h>
21 #include <linux/time.h>
22 #include <linux/jbd2.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/fiemap.h>
30 #include <linux/backing-dev.h>
31 #include "ext4_jbd2.h"
32 #include "ext4_extents.h"
33 #include "xattr.h"
34
35 #include <trace/events/ext4.h>
36
37 /*
38 * used by extent splitting.
39 */
40 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
41 due to ENOSPC */
42 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
43 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
44
45 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
46 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
47
48 static __le32 ext4_extent_block_csum(struct inode *inode,
49 struct ext4_extent_header *eh)
50 {
51 struct ext4_inode_info *ei = EXT4_I(inode);
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 __u32 csum;
54
55 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
56 EXT4_EXTENT_TAIL_OFFSET(eh));
57 return cpu_to_le32(csum);
58 }
59
60 static int ext4_extent_block_csum_verify(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_extent_tail *et;
64
65 if (!ext4_has_metadata_csum(inode->i_sb))
66 return 1;
67
68 et = find_ext4_extent_tail(eh);
69 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
70 return 0;
71 return 1;
72 }
73
74 static void ext4_extent_block_csum_set(struct inode *inode,
75 struct ext4_extent_header *eh)
76 {
77 struct ext4_extent_tail *et;
78
79 if (!ext4_has_metadata_csum(inode->i_sb))
80 return;
81
82 et = find_ext4_extent_tail(eh);
83 et->et_checksum = ext4_extent_block_csum(inode, eh);
84 }
85
86 static int ext4_split_extent(handle_t *handle,
87 struct inode *inode,
88 struct ext4_ext_path **ppath,
89 struct ext4_map_blocks *map,
90 int split_flag,
91 int flags);
92
93 static int ext4_split_extent_at(handle_t *handle,
94 struct inode *inode,
95 struct ext4_ext_path **ppath,
96 ext4_lblk_t split,
97 int split_flag,
98 int flags);
99
100 static int ext4_find_delayed_extent(struct inode *inode,
101 struct extent_status *newes);
102
103 static int ext4_ext_truncate_extend_restart(handle_t *handle,
104 struct inode *inode,
105 int needed)
106 {
107 int err;
108
109 if (!ext4_handle_valid(handle))
110 return 0;
111 if (handle->h_buffer_credits >= needed)
112 return 0;
113 /*
114 * If we need to extend the journal get a few extra blocks
115 * while we're at it for efficiency's sake.
116 */
117 needed += 3;
118 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
119 if (err <= 0)
120 return err;
121 err = ext4_truncate_restart_trans(handle, inode, needed);
122 if (err == 0)
123 err = -EAGAIN;
124
125 return err;
126 }
127
128 /*
129 * could return:
130 * - EROFS
131 * - ENOMEM
132 */
133 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
134 struct ext4_ext_path *path)
135 {
136 if (path->p_bh) {
137 /* path points to block */
138 BUFFER_TRACE(path->p_bh, "get_write_access");
139 return ext4_journal_get_write_access(handle, path->p_bh);
140 }
141 /* path points to leaf/index in inode body */
142 /* we use in-core data, no need to protect them */
143 return 0;
144 }
145
146 /*
147 * could return:
148 * - EROFS
149 * - ENOMEM
150 * - EIO
151 */
152 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
153 struct inode *inode, struct ext4_ext_path *path)
154 {
155 int err;
156
157 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
158 if (path->p_bh) {
159 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
160 /* path points to block */
161 err = __ext4_handle_dirty_metadata(where, line, handle,
162 inode, path->p_bh);
163 } else {
164 /* path points to leaf/index in inode body */
165 err = ext4_mark_inode_dirty(handle, inode);
166 }
167 return err;
168 }
169
170 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
171 struct ext4_ext_path *path,
172 ext4_lblk_t block)
173 {
174 if (path) {
175 int depth = path->p_depth;
176 struct ext4_extent *ex;
177
178 /*
179 * Try to predict block placement assuming that we are
180 * filling in a file which will eventually be
181 * non-sparse --- i.e., in the case of libbfd writing
182 * an ELF object sections out-of-order but in a way
183 * the eventually results in a contiguous object or
184 * executable file, or some database extending a table
185 * space file. However, this is actually somewhat
186 * non-ideal if we are writing a sparse file such as
187 * qemu or KVM writing a raw image file that is going
188 * to stay fairly sparse, since it will end up
189 * fragmenting the file system's free space. Maybe we
190 * should have some hueristics or some way to allow
191 * userspace to pass a hint to file system,
192 * especially if the latter case turns out to be
193 * common.
194 */
195 ex = path[depth].p_ext;
196 if (ex) {
197 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
198 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
199
200 if (block > ext_block)
201 return ext_pblk + (block - ext_block);
202 else
203 return ext_pblk - (ext_block - block);
204 }
205
206 /* it looks like index is empty;
207 * try to find starting block from index itself */
208 if (path[depth].p_bh)
209 return path[depth].p_bh->b_blocknr;
210 }
211
212 /* OK. use inode's group */
213 return ext4_inode_to_goal_block(inode);
214 }
215
216 /*
217 * Allocation for a meta data block
218 */
219 static ext4_fsblk_t
220 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
221 struct ext4_ext_path *path,
222 struct ext4_extent *ex, int *err, unsigned int flags)
223 {
224 ext4_fsblk_t goal, newblock;
225
226 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
227 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
228 NULL, err);
229 return newblock;
230 }
231
232 static inline int ext4_ext_space_block(struct inode *inode, int check)
233 {
234 int size;
235
236 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
237 / sizeof(struct ext4_extent);
238 #ifdef AGGRESSIVE_TEST
239 if (!check && size > 6)
240 size = 6;
241 #endif
242 return size;
243 }
244
245 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
246 {
247 int size;
248
249 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250 / sizeof(struct ext4_extent_idx);
251 #ifdef AGGRESSIVE_TEST
252 if (!check && size > 5)
253 size = 5;
254 #endif
255 return size;
256 }
257
258 static inline int ext4_ext_space_root(struct inode *inode, int check)
259 {
260 int size;
261
262 size = sizeof(EXT4_I(inode)->i_data);
263 size -= sizeof(struct ext4_extent_header);
264 size /= sizeof(struct ext4_extent);
265 #ifdef AGGRESSIVE_TEST
266 if (!check && size > 3)
267 size = 3;
268 #endif
269 return size;
270 }
271
272 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
273 {
274 int size;
275
276 size = sizeof(EXT4_I(inode)->i_data);
277 size -= sizeof(struct ext4_extent_header);
278 size /= sizeof(struct ext4_extent_idx);
279 #ifdef AGGRESSIVE_TEST
280 if (!check && size > 4)
281 size = 4;
282 #endif
283 return size;
284 }
285
286 static inline int
287 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
288 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
289 int nofail)
290 {
291 struct ext4_ext_path *path = *ppath;
292 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
293
294 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
295 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
296 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
297 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
298 }
299
300 /*
301 * Calculate the number of metadata blocks needed
302 * to allocate @blocks
303 * Worse case is one block per extent
304 */
305 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
306 {
307 struct ext4_inode_info *ei = EXT4_I(inode);
308 int idxs;
309
310 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
311 / sizeof(struct ext4_extent_idx));
312
313 /*
314 * If the new delayed allocation block is contiguous with the
315 * previous da block, it can share index blocks with the
316 * previous block, so we only need to allocate a new index
317 * block every idxs leaf blocks. At ldxs**2 blocks, we need
318 * an additional index block, and at ldxs**3 blocks, yet
319 * another index blocks.
320 */
321 if (ei->i_da_metadata_calc_len &&
322 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
323 int num = 0;
324
325 if ((ei->i_da_metadata_calc_len % idxs) == 0)
326 num++;
327 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
328 num++;
329 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
330 num++;
331 ei->i_da_metadata_calc_len = 0;
332 } else
333 ei->i_da_metadata_calc_len++;
334 ei->i_da_metadata_calc_last_lblock++;
335 return num;
336 }
337
338 /*
339 * In the worst case we need a new set of index blocks at
340 * every level of the inode's extent tree.
341 */
342 ei->i_da_metadata_calc_len = 1;
343 ei->i_da_metadata_calc_last_lblock = lblock;
344 return ext_depth(inode) + 1;
345 }
346
347 static int
348 ext4_ext_max_entries(struct inode *inode, int depth)
349 {
350 int max;
351
352 if (depth == ext_depth(inode)) {
353 if (depth == 0)
354 max = ext4_ext_space_root(inode, 1);
355 else
356 max = ext4_ext_space_root_idx(inode, 1);
357 } else {
358 if (depth == 0)
359 max = ext4_ext_space_block(inode, 1);
360 else
361 max = ext4_ext_space_block_idx(inode, 1);
362 }
363
364 return max;
365 }
366
367 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
368 {
369 ext4_fsblk_t block = ext4_ext_pblock(ext);
370 int len = ext4_ext_get_actual_len(ext);
371 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
372
373 /*
374 * We allow neither:
375 * - zero length
376 * - overflow/wrap-around
377 */
378 if (lblock + len <= lblock)
379 return 0;
380 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
381 }
382
383 static int ext4_valid_extent_idx(struct inode *inode,
384 struct ext4_extent_idx *ext_idx)
385 {
386 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
387
388 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
389 }
390
391 static int ext4_valid_extent_entries(struct inode *inode,
392 struct ext4_extent_header *eh,
393 int depth)
394 {
395 unsigned short entries;
396 if (eh->eh_entries == 0)
397 return 1;
398
399 entries = le16_to_cpu(eh->eh_entries);
400
401 if (depth == 0) {
402 /* leaf entries */
403 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
404 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
405 ext4_fsblk_t pblock = 0;
406 ext4_lblk_t lblock = 0;
407 ext4_lblk_t prev = 0;
408 int len = 0;
409 while (entries) {
410 if (!ext4_valid_extent(inode, ext))
411 return 0;
412
413 /* Check for overlapping extents */
414 lblock = le32_to_cpu(ext->ee_block);
415 len = ext4_ext_get_actual_len(ext);
416 if ((lblock <= prev) && prev) {
417 pblock = ext4_ext_pblock(ext);
418 es->s_last_error_block = cpu_to_le64(pblock);
419 return 0;
420 }
421 ext++;
422 entries--;
423 prev = lblock + len - 1;
424 }
425 } else {
426 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
427 while (entries) {
428 if (!ext4_valid_extent_idx(inode, ext_idx))
429 return 0;
430 ext_idx++;
431 entries--;
432 }
433 }
434 return 1;
435 }
436
437 static int __ext4_ext_check(const char *function, unsigned int line,
438 struct inode *inode, struct ext4_extent_header *eh,
439 int depth, ext4_fsblk_t pblk)
440 {
441 const char *error_msg;
442 int max = 0, err = -EFSCORRUPTED;
443
444 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
445 error_msg = "invalid magic";
446 goto corrupted;
447 }
448 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
449 error_msg = "unexpected eh_depth";
450 goto corrupted;
451 }
452 if (unlikely(eh->eh_max == 0)) {
453 error_msg = "invalid eh_max";
454 goto corrupted;
455 }
456 max = ext4_ext_max_entries(inode, depth);
457 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
458 error_msg = "too large eh_max";
459 goto corrupted;
460 }
461 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
462 error_msg = "invalid eh_entries";
463 goto corrupted;
464 }
465 if (!ext4_valid_extent_entries(inode, eh, depth)) {
466 error_msg = "invalid extent entries";
467 goto corrupted;
468 }
469 if (unlikely(depth > 32)) {
470 error_msg = "too large eh_depth";
471 goto corrupted;
472 }
473 /* Verify checksum on non-root extent tree nodes */
474 if (ext_depth(inode) != depth &&
475 !ext4_extent_block_csum_verify(inode, eh)) {
476 error_msg = "extent tree corrupted";
477 err = -EFSBADCRC;
478 goto corrupted;
479 }
480 return 0;
481
482 corrupted:
483 ext4_error_inode(inode, function, line, 0,
484 "pblk %llu bad header/extent: %s - magic %x, "
485 "entries %u, max %u(%u), depth %u(%u)",
486 (unsigned long long) pblk, error_msg,
487 le16_to_cpu(eh->eh_magic),
488 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
489 max, le16_to_cpu(eh->eh_depth), depth);
490 return err;
491 }
492
493 #define ext4_ext_check(inode, eh, depth, pblk) \
494 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
495
496 int ext4_ext_check_inode(struct inode *inode)
497 {
498 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
499 }
500
501 static struct buffer_head *
502 __read_extent_tree_block(const char *function, unsigned int line,
503 struct inode *inode, ext4_fsblk_t pblk, int depth,
504 int flags)
505 {
506 struct buffer_head *bh;
507 int err;
508
509 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
510 if (unlikely(!bh))
511 return ERR_PTR(-ENOMEM);
512
513 if (!bh_uptodate_or_lock(bh)) {
514 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
515 err = bh_submit_read(bh);
516 if (err < 0)
517 goto errout;
518 }
519 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
520 return bh;
521 err = __ext4_ext_check(function, line, inode,
522 ext_block_hdr(bh), depth, pblk);
523 if (err)
524 goto errout;
525 set_buffer_verified(bh);
526 /*
527 * If this is a leaf block, cache all of its entries
528 */
529 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
530 struct ext4_extent_header *eh = ext_block_hdr(bh);
531 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
532 ext4_lblk_t prev = 0;
533 int i;
534
535 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
536 unsigned int status = EXTENT_STATUS_WRITTEN;
537 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
538 int len = ext4_ext_get_actual_len(ex);
539
540 if (prev && (prev != lblk))
541 ext4_es_cache_extent(inode, prev,
542 lblk - prev, ~0,
543 EXTENT_STATUS_HOLE);
544
545 if (ext4_ext_is_unwritten(ex))
546 status = EXTENT_STATUS_UNWRITTEN;
547 ext4_es_cache_extent(inode, lblk, len,
548 ext4_ext_pblock(ex), status);
549 prev = lblk + len;
550 }
551 }
552 return bh;
553 errout:
554 put_bh(bh);
555 return ERR_PTR(err);
556
557 }
558
559 #define read_extent_tree_block(inode, pblk, depth, flags) \
560 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
561 (depth), (flags))
562
563 /*
564 * This function is called to cache a file's extent information in the
565 * extent status tree
566 */
567 int ext4_ext_precache(struct inode *inode)
568 {
569 struct ext4_inode_info *ei = EXT4_I(inode);
570 struct ext4_ext_path *path = NULL;
571 struct buffer_head *bh;
572 int i = 0, depth, ret = 0;
573
574 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
575 return 0; /* not an extent-mapped inode */
576
577 down_read(&ei->i_data_sem);
578 depth = ext_depth(inode);
579
580 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
581 GFP_NOFS);
582 if (path == NULL) {
583 up_read(&ei->i_data_sem);
584 return -ENOMEM;
585 }
586
587 /* Don't cache anything if there are no external extent blocks */
588 if (depth == 0)
589 goto out;
590 path[0].p_hdr = ext_inode_hdr(inode);
591 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
592 if (ret)
593 goto out;
594 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
595 while (i >= 0) {
596 /*
597 * If this is a leaf block or we've reached the end of
598 * the index block, go up
599 */
600 if ((i == depth) ||
601 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
602 brelse(path[i].p_bh);
603 path[i].p_bh = NULL;
604 i--;
605 continue;
606 }
607 bh = read_extent_tree_block(inode,
608 ext4_idx_pblock(path[i].p_idx++),
609 depth - i - 1,
610 EXT4_EX_FORCE_CACHE);
611 if (IS_ERR(bh)) {
612 ret = PTR_ERR(bh);
613 break;
614 }
615 i++;
616 path[i].p_bh = bh;
617 path[i].p_hdr = ext_block_hdr(bh);
618 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
619 }
620 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
621 out:
622 up_read(&ei->i_data_sem);
623 ext4_ext_drop_refs(path);
624 kfree(path);
625 return ret;
626 }
627
628 #ifdef EXT_DEBUG
629 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
630 {
631 int k, l = path->p_depth;
632
633 ext_debug("path:");
634 for (k = 0; k <= l; k++, path++) {
635 if (path->p_idx) {
636 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
637 ext4_idx_pblock(path->p_idx));
638 } else if (path->p_ext) {
639 ext_debug(" %d:[%d]%d:%llu ",
640 le32_to_cpu(path->p_ext->ee_block),
641 ext4_ext_is_unwritten(path->p_ext),
642 ext4_ext_get_actual_len(path->p_ext),
643 ext4_ext_pblock(path->p_ext));
644 } else
645 ext_debug(" []");
646 }
647 ext_debug("\n");
648 }
649
650 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
651 {
652 int depth = ext_depth(inode);
653 struct ext4_extent_header *eh;
654 struct ext4_extent *ex;
655 int i;
656
657 if (!path)
658 return;
659
660 eh = path[depth].p_hdr;
661 ex = EXT_FIRST_EXTENT(eh);
662
663 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
664
665 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
666 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
667 ext4_ext_is_unwritten(ex),
668 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
669 }
670 ext_debug("\n");
671 }
672
673 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
674 ext4_fsblk_t newblock, int level)
675 {
676 int depth = ext_depth(inode);
677 struct ext4_extent *ex;
678
679 if (depth != level) {
680 struct ext4_extent_idx *idx;
681 idx = path[level].p_idx;
682 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
683 ext_debug("%d: move %d:%llu in new index %llu\n", level,
684 le32_to_cpu(idx->ei_block),
685 ext4_idx_pblock(idx),
686 newblock);
687 idx++;
688 }
689
690 return;
691 }
692
693 ex = path[depth].p_ext;
694 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
695 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
696 le32_to_cpu(ex->ee_block),
697 ext4_ext_pblock(ex),
698 ext4_ext_is_unwritten(ex),
699 ext4_ext_get_actual_len(ex),
700 newblock);
701 ex++;
702 }
703 }
704
705 #else
706 #define ext4_ext_show_path(inode, path)
707 #define ext4_ext_show_leaf(inode, path)
708 #define ext4_ext_show_move(inode, path, newblock, level)
709 #endif
710
711 void ext4_ext_drop_refs(struct ext4_ext_path *path)
712 {
713 int depth, i;
714
715 if (!path)
716 return;
717 depth = path->p_depth;
718 for (i = 0; i <= depth; i++, path++)
719 if (path->p_bh) {
720 brelse(path->p_bh);
721 path->p_bh = NULL;
722 }
723 }
724
725 /*
726 * ext4_ext_binsearch_idx:
727 * binary search for the closest index of the given block
728 * the header must be checked before calling this
729 */
730 static void
731 ext4_ext_binsearch_idx(struct inode *inode,
732 struct ext4_ext_path *path, ext4_lblk_t block)
733 {
734 struct ext4_extent_header *eh = path->p_hdr;
735 struct ext4_extent_idx *r, *l, *m;
736
737
738 ext_debug("binsearch for %u(idx): ", block);
739
740 l = EXT_FIRST_INDEX(eh) + 1;
741 r = EXT_LAST_INDEX(eh);
742 while (l <= r) {
743 m = l + (r - l) / 2;
744 if (block < le32_to_cpu(m->ei_block))
745 r = m - 1;
746 else
747 l = m + 1;
748 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
749 m, le32_to_cpu(m->ei_block),
750 r, le32_to_cpu(r->ei_block));
751 }
752
753 path->p_idx = l - 1;
754 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
755 ext4_idx_pblock(path->p_idx));
756
757 #ifdef CHECK_BINSEARCH
758 {
759 struct ext4_extent_idx *chix, *ix;
760 int k;
761
762 chix = ix = EXT_FIRST_INDEX(eh);
763 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
764 if (k != 0 &&
765 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
766 printk(KERN_DEBUG "k=%d, ix=0x%p, "
767 "first=0x%p\n", k,
768 ix, EXT_FIRST_INDEX(eh));
769 printk(KERN_DEBUG "%u <= %u\n",
770 le32_to_cpu(ix->ei_block),
771 le32_to_cpu(ix[-1].ei_block));
772 }
773 BUG_ON(k && le32_to_cpu(ix->ei_block)
774 <= le32_to_cpu(ix[-1].ei_block));
775 if (block < le32_to_cpu(ix->ei_block))
776 break;
777 chix = ix;
778 }
779 BUG_ON(chix != path->p_idx);
780 }
781 #endif
782
783 }
784
785 /*
786 * ext4_ext_binsearch:
787 * binary search for closest extent of the given block
788 * the header must be checked before calling this
789 */
790 static void
791 ext4_ext_binsearch(struct inode *inode,
792 struct ext4_ext_path *path, ext4_lblk_t block)
793 {
794 struct ext4_extent_header *eh = path->p_hdr;
795 struct ext4_extent *r, *l, *m;
796
797 if (eh->eh_entries == 0) {
798 /*
799 * this leaf is empty:
800 * we get such a leaf in split/add case
801 */
802 return;
803 }
804
805 ext_debug("binsearch for %u: ", block);
806
807 l = EXT_FIRST_EXTENT(eh) + 1;
808 r = EXT_LAST_EXTENT(eh);
809
810 while (l <= r) {
811 m = l + (r - l) / 2;
812 if (block < le32_to_cpu(m->ee_block))
813 r = m - 1;
814 else
815 l = m + 1;
816 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
817 m, le32_to_cpu(m->ee_block),
818 r, le32_to_cpu(r->ee_block));
819 }
820
821 path->p_ext = l - 1;
822 ext_debug(" -> %d:%llu:[%d]%d ",
823 le32_to_cpu(path->p_ext->ee_block),
824 ext4_ext_pblock(path->p_ext),
825 ext4_ext_is_unwritten(path->p_ext),
826 ext4_ext_get_actual_len(path->p_ext));
827
828 #ifdef CHECK_BINSEARCH
829 {
830 struct ext4_extent *chex, *ex;
831 int k;
832
833 chex = ex = EXT_FIRST_EXTENT(eh);
834 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
835 BUG_ON(k && le32_to_cpu(ex->ee_block)
836 <= le32_to_cpu(ex[-1].ee_block));
837 if (block < le32_to_cpu(ex->ee_block))
838 break;
839 chex = ex;
840 }
841 BUG_ON(chex != path->p_ext);
842 }
843 #endif
844
845 }
846
847 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
848 {
849 struct ext4_extent_header *eh;
850
851 eh = ext_inode_hdr(inode);
852 eh->eh_depth = 0;
853 eh->eh_entries = 0;
854 eh->eh_magic = EXT4_EXT_MAGIC;
855 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
856 ext4_mark_inode_dirty(handle, inode);
857 return 0;
858 }
859
860 struct ext4_ext_path *
861 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
862 struct ext4_ext_path **orig_path, int flags)
863 {
864 struct ext4_extent_header *eh;
865 struct buffer_head *bh;
866 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
867 short int depth, i, ppos = 0;
868 int ret;
869
870 eh = ext_inode_hdr(inode);
871 depth = ext_depth(inode);
872 if (depth < 0 || depth > EXT4_MAX_EXTENT_DEPTH) {
873 EXT4_ERROR_INODE(inode, "inode has invalid extent depth: %d",
874 depth);
875 ret = -EFSCORRUPTED;
876 goto err;
877 }
878
879 if (path) {
880 ext4_ext_drop_refs(path);
881 if (depth > path[0].p_maxdepth) {
882 kfree(path);
883 *orig_path = path = NULL;
884 }
885 }
886 if (!path) {
887 /* account possible depth increase */
888 path = kcalloc(depth + 2, sizeof(struct ext4_ext_path),
889 GFP_NOFS);
890 if (unlikely(!path))
891 return ERR_PTR(-ENOMEM);
892 path[0].p_maxdepth = depth + 1;
893 }
894 path[0].p_hdr = eh;
895 path[0].p_bh = NULL;
896
897 i = depth;
898 /* walk through the tree */
899 while (i) {
900 ext_debug("depth %d: num %d, max %d\n",
901 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
902
903 ext4_ext_binsearch_idx(inode, path + ppos, block);
904 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
905 path[ppos].p_depth = i;
906 path[ppos].p_ext = NULL;
907
908 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
909 flags);
910 if (IS_ERR(bh)) {
911 ret = PTR_ERR(bh);
912 goto err;
913 }
914
915 eh = ext_block_hdr(bh);
916 ppos++;
917 path[ppos].p_bh = bh;
918 path[ppos].p_hdr = eh;
919 }
920
921 path[ppos].p_depth = i;
922 path[ppos].p_ext = NULL;
923 path[ppos].p_idx = NULL;
924
925 /* find extent */
926 ext4_ext_binsearch(inode, path + ppos, block);
927 /* if not an empty leaf */
928 if (path[ppos].p_ext)
929 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
930
931 ext4_ext_show_path(inode, path);
932
933 return path;
934
935 err:
936 ext4_ext_drop_refs(path);
937 kfree(path);
938 if (orig_path)
939 *orig_path = NULL;
940 return ERR_PTR(ret);
941 }
942
943 /*
944 * ext4_ext_insert_index:
945 * insert new index [@logical;@ptr] into the block at @curp;
946 * check where to insert: before @curp or after @curp
947 */
948 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
949 struct ext4_ext_path *curp,
950 int logical, ext4_fsblk_t ptr)
951 {
952 struct ext4_extent_idx *ix;
953 int len, err;
954
955 err = ext4_ext_get_access(handle, inode, curp);
956 if (err)
957 return err;
958
959 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
960 EXT4_ERROR_INODE(inode,
961 "logical %d == ei_block %d!",
962 logical, le32_to_cpu(curp->p_idx->ei_block));
963 return -EFSCORRUPTED;
964 }
965
966 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
967 >= le16_to_cpu(curp->p_hdr->eh_max))) {
968 EXT4_ERROR_INODE(inode,
969 "eh_entries %d >= eh_max %d!",
970 le16_to_cpu(curp->p_hdr->eh_entries),
971 le16_to_cpu(curp->p_hdr->eh_max));
972 return -EFSCORRUPTED;
973 }
974
975 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
976 /* insert after */
977 ext_debug("insert new index %d after: %llu\n", logical, ptr);
978 ix = curp->p_idx + 1;
979 } else {
980 /* insert before */
981 ext_debug("insert new index %d before: %llu\n", logical, ptr);
982 ix = curp->p_idx;
983 }
984
985 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
986 BUG_ON(len < 0);
987 if (len > 0) {
988 ext_debug("insert new index %d: "
989 "move %d indices from 0x%p to 0x%p\n",
990 logical, len, ix, ix + 1);
991 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
992 }
993
994 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
995 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
996 return -EFSCORRUPTED;
997 }
998
999 ix->ei_block = cpu_to_le32(logical);
1000 ext4_idx_store_pblock(ix, ptr);
1001 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1002
1003 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1004 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1005 return -EFSCORRUPTED;
1006 }
1007
1008 err = ext4_ext_dirty(handle, inode, curp);
1009 ext4_std_error(inode->i_sb, err);
1010
1011 return err;
1012 }
1013
1014 /*
1015 * ext4_ext_split:
1016 * inserts new subtree into the path, using free index entry
1017 * at depth @at:
1018 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1019 * - makes decision where to split
1020 * - moves remaining extents and index entries (right to the split point)
1021 * into the newly allocated blocks
1022 * - initializes subtree
1023 */
1024 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1025 unsigned int flags,
1026 struct ext4_ext_path *path,
1027 struct ext4_extent *newext, int at)
1028 {
1029 struct buffer_head *bh = NULL;
1030 int depth = ext_depth(inode);
1031 struct ext4_extent_header *neh;
1032 struct ext4_extent_idx *fidx;
1033 int i = at, k, m, a;
1034 ext4_fsblk_t newblock, oldblock;
1035 __le32 border;
1036 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1037 int err = 0;
1038
1039 /* make decision: where to split? */
1040 /* FIXME: now decision is simplest: at current extent */
1041
1042 /* if current leaf will be split, then we should use
1043 * border from split point */
1044 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1045 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1046 return -EFSCORRUPTED;
1047 }
1048 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1049 border = path[depth].p_ext[1].ee_block;
1050 ext_debug("leaf will be split."
1051 " next leaf starts at %d\n",
1052 le32_to_cpu(border));
1053 } else {
1054 border = newext->ee_block;
1055 ext_debug("leaf will be added."
1056 " next leaf starts at %d\n",
1057 le32_to_cpu(border));
1058 }
1059
1060 /*
1061 * If error occurs, then we break processing
1062 * and mark filesystem read-only. index won't
1063 * be inserted and tree will be in consistent
1064 * state. Next mount will repair buffers too.
1065 */
1066
1067 /*
1068 * Get array to track all allocated blocks.
1069 * We need this to handle errors and free blocks
1070 * upon them.
1071 */
1072 ablocks = kcalloc(depth, sizeof(ext4_fsblk_t), GFP_NOFS);
1073 if (!ablocks)
1074 return -ENOMEM;
1075
1076 /* allocate all needed blocks */
1077 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1078 for (a = 0; a < depth - at; a++) {
1079 newblock = ext4_ext_new_meta_block(handle, inode, path,
1080 newext, &err, flags);
1081 if (newblock == 0)
1082 goto cleanup;
1083 ablocks[a] = newblock;
1084 }
1085
1086 /* initialize new leaf */
1087 newblock = ablocks[--a];
1088 if (unlikely(newblock == 0)) {
1089 EXT4_ERROR_INODE(inode, "newblock == 0!");
1090 err = -EFSCORRUPTED;
1091 goto cleanup;
1092 }
1093 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1094 if (unlikely(!bh)) {
1095 err = -ENOMEM;
1096 goto cleanup;
1097 }
1098 lock_buffer(bh);
1099
1100 err = ext4_journal_get_create_access(handle, bh);
1101 if (err)
1102 goto cleanup;
1103
1104 neh = ext_block_hdr(bh);
1105 neh->eh_entries = 0;
1106 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1107 neh->eh_magic = EXT4_EXT_MAGIC;
1108 neh->eh_depth = 0;
1109
1110 /* move remainder of path[depth] to the new leaf */
1111 if (unlikely(path[depth].p_hdr->eh_entries !=
1112 path[depth].p_hdr->eh_max)) {
1113 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1114 path[depth].p_hdr->eh_entries,
1115 path[depth].p_hdr->eh_max);
1116 err = -EFSCORRUPTED;
1117 goto cleanup;
1118 }
1119 /* start copy from next extent */
1120 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1121 ext4_ext_show_move(inode, path, newblock, depth);
1122 if (m) {
1123 struct ext4_extent *ex;
1124 ex = EXT_FIRST_EXTENT(neh);
1125 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1126 le16_add_cpu(&neh->eh_entries, m);
1127 }
1128
1129 ext4_extent_block_csum_set(inode, neh);
1130 set_buffer_uptodate(bh);
1131 unlock_buffer(bh);
1132
1133 err = ext4_handle_dirty_metadata(handle, inode, bh);
1134 if (err)
1135 goto cleanup;
1136 brelse(bh);
1137 bh = NULL;
1138
1139 /* correct old leaf */
1140 if (m) {
1141 err = ext4_ext_get_access(handle, inode, path + depth);
1142 if (err)
1143 goto cleanup;
1144 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1145 err = ext4_ext_dirty(handle, inode, path + depth);
1146 if (err)
1147 goto cleanup;
1148
1149 }
1150
1151 /* create intermediate indexes */
1152 k = depth - at - 1;
1153 if (unlikely(k < 0)) {
1154 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1155 err = -EFSCORRUPTED;
1156 goto cleanup;
1157 }
1158 if (k)
1159 ext_debug("create %d intermediate indices\n", k);
1160 /* insert new index into current index block */
1161 /* current depth stored in i var */
1162 i = depth - 1;
1163 while (k--) {
1164 oldblock = newblock;
1165 newblock = ablocks[--a];
1166 bh = sb_getblk(inode->i_sb, newblock);
1167 if (unlikely(!bh)) {
1168 err = -ENOMEM;
1169 goto cleanup;
1170 }
1171 lock_buffer(bh);
1172
1173 err = ext4_journal_get_create_access(handle, bh);
1174 if (err)
1175 goto cleanup;
1176
1177 neh = ext_block_hdr(bh);
1178 neh->eh_entries = cpu_to_le16(1);
1179 neh->eh_magic = EXT4_EXT_MAGIC;
1180 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1181 neh->eh_depth = cpu_to_le16(depth - i);
1182 fidx = EXT_FIRST_INDEX(neh);
1183 fidx->ei_block = border;
1184 ext4_idx_store_pblock(fidx, oldblock);
1185
1186 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1187 i, newblock, le32_to_cpu(border), oldblock);
1188
1189 /* move remainder of path[i] to the new index block */
1190 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1191 EXT_LAST_INDEX(path[i].p_hdr))) {
1192 EXT4_ERROR_INODE(inode,
1193 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1194 le32_to_cpu(path[i].p_ext->ee_block));
1195 err = -EFSCORRUPTED;
1196 goto cleanup;
1197 }
1198 /* start copy indexes */
1199 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1200 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1201 EXT_MAX_INDEX(path[i].p_hdr));
1202 ext4_ext_show_move(inode, path, newblock, i);
1203 if (m) {
1204 memmove(++fidx, path[i].p_idx,
1205 sizeof(struct ext4_extent_idx) * m);
1206 le16_add_cpu(&neh->eh_entries, m);
1207 }
1208 ext4_extent_block_csum_set(inode, neh);
1209 set_buffer_uptodate(bh);
1210 unlock_buffer(bh);
1211
1212 err = ext4_handle_dirty_metadata(handle, inode, bh);
1213 if (err)
1214 goto cleanup;
1215 brelse(bh);
1216 bh = NULL;
1217
1218 /* correct old index */
1219 if (m) {
1220 err = ext4_ext_get_access(handle, inode, path + i);
1221 if (err)
1222 goto cleanup;
1223 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1224 err = ext4_ext_dirty(handle, inode, path + i);
1225 if (err)
1226 goto cleanup;
1227 }
1228
1229 i--;
1230 }
1231
1232 /* insert new index */
1233 err = ext4_ext_insert_index(handle, inode, path + at,
1234 le32_to_cpu(border), newblock);
1235
1236 cleanup:
1237 if (bh) {
1238 if (buffer_locked(bh))
1239 unlock_buffer(bh);
1240 brelse(bh);
1241 }
1242
1243 if (err) {
1244 /* free all allocated blocks in error case */
1245 for (i = 0; i < depth; i++) {
1246 if (!ablocks[i])
1247 continue;
1248 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1249 EXT4_FREE_BLOCKS_METADATA);
1250 }
1251 }
1252 kfree(ablocks);
1253
1254 return err;
1255 }
1256
1257 /*
1258 * ext4_ext_grow_indepth:
1259 * implements tree growing procedure:
1260 * - allocates new block
1261 * - moves top-level data (index block or leaf) into the new block
1262 * - initializes new top-level, creating index that points to the
1263 * just created block
1264 */
1265 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1266 unsigned int flags)
1267 {
1268 struct ext4_extent_header *neh;
1269 struct buffer_head *bh;
1270 ext4_fsblk_t newblock, goal = 0;
1271 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1272 int err = 0;
1273
1274 /* Try to prepend new index to old one */
1275 if (ext_depth(inode))
1276 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1277 if (goal > le32_to_cpu(es->s_first_data_block)) {
1278 flags |= EXT4_MB_HINT_TRY_GOAL;
1279 goal--;
1280 } else
1281 goal = ext4_inode_to_goal_block(inode);
1282 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1283 NULL, &err);
1284 if (newblock == 0)
1285 return err;
1286
1287 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1288 if (unlikely(!bh))
1289 return -ENOMEM;
1290 lock_buffer(bh);
1291
1292 err = ext4_journal_get_create_access(handle, bh);
1293 if (err) {
1294 unlock_buffer(bh);
1295 goto out;
1296 }
1297
1298 /* move top-level index/leaf into new block */
1299 memmove(bh->b_data, EXT4_I(inode)->i_data,
1300 sizeof(EXT4_I(inode)->i_data));
1301
1302 /* set size of new block */
1303 neh = ext_block_hdr(bh);
1304 /* old root could have indexes or leaves
1305 * so calculate e_max right way */
1306 if (ext_depth(inode))
1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1308 else
1309 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1310 neh->eh_magic = EXT4_EXT_MAGIC;
1311 ext4_extent_block_csum_set(inode, neh);
1312 set_buffer_uptodate(bh);
1313 unlock_buffer(bh);
1314
1315 err = ext4_handle_dirty_metadata(handle, inode, bh);
1316 if (err)
1317 goto out;
1318
1319 /* Update top-level index: num,max,pointer */
1320 neh = ext_inode_hdr(inode);
1321 neh->eh_entries = cpu_to_le16(1);
1322 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1323 if (neh->eh_depth == 0) {
1324 /* Root extent block becomes index block */
1325 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1326 EXT_FIRST_INDEX(neh)->ei_block =
1327 EXT_FIRST_EXTENT(neh)->ee_block;
1328 }
1329 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1330 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1331 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1332 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1333
1334 le16_add_cpu(&neh->eh_depth, 1);
1335 ext4_mark_inode_dirty(handle, inode);
1336 out:
1337 brelse(bh);
1338
1339 return err;
1340 }
1341
1342 /*
1343 * ext4_ext_create_new_leaf:
1344 * finds empty index and adds new leaf.
1345 * if no free index is found, then it requests in-depth growing.
1346 */
1347 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1348 unsigned int mb_flags,
1349 unsigned int gb_flags,
1350 struct ext4_ext_path **ppath,
1351 struct ext4_extent *newext)
1352 {
1353 struct ext4_ext_path *path = *ppath;
1354 struct ext4_ext_path *curp;
1355 int depth, i, err = 0;
1356
1357 repeat:
1358 i = depth = ext_depth(inode);
1359
1360 /* walk up to the tree and look for free index entry */
1361 curp = path + depth;
1362 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1363 i--;
1364 curp--;
1365 }
1366
1367 /* we use already allocated block for index block,
1368 * so subsequent data blocks should be contiguous */
1369 if (EXT_HAS_FREE_INDEX(curp)) {
1370 /* if we found index with free entry, then use that
1371 * entry: create all needed subtree and add new leaf */
1372 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1373 if (err)
1374 goto out;
1375
1376 /* refill path */
1377 path = ext4_find_extent(inode,
1378 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1379 ppath, gb_flags);
1380 if (IS_ERR(path))
1381 err = PTR_ERR(path);
1382 } else {
1383 /* tree is full, time to grow in depth */
1384 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1385 if (err)
1386 goto out;
1387
1388 /* refill path */
1389 path = ext4_find_extent(inode,
1390 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1391 ppath, gb_flags);
1392 if (IS_ERR(path)) {
1393 err = PTR_ERR(path);
1394 goto out;
1395 }
1396
1397 /*
1398 * only first (depth 0 -> 1) produces free space;
1399 * in all other cases we have to split the grown tree
1400 */
1401 depth = ext_depth(inode);
1402 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1403 /* now we need to split */
1404 goto repeat;
1405 }
1406 }
1407
1408 out:
1409 return err;
1410 }
1411
1412 /*
1413 * search the closest allocated block to the left for *logical
1414 * and returns it at @logical + it's physical address at @phys
1415 * if *logical is the smallest allocated block, the function
1416 * returns 0 at @phys
1417 * return value contains 0 (success) or error code
1418 */
1419 static int ext4_ext_search_left(struct inode *inode,
1420 struct ext4_ext_path *path,
1421 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1422 {
1423 struct ext4_extent_idx *ix;
1424 struct ext4_extent *ex;
1425 int depth, ee_len;
1426
1427 if (unlikely(path == NULL)) {
1428 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1429 return -EFSCORRUPTED;
1430 }
1431 depth = path->p_depth;
1432 *phys = 0;
1433
1434 if (depth == 0 && path->p_ext == NULL)
1435 return 0;
1436
1437 /* usually extent in the path covers blocks smaller
1438 * then *logical, but it can be that extent is the
1439 * first one in the file */
1440
1441 ex = path[depth].p_ext;
1442 ee_len = ext4_ext_get_actual_len(ex);
1443 if (*logical < le32_to_cpu(ex->ee_block)) {
1444 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1445 EXT4_ERROR_INODE(inode,
1446 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1447 *logical, le32_to_cpu(ex->ee_block));
1448 return -EFSCORRUPTED;
1449 }
1450 while (--depth >= 0) {
1451 ix = path[depth].p_idx;
1452 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1453 EXT4_ERROR_INODE(inode,
1454 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1455 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1456 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1457 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1458 depth);
1459 return -EFSCORRUPTED;
1460 }
1461 }
1462 return 0;
1463 }
1464
1465 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1466 EXT4_ERROR_INODE(inode,
1467 "logical %d < ee_block %d + ee_len %d!",
1468 *logical, le32_to_cpu(ex->ee_block), ee_len);
1469 return -EFSCORRUPTED;
1470 }
1471
1472 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1473 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1474 return 0;
1475 }
1476
1477 /*
1478 * search the closest allocated block to the right for *logical
1479 * and returns it at @logical + it's physical address at @phys
1480 * if *logical is the largest allocated block, the function
1481 * returns 0 at @phys
1482 * return value contains 0 (success) or error code
1483 */
1484 static int ext4_ext_search_right(struct inode *inode,
1485 struct ext4_ext_path *path,
1486 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1487 struct ext4_extent **ret_ex)
1488 {
1489 struct buffer_head *bh = NULL;
1490 struct ext4_extent_header *eh;
1491 struct ext4_extent_idx *ix;
1492 struct ext4_extent *ex;
1493 ext4_fsblk_t block;
1494 int depth; /* Note, NOT eh_depth; depth from top of tree */
1495 int ee_len;
1496
1497 if (unlikely(path == NULL)) {
1498 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1499 return -EFSCORRUPTED;
1500 }
1501 depth = path->p_depth;
1502 *phys = 0;
1503
1504 if (depth == 0 && path->p_ext == NULL)
1505 return 0;
1506
1507 /* usually extent in the path covers blocks smaller
1508 * then *logical, but it can be that extent is the
1509 * first one in the file */
1510
1511 ex = path[depth].p_ext;
1512 ee_len = ext4_ext_get_actual_len(ex);
1513 if (*logical < le32_to_cpu(ex->ee_block)) {
1514 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1515 EXT4_ERROR_INODE(inode,
1516 "first_extent(path[%d].p_hdr) != ex",
1517 depth);
1518 return -EFSCORRUPTED;
1519 }
1520 while (--depth >= 0) {
1521 ix = path[depth].p_idx;
1522 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1523 EXT4_ERROR_INODE(inode,
1524 "ix != EXT_FIRST_INDEX *logical %d!",
1525 *logical);
1526 return -EFSCORRUPTED;
1527 }
1528 }
1529 goto found_extent;
1530 }
1531
1532 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1533 EXT4_ERROR_INODE(inode,
1534 "logical %d < ee_block %d + ee_len %d!",
1535 *logical, le32_to_cpu(ex->ee_block), ee_len);
1536 return -EFSCORRUPTED;
1537 }
1538
1539 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1540 /* next allocated block in this leaf */
1541 ex++;
1542 goto found_extent;
1543 }
1544
1545 /* go up and search for index to the right */
1546 while (--depth >= 0) {
1547 ix = path[depth].p_idx;
1548 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1549 goto got_index;
1550 }
1551
1552 /* we've gone up to the root and found no index to the right */
1553 return 0;
1554
1555 got_index:
1556 /* we've found index to the right, let's
1557 * follow it and find the closest allocated
1558 * block to the right */
1559 ix++;
1560 block = ext4_idx_pblock(ix);
1561 while (++depth < path->p_depth) {
1562 /* subtract from p_depth to get proper eh_depth */
1563 bh = read_extent_tree_block(inode, block,
1564 path->p_depth - depth, 0);
1565 if (IS_ERR(bh))
1566 return PTR_ERR(bh);
1567 eh = ext_block_hdr(bh);
1568 ix = EXT_FIRST_INDEX(eh);
1569 block = ext4_idx_pblock(ix);
1570 put_bh(bh);
1571 }
1572
1573 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1574 if (IS_ERR(bh))
1575 return PTR_ERR(bh);
1576 eh = ext_block_hdr(bh);
1577 ex = EXT_FIRST_EXTENT(eh);
1578 found_extent:
1579 *logical = le32_to_cpu(ex->ee_block);
1580 *phys = ext4_ext_pblock(ex);
1581 *ret_ex = ex;
1582 if (bh)
1583 put_bh(bh);
1584 return 0;
1585 }
1586
1587 /*
1588 * ext4_ext_next_allocated_block:
1589 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1590 * NOTE: it considers block number from index entry as
1591 * allocated block. Thus, index entries have to be consistent
1592 * with leaves.
1593 */
1594 ext4_lblk_t
1595 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1596 {
1597 int depth;
1598
1599 BUG_ON(path == NULL);
1600 depth = path->p_depth;
1601
1602 if (depth == 0 && path->p_ext == NULL)
1603 return EXT_MAX_BLOCKS;
1604
1605 while (depth >= 0) {
1606 if (depth == path->p_depth) {
1607 /* leaf */
1608 if (path[depth].p_ext &&
1609 path[depth].p_ext !=
1610 EXT_LAST_EXTENT(path[depth].p_hdr))
1611 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1612 } else {
1613 /* index */
1614 if (path[depth].p_idx !=
1615 EXT_LAST_INDEX(path[depth].p_hdr))
1616 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1617 }
1618 depth--;
1619 }
1620
1621 return EXT_MAX_BLOCKS;
1622 }
1623
1624 /*
1625 * ext4_ext_next_leaf_block:
1626 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1627 */
1628 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1629 {
1630 int depth;
1631
1632 BUG_ON(path == NULL);
1633 depth = path->p_depth;
1634
1635 /* zero-tree has no leaf blocks at all */
1636 if (depth == 0)
1637 return EXT_MAX_BLOCKS;
1638
1639 /* go to index block */
1640 depth--;
1641
1642 while (depth >= 0) {
1643 if (path[depth].p_idx !=
1644 EXT_LAST_INDEX(path[depth].p_hdr))
1645 return (ext4_lblk_t)
1646 le32_to_cpu(path[depth].p_idx[1].ei_block);
1647 depth--;
1648 }
1649
1650 return EXT_MAX_BLOCKS;
1651 }
1652
1653 /*
1654 * ext4_ext_correct_indexes:
1655 * if leaf gets modified and modified extent is first in the leaf,
1656 * then we have to correct all indexes above.
1657 * TODO: do we need to correct tree in all cases?
1658 */
1659 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1660 struct ext4_ext_path *path)
1661 {
1662 struct ext4_extent_header *eh;
1663 int depth = ext_depth(inode);
1664 struct ext4_extent *ex;
1665 __le32 border;
1666 int k, err = 0;
1667
1668 eh = path[depth].p_hdr;
1669 ex = path[depth].p_ext;
1670
1671 if (unlikely(ex == NULL || eh == NULL)) {
1672 EXT4_ERROR_INODE(inode,
1673 "ex %p == NULL or eh %p == NULL", ex, eh);
1674 return -EFSCORRUPTED;
1675 }
1676
1677 if (depth == 0) {
1678 /* there is no tree at all */
1679 return 0;
1680 }
1681
1682 if (ex != EXT_FIRST_EXTENT(eh)) {
1683 /* we correct tree if first leaf got modified only */
1684 return 0;
1685 }
1686
1687 /*
1688 * TODO: we need correction if border is smaller than current one
1689 */
1690 k = depth - 1;
1691 border = path[depth].p_ext->ee_block;
1692 err = ext4_ext_get_access(handle, inode, path + k);
1693 if (err)
1694 return err;
1695 path[k].p_idx->ei_block = border;
1696 err = ext4_ext_dirty(handle, inode, path + k);
1697 if (err)
1698 return err;
1699
1700 while (k--) {
1701 /* change all left-side indexes */
1702 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1703 break;
1704 err = ext4_ext_get_access(handle, inode, path + k);
1705 if (err)
1706 break;
1707 path[k].p_idx->ei_block = border;
1708 err = ext4_ext_dirty(handle, inode, path + k);
1709 if (err)
1710 break;
1711 }
1712
1713 return err;
1714 }
1715
1716 int
1717 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1718 struct ext4_extent *ex2)
1719 {
1720 unsigned short ext1_ee_len, ext2_ee_len;
1721
1722 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1723 return 0;
1724
1725 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1726 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1727
1728 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1729 le32_to_cpu(ex2->ee_block))
1730 return 0;
1731
1732 /*
1733 * To allow future support for preallocated extents to be added
1734 * as an RO_COMPAT feature, refuse to merge to extents if
1735 * this can result in the top bit of ee_len being set.
1736 */
1737 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1738 return 0;
1739 /*
1740 * The check for IO to unwritten extent is somewhat racy as we
1741 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1742 * dropping i_data_sem. But reserved blocks should save us in that
1743 * case.
1744 */
1745 if (ext4_ext_is_unwritten(ex1) &&
1746 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1747 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1748 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1749 return 0;
1750 #ifdef AGGRESSIVE_TEST
1751 if (ext1_ee_len >= 4)
1752 return 0;
1753 #endif
1754
1755 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1756 return 1;
1757 return 0;
1758 }
1759
1760 /*
1761 * This function tries to merge the "ex" extent to the next extent in the tree.
1762 * It always tries to merge towards right. If you want to merge towards
1763 * left, pass "ex - 1" as argument instead of "ex".
1764 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1765 * 1 if they got merged.
1766 */
1767 static int ext4_ext_try_to_merge_right(struct inode *inode,
1768 struct ext4_ext_path *path,
1769 struct ext4_extent *ex)
1770 {
1771 struct ext4_extent_header *eh;
1772 unsigned int depth, len;
1773 int merge_done = 0, unwritten;
1774
1775 depth = ext_depth(inode);
1776 BUG_ON(path[depth].p_hdr == NULL);
1777 eh = path[depth].p_hdr;
1778
1779 while (ex < EXT_LAST_EXTENT(eh)) {
1780 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1781 break;
1782 /* merge with next extent! */
1783 unwritten = ext4_ext_is_unwritten(ex);
1784 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1785 + ext4_ext_get_actual_len(ex + 1));
1786 if (unwritten)
1787 ext4_ext_mark_unwritten(ex);
1788
1789 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1790 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1791 * sizeof(struct ext4_extent);
1792 memmove(ex + 1, ex + 2, len);
1793 }
1794 le16_add_cpu(&eh->eh_entries, -1);
1795 merge_done = 1;
1796 WARN_ON(eh->eh_entries == 0);
1797 if (!eh->eh_entries)
1798 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1799 }
1800
1801 return merge_done;
1802 }
1803
1804 /*
1805 * This function does a very simple check to see if we can collapse
1806 * an extent tree with a single extent tree leaf block into the inode.
1807 */
1808 static void ext4_ext_try_to_merge_up(handle_t *handle,
1809 struct inode *inode,
1810 struct ext4_ext_path *path)
1811 {
1812 size_t s;
1813 unsigned max_root = ext4_ext_space_root(inode, 0);
1814 ext4_fsblk_t blk;
1815
1816 if ((path[0].p_depth != 1) ||
1817 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1818 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1819 return;
1820
1821 /*
1822 * We need to modify the block allocation bitmap and the block
1823 * group descriptor to release the extent tree block. If we
1824 * can't get the journal credits, give up.
1825 */
1826 if (ext4_journal_extend(handle, 2))
1827 return;
1828
1829 /*
1830 * Copy the extent data up to the inode
1831 */
1832 blk = ext4_idx_pblock(path[0].p_idx);
1833 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1834 sizeof(struct ext4_extent_idx);
1835 s += sizeof(struct ext4_extent_header);
1836
1837 path[1].p_maxdepth = path[0].p_maxdepth;
1838 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1839 path[0].p_depth = 0;
1840 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1841 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1842 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1843
1844 brelse(path[1].p_bh);
1845 ext4_free_blocks(handle, inode, NULL, blk, 1,
1846 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1847 }
1848
1849 /*
1850 * This function tries to merge the @ex extent to neighbours in the tree.
1851 * return 1 if merge left else 0.
1852 */
1853 static void ext4_ext_try_to_merge(handle_t *handle,
1854 struct inode *inode,
1855 struct ext4_ext_path *path,
1856 struct ext4_extent *ex) {
1857 struct ext4_extent_header *eh;
1858 unsigned int depth;
1859 int merge_done = 0;
1860
1861 depth = ext_depth(inode);
1862 BUG_ON(path[depth].p_hdr == NULL);
1863 eh = path[depth].p_hdr;
1864
1865 if (ex > EXT_FIRST_EXTENT(eh))
1866 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1867
1868 if (!merge_done)
1869 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1870
1871 ext4_ext_try_to_merge_up(handle, inode, path);
1872 }
1873
1874 /*
1875 * check if a portion of the "newext" extent overlaps with an
1876 * existing extent.
1877 *
1878 * If there is an overlap discovered, it updates the length of the newext
1879 * such that there will be no overlap, and then returns 1.
1880 * If there is no overlap found, it returns 0.
1881 */
1882 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1883 struct inode *inode,
1884 struct ext4_extent *newext,
1885 struct ext4_ext_path *path)
1886 {
1887 ext4_lblk_t b1, b2;
1888 unsigned int depth, len1;
1889 unsigned int ret = 0;
1890
1891 b1 = le32_to_cpu(newext->ee_block);
1892 len1 = ext4_ext_get_actual_len(newext);
1893 depth = ext_depth(inode);
1894 if (!path[depth].p_ext)
1895 goto out;
1896 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1897
1898 /*
1899 * get the next allocated block if the extent in the path
1900 * is before the requested block(s)
1901 */
1902 if (b2 < b1) {
1903 b2 = ext4_ext_next_allocated_block(path);
1904 if (b2 == EXT_MAX_BLOCKS)
1905 goto out;
1906 b2 = EXT4_LBLK_CMASK(sbi, b2);
1907 }
1908
1909 /* check for wrap through zero on extent logical start block*/
1910 if (b1 + len1 < b1) {
1911 len1 = EXT_MAX_BLOCKS - b1;
1912 newext->ee_len = cpu_to_le16(len1);
1913 ret = 1;
1914 }
1915
1916 /* check for overlap */
1917 if (b1 + len1 > b2) {
1918 newext->ee_len = cpu_to_le16(b2 - b1);
1919 ret = 1;
1920 }
1921 out:
1922 return ret;
1923 }
1924
1925 /*
1926 * ext4_ext_insert_extent:
1927 * tries to merge requsted extent into the existing extent or
1928 * inserts requested extent as new one into the tree,
1929 * creating new leaf in the no-space case.
1930 */
1931 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1932 struct ext4_ext_path **ppath,
1933 struct ext4_extent *newext, int gb_flags)
1934 {
1935 struct ext4_ext_path *path = *ppath;
1936 struct ext4_extent_header *eh;
1937 struct ext4_extent *ex, *fex;
1938 struct ext4_extent *nearex; /* nearest extent */
1939 struct ext4_ext_path *npath = NULL;
1940 int depth, len, err;
1941 ext4_lblk_t next;
1942 int mb_flags = 0, unwritten;
1943
1944 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1945 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1946 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1947 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1948 return -EFSCORRUPTED;
1949 }
1950 depth = ext_depth(inode);
1951 ex = path[depth].p_ext;
1952 eh = path[depth].p_hdr;
1953 if (unlikely(path[depth].p_hdr == NULL)) {
1954 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1955 return -EFSCORRUPTED;
1956 }
1957
1958 /* try to insert block into found extent and return */
1959 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1960
1961 /*
1962 * Try to see whether we should rather test the extent on
1963 * right from ex, or from the left of ex. This is because
1964 * ext4_find_extent() can return either extent on the
1965 * left, or on the right from the searched position. This
1966 * will make merging more effective.
1967 */
1968 if (ex < EXT_LAST_EXTENT(eh) &&
1969 (le32_to_cpu(ex->ee_block) +
1970 ext4_ext_get_actual_len(ex) <
1971 le32_to_cpu(newext->ee_block))) {
1972 ex += 1;
1973 goto prepend;
1974 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1975 (le32_to_cpu(newext->ee_block) +
1976 ext4_ext_get_actual_len(newext) <
1977 le32_to_cpu(ex->ee_block)))
1978 ex -= 1;
1979
1980 /* Try to append newex to the ex */
1981 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1982 ext_debug("append [%d]%d block to %u:[%d]%d"
1983 "(from %llu)\n",
1984 ext4_ext_is_unwritten(newext),
1985 ext4_ext_get_actual_len(newext),
1986 le32_to_cpu(ex->ee_block),
1987 ext4_ext_is_unwritten(ex),
1988 ext4_ext_get_actual_len(ex),
1989 ext4_ext_pblock(ex));
1990 err = ext4_ext_get_access(handle, inode,
1991 path + depth);
1992 if (err)
1993 return err;
1994 unwritten = ext4_ext_is_unwritten(ex);
1995 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1996 + ext4_ext_get_actual_len(newext));
1997 if (unwritten)
1998 ext4_ext_mark_unwritten(ex);
1999 eh = path[depth].p_hdr;
2000 nearex = ex;
2001 goto merge;
2002 }
2003
2004 prepend:
2005 /* Try to prepend newex to the ex */
2006 if (ext4_can_extents_be_merged(inode, newext, ex)) {
2007 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2008 "(from %llu)\n",
2009 le32_to_cpu(newext->ee_block),
2010 ext4_ext_is_unwritten(newext),
2011 ext4_ext_get_actual_len(newext),
2012 le32_to_cpu(ex->ee_block),
2013 ext4_ext_is_unwritten(ex),
2014 ext4_ext_get_actual_len(ex),
2015 ext4_ext_pblock(ex));
2016 err = ext4_ext_get_access(handle, inode,
2017 path + depth);
2018 if (err)
2019 return err;
2020
2021 unwritten = ext4_ext_is_unwritten(ex);
2022 ex->ee_block = newext->ee_block;
2023 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2024 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2025 + ext4_ext_get_actual_len(newext));
2026 if (unwritten)
2027 ext4_ext_mark_unwritten(ex);
2028 eh = path[depth].p_hdr;
2029 nearex = ex;
2030 goto merge;
2031 }
2032 }
2033
2034 depth = ext_depth(inode);
2035 eh = path[depth].p_hdr;
2036 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2037 goto has_space;
2038
2039 /* probably next leaf has space for us? */
2040 fex = EXT_LAST_EXTENT(eh);
2041 next = EXT_MAX_BLOCKS;
2042 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2043 next = ext4_ext_next_leaf_block(path);
2044 if (next != EXT_MAX_BLOCKS) {
2045 ext_debug("next leaf block - %u\n", next);
2046 BUG_ON(npath != NULL);
2047 npath = ext4_find_extent(inode, next, NULL, 0);
2048 if (IS_ERR(npath))
2049 return PTR_ERR(npath);
2050 BUG_ON(npath->p_depth != path->p_depth);
2051 eh = npath[depth].p_hdr;
2052 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2053 ext_debug("next leaf isn't full(%d)\n",
2054 le16_to_cpu(eh->eh_entries));
2055 path = npath;
2056 goto has_space;
2057 }
2058 ext_debug("next leaf has no free space(%d,%d)\n",
2059 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2060 }
2061
2062 /*
2063 * There is no free space in the found leaf.
2064 * We're gonna add a new leaf in the tree.
2065 */
2066 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2067 mb_flags |= EXT4_MB_USE_RESERVED;
2068 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2069 ppath, newext);
2070 if (err)
2071 goto cleanup;
2072 depth = ext_depth(inode);
2073 eh = path[depth].p_hdr;
2074
2075 has_space:
2076 nearex = path[depth].p_ext;
2077
2078 err = ext4_ext_get_access(handle, inode, path + depth);
2079 if (err)
2080 goto cleanup;
2081
2082 if (!nearex) {
2083 /* there is no extent in this leaf, create first one */
2084 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2085 le32_to_cpu(newext->ee_block),
2086 ext4_ext_pblock(newext),
2087 ext4_ext_is_unwritten(newext),
2088 ext4_ext_get_actual_len(newext));
2089 nearex = EXT_FIRST_EXTENT(eh);
2090 } else {
2091 if (le32_to_cpu(newext->ee_block)
2092 > le32_to_cpu(nearex->ee_block)) {
2093 /* Insert after */
2094 ext_debug("insert %u:%llu:[%d]%d before: "
2095 "nearest %p\n",
2096 le32_to_cpu(newext->ee_block),
2097 ext4_ext_pblock(newext),
2098 ext4_ext_is_unwritten(newext),
2099 ext4_ext_get_actual_len(newext),
2100 nearex);
2101 nearex++;
2102 } else {
2103 /* Insert before */
2104 BUG_ON(newext->ee_block == nearex->ee_block);
2105 ext_debug("insert %u:%llu:[%d]%d after: "
2106 "nearest %p\n",
2107 le32_to_cpu(newext->ee_block),
2108 ext4_ext_pblock(newext),
2109 ext4_ext_is_unwritten(newext),
2110 ext4_ext_get_actual_len(newext),
2111 nearex);
2112 }
2113 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2114 if (len > 0) {
2115 ext_debug("insert %u:%llu:[%d]%d: "
2116 "move %d extents from 0x%p to 0x%p\n",
2117 le32_to_cpu(newext->ee_block),
2118 ext4_ext_pblock(newext),
2119 ext4_ext_is_unwritten(newext),
2120 ext4_ext_get_actual_len(newext),
2121 len, nearex, nearex + 1);
2122 memmove(nearex + 1, nearex,
2123 len * sizeof(struct ext4_extent));
2124 }
2125 }
2126
2127 le16_add_cpu(&eh->eh_entries, 1);
2128 path[depth].p_ext = nearex;
2129 nearex->ee_block = newext->ee_block;
2130 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2131 nearex->ee_len = newext->ee_len;
2132
2133 merge:
2134 /* try to merge extents */
2135 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2136 ext4_ext_try_to_merge(handle, inode, path, nearex);
2137
2138
2139 /* time to correct all indexes above */
2140 err = ext4_ext_correct_indexes(handle, inode, path);
2141 if (err)
2142 goto cleanup;
2143
2144 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2145
2146 cleanup:
2147 ext4_ext_drop_refs(npath);
2148 kfree(npath);
2149 return err;
2150 }
2151
2152 static int ext4_fill_fiemap_extents(struct inode *inode,
2153 ext4_lblk_t block, ext4_lblk_t num,
2154 struct fiemap_extent_info *fieinfo)
2155 {
2156 struct ext4_ext_path *path = NULL;
2157 struct ext4_extent *ex;
2158 struct extent_status es;
2159 ext4_lblk_t next, next_del, start = 0, end = 0;
2160 ext4_lblk_t last = block + num;
2161 int exists, depth = 0, err = 0;
2162 unsigned int flags = 0;
2163 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2164
2165 while (block < last && block != EXT_MAX_BLOCKS) {
2166 num = last - block;
2167 /* find extent for this block */
2168 down_read(&EXT4_I(inode)->i_data_sem);
2169
2170 path = ext4_find_extent(inode, block, &path, 0);
2171 if (IS_ERR(path)) {
2172 up_read(&EXT4_I(inode)->i_data_sem);
2173 err = PTR_ERR(path);
2174 path = NULL;
2175 break;
2176 }
2177
2178 depth = ext_depth(inode);
2179 if (unlikely(path[depth].p_hdr == NULL)) {
2180 up_read(&EXT4_I(inode)->i_data_sem);
2181 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2182 err = -EFSCORRUPTED;
2183 break;
2184 }
2185 ex = path[depth].p_ext;
2186 next = ext4_ext_next_allocated_block(path);
2187
2188 flags = 0;
2189 exists = 0;
2190 if (!ex) {
2191 /* there is no extent yet, so try to allocate
2192 * all requested space */
2193 start = block;
2194 end = block + num;
2195 } else if (le32_to_cpu(ex->ee_block) > block) {
2196 /* need to allocate space before found extent */
2197 start = block;
2198 end = le32_to_cpu(ex->ee_block);
2199 if (block + num < end)
2200 end = block + num;
2201 } else if (block >= le32_to_cpu(ex->ee_block)
2202 + ext4_ext_get_actual_len(ex)) {
2203 /* need to allocate space after found extent */
2204 start = block;
2205 end = block + num;
2206 if (end >= next)
2207 end = next;
2208 } else if (block >= le32_to_cpu(ex->ee_block)) {
2209 /*
2210 * some part of requested space is covered
2211 * by found extent
2212 */
2213 start = block;
2214 end = le32_to_cpu(ex->ee_block)
2215 + ext4_ext_get_actual_len(ex);
2216 if (block + num < end)
2217 end = block + num;
2218 exists = 1;
2219 } else {
2220 BUG();
2221 }
2222 BUG_ON(end <= start);
2223
2224 if (!exists) {
2225 es.es_lblk = start;
2226 es.es_len = end - start;
2227 es.es_pblk = 0;
2228 } else {
2229 es.es_lblk = le32_to_cpu(ex->ee_block);
2230 es.es_len = ext4_ext_get_actual_len(ex);
2231 es.es_pblk = ext4_ext_pblock(ex);
2232 if (ext4_ext_is_unwritten(ex))
2233 flags |= FIEMAP_EXTENT_UNWRITTEN;
2234 }
2235
2236 /*
2237 * Find delayed extent and update es accordingly. We call
2238 * it even in !exists case to find out whether es is the
2239 * last existing extent or not.
2240 */
2241 next_del = ext4_find_delayed_extent(inode, &es);
2242 if (!exists && next_del) {
2243 exists = 1;
2244 flags |= (FIEMAP_EXTENT_DELALLOC |
2245 FIEMAP_EXTENT_UNKNOWN);
2246 }
2247 up_read(&EXT4_I(inode)->i_data_sem);
2248
2249 if (unlikely(es.es_len == 0)) {
2250 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2251 err = -EFSCORRUPTED;
2252 break;
2253 }
2254
2255 /*
2256 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2257 * we need to check next == EXT_MAX_BLOCKS because it is
2258 * possible that an extent is with unwritten and delayed
2259 * status due to when an extent is delayed allocated and
2260 * is allocated by fallocate status tree will track both of
2261 * them in a extent.
2262 *
2263 * So we could return a unwritten and delayed extent, and
2264 * its block is equal to 'next'.
2265 */
2266 if (next == next_del && next == EXT_MAX_BLOCKS) {
2267 flags |= FIEMAP_EXTENT_LAST;
2268 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2269 next != EXT_MAX_BLOCKS)) {
2270 EXT4_ERROR_INODE(inode,
2271 "next extent == %u, next "
2272 "delalloc extent = %u",
2273 next, next_del);
2274 err = -EFSCORRUPTED;
2275 break;
2276 }
2277 }
2278
2279 if (exists) {
2280 err = fiemap_fill_next_extent(fieinfo,
2281 (__u64)es.es_lblk << blksize_bits,
2282 (__u64)es.es_pblk << blksize_bits,
2283 (__u64)es.es_len << blksize_bits,
2284 flags);
2285 if (err < 0)
2286 break;
2287 if (err == 1) {
2288 err = 0;
2289 break;
2290 }
2291 }
2292
2293 block = es.es_lblk + es.es_len;
2294 }
2295
2296 ext4_ext_drop_refs(path);
2297 kfree(path);
2298 return err;
2299 }
2300
2301 /*
2302 * ext4_ext_determine_hole - determine hole around given block
2303 * @inode: inode we lookup in
2304 * @path: path in extent tree to @lblk
2305 * @lblk: pointer to logical block around which we want to determine hole
2306 *
2307 * Determine hole length (and start if easily possible) around given logical
2308 * block. We don't try too hard to find the beginning of the hole but @path
2309 * actually points to extent before @lblk, we provide it.
2310 *
2311 * The function returns the length of a hole starting at @lblk. We update @lblk
2312 * to the beginning of the hole if we managed to find it.
2313 */
2314 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2315 struct ext4_ext_path *path,
2316 ext4_lblk_t *lblk)
2317 {
2318 int depth = ext_depth(inode);
2319 struct ext4_extent *ex;
2320 ext4_lblk_t len;
2321
2322 ex = path[depth].p_ext;
2323 if (ex == NULL) {
2324 /* there is no extent yet, so gap is [0;-] */
2325 *lblk = 0;
2326 len = EXT_MAX_BLOCKS;
2327 } else if (*lblk < le32_to_cpu(ex->ee_block)) {
2328 len = le32_to_cpu(ex->ee_block) - *lblk;
2329 } else if (*lblk >= le32_to_cpu(ex->ee_block)
2330 + ext4_ext_get_actual_len(ex)) {
2331 ext4_lblk_t next;
2332
2333 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2334 next = ext4_ext_next_allocated_block(path);
2335 BUG_ON(next == *lblk);
2336 len = next - *lblk;
2337 } else {
2338 BUG();
2339 }
2340 return len;
2341 }
2342
2343 /*
2344 * ext4_ext_put_gap_in_cache:
2345 * calculate boundaries of the gap that the requested block fits into
2346 * and cache this gap
2347 */
2348 static void
2349 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2350 ext4_lblk_t hole_len)
2351 {
2352 struct extent_status es;
2353
2354 ext4_es_find_delayed_extent_range(inode, hole_start,
2355 hole_start + hole_len - 1, &es);
2356 if (es.es_len) {
2357 /* There's delayed extent containing lblock? */
2358 if (es.es_lblk <= hole_start)
2359 return;
2360 hole_len = min(es.es_lblk - hole_start, hole_len);
2361 }
2362 ext_debug(" -> %u:%u\n", hole_start, hole_len);
2363 ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2364 EXTENT_STATUS_HOLE);
2365 }
2366
2367 /*
2368 * ext4_ext_rm_idx:
2369 * removes index from the index block.
2370 */
2371 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2372 struct ext4_ext_path *path, int depth)
2373 {
2374 int err;
2375 ext4_fsblk_t leaf;
2376
2377 /* free index block */
2378 depth--;
2379 path = path + depth;
2380 leaf = ext4_idx_pblock(path->p_idx);
2381 if (unlikely(path->p_hdr->eh_entries == 0)) {
2382 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2383 return -EFSCORRUPTED;
2384 }
2385 err = ext4_ext_get_access(handle, inode, path);
2386 if (err)
2387 return err;
2388
2389 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2390 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2391 len *= sizeof(struct ext4_extent_idx);
2392 memmove(path->p_idx, path->p_idx + 1, len);
2393 }
2394
2395 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2396 err = ext4_ext_dirty(handle, inode, path);
2397 if (err)
2398 return err;
2399 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2400 trace_ext4_ext_rm_idx(inode, leaf);
2401
2402 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2403 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2404
2405 while (--depth >= 0) {
2406 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2407 break;
2408 path--;
2409 err = ext4_ext_get_access(handle, inode, path);
2410 if (err)
2411 break;
2412 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2413 err = ext4_ext_dirty(handle, inode, path);
2414 if (err)
2415 break;
2416 }
2417 return err;
2418 }
2419
2420 /*
2421 * ext4_ext_calc_credits_for_single_extent:
2422 * This routine returns max. credits that needed to insert an extent
2423 * to the extent tree.
2424 * When pass the actual path, the caller should calculate credits
2425 * under i_data_sem.
2426 */
2427 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2428 struct ext4_ext_path *path)
2429 {
2430 if (path) {
2431 int depth = ext_depth(inode);
2432 int ret = 0;
2433
2434 /* probably there is space in leaf? */
2435 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2436 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2437
2438 /*
2439 * There are some space in the leaf tree, no
2440 * need to account for leaf block credit
2441 *
2442 * bitmaps and block group descriptor blocks
2443 * and other metadata blocks still need to be
2444 * accounted.
2445 */
2446 /* 1 bitmap, 1 block group descriptor */
2447 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2448 return ret;
2449 }
2450 }
2451
2452 return ext4_chunk_trans_blocks(inode, nrblocks);
2453 }
2454
2455 /*
2456 * How many index/leaf blocks need to change/allocate to add @extents extents?
2457 *
2458 * If we add a single extent, then in the worse case, each tree level
2459 * index/leaf need to be changed in case of the tree split.
2460 *
2461 * If more extents are inserted, they could cause the whole tree split more
2462 * than once, but this is really rare.
2463 */
2464 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2465 {
2466 int index;
2467 int depth;
2468
2469 /* If we are converting the inline data, only one is needed here. */
2470 if (ext4_has_inline_data(inode))
2471 return 1;
2472
2473 depth = ext_depth(inode);
2474
2475 if (extents <= 1)
2476 index = depth * 2;
2477 else
2478 index = depth * 3;
2479
2480 return index;
2481 }
2482
2483 static inline int get_default_free_blocks_flags(struct inode *inode)
2484 {
2485 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
2486 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE))
2487 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2488 else if (ext4_should_journal_data(inode))
2489 return EXT4_FREE_BLOCKS_FORGET;
2490 return 0;
2491 }
2492
2493 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2494 struct ext4_extent *ex,
2495 long long *partial_cluster,
2496 ext4_lblk_t from, ext4_lblk_t to)
2497 {
2498 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2499 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2500 ext4_fsblk_t pblk;
2501 int flags = get_default_free_blocks_flags(inode);
2502
2503 /*
2504 * For bigalloc file systems, we never free a partial cluster
2505 * at the beginning of the extent. Instead, we make a note
2506 * that we tried freeing the cluster, and check to see if we
2507 * need to free it on a subsequent call to ext4_remove_blocks,
2508 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2509 */
2510 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2511
2512 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2513 /*
2514 * If we have a partial cluster, and it's different from the
2515 * cluster of the last block, we need to explicitly free the
2516 * partial cluster here.
2517 */
2518 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2519 if (*partial_cluster > 0 &&
2520 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2521 ext4_free_blocks(handle, inode, NULL,
2522 EXT4_C2B(sbi, *partial_cluster),
2523 sbi->s_cluster_ratio, flags);
2524 *partial_cluster = 0;
2525 }
2526
2527 #ifdef EXTENTS_STATS
2528 {
2529 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2530 spin_lock(&sbi->s_ext_stats_lock);
2531 sbi->s_ext_blocks += ee_len;
2532 sbi->s_ext_extents++;
2533 if (ee_len < sbi->s_ext_min)
2534 sbi->s_ext_min = ee_len;
2535 if (ee_len > sbi->s_ext_max)
2536 sbi->s_ext_max = ee_len;
2537 if (ext_depth(inode) > sbi->s_depth_max)
2538 sbi->s_depth_max = ext_depth(inode);
2539 spin_unlock(&sbi->s_ext_stats_lock);
2540 }
2541 #endif
2542 if (from >= le32_to_cpu(ex->ee_block)
2543 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2544 /* tail removal */
2545 ext4_lblk_t num;
2546 long long first_cluster;
2547
2548 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2549 pblk = ext4_ext_pblock(ex) + ee_len - num;
2550 /*
2551 * Usually we want to free partial cluster at the end of the
2552 * extent, except for the situation when the cluster is still
2553 * used by any other extent (partial_cluster is negative).
2554 */
2555 if (*partial_cluster < 0 &&
2556 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2557 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2558
2559 ext_debug("free last %u blocks starting %llu partial %lld\n",
2560 num, pblk, *partial_cluster);
2561 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2562 /*
2563 * If the block range to be freed didn't start at the
2564 * beginning of a cluster, and we removed the entire
2565 * extent and the cluster is not used by any other extent,
2566 * save the partial cluster here, since we might need to
2567 * delete if we determine that the truncate or punch hole
2568 * operation has removed all of the blocks in the cluster.
2569 * If that cluster is used by another extent, preserve its
2570 * negative value so it isn't freed later on.
2571 *
2572 * If the whole extent wasn't freed, we've reached the
2573 * start of the truncated/punched region and have finished
2574 * removing blocks. If there's a partial cluster here it's
2575 * shared with the remainder of the extent and is no longer
2576 * a candidate for removal.
2577 */
2578 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2579 first_cluster = (long long) EXT4_B2C(sbi, pblk);
2580 if (first_cluster != -*partial_cluster)
2581 *partial_cluster = first_cluster;
2582 } else {
2583 *partial_cluster = 0;
2584 }
2585 } else
2586 ext4_error(sbi->s_sb, "strange request: removal(2) "
2587 "%u-%u from %u:%u",
2588 from, to, le32_to_cpu(ex->ee_block), ee_len);
2589 return 0;
2590 }
2591
2592
2593 /*
2594 * ext4_ext_rm_leaf() Removes the extents associated with the
2595 * blocks appearing between "start" and "end". Both "start"
2596 * and "end" must appear in the same extent or EIO is returned.
2597 *
2598 * @handle: The journal handle
2599 * @inode: The files inode
2600 * @path: The path to the leaf
2601 * @partial_cluster: The cluster which we'll have to free if all extents
2602 * has been released from it. However, if this value is
2603 * negative, it's a cluster just to the right of the
2604 * punched region and it must not be freed.
2605 * @start: The first block to remove
2606 * @end: The last block to remove
2607 */
2608 static int
2609 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2610 struct ext4_ext_path *path,
2611 long long *partial_cluster,
2612 ext4_lblk_t start, ext4_lblk_t end)
2613 {
2614 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2615 int err = 0, correct_index = 0;
2616 int depth = ext_depth(inode), credits;
2617 struct ext4_extent_header *eh;
2618 ext4_lblk_t a, b;
2619 unsigned num;
2620 ext4_lblk_t ex_ee_block;
2621 unsigned short ex_ee_len;
2622 unsigned unwritten = 0;
2623 struct ext4_extent *ex;
2624 ext4_fsblk_t pblk;
2625
2626 /* the header must be checked already in ext4_ext_remove_space() */
2627 ext_debug("truncate since %u in leaf to %u\n", start, end);
2628 if (!path[depth].p_hdr)
2629 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2630 eh = path[depth].p_hdr;
2631 if (unlikely(path[depth].p_hdr == NULL)) {
2632 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2633 return -EFSCORRUPTED;
2634 }
2635 /* find where to start removing */
2636 ex = path[depth].p_ext;
2637 if (!ex)
2638 ex = EXT_LAST_EXTENT(eh);
2639
2640 ex_ee_block = le32_to_cpu(ex->ee_block);
2641 ex_ee_len = ext4_ext_get_actual_len(ex);
2642
2643 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2644
2645 while (ex >= EXT_FIRST_EXTENT(eh) &&
2646 ex_ee_block + ex_ee_len > start) {
2647
2648 if (ext4_ext_is_unwritten(ex))
2649 unwritten = 1;
2650 else
2651 unwritten = 0;
2652
2653 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2654 unwritten, ex_ee_len);
2655 path[depth].p_ext = ex;
2656
2657 a = ex_ee_block > start ? ex_ee_block : start;
2658 b = ex_ee_block+ex_ee_len - 1 < end ?
2659 ex_ee_block+ex_ee_len - 1 : end;
2660
2661 ext_debug(" border %u:%u\n", a, b);
2662
2663 /* If this extent is beyond the end of the hole, skip it */
2664 if (end < ex_ee_block) {
2665 /*
2666 * We're going to skip this extent and move to another,
2667 * so note that its first cluster is in use to avoid
2668 * freeing it when removing blocks. Eventually, the
2669 * right edge of the truncated/punched region will
2670 * be just to the left.
2671 */
2672 if (sbi->s_cluster_ratio > 1) {
2673 pblk = ext4_ext_pblock(ex);
2674 *partial_cluster =
2675 -(long long) EXT4_B2C(sbi, pblk);
2676 }
2677 ex--;
2678 ex_ee_block = le32_to_cpu(ex->ee_block);
2679 ex_ee_len = ext4_ext_get_actual_len(ex);
2680 continue;
2681 } else if (b != ex_ee_block + ex_ee_len - 1) {
2682 EXT4_ERROR_INODE(inode,
2683 "can not handle truncate %u:%u "
2684 "on extent %u:%u",
2685 start, end, ex_ee_block,
2686 ex_ee_block + ex_ee_len - 1);
2687 err = -EFSCORRUPTED;
2688 goto out;
2689 } else if (a != ex_ee_block) {
2690 /* remove tail of the extent */
2691 num = a - ex_ee_block;
2692 } else {
2693 /* remove whole extent: excellent! */
2694 num = 0;
2695 }
2696 /*
2697 * 3 for leaf, sb, and inode plus 2 (bmap and group
2698 * descriptor) for each block group; assume two block
2699 * groups plus ex_ee_len/blocks_per_block_group for
2700 * the worst case
2701 */
2702 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2703 if (ex == EXT_FIRST_EXTENT(eh)) {
2704 correct_index = 1;
2705 credits += (ext_depth(inode)) + 1;
2706 }
2707 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2708
2709 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2710 if (err)
2711 goto out;
2712
2713 err = ext4_ext_get_access(handle, inode, path + depth);
2714 if (err)
2715 goto out;
2716
2717 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2718 a, b);
2719 if (err)
2720 goto out;
2721
2722 if (num == 0)
2723 /* this extent is removed; mark slot entirely unused */
2724 ext4_ext_store_pblock(ex, 0);
2725
2726 ex->ee_len = cpu_to_le16(num);
2727 /*
2728 * Do not mark unwritten if all the blocks in the
2729 * extent have been removed.
2730 */
2731 if (unwritten && num)
2732 ext4_ext_mark_unwritten(ex);
2733 /*
2734 * If the extent was completely released,
2735 * we need to remove it from the leaf
2736 */
2737 if (num == 0) {
2738 if (end != EXT_MAX_BLOCKS - 1) {
2739 /*
2740 * For hole punching, we need to scoot all the
2741 * extents up when an extent is removed so that
2742 * we dont have blank extents in the middle
2743 */
2744 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2745 sizeof(struct ext4_extent));
2746
2747 /* Now get rid of the one at the end */
2748 memset(EXT_LAST_EXTENT(eh), 0,
2749 sizeof(struct ext4_extent));
2750 }
2751 le16_add_cpu(&eh->eh_entries, -1);
2752 }
2753
2754 err = ext4_ext_dirty(handle, inode, path + depth);
2755 if (err)
2756 goto out;
2757
2758 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2759 ext4_ext_pblock(ex));
2760 ex--;
2761 ex_ee_block = le32_to_cpu(ex->ee_block);
2762 ex_ee_len = ext4_ext_get_actual_len(ex);
2763 }
2764
2765 if (correct_index && eh->eh_entries)
2766 err = ext4_ext_correct_indexes(handle, inode, path);
2767
2768 /*
2769 * If there's a partial cluster and at least one extent remains in
2770 * the leaf, free the partial cluster if it isn't shared with the
2771 * current extent. If it is shared with the current extent
2772 * we zero partial_cluster because we've reached the start of the
2773 * truncated/punched region and we're done removing blocks.
2774 */
2775 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2776 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2777 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2778 ext4_free_blocks(handle, inode, NULL,
2779 EXT4_C2B(sbi, *partial_cluster),
2780 sbi->s_cluster_ratio,
2781 get_default_free_blocks_flags(inode));
2782 }
2783 *partial_cluster = 0;
2784 }
2785
2786 /* if this leaf is free, then we should
2787 * remove it from index block above */
2788 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2789 err = ext4_ext_rm_idx(handle, inode, path, depth);
2790
2791 out:
2792 return err;
2793 }
2794
2795 /*
2796 * ext4_ext_more_to_rm:
2797 * returns 1 if current index has to be freed (even partial)
2798 */
2799 static int
2800 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2801 {
2802 BUG_ON(path->p_idx == NULL);
2803
2804 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2805 return 0;
2806
2807 /*
2808 * if truncate on deeper level happened, it wasn't partial,
2809 * so we have to consider current index for truncation
2810 */
2811 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2812 return 0;
2813 return 1;
2814 }
2815
2816 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2817 ext4_lblk_t end)
2818 {
2819 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2820 int depth = ext_depth(inode);
2821 struct ext4_ext_path *path = NULL;
2822 long long partial_cluster = 0;
2823 handle_t *handle;
2824 int i = 0, err = 0;
2825
2826 ext_debug("truncate since %u to %u\n", start, end);
2827
2828 /* probably first extent we're gonna free will be last in block */
2829 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2830 if (IS_ERR(handle))
2831 return PTR_ERR(handle);
2832
2833 again:
2834 trace_ext4_ext_remove_space(inode, start, end, depth);
2835
2836 /*
2837 * Check if we are removing extents inside the extent tree. If that
2838 * is the case, we are going to punch a hole inside the extent tree
2839 * so we have to check whether we need to split the extent covering
2840 * the last block to remove so we can easily remove the part of it
2841 * in ext4_ext_rm_leaf().
2842 */
2843 if (end < EXT_MAX_BLOCKS - 1) {
2844 struct ext4_extent *ex;
2845 ext4_lblk_t ee_block, ex_end, lblk;
2846 ext4_fsblk_t pblk;
2847
2848 /* find extent for or closest extent to this block */
2849 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2850 if (IS_ERR(path)) {
2851 ext4_journal_stop(handle);
2852 return PTR_ERR(path);
2853 }
2854 depth = ext_depth(inode);
2855 /* Leaf not may not exist only if inode has no blocks at all */
2856 ex = path[depth].p_ext;
2857 if (!ex) {
2858 if (depth) {
2859 EXT4_ERROR_INODE(inode,
2860 "path[%d].p_hdr == NULL",
2861 depth);
2862 err = -EFSCORRUPTED;
2863 }
2864 goto out;
2865 }
2866
2867 ee_block = le32_to_cpu(ex->ee_block);
2868 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2869
2870 /*
2871 * See if the last block is inside the extent, if so split
2872 * the extent at 'end' block so we can easily remove the
2873 * tail of the first part of the split extent in
2874 * ext4_ext_rm_leaf().
2875 */
2876 if (end >= ee_block && end < ex_end) {
2877
2878 /*
2879 * If we're going to split the extent, note that
2880 * the cluster containing the block after 'end' is
2881 * in use to avoid freeing it when removing blocks.
2882 */
2883 if (sbi->s_cluster_ratio > 1) {
2884 pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2885 partial_cluster =
2886 -(long long) EXT4_B2C(sbi, pblk);
2887 }
2888
2889 /*
2890 * Split the extent in two so that 'end' is the last
2891 * block in the first new extent. Also we should not
2892 * fail removing space due to ENOSPC so try to use
2893 * reserved block if that happens.
2894 */
2895 err = ext4_force_split_extent_at(handle, inode, &path,
2896 end + 1, 1);
2897 if (err < 0)
2898 goto out;
2899
2900 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2901 /*
2902 * If there's an extent to the right its first cluster
2903 * contains the immediate right boundary of the
2904 * truncated/punched region. Set partial_cluster to
2905 * its negative value so it won't be freed if shared
2906 * with the current extent. The end < ee_block case
2907 * is handled in ext4_ext_rm_leaf().
2908 */
2909 lblk = ex_end + 1;
2910 err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2911 &ex);
2912 if (err)
2913 goto out;
2914 if (pblk)
2915 partial_cluster =
2916 -(long long) EXT4_B2C(sbi, pblk);
2917 }
2918 }
2919 /*
2920 * We start scanning from right side, freeing all the blocks
2921 * after i_size and walking into the tree depth-wise.
2922 */
2923 depth = ext_depth(inode);
2924 if (path) {
2925 int k = i = depth;
2926 while (--k > 0)
2927 path[k].p_block =
2928 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2929 } else {
2930 path = kcalloc(depth + 1, sizeof(struct ext4_ext_path),
2931 GFP_NOFS);
2932 if (path == NULL) {
2933 ext4_journal_stop(handle);
2934 return -ENOMEM;
2935 }
2936 path[0].p_maxdepth = path[0].p_depth = depth;
2937 path[0].p_hdr = ext_inode_hdr(inode);
2938 i = 0;
2939
2940 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2941 err = -EFSCORRUPTED;
2942 goto out;
2943 }
2944 }
2945 err = 0;
2946
2947 while (i >= 0 && err == 0) {
2948 if (i == depth) {
2949 /* this is leaf block */
2950 err = ext4_ext_rm_leaf(handle, inode, path,
2951 &partial_cluster, start,
2952 end);
2953 /* root level has p_bh == NULL, brelse() eats this */
2954 brelse(path[i].p_bh);
2955 path[i].p_bh = NULL;
2956 i--;
2957 continue;
2958 }
2959
2960 /* this is index block */
2961 if (!path[i].p_hdr) {
2962 ext_debug("initialize header\n");
2963 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2964 }
2965
2966 if (!path[i].p_idx) {
2967 /* this level hasn't been touched yet */
2968 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2969 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2970 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2971 path[i].p_hdr,
2972 le16_to_cpu(path[i].p_hdr->eh_entries));
2973 } else {
2974 /* we were already here, see at next index */
2975 path[i].p_idx--;
2976 }
2977
2978 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2979 i, EXT_FIRST_INDEX(path[i].p_hdr),
2980 path[i].p_idx);
2981 if (ext4_ext_more_to_rm(path + i)) {
2982 struct buffer_head *bh;
2983 /* go to the next level */
2984 ext_debug("move to level %d (block %llu)\n",
2985 i + 1, ext4_idx_pblock(path[i].p_idx));
2986 memset(path + i + 1, 0, sizeof(*path));
2987 bh = read_extent_tree_block(inode,
2988 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2989 EXT4_EX_NOCACHE);
2990 if (IS_ERR(bh)) {
2991 /* should we reset i_size? */
2992 err = PTR_ERR(bh);
2993 break;
2994 }
2995 /* Yield here to deal with large extent trees.
2996 * Should be a no-op if we did IO above. */
2997 cond_resched();
2998 if (WARN_ON(i + 1 > depth)) {
2999 err = -EFSCORRUPTED;
3000 break;
3001 }
3002 path[i + 1].p_bh = bh;
3003
3004 /* save actual number of indexes since this
3005 * number is changed at the next iteration */
3006 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3007 i++;
3008 } else {
3009 /* we finished processing this index, go up */
3010 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3011 /* index is empty, remove it;
3012 * handle must be already prepared by the
3013 * truncatei_leaf() */
3014 err = ext4_ext_rm_idx(handle, inode, path, i);
3015 }
3016 /* root level has p_bh == NULL, brelse() eats this */
3017 brelse(path[i].p_bh);
3018 path[i].p_bh = NULL;
3019 i--;
3020 ext_debug("return to level %d\n", i);
3021 }
3022 }
3023
3024 trace_ext4_ext_remove_space_done(inode, start, end, depth,
3025 partial_cluster, path->p_hdr->eh_entries);
3026
3027 /*
3028 * If we still have something in the partial cluster and we have removed
3029 * even the first extent, then we should free the blocks in the partial
3030 * cluster as well. (This code will only run when there are no leaves
3031 * to the immediate left of the truncated/punched region.)
3032 */
3033 if (partial_cluster > 0 && err == 0) {
3034 /* don't zero partial_cluster since it's not used afterwards */
3035 ext4_free_blocks(handle, inode, NULL,
3036 EXT4_C2B(sbi, partial_cluster),
3037 sbi->s_cluster_ratio,
3038 get_default_free_blocks_flags(inode));
3039 }
3040
3041 /* TODO: flexible tree reduction should be here */
3042 if (path->p_hdr->eh_entries == 0) {
3043 /*
3044 * truncate to zero freed all the tree,
3045 * so we need to correct eh_depth
3046 */
3047 err = ext4_ext_get_access(handle, inode, path);
3048 if (err == 0) {
3049 ext_inode_hdr(inode)->eh_depth = 0;
3050 ext_inode_hdr(inode)->eh_max =
3051 cpu_to_le16(ext4_ext_space_root(inode, 0));
3052 err = ext4_ext_dirty(handle, inode, path);
3053 }
3054 }
3055 out:
3056 ext4_ext_drop_refs(path);
3057 kfree(path);
3058 path = NULL;
3059 if (err == -EAGAIN)
3060 goto again;
3061 ext4_journal_stop(handle);
3062
3063 return err;
3064 }
3065
3066 /*
3067 * called at mount time
3068 */
3069 void ext4_ext_init(struct super_block *sb)
3070 {
3071 /*
3072 * possible initialization would be here
3073 */
3074
3075 if (ext4_has_feature_extents(sb)) {
3076 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3077 printk(KERN_INFO "EXT4-fs: file extents enabled"
3078 #ifdef AGGRESSIVE_TEST
3079 ", aggressive tests"
3080 #endif
3081 #ifdef CHECK_BINSEARCH
3082 ", check binsearch"
3083 #endif
3084 #ifdef EXTENTS_STATS
3085 ", stats"
3086 #endif
3087 "\n");
3088 #endif
3089 #ifdef EXTENTS_STATS
3090 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3091 EXT4_SB(sb)->s_ext_min = 1 << 30;
3092 EXT4_SB(sb)->s_ext_max = 0;
3093 #endif
3094 }
3095 }
3096
3097 /*
3098 * called at umount time
3099 */
3100 void ext4_ext_release(struct super_block *sb)
3101 {
3102 if (!ext4_has_feature_extents(sb))
3103 return;
3104
3105 #ifdef EXTENTS_STATS
3106 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3107 struct ext4_sb_info *sbi = EXT4_SB(sb);
3108 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3109 sbi->s_ext_blocks, sbi->s_ext_extents,
3110 sbi->s_ext_blocks / sbi->s_ext_extents);
3111 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3112 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3113 }
3114 #endif
3115 }
3116
3117 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3118 {
3119 ext4_lblk_t ee_block;
3120 ext4_fsblk_t ee_pblock;
3121 unsigned int ee_len;
3122
3123 ee_block = le32_to_cpu(ex->ee_block);
3124 ee_len = ext4_ext_get_actual_len(ex);
3125 ee_pblock = ext4_ext_pblock(ex);
3126
3127 if (ee_len == 0)
3128 return 0;
3129
3130 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3131 EXTENT_STATUS_WRITTEN);
3132 }
3133
3134 /* FIXME!! we need to try to merge to left or right after zero-out */
3135 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3136 {
3137 ext4_fsblk_t ee_pblock;
3138 unsigned int ee_len;
3139
3140 ee_len = ext4_ext_get_actual_len(ex);
3141 ee_pblock = ext4_ext_pblock(ex);
3142 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3143 ee_len);
3144 }
3145
3146 /*
3147 * ext4_split_extent_at() splits an extent at given block.
3148 *
3149 * @handle: the journal handle
3150 * @inode: the file inode
3151 * @path: the path to the extent
3152 * @split: the logical block where the extent is splitted.
3153 * @split_flags: indicates if the extent could be zeroout if split fails, and
3154 * the states(init or unwritten) of new extents.
3155 * @flags: flags used to insert new extent to extent tree.
3156 *
3157 *
3158 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3159 * of which are deterimined by split_flag.
3160 *
3161 * There are two cases:
3162 * a> the extent are splitted into two extent.
3163 * b> split is not needed, and just mark the extent.
3164 *
3165 * return 0 on success.
3166 */
3167 static int ext4_split_extent_at(handle_t *handle,
3168 struct inode *inode,
3169 struct ext4_ext_path **ppath,
3170 ext4_lblk_t split,
3171 int split_flag,
3172 int flags)
3173 {
3174 struct ext4_ext_path *path = *ppath;
3175 ext4_fsblk_t newblock;
3176 ext4_lblk_t ee_block;
3177 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3178 struct ext4_extent *ex2 = NULL;
3179 unsigned int ee_len, depth;
3180 int err = 0;
3181
3182 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3183 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3184
3185 ext_debug("ext4_split_extents_at: inode %lu, logical"
3186 "block %llu\n", inode->i_ino, (unsigned long long)split);
3187
3188 ext4_ext_show_leaf(inode, path);
3189
3190 depth = ext_depth(inode);
3191 ex = path[depth].p_ext;
3192 ee_block = le32_to_cpu(ex->ee_block);
3193 ee_len = ext4_ext_get_actual_len(ex);
3194 newblock = split - ee_block + ext4_ext_pblock(ex);
3195
3196 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3197 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3198 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3199 EXT4_EXT_MARK_UNWRIT1 |
3200 EXT4_EXT_MARK_UNWRIT2));
3201
3202 err = ext4_ext_get_access(handle, inode, path + depth);
3203 if (err)
3204 goto out;
3205
3206 if (split == ee_block) {
3207 /*
3208 * case b: block @split is the block that the extent begins with
3209 * then we just change the state of the extent, and splitting
3210 * is not needed.
3211 */
3212 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3213 ext4_ext_mark_unwritten(ex);
3214 else
3215 ext4_ext_mark_initialized(ex);
3216
3217 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3218 ext4_ext_try_to_merge(handle, inode, path, ex);
3219
3220 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3221 goto out;
3222 }
3223
3224 /* case a */
3225 memcpy(&orig_ex, ex, sizeof(orig_ex));
3226 ex->ee_len = cpu_to_le16(split - ee_block);
3227 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3228 ext4_ext_mark_unwritten(ex);
3229
3230 /*
3231 * path may lead to new leaf, not to original leaf any more
3232 * after ext4_ext_insert_extent() returns,
3233 */
3234 err = ext4_ext_dirty(handle, inode, path + depth);
3235 if (err)
3236 goto fix_extent_len;
3237
3238 ex2 = &newex;
3239 ex2->ee_block = cpu_to_le32(split);
3240 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3241 ext4_ext_store_pblock(ex2, newblock);
3242 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3243 ext4_ext_mark_unwritten(ex2);
3244
3245 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3246 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3247 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3248 if (split_flag & EXT4_EXT_DATA_VALID1) {
3249 err = ext4_ext_zeroout(inode, ex2);
3250 zero_ex.ee_block = ex2->ee_block;
3251 zero_ex.ee_len = cpu_to_le16(
3252 ext4_ext_get_actual_len(ex2));
3253 ext4_ext_store_pblock(&zero_ex,
3254 ext4_ext_pblock(ex2));
3255 } else {
3256 err = ext4_ext_zeroout(inode, ex);
3257 zero_ex.ee_block = ex->ee_block;
3258 zero_ex.ee_len = cpu_to_le16(
3259 ext4_ext_get_actual_len(ex));
3260 ext4_ext_store_pblock(&zero_ex,
3261 ext4_ext_pblock(ex));
3262 }
3263 } else {
3264 err = ext4_ext_zeroout(inode, &orig_ex);
3265 zero_ex.ee_block = orig_ex.ee_block;
3266 zero_ex.ee_len = cpu_to_le16(
3267 ext4_ext_get_actual_len(&orig_ex));
3268 ext4_ext_store_pblock(&zero_ex,
3269 ext4_ext_pblock(&orig_ex));
3270 }
3271
3272 if (err)
3273 goto fix_extent_len;
3274 /* update the extent length and mark as initialized */
3275 ex->ee_len = cpu_to_le16(ee_len);
3276 ext4_ext_try_to_merge(handle, inode, path, ex);
3277 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3278 if (err)
3279 goto fix_extent_len;
3280
3281 /* update extent status tree */
3282 err = ext4_zeroout_es(inode, &zero_ex);
3283
3284 goto out;
3285 } else if (err)
3286 goto fix_extent_len;
3287
3288 out:
3289 ext4_ext_show_leaf(inode, path);
3290 return err;
3291
3292 fix_extent_len:
3293 ex->ee_len = orig_ex.ee_len;
3294 ext4_ext_dirty(handle, inode, path + path->p_depth);
3295 return err;
3296 }
3297
3298 /*
3299 * ext4_split_extents() splits an extent and mark extent which is covered
3300 * by @map as split_flags indicates
3301 *
3302 * It may result in splitting the extent into multiple extents (up to three)
3303 * There are three possibilities:
3304 * a> There is no split required
3305 * b> Splits in two extents: Split is happening at either end of the extent
3306 * c> Splits in three extents: Somone is splitting in middle of the extent
3307 *
3308 */
3309 static int ext4_split_extent(handle_t *handle,
3310 struct inode *inode,
3311 struct ext4_ext_path **ppath,
3312 struct ext4_map_blocks *map,
3313 int split_flag,
3314 int flags)
3315 {
3316 struct ext4_ext_path *path = *ppath;
3317 ext4_lblk_t ee_block;
3318 struct ext4_extent *ex;
3319 unsigned int ee_len, depth;
3320 int err = 0;
3321 int unwritten;
3322 int split_flag1, flags1;
3323 int allocated = map->m_len;
3324
3325 depth = ext_depth(inode);
3326 ex = path[depth].p_ext;
3327 ee_block = le32_to_cpu(ex->ee_block);
3328 ee_len = ext4_ext_get_actual_len(ex);
3329 unwritten = ext4_ext_is_unwritten(ex);
3330
3331 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3332 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3333 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3334 if (unwritten)
3335 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3336 EXT4_EXT_MARK_UNWRIT2;
3337 if (split_flag & EXT4_EXT_DATA_VALID2)
3338 split_flag1 |= EXT4_EXT_DATA_VALID1;
3339 err = ext4_split_extent_at(handle, inode, ppath,
3340 map->m_lblk + map->m_len, split_flag1, flags1);
3341 if (err)
3342 goto out;
3343 } else {
3344 allocated = ee_len - (map->m_lblk - ee_block);
3345 }
3346 /*
3347 * Update path is required because previous ext4_split_extent_at() may
3348 * result in split of original leaf or extent zeroout.
3349 */
3350 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3351 if (IS_ERR(path))
3352 return PTR_ERR(path);
3353 depth = ext_depth(inode);
3354 ex = path[depth].p_ext;
3355 if (!ex) {
3356 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3357 (unsigned long) map->m_lblk);
3358 return -EFSCORRUPTED;
3359 }
3360 unwritten = ext4_ext_is_unwritten(ex);
3361 split_flag1 = 0;
3362
3363 if (map->m_lblk >= ee_block) {
3364 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3365 if (unwritten) {
3366 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3367 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3368 EXT4_EXT_MARK_UNWRIT2);
3369 }
3370 err = ext4_split_extent_at(handle, inode, ppath,
3371 map->m_lblk, split_flag1, flags);
3372 if (err)
3373 goto out;
3374 }
3375
3376 ext4_ext_show_leaf(inode, path);
3377 out:
3378 return err ? err : allocated;
3379 }
3380
3381 /*
3382 * This function is called by ext4_ext_map_blocks() if someone tries to write
3383 * to an unwritten extent. It may result in splitting the unwritten
3384 * extent into multiple extents (up to three - one initialized and two
3385 * unwritten).
3386 * There are three possibilities:
3387 * a> There is no split required: Entire extent should be initialized
3388 * b> Splits in two extents: Write is happening at either end of the extent
3389 * c> Splits in three extents: Somone is writing in middle of the extent
3390 *
3391 * Pre-conditions:
3392 * - The extent pointed to by 'path' is unwritten.
3393 * - The extent pointed to by 'path' contains a superset
3394 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3395 *
3396 * Post-conditions on success:
3397 * - the returned value is the number of blocks beyond map->l_lblk
3398 * that are allocated and initialized.
3399 * It is guaranteed to be >= map->m_len.
3400 */
3401 static int ext4_ext_convert_to_initialized(handle_t *handle,
3402 struct inode *inode,
3403 struct ext4_map_blocks *map,
3404 struct ext4_ext_path **ppath,
3405 int flags)
3406 {
3407 struct ext4_ext_path *path = *ppath;
3408 struct ext4_sb_info *sbi;
3409 struct ext4_extent_header *eh;
3410 struct ext4_map_blocks split_map;
3411 struct ext4_extent zero_ex1, zero_ex2;
3412 struct ext4_extent *ex, *abut_ex;
3413 ext4_lblk_t ee_block, eof_block;
3414 unsigned int ee_len, depth, map_len = map->m_len;
3415 int allocated = 0, max_zeroout = 0;
3416 int err = 0;
3417 int split_flag = EXT4_EXT_DATA_VALID2;
3418
3419 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3420 "block %llu, max_blocks %u\n", inode->i_ino,
3421 (unsigned long long)map->m_lblk, map_len);
3422
3423 sbi = EXT4_SB(inode->i_sb);
3424 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3425 inode->i_sb->s_blocksize_bits;
3426 if (eof_block < map->m_lblk + map_len)
3427 eof_block = map->m_lblk + map_len;
3428
3429 depth = ext_depth(inode);
3430 eh = path[depth].p_hdr;
3431 ex = path[depth].p_ext;
3432 ee_block = le32_to_cpu(ex->ee_block);
3433 ee_len = ext4_ext_get_actual_len(ex);
3434 zero_ex1.ee_len = 0;
3435 zero_ex2.ee_len = 0;
3436
3437 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3438
3439 /* Pre-conditions */
3440 BUG_ON(!ext4_ext_is_unwritten(ex));
3441 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3442
3443 /*
3444 * Attempt to transfer newly initialized blocks from the currently
3445 * unwritten extent to its neighbor. This is much cheaper
3446 * than an insertion followed by a merge as those involve costly
3447 * memmove() calls. Transferring to the left is the common case in
3448 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3449 * followed by append writes.
3450 *
3451 * Limitations of the current logic:
3452 * - L1: we do not deal with writes covering the whole extent.
3453 * This would require removing the extent if the transfer
3454 * is possible.
3455 * - L2: we only attempt to merge with an extent stored in the
3456 * same extent tree node.
3457 */
3458 if ((map->m_lblk == ee_block) &&
3459 /* See if we can merge left */
3460 (map_len < ee_len) && /*L1*/
3461 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3462 ext4_lblk_t prev_lblk;
3463 ext4_fsblk_t prev_pblk, ee_pblk;
3464 unsigned int prev_len;
3465
3466 abut_ex = ex - 1;
3467 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3468 prev_len = ext4_ext_get_actual_len(abut_ex);
3469 prev_pblk = ext4_ext_pblock(abut_ex);
3470 ee_pblk = ext4_ext_pblock(ex);
3471
3472 /*
3473 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3474 * upon those conditions:
3475 * - C1: abut_ex is initialized,
3476 * - C2: abut_ex is logically abutting ex,
3477 * - C3: abut_ex is physically abutting ex,
3478 * - C4: abut_ex can receive the additional blocks without
3479 * overflowing the (initialized) length limit.
3480 */
3481 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3482 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3483 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3484 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3485 err = ext4_ext_get_access(handle, inode, path + depth);
3486 if (err)
3487 goto out;
3488
3489 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3490 map, ex, abut_ex);
3491
3492 /* Shift the start of ex by 'map_len' blocks */
3493 ex->ee_block = cpu_to_le32(ee_block + map_len);
3494 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3495 ex->ee_len = cpu_to_le16(ee_len - map_len);
3496 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3497
3498 /* Extend abut_ex by 'map_len' blocks */
3499 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3500
3501 /* Result: number of initialized blocks past m_lblk */
3502 allocated = map_len;
3503 }
3504 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3505 (map_len < ee_len) && /*L1*/
3506 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3507 /* See if we can merge right */
3508 ext4_lblk_t next_lblk;
3509 ext4_fsblk_t next_pblk, ee_pblk;
3510 unsigned int next_len;
3511
3512 abut_ex = ex + 1;
3513 next_lblk = le32_to_cpu(abut_ex->ee_block);
3514 next_len = ext4_ext_get_actual_len(abut_ex);
3515 next_pblk = ext4_ext_pblock(abut_ex);
3516 ee_pblk = ext4_ext_pblock(ex);
3517
3518 /*
3519 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3520 * upon those conditions:
3521 * - C1: abut_ex is initialized,
3522 * - C2: abut_ex is logically abutting ex,
3523 * - C3: abut_ex is physically abutting ex,
3524 * - C4: abut_ex can receive the additional blocks without
3525 * overflowing the (initialized) length limit.
3526 */
3527 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3528 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3529 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3530 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3531 err = ext4_ext_get_access(handle, inode, path + depth);
3532 if (err)
3533 goto out;
3534
3535 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3536 map, ex, abut_ex);
3537
3538 /* Shift the start of abut_ex by 'map_len' blocks */
3539 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3540 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3541 ex->ee_len = cpu_to_le16(ee_len - map_len);
3542 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3543
3544 /* Extend abut_ex by 'map_len' blocks */
3545 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3546
3547 /* Result: number of initialized blocks past m_lblk */
3548 allocated = map_len;
3549 }
3550 }
3551 if (allocated) {
3552 /* Mark the block containing both extents as dirty */
3553 ext4_ext_dirty(handle, inode, path + depth);
3554
3555 /* Update path to point to the right extent */
3556 path[depth].p_ext = abut_ex;
3557 goto out;
3558 } else
3559 allocated = ee_len - (map->m_lblk - ee_block);
3560
3561 WARN_ON(map->m_lblk < ee_block);
3562 /*
3563 * It is safe to convert extent to initialized via explicit
3564 * zeroout only if extent is fully inside i_size or new_size.
3565 */
3566 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3567
3568 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3569 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3570 (inode->i_sb->s_blocksize_bits - 10);
3571
3572 if (ext4_encrypted_inode(inode))
3573 max_zeroout = 0;
3574
3575 /*
3576 * five cases:
3577 * 1. split the extent into three extents.
3578 * 2. split the extent into two extents, zeroout the head of the first
3579 * extent.
3580 * 3. split the extent into two extents, zeroout the tail of the second
3581 * extent.
3582 * 4. split the extent into two extents with out zeroout.
3583 * 5. no splitting needed, just possibly zeroout the head and / or the
3584 * tail of the extent.
3585 */
3586 split_map.m_lblk = map->m_lblk;
3587 split_map.m_len = map->m_len;
3588
3589 if (max_zeroout && (allocated > split_map.m_len)) {
3590 if (allocated <= max_zeroout) {
3591 /* case 3 or 5 */
3592 zero_ex1.ee_block =
3593 cpu_to_le32(split_map.m_lblk +
3594 split_map.m_len);
3595 zero_ex1.ee_len =
3596 cpu_to_le16(allocated - split_map.m_len);
3597 ext4_ext_store_pblock(&zero_ex1,
3598 ext4_ext_pblock(ex) + split_map.m_lblk +
3599 split_map.m_len - ee_block);
3600 err = ext4_ext_zeroout(inode, &zero_ex1);
3601 if (err)
3602 goto out;
3603 split_map.m_len = allocated;
3604 }
3605 if (split_map.m_lblk - ee_block + split_map.m_len <
3606 max_zeroout) {
3607 /* case 2 or 5 */
3608 if (split_map.m_lblk != ee_block) {
3609 zero_ex2.ee_block = ex->ee_block;
3610 zero_ex2.ee_len = cpu_to_le16(split_map.m_lblk -
3611 ee_block);
3612 ext4_ext_store_pblock(&zero_ex2,
3613 ext4_ext_pblock(ex));
3614 err = ext4_ext_zeroout(inode, &zero_ex2);
3615 if (err)
3616 goto out;
3617 }
3618
3619 split_map.m_len += split_map.m_lblk - ee_block;
3620 split_map.m_lblk = ee_block;
3621 allocated = map->m_len;
3622 }
3623 }
3624
3625 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3626 flags);
3627 if (err > 0)
3628 err = 0;
3629 out:
3630 /* If we have gotten a failure, don't zero out status tree */
3631 if (!err) {
3632 err = ext4_zeroout_es(inode, &zero_ex1);
3633 if (!err)
3634 err = ext4_zeroout_es(inode, &zero_ex2);
3635 }
3636 return err ? err : allocated;
3637 }
3638
3639 /*
3640 * This function is called by ext4_ext_map_blocks() from
3641 * ext4_get_blocks_dio_write() when DIO to write
3642 * to an unwritten extent.
3643 *
3644 * Writing to an unwritten extent may result in splitting the unwritten
3645 * extent into multiple initialized/unwritten extents (up to three)
3646 * There are three possibilities:
3647 * a> There is no split required: Entire extent should be unwritten
3648 * b> Splits in two extents: Write is happening at either end of the extent
3649 * c> Splits in three extents: Somone is writing in middle of the extent
3650 *
3651 * This works the same way in the case of initialized -> unwritten conversion.
3652 *
3653 * One of more index blocks maybe needed if the extent tree grow after
3654 * the unwritten extent split. To prevent ENOSPC occur at the IO
3655 * complete, we need to split the unwritten extent before DIO submit
3656 * the IO. The unwritten extent called at this time will be split
3657 * into three unwritten extent(at most). After IO complete, the part
3658 * being filled will be convert to initialized by the end_io callback function
3659 * via ext4_convert_unwritten_extents().
3660 *
3661 * Returns the size of unwritten extent to be written on success.
3662 */
3663 static int ext4_split_convert_extents(handle_t *handle,
3664 struct inode *inode,
3665 struct ext4_map_blocks *map,
3666 struct ext4_ext_path **ppath,
3667 int flags)
3668 {
3669 struct ext4_ext_path *path = *ppath;
3670 ext4_lblk_t eof_block;
3671 ext4_lblk_t ee_block;
3672 struct ext4_extent *ex;
3673 unsigned int ee_len;
3674 int split_flag = 0, depth;
3675
3676 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3677 __func__, inode->i_ino,
3678 (unsigned long long)map->m_lblk, map->m_len);
3679
3680 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3681 inode->i_sb->s_blocksize_bits;
3682 if (eof_block < map->m_lblk + map->m_len)
3683 eof_block = map->m_lblk + map->m_len;
3684 /*
3685 * It is safe to convert extent to initialized via explicit
3686 * zeroout only if extent is fully insde i_size or new_size.
3687 */
3688 depth = ext_depth(inode);
3689 ex = path[depth].p_ext;
3690 ee_block = le32_to_cpu(ex->ee_block);
3691 ee_len = ext4_ext_get_actual_len(ex);
3692
3693 /* Convert to unwritten */
3694 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3695 split_flag |= EXT4_EXT_DATA_VALID1;
3696 /* Convert to initialized */
3697 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3698 split_flag |= ee_block + ee_len <= eof_block ?
3699 EXT4_EXT_MAY_ZEROOUT : 0;
3700 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3701 }
3702 flags |= EXT4_GET_BLOCKS_PRE_IO;
3703 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3704 }
3705
3706 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3707 struct inode *inode,
3708 struct ext4_map_blocks *map,
3709 struct ext4_ext_path **ppath)
3710 {
3711 struct ext4_ext_path *path = *ppath;
3712 struct ext4_extent *ex;
3713 ext4_lblk_t ee_block;
3714 unsigned int ee_len;
3715 int depth;
3716 int err = 0;
3717
3718 depth = ext_depth(inode);
3719 ex = path[depth].p_ext;
3720 ee_block = le32_to_cpu(ex->ee_block);
3721 ee_len = ext4_ext_get_actual_len(ex);
3722
3723 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3724 "block %llu, max_blocks %u\n", inode->i_ino,
3725 (unsigned long long)ee_block, ee_len);
3726
3727 /* If extent is larger than requested it is a clear sign that we still
3728 * have some extent state machine issues left. So extent_split is still
3729 * required.
3730 * TODO: Once all related issues will be fixed this situation should be
3731 * illegal.
3732 */
3733 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3734 #ifdef EXT4_DEBUG
3735 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3736 " len %u; IO logical block %llu, len %u",
3737 inode->i_ino, (unsigned long long)ee_block, ee_len,
3738 (unsigned long long)map->m_lblk, map->m_len);
3739 #endif
3740 err = ext4_split_convert_extents(handle, inode, map, ppath,
3741 EXT4_GET_BLOCKS_CONVERT);
3742 if (err < 0)
3743 return err;
3744 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3745 if (IS_ERR(path))
3746 return PTR_ERR(path);
3747 depth = ext_depth(inode);
3748 ex = path[depth].p_ext;
3749 }
3750
3751 err = ext4_ext_get_access(handle, inode, path + depth);
3752 if (err)
3753 goto out;
3754 /* first mark the extent as initialized */
3755 ext4_ext_mark_initialized(ex);
3756
3757 /* note: ext4_ext_correct_indexes() isn't needed here because
3758 * borders are not changed
3759 */
3760 ext4_ext_try_to_merge(handle, inode, path, ex);
3761
3762 /* Mark modified extent as dirty */
3763 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3764 out:
3765 ext4_ext_show_leaf(inode, path);
3766 return err;
3767 }
3768
3769 /*
3770 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3771 */
3772 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3773 ext4_lblk_t lblk,
3774 struct ext4_ext_path *path,
3775 unsigned int len)
3776 {
3777 int i, depth;
3778 struct ext4_extent_header *eh;
3779 struct ext4_extent *last_ex;
3780
3781 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3782 return 0;
3783
3784 depth = ext_depth(inode);
3785 eh = path[depth].p_hdr;
3786
3787 /*
3788 * We're going to remove EOFBLOCKS_FL entirely in future so we
3789 * do not care for this case anymore. Simply remove the flag
3790 * if there are no extents.
3791 */
3792 if (unlikely(!eh->eh_entries))
3793 goto out;
3794 last_ex = EXT_LAST_EXTENT(eh);
3795 /*
3796 * We should clear the EOFBLOCKS_FL flag if we are writing the
3797 * last block in the last extent in the file. We test this by
3798 * first checking to see if the caller to
3799 * ext4_ext_get_blocks() was interested in the last block (or
3800 * a block beyond the last block) in the current extent. If
3801 * this turns out to be false, we can bail out from this
3802 * function immediately.
3803 */
3804 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3805 ext4_ext_get_actual_len(last_ex))
3806 return 0;
3807 /*
3808 * If the caller does appear to be planning to write at or
3809 * beyond the end of the current extent, we then test to see
3810 * if the current extent is the last extent in the file, by
3811 * checking to make sure it was reached via the rightmost node
3812 * at each level of the tree.
3813 */
3814 for (i = depth-1; i >= 0; i--)
3815 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3816 return 0;
3817 out:
3818 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3819 return ext4_mark_inode_dirty(handle, inode);
3820 }
3821
3822 /**
3823 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3824 *
3825 * Return 1 if there is a delalloc block in the range, otherwise 0.
3826 */
3827 int ext4_find_delalloc_range(struct inode *inode,
3828 ext4_lblk_t lblk_start,
3829 ext4_lblk_t lblk_end)
3830 {
3831 struct extent_status es;
3832
3833 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3834 if (es.es_len == 0)
3835 return 0; /* there is no delay extent in this tree */
3836 else if (es.es_lblk <= lblk_start &&
3837 lblk_start < es.es_lblk + es.es_len)
3838 return 1;
3839 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3840 return 1;
3841 else
3842 return 0;
3843 }
3844
3845 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3846 {
3847 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3848 ext4_lblk_t lblk_start, lblk_end;
3849 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3850 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3851
3852 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3853 }
3854
3855 /**
3856 * Determines how many complete clusters (out of those specified by the 'map')
3857 * are under delalloc and were reserved quota for.
3858 * This function is called when we are writing out the blocks that were
3859 * originally written with their allocation delayed, but then the space was
3860 * allocated using fallocate() before the delayed allocation could be resolved.
3861 * The cases to look for are:
3862 * ('=' indicated delayed allocated blocks
3863 * '-' indicates non-delayed allocated blocks)
3864 * (a) partial clusters towards beginning and/or end outside of allocated range
3865 * are not delalloc'ed.
3866 * Ex:
3867 * |----c---=|====c====|====c====|===-c----|
3868 * |++++++ allocated ++++++|
3869 * ==> 4 complete clusters in above example
3870 *
3871 * (b) partial cluster (outside of allocated range) towards either end is
3872 * marked for delayed allocation. In this case, we will exclude that
3873 * cluster.
3874 * Ex:
3875 * |----====c========|========c========|
3876 * |++++++ allocated ++++++|
3877 * ==> 1 complete clusters in above example
3878 *
3879 * Ex:
3880 * |================c================|
3881 * |++++++ allocated ++++++|
3882 * ==> 0 complete clusters in above example
3883 *
3884 * The ext4_da_update_reserve_space will be called only if we
3885 * determine here that there were some "entire" clusters that span
3886 * this 'allocated' range.
3887 * In the non-bigalloc case, this function will just end up returning num_blks
3888 * without ever calling ext4_find_delalloc_range.
3889 */
3890 static unsigned int
3891 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3892 unsigned int num_blks)
3893 {
3894 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3895 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3896 ext4_lblk_t lblk_from, lblk_to, c_offset;
3897 unsigned int allocated_clusters = 0;
3898
3899 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3900 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3901
3902 /* max possible clusters for this allocation */
3903 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3904
3905 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3906
3907 /* Check towards left side */
3908 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3909 if (c_offset) {
3910 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3911 lblk_to = lblk_from + c_offset - 1;
3912
3913 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3914 allocated_clusters--;
3915 }
3916
3917 /* Now check towards right. */
3918 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3919 if (allocated_clusters && c_offset) {
3920 lblk_from = lblk_start + num_blks;
3921 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3922
3923 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3924 allocated_clusters--;
3925 }
3926
3927 return allocated_clusters;
3928 }
3929
3930 static int
3931 convert_initialized_extent(handle_t *handle, struct inode *inode,
3932 struct ext4_map_blocks *map,
3933 struct ext4_ext_path **ppath,
3934 unsigned int allocated)
3935 {
3936 struct ext4_ext_path *path = *ppath;
3937 struct ext4_extent *ex;
3938 ext4_lblk_t ee_block;
3939 unsigned int ee_len;
3940 int depth;
3941 int err = 0;
3942
3943 /*
3944 * Make sure that the extent is no bigger than we support with
3945 * unwritten extent
3946 */
3947 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3948 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3949
3950 depth = ext_depth(inode);
3951 ex = path[depth].p_ext;
3952 ee_block = le32_to_cpu(ex->ee_block);
3953 ee_len = ext4_ext_get_actual_len(ex);
3954
3955 ext_debug("%s: inode %lu, logical"
3956 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3957 (unsigned long long)ee_block, ee_len);
3958
3959 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3960 err = ext4_split_convert_extents(handle, inode, map, ppath,
3961 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3962 if (err < 0)
3963 return err;
3964 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3965 if (IS_ERR(path))
3966 return PTR_ERR(path);
3967 depth = ext_depth(inode);
3968 ex = path[depth].p_ext;
3969 if (!ex) {
3970 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3971 (unsigned long) map->m_lblk);
3972 return -EFSCORRUPTED;
3973 }
3974 }
3975
3976 err = ext4_ext_get_access(handle, inode, path + depth);
3977 if (err)
3978 return err;
3979 /* first mark the extent as unwritten */
3980 ext4_ext_mark_unwritten(ex);
3981
3982 /* note: ext4_ext_correct_indexes() isn't needed here because
3983 * borders are not changed
3984 */
3985 ext4_ext_try_to_merge(handle, inode, path, ex);
3986
3987 /* Mark modified extent as dirty */
3988 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3989 if (err)
3990 return err;
3991 ext4_ext_show_leaf(inode, path);
3992
3993 ext4_update_inode_fsync_trans(handle, inode, 1);
3994 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
3995 if (err)
3996 return err;
3997 map->m_flags |= EXT4_MAP_UNWRITTEN;
3998 if (allocated > map->m_len)
3999 allocated = map->m_len;
4000 map->m_len = allocated;
4001 return allocated;
4002 }
4003
4004 static int
4005 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4006 struct ext4_map_blocks *map,
4007 struct ext4_ext_path **ppath, int flags,
4008 unsigned int allocated, ext4_fsblk_t newblock)
4009 {
4010 struct ext4_ext_path *path = *ppath;
4011 int ret = 0;
4012 int err = 0;
4013
4014 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4015 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4016 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4017 flags, allocated);
4018 ext4_ext_show_leaf(inode, path);
4019
4020 /*
4021 * When writing into unwritten space, we should not fail to
4022 * allocate metadata blocks for the new extent block if needed.
4023 */
4024 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4025
4026 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4027 allocated, newblock);
4028
4029 /* get_block() before submit the IO, split the extent */
4030 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4031 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4032 flags | EXT4_GET_BLOCKS_CONVERT);
4033 if (ret <= 0)
4034 goto out;
4035 map->m_flags |= EXT4_MAP_UNWRITTEN;
4036 goto out;
4037 }
4038 /* IO end_io complete, convert the filled extent to written */
4039 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4040 if (flags & EXT4_GET_BLOCKS_ZERO) {
4041 if (allocated > map->m_len)
4042 allocated = map->m_len;
4043 err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4044 allocated);
4045 if (err < 0)
4046 goto out2;
4047 }
4048 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4049 ppath);
4050 if (ret >= 0) {
4051 ext4_update_inode_fsync_trans(handle, inode, 1);
4052 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4053 path, map->m_len);
4054 } else
4055 err = ret;
4056 map->m_flags |= EXT4_MAP_MAPPED;
4057 map->m_pblk = newblock;
4058 if (allocated > map->m_len)
4059 allocated = map->m_len;
4060 map->m_len = allocated;
4061 goto out2;
4062 }
4063 /* buffered IO case */
4064 /*
4065 * repeat fallocate creation request
4066 * we already have an unwritten extent
4067 */
4068 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4069 map->m_flags |= EXT4_MAP_UNWRITTEN;
4070 goto map_out;
4071 }
4072
4073 /* buffered READ or buffered write_begin() lookup */
4074 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4075 /*
4076 * We have blocks reserved already. We
4077 * return allocated blocks so that delalloc
4078 * won't do block reservation for us. But
4079 * the buffer head will be unmapped so that
4080 * a read from the block returns 0s.
4081 */
4082 map->m_flags |= EXT4_MAP_UNWRITTEN;
4083 goto out1;
4084 }
4085
4086 /* buffered write, writepage time, convert*/
4087 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4088 if (ret >= 0)
4089 ext4_update_inode_fsync_trans(handle, inode, 1);
4090 out:
4091 if (ret <= 0) {
4092 err = ret;
4093 goto out2;
4094 } else
4095 allocated = ret;
4096 map->m_flags |= EXT4_MAP_NEW;
4097 /*
4098 * if we allocated more blocks than requested
4099 * we need to make sure we unmap the extra block
4100 * allocated. The actual needed block will get
4101 * unmapped later when we find the buffer_head marked
4102 * new.
4103 */
4104 if (allocated > map->m_len) {
4105 clean_bdev_aliases(inode->i_sb->s_bdev, newblock + map->m_len,
4106 allocated - map->m_len);
4107 allocated = map->m_len;
4108 }
4109 map->m_len = allocated;
4110
4111 /*
4112 * If we have done fallocate with the offset that is already
4113 * delayed allocated, we would have block reservation
4114 * and quota reservation done in the delayed write path.
4115 * But fallocate would have already updated quota and block
4116 * count for this offset. So cancel these reservation
4117 */
4118 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4119 unsigned int reserved_clusters;
4120 reserved_clusters = get_reserved_cluster_alloc(inode,
4121 map->m_lblk, map->m_len);
4122 if (reserved_clusters)
4123 ext4_da_update_reserve_space(inode,
4124 reserved_clusters,
4125 0);
4126 }
4127
4128 map_out:
4129 map->m_flags |= EXT4_MAP_MAPPED;
4130 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4131 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4132 map->m_len);
4133 if (err < 0)
4134 goto out2;
4135 }
4136 out1:
4137 if (allocated > map->m_len)
4138 allocated = map->m_len;
4139 ext4_ext_show_leaf(inode, path);
4140 map->m_pblk = newblock;
4141 map->m_len = allocated;
4142 out2:
4143 return err ? err : allocated;
4144 }
4145
4146 /*
4147 * get_implied_cluster_alloc - check to see if the requested
4148 * allocation (in the map structure) overlaps with a cluster already
4149 * allocated in an extent.
4150 * @sb The filesystem superblock structure
4151 * @map The requested lblk->pblk mapping
4152 * @ex The extent structure which might contain an implied
4153 * cluster allocation
4154 *
4155 * This function is called by ext4_ext_map_blocks() after we failed to
4156 * find blocks that were already in the inode's extent tree. Hence,
4157 * we know that the beginning of the requested region cannot overlap
4158 * the extent from the inode's extent tree. There are three cases we
4159 * want to catch. The first is this case:
4160 *
4161 * |--- cluster # N--|
4162 * |--- extent ---| |---- requested region ---|
4163 * |==========|
4164 *
4165 * The second case that we need to test for is this one:
4166 *
4167 * |--------- cluster # N ----------------|
4168 * |--- requested region --| |------- extent ----|
4169 * |=======================|
4170 *
4171 * The third case is when the requested region lies between two extents
4172 * within the same cluster:
4173 * |------------- cluster # N-------------|
4174 * |----- ex -----| |---- ex_right ----|
4175 * |------ requested region ------|
4176 * |================|
4177 *
4178 * In each of the above cases, we need to set the map->m_pblk and
4179 * map->m_len so it corresponds to the return the extent labelled as
4180 * "|====|" from cluster #N, since it is already in use for data in
4181 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4182 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4183 * as a new "allocated" block region. Otherwise, we will return 0 and
4184 * ext4_ext_map_blocks() will then allocate one or more new clusters
4185 * by calling ext4_mb_new_blocks().
4186 */
4187 static int get_implied_cluster_alloc(struct super_block *sb,
4188 struct ext4_map_blocks *map,
4189 struct ext4_extent *ex,
4190 struct ext4_ext_path *path)
4191 {
4192 struct ext4_sb_info *sbi = EXT4_SB(sb);
4193 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4194 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4195 ext4_lblk_t rr_cluster_start;
4196 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4197 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4198 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4199
4200 /* The extent passed in that we are trying to match */
4201 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4202 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4203
4204 /* The requested region passed into ext4_map_blocks() */
4205 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4206
4207 if ((rr_cluster_start == ex_cluster_end) ||
4208 (rr_cluster_start == ex_cluster_start)) {
4209 if (rr_cluster_start == ex_cluster_end)
4210 ee_start += ee_len - 1;
4211 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4212 map->m_len = min(map->m_len,
4213 (unsigned) sbi->s_cluster_ratio - c_offset);
4214 /*
4215 * Check for and handle this case:
4216 *
4217 * |--------- cluster # N-------------|
4218 * |------- extent ----|
4219 * |--- requested region ---|
4220 * |===========|
4221 */
4222
4223 if (map->m_lblk < ee_block)
4224 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4225
4226 /*
4227 * Check for the case where there is already another allocated
4228 * block to the right of 'ex' but before the end of the cluster.
4229 *
4230 * |------------- cluster # N-------------|
4231 * |----- ex -----| |---- ex_right ----|
4232 * |------ requested region ------|
4233 * |================|
4234 */
4235 if (map->m_lblk > ee_block) {
4236 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4237 map->m_len = min(map->m_len, next - map->m_lblk);
4238 }
4239
4240 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4241 return 1;
4242 }
4243
4244 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4245 return 0;
4246 }
4247
4248
4249 /*
4250 * Block allocation/map/preallocation routine for extents based files
4251 *
4252 *
4253 * Need to be called with
4254 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4255 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4256 *
4257 * return > 0, number of of blocks already mapped/allocated
4258 * if create == 0 and these are pre-allocated blocks
4259 * buffer head is unmapped
4260 * otherwise blocks are mapped
4261 *
4262 * return = 0, if plain look up failed (blocks have not been allocated)
4263 * buffer head is unmapped
4264 *
4265 * return < 0, error case.
4266 */
4267 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4268 struct ext4_map_blocks *map, int flags)
4269 {
4270 struct ext4_ext_path *path = NULL;
4271 struct ext4_extent newex, *ex, *ex2;
4272 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4273 ext4_fsblk_t newblock = 0;
4274 int free_on_err = 0, err = 0, depth, ret;
4275 unsigned int allocated = 0, offset = 0;
4276 unsigned int allocated_clusters = 0;
4277 struct ext4_allocation_request ar;
4278 ext4_lblk_t cluster_offset;
4279 bool map_from_cluster = false;
4280
4281 ext_debug("blocks %u/%u requested for inode %lu\n",
4282 map->m_lblk, map->m_len, inode->i_ino);
4283 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4284
4285 /* find extent for this block */
4286 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4287 if (IS_ERR(path)) {
4288 err = PTR_ERR(path);
4289 path = NULL;
4290 goto out2;
4291 }
4292
4293 depth = ext_depth(inode);
4294
4295 /*
4296 * consistent leaf must not be empty;
4297 * this situation is possible, though, _during_ tree modification;
4298 * this is why assert can't be put in ext4_find_extent()
4299 */
4300 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4301 EXT4_ERROR_INODE(inode, "bad extent address "
4302 "lblock: %lu, depth: %d pblock %lld",
4303 (unsigned long) map->m_lblk, depth,
4304 path[depth].p_block);
4305 err = -EFSCORRUPTED;
4306 goto out2;
4307 }
4308
4309 ex = path[depth].p_ext;
4310 if (ex) {
4311 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4312 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4313 unsigned short ee_len;
4314
4315
4316 /*
4317 * unwritten extents are treated as holes, except that
4318 * we split out initialized portions during a write.
4319 */
4320 ee_len = ext4_ext_get_actual_len(ex);
4321
4322 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4323
4324 /* if found extent covers block, simply return it */
4325 if (in_range(map->m_lblk, ee_block, ee_len)) {
4326 newblock = map->m_lblk - ee_block + ee_start;
4327 /* number of remaining blocks in the extent */
4328 allocated = ee_len - (map->m_lblk - ee_block);
4329 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4330 ee_block, ee_len, newblock);
4331
4332 /*
4333 * If the extent is initialized check whether the
4334 * caller wants to convert it to unwritten.
4335 */
4336 if ((!ext4_ext_is_unwritten(ex)) &&
4337 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4338 allocated = convert_initialized_extent(
4339 handle, inode, map, &path,
4340 allocated);
4341 goto out2;
4342 } else if (!ext4_ext_is_unwritten(ex))
4343 goto out;
4344
4345 ret = ext4_ext_handle_unwritten_extents(
4346 handle, inode, map, &path, flags,
4347 allocated, newblock);
4348 if (ret < 0)
4349 err = ret;
4350 else
4351 allocated = ret;
4352 goto out2;
4353 }
4354 }
4355
4356 /*
4357 * requested block isn't allocated yet;
4358 * we couldn't try to create block if create flag is zero
4359 */
4360 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4361 ext4_lblk_t hole_start, hole_len;
4362
4363 hole_start = map->m_lblk;
4364 hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4365 /*
4366 * put just found gap into cache to speed up
4367 * subsequent requests
4368 */
4369 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4370
4371 /* Update hole_len to reflect hole size after map->m_lblk */
4372 if (hole_start != map->m_lblk)
4373 hole_len -= map->m_lblk - hole_start;
4374 map->m_pblk = 0;
4375 map->m_len = min_t(unsigned int, map->m_len, hole_len);
4376
4377 goto out2;
4378 }
4379
4380 /*
4381 * Okay, we need to do block allocation.
4382 */
4383 newex.ee_block = cpu_to_le32(map->m_lblk);
4384 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4385
4386 /*
4387 * If we are doing bigalloc, check to see if the extent returned
4388 * by ext4_find_extent() implies a cluster we can use.
4389 */
4390 if (cluster_offset && ex &&
4391 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4392 ar.len = allocated = map->m_len;
4393 newblock = map->m_pblk;
4394 map_from_cluster = true;
4395 goto got_allocated_blocks;
4396 }
4397
4398 /* find neighbour allocated blocks */
4399 ar.lleft = map->m_lblk;
4400 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4401 if (err)
4402 goto out2;
4403 ar.lright = map->m_lblk;
4404 ex2 = NULL;
4405 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4406 if (err)
4407 goto out2;
4408
4409 /* Check if the extent after searching to the right implies a
4410 * cluster we can use. */
4411 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4412 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4413 ar.len = allocated = map->m_len;
4414 newblock = map->m_pblk;
4415 map_from_cluster = true;
4416 goto got_allocated_blocks;
4417 }
4418
4419 /*
4420 * See if request is beyond maximum number of blocks we can have in
4421 * a single extent. For an initialized extent this limit is
4422 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4423 * EXT_UNWRITTEN_MAX_LEN.
4424 */
4425 if (map->m_len > EXT_INIT_MAX_LEN &&
4426 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4427 map->m_len = EXT_INIT_MAX_LEN;
4428 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4429 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4430 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4431
4432 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4433 newex.ee_len = cpu_to_le16(map->m_len);
4434 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4435 if (err)
4436 allocated = ext4_ext_get_actual_len(&newex);
4437 else
4438 allocated = map->m_len;
4439
4440 /* allocate new block */
4441 ar.inode = inode;
4442 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4443 ar.logical = map->m_lblk;
4444 /*
4445 * We calculate the offset from the beginning of the cluster
4446 * for the logical block number, since when we allocate a
4447 * physical cluster, the physical block should start at the
4448 * same offset from the beginning of the cluster. This is
4449 * needed so that future calls to get_implied_cluster_alloc()
4450 * work correctly.
4451 */
4452 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4453 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4454 ar.goal -= offset;
4455 ar.logical -= offset;
4456 if (S_ISREG(inode->i_mode))
4457 ar.flags = EXT4_MB_HINT_DATA;
4458 else
4459 /* disable in-core preallocation for non-regular files */
4460 ar.flags = 0;
4461 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4462 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4463 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4464 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4465 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4466 ar.flags |= EXT4_MB_USE_RESERVED;
4467 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4468 if (!newblock)
4469 goto out2;
4470 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4471 ar.goal, newblock, allocated);
4472 free_on_err = 1;
4473 allocated_clusters = ar.len;
4474 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4475 if (ar.len > allocated)
4476 ar.len = allocated;
4477
4478 got_allocated_blocks:
4479 /* try to insert new extent into found leaf and return */
4480 ext4_ext_store_pblock(&newex, newblock + offset);
4481 newex.ee_len = cpu_to_le16(ar.len);
4482 /* Mark unwritten */
4483 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4484 ext4_ext_mark_unwritten(&newex);
4485 map->m_flags |= EXT4_MAP_UNWRITTEN;
4486 }
4487
4488 err = 0;
4489 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4490 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4491 path, ar.len);
4492 if (!err)
4493 err = ext4_ext_insert_extent(handle, inode, &path,
4494 &newex, flags);
4495
4496 if (err && free_on_err) {
4497 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4498 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4499 /* free data blocks we just allocated */
4500 /* not a good idea to call discard here directly,
4501 * but otherwise we'd need to call it every free() */
4502 ext4_discard_preallocations(inode);
4503 ext4_free_blocks(handle, inode, NULL, newblock,
4504 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4505 goto out2;
4506 }
4507
4508 /* previous routine could use block we allocated */
4509 newblock = ext4_ext_pblock(&newex);
4510 allocated = ext4_ext_get_actual_len(&newex);
4511 if (allocated > map->m_len)
4512 allocated = map->m_len;
4513 map->m_flags |= EXT4_MAP_NEW;
4514
4515 /*
4516 * Update reserved blocks/metadata blocks after successful
4517 * block allocation which had been deferred till now.
4518 */
4519 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4520 unsigned int reserved_clusters;
4521 /*
4522 * Check how many clusters we had reserved this allocated range
4523 */
4524 reserved_clusters = get_reserved_cluster_alloc(inode,
4525 map->m_lblk, allocated);
4526 if (!map_from_cluster) {
4527 BUG_ON(allocated_clusters < reserved_clusters);
4528 if (reserved_clusters < allocated_clusters) {
4529 struct ext4_inode_info *ei = EXT4_I(inode);
4530 int reservation = allocated_clusters -
4531 reserved_clusters;
4532 /*
4533 * It seems we claimed few clusters outside of
4534 * the range of this allocation. We should give
4535 * it back to the reservation pool. This can
4536 * happen in the following case:
4537 *
4538 * * Suppose s_cluster_ratio is 4 (i.e., each
4539 * cluster has 4 blocks. Thus, the clusters
4540 * are [0-3],[4-7],[8-11]...
4541 * * First comes delayed allocation write for
4542 * logical blocks 10 & 11. Since there were no
4543 * previous delayed allocated blocks in the
4544 * range [8-11], we would reserve 1 cluster
4545 * for this write.
4546 * * Next comes write for logical blocks 3 to 8.
4547 * In this case, we will reserve 2 clusters
4548 * (for [0-3] and [4-7]; and not for [8-11] as
4549 * that range has a delayed allocated blocks.
4550 * Thus total reserved clusters now becomes 3.
4551 * * Now, during the delayed allocation writeout
4552 * time, we will first write blocks [3-8] and
4553 * allocate 3 clusters for writing these
4554 * blocks. Also, we would claim all these
4555 * three clusters above.
4556 * * Now when we come here to writeout the
4557 * blocks [10-11], we would expect to claim
4558 * the reservation of 1 cluster we had made
4559 * (and we would claim it since there are no
4560 * more delayed allocated blocks in the range
4561 * [8-11]. But our reserved cluster count had
4562 * already gone to 0.
4563 *
4564 * Thus, at the step 4 above when we determine
4565 * that there are still some unwritten delayed
4566 * allocated blocks outside of our current
4567 * block range, we should increment the
4568 * reserved clusters count so that when the
4569 * remaining blocks finally gets written, we
4570 * could claim them.
4571 */
4572 dquot_reserve_block(inode,
4573 EXT4_C2B(sbi, reservation));
4574 spin_lock(&ei->i_block_reservation_lock);
4575 ei->i_reserved_data_blocks += reservation;
4576 spin_unlock(&ei->i_block_reservation_lock);
4577 }
4578 /*
4579 * We will claim quota for all newly allocated blocks.
4580 * We're updating the reserved space *after* the
4581 * correction above so we do not accidentally free
4582 * all the metadata reservation because we might
4583 * actually need it later on.
4584 */
4585 ext4_da_update_reserve_space(inode, allocated_clusters,
4586 1);
4587 }
4588 }
4589
4590 /*
4591 * Cache the extent and update transaction to commit on fdatasync only
4592 * when it is _not_ an unwritten extent.
4593 */
4594 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4595 ext4_update_inode_fsync_trans(handle, inode, 1);
4596 else
4597 ext4_update_inode_fsync_trans(handle, inode, 0);
4598 out:
4599 if (allocated > map->m_len)
4600 allocated = map->m_len;
4601 ext4_ext_show_leaf(inode, path);
4602 map->m_flags |= EXT4_MAP_MAPPED;
4603 map->m_pblk = newblock;
4604 map->m_len = allocated;
4605 out2:
4606 ext4_ext_drop_refs(path);
4607 kfree(path);
4608
4609 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4610 err ? err : allocated);
4611 return err ? err : allocated;
4612 }
4613
4614 int ext4_ext_truncate(handle_t *handle, struct inode *inode)
4615 {
4616 struct super_block *sb = inode->i_sb;
4617 ext4_lblk_t last_block;
4618 int err = 0;
4619
4620 /*
4621 * TODO: optimization is possible here.
4622 * Probably we need not scan at all,
4623 * because page truncation is enough.
4624 */
4625
4626 /* we have to know where to truncate from in crash case */
4627 EXT4_I(inode)->i_disksize = inode->i_size;
4628 err = ext4_mark_inode_dirty(handle, inode);
4629 if (err)
4630 return err;
4631
4632 last_block = (inode->i_size + sb->s_blocksize - 1)
4633 >> EXT4_BLOCK_SIZE_BITS(sb);
4634 retry:
4635 err = ext4_es_remove_extent(inode, last_block,
4636 EXT_MAX_BLOCKS - last_block);
4637 if (err == -ENOMEM) {
4638 cond_resched();
4639 congestion_wait(BLK_RW_ASYNC, HZ/50);
4640 goto retry;
4641 }
4642 if (err)
4643 return err;
4644 return ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4645 }
4646
4647 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4648 ext4_lblk_t len, loff_t new_size,
4649 int flags)
4650 {
4651 struct inode *inode = file_inode(file);
4652 handle_t *handle;
4653 int ret = 0;
4654 int ret2 = 0;
4655 int retries = 0;
4656 int depth = 0;
4657 struct ext4_map_blocks map;
4658 unsigned int credits;
4659 loff_t epos;
4660
4661 BUG_ON(!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS));
4662 map.m_lblk = offset;
4663 map.m_len = len;
4664 /*
4665 * Don't normalize the request if it can fit in one extent so
4666 * that it doesn't get unnecessarily split into multiple
4667 * extents.
4668 */
4669 if (len <= EXT_UNWRITTEN_MAX_LEN)
4670 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4671
4672 /*
4673 * credits to insert 1 extent into extent tree
4674 */
4675 credits = ext4_chunk_trans_blocks(inode, len);
4676 depth = ext_depth(inode);
4677
4678 retry:
4679 while (ret >= 0 && len) {
4680 /*
4681 * Recalculate credits when extent tree depth changes.
4682 */
4683 if (depth != ext_depth(inode)) {
4684 credits = ext4_chunk_trans_blocks(inode, len);
4685 depth = ext_depth(inode);
4686 }
4687
4688 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4689 credits);
4690 if (IS_ERR(handle)) {
4691 ret = PTR_ERR(handle);
4692 break;
4693 }
4694 ret = ext4_map_blocks(handle, inode, &map, flags);
4695 if (ret <= 0) {
4696 ext4_debug("inode #%lu: block %u: len %u: "
4697 "ext4_ext_map_blocks returned %d",
4698 inode->i_ino, map.m_lblk,
4699 map.m_len, ret);
4700 ext4_mark_inode_dirty(handle, inode);
4701 ret2 = ext4_journal_stop(handle);
4702 break;
4703 }
4704 map.m_lblk += ret;
4705 map.m_len = len = len - ret;
4706 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4707 inode->i_ctime = current_time(inode);
4708 if (new_size) {
4709 if (epos > new_size)
4710 epos = new_size;
4711 if (ext4_update_inode_size(inode, epos) & 0x1)
4712 inode->i_mtime = inode->i_ctime;
4713 } else {
4714 if (epos > inode->i_size)
4715 ext4_set_inode_flag(inode,
4716 EXT4_INODE_EOFBLOCKS);
4717 }
4718 ext4_mark_inode_dirty(handle, inode);
4719 ext4_update_inode_fsync_trans(handle, inode, 1);
4720 ret2 = ext4_journal_stop(handle);
4721 if (ret2)
4722 break;
4723 }
4724 if (ret == -ENOSPC &&
4725 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4726 ret = 0;
4727 goto retry;
4728 }
4729
4730 return ret > 0 ? ret2 : ret;
4731 }
4732
4733 static long ext4_zero_range(struct file *file, loff_t offset,
4734 loff_t len, int mode)
4735 {
4736 struct inode *inode = file_inode(file);
4737 handle_t *handle = NULL;
4738 unsigned int max_blocks;
4739 loff_t new_size = 0;
4740 int ret = 0;
4741 int flags;
4742 int credits;
4743 int partial_begin, partial_end;
4744 loff_t start, end;
4745 ext4_lblk_t lblk;
4746 unsigned int blkbits = inode->i_blkbits;
4747
4748 trace_ext4_zero_range(inode, offset, len, mode);
4749
4750 if (!S_ISREG(inode->i_mode))
4751 return -EINVAL;
4752
4753 /* Call ext4_force_commit to flush all data in case of data=journal. */
4754 if (ext4_should_journal_data(inode)) {
4755 ret = ext4_force_commit(inode->i_sb);
4756 if (ret)
4757 return ret;
4758 }
4759
4760 /*
4761 * Round up offset. This is not fallocate, we neet to zero out
4762 * blocks, so convert interior block aligned part of the range to
4763 * unwritten and possibly manually zero out unaligned parts of the
4764 * range.
4765 */
4766 start = round_up(offset, 1 << blkbits);
4767 end = round_down((offset + len), 1 << blkbits);
4768
4769 if (start < offset || end > offset + len)
4770 return -EINVAL;
4771 partial_begin = offset & ((1 << blkbits) - 1);
4772 partial_end = (offset + len) & ((1 << blkbits) - 1);
4773
4774 lblk = start >> blkbits;
4775 max_blocks = (end >> blkbits);
4776 if (max_blocks < lblk)
4777 max_blocks = 0;
4778 else
4779 max_blocks -= lblk;
4780
4781 inode_lock(inode);
4782
4783 /*
4784 * Indirect files do not support unwritten extnets
4785 */
4786 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4787 ret = -EOPNOTSUPP;
4788 goto out_mutex;
4789 }
4790
4791 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4792 (offset + len > i_size_read(inode) ||
4793 offset + len > EXT4_I(inode)->i_disksize)) {
4794 new_size = offset + len;
4795 ret = inode_newsize_ok(inode, new_size);
4796 if (ret)
4797 goto out_mutex;
4798 }
4799
4800 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4801 if (mode & FALLOC_FL_KEEP_SIZE)
4802 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4803
4804 /* Wait all existing dio workers, newcomers will block on i_mutex */
4805 inode_dio_wait(inode);
4806
4807 /* Preallocate the range including the unaligned edges */
4808 if (partial_begin || partial_end) {
4809 ret = ext4_alloc_file_blocks(file,
4810 round_down(offset, 1 << blkbits) >> blkbits,
4811 (round_up((offset + len), 1 << blkbits) -
4812 round_down(offset, 1 << blkbits)) >> blkbits,
4813 new_size, flags);
4814 if (ret)
4815 goto out_mutex;
4816
4817 }
4818
4819 /* Zero range excluding the unaligned edges */
4820 if (max_blocks > 0) {
4821 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4822 EXT4_EX_NOCACHE);
4823
4824 /*
4825 * Prevent page faults from reinstantiating pages we have
4826 * released from page cache.
4827 */
4828 down_write(&EXT4_I(inode)->i_mmap_sem);
4829
4830 ret = ext4_break_layouts(inode);
4831 if (ret) {
4832 up_write(&EXT4_I(inode)->i_mmap_sem);
4833 goto out_mutex;
4834 }
4835
4836 ret = ext4_update_disksize_before_punch(inode, offset, len);
4837 if (ret) {
4838 up_write(&EXT4_I(inode)->i_mmap_sem);
4839 goto out_mutex;
4840 }
4841 /* Now release the pages and zero block aligned part of pages */
4842 truncate_pagecache_range(inode, start, end - 1);
4843 inode->i_mtime = inode->i_ctime = current_time(inode);
4844
4845 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4846 flags);
4847 up_write(&EXT4_I(inode)->i_mmap_sem);
4848 if (ret)
4849 goto out_mutex;
4850 }
4851 if (!partial_begin && !partial_end)
4852 goto out_mutex;
4853
4854 /*
4855 * In worst case we have to writeout two nonadjacent unwritten
4856 * blocks and update the inode
4857 */
4858 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4859 if (ext4_should_journal_data(inode))
4860 credits += 2;
4861 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4862 if (IS_ERR(handle)) {
4863 ret = PTR_ERR(handle);
4864 ext4_std_error(inode->i_sb, ret);
4865 goto out_mutex;
4866 }
4867
4868 inode->i_mtime = inode->i_ctime = current_time(inode);
4869 if (new_size) {
4870 ext4_update_inode_size(inode, new_size);
4871 } else {
4872 /*
4873 * Mark that we allocate beyond EOF so the subsequent truncate
4874 * can proceed even if the new size is the same as i_size.
4875 */
4876 if ((offset + len) > i_size_read(inode))
4877 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4878 }
4879 ext4_mark_inode_dirty(handle, inode);
4880
4881 /* Zero out partial block at the edges of the range */
4882 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4883 if (ret >= 0)
4884 ext4_update_inode_fsync_trans(handle, inode, 1);
4885
4886 if (file->f_flags & O_SYNC)
4887 ext4_handle_sync(handle);
4888
4889 ext4_journal_stop(handle);
4890 out_mutex:
4891 inode_unlock(inode);
4892 return ret;
4893 }
4894
4895 /*
4896 * preallocate space for a file. This implements ext4's fallocate file
4897 * operation, which gets called from sys_fallocate system call.
4898 * For block-mapped files, posix_fallocate should fall back to the method
4899 * of writing zeroes to the required new blocks (the same behavior which is
4900 * expected for file systems which do not support fallocate() system call).
4901 */
4902 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4903 {
4904 struct inode *inode = file_inode(file);
4905 loff_t new_size = 0;
4906 unsigned int max_blocks;
4907 int ret = 0;
4908 int flags;
4909 ext4_lblk_t lblk;
4910 unsigned int blkbits = inode->i_blkbits;
4911
4912 /*
4913 * Encrypted inodes can't handle collapse range or insert
4914 * range since we would need to re-encrypt blocks with a
4915 * different IV or XTS tweak (which are based on the logical
4916 * block number).
4917 *
4918 * XXX It's not clear why zero range isn't working, but we'll
4919 * leave it disabled for encrypted inodes for now. This is a
4920 * bug we should fix....
4921 */
4922 if (ext4_encrypted_inode(inode) &&
4923 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4924 FALLOC_FL_ZERO_RANGE)))
4925 return -EOPNOTSUPP;
4926
4927 /* Return error if mode is not supported */
4928 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4929 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4930 FALLOC_FL_INSERT_RANGE))
4931 return -EOPNOTSUPP;
4932
4933 if (mode & FALLOC_FL_PUNCH_HOLE)
4934 return ext4_punch_hole(inode, offset, len);
4935
4936 ret = ext4_convert_inline_data(inode);
4937 if (ret)
4938 return ret;
4939
4940 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4941 return ext4_collapse_range(inode, offset, len);
4942
4943 if (mode & FALLOC_FL_INSERT_RANGE)
4944 return ext4_insert_range(inode, offset, len);
4945
4946 if (mode & FALLOC_FL_ZERO_RANGE)
4947 return ext4_zero_range(file, offset, len, mode);
4948
4949 trace_ext4_fallocate_enter(inode, offset, len, mode);
4950 lblk = offset >> blkbits;
4951
4952 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
4953 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4954 if (mode & FALLOC_FL_KEEP_SIZE)
4955 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4956
4957 inode_lock(inode);
4958
4959 /*
4960 * We only support preallocation for extent-based files only
4961 */
4962 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4963 ret = -EOPNOTSUPP;
4964 goto out;
4965 }
4966
4967 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4968 (offset + len > i_size_read(inode) ||
4969 offset + len > EXT4_I(inode)->i_disksize)) {
4970 new_size = offset + len;
4971 ret = inode_newsize_ok(inode, new_size);
4972 if (ret)
4973 goto out;
4974 }
4975
4976 /* Wait all existing dio workers, newcomers will block on i_mutex */
4977 inode_dio_wait(inode);
4978
4979 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size, flags);
4980 if (ret)
4981 goto out;
4982
4983 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
4984 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
4985 EXT4_I(inode)->i_sync_tid);
4986 }
4987 out:
4988 inode_unlock(inode);
4989 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4990 return ret;
4991 }
4992
4993 /*
4994 * This function convert a range of blocks to written extents
4995 * The caller of this function will pass the start offset and the size.
4996 * all unwritten extents within this range will be converted to
4997 * written extents.
4998 *
4999 * This function is called from the direct IO end io call back
5000 * function, to convert the fallocated extents after IO is completed.
5001 * Returns 0 on success.
5002 */
5003 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
5004 loff_t offset, ssize_t len)
5005 {
5006 unsigned int max_blocks;
5007 int ret = 0;
5008 int ret2 = 0;
5009 struct ext4_map_blocks map;
5010 unsigned int credits, blkbits = inode->i_blkbits;
5011
5012 map.m_lblk = offset >> blkbits;
5013 max_blocks = EXT4_MAX_BLOCKS(len, offset, blkbits);
5014
5015 /*
5016 * This is somewhat ugly but the idea is clear: When transaction is
5017 * reserved, everything goes into it. Otherwise we rather start several
5018 * smaller transactions for conversion of each extent separately.
5019 */
5020 if (handle) {
5021 handle = ext4_journal_start_reserved(handle,
5022 EXT4_HT_EXT_CONVERT);
5023 if (IS_ERR(handle))
5024 return PTR_ERR(handle);
5025 credits = 0;
5026 } else {
5027 /*
5028 * credits to insert 1 extent into extent tree
5029 */
5030 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5031 }
5032 while (ret >= 0 && ret < max_blocks) {
5033 map.m_lblk += ret;
5034 map.m_len = (max_blocks -= ret);
5035 if (credits) {
5036 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5037 credits);
5038 if (IS_ERR(handle)) {
5039 ret = PTR_ERR(handle);
5040 break;
5041 }
5042 }
5043 ret = ext4_map_blocks(handle, inode, &map,
5044 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5045 if (ret <= 0)
5046 ext4_warning(inode->i_sb,
5047 "inode #%lu: block %u: len %u: "
5048 "ext4_ext_map_blocks returned %d",
5049 inode->i_ino, map.m_lblk,
5050 map.m_len, ret);
5051 ext4_mark_inode_dirty(handle, inode);
5052 if (credits)
5053 ret2 = ext4_journal_stop(handle);
5054 if (ret <= 0 || ret2)
5055 break;
5056 }
5057 if (!credits)
5058 ret2 = ext4_journal_stop(handle);
5059 return ret > 0 ? ret2 : ret;
5060 }
5061
5062 /*
5063 * If newes is not existing extent (newes->ec_pblk equals zero) find
5064 * delayed extent at start of newes and update newes accordingly and
5065 * return start of the next delayed extent.
5066 *
5067 * If newes is existing extent (newes->ec_pblk is not equal zero)
5068 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5069 * extent found. Leave newes unmodified.
5070 */
5071 static int ext4_find_delayed_extent(struct inode *inode,
5072 struct extent_status *newes)
5073 {
5074 struct extent_status es;
5075 ext4_lblk_t block, next_del;
5076
5077 if (newes->es_pblk == 0) {
5078 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5079 newes->es_lblk + newes->es_len - 1, &es);
5080
5081 /*
5082 * No extent in extent-tree contains block @newes->es_pblk,
5083 * then the block may stay in 1)a hole or 2)delayed-extent.
5084 */
5085 if (es.es_len == 0)
5086 /* A hole found. */
5087 return 0;
5088
5089 if (es.es_lblk > newes->es_lblk) {
5090 /* A hole found. */
5091 newes->es_len = min(es.es_lblk - newes->es_lblk,
5092 newes->es_len);
5093 return 0;
5094 }
5095
5096 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5097 }
5098
5099 block = newes->es_lblk + newes->es_len;
5100 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5101 if (es.es_len == 0)
5102 next_del = EXT_MAX_BLOCKS;
5103 else
5104 next_del = es.es_lblk;
5105
5106 return next_del;
5107 }
5108 /* fiemap flags we can handle specified here */
5109 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5110
5111 static int ext4_xattr_fiemap(struct inode *inode,
5112 struct fiemap_extent_info *fieinfo)
5113 {
5114 __u64 physical = 0;
5115 __u64 length;
5116 __u32 flags = FIEMAP_EXTENT_LAST;
5117 int blockbits = inode->i_sb->s_blocksize_bits;
5118 int error = 0;
5119
5120 /* in-inode? */
5121 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5122 struct ext4_iloc iloc;
5123 int offset; /* offset of xattr in inode */
5124
5125 error = ext4_get_inode_loc(inode, &iloc);
5126 if (error)
5127 return error;
5128 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5129 offset = EXT4_GOOD_OLD_INODE_SIZE +
5130 EXT4_I(inode)->i_extra_isize;
5131 physical += offset;
5132 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5133 flags |= FIEMAP_EXTENT_DATA_INLINE;
5134 brelse(iloc.bh);
5135 } else { /* external block */
5136 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5137 length = inode->i_sb->s_blocksize;
5138 }
5139
5140 if (physical)
5141 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5142 length, flags);
5143 return (error < 0 ? error : 0);
5144 }
5145
5146 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5147 __u64 start, __u64 len)
5148 {
5149 ext4_lblk_t start_blk;
5150 int error = 0;
5151
5152 if (ext4_has_inline_data(inode)) {
5153 int has_inline = 1;
5154
5155 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5156 start, len);
5157
5158 if (has_inline)
5159 return error;
5160 }
5161
5162 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5163 error = ext4_ext_precache(inode);
5164 if (error)
5165 return error;
5166 }
5167
5168 /* fallback to generic here if not in extents fmt */
5169 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5170 return generic_block_fiemap(inode, fieinfo, start, len,
5171 ext4_get_block);
5172
5173 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5174 return -EBADR;
5175
5176 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5177 error = ext4_xattr_fiemap(inode, fieinfo);
5178 } else {
5179 ext4_lblk_t len_blks;
5180 __u64 last_blk;
5181
5182 start_blk = start >> inode->i_sb->s_blocksize_bits;
5183 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5184 if (last_blk >= EXT_MAX_BLOCKS)
5185 last_blk = EXT_MAX_BLOCKS-1;
5186 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5187
5188 /*
5189 * Walk the extent tree gathering extent information
5190 * and pushing extents back to the user.
5191 */
5192 error = ext4_fill_fiemap_extents(inode, start_blk,
5193 len_blks, fieinfo);
5194 }
5195 return error;
5196 }
5197
5198 /*
5199 * ext4_access_path:
5200 * Function to access the path buffer for marking it dirty.
5201 * It also checks if there are sufficient credits left in the journal handle
5202 * to update path.
5203 */
5204 static int
5205 ext4_access_path(handle_t *handle, struct inode *inode,
5206 struct ext4_ext_path *path)
5207 {
5208 int credits, err;
5209
5210 if (!ext4_handle_valid(handle))
5211 return 0;
5212
5213 /*
5214 * Check if need to extend journal credits
5215 * 3 for leaf, sb, and inode plus 2 (bmap and group
5216 * descriptor) for each block group; assume two block
5217 * groups
5218 */
5219 if (handle->h_buffer_credits < 7) {
5220 credits = ext4_writepage_trans_blocks(inode);
5221 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5222 /* EAGAIN is success */
5223 if (err && err != -EAGAIN)
5224 return err;
5225 }
5226
5227 err = ext4_ext_get_access(handle, inode, path);
5228 return err;
5229 }
5230
5231 /*
5232 * ext4_ext_shift_path_extents:
5233 * Shift the extents of a path structure lying between path[depth].p_ext
5234 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5235 * if it is right shift or left shift operation.
5236 */
5237 static int
5238 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5239 struct inode *inode, handle_t *handle,
5240 enum SHIFT_DIRECTION SHIFT)
5241 {
5242 int depth, err = 0;
5243 struct ext4_extent *ex_start, *ex_last;
5244 bool update = 0;
5245 depth = path->p_depth;
5246
5247 while (depth >= 0) {
5248 if (depth == path->p_depth) {
5249 ex_start = path[depth].p_ext;
5250 if (!ex_start)
5251 return -EFSCORRUPTED;
5252
5253 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5254
5255 err = ext4_access_path(handle, inode, path + depth);
5256 if (err)
5257 goto out;
5258
5259 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5260 update = 1;
5261
5262 while (ex_start <= ex_last) {
5263 if (SHIFT == SHIFT_LEFT) {
5264 le32_add_cpu(&ex_start->ee_block,
5265 -shift);
5266 /* Try to merge to the left. */
5267 if ((ex_start >
5268 EXT_FIRST_EXTENT(path[depth].p_hdr))
5269 &&
5270 ext4_ext_try_to_merge_right(inode,
5271 path, ex_start - 1))
5272 ex_last--;
5273 else
5274 ex_start++;
5275 } else {
5276 le32_add_cpu(&ex_last->ee_block, shift);
5277 ext4_ext_try_to_merge_right(inode, path,
5278 ex_last);
5279 ex_last--;
5280 }
5281 }
5282 err = ext4_ext_dirty(handle, inode, path + depth);
5283 if (err)
5284 goto out;
5285
5286 if (--depth < 0 || !update)
5287 break;
5288 }
5289
5290 /* Update index too */
5291 err = ext4_access_path(handle, inode, path + depth);
5292 if (err)
5293 goto out;
5294
5295 if (SHIFT == SHIFT_LEFT)
5296 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5297 else
5298 le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5299 err = ext4_ext_dirty(handle, inode, path + depth);
5300 if (err)
5301 goto out;
5302
5303 /* we are done if current index is not a starting index */
5304 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5305 break;
5306
5307 depth--;
5308 }
5309
5310 out:
5311 return err;
5312 }
5313
5314 /*
5315 * ext4_ext_shift_extents:
5316 * All the extents which lies in the range from @start to the last allocated
5317 * block for the @inode are shifted either towards left or right (depending
5318 * upon @SHIFT) by @shift blocks.
5319 * On success, 0 is returned, error otherwise.
5320 */
5321 static int
5322 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5323 ext4_lblk_t start, ext4_lblk_t shift,
5324 enum SHIFT_DIRECTION SHIFT)
5325 {
5326 struct ext4_ext_path *path;
5327 int ret = 0, depth;
5328 struct ext4_extent *extent;
5329 ext4_lblk_t stop, *iterator, ex_start, ex_end;
5330
5331 /* Let path point to the last extent */
5332 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL,
5333 EXT4_EX_NOCACHE);
5334 if (IS_ERR(path))
5335 return PTR_ERR(path);
5336
5337 depth = path->p_depth;
5338 extent = path[depth].p_ext;
5339 if (!extent)
5340 goto out;
5341
5342 stop = le32_to_cpu(extent->ee_block);
5343
5344 /*
5345 * For left shifts, make sure the hole on the left is big enough to
5346 * accommodate the shift. For right shifts, make sure the last extent
5347 * won't be shifted beyond EXT_MAX_BLOCKS.
5348 */
5349 if (SHIFT == SHIFT_LEFT) {
5350 path = ext4_find_extent(inode, start - 1, &path,
5351 EXT4_EX_NOCACHE);
5352 if (IS_ERR(path))
5353 return PTR_ERR(path);
5354 depth = path->p_depth;
5355 extent = path[depth].p_ext;
5356 if (extent) {
5357 ex_start = le32_to_cpu(extent->ee_block);
5358 ex_end = le32_to_cpu(extent->ee_block) +
5359 ext4_ext_get_actual_len(extent);
5360 } else {
5361 ex_start = 0;
5362 ex_end = 0;
5363 }
5364
5365 if ((start == ex_start && shift > ex_start) ||
5366 (shift > start - ex_end)) {
5367 ret = -EINVAL;
5368 goto out;
5369 }
5370 } else {
5371 if (shift > EXT_MAX_BLOCKS -
5372 (stop + ext4_ext_get_actual_len(extent))) {
5373 ret = -EINVAL;
5374 goto out;
5375 }
5376 }
5377
5378 /*
5379 * In case of left shift, iterator points to start and it is increased
5380 * till we reach stop. In case of right shift, iterator points to stop
5381 * and it is decreased till we reach start.
5382 */
5383 if (SHIFT == SHIFT_LEFT)
5384 iterator = &start;
5385 else
5386 iterator = &stop;
5387
5388 /*
5389 * Its safe to start updating extents. Start and stop are unsigned, so
5390 * in case of right shift if extent with 0 block is reached, iterator
5391 * becomes NULL to indicate the end of the loop.
5392 */
5393 while (iterator && start <= stop) {
5394 path = ext4_find_extent(inode, *iterator, &path,
5395 EXT4_EX_NOCACHE);
5396 if (IS_ERR(path))
5397 return PTR_ERR(path);
5398 depth = path->p_depth;
5399 extent = path[depth].p_ext;
5400 if (!extent) {
5401 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5402 (unsigned long) *iterator);
5403 return -EFSCORRUPTED;
5404 }
5405 if (SHIFT == SHIFT_LEFT && *iterator >
5406 le32_to_cpu(extent->ee_block)) {
5407 /* Hole, move to the next extent */
5408 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5409 path[depth].p_ext++;
5410 } else {
5411 *iterator = ext4_ext_next_allocated_block(path);
5412 continue;
5413 }
5414 }
5415
5416 if (SHIFT == SHIFT_LEFT) {
5417 extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5418 *iterator = le32_to_cpu(extent->ee_block) +
5419 ext4_ext_get_actual_len(extent);
5420 } else {
5421 extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5422 if (le32_to_cpu(extent->ee_block) > 0)
5423 *iterator = le32_to_cpu(extent->ee_block) - 1;
5424 else
5425 /* Beginning is reached, end of the loop */
5426 iterator = NULL;
5427 /* Update path extent in case we need to stop */
5428 while (le32_to_cpu(extent->ee_block) < start)
5429 extent++;
5430 path[depth].p_ext = extent;
5431 }
5432 ret = ext4_ext_shift_path_extents(path, shift, inode,
5433 handle, SHIFT);
5434 if (ret)
5435 break;
5436 }
5437 out:
5438 ext4_ext_drop_refs(path);
5439 kfree(path);
5440 return ret;
5441 }
5442
5443 /*
5444 * ext4_collapse_range:
5445 * This implements the fallocate's collapse range functionality for ext4
5446 * Returns: 0 and non-zero on error.
5447 */
5448 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5449 {
5450 struct super_block *sb = inode->i_sb;
5451 ext4_lblk_t punch_start, punch_stop;
5452 handle_t *handle;
5453 unsigned int credits;
5454 loff_t new_size, ioffset;
5455 int ret;
5456
5457 /*
5458 * We need to test this early because xfstests assumes that a
5459 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5460 * system does not support collapse range.
5461 */
5462 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5463 return -EOPNOTSUPP;
5464
5465 /* Collapse range works only on fs block size aligned offsets. */
5466 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5467 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5468 return -EINVAL;
5469
5470 if (!S_ISREG(inode->i_mode))
5471 return -EINVAL;
5472
5473 trace_ext4_collapse_range(inode, offset, len);
5474
5475 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5476 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5477
5478 /* Call ext4_force_commit to flush all data in case of data=journal. */
5479 if (ext4_should_journal_data(inode)) {
5480 ret = ext4_force_commit(inode->i_sb);
5481 if (ret)
5482 return ret;
5483 }
5484
5485 inode_lock(inode);
5486 /*
5487 * There is no need to overlap collapse range with EOF, in which case
5488 * it is effectively a truncate operation
5489 */
5490 if (offset + len >= i_size_read(inode)) {
5491 ret = -EINVAL;
5492 goto out_mutex;
5493 }
5494
5495 /* Currently just for extent based files */
5496 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5497 ret = -EOPNOTSUPP;
5498 goto out_mutex;
5499 }
5500
5501 /* Wait for existing dio to complete */
5502 inode_dio_wait(inode);
5503
5504 /*
5505 * Prevent page faults from reinstantiating pages we have released from
5506 * page cache.
5507 */
5508 down_write(&EXT4_I(inode)->i_mmap_sem);
5509
5510 ret = ext4_break_layouts(inode);
5511 if (ret)
5512 goto out_mmap;
5513
5514 /*
5515 * Need to round down offset to be aligned with page size boundary
5516 * for page size > block size.
5517 */
5518 ioffset = round_down(offset, PAGE_SIZE);
5519 /*
5520 * Write tail of the last page before removed range since it will get
5521 * removed from the page cache below.
5522 */
5523 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5524 if (ret)
5525 goto out_mmap;
5526 /*
5527 * Write data that will be shifted to preserve them when discarding
5528 * page cache below. We are also protected from pages becoming dirty
5529 * by i_mmap_sem.
5530 */
5531 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5532 LLONG_MAX);
5533 if (ret)
5534 goto out_mmap;
5535 truncate_pagecache(inode, ioffset);
5536
5537 credits = ext4_writepage_trans_blocks(inode);
5538 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5539 if (IS_ERR(handle)) {
5540 ret = PTR_ERR(handle);
5541 goto out_mmap;
5542 }
5543
5544 down_write(&EXT4_I(inode)->i_data_sem);
5545 ext4_discard_preallocations(inode);
5546
5547 ret = ext4_es_remove_extent(inode, punch_start,
5548 EXT_MAX_BLOCKS - punch_start);
5549 if (ret) {
5550 up_write(&EXT4_I(inode)->i_data_sem);
5551 goto out_stop;
5552 }
5553
5554 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5555 if (ret) {
5556 up_write(&EXT4_I(inode)->i_data_sem);
5557 goto out_stop;
5558 }
5559 ext4_discard_preallocations(inode);
5560
5561 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5562 punch_stop - punch_start, SHIFT_LEFT);
5563 if (ret) {
5564 up_write(&EXT4_I(inode)->i_data_sem);
5565 goto out_stop;
5566 }
5567
5568 new_size = i_size_read(inode) - len;
5569 i_size_write(inode, new_size);
5570 EXT4_I(inode)->i_disksize = new_size;
5571
5572 up_write(&EXT4_I(inode)->i_data_sem);
5573 if (IS_SYNC(inode))
5574 ext4_handle_sync(handle);
5575 inode->i_mtime = inode->i_ctime = current_time(inode);
5576 ext4_mark_inode_dirty(handle, inode);
5577 ext4_update_inode_fsync_trans(handle, inode, 1);
5578
5579 out_stop:
5580 ext4_journal_stop(handle);
5581 out_mmap:
5582 up_write(&EXT4_I(inode)->i_mmap_sem);
5583 out_mutex:
5584 inode_unlock(inode);
5585 return ret;
5586 }
5587
5588 /*
5589 * ext4_insert_range:
5590 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5591 * The data blocks starting from @offset to the EOF are shifted by @len
5592 * towards right to create a hole in the @inode. Inode size is increased
5593 * by len bytes.
5594 * Returns 0 on success, error otherwise.
5595 */
5596 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5597 {
5598 struct super_block *sb = inode->i_sb;
5599 handle_t *handle;
5600 struct ext4_ext_path *path;
5601 struct ext4_extent *extent;
5602 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5603 unsigned int credits, ee_len;
5604 int ret = 0, depth, split_flag = 0;
5605 loff_t ioffset;
5606
5607 /*
5608 * We need to test this early because xfstests assumes that an
5609 * insert range of (0, 1) will return EOPNOTSUPP if the file
5610 * system does not support insert range.
5611 */
5612 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5613 return -EOPNOTSUPP;
5614
5615 /* Insert range works only on fs block size aligned offsets. */
5616 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5617 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5618 return -EINVAL;
5619
5620 if (!S_ISREG(inode->i_mode))
5621 return -EOPNOTSUPP;
5622
5623 trace_ext4_insert_range(inode, offset, len);
5624
5625 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5626 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5627
5628 /* Call ext4_force_commit to flush all data in case of data=journal */
5629 if (ext4_should_journal_data(inode)) {
5630 ret = ext4_force_commit(inode->i_sb);
5631 if (ret)
5632 return ret;
5633 }
5634
5635 inode_lock(inode);
5636 /* Currently just for extent based files */
5637 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5638 ret = -EOPNOTSUPP;
5639 goto out_mutex;
5640 }
5641
5642 /* Check for wrap through zero */
5643 if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5644 ret = -EFBIG;
5645 goto out_mutex;
5646 }
5647
5648 /* Offset should be less than i_size */
5649 if (offset >= i_size_read(inode)) {
5650 ret = -EINVAL;
5651 goto out_mutex;
5652 }
5653
5654 /* Wait for existing dio to complete */
5655 inode_dio_wait(inode);
5656
5657 /*
5658 * Prevent page faults from reinstantiating pages we have released from
5659 * page cache.
5660 */
5661 down_write(&EXT4_I(inode)->i_mmap_sem);
5662
5663 ret = ext4_break_layouts(inode);
5664 if (ret)
5665 goto out_mmap;
5666
5667 /*
5668 * Need to round down to align start offset to page size boundary
5669 * for page size > block size.
5670 */
5671 ioffset = round_down(offset, PAGE_SIZE);
5672 /* Write out all dirty pages */
5673 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5674 LLONG_MAX);
5675 if (ret)
5676 goto out_mmap;
5677 truncate_pagecache(inode, ioffset);
5678
5679 credits = ext4_writepage_trans_blocks(inode);
5680 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5681 if (IS_ERR(handle)) {
5682 ret = PTR_ERR(handle);
5683 goto out_mmap;
5684 }
5685
5686 /* Expand file to avoid data loss if there is error while shifting */
5687 inode->i_size += len;
5688 EXT4_I(inode)->i_disksize += len;
5689 inode->i_mtime = inode->i_ctime = current_time(inode);
5690 ret = ext4_mark_inode_dirty(handle, inode);
5691 if (ret)
5692 goto out_stop;
5693
5694 down_write(&EXT4_I(inode)->i_data_sem);
5695 ext4_discard_preallocations(inode);
5696
5697 path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5698 if (IS_ERR(path)) {
5699 up_write(&EXT4_I(inode)->i_data_sem);
5700 goto out_stop;
5701 }
5702
5703 depth = ext_depth(inode);
5704 extent = path[depth].p_ext;
5705 if (extent) {
5706 ee_start_lblk = le32_to_cpu(extent->ee_block);
5707 ee_len = ext4_ext_get_actual_len(extent);
5708
5709 /*
5710 * If offset_lblk is not the starting block of extent, split
5711 * the extent @offset_lblk
5712 */
5713 if ((offset_lblk > ee_start_lblk) &&
5714 (offset_lblk < (ee_start_lblk + ee_len))) {
5715 if (ext4_ext_is_unwritten(extent))
5716 split_flag = EXT4_EXT_MARK_UNWRIT1 |
5717 EXT4_EXT_MARK_UNWRIT2;
5718 ret = ext4_split_extent_at(handle, inode, &path,
5719 offset_lblk, split_flag,
5720 EXT4_EX_NOCACHE |
5721 EXT4_GET_BLOCKS_PRE_IO |
5722 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5723 }
5724
5725 ext4_ext_drop_refs(path);
5726 kfree(path);
5727 if (ret < 0) {
5728 up_write(&EXT4_I(inode)->i_data_sem);
5729 goto out_stop;
5730 }
5731 } else {
5732 ext4_ext_drop_refs(path);
5733 kfree(path);
5734 }
5735
5736 ret = ext4_es_remove_extent(inode, offset_lblk,
5737 EXT_MAX_BLOCKS - offset_lblk);
5738 if (ret) {
5739 up_write(&EXT4_I(inode)->i_data_sem);
5740 goto out_stop;
5741 }
5742
5743 /*
5744 * if offset_lblk lies in a hole which is at start of file, use
5745 * ee_start_lblk to shift extents
5746 */
5747 ret = ext4_ext_shift_extents(inode, handle,
5748 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5749 len_lblk, SHIFT_RIGHT);
5750
5751 up_write(&EXT4_I(inode)->i_data_sem);
5752 if (IS_SYNC(inode))
5753 ext4_handle_sync(handle);
5754 if (ret >= 0)
5755 ext4_update_inode_fsync_trans(handle, inode, 1);
5756
5757 out_stop:
5758 ext4_journal_stop(handle);
5759 out_mmap:
5760 up_write(&EXT4_I(inode)->i_mmap_sem);
5761 out_mutex:
5762 inode_unlock(inode);
5763 return ret;
5764 }
5765
5766 /**
5767 * ext4_swap_extents - Swap extents between two inodes
5768 *
5769 * @inode1: First inode
5770 * @inode2: Second inode
5771 * @lblk1: Start block for first inode
5772 * @lblk2: Start block for second inode
5773 * @count: Number of blocks to swap
5774 * @unwritten: Mark second inode's extents as unwritten after swap
5775 * @erp: Pointer to save error value
5776 *
5777 * This helper routine does exactly what is promise "swap extents". All other
5778 * stuff such as page-cache locking consistency, bh mapping consistency or
5779 * extent's data copying must be performed by caller.
5780 * Locking:
5781 * i_mutex is held for both inodes
5782 * i_data_sem is locked for write for both inodes
5783 * Assumptions:
5784 * All pages from requested range are locked for both inodes
5785 */
5786 int
5787 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5788 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5789 ext4_lblk_t count, int unwritten, int *erp)
5790 {
5791 struct ext4_ext_path *path1 = NULL;
5792 struct ext4_ext_path *path2 = NULL;
5793 int replaced_count = 0;
5794
5795 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5796 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5797 BUG_ON(!inode_is_locked(inode1));
5798 BUG_ON(!inode_is_locked(inode2));
5799
5800 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5801 if (unlikely(*erp))
5802 return 0;
5803 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5804 if (unlikely(*erp))
5805 return 0;
5806
5807 while (count) {
5808 struct ext4_extent *ex1, *ex2, tmp_ex;
5809 ext4_lblk_t e1_blk, e2_blk;
5810 int e1_len, e2_len, len;
5811 int split = 0;
5812
5813 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5814 if (IS_ERR(path1)) {
5815 *erp = PTR_ERR(path1);
5816 path1 = NULL;
5817 finish:
5818 count = 0;
5819 goto repeat;
5820 }
5821 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5822 if (IS_ERR(path2)) {
5823 *erp = PTR_ERR(path2);
5824 path2 = NULL;
5825 goto finish;
5826 }
5827 ex1 = path1[path1->p_depth].p_ext;
5828 ex2 = path2[path2->p_depth].p_ext;
5829 /* Do we have somthing to swap ? */
5830 if (unlikely(!ex2 || !ex1))
5831 goto finish;
5832
5833 e1_blk = le32_to_cpu(ex1->ee_block);
5834 e2_blk = le32_to_cpu(ex2->ee_block);
5835 e1_len = ext4_ext_get_actual_len(ex1);
5836 e2_len = ext4_ext_get_actual_len(ex2);
5837
5838 /* Hole handling */
5839 if (!in_range(lblk1, e1_blk, e1_len) ||
5840 !in_range(lblk2, e2_blk, e2_len)) {
5841 ext4_lblk_t next1, next2;
5842
5843 /* if hole after extent, then go to next extent */
5844 next1 = ext4_ext_next_allocated_block(path1);
5845 next2 = ext4_ext_next_allocated_block(path2);
5846 /* If hole before extent, then shift to that extent */
5847 if (e1_blk > lblk1)
5848 next1 = e1_blk;
5849 if (e2_blk > lblk2)
5850 next2 = e2_blk;
5851 /* Do we have something to swap */
5852 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5853 goto finish;
5854 /* Move to the rightest boundary */
5855 len = next1 - lblk1;
5856 if (len < next2 - lblk2)
5857 len = next2 - lblk2;
5858 if (len > count)
5859 len = count;
5860 lblk1 += len;
5861 lblk2 += len;
5862 count -= len;
5863 goto repeat;
5864 }
5865
5866 /* Prepare left boundary */
5867 if (e1_blk < lblk1) {
5868 split = 1;
5869 *erp = ext4_force_split_extent_at(handle, inode1,
5870 &path1, lblk1, 0);
5871 if (unlikely(*erp))
5872 goto finish;
5873 }
5874 if (e2_blk < lblk2) {
5875 split = 1;
5876 *erp = ext4_force_split_extent_at(handle, inode2,
5877 &path2, lblk2, 0);
5878 if (unlikely(*erp))
5879 goto finish;
5880 }
5881 /* ext4_split_extent_at() may result in leaf extent split,
5882 * path must to be revalidated. */
5883 if (split)
5884 goto repeat;
5885
5886 /* Prepare right boundary */
5887 len = count;
5888 if (len > e1_blk + e1_len - lblk1)
5889 len = e1_blk + e1_len - lblk1;
5890 if (len > e2_blk + e2_len - lblk2)
5891 len = e2_blk + e2_len - lblk2;
5892
5893 if (len != e1_len) {
5894 split = 1;
5895 *erp = ext4_force_split_extent_at(handle, inode1,
5896 &path1, lblk1 + len, 0);
5897 if (unlikely(*erp))
5898 goto finish;
5899 }
5900 if (len != e2_len) {
5901 split = 1;
5902 *erp = ext4_force_split_extent_at(handle, inode2,
5903 &path2, lblk2 + len, 0);
5904 if (*erp)
5905 goto finish;
5906 }
5907 /* ext4_split_extent_at() may result in leaf extent split,
5908 * path must to be revalidated. */
5909 if (split)
5910 goto repeat;
5911
5912 BUG_ON(e2_len != e1_len);
5913 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5914 if (unlikely(*erp))
5915 goto finish;
5916 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5917 if (unlikely(*erp))
5918 goto finish;
5919
5920 /* Both extents are fully inside boundaries. Swap it now */
5921 tmp_ex = *ex1;
5922 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5923 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5924 ex1->ee_len = cpu_to_le16(e2_len);
5925 ex2->ee_len = cpu_to_le16(e1_len);
5926 if (unwritten)
5927 ext4_ext_mark_unwritten(ex2);
5928 if (ext4_ext_is_unwritten(&tmp_ex))
5929 ext4_ext_mark_unwritten(ex1);
5930
5931 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5932 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5933 *erp = ext4_ext_dirty(handle, inode2, path2 +
5934 path2->p_depth);
5935 if (unlikely(*erp))
5936 goto finish;
5937 *erp = ext4_ext_dirty(handle, inode1, path1 +
5938 path1->p_depth);
5939 /*
5940 * Looks scarry ah..? second inode already points to new blocks,
5941 * and it was successfully dirtied. But luckily error may happen
5942 * only due to journal error, so full transaction will be
5943 * aborted anyway.
5944 */
5945 if (unlikely(*erp))
5946 goto finish;
5947 lblk1 += len;
5948 lblk2 += len;
5949 replaced_count += len;
5950 count -= len;
5951
5952 repeat:
5953 ext4_ext_drop_refs(path1);
5954 kfree(path1);
5955 ext4_ext_drop_refs(path2);
5956 kfree(path2);
5957 path1 = path2 = NULL;
5958 }
5959 return replaced_count;
5960 }