]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
Linux 3.5-rc5
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44
45 #include <trace/events/ext4.h>
46
47 /*
48 * used by extent splitting.
49 */
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
54
55 static __le32 ext4_extent_block_csum(struct inode *inode,
56 struct ext4_extent_header *eh)
57 {
58 struct ext4_inode_info *ei = EXT4_I(inode);
59 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
60 __u32 csum;
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
63 EXT4_EXTENT_TAIL_OFFSET(eh));
64 return cpu_to_le32(csum);
65 }
66
67 static int ext4_extent_block_csum_verify(struct inode *inode,
68 struct ext4_extent_header *eh)
69 {
70 struct ext4_extent_tail *et;
71
72 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
73 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
74 return 1;
75
76 et = find_ext4_extent_tail(eh);
77 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
78 return 0;
79 return 1;
80 }
81
82 static void ext4_extent_block_csum_set(struct inode *inode,
83 struct ext4_extent_header *eh)
84 {
85 struct ext4_extent_tail *et;
86
87 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
88 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
89 return;
90
91 et = find_ext4_extent_tail(eh);
92 et->et_checksum = ext4_extent_block_csum(inode, eh);
93 }
94
95 static int ext4_split_extent(handle_t *handle,
96 struct inode *inode,
97 struct ext4_ext_path *path,
98 struct ext4_map_blocks *map,
99 int split_flag,
100 int flags);
101
102 static int ext4_split_extent_at(handle_t *handle,
103 struct inode *inode,
104 struct ext4_ext_path *path,
105 ext4_lblk_t split,
106 int split_flag,
107 int flags);
108
109 static int ext4_ext_truncate_extend_restart(handle_t *handle,
110 struct inode *inode,
111 int needed)
112 {
113 int err;
114
115 if (!ext4_handle_valid(handle))
116 return 0;
117 if (handle->h_buffer_credits > needed)
118 return 0;
119 err = ext4_journal_extend(handle, needed);
120 if (err <= 0)
121 return err;
122 err = ext4_truncate_restart_trans(handle, inode, needed);
123 if (err == 0)
124 err = -EAGAIN;
125
126 return err;
127 }
128
129 /*
130 * could return:
131 * - EROFS
132 * - ENOMEM
133 */
134 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
135 struct ext4_ext_path *path)
136 {
137 if (path->p_bh) {
138 /* path points to block */
139 return ext4_journal_get_write_access(handle, path->p_bh);
140 }
141 /* path points to leaf/index in inode body */
142 /* we use in-core data, no need to protect them */
143 return 0;
144 }
145
146 /*
147 * could return:
148 * - EROFS
149 * - ENOMEM
150 * - EIO
151 */
152 #define ext4_ext_dirty(handle, inode, path) \
153 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
154 static int __ext4_ext_dirty(const char *where, unsigned int line,
155 handle_t *handle, struct inode *inode,
156 struct ext4_ext_path *path)
157 {
158 int err;
159 if (path->p_bh) {
160 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
161 /* path points to block */
162 err = __ext4_handle_dirty_metadata(where, line, handle,
163 inode, path->p_bh);
164 } else {
165 /* path points to leaf/index in inode body */
166 err = ext4_mark_inode_dirty(handle, inode);
167 }
168 return err;
169 }
170
171 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
172 struct ext4_ext_path *path,
173 ext4_lblk_t block)
174 {
175 if (path) {
176 int depth = path->p_depth;
177 struct ext4_extent *ex;
178
179 /*
180 * Try to predict block placement assuming that we are
181 * filling in a file which will eventually be
182 * non-sparse --- i.e., in the case of libbfd writing
183 * an ELF object sections out-of-order but in a way
184 * the eventually results in a contiguous object or
185 * executable file, or some database extending a table
186 * space file. However, this is actually somewhat
187 * non-ideal if we are writing a sparse file such as
188 * qemu or KVM writing a raw image file that is going
189 * to stay fairly sparse, since it will end up
190 * fragmenting the file system's free space. Maybe we
191 * should have some hueristics or some way to allow
192 * userspace to pass a hint to file system,
193 * especially if the latter case turns out to be
194 * common.
195 */
196 ex = path[depth].p_ext;
197 if (ex) {
198 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
199 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
200
201 if (block > ext_block)
202 return ext_pblk + (block - ext_block);
203 else
204 return ext_pblk - (ext_block - block);
205 }
206
207 /* it looks like index is empty;
208 * try to find starting block from index itself */
209 if (path[depth].p_bh)
210 return path[depth].p_bh->b_blocknr;
211 }
212
213 /* OK. use inode's group */
214 return ext4_inode_to_goal_block(inode);
215 }
216
217 /*
218 * Allocation for a meta data block
219 */
220 static ext4_fsblk_t
221 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
222 struct ext4_ext_path *path,
223 struct ext4_extent *ex, int *err, unsigned int flags)
224 {
225 ext4_fsblk_t goal, newblock;
226
227 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
228 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
229 NULL, err);
230 return newblock;
231 }
232
233 static inline int ext4_ext_space_block(struct inode *inode, int check)
234 {
235 int size;
236
237 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
238 / sizeof(struct ext4_extent);
239 #ifdef AGGRESSIVE_TEST
240 if (!check && size > 6)
241 size = 6;
242 #endif
243 return size;
244 }
245
246 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
247 {
248 int size;
249
250 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
251 / sizeof(struct ext4_extent_idx);
252 #ifdef AGGRESSIVE_TEST
253 if (!check && size > 5)
254 size = 5;
255 #endif
256 return size;
257 }
258
259 static inline int ext4_ext_space_root(struct inode *inode, int check)
260 {
261 int size;
262
263 size = sizeof(EXT4_I(inode)->i_data);
264 size -= sizeof(struct ext4_extent_header);
265 size /= sizeof(struct ext4_extent);
266 #ifdef AGGRESSIVE_TEST
267 if (!check && size > 3)
268 size = 3;
269 #endif
270 return size;
271 }
272
273 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
274 {
275 int size;
276
277 size = sizeof(EXT4_I(inode)->i_data);
278 size -= sizeof(struct ext4_extent_header);
279 size /= sizeof(struct ext4_extent_idx);
280 #ifdef AGGRESSIVE_TEST
281 if (!check && size > 4)
282 size = 4;
283 #endif
284 return size;
285 }
286
287 /*
288 * Calculate the number of metadata blocks needed
289 * to allocate @blocks
290 * Worse case is one block per extent
291 */
292 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
293 {
294 struct ext4_inode_info *ei = EXT4_I(inode);
295 int idxs;
296
297 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
298 / sizeof(struct ext4_extent_idx));
299
300 /*
301 * If the new delayed allocation block is contiguous with the
302 * previous da block, it can share index blocks with the
303 * previous block, so we only need to allocate a new index
304 * block every idxs leaf blocks. At ldxs**2 blocks, we need
305 * an additional index block, and at ldxs**3 blocks, yet
306 * another index blocks.
307 */
308 if (ei->i_da_metadata_calc_len &&
309 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
310 int num = 0;
311
312 if ((ei->i_da_metadata_calc_len % idxs) == 0)
313 num++;
314 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
315 num++;
316 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
317 num++;
318 ei->i_da_metadata_calc_len = 0;
319 } else
320 ei->i_da_metadata_calc_len++;
321 ei->i_da_metadata_calc_last_lblock++;
322 return num;
323 }
324
325 /*
326 * In the worst case we need a new set of index blocks at
327 * every level of the inode's extent tree.
328 */
329 ei->i_da_metadata_calc_len = 1;
330 ei->i_da_metadata_calc_last_lblock = lblock;
331 return ext_depth(inode) + 1;
332 }
333
334 static int
335 ext4_ext_max_entries(struct inode *inode, int depth)
336 {
337 int max;
338
339 if (depth == ext_depth(inode)) {
340 if (depth == 0)
341 max = ext4_ext_space_root(inode, 1);
342 else
343 max = ext4_ext_space_root_idx(inode, 1);
344 } else {
345 if (depth == 0)
346 max = ext4_ext_space_block(inode, 1);
347 else
348 max = ext4_ext_space_block_idx(inode, 1);
349 }
350
351 return max;
352 }
353
354 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
355 {
356 ext4_fsblk_t block = ext4_ext_pblock(ext);
357 int len = ext4_ext_get_actual_len(ext);
358
359 if (len == 0)
360 return 0;
361 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
362 }
363
364 static int ext4_valid_extent_idx(struct inode *inode,
365 struct ext4_extent_idx *ext_idx)
366 {
367 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
368
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
370 }
371
372 static int ext4_valid_extent_entries(struct inode *inode,
373 struct ext4_extent_header *eh,
374 int depth)
375 {
376 unsigned short entries;
377 if (eh->eh_entries == 0)
378 return 1;
379
380 entries = le16_to_cpu(eh->eh_entries);
381
382 if (depth == 0) {
383 /* leaf entries */
384 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
385 while (entries) {
386 if (!ext4_valid_extent(inode, ext))
387 return 0;
388 ext++;
389 entries--;
390 }
391 } else {
392 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
393 while (entries) {
394 if (!ext4_valid_extent_idx(inode, ext_idx))
395 return 0;
396 ext_idx++;
397 entries--;
398 }
399 }
400 return 1;
401 }
402
403 static int __ext4_ext_check(const char *function, unsigned int line,
404 struct inode *inode, struct ext4_extent_header *eh,
405 int depth)
406 {
407 const char *error_msg;
408 int max = 0;
409
410 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
411 error_msg = "invalid magic";
412 goto corrupted;
413 }
414 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
415 error_msg = "unexpected eh_depth";
416 goto corrupted;
417 }
418 if (unlikely(eh->eh_max == 0)) {
419 error_msg = "invalid eh_max";
420 goto corrupted;
421 }
422 max = ext4_ext_max_entries(inode, depth);
423 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
424 error_msg = "too large eh_max";
425 goto corrupted;
426 }
427 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
428 error_msg = "invalid eh_entries";
429 goto corrupted;
430 }
431 if (!ext4_valid_extent_entries(inode, eh, depth)) {
432 error_msg = "invalid extent entries";
433 goto corrupted;
434 }
435 /* Verify checksum on non-root extent tree nodes */
436 if (ext_depth(inode) != depth &&
437 !ext4_extent_block_csum_verify(inode, eh)) {
438 error_msg = "extent tree corrupted";
439 goto corrupted;
440 }
441 return 0;
442
443 corrupted:
444 ext4_error_inode(inode, function, line, 0,
445 "bad header/extent: %s - magic %x, "
446 "entries %u, max %u(%u), depth %u(%u)",
447 error_msg, le16_to_cpu(eh->eh_magic),
448 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
449 max, le16_to_cpu(eh->eh_depth), depth);
450
451 return -EIO;
452 }
453
454 #define ext4_ext_check(inode, eh, depth) \
455 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
456
457 int ext4_ext_check_inode(struct inode *inode)
458 {
459 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
460 }
461
462 static int __ext4_ext_check_block(const char *function, unsigned int line,
463 struct inode *inode,
464 struct ext4_extent_header *eh,
465 int depth,
466 struct buffer_head *bh)
467 {
468 int ret;
469
470 if (buffer_verified(bh))
471 return 0;
472 ret = ext4_ext_check(inode, eh, depth);
473 if (ret)
474 return ret;
475 set_buffer_verified(bh);
476 return ret;
477 }
478
479 #define ext4_ext_check_block(inode, eh, depth, bh) \
480 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
481
482 #ifdef EXT_DEBUG
483 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
484 {
485 int k, l = path->p_depth;
486
487 ext_debug("path:");
488 for (k = 0; k <= l; k++, path++) {
489 if (path->p_idx) {
490 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
491 ext4_idx_pblock(path->p_idx));
492 } else if (path->p_ext) {
493 ext_debug(" %d:[%d]%d:%llu ",
494 le32_to_cpu(path->p_ext->ee_block),
495 ext4_ext_is_uninitialized(path->p_ext),
496 ext4_ext_get_actual_len(path->p_ext),
497 ext4_ext_pblock(path->p_ext));
498 } else
499 ext_debug(" []");
500 }
501 ext_debug("\n");
502 }
503
504 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
505 {
506 int depth = ext_depth(inode);
507 struct ext4_extent_header *eh;
508 struct ext4_extent *ex;
509 int i;
510
511 if (!path)
512 return;
513
514 eh = path[depth].p_hdr;
515 ex = EXT_FIRST_EXTENT(eh);
516
517 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
518
519 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
520 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
521 ext4_ext_is_uninitialized(ex),
522 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
523 }
524 ext_debug("\n");
525 }
526
527 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
528 ext4_fsblk_t newblock, int level)
529 {
530 int depth = ext_depth(inode);
531 struct ext4_extent *ex;
532
533 if (depth != level) {
534 struct ext4_extent_idx *idx;
535 idx = path[level].p_idx;
536 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
537 ext_debug("%d: move %d:%llu in new index %llu\n", level,
538 le32_to_cpu(idx->ei_block),
539 ext4_idx_pblock(idx),
540 newblock);
541 idx++;
542 }
543
544 return;
545 }
546
547 ex = path[depth].p_ext;
548 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
549 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
550 le32_to_cpu(ex->ee_block),
551 ext4_ext_pblock(ex),
552 ext4_ext_is_uninitialized(ex),
553 ext4_ext_get_actual_len(ex),
554 newblock);
555 ex++;
556 }
557 }
558
559 #else
560 #define ext4_ext_show_path(inode, path)
561 #define ext4_ext_show_leaf(inode, path)
562 #define ext4_ext_show_move(inode, path, newblock, level)
563 #endif
564
565 void ext4_ext_drop_refs(struct ext4_ext_path *path)
566 {
567 int depth = path->p_depth;
568 int i;
569
570 for (i = 0; i <= depth; i++, path++)
571 if (path->p_bh) {
572 brelse(path->p_bh);
573 path->p_bh = NULL;
574 }
575 }
576
577 /*
578 * ext4_ext_binsearch_idx:
579 * binary search for the closest index of the given block
580 * the header must be checked before calling this
581 */
582 static void
583 ext4_ext_binsearch_idx(struct inode *inode,
584 struct ext4_ext_path *path, ext4_lblk_t block)
585 {
586 struct ext4_extent_header *eh = path->p_hdr;
587 struct ext4_extent_idx *r, *l, *m;
588
589
590 ext_debug("binsearch for %u(idx): ", block);
591
592 l = EXT_FIRST_INDEX(eh) + 1;
593 r = EXT_LAST_INDEX(eh);
594 while (l <= r) {
595 m = l + (r - l) / 2;
596 if (block < le32_to_cpu(m->ei_block))
597 r = m - 1;
598 else
599 l = m + 1;
600 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
601 m, le32_to_cpu(m->ei_block),
602 r, le32_to_cpu(r->ei_block));
603 }
604
605 path->p_idx = l - 1;
606 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
607 ext4_idx_pblock(path->p_idx));
608
609 #ifdef CHECK_BINSEARCH
610 {
611 struct ext4_extent_idx *chix, *ix;
612 int k;
613
614 chix = ix = EXT_FIRST_INDEX(eh);
615 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
616 if (k != 0 &&
617 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
618 printk(KERN_DEBUG "k=%d, ix=0x%p, "
619 "first=0x%p\n", k,
620 ix, EXT_FIRST_INDEX(eh));
621 printk(KERN_DEBUG "%u <= %u\n",
622 le32_to_cpu(ix->ei_block),
623 le32_to_cpu(ix[-1].ei_block));
624 }
625 BUG_ON(k && le32_to_cpu(ix->ei_block)
626 <= le32_to_cpu(ix[-1].ei_block));
627 if (block < le32_to_cpu(ix->ei_block))
628 break;
629 chix = ix;
630 }
631 BUG_ON(chix != path->p_idx);
632 }
633 #endif
634
635 }
636
637 /*
638 * ext4_ext_binsearch:
639 * binary search for closest extent of the given block
640 * the header must be checked before calling this
641 */
642 static void
643 ext4_ext_binsearch(struct inode *inode,
644 struct ext4_ext_path *path, ext4_lblk_t block)
645 {
646 struct ext4_extent_header *eh = path->p_hdr;
647 struct ext4_extent *r, *l, *m;
648
649 if (eh->eh_entries == 0) {
650 /*
651 * this leaf is empty:
652 * we get such a leaf in split/add case
653 */
654 return;
655 }
656
657 ext_debug("binsearch for %u: ", block);
658
659 l = EXT_FIRST_EXTENT(eh) + 1;
660 r = EXT_LAST_EXTENT(eh);
661
662 while (l <= r) {
663 m = l + (r - l) / 2;
664 if (block < le32_to_cpu(m->ee_block))
665 r = m - 1;
666 else
667 l = m + 1;
668 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
669 m, le32_to_cpu(m->ee_block),
670 r, le32_to_cpu(r->ee_block));
671 }
672
673 path->p_ext = l - 1;
674 ext_debug(" -> %d:%llu:[%d]%d ",
675 le32_to_cpu(path->p_ext->ee_block),
676 ext4_ext_pblock(path->p_ext),
677 ext4_ext_is_uninitialized(path->p_ext),
678 ext4_ext_get_actual_len(path->p_ext));
679
680 #ifdef CHECK_BINSEARCH
681 {
682 struct ext4_extent *chex, *ex;
683 int k;
684
685 chex = ex = EXT_FIRST_EXTENT(eh);
686 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
687 BUG_ON(k && le32_to_cpu(ex->ee_block)
688 <= le32_to_cpu(ex[-1].ee_block));
689 if (block < le32_to_cpu(ex->ee_block))
690 break;
691 chex = ex;
692 }
693 BUG_ON(chex != path->p_ext);
694 }
695 #endif
696
697 }
698
699 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
700 {
701 struct ext4_extent_header *eh;
702
703 eh = ext_inode_hdr(inode);
704 eh->eh_depth = 0;
705 eh->eh_entries = 0;
706 eh->eh_magic = EXT4_EXT_MAGIC;
707 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
708 ext4_mark_inode_dirty(handle, inode);
709 ext4_ext_invalidate_cache(inode);
710 return 0;
711 }
712
713 struct ext4_ext_path *
714 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
715 struct ext4_ext_path *path)
716 {
717 struct ext4_extent_header *eh;
718 struct buffer_head *bh;
719 short int depth, i, ppos = 0, alloc = 0;
720
721 eh = ext_inode_hdr(inode);
722 depth = ext_depth(inode);
723
724 /* account possible depth increase */
725 if (!path) {
726 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
727 GFP_NOFS);
728 if (!path)
729 return ERR_PTR(-ENOMEM);
730 alloc = 1;
731 }
732 path[0].p_hdr = eh;
733 path[0].p_bh = NULL;
734
735 i = depth;
736 /* walk through the tree */
737 while (i) {
738 ext_debug("depth %d: num %d, max %d\n",
739 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
740
741 ext4_ext_binsearch_idx(inode, path + ppos, block);
742 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
743 path[ppos].p_depth = i;
744 path[ppos].p_ext = NULL;
745
746 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
747 if (unlikely(!bh))
748 goto err;
749 if (!bh_uptodate_or_lock(bh)) {
750 trace_ext4_ext_load_extent(inode, block,
751 path[ppos].p_block);
752 if (bh_submit_read(bh) < 0) {
753 put_bh(bh);
754 goto err;
755 }
756 }
757 eh = ext_block_hdr(bh);
758 ppos++;
759 if (unlikely(ppos > depth)) {
760 put_bh(bh);
761 EXT4_ERROR_INODE(inode,
762 "ppos %d > depth %d", ppos, depth);
763 goto err;
764 }
765 path[ppos].p_bh = bh;
766 path[ppos].p_hdr = eh;
767 i--;
768
769 if (ext4_ext_check_block(inode, eh, i, bh))
770 goto err;
771 }
772
773 path[ppos].p_depth = i;
774 path[ppos].p_ext = NULL;
775 path[ppos].p_idx = NULL;
776
777 /* find extent */
778 ext4_ext_binsearch(inode, path + ppos, block);
779 /* if not an empty leaf */
780 if (path[ppos].p_ext)
781 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
782
783 ext4_ext_show_path(inode, path);
784
785 return path;
786
787 err:
788 ext4_ext_drop_refs(path);
789 if (alloc)
790 kfree(path);
791 return ERR_PTR(-EIO);
792 }
793
794 /*
795 * ext4_ext_insert_index:
796 * insert new index [@logical;@ptr] into the block at @curp;
797 * check where to insert: before @curp or after @curp
798 */
799 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
800 struct ext4_ext_path *curp,
801 int logical, ext4_fsblk_t ptr)
802 {
803 struct ext4_extent_idx *ix;
804 int len, err;
805
806 err = ext4_ext_get_access(handle, inode, curp);
807 if (err)
808 return err;
809
810 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
811 EXT4_ERROR_INODE(inode,
812 "logical %d == ei_block %d!",
813 logical, le32_to_cpu(curp->p_idx->ei_block));
814 return -EIO;
815 }
816
817 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
818 >= le16_to_cpu(curp->p_hdr->eh_max))) {
819 EXT4_ERROR_INODE(inode,
820 "eh_entries %d >= eh_max %d!",
821 le16_to_cpu(curp->p_hdr->eh_entries),
822 le16_to_cpu(curp->p_hdr->eh_max));
823 return -EIO;
824 }
825
826 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
827 /* insert after */
828 ext_debug("insert new index %d after: %llu\n", logical, ptr);
829 ix = curp->p_idx + 1;
830 } else {
831 /* insert before */
832 ext_debug("insert new index %d before: %llu\n", logical, ptr);
833 ix = curp->p_idx;
834 }
835
836 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
837 BUG_ON(len < 0);
838 if (len > 0) {
839 ext_debug("insert new index %d: "
840 "move %d indices from 0x%p to 0x%p\n",
841 logical, len, ix, ix + 1);
842 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
843 }
844
845 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
846 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
847 return -EIO;
848 }
849
850 ix->ei_block = cpu_to_le32(logical);
851 ext4_idx_store_pblock(ix, ptr);
852 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
853
854 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
855 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
856 return -EIO;
857 }
858
859 err = ext4_ext_dirty(handle, inode, curp);
860 ext4_std_error(inode->i_sb, err);
861
862 return err;
863 }
864
865 /*
866 * ext4_ext_split:
867 * inserts new subtree into the path, using free index entry
868 * at depth @at:
869 * - allocates all needed blocks (new leaf and all intermediate index blocks)
870 * - makes decision where to split
871 * - moves remaining extents and index entries (right to the split point)
872 * into the newly allocated blocks
873 * - initializes subtree
874 */
875 static int ext4_ext_split(handle_t *handle, struct inode *inode,
876 unsigned int flags,
877 struct ext4_ext_path *path,
878 struct ext4_extent *newext, int at)
879 {
880 struct buffer_head *bh = NULL;
881 int depth = ext_depth(inode);
882 struct ext4_extent_header *neh;
883 struct ext4_extent_idx *fidx;
884 int i = at, k, m, a;
885 ext4_fsblk_t newblock, oldblock;
886 __le32 border;
887 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
888 int err = 0;
889
890 /* make decision: where to split? */
891 /* FIXME: now decision is simplest: at current extent */
892
893 /* if current leaf will be split, then we should use
894 * border from split point */
895 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
896 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
897 return -EIO;
898 }
899 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
900 border = path[depth].p_ext[1].ee_block;
901 ext_debug("leaf will be split."
902 " next leaf starts at %d\n",
903 le32_to_cpu(border));
904 } else {
905 border = newext->ee_block;
906 ext_debug("leaf will be added."
907 " next leaf starts at %d\n",
908 le32_to_cpu(border));
909 }
910
911 /*
912 * If error occurs, then we break processing
913 * and mark filesystem read-only. index won't
914 * be inserted and tree will be in consistent
915 * state. Next mount will repair buffers too.
916 */
917
918 /*
919 * Get array to track all allocated blocks.
920 * We need this to handle errors and free blocks
921 * upon them.
922 */
923 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
924 if (!ablocks)
925 return -ENOMEM;
926
927 /* allocate all needed blocks */
928 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
929 for (a = 0; a < depth - at; a++) {
930 newblock = ext4_ext_new_meta_block(handle, inode, path,
931 newext, &err, flags);
932 if (newblock == 0)
933 goto cleanup;
934 ablocks[a] = newblock;
935 }
936
937 /* initialize new leaf */
938 newblock = ablocks[--a];
939 if (unlikely(newblock == 0)) {
940 EXT4_ERROR_INODE(inode, "newblock == 0!");
941 err = -EIO;
942 goto cleanup;
943 }
944 bh = sb_getblk(inode->i_sb, newblock);
945 if (!bh) {
946 err = -EIO;
947 goto cleanup;
948 }
949 lock_buffer(bh);
950
951 err = ext4_journal_get_create_access(handle, bh);
952 if (err)
953 goto cleanup;
954
955 neh = ext_block_hdr(bh);
956 neh->eh_entries = 0;
957 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
958 neh->eh_magic = EXT4_EXT_MAGIC;
959 neh->eh_depth = 0;
960
961 /* move remainder of path[depth] to the new leaf */
962 if (unlikely(path[depth].p_hdr->eh_entries !=
963 path[depth].p_hdr->eh_max)) {
964 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
965 path[depth].p_hdr->eh_entries,
966 path[depth].p_hdr->eh_max);
967 err = -EIO;
968 goto cleanup;
969 }
970 /* start copy from next extent */
971 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
972 ext4_ext_show_move(inode, path, newblock, depth);
973 if (m) {
974 struct ext4_extent *ex;
975 ex = EXT_FIRST_EXTENT(neh);
976 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
977 le16_add_cpu(&neh->eh_entries, m);
978 }
979
980 ext4_extent_block_csum_set(inode, neh);
981 set_buffer_uptodate(bh);
982 unlock_buffer(bh);
983
984 err = ext4_handle_dirty_metadata(handle, inode, bh);
985 if (err)
986 goto cleanup;
987 brelse(bh);
988 bh = NULL;
989
990 /* correct old leaf */
991 if (m) {
992 err = ext4_ext_get_access(handle, inode, path + depth);
993 if (err)
994 goto cleanup;
995 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
996 err = ext4_ext_dirty(handle, inode, path + depth);
997 if (err)
998 goto cleanup;
999
1000 }
1001
1002 /* create intermediate indexes */
1003 k = depth - at - 1;
1004 if (unlikely(k < 0)) {
1005 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1006 err = -EIO;
1007 goto cleanup;
1008 }
1009 if (k)
1010 ext_debug("create %d intermediate indices\n", k);
1011 /* insert new index into current index block */
1012 /* current depth stored in i var */
1013 i = depth - 1;
1014 while (k--) {
1015 oldblock = newblock;
1016 newblock = ablocks[--a];
1017 bh = sb_getblk(inode->i_sb, newblock);
1018 if (!bh) {
1019 err = -EIO;
1020 goto cleanup;
1021 }
1022 lock_buffer(bh);
1023
1024 err = ext4_journal_get_create_access(handle, bh);
1025 if (err)
1026 goto cleanup;
1027
1028 neh = ext_block_hdr(bh);
1029 neh->eh_entries = cpu_to_le16(1);
1030 neh->eh_magic = EXT4_EXT_MAGIC;
1031 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1032 neh->eh_depth = cpu_to_le16(depth - i);
1033 fidx = EXT_FIRST_INDEX(neh);
1034 fidx->ei_block = border;
1035 ext4_idx_store_pblock(fidx, oldblock);
1036
1037 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1038 i, newblock, le32_to_cpu(border), oldblock);
1039
1040 /* move remainder of path[i] to the new index block */
1041 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1042 EXT_LAST_INDEX(path[i].p_hdr))) {
1043 EXT4_ERROR_INODE(inode,
1044 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1045 le32_to_cpu(path[i].p_ext->ee_block));
1046 err = -EIO;
1047 goto cleanup;
1048 }
1049 /* start copy indexes */
1050 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1051 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1052 EXT_MAX_INDEX(path[i].p_hdr));
1053 ext4_ext_show_move(inode, path, newblock, i);
1054 if (m) {
1055 memmove(++fidx, path[i].p_idx,
1056 sizeof(struct ext4_extent_idx) * m);
1057 le16_add_cpu(&neh->eh_entries, m);
1058 }
1059 ext4_extent_block_csum_set(inode, neh);
1060 set_buffer_uptodate(bh);
1061 unlock_buffer(bh);
1062
1063 err = ext4_handle_dirty_metadata(handle, inode, bh);
1064 if (err)
1065 goto cleanup;
1066 brelse(bh);
1067 bh = NULL;
1068
1069 /* correct old index */
1070 if (m) {
1071 err = ext4_ext_get_access(handle, inode, path + i);
1072 if (err)
1073 goto cleanup;
1074 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1075 err = ext4_ext_dirty(handle, inode, path + i);
1076 if (err)
1077 goto cleanup;
1078 }
1079
1080 i--;
1081 }
1082
1083 /* insert new index */
1084 err = ext4_ext_insert_index(handle, inode, path + at,
1085 le32_to_cpu(border), newblock);
1086
1087 cleanup:
1088 if (bh) {
1089 if (buffer_locked(bh))
1090 unlock_buffer(bh);
1091 brelse(bh);
1092 }
1093
1094 if (err) {
1095 /* free all allocated blocks in error case */
1096 for (i = 0; i < depth; i++) {
1097 if (!ablocks[i])
1098 continue;
1099 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1100 EXT4_FREE_BLOCKS_METADATA);
1101 }
1102 }
1103 kfree(ablocks);
1104
1105 return err;
1106 }
1107
1108 /*
1109 * ext4_ext_grow_indepth:
1110 * implements tree growing procedure:
1111 * - allocates new block
1112 * - moves top-level data (index block or leaf) into the new block
1113 * - initializes new top-level, creating index that points to the
1114 * just created block
1115 */
1116 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1117 unsigned int flags,
1118 struct ext4_extent *newext)
1119 {
1120 struct ext4_extent_header *neh;
1121 struct buffer_head *bh;
1122 ext4_fsblk_t newblock;
1123 int err = 0;
1124
1125 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1126 newext, &err, flags);
1127 if (newblock == 0)
1128 return err;
1129
1130 bh = sb_getblk(inode->i_sb, newblock);
1131 if (!bh) {
1132 err = -EIO;
1133 ext4_std_error(inode->i_sb, err);
1134 return err;
1135 }
1136 lock_buffer(bh);
1137
1138 err = ext4_journal_get_create_access(handle, bh);
1139 if (err) {
1140 unlock_buffer(bh);
1141 goto out;
1142 }
1143
1144 /* move top-level index/leaf into new block */
1145 memmove(bh->b_data, EXT4_I(inode)->i_data,
1146 sizeof(EXT4_I(inode)->i_data));
1147
1148 /* set size of new block */
1149 neh = ext_block_hdr(bh);
1150 /* old root could have indexes or leaves
1151 * so calculate e_max right way */
1152 if (ext_depth(inode))
1153 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1154 else
1155 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1156 neh->eh_magic = EXT4_EXT_MAGIC;
1157 ext4_extent_block_csum_set(inode, neh);
1158 set_buffer_uptodate(bh);
1159 unlock_buffer(bh);
1160
1161 err = ext4_handle_dirty_metadata(handle, inode, bh);
1162 if (err)
1163 goto out;
1164
1165 /* Update top-level index: num,max,pointer */
1166 neh = ext_inode_hdr(inode);
1167 neh->eh_entries = cpu_to_le16(1);
1168 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1169 if (neh->eh_depth == 0) {
1170 /* Root extent block becomes index block */
1171 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1172 EXT_FIRST_INDEX(neh)->ei_block =
1173 EXT_FIRST_EXTENT(neh)->ee_block;
1174 }
1175 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1176 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1177 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1178 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1179
1180 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1181 ext4_mark_inode_dirty(handle, inode);
1182 out:
1183 brelse(bh);
1184
1185 return err;
1186 }
1187
1188 /*
1189 * ext4_ext_create_new_leaf:
1190 * finds empty index and adds new leaf.
1191 * if no free index is found, then it requests in-depth growing.
1192 */
1193 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1194 unsigned int flags,
1195 struct ext4_ext_path *path,
1196 struct ext4_extent *newext)
1197 {
1198 struct ext4_ext_path *curp;
1199 int depth, i, err = 0;
1200
1201 repeat:
1202 i = depth = ext_depth(inode);
1203
1204 /* walk up to the tree and look for free index entry */
1205 curp = path + depth;
1206 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1207 i--;
1208 curp--;
1209 }
1210
1211 /* we use already allocated block for index block,
1212 * so subsequent data blocks should be contiguous */
1213 if (EXT_HAS_FREE_INDEX(curp)) {
1214 /* if we found index with free entry, then use that
1215 * entry: create all needed subtree and add new leaf */
1216 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1217 if (err)
1218 goto out;
1219
1220 /* refill path */
1221 ext4_ext_drop_refs(path);
1222 path = ext4_ext_find_extent(inode,
1223 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1224 path);
1225 if (IS_ERR(path))
1226 err = PTR_ERR(path);
1227 } else {
1228 /* tree is full, time to grow in depth */
1229 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1230 if (err)
1231 goto out;
1232
1233 /* refill path */
1234 ext4_ext_drop_refs(path);
1235 path = ext4_ext_find_extent(inode,
1236 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1237 path);
1238 if (IS_ERR(path)) {
1239 err = PTR_ERR(path);
1240 goto out;
1241 }
1242
1243 /*
1244 * only first (depth 0 -> 1) produces free space;
1245 * in all other cases we have to split the grown tree
1246 */
1247 depth = ext_depth(inode);
1248 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1249 /* now we need to split */
1250 goto repeat;
1251 }
1252 }
1253
1254 out:
1255 return err;
1256 }
1257
1258 /*
1259 * search the closest allocated block to the left for *logical
1260 * and returns it at @logical + it's physical address at @phys
1261 * if *logical is the smallest allocated block, the function
1262 * returns 0 at @phys
1263 * return value contains 0 (success) or error code
1264 */
1265 static int ext4_ext_search_left(struct inode *inode,
1266 struct ext4_ext_path *path,
1267 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1268 {
1269 struct ext4_extent_idx *ix;
1270 struct ext4_extent *ex;
1271 int depth, ee_len;
1272
1273 if (unlikely(path == NULL)) {
1274 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1275 return -EIO;
1276 }
1277 depth = path->p_depth;
1278 *phys = 0;
1279
1280 if (depth == 0 && path->p_ext == NULL)
1281 return 0;
1282
1283 /* usually extent in the path covers blocks smaller
1284 * then *logical, but it can be that extent is the
1285 * first one in the file */
1286
1287 ex = path[depth].p_ext;
1288 ee_len = ext4_ext_get_actual_len(ex);
1289 if (*logical < le32_to_cpu(ex->ee_block)) {
1290 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1291 EXT4_ERROR_INODE(inode,
1292 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1293 *logical, le32_to_cpu(ex->ee_block));
1294 return -EIO;
1295 }
1296 while (--depth >= 0) {
1297 ix = path[depth].p_idx;
1298 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1299 EXT4_ERROR_INODE(inode,
1300 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1301 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1302 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1303 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1304 depth);
1305 return -EIO;
1306 }
1307 }
1308 return 0;
1309 }
1310
1311 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1312 EXT4_ERROR_INODE(inode,
1313 "logical %d < ee_block %d + ee_len %d!",
1314 *logical, le32_to_cpu(ex->ee_block), ee_len);
1315 return -EIO;
1316 }
1317
1318 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1319 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1320 return 0;
1321 }
1322
1323 /*
1324 * search the closest allocated block to the right for *logical
1325 * and returns it at @logical + it's physical address at @phys
1326 * if *logical is the largest allocated block, the function
1327 * returns 0 at @phys
1328 * return value contains 0 (success) or error code
1329 */
1330 static int ext4_ext_search_right(struct inode *inode,
1331 struct ext4_ext_path *path,
1332 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1333 struct ext4_extent **ret_ex)
1334 {
1335 struct buffer_head *bh = NULL;
1336 struct ext4_extent_header *eh;
1337 struct ext4_extent_idx *ix;
1338 struct ext4_extent *ex;
1339 ext4_fsblk_t block;
1340 int depth; /* Note, NOT eh_depth; depth from top of tree */
1341 int ee_len;
1342
1343 if (unlikely(path == NULL)) {
1344 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1345 return -EIO;
1346 }
1347 depth = path->p_depth;
1348 *phys = 0;
1349
1350 if (depth == 0 && path->p_ext == NULL)
1351 return 0;
1352
1353 /* usually extent in the path covers blocks smaller
1354 * then *logical, but it can be that extent is the
1355 * first one in the file */
1356
1357 ex = path[depth].p_ext;
1358 ee_len = ext4_ext_get_actual_len(ex);
1359 if (*logical < le32_to_cpu(ex->ee_block)) {
1360 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1361 EXT4_ERROR_INODE(inode,
1362 "first_extent(path[%d].p_hdr) != ex",
1363 depth);
1364 return -EIO;
1365 }
1366 while (--depth >= 0) {
1367 ix = path[depth].p_idx;
1368 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1369 EXT4_ERROR_INODE(inode,
1370 "ix != EXT_FIRST_INDEX *logical %d!",
1371 *logical);
1372 return -EIO;
1373 }
1374 }
1375 goto found_extent;
1376 }
1377
1378 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1379 EXT4_ERROR_INODE(inode,
1380 "logical %d < ee_block %d + ee_len %d!",
1381 *logical, le32_to_cpu(ex->ee_block), ee_len);
1382 return -EIO;
1383 }
1384
1385 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1386 /* next allocated block in this leaf */
1387 ex++;
1388 goto found_extent;
1389 }
1390
1391 /* go up and search for index to the right */
1392 while (--depth >= 0) {
1393 ix = path[depth].p_idx;
1394 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1395 goto got_index;
1396 }
1397
1398 /* we've gone up to the root and found no index to the right */
1399 return 0;
1400
1401 got_index:
1402 /* we've found index to the right, let's
1403 * follow it and find the closest allocated
1404 * block to the right */
1405 ix++;
1406 block = ext4_idx_pblock(ix);
1407 while (++depth < path->p_depth) {
1408 bh = sb_bread(inode->i_sb, block);
1409 if (bh == NULL)
1410 return -EIO;
1411 eh = ext_block_hdr(bh);
1412 /* subtract from p_depth to get proper eh_depth */
1413 if (ext4_ext_check_block(inode, eh,
1414 path->p_depth - depth, bh)) {
1415 put_bh(bh);
1416 return -EIO;
1417 }
1418 ix = EXT_FIRST_INDEX(eh);
1419 block = ext4_idx_pblock(ix);
1420 put_bh(bh);
1421 }
1422
1423 bh = sb_bread(inode->i_sb, block);
1424 if (bh == NULL)
1425 return -EIO;
1426 eh = ext_block_hdr(bh);
1427 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1428 put_bh(bh);
1429 return -EIO;
1430 }
1431 ex = EXT_FIRST_EXTENT(eh);
1432 found_extent:
1433 *logical = le32_to_cpu(ex->ee_block);
1434 *phys = ext4_ext_pblock(ex);
1435 *ret_ex = ex;
1436 if (bh)
1437 put_bh(bh);
1438 return 0;
1439 }
1440
1441 /*
1442 * ext4_ext_next_allocated_block:
1443 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1444 * NOTE: it considers block number from index entry as
1445 * allocated block. Thus, index entries have to be consistent
1446 * with leaves.
1447 */
1448 static ext4_lblk_t
1449 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1450 {
1451 int depth;
1452
1453 BUG_ON(path == NULL);
1454 depth = path->p_depth;
1455
1456 if (depth == 0 && path->p_ext == NULL)
1457 return EXT_MAX_BLOCKS;
1458
1459 while (depth >= 0) {
1460 if (depth == path->p_depth) {
1461 /* leaf */
1462 if (path[depth].p_ext &&
1463 path[depth].p_ext !=
1464 EXT_LAST_EXTENT(path[depth].p_hdr))
1465 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1466 } else {
1467 /* index */
1468 if (path[depth].p_idx !=
1469 EXT_LAST_INDEX(path[depth].p_hdr))
1470 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1471 }
1472 depth--;
1473 }
1474
1475 return EXT_MAX_BLOCKS;
1476 }
1477
1478 /*
1479 * ext4_ext_next_leaf_block:
1480 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1481 */
1482 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1483 {
1484 int depth;
1485
1486 BUG_ON(path == NULL);
1487 depth = path->p_depth;
1488
1489 /* zero-tree has no leaf blocks at all */
1490 if (depth == 0)
1491 return EXT_MAX_BLOCKS;
1492
1493 /* go to index block */
1494 depth--;
1495
1496 while (depth >= 0) {
1497 if (path[depth].p_idx !=
1498 EXT_LAST_INDEX(path[depth].p_hdr))
1499 return (ext4_lblk_t)
1500 le32_to_cpu(path[depth].p_idx[1].ei_block);
1501 depth--;
1502 }
1503
1504 return EXT_MAX_BLOCKS;
1505 }
1506
1507 /*
1508 * ext4_ext_correct_indexes:
1509 * if leaf gets modified and modified extent is first in the leaf,
1510 * then we have to correct all indexes above.
1511 * TODO: do we need to correct tree in all cases?
1512 */
1513 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1514 struct ext4_ext_path *path)
1515 {
1516 struct ext4_extent_header *eh;
1517 int depth = ext_depth(inode);
1518 struct ext4_extent *ex;
1519 __le32 border;
1520 int k, err = 0;
1521
1522 eh = path[depth].p_hdr;
1523 ex = path[depth].p_ext;
1524
1525 if (unlikely(ex == NULL || eh == NULL)) {
1526 EXT4_ERROR_INODE(inode,
1527 "ex %p == NULL or eh %p == NULL", ex, eh);
1528 return -EIO;
1529 }
1530
1531 if (depth == 0) {
1532 /* there is no tree at all */
1533 return 0;
1534 }
1535
1536 if (ex != EXT_FIRST_EXTENT(eh)) {
1537 /* we correct tree if first leaf got modified only */
1538 return 0;
1539 }
1540
1541 /*
1542 * TODO: we need correction if border is smaller than current one
1543 */
1544 k = depth - 1;
1545 border = path[depth].p_ext->ee_block;
1546 err = ext4_ext_get_access(handle, inode, path + k);
1547 if (err)
1548 return err;
1549 path[k].p_idx->ei_block = border;
1550 err = ext4_ext_dirty(handle, inode, path + k);
1551 if (err)
1552 return err;
1553
1554 while (k--) {
1555 /* change all left-side indexes */
1556 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1557 break;
1558 err = ext4_ext_get_access(handle, inode, path + k);
1559 if (err)
1560 break;
1561 path[k].p_idx->ei_block = border;
1562 err = ext4_ext_dirty(handle, inode, path + k);
1563 if (err)
1564 break;
1565 }
1566
1567 return err;
1568 }
1569
1570 int
1571 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1572 struct ext4_extent *ex2)
1573 {
1574 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1575
1576 /*
1577 * Make sure that either both extents are uninitialized, or
1578 * both are _not_.
1579 */
1580 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1581 return 0;
1582
1583 if (ext4_ext_is_uninitialized(ex1))
1584 max_len = EXT_UNINIT_MAX_LEN;
1585 else
1586 max_len = EXT_INIT_MAX_LEN;
1587
1588 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1589 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1590
1591 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1592 le32_to_cpu(ex2->ee_block))
1593 return 0;
1594
1595 /*
1596 * To allow future support for preallocated extents to be added
1597 * as an RO_COMPAT feature, refuse to merge to extents if
1598 * this can result in the top bit of ee_len being set.
1599 */
1600 if (ext1_ee_len + ext2_ee_len > max_len)
1601 return 0;
1602 #ifdef AGGRESSIVE_TEST
1603 if (ext1_ee_len >= 4)
1604 return 0;
1605 #endif
1606
1607 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1608 return 1;
1609 return 0;
1610 }
1611
1612 /*
1613 * This function tries to merge the "ex" extent to the next extent in the tree.
1614 * It always tries to merge towards right. If you want to merge towards
1615 * left, pass "ex - 1" as argument instead of "ex".
1616 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1617 * 1 if they got merged.
1618 */
1619 static int ext4_ext_try_to_merge_right(struct inode *inode,
1620 struct ext4_ext_path *path,
1621 struct ext4_extent *ex)
1622 {
1623 struct ext4_extent_header *eh;
1624 unsigned int depth, len;
1625 int merge_done = 0;
1626 int uninitialized = 0;
1627
1628 depth = ext_depth(inode);
1629 BUG_ON(path[depth].p_hdr == NULL);
1630 eh = path[depth].p_hdr;
1631
1632 while (ex < EXT_LAST_EXTENT(eh)) {
1633 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1634 break;
1635 /* merge with next extent! */
1636 if (ext4_ext_is_uninitialized(ex))
1637 uninitialized = 1;
1638 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1639 + ext4_ext_get_actual_len(ex + 1));
1640 if (uninitialized)
1641 ext4_ext_mark_uninitialized(ex);
1642
1643 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1644 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1645 * sizeof(struct ext4_extent);
1646 memmove(ex + 1, ex + 2, len);
1647 }
1648 le16_add_cpu(&eh->eh_entries, -1);
1649 merge_done = 1;
1650 WARN_ON(eh->eh_entries == 0);
1651 if (!eh->eh_entries)
1652 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1653 }
1654
1655 return merge_done;
1656 }
1657
1658 /*
1659 * This function tries to merge the @ex extent to neighbours in the tree.
1660 * return 1 if merge left else 0.
1661 */
1662 static int ext4_ext_try_to_merge(struct inode *inode,
1663 struct ext4_ext_path *path,
1664 struct ext4_extent *ex) {
1665 struct ext4_extent_header *eh;
1666 unsigned int depth;
1667 int merge_done = 0;
1668 int ret = 0;
1669
1670 depth = ext_depth(inode);
1671 BUG_ON(path[depth].p_hdr == NULL);
1672 eh = path[depth].p_hdr;
1673
1674 if (ex > EXT_FIRST_EXTENT(eh))
1675 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1676
1677 if (!merge_done)
1678 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1679
1680 return ret;
1681 }
1682
1683 /*
1684 * check if a portion of the "newext" extent overlaps with an
1685 * existing extent.
1686 *
1687 * If there is an overlap discovered, it updates the length of the newext
1688 * such that there will be no overlap, and then returns 1.
1689 * If there is no overlap found, it returns 0.
1690 */
1691 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1692 struct inode *inode,
1693 struct ext4_extent *newext,
1694 struct ext4_ext_path *path)
1695 {
1696 ext4_lblk_t b1, b2;
1697 unsigned int depth, len1;
1698 unsigned int ret = 0;
1699
1700 b1 = le32_to_cpu(newext->ee_block);
1701 len1 = ext4_ext_get_actual_len(newext);
1702 depth = ext_depth(inode);
1703 if (!path[depth].p_ext)
1704 goto out;
1705 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1706 b2 &= ~(sbi->s_cluster_ratio - 1);
1707
1708 /*
1709 * get the next allocated block if the extent in the path
1710 * is before the requested block(s)
1711 */
1712 if (b2 < b1) {
1713 b2 = ext4_ext_next_allocated_block(path);
1714 if (b2 == EXT_MAX_BLOCKS)
1715 goto out;
1716 b2 &= ~(sbi->s_cluster_ratio - 1);
1717 }
1718
1719 /* check for wrap through zero on extent logical start block*/
1720 if (b1 + len1 < b1) {
1721 len1 = EXT_MAX_BLOCKS - b1;
1722 newext->ee_len = cpu_to_le16(len1);
1723 ret = 1;
1724 }
1725
1726 /* check for overlap */
1727 if (b1 + len1 > b2) {
1728 newext->ee_len = cpu_to_le16(b2 - b1);
1729 ret = 1;
1730 }
1731 out:
1732 return ret;
1733 }
1734
1735 /*
1736 * ext4_ext_insert_extent:
1737 * tries to merge requsted extent into the existing extent or
1738 * inserts requested extent as new one into the tree,
1739 * creating new leaf in the no-space case.
1740 */
1741 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1742 struct ext4_ext_path *path,
1743 struct ext4_extent *newext, int flag)
1744 {
1745 struct ext4_extent_header *eh;
1746 struct ext4_extent *ex, *fex;
1747 struct ext4_extent *nearex; /* nearest extent */
1748 struct ext4_ext_path *npath = NULL;
1749 int depth, len, err;
1750 ext4_lblk_t next;
1751 unsigned uninitialized = 0;
1752 int flags = 0;
1753
1754 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1755 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1756 return -EIO;
1757 }
1758 depth = ext_depth(inode);
1759 ex = path[depth].p_ext;
1760 if (unlikely(path[depth].p_hdr == NULL)) {
1761 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1762 return -EIO;
1763 }
1764
1765 /* try to insert block into found extent and return */
1766 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1767 && ext4_can_extents_be_merged(inode, ex, newext)) {
1768 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1769 ext4_ext_is_uninitialized(newext),
1770 ext4_ext_get_actual_len(newext),
1771 le32_to_cpu(ex->ee_block),
1772 ext4_ext_is_uninitialized(ex),
1773 ext4_ext_get_actual_len(ex),
1774 ext4_ext_pblock(ex));
1775 err = ext4_ext_get_access(handle, inode, path + depth);
1776 if (err)
1777 return err;
1778
1779 /*
1780 * ext4_can_extents_be_merged should have checked that either
1781 * both extents are uninitialized, or both aren't. Thus we
1782 * need to check only one of them here.
1783 */
1784 if (ext4_ext_is_uninitialized(ex))
1785 uninitialized = 1;
1786 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1787 + ext4_ext_get_actual_len(newext));
1788 if (uninitialized)
1789 ext4_ext_mark_uninitialized(ex);
1790 eh = path[depth].p_hdr;
1791 nearex = ex;
1792 goto merge;
1793 }
1794
1795 depth = ext_depth(inode);
1796 eh = path[depth].p_hdr;
1797 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1798 goto has_space;
1799
1800 /* probably next leaf has space for us? */
1801 fex = EXT_LAST_EXTENT(eh);
1802 next = EXT_MAX_BLOCKS;
1803 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1804 next = ext4_ext_next_leaf_block(path);
1805 if (next != EXT_MAX_BLOCKS) {
1806 ext_debug("next leaf block - %u\n", next);
1807 BUG_ON(npath != NULL);
1808 npath = ext4_ext_find_extent(inode, next, NULL);
1809 if (IS_ERR(npath))
1810 return PTR_ERR(npath);
1811 BUG_ON(npath->p_depth != path->p_depth);
1812 eh = npath[depth].p_hdr;
1813 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1814 ext_debug("next leaf isn't full(%d)\n",
1815 le16_to_cpu(eh->eh_entries));
1816 path = npath;
1817 goto has_space;
1818 }
1819 ext_debug("next leaf has no free space(%d,%d)\n",
1820 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1821 }
1822
1823 /*
1824 * There is no free space in the found leaf.
1825 * We're gonna add a new leaf in the tree.
1826 */
1827 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1828 flags = EXT4_MB_USE_ROOT_BLOCKS;
1829 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1830 if (err)
1831 goto cleanup;
1832 depth = ext_depth(inode);
1833 eh = path[depth].p_hdr;
1834
1835 has_space:
1836 nearex = path[depth].p_ext;
1837
1838 err = ext4_ext_get_access(handle, inode, path + depth);
1839 if (err)
1840 goto cleanup;
1841
1842 if (!nearex) {
1843 /* there is no extent in this leaf, create first one */
1844 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1845 le32_to_cpu(newext->ee_block),
1846 ext4_ext_pblock(newext),
1847 ext4_ext_is_uninitialized(newext),
1848 ext4_ext_get_actual_len(newext));
1849 nearex = EXT_FIRST_EXTENT(eh);
1850 } else {
1851 if (le32_to_cpu(newext->ee_block)
1852 > le32_to_cpu(nearex->ee_block)) {
1853 /* Insert after */
1854 ext_debug("insert %u:%llu:[%d]%d before: "
1855 "nearest %p\n",
1856 le32_to_cpu(newext->ee_block),
1857 ext4_ext_pblock(newext),
1858 ext4_ext_is_uninitialized(newext),
1859 ext4_ext_get_actual_len(newext),
1860 nearex);
1861 nearex++;
1862 } else {
1863 /* Insert before */
1864 BUG_ON(newext->ee_block == nearex->ee_block);
1865 ext_debug("insert %u:%llu:[%d]%d after: "
1866 "nearest %p\n",
1867 le32_to_cpu(newext->ee_block),
1868 ext4_ext_pblock(newext),
1869 ext4_ext_is_uninitialized(newext),
1870 ext4_ext_get_actual_len(newext),
1871 nearex);
1872 }
1873 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1874 if (len > 0) {
1875 ext_debug("insert %u:%llu:[%d]%d: "
1876 "move %d extents from 0x%p to 0x%p\n",
1877 le32_to_cpu(newext->ee_block),
1878 ext4_ext_pblock(newext),
1879 ext4_ext_is_uninitialized(newext),
1880 ext4_ext_get_actual_len(newext),
1881 len, nearex, nearex + 1);
1882 memmove(nearex + 1, nearex,
1883 len * sizeof(struct ext4_extent));
1884 }
1885 }
1886
1887 le16_add_cpu(&eh->eh_entries, 1);
1888 path[depth].p_ext = nearex;
1889 nearex->ee_block = newext->ee_block;
1890 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1891 nearex->ee_len = newext->ee_len;
1892
1893 merge:
1894 /* try to merge extents to the right */
1895 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1896 ext4_ext_try_to_merge(inode, path, nearex);
1897
1898 /* try to merge extents to the left */
1899
1900 /* time to correct all indexes above */
1901 err = ext4_ext_correct_indexes(handle, inode, path);
1902 if (err)
1903 goto cleanup;
1904
1905 err = ext4_ext_dirty(handle, inode, path + depth);
1906
1907 cleanup:
1908 if (npath) {
1909 ext4_ext_drop_refs(npath);
1910 kfree(npath);
1911 }
1912 ext4_ext_invalidate_cache(inode);
1913 return err;
1914 }
1915
1916 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1917 ext4_lblk_t num, ext_prepare_callback func,
1918 void *cbdata)
1919 {
1920 struct ext4_ext_path *path = NULL;
1921 struct ext4_ext_cache cbex;
1922 struct ext4_extent *ex;
1923 ext4_lblk_t next, start = 0, end = 0;
1924 ext4_lblk_t last = block + num;
1925 int depth, exists, err = 0;
1926
1927 BUG_ON(func == NULL);
1928 BUG_ON(inode == NULL);
1929
1930 while (block < last && block != EXT_MAX_BLOCKS) {
1931 num = last - block;
1932 /* find extent for this block */
1933 down_read(&EXT4_I(inode)->i_data_sem);
1934 path = ext4_ext_find_extent(inode, block, path);
1935 up_read(&EXT4_I(inode)->i_data_sem);
1936 if (IS_ERR(path)) {
1937 err = PTR_ERR(path);
1938 path = NULL;
1939 break;
1940 }
1941
1942 depth = ext_depth(inode);
1943 if (unlikely(path[depth].p_hdr == NULL)) {
1944 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1945 err = -EIO;
1946 break;
1947 }
1948 ex = path[depth].p_ext;
1949 next = ext4_ext_next_allocated_block(path);
1950
1951 exists = 0;
1952 if (!ex) {
1953 /* there is no extent yet, so try to allocate
1954 * all requested space */
1955 start = block;
1956 end = block + num;
1957 } else if (le32_to_cpu(ex->ee_block) > block) {
1958 /* need to allocate space before found extent */
1959 start = block;
1960 end = le32_to_cpu(ex->ee_block);
1961 if (block + num < end)
1962 end = block + num;
1963 } else if (block >= le32_to_cpu(ex->ee_block)
1964 + ext4_ext_get_actual_len(ex)) {
1965 /* need to allocate space after found extent */
1966 start = block;
1967 end = block + num;
1968 if (end >= next)
1969 end = next;
1970 } else if (block >= le32_to_cpu(ex->ee_block)) {
1971 /*
1972 * some part of requested space is covered
1973 * by found extent
1974 */
1975 start = block;
1976 end = le32_to_cpu(ex->ee_block)
1977 + ext4_ext_get_actual_len(ex);
1978 if (block + num < end)
1979 end = block + num;
1980 exists = 1;
1981 } else {
1982 BUG();
1983 }
1984 BUG_ON(end <= start);
1985
1986 if (!exists) {
1987 cbex.ec_block = start;
1988 cbex.ec_len = end - start;
1989 cbex.ec_start = 0;
1990 } else {
1991 cbex.ec_block = le32_to_cpu(ex->ee_block);
1992 cbex.ec_len = ext4_ext_get_actual_len(ex);
1993 cbex.ec_start = ext4_ext_pblock(ex);
1994 }
1995
1996 if (unlikely(cbex.ec_len == 0)) {
1997 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1998 err = -EIO;
1999 break;
2000 }
2001 err = func(inode, next, &cbex, ex, cbdata);
2002 ext4_ext_drop_refs(path);
2003
2004 if (err < 0)
2005 break;
2006
2007 if (err == EXT_REPEAT)
2008 continue;
2009 else if (err == EXT_BREAK) {
2010 err = 0;
2011 break;
2012 }
2013
2014 if (ext_depth(inode) != depth) {
2015 /* depth was changed. we have to realloc path */
2016 kfree(path);
2017 path = NULL;
2018 }
2019
2020 block = cbex.ec_block + cbex.ec_len;
2021 }
2022
2023 if (path) {
2024 ext4_ext_drop_refs(path);
2025 kfree(path);
2026 }
2027
2028 return err;
2029 }
2030
2031 static void
2032 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2033 __u32 len, ext4_fsblk_t start)
2034 {
2035 struct ext4_ext_cache *cex;
2036 BUG_ON(len == 0);
2037 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2038 trace_ext4_ext_put_in_cache(inode, block, len, start);
2039 cex = &EXT4_I(inode)->i_cached_extent;
2040 cex->ec_block = block;
2041 cex->ec_len = len;
2042 cex->ec_start = start;
2043 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2044 }
2045
2046 /*
2047 * ext4_ext_put_gap_in_cache:
2048 * calculate boundaries of the gap that the requested block fits into
2049 * and cache this gap
2050 */
2051 static void
2052 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2053 ext4_lblk_t block)
2054 {
2055 int depth = ext_depth(inode);
2056 unsigned long len;
2057 ext4_lblk_t lblock;
2058 struct ext4_extent *ex;
2059
2060 ex = path[depth].p_ext;
2061 if (ex == NULL) {
2062 /* there is no extent yet, so gap is [0;-] */
2063 lblock = 0;
2064 len = EXT_MAX_BLOCKS;
2065 ext_debug("cache gap(whole file):");
2066 } else if (block < le32_to_cpu(ex->ee_block)) {
2067 lblock = block;
2068 len = le32_to_cpu(ex->ee_block) - block;
2069 ext_debug("cache gap(before): %u [%u:%u]",
2070 block,
2071 le32_to_cpu(ex->ee_block),
2072 ext4_ext_get_actual_len(ex));
2073 } else if (block >= le32_to_cpu(ex->ee_block)
2074 + ext4_ext_get_actual_len(ex)) {
2075 ext4_lblk_t next;
2076 lblock = le32_to_cpu(ex->ee_block)
2077 + ext4_ext_get_actual_len(ex);
2078
2079 next = ext4_ext_next_allocated_block(path);
2080 ext_debug("cache gap(after): [%u:%u] %u",
2081 le32_to_cpu(ex->ee_block),
2082 ext4_ext_get_actual_len(ex),
2083 block);
2084 BUG_ON(next == lblock);
2085 len = next - lblock;
2086 } else {
2087 lblock = len = 0;
2088 BUG();
2089 }
2090
2091 ext_debug(" -> %u:%lu\n", lblock, len);
2092 ext4_ext_put_in_cache(inode, lblock, len, 0);
2093 }
2094
2095 /*
2096 * ext4_ext_check_cache()
2097 * Checks to see if the given block is in the cache.
2098 * If it is, the cached extent is stored in the given
2099 * cache extent pointer. If the cached extent is a hole,
2100 * this routine should be used instead of
2101 * ext4_ext_in_cache if the calling function needs to
2102 * know the size of the hole.
2103 *
2104 * @inode: The files inode
2105 * @block: The block to look for in the cache
2106 * @ex: Pointer where the cached extent will be stored
2107 * if it contains block
2108 *
2109 * Return 0 if cache is invalid; 1 if the cache is valid
2110 */
2111 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2112 struct ext4_ext_cache *ex){
2113 struct ext4_ext_cache *cex;
2114 struct ext4_sb_info *sbi;
2115 int ret = 0;
2116
2117 /*
2118 * We borrow i_block_reservation_lock to protect i_cached_extent
2119 */
2120 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2121 cex = &EXT4_I(inode)->i_cached_extent;
2122 sbi = EXT4_SB(inode->i_sb);
2123
2124 /* has cache valid data? */
2125 if (cex->ec_len == 0)
2126 goto errout;
2127
2128 if (in_range(block, cex->ec_block, cex->ec_len)) {
2129 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2130 ext_debug("%u cached by %u:%u:%llu\n",
2131 block,
2132 cex->ec_block, cex->ec_len, cex->ec_start);
2133 ret = 1;
2134 }
2135 errout:
2136 trace_ext4_ext_in_cache(inode, block, ret);
2137 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2138 return ret;
2139 }
2140
2141 /*
2142 * ext4_ext_in_cache()
2143 * Checks to see if the given block is in the cache.
2144 * If it is, the cached extent is stored in the given
2145 * extent pointer.
2146 *
2147 * @inode: The files inode
2148 * @block: The block to look for in the cache
2149 * @ex: Pointer where the cached extent will be stored
2150 * if it contains block
2151 *
2152 * Return 0 if cache is invalid; 1 if the cache is valid
2153 */
2154 static int
2155 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2156 struct ext4_extent *ex)
2157 {
2158 struct ext4_ext_cache cex;
2159 int ret = 0;
2160
2161 if (ext4_ext_check_cache(inode, block, &cex)) {
2162 ex->ee_block = cpu_to_le32(cex.ec_block);
2163 ext4_ext_store_pblock(ex, cex.ec_start);
2164 ex->ee_len = cpu_to_le16(cex.ec_len);
2165 ret = 1;
2166 }
2167
2168 return ret;
2169 }
2170
2171
2172 /*
2173 * ext4_ext_rm_idx:
2174 * removes index from the index block.
2175 */
2176 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2177 struct ext4_ext_path *path)
2178 {
2179 int err;
2180 ext4_fsblk_t leaf;
2181
2182 /* free index block */
2183 path--;
2184 leaf = ext4_idx_pblock(path->p_idx);
2185 if (unlikely(path->p_hdr->eh_entries == 0)) {
2186 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2187 return -EIO;
2188 }
2189 err = ext4_ext_get_access(handle, inode, path);
2190 if (err)
2191 return err;
2192
2193 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2194 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2195 len *= sizeof(struct ext4_extent_idx);
2196 memmove(path->p_idx, path->p_idx + 1, len);
2197 }
2198
2199 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2200 err = ext4_ext_dirty(handle, inode, path);
2201 if (err)
2202 return err;
2203 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2204 trace_ext4_ext_rm_idx(inode, leaf);
2205
2206 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2207 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2208 return err;
2209 }
2210
2211 /*
2212 * ext4_ext_calc_credits_for_single_extent:
2213 * This routine returns max. credits that needed to insert an extent
2214 * to the extent tree.
2215 * When pass the actual path, the caller should calculate credits
2216 * under i_data_sem.
2217 */
2218 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2219 struct ext4_ext_path *path)
2220 {
2221 if (path) {
2222 int depth = ext_depth(inode);
2223 int ret = 0;
2224
2225 /* probably there is space in leaf? */
2226 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2227 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2228
2229 /*
2230 * There are some space in the leaf tree, no
2231 * need to account for leaf block credit
2232 *
2233 * bitmaps and block group descriptor blocks
2234 * and other metadata blocks still need to be
2235 * accounted.
2236 */
2237 /* 1 bitmap, 1 block group descriptor */
2238 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2239 return ret;
2240 }
2241 }
2242
2243 return ext4_chunk_trans_blocks(inode, nrblocks);
2244 }
2245
2246 /*
2247 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2248 *
2249 * if nrblocks are fit in a single extent (chunk flag is 1), then
2250 * in the worse case, each tree level index/leaf need to be changed
2251 * if the tree split due to insert a new extent, then the old tree
2252 * index/leaf need to be updated too
2253 *
2254 * If the nrblocks are discontiguous, they could cause
2255 * the whole tree split more than once, but this is really rare.
2256 */
2257 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2258 {
2259 int index;
2260 int depth = ext_depth(inode);
2261
2262 if (chunk)
2263 index = depth * 2;
2264 else
2265 index = depth * 3;
2266
2267 return index;
2268 }
2269
2270 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2271 struct ext4_extent *ex,
2272 ext4_fsblk_t *partial_cluster,
2273 ext4_lblk_t from, ext4_lblk_t to)
2274 {
2275 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2276 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2277 ext4_fsblk_t pblk;
2278 int flags = EXT4_FREE_BLOCKS_FORGET;
2279
2280 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2281 flags |= EXT4_FREE_BLOCKS_METADATA;
2282 /*
2283 * For bigalloc file systems, we never free a partial cluster
2284 * at the beginning of the extent. Instead, we make a note
2285 * that we tried freeing the cluster, and check to see if we
2286 * need to free it on a subsequent call to ext4_remove_blocks,
2287 * or at the end of the ext4_truncate() operation.
2288 */
2289 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2290
2291 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2292 /*
2293 * If we have a partial cluster, and it's different from the
2294 * cluster of the last block, we need to explicitly free the
2295 * partial cluster here.
2296 */
2297 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2298 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2299 ext4_free_blocks(handle, inode, NULL,
2300 EXT4_C2B(sbi, *partial_cluster),
2301 sbi->s_cluster_ratio, flags);
2302 *partial_cluster = 0;
2303 }
2304
2305 #ifdef EXTENTS_STATS
2306 {
2307 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2308 spin_lock(&sbi->s_ext_stats_lock);
2309 sbi->s_ext_blocks += ee_len;
2310 sbi->s_ext_extents++;
2311 if (ee_len < sbi->s_ext_min)
2312 sbi->s_ext_min = ee_len;
2313 if (ee_len > sbi->s_ext_max)
2314 sbi->s_ext_max = ee_len;
2315 if (ext_depth(inode) > sbi->s_depth_max)
2316 sbi->s_depth_max = ext_depth(inode);
2317 spin_unlock(&sbi->s_ext_stats_lock);
2318 }
2319 #endif
2320 if (from >= le32_to_cpu(ex->ee_block)
2321 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2322 /* tail removal */
2323 ext4_lblk_t num;
2324
2325 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2326 pblk = ext4_ext_pblock(ex) + ee_len - num;
2327 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2328 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2329 /*
2330 * If the block range to be freed didn't start at the
2331 * beginning of a cluster, and we removed the entire
2332 * extent, save the partial cluster here, since we
2333 * might need to delete if we determine that the
2334 * truncate operation has removed all of the blocks in
2335 * the cluster.
2336 */
2337 if (pblk & (sbi->s_cluster_ratio - 1) &&
2338 (ee_len == num))
2339 *partial_cluster = EXT4_B2C(sbi, pblk);
2340 else
2341 *partial_cluster = 0;
2342 } else if (from == le32_to_cpu(ex->ee_block)
2343 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2344 /* head removal */
2345 ext4_lblk_t num;
2346 ext4_fsblk_t start;
2347
2348 num = to - from;
2349 start = ext4_ext_pblock(ex);
2350
2351 ext_debug("free first %u blocks starting %llu\n", num, start);
2352 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2353
2354 } else {
2355 printk(KERN_INFO "strange request: removal(2) "
2356 "%u-%u from %u:%u\n",
2357 from, to, le32_to_cpu(ex->ee_block), ee_len);
2358 }
2359 return 0;
2360 }
2361
2362
2363 /*
2364 * ext4_ext_rm_leaf() Removes the extents associated with the
2365 * blocks appearing between "start" and "end", and splits the extents
2366 * if "start" and "end" appear in the same extent
2367 *
2368 * @handle: The journal handle
2369 * @inode: The files inode
2370 * @path: The path to the leaf
2371 * @start: The first block to remove
2372 * @end: The last block to remove
2373 */
2374 static int
2375 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2376 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2377 ext4_lblk_t start, ext4_lblk_t end)
2378 {
2379 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2380 int err = 0, correct_index = 0;
2381 int depth = ext_depth(inode), credits;
2382 struct ext4_extent_header *eh;
2383 ext4_lblk_t a, b;
2384 unsigned num;
2385 ext4_lblk_t ex_ee_block;
2386 unsigned short ex_ee_len;
2387 unsigned uninitialized = 0;
2388 struct ext4_extent *ex;
2389
2390 /* the header must be checked already in ext4_ext_remove_space() */
2391 ext_debug("truncate since %u in leaf to %u\n", start, end);
2392 if (!path[depth].p_hdr)
2393 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2394 eh = path[depth].p_hdr;
2395 if (unlikely(path[depth].p_hdr == NULL)) {
2396 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2397 return -EIO;
2398 }
2399 /* find where to start removing */
2400 ex = EXT_LAST_EXTENT(eh);
2401
2402 ex_ee_block = le32_to_cpu(ex->ee_block);
2403 ex_ee_len = ext4_ext_get_actual_len(ex);
2404
2405 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2406
2407 while (ex >= EXT_FIRST_EXTENT(eh) &&
2408 ex_ee_block + ex_ee_len > start) {
2409
2410 if (ext4_ext_is_uninitialized(ex))
2411 uninitialized = 1;
2412 else
2413 uninitialized = 0;
2414
2415 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2416 uninitialized, ex_ee_len);
2417 path[depth].p_ext = ex;
2418
2419 a = ex_ee_block > start ? ex_ee_block : start;
2420 b = ex_ee_block+ex_ee_len - 1 < end ?
2421 ex_ee_block+ex_ee_len - 1 : end;
2422
2423 ext_debug(" border %u:%u\n", a, b);
2424
2425 /* If this extent is beyond the end of the hole, skip it */
2426 if (end < ex_ee_block) {
2427 ex--;
2428 ex_ee_block = le32_to_cpu(ex->ee_block);
2429 ex_ee_len = ext4_ext_get_actual_len(ex);
2430 continue;
2431 } else if (b != ex_ee_block + ex_ee_len - 1) {
2432 EXT4_ERROR_INODE(inode,
2433 "can not handle truncate %u:%u "
2434 "on extent %u:%u",
2435 start, end, ex_ee_block,
2436 ex_ee_block + ex_ee_len - 1);
2437 err = -EIO;
2438 goto out;
2439 } else if (a != ex_ee_block) {
2440 /* remove tail of the extent */
2441 num = a - ex_ee_block;
2442 } else {
2443 /* remove whole extent: excellent! */
2444 num = 0;
2445 }
2446 /*
2447 * 3 for leaf, sb, and inode plus 2 (bmap and group
2448 * descriptor) for each block group; assume two block
2449 * groups plus ex_ee_len/blocks_per_block_group for
2450 * the worst case
2451 */
2452 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2453 if (ex == EXT_FIRST_EXTENT(eh)) {
2454 correct_index = 1;
2455 credits += (ext_depth(inode)) + 1;
2456 }
2457 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2458
2459 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2460 if (err)
2461 goto out;
2462
2463 err = ext4_ext_get_access(handle, inode, path + depth);
2464 if (err)
2465 goto out;
2466
2467 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2468 a, b);
2469 if (err)
2470 goto out;
2471
2472 if (num == 0)
2473 /* this extent is removed; mark slot entirely unused */
2474 ext4_ext_store_pblock(ex, 0);
2475
2476 ex->ee_len = cpu_to_le16(num);
2477 /*
2478 * Do not mark uninitialized if all the blocks in the
2479 * extent have been removed.
2480 */
2481 if (uninitialized && num)
2482 ext4_ext_mark_uninitialized(ex);
2483 /*
2484 * If the extent was completely released,
2485 * we need to remove it from the leaf
2486 */
2487 if (num == 0) {
2488 if (end != EXT_MAX_BLOCKS - 1) {
2489 /*
2490 * For hole punching, we need to scoot all the
2491 * extents up when an extent is removed so that
2492 * we dont have blank extents in the middle
2493 */
2494 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2495 sizeof(struct ext4_extent));
2496
2497 /* Now get rid of the one at the end */
2498 memset(EXT_LAST_EXTENT(eh), 0,
2499 sizeof(struct ext4_extent));
2500 }
2501 le16_add_cpu(&eh->eh_entries, -1);
2502 } else
2503 *partial_cluster = 0;
2504
2505 err = ext4_ext_dirty(handle, inode, path + depth);
2506 if (err)
2507 goto out;
2508
2509 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2510 ext4_ext_pblock(ex));
2511 ex--;
2512 ex_ee_block = le32_to_cpu(ex->ee_block);
2513 ex_ee_len = ext4_ext_get_actual_len(ex);
2514 }
2515
2516 if (correct_index && eh->eh_entries)
2517 err = ext4_ext_correct_indexes(handle, inode, path);
2518
2519 /*
2520 * If there is still a entry in the leaf node, check to see if
2521 * it references the partial cluster. This is the only place
2522 * where it could; if it doesn't, we can free the cluster.
2523 */
2524 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2525 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2526 *partial_cluster)) {
2527 int flags = EXT4_FREE_BLOCKS_FORGET;
2528
2529 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2530 flags |= EXT4_FREE_BLOCKS_METADATA;
2531
2532 ext4_free_blocks(handle, inode, NULL,
2533 EXT4_C2B(sbi, *partial_cluster),
2534 sbi->s_cluster_ratio, flags);
2535 *partial_cluster = 0;
2536 }
2537
2538 /* if this leaf is free, then we should
2539 * remove it from index block above */
2540 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2541 err = ext4_ext_rm_idx(handle, inode, path + depth);
2542
2543 out:
2544 return err;
2545 }
2546
2547 /*
2548 * ext4_ext_more_to_rm:
2549 * returns 1 if current index has to be freed (even partial)
2550 */
2551 static int
2552 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2553 {
2554 BUG_ON(path->p_idx == NULL);
2555
2556 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2557 return 0;
2558
2559 /*
2560 * if truncate on deeper level happened, it wasn't partial,
2561 * so we have to consider current index for truncation
2562 */
2563 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2564 return 0;
2565 return 1;
2566 }
2567
2568 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2569 ext4_lblk_t end)
2570 {
2571 struct super_block *sb = inode->i_sb;
2572 int depth = ext_depth(inode);
2573 struct ext4_ext_path *path;
2574 ext4_fsblk_t partial_cluster = 0;
2575 handle_t *handle;
2576 int i, err;
2577
2578 ext_debug("truncate since %u to %u\n", start, end);
2579
2580 /* probably first extent we're gonna free will be last in block */
2581 handle = ext4_journal_start(inode, depth + 1);
2582 if (IS_ERR(handle))
2583 return PTR_ERR(handle);
2584
2585 again:
2586 ext4_ext_invalidate_cache(inode);
2587
2588 trace_ext4_ext_remove_space(inode, start, depth);
2589
2590 /*
2591 * Check if we are removing extents inside the extent tree. If that
2592 * is the case, we are going to punch a hole inside the extent tree
2593 * so we have to check whether we need to split the extent covering
2594 * the last block to remove so we can easily remove the part of it
2595 * in ext4_ext_rm_leaf().
2596 */
2597 if (end < EXT_MAX_BLOCKS - 1) {
2598 struct ext4_extent *ex;
2599 ext4_lblk_t ee_block;
2600
2601 /* find extent for this block */
2602 path = ext4_ext_find_extent(inode, end, NULL);
2603 if (IS_ERR(path)) {
2604 ext4_journal_stop(handle);
2605 return PTR_ERR(path);
2606 }
2607 depth = ext_depth(inode);
2608 ex = path[depth].p_ext;
2609 if (!ex)
2610 goto cont;
2611
2612 ee_block = le32_to_cpu(ex->ee_block);
2613
2614 /*
2615 * See if the last block is inside the extent, if so split
2616 * the extent at 'end' block so we can easily remove the
2617 * tail of the first part of the split extent in
2618 * ext4_ext_rm_leaf().
2619 */
2620 if (end >= ee_block &&
2621 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2622 int split_flag = 0;
2623
2624 if (ext4_ext_is_uninitialized(ex))
2625 split_flag = EXT4_EXT_MARK_UNINIT1 |
2626 EXT4_EXT_MARK_UNINIT2;
2627
2628 /*
2629 * Split the extent in two so that 'end' is the last
2630 * block in the first new extent
2631 */
2632 err = ext4_split_extent_at(handle, inode, path,
2633 end + 1, split_flag,
2634 EXT4_GET_BLOCKS_PRE_IO |
2635 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2636
2637 if (err < 0)
2638 goto out;
2639 }
2640 ext4_ext_drop_refs(path);
2641 kfree(path);
2642 }
2643 cont:
2644
2645 /*
2646 * We start scanning from right side, freeing all the blocks
2647 * after i_size and walking into the tree depth-wise.
2648 */
2649 depth = ext_depth(inode);
2650 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2651 if (path == NULL) {
2652 ext4_journal_stop(handle);
2653 return -ENOMEM;
2654 }
2655 path[0].p_depth = depth;
2656 path[0].p_hdr = ext_inode_hdr(inode);
2657
2658 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2659 err = -EIO;
2660 goto out;
2661 }
2662 i = err = 0;
2663
2664 while (i >= 0 && err == 0) {
2665 if (i == depth) {
2666 /* this is leaf block */
2667 err = ext4_ext_rm_leaf(handle, inode, path,
2668 &partial_cluster, start,
2669 end);
2670 /* root level has p_bh == NULL, brelse() eats this */
2671 brelse(path[i].p_bh);
2672 path[i].p_bh = NULL;
2673 i--;
2674 continue;
2675 }
2676
2677 /* this is index block */
2678 if (!path[i].p_hdr) {
2679 ext_debug("initialize header\n");
2680 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2681 }
2682
2683 if (!path[i].p_idx) {
2684 /* this level hasn't been touched yet */
2685 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2686 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2687 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2688 path[i].p_hdr,
2689 le16_to_cpu(path[i].p_hdr->eh_entries));
2690 } else {
2691 /* we were already here, see at next index */
2692 path[i].p_idx--;
2693 }
2694
2695 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2696 i, EXT_FIRST_INDEX(path[i].p_hdr),
2697 path[i].p_idx);
2698 if (ext4_ext_more_to_rm(path + i)) {
2699 struct buffer_head *bh;
2700 /* go to the next level */
2701 ext_debug("move to level %d (block %llu)\n",
2702 i + 1, ext4_idx_pblock(path[i].p_idx));
2703 memset(path + i + 1, 0, sizeof(*path));
2704 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2705 if (!bh) {
2706 /* should we reset i_size? */
2707 err = -EIO;
2708 break;
2709 }
2710 if (WARN_ON(i + 1 > depth)) {
2711 err = -EIO;
2712 break;
2713 }
2714 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2715 depth - i - 1, bh)) {
2716 err = -EIO;
2717 break;
2718 }
2719 path[i + 1].p_bh = bh;
2720
2721 /* save actual number of indexes since this
2722 * number is changed at the next iteration */
2723 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2724 i++;
2725 } else {
2726 /* we finished processing this index, go up */
2727 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2728 /* index is empty, remove it;
2729 * handle must be already prepared by the
2730 * truncatei_leaf() */
2731 err = ext4_ext_rm_idx(handle, inode, path + i);
2732 }
2733 /* root level has p_bh == NULL, brelse() eats this */
2734 brelse(path[i].p_bh);
2735 path[i].p_bh = NULL;
2736 i--;
2737 ext_debug("return to level %d\n", i);
2738 }
2739 }
2740
2741 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2742 path->p_hdr->eh_entries);
2743
2744 /* If we still have something in the partial cluster and we have removed
2745 * even the first extent, then we should free the blocks in the partial
2746 * cluster as well. */
2747 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2748 int flags = EXT4_FREE_BLOCKS_FORGET;
2749
2750 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2751 flags |= EXT4_FREE_BLOCKS_METADATA;
2752
2753 ext4_free_blocks(handle, inode, NULL,
2754 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2755 EXT4_SB(sb)->s_cluster_ratio, flags);
2756 partial_cluster = 0;
2757 }
2758
2759 /* TODO: flexible tree reduction should be here */
2760 if (path->p_hdr->eh_entries == 0) {
2761 /*
2762 * truncate to zero freed all the tree,
2763 * so we need to correct eh_depth
2764 */
2765 err = ext4_ext_get_access(handle, inode, path);
2766 if (err == 0) {
2767 ext_inode_hdr(inode)->eh_depth = 0;
2768 ext_inode_hdr(inode)->eh_max =
2769 cpu_to_le16(ext4_ext_space_root(inode, 0));
2770 err = ext4_ext_dirty(handle, inode, path);
2771 }
2772 }
2773 out:
2774 ext4_ext_drop_refs(path);
2775 kfree(path);
2776 if (err == -EAGAIN)
2777 goto again;
2778 ext4_journal_stop(handle);
2779
2780 return err;
2781 }
2782
2783 /*
2784 * called at mount time
2785 */
2786 void ext4_ext_init(struct super_block *sb)
2787 {
2788 /*
2789 * possible initialization would be here
2790 */
2791
2792 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2793 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2794 printk(KERN_INFO "EXT4-fs: file extents enabled"
2795 #ifdef AGGRESSIVE_TEST
2796 ", aggressive tests"
2797 #endif
2798 #ifdef CHECK_BINSEARCH
2799 ", check binsearch"
2800 #endif
2801 #ifdef EXTENTS_STATS
2802 ", stats"
2803 #endif
2804 "\n");
2805 #endif
2806 #ifdef EXTENTS_STATS
2807 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2808 EXT4_SB(sb)->s_ext_min = 1 << 30;
2809 EXT4_SB(sb)->s_ext_max = 0;
2810 #endif
2811 }
2812 }
2813
2814 /*
2815 * called at umount time
2816 */
2817 void ext4_ext_release(struct super_block *sb)
2818 {
2819 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2820 return;
2821
2822 #ifdef EXTENTS_STATS
2823 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2824 struct ext4_sb_info *sbi = EXT4_SB(sb);
2825 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2826 sbi->s_ext_blocks, sbi->s_ext_extents,
2827 sbi->s_ext_blocks / sbi->s_ext_extents);
2828 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2829 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2830 }
2831 #endif
2832 }
2833
2834 /* FIXME!! we need to try to merge to left or right after zero-out */
2835 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2836 {
2837 ext4_fsblk_t ee_pblock;
2838 unsigned int ee_len;
2839 int ret;
2840
2841 ee_len = ext4_ext_get_actual_len(ex);
2842 ee_pblock = ext4_ext_pblock(ex);
2843
2844 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2845 if (ret > 0)
2846 ret = 0;
2847
2848 return ret;
2849 }
2850
2851 /*
2852 * ext4_split_extent_at() splits an extent at given block.
2853 *
2854 * @handle: the journal handle
2855 * @inode: the file inode
2856 * @path: the path to the extent
2857 * @split: the logical block where the extent is splitted.
2858 * @split_flags: indicates if the extent could be zeroout if split fails, and
2859 * the states(init or uninit) of new extents.
2860 * @flags: flags used to insert new extent to extent tree.
2861 *
2862 *
2863 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2864 * of which are deterimined by split_flag.
2865 *
2866 * There are two cases:
2867 * a> the extent are splitted into two extent.
2868 * b> split is not needed, and just mark the extent.
2869 *
2870 * return 0 on success.
2871 */
2872 static int ext4_split_extent_at(handle_t *handle,
2873 struct inode *inode,
2874 struct ext4_ext_path *path,
2875 ext4_lblk_t split,
2876 int split_flag,
2877 int flags)
2878 {
2879 ext4_fsblk_t newblock;
2880 ext4_lblk_t ee_block;
2881 struct ext4_extent *ex, newex, orig_ex;
2882 struct ext4_extent *ex2 = NULL;
2883 unsigned int ee_len, depth;
2884 int err = 0;
2885
2886 ext_debug("ext4_split_extents_at: inode %lu, logical"
2887 "block %llu\n", inode->i_ino, (unsigned long long)split);
2888
2889 ext4_ext_show_leaf(inode, path);
2890
2891 depth = ext_depth(inode);
2892 ex = path[depth].p_ext;
2893 ee_block = le32_to_cpu(ex->ee_block);
2894 ee_len = ext4_ext_get_actual_len(ex);
2895 newblock = split - ee_block + ext4_ext_pblock(ex);
2896
2897 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2898
2899 err = ext4_ext_get_access(handle, inode, path + depth);
2900 if (err)
2901 goto out;
2902
2903 if (split == ee_block) {
2904 /*
2905 * case b: block @split is the block that the extent begins with
2906 * then we just change the state of the extent, and splitting
2907 * is not needed.
2908 */
2909 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2910 ext4_ext_mark_uninitialized(ex);
2911 else
2912 ext4_ext_mark_initialized(ex);
2913
2914 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2915 ext4_ext_try_to_merge(inode, path, ex);
2916
2917 err = ext4_ext_dirty(handle, inode, path + depth);
2918 goto out;
2919 }
2920
2921 /* case a */
2922 memcpy(&orig_ex, ex, sizeof(orig_ex));
2923 ex->ee_len = cpu_to_le16(split - ee_block);
2924 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2925 ext4_ext_mark_uninitialized(ex);
2926
2927 /*
2928 * path may lead to new leaf, not to original leaf any more
2929 * after ext4_ext_insert_extent() returns,
2930 */
2931 err = ext4_ext_dirty(handle, inode, path + depth);
2932 if (err)
2933 goto fix_extent_len;
2934
2935 ex2 = &newex;
2936 ex2->ee_block = cpu_to_le32(split);
2937 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2938 ext4_ext_store_pblock(ex2, newblock);
2939 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2940 ext4_ext_mark_uninitialized(ex2);
2941
2942 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2943 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2944 err = ext4_ext_zeroout(inode, &orig_ex);
2945 if (err)
2946 goto fix_extent_len;
2947 /* update the extent length and mark as initialized */
2948 ex->ee_len = cpu_to_le16(ee_len);
2949 ext4_ext_try_to_merge(inode, path, ex);
2950 err = ext4_ext_dirty(handle, inode, path + depth);
2951 goto out;
2952 } else if (err)
2953 goto fix_extent_len;
2954
2955 out:
2956 ext4_ext_show_leaf(inode, path);
2957 return err;
2958
2959 fix_extent_len:
2960 ex->ee_len = orig_ex.ee_len;
2961 ext4_ext_dirty(handle, inode, path + depth);
2962 return err;
2963 }
2964
2965 /*
2966 * ext4_split_extents() splits an extent and mark extent which is covered
2967 * by @map as split_flags indicates
2968 *
2969 * It may result in splitting the extent into multiple extents (upto three)
2970 * There are three possibilities:
2971 * a> There is no split required
2972 * b> Splits in two extents: Split is happening at either end of the extent
2973 * c> Splits in three extents: Somone is splitting in middle of the extent
2974 *
2975 */
2976 static int ext4_split_extent(handle_t *handle,
2977 struct inode *inode,
2978 struct ext4_ext_path *path,
2979 struct ext4_map_blocks *map,
2980 int split_flag,
2981 int flags)
2982 {
2983 ext4_lblk_t ee_block;
2984 struct ext4_extent *ex;
2985 unsigned int ee_len, depth;
2986 int err = 0;
2987 int uninitialized;
2988 int split_flag1, flags1;
2989
2990 depth = ext_depth(inode);
2991 ex = path[depth].p_ext;
2992 ee_block = le32_to_cpu(ex->ee_block);
2993 ee_len = ext4_ext_get_actual_len(ex);
2994 uninitialized = ext4_ext_is_uninitialized(ex);
2995
2996 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2997 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2998 EXT4_EXT_MAY_ZEROOUT : 0;
2999 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3000 if (uninitialized)
3001 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3002 EXT4_EXT_MARK_UNINIT2;
3003 err = ext4_split_extent_at(handle, inode, path,
3004 map->m_lblk + map->m_len, split_flag1, flags1);
3005 if (err)
3006 goto out;
3007 }
3008
3009 ext4_ext_drop_refs(path);
3010 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3011 if (IS_ERR(path))
3012 return PTR_ERR(path);
3013
3014 if (map->m_lblk >= ee_block) {
3015 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
3016 EXT4_EXT_MAY_ZEROOUT : 0;
3017 if (uninitialized)
3018 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3019 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3020 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3021 err = ext4_split_extent_at(handle, inode, path,
3022 map->m_lblk, split_flag1, flags);
3023 if (err)
3024 goto out;
3025 }
3026
3027 ext4_ext_show_leaf(inode, path);
3028 out:
3029 return err ? err : map->m_len;
3030 }
3031
3032 #define EXT4_EXT_ZERO_LEN 7
3033 /*
3034 * This function is called by ext4_ext_map_blocks() if someone tries to write
3035 * to an uninitialized extent. It may result in splitting the uninitialized
3036 * extent into multiple extents (up to three - one initialized and two
3037 * uninitialized).
3038 * There are three possibilities:
3039 * a> There is no split required: Entire extent should be initialized
3040 * b> Splits in two extents: Write is happening at either end of the extent
3041 * c> Splits in three extents: Somone is writing in middle of the extent
3042 *
3043 * Pre-conditions:
3044 * - The extent pointed to by 'path' is uninitialized.
3045 * - The extent pointed to by 'path' contains a superset
3046 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3047 *
3048 * Post-conditions on success:
3049 * - the returned value is the number of blocks beyond map->l_lblk
3050 * that are allocated and initialized.
3051 * It is guaranteed to be >= map->m_len.
3052 */
3053 static int ext4_ext_convert_to_initialized(handle_t *handle,
3054 struct inode *inode,
3055 struct ext4_map_blocks *map,
3056 struct ext4_ext_path *path)
3057 {
3058 struct ext4_extent_header *eh;
3059 struct ext4_map_blocks split_map;
3060 struct ext4_extent zero_ex;
3061 struct ext4_extent *ex;
3062 ext4_lblk_t ee_block, eof_block;
3063 unsigned int ee_len, depth;
3064 int allocated;
3065 int err = 0;
3066 int split_flag = 0;
3067
3068 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3069 "block %llu, max_blocks %u\n", inode->i_ino,
3070 (unsigned long long)map->m_lblk, map->m_len);
3071
3072 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3073 inode->i_sb->s_blocksize_bits;
3074 if (eof_block < map->m_lblk + map->m_len)
3075 eof_block = map->m_lblk + map->m_len;
3076
3077 depth = ext_depth(inode);
3078 eh = path[depth].p_hdr;
3079 ex = path[depth].p_ext;
3080 ee_block = le32_to_cpu(ex->ee_block);
3081 ee_len = ext4_ext_get_actual_len(ex);
3082 allocated = ee_len - (map->m_lblk - ee_block);
3083
3084 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3085
3086 /* Pre-conditions */
3087 BUG_ON(!ext4_ext_is_uninitialized(ex));
3088 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3089
3090 /*
3091 * Attempt to transfer newly initialized blocks from the currently
3092 * uninitialized extent to its left neighbor. This is much cheaper
3093 * than an insertion followed by a merge as those involve costly
3094 * memmove() calls. This is the common case in steady state for
3095 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3096 * writes.
3097 *
3098 * Limitations of the current logic:
3099 * - L1: we only deal with writes at the start of the extent.
3100 * The approach could be extended to writes at the end
3101 * of the extent but this scenario was deemed less common.
3102 * - L2: we do not deal with writes covering the whole extent.
3103 * This would require removing the extent if the transfer
3104 * is possible.
3105 * - L3: we only attempt to merge with an extent stored in the
3106 * same extent tree node.
3107 */
3108 if ((map->m_lblk == ee_block) && /*L1*/
3109 (map->m_len < ee_len) && /*L2*/
3110 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3111 struct ext4_extent *prev_ex;
3112 ext4_lblk_t prev_lblk;
3113 ext4_fsblk_t prev_pblk, ee_pblk;
3114 unsigned int prev_len, write_len;
3115
3116 prev_ex = ex - 1;
3117 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3118 prev_len = ext4_ext_get_actual_len(prev_ex);
3119 prev_pblk = ext4_ext_pblock(prev_ex);
3120 ee_pblk = ext4_ext_pblock(ex);
3121 write_len = map->m_len;
3122
3123 /*
3124 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3125 * upon those conditions:
3126 * - C1: prev_ex is initialized,
3127 * - C2: prev_ex is logically abutting ex,
3128 * - C3: prev_ex is physically abutting ex,
3129 * - C4: prev_ex can receive the additional blocks without
3130 * overflowing the (initialized) length limit.
3131 */
3132 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3133 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3134 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3135 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3136 err = ext4_ext_get_access(handle, inode, path + depth);
3137 if (err)
3138 goto out;
3139
3140 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3141 map, ex, prev_ex);
3142
3143 /* Shift the start of ex by 'write_len' blocks */
3144 ex->ee_block = cpu_to_le32(ee_block + write_len);
3145 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3146 ex->ee_len = cpu_to_le16(ee_len - write_len);
3147 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3148
3149 /* Extend prev_ex by 'write_len' blocks */
3150 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3151
3152 /* Mark the block containing both extents as dirty */
3153 ext4_ext_dirty(handle, inode, path + depth);
3154
3155 /* Update path to point to the right extent */
3156 path[depth].p_ext = prev_ex;
3157
3158 /* Result: number of initialized blocks past m_lblk */
3159 allocated = write_len;
3160 goto out;
3161 }
3162 }
3163
3164 WARN_ON(map->m_lblk < ee_block);
3165 /*
3166 * It is safe to convert extent to initialized via explicit
3167 * zeroout only if extent is fully insde i_size or new_size.
3168 */
3169 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3170
3171 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3172 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3173 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3174 err = ext4_ext_zeroout(inode, ex);
3175 if (err)
3176 goto out;
3177
3178 err = ext4_ext_get_access(handle, inode, path + depth);
3179 if (err)
3180 goto out;
3181 ext4_ext_mark_initialized(ex);
3182 ext4_ext_try_to_merge(inode, path, ex);
3183 err = ext4_ext_dirty(handle, inode, path + depth);
3184 goto out;
3185 }
3186
3187 /*
3188 * four cases:
3189 * 1. split the extent into three extents.
3190 * 2. split the extent into two extents, zeroout the first half.
3191 * 3. split the extent into two extents, zeroout the second half.
3192 * 4. split the extent into two extents with out zeroout.
3193 */
3194 split_map.m_lblk = map->m_lblk;
3195 split_map.m_len = map->m_len;
3196
3197 if (allocated > map->m_len) {
3198 if (allocated <= EXT4_EXT_ZERO_LEN &&
3199 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3200 /* case 3 */
3201 zero_ex.ee_block =
3202 cpu_to_le32(map->m_lblk);
3203 zero_ex.ee_len = cpu_to_le16(allocated);
3204 ext4_ext_store_pblock(&zero_ex,
3205 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3206 err = ext4_ext_zeroout(inode, &zero_ex);
3207 if (err)
3208 goto out;
3209 split_map.m_lblk = map->m_lblk;
3210 split_map.m_len = allocated;
3211 } else if ((map->m_lblk - ee_block + map->m_len <
3212 EXT4_EXT_ZERO_LEN) &&
3213 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3214 /* case 2 */
3215 if (map->m_lblk != ee_block) {
3216 zero_ex.ee_block = ex->ee_block;
3217 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3218 ee_block);
3219 ext4_ext_store_pblock(&zero_ex,
3220 ext4_ext_pblock(ex));
3221 err = ext4_ext_zeroout(inode, &zero_ex);
3222 if (err)
3223 goto out;
3224 }
3225
3226 split_map.m_lblk = ee_block;
3227 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3228 allocated = map->m_len;
3229 }
3230 }
3231
3232 allocated = ext4_split_extent(handle, inode, path,
3233 &split_map, split_flag, 0);
3234 if (allocated < 0)
3235 err = allocated;
3236
3237 out:
3238 return err ? err : allocated;
3239 }
3240
3241 /*
3242 * This function is called by ext4_ext_map_blocks() from
3243 * ext4_get_blocks_dio_write() when DIO to write
3244 * to an uninitialized extent.
3245 *
3246 * Writing to an uninitialized extent may result in splitting the uninitialized
3247 * extent into multiple /initialized uninitialized extents (up to three)
3248 * There are three possibilities:
3249 * a> There is no split required: Entire extent should be uninitialized
3250 * b> Splits in two extents: Write is happening at either end of the extent
3251 * c> Splits in three extents: Somone is writing in middle of the extent
3252 *
3253 * One of more index blocks maybe needed if the extent tree grow after
3254 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3255 * complete, we need to split the uninitialized extent before DIO submit
3256 * the IO. The uninitialized extent called at this time will be split
3257 * into three uninitialized extent(at most). After IO complete, the part
3258 * being filled will be convert to initialized by the end_io callback function
3259 * via ext4_convert_unwritten_extents().
3260 *
3261 * Returns the size of uninitialized extent to be written on success.
3262 */
3263 static int ext4_split_unwritten_extents(handle_t *handle,
3264 struct inode *inode,
3265 struct ext4_map_blocks *map,
3266 struct ext4_ext_path *path,
3267 int flags)
3268 {
3269 ext4_lblk_t eof_block;
3270 ext4_lblk_t ee_block;
3271 struct ext4_extent *ex;
3272 unsigned int ee_len;
3273 int split_flag = 0, depth;
3274
3275 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3276 "block %llu, max_blocks %u\n", inode->i_ino,
3277 (unsigned long long)map->m_lblk, map->m_len);
3278
3279 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3280 inode->i_sb->s_blocksize_bits;
3281 if (eof_block < map->m_lblk + map->m_len)
3282 eof_block = map->m_lblk + map->m_len;
3283 /*
3284 * It is safe to convert extent to initialized via explicit
3285 * zeroout only if extent is fully insde i_size or new_size.
3286 */
3287 depth = ext_depth(inode);
3288 ex = path[depth].p_ext;
3289 ee_block = le32_to_cpu(ex->ee_block);
3290 ee_len = ext4_ext_get_actual_len(ex);
3291
3292 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3293 split_flag |= EXT4_EXT_MARK_UNINIT2;
3294
3295 flags |= EXT4_GET_BLOCKS_PRE_IO;
3296 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3297 }
3298
3299 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3300 struct inode *inode,
3301 struct ext4_ext_path *path)
3302 {
3303 struct ext4_extent *ex;
3304 int depth;
3305 int err = 0;
3306
3307 depth = ext_depth(inode);
3308 ex = path[depth].p_ext;
3309
3310 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3311 "block %llu, max_blocks %u\n", inode->i_ino,
3312 (unsigned long long)le32_to_cpu(ex->ee_block),
3313 ext4_ext_get_actual_len(ex));
3314
3315 err = ext4_ext_get_access(handle, inode, path + depth);
3316 if (err)
3317 goto out;
3318 /* first mark the extent as initialized */
3319 ext4_ext_mark_initialized(ex);
3320
3321 /* note: ext4_ext_correct_indexes() isn't needed here because
3322 * borders are not changed
3323 */
3324 ext4_ext_try_to_merge(inode, path, ex);
3325
3326 /* Mark modified extent as dirty */
3327 err = ext4_ext_dirty(handle, inode, path + depth);
3328 out:
3329 ext4_ext_show_leaf(inode, path);
3330 return err;
3331 }
3332
3333 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3334 sector_t block, int count)
3335 {
3336 int i;
3337 for (i = 0; i < count; i++)
3338 unmap_underlying_metadata(bdev, block + i);
3339 }
3340
3341 /*
3342 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3343 */
3344 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3345 ext4_lblk_t lblk,
3346 struct ext4_ext_path *path,
3347 unsigned int len)
3348 {
3349 int i, depth;
3350 struct ext4_extent_header *eh;
3351 struct ext4_extent *last_ex;
3352
3353 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3354 return 0;
3355
3356 depth = ext_depth(inode);
3357 eh = path[depth].p_hdr;
3358
3359 /*
3360 * We're going to remove EOFBLOCKS_FL entirely in future so we
3361 * do not care for this case anymore. Simply remove the flag
3362 * if there are no extents.
3363 */
3364 if (unlikely(!eh->eh_entries))
3365 goto out;
3366 last_ex = EXT_LAST_EXTENT(eh);
3367 /*
3368 * We should clear the EOFBLOCKS_FL flag if we are writing the
3369 * last block in the last extent in the file. We test this by
3370 * first checking to see if the caller to
3371 * ext4_ext_get_blocks() was interested in the last block (or
3372 * a block beyond the last block) in the current extent. If
3373 * this turns out to be false, we can bail out from this
3374 * function immediately.
3375 */
3376 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3377 ext4_ext_get_actual_len(last_ex))
3378 return 0;
3379 /*
3380 * If the caller does appear to be planning to write at or
3381 * beyond the end of the current extent, we then test to see
3382 * if the current extent is the last extent in the file, by
3383 * checking to make sure it was reached via the rightmost node
3384 * at each level of the tree.
3385 */
3386 for (i = depth-1; i >= 0; i--)
3387 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3388 return 0;
3389 out:
3390 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3391 return ext4_mark_inode_dirty(handle, inode);
3392 }
3393
3394 /**
3395 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3396 *
3397 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3398 * whether there are any buffers marked for delayed allocation. It returns '1'
3399 * on the first delalloc'ed buffer head found. If no buffer head in the given
3400 * range is marked for delalloc, it returns 0.
3401 * lblk_start should always be <= lblk_end.
3402 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3403 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3404 * block sooner). This is useful when blocks are truncated sequentially from
3405 * lblk_start towards lblk_end.
3406 */
3407 static int ext4_find_delalloc_range(struct inode *inode,
3408 ext4_lblk_t lblk_start,
3409 ext4_lblk_t lblk_end,
3410 int search_hint_reverse)
3411 {
3412 struct address_space *mapping = inode->i_mapping;
3413 struct buffer_head *head, *bh = NULL;
3414 struct page *page;
3415 ext4_lblk_t i, pg_lblk;
3416 pgoff_t index;
3417
3418 if (!test_opt(inode->i_sb, DELALLOC))
3419 return 0;
3420
3421 /* reverse search wont work if fs block size is less than page size */
3422 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3423 search_hint_reverse = 0;
3424
3425 if (search_hint_reverse)
3426 i = lblk_end;
3427 else
3428 i = lblk_start;
3429
3430 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3431
3432 while ((i >= lblk_start) && (i <= lblk_end)) {
3433 page = find_get_page(mapping, index);
3434 if (!page)
3435 goto nextpage;
3436
3437 if (!page_has_buffers(page))
3438 goto nextpage;
3439
3440 head = page_buffers(page);
3441 if (!head)
3442 goto nextpage;
3443
3444 bh = head;
3445 pg_lblk = index << (PAGE_CACHE_SHIFT -
3446 inode->i_blkbits);
3447 do {
3448 if (unlikely(pg_lblk < lblk_start)) {
3449 /*
3450 * This is possible when fs block size is less
3451 * than page size and our cluster starts/ends in
3452 * middle of the page. So we need to skip the
3453 * initial few blocks till we reach the 'lblk'
3454 */
3455 pg_lblk++;
3456 continue;
3457 }
3458
3459 /* Check if the buffer is delayed allocated and that it
3460 * is not yet mapped. (when da-buffers are mapped during
3461 * their writeout, their da_mapped bit is set.)
3462 */
3463 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3464 page_cache_release(page);
3465 trace_ext4_find_delalloc_range(inode,
3466 lblk_start, lblk_end,
3467 search_hint_reverse,
3468 1, i);
3469 return 1;
3470 }
3471 if (search_hint_reverse)
3472 i--;
3473 else
3474 i++;
3475 } while ((i >= lblk_start) && (i <= lblk_end) &&
3476 ((bh = bh->b_this_page) != head));
3477 nextpage:
3478 if (page)
3479 page_cache_release(page);
3480 /*
3481 * Move to next page. 'i' will be the first lblk in the next
3482 * page.
3483 */
3484 if (search_hint_reverse)
3485 index--;
3486 else
3487 index++;
3488 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3489 }
3490
3491 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3492 search_hint_reverse, 0, 0);
3493 return 0;
3494 }
3495
3496 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3497 int search_hint_reverse)
3498 {
3499 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3500 ext4_lblk_t lblk_start, lblk_end;
3501 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3502 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3503
3504 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3505 search_hint_reverse);
3506 }
3507
3508 /**
3509 * Determines how many complete clusters (out of those specified by the 'map')
3510 * are under delalloc and were reserved quota for.
3511 * This function is called when we are writing out the blocks that were
3512 * originally written with their allocation delayed, but then the space was
3513 * allocated using fallocate() before the delayed allocation could be resolved.
3514 * The cases to look for are:
3515 * ('=' indicated delayed allocated blocks
3516 * '-' indicates non-delayed allocated blocks)
3517 * (a) partial clusters towards beginning and/or end outside of allocated range
3518 * are not delalloc'ed.
3519 * Ex:
3520 * |----c---=|====c====|====c====|===-c----|
3521 * |++++++ allocated ++++++|
3522 * ==> 4 complete clusters in above example
3523 *
3524 * (b) partial cluster (outside of allocated range) towards either end is
3525 * marked for delayed allocation. In this case, we will exclude that
3526 * cluster.
3527 * Ex:
3528 * |----====c========|========c========|
3529 * |++++++ allocated ++++++|
3530 * ==> 1 complete clusters in above example
3531 *
3532 * Ex:
3533 * |================c================|
3534 * |++++++ allocated ++++++|
3535 * ==> 0 complete clusters in above example
3536 *
3537 * The ext4_da_update_reserve_space will be called only if we
3538 * determine here that there were some "entire" clusters that span
3539 * this 'allocated' range.
3540 * In the non-bigalloc case, this function will just end up returning num_blks
3541 * without ever calling ext4_find_delalloc_range.
3542 */
3543 static unsigned int
3544 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3545 unsigned int num_blks)
3546 {
3547 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3548 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3549 ext4_lblk_t lblk_from, lblk_to, c_offset;
3550 unsigned int allocated_clusters = 0;
3551
3552 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3553 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3554
3555 /* max possible clusters for this allocation */
3556 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3557
3558 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3559
3560 /* Check towards left side */
3561 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3562 if (c_offset) {
3563 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3564 lblk_to = lblk_from + c_offset - 1;
3565
3566 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3567 allocated_clusters--;
3568 }
3569
3570 /* Now check towards right. */
3571 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3572 if (allocated_clusters && c_offset) {
3573 lblk_from = lblk_start + num_blks;
3574 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3575
3576 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3577 allocated_clusters--;
3578 }
3579
3580 return allocated_clusters;
3581 }
3582
3583 static int
3584 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3585 struct ext4_map_blocks *map,
3586 struct ext4_ext_path *path, int flags,
3587 unsigned int allocated, ext4_fsblk_t newblock)
3588 {
3589 int ret = 0;
3590 int err = 0;
3591 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3592
3593 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3594 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3595 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3596 flags, allocated);
3597 ext4_ext_show_leaf(inode, path);
3598
3599 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3600 newblock);
3601
3602 /* get_block() before submit the IO, split the extent */
3603 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3604 ret = ext4_split_unwritten_extents(handle, inode, map,
3605 path, flags);
3606 /*
3607 * Flag the inode(non aio case) or end_io struct (aio case)
3608 * that this IO needs to conversion to written when IO is
3609 * completed
3610 */
3611 if (io)
3612 ext4_set_io_unwritten_flag(inode, io);
3613 else
3614 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3615 if (ext4_should_dioread_nolock(inode))
3616 map->m_flags |= EXT4_MAP_UNINIT;
3617 goto out;
3618 }
3619 /* IO end_io complete, convert the filled extent to written */
3620 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3621 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3622 path);
3623 if (ret >= 0) {
3624 ext4_update_inode_fsync_trans(handle, inode, 1);
3625 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3626 path, map->m_len);
3627 } else
3628 err = ret;
3629 goto out2;
3630 }
3631 /* buffered IO case */
3632 /*
3633 * repeat fallocate creation request
3634 * we already have an unwritten extent
3635 */
3636 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3637 goto map_out;
3638
3639 /* buffered READ or buffered write_begin() lookup */
3640 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3641 /*
3642 * We have blocks reserved already. We
3643 * return allocated blocks so that delalloc
3644 * won't do block reservation for us. But
3645 * the buffer head will be unmapped so that
3646 * a read from the block returns 0s.
3647 */
3648 map->m_flags |= EXT4_MAP_UNWRITTEN;
3649 goto out1;
3650 }
3651
3652 /* buffered write, writepage time, convert*/
3653 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3654 if (ret >= 0)
3655 ext4_update_inode_fsync_trans(handle, inode, 1);
3656 out:
3657 if (ret <= 0) {
3658 err = ret;
3659 goto out2;
3660 } else
3661 allocated = ret;
3662 map->m_flags |= EXT4_MAP_NEW;
3663 /*
3664 * if we allocated more blocks than requested
3665 * we need to make sure we unmap the extra block
3666 * allocated. The actual needed block will get
3667 * unmapped later when we find the buffer_head marked
3668 * new.
3669 */
3670 if (allocated > map->m_len) {
3671 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3672 newblock + map->m_len,
3673 allocated - map->m_len);
3674 allocated = map->m_len;
3675 }
3676
3677 /*
3678 * If we have done fallocate with the offset that is already
3679 * delayed allocated, we would have block reservation
3680 * and quota reservation done in the delayed write path.
3681 * But fallocate would have already updated quota and block
3682 * count for this offset. So cancel these reservation
3683 */
3684 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3685 unsigned int reserved_clusters;
3686 reserved_clusters = get_reserved_cluster_alloc(inode,
3687 map->m_lblk, map->m_len);
3688 if (reserved_clusters)
3689 ext4_da_update_reserve_space(inode,
3690 reserved_clusters,
3691 0);
3692 }
3693
3694 map_out:
3695 map->m_flags |= EXT4_MAP_MAPPED;
3696 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3697 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3698 map->m_len);
3699 if (err < 0)
3700 goto out2;
3701 }
3702 out1:
3703 if (allocated > map->m_len)
3704 allocated = map->m_len;
3705 ext4_ext_show_leaf(inode, path);
3706 map->m_pblk = newblock;
3707 map->m_len = allocated;
3708 out2:
3709 if (path) {
3710 ext4_ext_drop_refs(path);
3711 kfree(path);
3712 }
3713 return err ? err : allocated;
3714 }
3715
3716 /*
3717 * get_implied_cluster_alloc - check to see if the requested
3718 * allocation (in the map structure) overlaps with a cluster already
3719 * allocated in an extent.
3720 * @sb The filesystem superblock structure
3721 * @map The requested lblk->pblk mapping
3722 * @ex The extent structure which might contain an implied
3723 * cluster allocation
3724 *
3725 * This function is called by ext4_ext_map_blocks() after we failed to
3726 * find blocks that were already in the inode's extent tree. Hence,
3727 * we know that the beginning of the requested region cannot overlap
3728 * the extent from the inode's extent tree. There are three cases we
3729 * want to catch. The first is this case:
3730 *
3731 * |--- cluster # N--|
3732 * |--- extent ---| |---- requested region ---|
3733 * |==========|
3734 *
3735 * The second case that we need to test for is this one:
3736 *
3737 * |--------- cluster # N ----------------|
3738 * |--- requested region --| |------- extent ----|
3739 * |=======================|
3740 *
3741 * The third case is when the requested region lies between two extents
3742 * within the same cluster:
3743 * |------------- cluster # N-------------|
3744 * |----- ex -----| |---- ex_right ----|
3745 * |------ requested region ------|
3746 * |================|
3747 *
3748 * In each of the above cases, we need to set the map->m_pblk and
3749 * map->m_len so it corresponds to the return the extent labelled as
3750 * "|====|" from cluster #N, since it is already in use for data in
3751 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3752 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3753 * as a new "allocated" block region. Otherwise, we will return 0 and
3754 * ext4_ext_map_blocks() will then allocate one or more new clusters
3755 * by calling ext4_mb_new_blocks().
3756 */
3757 static int get_implied_cluster_alloc(struct super_block *sb,
3758 struct ext4_map_blocks *map,
3759 struct ext4_extent *ex,
3760 struct ext4_ext_path *path)
3761 {
3762 struct ext4_sb_info *sbi = EXT4_SB(sb);
3763 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3764 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3765 ext4_lblk_t rr_cluster_start;
3766 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3767 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3768 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3769
3770 /* The extent passed in that we are trying to match */
3771 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3772 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3773
3774 /* The requested region passed into ext4_map_blocks() */
3775 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3776
3777 if ((rr_cluster_start == ex_cluster_end) ||
3778 (rr_cluster_start == ex_cluster_start)) {
3779 if (rr_cluster_start == ex_cluster_end)
3780 ee_start += ee_len - 1;
3781 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3782 c_offset;
3783 map->m_len = min(map->m_len,
3784 (unsigned) sbi->s_cluster_ratio - c_offset);
3785 /*
3786 * Check for and handle this case:
3787 *
3788 * |--------- cluster # N-------------|
3789 * |------- extent ----|
3790 * |--- requested region ---|
3791 * |===========|
3792 */
3793
3794 if (map->m_lblk < ee_block)
3795 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3796
3797 /*
3798 * Check for the case where there is already another allocated
3799 * block to the right of 'ex' but before the end of the cluster.
3800 *
3801 * |------------- cluster # N-------------|
3802 * |----- ex -----| |---- ex_right ----|
3803 * |------ requested region ------|
3804 * |================|
3805 */
3806 if (map->m_lblk > ee_block) {
3807 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3808 map->m_len = min(map->m_len, next - map->m_lblk);
3809 }
3810
3811 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3812 return 1;
3813 }
3814
3815 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3816 return 0;
3817 }
3818
3819
3820 /*
3821 * Block allocation/map/preallocation routine for extents based files
3822 *
3823 *
3824 * Need to be called with
3825 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3826 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3827 *
3828 * return > 0, number of of blocks already mapped/allocated
3829 * if create == 0 and these are pre-allocated blocks
3830 * buffer head is unmapped
3831 * otherwise blocks are mapped
3832 *
3833 * return = 0, if plain look up failed (blocks have not been allocated)
3834 * buffer head is unmapped
3835 *
3836 * return < 0, error case.
3837 */
3838 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3839 struct ext4_map_blocks *map, int flags)
3840 {
3841 struct ext4_ext_path *path = NULL;
3842 struct ext4_extent newex, *ex, *ex2;
3843 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3844 ext4_fsblk_t newblock = 0;
3845 int free_on_err = 0, err = 0, depth, ret;
3846 unsigned int allocated = 0, offset = 0;
3847 unsigned int allocated_clusters = 0;
3848 struct ext4_allocation_request ar;
3849 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3850 ext4_lblk_t cluster_offset;
3851
3852 ext_debug("blocks %u/%u requested for inode %lu\n",
3853 map->m_lblk, map->m_len, inode->i_ino);
3854 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3855
3856 /* check in cache */
3857 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3858 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3859 if ((sbi->s_cluster_ratio > 1) &&
3860 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3861 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3862
3863 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3864 /*
3865 * block isn't allocated yet and
3866 * user doesn't want to allocate it
3867 */
3868 goto out2;
3869 }
3870 /* we should allocate requested block */
3871 } else {
3872 /* block is already allocated */
3873 if (sbi->s_cluster_ratio > 1)
3874 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3875 newblock = map->m_lblk
3876 - le32_to_cpu(newex.ee_block)
3877 + ext4_ext_pblock(&newex);
3878 /* number of remaining blocks in the extent */
3879 allocated = ext4_ext_get_actual_len(&newex) -
3880 (map->m_lblk - le32_to_cpu(newex.ee_block));
3881 goto out;
3882 }
3883 }
3884
3885 /* find extent for this block */
3886 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3887 if (IS_ERR(path)) {
3888 err = PTR_ERR(path);
3889 path = NULL;
3890 goto out2;
3891 }
3892
3893 depth = ext_depth(inode);
3894
3895 /*
3896 * consistent leaf must not be empty;
3897 * this situation is possible, though, _during_ tree modification;
3898 * this is why assert can't be put in ext4_ext_find_extent()
3899 */
3900 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3901 EXT4_ERROR_INODE(inode, "bad extent address "
3902 "lblock: %lu, depth: %d pblock %lld",
3903 (unsigned long) map->m_lblk, depth,
3904 path[depth].p_block);
3905 err = -EIO;
3906 goto out2;
3907 }
3908
3909 ex = path[depth].p_ext;
3910 if (ex) {
3911 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3912 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3913 unsigned short ee_len;
3914
3915 /*
3916 * Uninitialized extents are treated as holes, except that
3917 * we split out initialized portions during a write.
3918 */
3919 ee_len = ext4_ext_get_actual_len(ex);
3920
3921 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3922
3923 /* if found extent covers block, simply return it */
3924 if (in_range(map->m_lblk, ee_block, ee_len)) {
3925 newblock = map->m_lblk - ee_block + ee_start;
3926 /* number of remaining blocks in the extent */
3927 allocated = ee_len - (map->m_lblk - ee_block);
3928 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3929 ee_block, ee_len, newblock);
3930
3931 /*
3932 * Do not put uninitialized extent
3933 * in the cache
3934 */
3935 if (!ext4_ext_is_uninitialized(ex)) {
3936 ext4_ext_put_in_cache(inode, ee_block,
3937 ee_len, ee_start);
3938 goto out;
3939 }
3940 ret = ext4_ext_handle_uninitialized_extents(
3941 handle, inode, map, path, flags,
3942 allocated, newblock);
3943 return ret;
3944 }
3945 }
3946
3947 if ((sbi->s_cluster_ratio > 1) &&
3948 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3949 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3950
3951 /*
3952 * requested block isn't allocated yet;
3953 * we couldn't try to create block if create flag is zero
3954 */
3955 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3956 /*
3957 * put just found gap into cache to speed up
3958 * subsequent requests
3959 */
3960 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3961 goto out2;
3962 }
3963
3964 /*
3965 * Okay, we need to do block allocation.
3966 */
3967 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3968 newex.ee_block = cpu_to_le32(map->m_lblk);
3969 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3970
3971 /*
3972 * If we are doing bigalloc, check to see if the extent returned
3973 * by ext4_ext_find_extent() implies a cluster we can use.
3974 */
3975 if (cluster_offset && ex &&
3976 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3977 ar.len = allocated = map->m_len;
3978 newblock = map->m_pblk;
3979 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3980 goto got_allocated_blocks;
3981 }
3982
3983 /* find neighbour allocated blocks */
3984 ar.lleft = map->m_lblk;
3985 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3986 if (err)
3987 goto out2;
3988 ar.lright = map->m_lblk;
3989 ex2 = NULL;
3990 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3991 if (err)
3992 goto out2;
3993
3994 /* Check if the extent after searching to the right implies a
3995 * cluster we can use. */
3996 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3997 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3998 ar.len = allocated = map->m_len;
3999 newblock = map->m_pblk;
4000 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4001 goto got_allocated_blocks;
4002 }
4003
4004 /*
4005 * See if request is beyond maximum number of blocks we can have in
4006 * a single extent. For an initialized extent this limit is
4007 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4008 * EXT_UNINIT_MAX_LEN.
4009 */
4010 if (map->m_len > EXT_INIT_MAX_LEN &&
4011 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4012 map->m_len = EXT_INIT_MAX_LEN;
4013 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4014 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4015 map->m_len = EXT_UNINIT_MAX_LEN;
4016
4017 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4018 newex.ee_len = cpu_to_le16(map->m_len);
4019 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4020 if (err)
4021 allocated = ext4_ext_get_actual_len(&newex);
4022 else
4023 allocated = map->m_len;
4024
4025 /* allocate new block */
4026 ar.inode = inode;
4027 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4028 ar.logical = map->m_lblk;
4029 /*
4030 * We calculate the offset from the beginning of the cluster
4031 * for the logical block number, since when we allocate a
4032 * physical cluster, the physical block should start at the
4033 * same offset from the beginning of the cluster. This is
4034 * needed so that future calls to get_implied_cluster_alloc()
4035 * work correctly.
4036 */
4037 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4038 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4039 ar.goal -= offset;
4040 ar.logical -= offset;
4041 if (S_ISREG(inode->i_mode))
4042 ar.flags = EXT4_MB_HINT_DATA;
4043 else
4044 /* disable in-core preallocation for non-regular files */
4045 ar.flags = 0;
4046 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4047 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4048 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4049 if (!newblock)
4050 goto out2;
4051 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4052 ar.goal, newblock, allocated);
4053 free_on_err = 1;
4054 allocated_clusters = ar.len;
4055 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4056 if (ar.len > allocated)
4057 ar.len = allocated;
4058
4059 got_allocated_blocks:
4060 /* try to insert new extent into found leaf and return */
4061 ext4_ext_store_pblock(&newex, newblock + offset);
4062 newex.ee_len = cpu_to_le16(ar.len);
4063 /* Mark uninitialized */
4064 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4065 ext4_ext_mark_uninitialized(&newex);
4066 /*
4067 * io_end structure was created for every IO write to an
4068 * uninitialized extent. To avoid unnecessary conversion,
4069 * here we flag the IO that really needs the conversion.
4070 * For non asycn direct IO case, flag the inode state
4071 * that we need to perform conversion when IO is done.
4072 */
4073 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4074 if (io)
4075 ext4_set_io_unwritten_flag(inode, io);
4076 else
4077 ext4_set_inode_state(inode,
4078 EXT4_STATE_DIO_UNWRITTEN);
4079 }
4080 if (ext4_should_dioread_nolock(inode))
4081 map->m_flags |= EXT4_MAP_UNINIT;
4082 }
4083
4084 err = 0;
4085 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4086 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4087 path, ar.len);
4088 if (!err)
4089 err = ext4_ext_insert_extent(handle, inode, path,
4090 &newex, flags);
4091 if (err && free_on_err) {
4092 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4093 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4094 /* free data blocks we just allocated */
4095 /* not a good idea to call discard here directly,
4096 * but otherwise we'd need to call it every free() */
4097 ext4_discard_preallocations(inode);
4098 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4099 ext4_ext_get_actual_len(&newex), fb_flags);
4100 goto out2;
4101 }
4102
4103 /* previous routine could use block we allocated */
4104 newblock = ext4_ext_pblock(&newex);
4105 allocated = ext4_ext_get_actual_len(&newex);
4106 if (allocated > map->m_len)
4107 allocated = map->m_len;
4108 map->m_flags |= EXT4_MAP_NEW;
4109
4110 /*
4111 * Update reserved blocks/metadata blocks after successful
4112 * block allocation which had been deferred till now.
4113 */
4114 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4115 unsigned int reserved_clusters;
4116 /*
4117 * Check how many clusters we had reserved this allocated range
4118 */
4119 reserved_clusters = get_reserved_cluster_alloc(inode,
4120 map->m_lblk, allocated);
4121 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4122 if (reserved_clusters) {
4123 /*
4124 * We have clusters reserved for this range.
4125 * But since we are not doing actual allocation
4126 * and are simply using blocks from previously
4127 * allocated cluster, we should release the
4128 * reservation and not claim quota.
4129 */
4130 ext4_da_update_reserve_space(inode,
4131 reserved_clusters, 0);
4132 }
4133 } else {
4134 BUG_ON(allocated_clusters < reserved_clusters);
4135 /* We will claim quota for all newly allocated blocks.*/
4136 ext4_da_update_reserve_space(inode, allocated_clusters,
4137 1);
4138 if (reserved_clusters < allocated_clusters) {
4139 struct ext4_inode_info *ei = EXT4_I(inode);
4140 int reservation = allocated_clusters -
4141 reserved_clusters;
4142 /*
4143 * It seems we claimed few clusters outside of
4144 * the range of this allocation. We should give
4145 * it back to the reservation pool. This can
4146 * happen in the following case:
4147 *
4148 * * Suppose s_cluster_ratio is 4 (i.e., each
4149 * cluster has 4 blocks. Thus, the clusters
4150 * are [0-3],[4-7],[8-11]...
4151 * * First comes delayed allocation write for
4152 * logical blocks 10 & 11. Since there were no
4153 * previous delayed allocated blocks in the
4154 * range [8-11], we would reserve 1 cluster
4155 * for this write.
4156 * * Next comes write for logical blocks 3 to 8.
4157 * In this case, we will reserve 2 clusters
4158 * (for [0-3] and [4-7]; and not for [8-11] as
4159 * that range has a delayed allocated blocks.
4160 * Thus total reserved clusters now becomes 3.
4161 * * Now, during the delayed allocation writeout
4162 * time, we will first write blocks [3-8] and
4163 * allocate 3 clusters for writing these
4164 * blocks. Also, we would claim all these
4165 * three clusters above.
4166 * * Now when we come here to writeout the
4167 * blocks [10-11], we would expect to claim
4168 * the reservation of 1 cluster we had made
4169 * (and we would claim it since there are no
4170 * more delayed allocated blocks in the range
4171 * [8-11]. But our reserved cluster count had
4172 * already gone to 0.
4173 *
4174 * Thus, at the step 4 above when we determine
4175 * that there are still some unwritten delayed
4176 * allocated blocks outside of our current
4177 * block range, we should increment the
4178 * reserved clusters count so that when the
4179 * remaining blocks finally gets written, we
4180 * could claim them.
4181 */
4182 dquot_reserve_block(inode,
4183 EXT4_C2B(sbi, reservation));
4184 spin_lock(&ei->i_block_reservation_lock);
4185 ei->i_reserved_data_blocks += reservation;
4186 spin_unlock(&ei->i_block_reservation_lock);
4187 }
4188 }
4189 }
4190
4191 /*
4192 * Cache the extent and update transaction to commit on fdatasync only
4193 * when it is _not_ an uninitialized extent.
4194 */
4195 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4196 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4197 ext4_update_inode_fsync_trans(handle, inode, 1);
4198 } else
4199 ext4_update_inode_fsync_trans(handle, inode, 0);
4200 out:
4201 if (allocated > map->m_len)
4202 allocated = map->m_len;
4203 ext4_ext_show_leaf(inode, path);
4204 map->m_flags |= EXT4_MAP_MAPPED;
4205 map->m_pblk = newblock;
4206 map->m_len = allocated;
4207 out2:
4208 if (path) {
4209 ext4_ext_drop_refs(path);
4210 kfree(path);
4211 }
4212
4213 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4214 newblock, map->m_len, err ? err : allocated);
4215
4216 return err ? err : allocated;
4217 }
4218
4219 void ext4_ext_truncate(struct inode *inode)
4220 {
4221 struct address_space *mapping = inode->i_mapping;
4222 struct super_block *sb = inode->i_sb;
4223 ext4_lblk_t last_block;
4224 handle_t *handle;
4225 loff_t page_len;
4226 int err = 0;
4227
4228 /*
4229 * finish any pending end_io work so we won't run the risk of
4230 * converting any truncated blocks to initialized later
4231 */
4232 ext4_flush_completed_IO(inode);
4233
4234 /*
4235 * probably first extent we're gonna free will be last in block
4236 */
4237 err = ext4_writepage_trans_blocks(inode);
4238 handle = ext4_journal_start(inode, err);
4239 if (IS_ERR(handle))
4240 return;
4241
4242 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4243 page_len = PAGE_CACHE_SIZE -
4244 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4245
4246 err = ext4_discard_partial_page_buffers(handle,
4247 mapping, inode->i_size, page_len, 0);
4248
4249 if (err)
4250 goto out_stop;
4251 }
4252
4253 if (ext4_orphan_add(handle, inode))
4254 goto out_stop;
4255
4256 down_write(&EXT4_I(inode)->i_data_sem);
4257 ext4_ext_invalidate_cache(inode);
4258
4259 ext4_discard_preallocations(inode);
4260
4261 /*
4262 * TODO: optimization is possible here.
4263 * Probably we need not scan at all,
4264 * because page truncation is enough.
4265 */
4266
4267 /* we have to know where to truncate from in crash case */
4268 EXT4_I(inode)->i_disksize = inode->i_size;
4269 ext4_mark_inode_dirty(handle, inode);
4270
4271 last_block = (inode->i_size + sb->s_blocksize - 1)
4272 >> EXT4_BLOCK_SIZE_BITS(sb);
4273 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4274
4275 /* In a multi-transaction truncate, we only make the final
4276 * transaction synchronous.
4277 */
4278 if (IS_SYNC(inode))
4279 ext4_handle_sync(handle);
4280
4281 up_write(&EXT4_I(inode)->i_data_sem);
4282
4283 out_stop:
4284 /*
4285 * If this was a simple ftruncate() and the file will remain alive,
4286 * then we need to clear up the orphan record which we created above.
4287 * However, if this was a real unlink then we were called by
4288 * ext4_delete_inode(), and we allow that function to clean up the
4289 * orphan info for us.
4290 */
4291 if (inode->i_nlink)
4292 ext4_orphan_del(handle, inode);
4293
4294 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4295 ext4_mark_inode_dirty(handle, inode);
4296 ext4_journal_stop(handle);
4297 }
4298
4299 static void ext4_falloc_update_inode(struct inode *inode,
4300 int mode, loff_t new_size, int update_ctime)
4301 {
4302 struct timespec now;
4303
4304 if (update_ctime) {
4305 now = current_fs_time(inode->i_sb);
4306 if (!timespec_equal(&inode->i_ctime, &now))
4307 inode->i_ctime = now;
4308 }
4309 /*
4310 * Update only when preallocation was requested beyond
4311 * the file size.
4312 */
4313 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4314 if (new_size > i_size_read(inode))
4315 i_size_write(inode, new_size);
4316 if (new_size > EXT4_I(inode)->i_disksize)
4317 ext4_update_i_disksize(inode, new_size);
4318 } else {
4319 /*
4320 * Mark that we allocate beyond EOF so the subsequent truncate
4321 * can proceed even if the new size is the same as i_size.
4322 */
4323 if (new_size > i_size_read(inode))
4324 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4325 }
4326
4327 }
4328
4329 /*
4330 * preallocate space for a file. This implements ext4's fallocate file
4331 * operation, which gets called from sys_fallocate system call.
4332 * For block-mapped files, posix_fallocate should fall back to the method
4333 * of writing zeroes to the required new blocks (the same behavior which is
4334 * expected for file systems which do not support fallocate() system call).
4335 */
4336 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4337 {
4338 struct inode *inode = file->f_path.dentry->d_inode;
4339 handle_t *handle;
4340 loff_t new_size;
4341 unsigned int max_blocks;
4342 int ret = 0;
4343 int ret2 = 0;
4344 int retries = 0;
4345 int flags;
4346 struct ext4_map_blocks map;
4347 unsigned int credits, blkbits = inode->i_blkbits;
4348
4349 /*
4350 * currently supporting (pre)allocate mode for extent-based
4351 * files _only_
4352 */
4353 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4354 return -EOPNOTSUPP;
4355
4356 /* Return error if mode is not supported */
4357 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4358 return -EOPNOTSUPP;
4359
4360 if (mode & FALLOC_FL_PUNCH_HOLE)
4361 return ext4_punch_hole(file, offset, len);
4362
4363 trace_ext4_fallocate_enter(inode, offset, len, mode);
4364 map.m_lblk = offset >> blkbits;
4365 /*
4366 * We can't just convert len to max_blocks because
4367 * If blocksize = 4096 offset = 3072 and len = 2048
4368 */
4369 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4370 - map.m_lblk;
4371 /*
4372 * credits to insert 1 extent into extent tree
4373 */
4374 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4375 mutex_lock(&inode->i_mutex);
4376 ret = inode_newsize_ok(inode, (len + offset));
4377 if (ret) {
4378 mutex_unlock(&inode->i_mutex);
4379 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4380 return ret;
4381 }
4382 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4383 if (mode & FALLOC_FL_KEEP_SIZE)
4384 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4385 /*
4386 * Don't normalize the request if it can fit in one extent so
4387 * that it doesn't get unnecessarily split into multiple
4388 * extents.
4389 */
4390 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4391 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4392 retry:
4393 while (ret >= 0 && ret < max_blocks) {
4394 map.m_lblk = map.m_lblk + ret;
4395 map.m_len = max_blocks = max_blocks - ret;
4396 handle = ext4_journal_start(inode, credits);
4397 if (IS_ERR(handle)) {
4398 ret = PTR_ERR(handle);
4399 break;
4400 }
4401 ret = ext4_map_blocks(handle, inode, &map, flags);
4402 if (ret <= 0) {
4403 #ifdef EXT4FS_DEBUG
4404 WARN_ON(ret <= 0);
4405 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4406 "returned error inode#%lu, block=%u, "
4407 "max_blocks=%u", __func__,
4408 inode->i_ino, map.m_lblk, max_blocks);
4409 #endif
4410 ext4_mark_inode_dirty(handle, inode);
4411 ret2 = ext4_journal_stop(handle);
4412 break;
4413 }
4414 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4415 blkbits) >> blkbits))
4416 new_size = offset + len;
4417 else
4418 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4419
4420 ext4_falloc_update_inode(inode, mode, new_size,
4421 (map.m_flags & EXT4_MAP_NEW));
4422 ext4_mark_inode_dirty(handle, inode);
4423 ret2 = ext4_journal_stop(handle);
4424 if (ret2)
4425 break;
4426 }
4427 if (ret == -ENOSPC &&
4428 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4429 ret = 0;
4430 goto retry;
4431 }
4432 mutex_unlock(&inode->i_mutex);
4433 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4434 ret > 0 ? ret2 : ret);
4435 return ret > 0 ? ret2 : ret;
4436 }
4437
4438 /*
4439 * This function convert a range of blocks to written extents
4440 * The caller of this function will pass the start offset and the size.
4441 * all unwritten extents within this range will be converted to
4442 * written extents.
4443 *
4444 * This function is called from the direct IO end io call back
4445 * function, to convert the fallocated extents after IO is completed.
4446 * Returns 0 on success.
4447 */
4448 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4449 ssize_t len)
4450 {
4451 handle_t *handle;
4452 unsigned int max_blocks;
4453 int ret = 0;
4454 int ret2 = 0;
4455 struct ext4_map_blocks map;
4456 unsigned int credits, blkbits = inode->i_blkbits;
4457
4458 map.m_lblk = offset >> blkbits;
4459 /*
4460 * We can't just convert len to max_blocks because
4461 * If blocksize = 4096 offset = 3072 and len = 2048
4462 */
4463 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4464 map.m_lblk);
4465 /*
4466 * credits to insert 1 extent into extent tree
4467 */
4468 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4469 while (ret >= 0 && ret < max_blocks) {
4470 map.m_lblk += ret;
4471 map.m_len = (max_blocks -= ret);
4472 handle = ext4_journal_start(inode, credits);
4473 if (IS_ERR(handle)) {
4474 ret = PTR_ERR(handle);
4475 break;
4476 }
4477 ret = ext4_map_blocks(handle, inode, &map,
4478 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4479 if (ret <= 0) {
4480 WARN_ON(ret <= 0);
4481 ext4_msg(inode->i_sb, KERN_ERR,
4482 "%s:%d: inode #%lu: block %u: len %u: "
4483 "ext4_ext_map_blocks returned %d",
4484 __func__, __LINE__, inode->i_ino, map.m_lblk,
4485 map.m_len, ret);
4486 }
4487 ext4_mark_inode_dirty(handle, inode);
4488 ret2 = ext4_journal_stop(handle);
4489 if (ret <= 0 || ret2 )
4490 break;
4491 }
4492 return ret > 0 ? ret2 : ret;
4493 }
4494
4495 /*
4496 * Callback function called for each extent to gather FIEMAP information.
4497 */
4498 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4499 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4500 void *data)
4501 {
4502 __u64 logical;
4503 __u64 physical;
4504 __u64 length;
4505 __u32 flags = 0;
4506 int ret = 0;
4507 struct fiemap_extent_info *fieinfo = data;
4508 unsigned char blksize_bits;
4509
4510 blksize_bits = inode->i_sb->s_blocksize_bits;
4511 logical = (__u64)newex->ec_block << blksize_bits;
4512
4513 if (newex->ec_start == 0) {
4514 /*
4515 * No extent in extent-tree contains block @newex->ec_start,
4516 * then the block may stay in 1)a hole or 2)delayed-extent.
4517 *
4518 * Holes or delayed-extents are processed as follows.
4519 * 1. lookup dirty pages with specified range in pagecache.
4520 * If no page is got, then there is no delayed-extent and
4521 * return with EXT_CONTINUE.
4522 * 2. find the 1st mapped buffer,
4523 * 3. check if the mapped buffer is both in the request range
4524 * and a delayed buffer. If not, there is no delayed-extent,
4525 * then return.
4526 * 4. a delayed-extent is found, the extent will be collected.
4527 */
4528 ext4_lblk_t end = 0;
4529 pgoff_t last_offset;
4530 pgoff_t offset;
4531 pgoff_t index;
4532 pgoff_t start_index = 0;
4533 struct page **pages = NULL;
4534 struct buffer_head *bh = NULL;
4535 struct buffer_head *head = NULL;
4536 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4537
4538 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4539 if (pages == NULL)
4540 return -ENOMEM;
4541
4542 offset = logical >> PAGE_SHIFT;
4543 repeat:
4544 last_offset = offset;
4545 head = NULL;
4546 ret = find_get_pages_tag(inode->i_mapping, &offset,
4547 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4548
4549 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4550 /* First time, try to find a mapped buffer. */
4551 if (ret == 0) {
4552 out:
4553 for (index = 0; index < ret; index++)
4554 page_cache_release(pages[index]);
4555 /* just a hole. */
4556 kfree(pages);
4557 return EXT_CONTINUE;
4558 }
4559 index = 0;
4560
4561 next_page:
4562 /* Try to find the 1st mapped buffer. */
4563 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4564 blksize_bits;
4565 if (!page_has_buffers(pages[index]))
4566 goto out;
4567 head = page_buffers(pages[index]);
4568 if (!head)
4569 goto out;
4570
4571 index++;
4572 bh = head;
4573 do {
4574 if (end >= newex->ec_block +
4575 newex->ec_len)
4576 /* The buffer is out of
4577 * the request range.
4578 */
4579 goto out;
4580
4581 if (buffer_mapped(bh) &&
4582 end >= newex->ec_block) {
4583 start_index = index - 1;
4584 /* get the 1st mapped buffer. */
4585 goto found_mapped_buffer;
4586 }
4587
4588 bh = bh->b_this_page;
4589 end++;
4590 } while (bh != head);
4591
4592 /* No mapped buffer in the range found in this page,
4593 * We need to look up next page.
4594 */
4595 if (index >= ret) {
4596 /* There is no page left, but we need to limit
4597 * newex->ec_len.
4598 */
4599 newex->ec_len = end - newex->ec_block;
4600 goto out;
4601 }
4602 goto next_page;
4603 } else {
4604 /*Find contiguous delayed buffers. */
4605 if (ret > 0 && pages[0]->index == last_offset)
4606 head = page_buffers(pages[0]);
4607 bh = head;
4608 index = 1;
4609 start_index = 0;
4610 }
4611
4612 found_mapped_buffer:
4613 if (bh != NULL && buffer_delay(bh)) {
4614 /* 1st or contiguous delayed buffer found. */
4615 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4616 /*
4617 * 1st delayed buffer found, record
4618 * the start of extent.
4619 */
4620 flags |= FIEMAP_EXTENT_DELALLOC;
4621 newex->ec_block = end;
4622 logical = (__u64)end << blksize_bits;
4623 }
4624 /* Find contiguous delayed buffers. */
4625 do {
4626 if (!buffer_delay(bh))
4627 goto found_delayed_extent;
4628 bh = bh->b_this_page;
4629 end++;
4630 } while (bh != head);
4631
4632 for (; index < ret; index++) {
4633 if (!page_has_buffers(pages[index])) {
4634 bh = NULL;
4635 break;
4636 }
4637 head = page_buffers(pages[index]);
4638 if (!head) {
4639 bh = NULL;
4640 break;
4641 }
4642
4643 if (pages[index]->index !=
4644 pages[start_index]->index + index
4645 - start_index) {
4646 /* Blocks are not contiguous. */
4647 bh = NULL;
4648 break;
4649 }
4650 bh = head;
4651 do {
4652 if (!buffer_delay(bh))
4653 /* Delayed-extent ends. */
4654 goto found_delayed_extent;
4655 bh = bh->b_this_page;
4656 end++;
4657 } while (bh != head);
4658 }
4659 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4660 /* a hole found. */
4661 goto out;
4662
4663 found_delayed_extent:
4664 newex->ec_len = min(end - newex->ec_block,
4665 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4666 if (ret == nr_pages && bh != NULL &&
4667 newex->ec_len < EXT_INIT_MAX_LEN &&
4668 buffer_delay(bh)) {
4669 /* Have not collected an extent and continue. */
4670 for (index = 0; index < ret; index++)
4671 page_cache_release(pages[index]);
4672 goto repeat;
4673 }
4674
4675 for (index = 0; index < ret; index++)
4676 page_cache_release(pages[index]);
4677 kfree(pages);
4678 }
4679
4680 physical = (__u64)newex->ec_start << blksize_bits;
4681 length = (__u64)newex->ec_len << blksize_bits;
4682
4683 if (ex && ext4_ext_is_uninitialized(ex))
4684 flags |= FIEMAP_EXTENT_UNWRITTEN;
4685
4686 if (next == EXT_MAX_BLOCKS)
4687 flags |= FIEMAP_EXTENT_LAST;
4688
4689 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4690 length, flags);
4691 if (ret < 0)
4692 return ret;
4693 if (ret == 1)
4694 return EXT_BREAK;
4695 return EXT_CONTINUE;
4696 }
4697 /* fiemap flags we can handle specified here */
4698 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4699
4700 static int ext4_xattr_fiemap(struct inode *inode,
4701 struct fiemap_extent_info *fieinfo)
4702 {
4703 __u64 physical = 0;
4704 __u64 length;
4705 __u32 flags = FIEMAP_EXTENT_LAST;
4706 int blockbits = inode->i_sb->s_blocksize_bits;
4707 int error = 0;
4708
4709 /* in-inode? */
4710 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4711 struct ext4_iloc iloc;
4712 int offset; /* offset of xattr in inode */
4713
4714 error = ext4_get_inode_loc(inode, &iloc);
4715 if (error)
4716 return error;
4717 physical = iloc.bh->b_blocknr << blockbits;
4718 offset = EXT4_GOOD_OLD_INODE_SIZE +
4719 EXT4_I(inode)->i_extra_isize;
4720 physical += offset;
4721 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4722 flags |= FIEMAP_EXTENT_DATA_INLINE;
4723 brelse(iloc.bh);
4724 } else { /* external block */
4725 physical = EXT4_I(inode)->i_file_acl << blockbits;
4726 length = inode->i_sb->s_blocksize;
4727 }
4728
4729 if (physical)
4730 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4731 length, flags);
4732 return (error < 0 ? error : 0);
4733 }
4734
4735 /*
4736 * ext4_ext_punch_hole
4737 *
4738 * Punches a hole of "length" bytes in a file starting
4739 * at byte "offset"
4740 *
4741 * @inode: The inode of the file to punch a hole in
4742 * @offset: The starting byte offset of the hole
4743 * @length: The length of the hole
4744 *
4745 * Returns the number of blocks removed or negative on err
4746 */
4747 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4748 {
4749 struct inode *inode = file->f_path.dentry->d_inode;
4750 struct super_block *sb = inode->i_sb;
4751 ext4_lblk_t first_block, stop_block;
4752 struct address_space *mapping = inode->i_mapping;
4753 handle_t *handle;
4754 loff_t first_page, last_page, page_len;
4755 loff_t first_page_offset, last_page_offset;
4756 int credits, err = 0;
4757
4758 /* No need to punch hole beyond i_size */
4759 if (offset >= inode->i_size)
4760 return 0;
4761
4762 /*
4763 * If the hole extends beyond i_size, set the hole
4764 * to end after the page that contains i_size
4765 */
4766 if (offset + length > inode->i_size) {
4767 length = inode->i_size +
4768 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4769 offset;
4770 }
4771
4772 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4773 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4774
4775 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4776 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4777
4778 /*
4779 * Write out all dirty pages to avoid race conditions
4780 * Then release them.
4781 */
4782 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4783 err = filemap_write_and_wait_range(mapping,
4784 offset, offset + length - 1);
4785
4786 if (err)
4787 return err;
4788 }
4789
4790 /* Now release the pages */
4791 if (last_page_offset > first_page_offset) {
4792 truncate_pagecache_range(inode, first_page_offset,
4793 last_page_offset - 1);
4794 }
4795
4796 /* finish any pending end_io work */
4797 ext4_flush_completed_IO(inode);
4798
4799 credits = ext4_writepage_trans_blocks(inode);
4800 handle = ext4_journal_start(inode, credits);
4801 if (IS_ERR(handle))
4802 return PTR_ERR(handle);
4803
4804 err = ext4_orphan_add(handle, inode);
4805 if (err)
4806 goto out;
4807
4808 /*
4809 * Now we need to zero out the non-page-aligned data in the
4810 * pages at the start and tail of the hole, and unmap the buffer
4811 * heads for the block aligned regions of the page that were
4812 * completely zeroed.
4813 */
4814 if (first_page > last_page) {
4815 /*
4816 * If the file space being truncated is contained within a page
4817 * just zero out and unmap the middle of that page
4818 */
4819 err = ext4_discard_partial_page_buffers(handle,
4820 mapping, offset, length, 0);
4821
4822 if (err)
4823 goto out;
4824 } else {
4825 /*
4826 * zero out and unmap the partial page that contains
4827 * the start of the hole
4828 */
4829 page_len = first_page_offset - offset;
4830 if (page_len > 0) {
4831 err = ext4_discard_partial_page_buffers(handle, mapping,
4832 offset, page_len, 0);
4833 if (err)
4834 goto out;
4835 }
4836
4837 /*
4838 * zero out and unmap the partial page that contains
4839 * the end of the hole
4840 */
4841 page_len = offset + length - last_page_offset;
4842 if (page_len > 0) {
4843 err = ext4_discard_partial_page_buffers(handle, mapping,
4844 last_page_offset, page_len, 0);
4845 if (err)
4846 goto out;
4847 }
4848 }
4849
4850 /*
4851 * If i_size is contained in the last page, we need to
4852 * unmap and zero the partial page after i_size
4853 */
4854 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4855 inode->i_size % PAGE_CACHE_SIZE != 0) {
4856
4857 page_len = PAGE_CACHE_SIZE -
4858 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4859
4860 if (page_len > 0) {
4861 err = ext4_discard_partial_page_buffers(handle,
4862 mapping, inode->i_size, page_len, 0);
4863
4864 if (err)
4865 goto out;
4866 }
4867 }
4868
4869 first_block = (offset + sb->s_blocksize - 1) >>
4870 EXT4_BLOCK_SIZE_BITS(sb);
4871 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4872
4873 /* If there are no blocks to remove, return now */
4874 if (first_block >= stop_block)
4875 goto out;
4876
4877 down_write(&EXT4_I(inode)->i_data_sem);
4878 ext4_ext_invalidate_cache(inode);
4879 ext4_discard_preallocations(inode);
4880
4881 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4882
4883 ext4_ext_invalidate_cache(inode);
4884 ext4_discard_preallocations(inode);
4885
4886 if (IS_SYNC(inode))
4887 ext4_handle_sync(handle);
4888
4889 up_write(&EXT4_I(inode)->i_data_sem);
4890
4891 out:
4892 ext4_orphan_del(handle, inode);
4893 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4894 ext4_mark_inode_dirty(handle, inode);
4895 ext4_journal_stop(handle);
4896 return err;
4897 }
4898 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4899 __u64 start, __u64 len)
4900 {
4901 ext4_lblk_t start_blk;
4902 int error = 0;
4903
4904 /* fallback to generic here if not in extents fmt */
4905 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4906 return generic_block_fiemap(inode, fieinfo, start, len,
4907 ext4_get_block);
4908
4909 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4910 return -EBADR;
4911
4912 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4913 error = ext4_xattr_fiemap(inode, fieinfo);
4914 } else {
4915 ext4_lblk_t len_blks;
4916 __u64 last_blk;
4917
4918 start_blk = start >> inode->i_sb->s_blocksize_bits;
4919 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4920 if (last_blk >= EXT_MAX_BLOCKS)
4921 last_blk = EXT_MAX_BLOCKS-1;
4922 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4923
4924 /*
4925 * Walk the extent tree gathering extent information.
4926 * ext4_ext_fiemap_cb will push extents back to user.
4927 */
4928 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4929 ext4_ext_fiemap_cb, fieinfo);
4930 }
4931
4932 return error;
4933 }