]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
cae8ae3c1746903616e61a822416e08a0b94c774
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
80
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
89 {
90 struct ext4_extent_tail *et;
91
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
95
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct ext4_ext_cache *newex);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
120 {
121 int err;
122
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
133
134 return err;
135 }
136
137 /*
138 * could return:
139 * - EROFS
140 * - ENOMEM
141 */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 handle_t *handle, struct inode *inode,
164 struct ext4_ext_path *path)
165 {
166 int err;
167 if (path->p_bh) {
168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 /* path points to block */
170 err = __ext4_handle_dirty_metadata(where, line, handle,
171 inode, path->p_bh);
172 } else {
173 /* path points to leaf/index in inode body */
174 err = ext4_mark_inode_dirty(handle, inode);
175 }
176 return err;
177 }
178
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 struct ext4_ext_path *path,
181 ext4_lblk_t block)
182 {
183 if (path) {
184 int depth = path->p_depth;
185 struct ext4_extent *ex;
186
187 /*
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
202 * common.
203 */
204 ex = path[depth].p_ext;
205 if (ex) {
206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209 if (block > ext_block)
210 return ext_pblk + (block - ext_block);
211 else
212 return ext_pblk - (ext_block - block);
213 }
214
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path[depth].p_bh)
218 return path[depth].p_bh->b_blocknr;
219 }
220
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode);
223 }
224
225 /*
226 * Allocation for a meta data block
227 */
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 struct ext4_ext_path *path,
231 struct ext4_extent *ex, int *err, unsigned int flags)
232 {
233 ext4_fsblk_t goal, newblock;
234
235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237 NULL, err);
238 return newblock;
239 }
240
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 {
243 int size;
244
245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 if (!check && size > 6)
249 size = 6;
250 #endif
251 return size;
252 }
253
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 {
256 int size;
257
258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 if (!check && size > 5)
262 size = 5;
263 #endif
264 return size;
265 }
266
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 {
269 int size;
270
271 size = sizeof(EXT4_I(inode)->i_data);
272 size -= sizeof(struct ext4_extent_header);
273 size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 if (!check && size > 3)
276 size = 3;
277 #endif
278 return size;
279 }
280
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 {
283 int size;
284
285 size = sizeof(EXT4_I(inode)->i_data);
286 size -= sizeof(struct ext4_extent_header);
287 size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 if (!check && size > 4)
290 size = 4;
291 #endif
292 return size;
293 }
294
295 /*
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
299 */
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301 {
302 struct ext4_inode_info *ei = EXT4_I(inode);
303 int idxs;
304
305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 / sizeof(struct ext4_extent_idx));
307
308 /*
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
315 */
316 if (ei->i_da_metadata_calc_len &&
317 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318 int num = 0;
319
320 if ((ei->i_da_metadata_calc_len % idxs) == 0)
321 num++;
322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323 num++;
324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325 num++;
326 ei->i_da_metadata_calc_len = 0;
327 } else
328 ei->i_da_metadata_calc_len++;
329 ei->i_da_metadata_calc_last_lblock++;
330 return num;
331 }
332
333 /*
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
336 */
337 ei->i_da_metadata_calc_len = 1;
338 ei->i_da_metadata_calc_last_lblock = lblock;
339 return ext_depth(inode) + 1;
340 }
341
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
344 {
345 int max;
346
347 if (depth == ext_depth(inode)) {
348 if (depth == 0)
349 max = ext4_ext_space_root(inode, 1);
350 else
351 max = ext4_ext_space_root_idx(inode, 1);
352 } else {
353 if (depth == 0)
354 max = ext4_ext_space_block(inode, 1);
355 else
356 max = ext4_ext_space_block_idx(inode, 1);
357 }
358
359 return max;
360 }
361
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363 {
364 ext4_fsblk_t block = ext4_ext_pblock(ext);
365 int len = ext4_ext_get_actual_len(ext);
366
367 if (len == 0)
368 return 0;
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 }
371
372 static int ext4_valid_extent_idx(struct inode *inode,
373 struct ext4_extent_idx *ext_idx)
374 {
375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 }
379
380 static int ext4_valid_extent_entries(struct inode *inode,
381 struct ext4_extent_header *eh,
382 int depth)
383 {
384 unsigned short entries;
385 if (eh->eh_entries == 0)
386 return 1;
387
388 entries = le16_to_cpu(eh->eh_entries);
389
390 if (depth == 0) {
391 /* leaf entries */
392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393 while (entries) {
394 if (!ext4_valid_extent(inode, ext))
395 return 0;
396 ext++;
397 entries--;
398 }
399 } else {
400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401 while (entries) {
402 if (!ext4_valid_extent_idx(inode, ext_idx))
403 return 0;
404 ext_idx++;
405 entries--;
406 }
407 }
408 return 1;
409 }
410
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 struct inode *inode, struct ext4_extent_header *eh,
413 int depth)
414 {
415 const char *error_msg;
416 int max = 0;
417
418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 error_msg = "invalid magic";
420 goto corrupted;
421 }
422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 error_msg = "unexpected eh_depth";
424 goto corrupted;
425 }
426 if (unlikely(eh->eh_max == 0)) {
427 error_msg = "invalid eh_max";
428 goto corrupted;
429 }
430 max = ext4_ext_max_entries(inode, depth);
431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 error_msg = "too large eh_max";
433 goto corrupted;
434 }
435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 error_msg = "invalid eh_entries";
437 goto corrupted;
438 }
439 if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 error_msg = "invalid extent entries";
441 goto corrupted;
442 }
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode) != depth &&
445 !ext4_extent_block_csum_verify(inode, eh)) {
446 error_msg = "extent tree corrupted";
447 goto corrupted;
448 }
449 return 0;
450
451 corrupted:
452 ext4_error_inode(inode, function, line, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg, le16_to_cpu(eh->eh_magic),
456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 max, le16_to_cpu(eh->eh_depth), depth);
458
459 return -EIO;
460 }
461
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465 int ext4_ext_check_inode(struct inode *inode)
466 {
467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468 }
469
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471 struct inode *inode,
472 struct ext4_extent_header *eh,
473 int depth,
474 struct buffer_head *bh)
475 {
476 int ret;
477
478 if (buffer_verified(bh))
479 return 0;
480 ret = ext4_ext_check(inode, eh, depth);
481 if (ret)
482 return ret;
483 set_buffer_verified(bh);
484 return ret;
485 }
486
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492 {
493 int k, l = path->p_depth;
494
495 ext_debug("path:");
496 for (k = 0; k <= l; k++, path++) {
497 if (path->p_idx) {
498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 ext4_idx_pblock(path->p_idx));
500 } else if (path->p_ext) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path->p_ext->ee_block),
503 ext4_ext_is_uninitialized(path->p_ext),
504 ext4_ext_get_actual_len(path->p_ext),
505 ext4_ext_pblock(path->p_ext));
506 } else
507 ext_debug(" []");
508 }
509 ext_debug("\n");
510 }
511
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513 {
514 int depth = ext_depth(inode);
515 struct ext4_extent_header *eh;
516 struct ext4_extent *ex;
517 int i;
518
519 if (!path)
520 return;
521
522 eh = path[depth].p_hdr;
523 ex = EXT_FIRST_EXTENT(eh);
524
525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 ext4_ext_is_uninitialized(ex),
530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531 }
532 ext_debug("\n");
533 }
534
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 ext4_fsblk_t newblock, int level)
537 {
538 int depth = ext_depth(inode);
539 struct ext4_extent *ex;
540
541 if (depth != level) {
542 struct ext4_extent_idx *idx;
543 idx = path[level].p_idx;
544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 le32_to_cpu(idx->ei_block),
547 ext4_idx_pblock(idx),
548 newblock);
549 idx++;
550 }
551
552 return;
553 }
554
555 ex = path[depth].p_ext;
556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex->ee_block),
559 ext4_ext_pblock(ex),
560 ext4_ext_is_uninitialized(ex),
561 ext4_ext_get_actual_len(ex),
562 newblock);
563 ex++;
564 }
565 }
566
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
572
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
574 {
575 int depth = path->p_depth;
576 int i;
577
578 for (i = 0; i <= depth; i++, path++)
579 if (path->p_bh) {
580 brelse(path->p_bh);
581 path->p_bh = NULL;
582 }
583 }
584
585 /*
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
589 */
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592 struct ext4_ext_path *path, ext4_lblk_t block)
593 {
594 struct ext4_extent_header *eh = path->p_hdr;
595 struct ext4_extent_idx *r, *l, *m;
596
597
598 ext_debug("binsearch for %u(idx): ", block);
599
600 l = EXT_FIRST_INDEX(eh) + 1;
601 r = EXT_LAST_INDEX(eh);
602 while (l <= r) {
603 m = l + (r - l) / 2;
604 if (block < le32_to_cpu(m->ei_block))
605 r = m - 1;
606 else
607 l = m + 1;
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 m, le32_to_cpu(m->ei_block),
610 r, le32_to_cpu(r->ei_block));
611 }
612
613 path->p_idx = l - 1;
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 ext4_idx_pblock(path->p_idx));
616
617 #ifdef CHECK_BINSEARCH
618 {
619 struct ext4_extent_idx *chix, *ix;
620 int k;
621
622 chix = ix = EXT_FIRST_INDEX(eh);
623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624 if (k != 0 &&
625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 printk(KERN_DEBUG "k=%d, ix=0x%p, "
627 "first=0x%p\n", k,
628 ix, EXT_FIRST_INDEX(eh));
629 printk(KERN_DEBUG "%u <= %u\n",
630 le32_to_cpu(ix->ei_block),
631 le32_to_cpu(ix[-1].ei_block));
632 }
633 BUG_ON(k && le32_to_cpu(ix->ei_block)
634 <= le32_to_cpu(ix[-1].ei_block));
635 if (block < le32_to_cpu(ix->ei_block))
636 break;
637 chix = ix;
638 }
639 BUG_ON(chix != path->p_idx);
640 }
641 #endif
642
643 }
644
645 /*
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
649 */
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652 struct ext4_ext_path *path, ext4_lblk_t block)
653 {
654 struct ext4_extent_header *eh = path->p_hdr;
655 struct ext4_extent *r, *l, *m;
656
657 if (eh->eh_entries == 0) {
658 /*
659 * this leaf is empty:
660 * we get such a leaf in split/add case
661 */
662 return;
663 }
664
665 ext_debug("binsearch for %u: ", block);
666
667 l = EXT_FIRST_EXTENT(eh) + 1;
668 r = EXT_LAST_EXTENT(eh);
669
670 while (l <= r) {
671 m = l + (r - l) / 2;
672 if (block < le32_to_cpu(m->ee_block))
673 r = m - 1;
674 else
675 l = m + 1;
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 m, le32_to_cpu(m->ee_block),
678 r, le32_to_cpu(r->ee_block));
679 }
680
681 path->p_ext = l - 1;
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path->p_ext->ee_block),
684 ext4_ext_pblock(path->p_ext),
685 ext4_ext_is_uninitialized(path->p_ext),
686 ext4_ext_get_actual_len(path->p_ext));
687
688 #ifdef CHECK_BINSEARCH
689 {
690 struct ext4_extent *chex, *ex;
691 int k;
692
693 chex = ex = EXT_FIRST_EXTENT(eh);
694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 BUG_ON(k && le32_to_cpu(ex->ee_block)
696 <= le32_to_cpu(ex[-1].ee_block));
697 if (block < le32_to_cpu(ex->ee_block))
698 break;
699 chex = ex;
700 }
701 BUG_ON(chex != path->p_ext);
702 }
703 #endif
704
705 }
706
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708 {
709 struct ext4_extent_header *eh;
710
711 eh = ext_inode_hdr(inode);
712 eh->eh_depth = 0;
713 eh->eh_entries = 0;
714 eh->eh_magic = EXT4_EXT_MAGIC;
715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 ext4_mark_inode_dirty(handle, inode);
717 ext4_ext_invalidate_cache(inode);
718 return 0;
719 }
720
721 struct ext4_ext_path *
722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723 struct ext4_ext_path *path)
724 {
725 struct ext4_extent_header *eh;
726 struct buffer_head *bh;
727 short int depth, i, ppos = 0, alloc = 0;
728 int ret;
729
730 eh = ext_inode_hdr(inode);
731 depth = ext_depth(inode);
732
733 /* account possible depth increase */
734 if (!path) {
735 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
736 GFP_NOFS);
737 if (!path)
738 return ERR_PTR(-ENOMEM);
739 alloc = 1;
740 }
741 path[0].p_hdr = eh;
742 path[0].p_bh = NULL;
743
744 i = depth;
745 /* walk through the tree */
746 while (i) {
747 ext_debug("depth %d: num %d, max %d\n",
748 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
749
750 ext4_ext_binsearch_idx(inode, path + ppos, block);
751 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
752 path[ppos].p_depth = i;
753 path[ppos].p_ext = NULL;
754
755 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
756 if (unlikely(!bh)) {
757 ret = -ENOMEM;
758 goto err;
759 }
760 if (!bh_uptodate_or_lock(bh)) {
761 trace_ext4_ext_load_extent(inode, block,
762 path[ppos].p_block);
763 ret = bh_submit_read(bh);
764 if (ret < 0) {
765 put_bh(bh);
766 goto err;
767 }
768 }
769 eh = ext_block_hdr(bh);
770 ppos++;
771 if (unlikely(ppos > depth)) {
772 put_bh(bh);
773 EXT4_ERROR_INODE(inode,
774 "ppos %d > depth %d", ppos, depth);
775 ret = -EIO;
776 goto err;
777 }
778 path[ppos].p_bh = bh;
779 path[ppos].p_hdr = eh;
780 i--;
781
782 ret = ext4_ext_check_block(inode, eh, i, bh);
783 if (ret < 0)
784 goto err;
785 }
786
787 path[ppos].p_depth = i;
788 path[ppos].p_ext = NULL;
789 path[ppos].p_idx = NULL;
790
791 /* find extent */
792 ext4_ext_binsearch(inode, path + ppos, block);
793 /* if not an empty leaf */
794 if (path[ppos].p_ext)
795 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
796
797 ext4_ext_show_path(inode, path);
798
799 return path;
800
801 err:
802 ext4_ext_drop_refs(path);
803 if (alloc)
804 kfree(path);
805 return ERR_PTR(ret);
806 }
807
808 /*
809 * ext4_ext_insert_index:
810 * insert new index [@logical;@ptr] into the block at @curp;
811 * check where to insert: before @curp or after @curp
812 */
813 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
814 struct ext4_ext_path *curp,
815 int logical, ext4_fsblk_t ptr)
816 {
817 struct ext4_extent_idx *ix;
818 int len, err;
819
820 err = ext4_ext_get_access(handle, inode, curp);
821 if (err)
822 return err;
823
824 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
825 EXT4_ERROR_INODE(inode,
826 "logical %d == ei_block %d!",
827 logical, le32_to_cpu(curp->p_idx->ei_block));
828 return -EIO;
829 }
830
831 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
832 >= le16_to_cpu(curp->p_hdr->eh_max))) {
833 EXT4_ERROR_INODE(inode,
834 "eh_entries %d >= eh_max %d!",
835 le16_to_cpu(curp->p_hdr->eh_entries),
836 le16_to_cpu(curp->p_hdr->eh_max));
837 return -EIO;
838 }
839
840 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
841 /* insert after */
842 ext_debug("insert new index %d after: %llu\n", logical, ptr);
843 ix = curp->p_idx + 1;
844 } else {
845 /* insert before */
846 ext_debug("insert new index %d before: %llu\n", logical, ptr);
847 ix = curp->p_idx;
848 }
849
850 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
851 BUG_ON(len < 0);
852 if (len > 0) {
853 ext_debug("insert new index %d: "
854 "move %d indices from 0x%p to 0x%p\n",
855 logical, len, ix, ix + 1);
856 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
857 }
858
859 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
860 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
861 return -EIO;
862 }
863
864 ix->ei_block = cpu_to_le32(logical);
865 ext4_idx_store_pblock(ix, ptr);
866 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
867
868 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
869 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
870 return -EIO;
871 }
872
873 err = ext4_ext_dirty(handle, inode, curp);
874 ext4_std_error(inode->i_sb, err);
875
876 return err;
877 }
878
879 /*
880 * ext4_ext_split:
881 * inserts new subtree into the path, using free index entry
882 * at depth @at:
883 * - allocates all needed blocks (new leaf and all intermediate index blocks)
884 * - makes decision where to split
885 * - moves remaining extents and index entries (right to the split point)
886 * into the newly allocated blocks
887 * - initializes subtree
888 */
889 static int ext4_ext_split(handle_t *handle, struct inode *inode,
890 unsigned int flags,
891 struct ext4_ext_path *path,
892 struct ext4_extent *newext, int at)
893 {
894 struct buffer_head *bh = NULL;
895 int depth = ext_depth(inode);
896 struct ext4_extent_header *neh;
897 struct ext4_extent_idx *fidx;
898 int i = at, k, m, a;
899 ext4_fsblk_t newblock, oldblock;
900 __le32 border;
901 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
902 int err = 0;
903
904 /* make decision: where to split? */
905 /* FIXME: now decision is simplest: at current extent */
906
907 /* if current leaf will be split, then we should use
908 * border from split point */
909 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
910 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
911 return -EIO;
912 }
913 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
914 border = path[depth].p_ext[1].ee_block;
915 ext_debug("leaf will be split."
916 " next leaf starts at %d\n",
917 le32_to_cpu(border));
918 } else {
919 border = newext->ee_block;
920 ext_debug("leaf will be added."
921 " next leaf starts at %d\n",
922 le32_to_cpu(border));
923 }
924
925 /*
926 * If error occurs, then we break processing
927 * and mark filesystem read-only. index won't
928 * be inserted and tree will be in consistent
929 * state. Next mount will repair buffers too.
930 */
931
932 /*
933 * Get array to track all allocated blocks.
934 * We need this to handle errors and free blocks
935 * upon them.
936 */
937 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
938 if (!ablocks)
939 return -ENOMEM;
940
941 /* allocate all needed blocks */
942 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
943 for (a = 0; a < depth - at; a++) {
944 newblock = ext4_ext_new_meta_block(handle, inode, path,
945 newext, &err, flags);
946 if (newblock == 0)
947 goto cleanup;
948 ablocks[a] = newblock;
949 }
950
951 /* initialize new leaf */
952 newblock = ablocks[--a];
953 if (unlikely(newblock == 0)) {
954 EXT4_ERROR_INODE(inode, "newblock == 0!");
955 err = -EIO;
956 goto cleanup;
957 }
958 bh = sb_getblk(inode->i_sb, newblock);
959 if (unlikely(!bh)) {
960 err = -ENOMEM;
961 goto cleanup;
962 }
963 lock_buffer(bh);
964
965 err = ext4_journal_get_create_access(handle, bh);
966 if (err)
967 goto cleanup;
968
969 neh = ext_block_hdr(bh);
970 neh->eh_entries = 0;
971 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
972 neh->eh_magic = EXT4_EXT_MAGIC;
973 neh->eh_depth = 0;
974
975 /* move remainder of path[depth] to the new leaf */
976 if (unlikely(path[depth].p_hdr->eh_entries !=
977 path[depth].p_hdr->eh_max)) {
978 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
979 path[depth].p_hdr->eh_entries,
980 path[depth].p_hdr->eh_max);
981 err = -EIO;
982 goto cleanup;
983 }
984 /* start copy from next extent */
985 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
986 ext4_ext_show_move(inode, path, newblock, depth);
987 if (m) {
988 struct ext4_extent *ex;
989 ex = EXT_FIRST_EXTENT(neh);
990 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
991 le16_add_cpu(&neh->eh_entries, m);
992 }
993
994 ext4_extent_block_csum_set(inode, neh);
995 set_buffer_uptodate(bh);
996 unlock_buffer(bh);
997
998 err = ext4_handle_dirty_metadata(handle, inode, bh);
999 if (err)
1000 goto cleanup;
1001 brelse(bh);
1002 bh = NULL;
1003
1004 /* correct old leaf */
1005 if (m) {
1006 err = ext4_ext_get_access(handle, inode, path + depth);
1007 if (err)
1008 goto cleanup;
1009 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1010 err = ext4_ext_dirty(handle, inode, path + depth);
1011 if (err)
1012 goto cleanup;
1013
1014 }
1015
1016 /* create intermediate indexes */
1017 k = depth - at - 1;
1018 if (unlikely(k < 0)) {
1019 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1020 err = -EIO;
1021 goto cleanup;
1022 }
1023 if (k)
1024 ext_debug("create %d intermediate indices\n", k);
1025 /* insert new index into current index block */
1026 /* current depth stored in i var */
1027 i = depth - 1;
1028 while (k--) {
1029 oldblock = newblock;
1030 newblock = ablocks[--a];
1031 bh = sb_getblk(inode->i_sb, newblock);
1032 if (unlikely(!bh)) {
1033 err = -ENOMEM;
1034 goto cleanup;
1035 }
1036 lock_buffer(bh);
1037
1038 err = ext4_journal_get_create_access(handle, bh);
1039 if (err)
1040 goto cleanup;
1041
1042 neh = ext_block_hdr(bh);
1043 neh->eh_entries = cpu_to_le16(1);
1044 neh->eh_magic = EXT4_EXT_MAGIC;
1045 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1046 neh->eh_depth = cpu_to_le16(depth - i);
1047 fidx = EXT_FIRST_INDEX(neh);
1048 fidx->ei_block = border;
1049 ext4_idx_store_pblock(fidx, oldblock);
1050
1051 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1052 i, newblock, le32_to_cpu(border), oldblock);
1053
1054 /* move remainder of path[i] to the new index block */
1055 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1056 EXT_LAST_INDEX(path[i].p_hdr))) {
1057 EXT4_ERROR_INODE(inode,
1058 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1059 le32_to_cpu(path[i].p_ext->ee_block));
1060 err = -EIO;
1061 goto cleanup;
1062 }
1063 /* start copy indexes */
1064 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1065 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1066 EXT_MAX_INDEX(path[i].p_hdr));
1067 ext4_ext_show_move(inode, path, newblock, i);
1068 if (m) {
1069 memmove(++fidx, path[i].p_idx,
1070 sizeof(struct ext4_extent_idx) * m);
1071 le16_add_cpu(&neh->eh_entries, m);
1072 }
1073 ext4_extent_block_csum_set(inode, neh);
1074 set_buffer_uptodate(bh);
1075 unlock_buffer(bh);
1076
1077 err = ext4_handle_dirty_metadata(handle, inode, bh);
1078 if (err)
1079 goto cleanup;
1080 brelse(bh);
1081 bh = NULL;
1082
1083 /* correct old index */
1084 if (m) {
1085 err = ext4_ext_get_access(handle, inode, path + i);
1086 if (err)
1087 goto cleanup;
1088 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1089 err = ext4_ext_dirty(handle, inode, path + i);
1090 if (err)
1091 goto cleanup;
1092 }
1093
1094 i--;
1095 }
1096
1097 /* insert new index */
1098 err = ext4_ext_insert_index(handle, inode, path + at,
1099 le32_to_cpu(border), newblock);
1100
1101 cleanup:
1102 if (bh) {
1103 if (buffer_locked(bh))
1104 unlock_buffer(bh);
1105 brelse(bh);
1106 }
1107
1108 if (err) {
1109 /* free all allocated blocks in error case */
1110 for (i = 0; i < depth; i++) {
1111 if (!ablocks[i])
1112 continue;
1113 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1114 EXT4_FREE_BLOCKS_METADATA);
1115 }
1116 }
1117 kfree(ablocks);
1118
1119 return err;
1120 }
1121
1122 /*
1123 * ext4_ext_grow_indepth:
1124 * implements tree growing procedure:
1125 * - allocates new block
1126 * - moves top-level data (index block or leaf) into the new block
1127 * - initializes new top-level, creating index that points to the
1128 * just created block
1129 */
1130 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1131 unsigned int flags,
1132 struct ext4_extent *newext)
1133 {
1134 struct ext4_extent_header *neh;
1135 struct buffer_head *bh;
1136 ext4_fsblk_t newblock;
1137 int err = 0;
1138
1139 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1140 newext, &err, flags);
1141 if (newblock == 0)
1142 return err;
1143
1144 bh = sb_getblk(inode->i_sb, newblock);
1145 if (unlikely(!bh))
1146 return -ENOMEM;
1147 lock_buffer(bh);
1148
1149 err = ext4_journal_get_create_access(handle, bh);
1150 if (err) {
1151 unlock_buffer(bh);
1152 goto out;
1153 }
1154
1155 /* move top-level index/leaf into new block */
1156 memmove(bh->b_data, EXT4_I(inode)->i_data,
1157 sizeof(EXT4_I(inode)->i_data));
1158
1159 /* set size of new block */
1160 neh = ext_block_hdr(bh);
1161 /* old root could have indexes or leaves
1162 * so calculate e_max right way */
1163 if (ext_depth(inode))
1164 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1165 else
1166 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1167 neh->eh_magic = EXT4_EXT_MAGIC;
1168 ext4_extent_block_csum_set(inode, neh);
1169 set_buffer_uptodate(bh);
1170 unlock_buffer(bh);
1171
1172 err = ext4_handle_dirty_metadata(handle, inode, bh);
1173 if (err)
1174 goto out;
1175
1176 /* Update top-level index: num,max,pointer */
1177 neh = ext_inode_hdr(inode);
1178 neh->eh_entries = cpu_to_le16(1);
1179 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1180 if (neh->eh_depth == 0) {
1181 /* Root extent block becomes index block */
1182 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1183 EXT_FIRST_INDEX(neh)->ei_block =
1184 EXT_FIRST_EXTENT(neh)->ee_block;
1185 }
1186 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1187 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1188 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1189 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1190
1191 le16_add_cpu(&neh->eh_depth, 1);
1192 ext4_mark_inode_dirty(handle, inode);
1193 out:
1194 brelse(bh);
1195
1196 return err;
1197 }
1198
1199 /*
1200 * ext4_ext_create_new_leaf:
1201 * finds empty index and adds new leaf.
1202 * if no free index is found, then it requests in-depth growing.
1203 */
1204 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1205 unsigned int flags,
1206 struct ext4_ext_path *path,
1207 struct ext4_extent *newext)
1208 {
1209 struct ext4_ext_path *curp;
1210 int depth, i, err = 0;
1211
1212 repeat:
1213 i = depth = ext_depth(inode);
1214
1215 /* walk up to the tree and look for free index entry */
1216 curp = path + depth;
1217 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1218 i--;
1219 curp--;
1220 }
1221
1222 /* we use already allocated block for index block,
1223 * so subsequent data blocks should be contiguous */
1224 if (EXT_HAS_FREE_INDEX(curp)) {
1225 /* if we found index with free entry, then use that
1226 * entry: create all needed subtree and add new leaf */
1227 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1228 if (err)
1229 goto out;
1230
1231 /* refill path */
1232 ext4_ext_drop_refs(path);
1233 path = ext4_ext_find_extent(inode,
1234 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1235 path);
1236 if (IS_ERR(path))
1237 err = PTR_ERR(path);
1238 } else {
1239 /* tree is full, time to grow in depth */
1240 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1241 if (err)
1242 goto out;
1243
1244 /* refill path */
1245 ext4_ext_drop_refs(path);
1246 path = ext4_ext_find_extent(inode,
1247 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1248 path);
1249 if (IS_ERR(path)) {
1250 err = PTR_ERR(path);
1251 goto out;
1252 }
1253
1254 /*
1255 * only first (depth 0 -> 1) produces free space;
1256 * in all other cases we have to split the grown tree
1257 */
1258 depth = ext_depth(inode);
1259 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1260 /* now we need to split */
1261 goto repeat;
1262 }
1263 }
1264
1265 out:
1266 return err;
1267 }
1268
1269 /*
1270 * search the closest allocated block to the left for *logical
1271 * and returns it at @logical + it's physical address at @phys
1272 * if *logical is the smallest allocated block, the function
1273 * returns 0 at @phys
1274 * return value contains 0 (success) or error code
1275 */
1276 static int ext4_ext_search_left(struct inode *inode,
1277 struct ext4_ext_path *path,
1278 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1279 {
1280 struct ext4_extent_idx *ix;
1281 struct ext4_extent *ex;
1282 int depth, ee_len;
1283
1284 if (unlikely(path == NULL)) {
1285 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1286 return -EIO;
1287 }
1288 depth = path->p_depth;
1289 *phys = 0;
1290
1291 if (depth == 0 && path->p_ext == NULL)
1292 return 0;
1293
1294 /* usually extent in the path covers blocks smaller
1295 * then *logical, but it can be that extent is the
1296 * first one in the file */
1297
1298 ex = path[depth].p_ext;
1299 ee_len = ext4_ext_get_actual_len(ex);
1300 if (*logical < le32_to_cpu(ex->ee_block)) {
1301 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1302 EXT4_ERROR_INODE(inode,
1303 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1304 *logical, le32_to_cpu(ex->ee_block));
1305 return -EIO;
1306 }
1307 while (--depth >= 0) {
1308 ix = path[depth].p_idx;
1309 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1310 EXT4_ERROR_INODE(inode,
1311 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1312 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1313 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1314 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1315 depth);
1316 return -EIO;
1317 }
1318 }
1319 return 0;
1320 }
1321
1322 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1323 EXT4_ERROR_INODE(inode,
1324 "logical %d < ee_block %d + ee_len %d!",
1325 *logical, le32_to_cpu(ex->ee_block), ee_len);
1326 return -EIO;
1327 }
1328
1329 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1330 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1331 return 0;
1332 }
1333
1334 /*
1335 * search the closest allocated block to the right for *logical
1336 * and returns it at @logical + it's physical address at @phys
1337 * if *logical is the largest allocated block, the function
1338 * returns 0 at @phys
1339 * return value contains 0 (success) or error code
1340 */
1341 static int ext4_ext_search_right(struct inode *inode,
1342 struct ext4_ext_path *path,
1343 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1344 struct ext4_extent **ret_ex)
1345 {
1346 struct buffer_head *bh = NULL;
1347 struct ext4_extent_header *eh;
1348 struct ext4_extent_idx *ix;
1349 struct ext4_extent *ex;
1350 ext4_fsblk_t block;
1351 int depth; /* Note, NOT eh_depth; depth from top of tree */
1352 int ee_len;
1353
1354 if (unlikely(path == NULL)) {
1355 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1356 return -EIO;
1357 }
1358 depth = path->p_depth;
1359 *phys = 0;
1360
1361 if (depth == 0 && path->p_ext == NULL)
1362 return 0;
1363
1364 /* usually extent in the path covers blocks smaller
1365 * then *logical, but it can be that extent is the
1366 * first one in the file */
1367
1368 ex = path[depth].p_ext;
1369 ee_len = ext4_ext_get_actual_len(ex);
1370 if (*logical < le32_to_cpu(ex->ee_block)) {
1371 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1372 EXT4_ERROR_INODE(inode,
1373 "first_extent(path[%d].p_hdr) != ex",
1374 depth);
1375 return -EIO;
1376 }
1377 while (--depth >= 0) {
1378 ix = path[depth].p_idx;
1379 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1380 EXT4_ERROR_INODE(inode,
1381 "ix != EXT_FIRST_INDEX *logical %d!",
1382 *logical);
1383 return -EIO;
1384 }
1385 }
1386 goto found_extent;
1387 }
1388
1389 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1390 EXT4_ERROR_INODE(inode,
1391 "logical %d < ee_block %d + ee_len %d!",
1392 *logical, le32_to_cpu(ex->ee_block), ee_len);
1393 return -EIO;
1394 }
1395
1396 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1397 /* next allocated block in this leaf */
1398 ex++;
1399 goto found_extent;
1400 }
1401
1402 /* go up and search for index to the right */
1403 while (--depth >= 0) {
1404 ix = path[depth].p_idx;
1405 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1406 goto got_index;
1407 }
1408
1409 /* we've gone up to the root and found no index to the right */
1410 return 0;
1411
1412 got_index:
1413 /* we've found index to the right, let's
1414 * follow it and find the closest allocated
1415 * block to the right */
1416 ix++;
1417 block = ext4_idx_pblock(ix);
1418 while (++depth < path->p_depth) {
1419 bh = sb_bread(inode->i_sb, block);
1420 if (bh == NULL)
1421 return -EIO;
1422 eh = ext_block_hdr(bh);
1423 /* subtract from p_depth to get proper eh_depth */
1424 if (ext4_ext_check_block(inode, eh,
1425 path->p_depth - depth, bh)) {
1426 put_bh(bh);
1427 return -EIO;
1428 }
1429 ix = EXT_FIRST_INDEX(eh);
1430 block = ext4_idx_pblock(ix);
1431 put_bh(bh);
1432 }
1433
1434 bh = sb_bread(inode->i_sb, block);
1435 if (bh == NULL)
1436 return -EIO;
1437 eh = ext_block_hdr(bh);
1438 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1439 put_bh(bh);
1440 return -EIO;
1441 }
1442 ex = EXT_FIRST_EXTENT(eh);
1443 found_extent:
1444 *logical = le32_to_cpu(ex->ee_block);
1445 *phys = ext4_ext_pblock(ex);
1446 *ret_ex = ex;
1447 if (bh)
1448 put_bh(bh);
1449 return 0;
1450 }
1451
1452 /*
1453 * ext4_ext_next_allocated_block:
1454 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1455 * NOTE: it considers block number from index entry as
1456 * allocated block. Thus, index entries have to be consistent
1457 * with leaves.
1458 */
1459 static ext4_lblk_t
1460 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1461 {
1462 int depth;
1463
1464 BUG_ON(path == NULL);
1465 depth = path->p_depth;
1466
1467 if (depth == 0 && path->p_ext == NULL)
1468 return EXT_MAX_BLOCKS;
1469
1470 while (depth >= 0) {
1471 if (depth == path->p_depth) {
1472 /* leaf */
1473 if (path[depth].p_ext &&
1474 path[depth].p_ext !=
1475 EXT_LAST_EXTENT(path[depth].p_hdr))
1476 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1477 } else {
1478 /* index */
1479 if (path[depth].p_idx !=
1480 EXT_LAST_INDEX(path[depth].p_hdr))
1481 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1482 }
1483 depth--;
1484 }
1485
1486 return EXT_MAX_BLOCKS;
1487 }
1488
1489 /*
1490 * ext4_ext_next_leaf_block:
1491 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1492 */
1493 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1494 {
1495 int depth;
1496
1497 BUG_ON(path == NULL);
1498 depth = path->p_depth;
1499
1500 /* zero-tree has no leaf blocks at all */
1501 if (depth == 0)
1502 return EXT_MAX_BLOCKS;
1503
1504 /* go to index block */
1505 depth--;
1506
1507 while (depth >= 0) {
1508 if (path[depth].p_idx !=
1509 EXT_LAST_INDEX(path[depth].p_hdr))
1510 return (ext4_lblk_t)
1511 le32_to_cpu(path[depth].p_idx[1].ei_block);
1512 depth--;
1513 }
1514
1515 return EXT_MAX_BLOCKS;
1516 }
1517
1518 /*
1519 * ext4_ext_correct_indexes:
1520 * if leaf gets modified and modified extent is first in the leaf,
1521 * then we have to correct all indexes above.
1522 * TODO: do we need to correct tree in all cases?
1523 */
1524 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1525 struct ext4_ext_path *path)
1526 {
1527 struct ext4_extent_header *eh;
1528 int depth = ext_depth(inode);
1529 struct ext4_extent *ex;
1530 __le32 border;
1531 int k, err = 0;
1532
1533 eh = path[depth].p_hdr;
1534 ex = path[depth].p_ext;
1535
1536 if (unlikely(ex == NULL || eh == NULL)) {
1537 EXT4_ERROR_INODE(inode,
1538 "ex %p == NULL or eh %p == NULL", ex, eh);
1539 return -EIO;
1540 }
1541
1542 if (depth == 0) {
1543 /* there is no tree at all */
1544 return 0;
1545 }
1546
1547 if (ex != EXT_FIRST_EXTENT(eh)) {
1548 /* we correct tree if first leaf got modified only */
1549 return 0;
1550 }
1551
1552 /*
1553 * TODO: we need correction if border is smaller than current one
1554 */
1555 k = depth - 1;
1556 border = path[depth].p_ext->ee_block;
1557 err = ext4_ext_get_access(handle, inode, path + k);
1558 if (err)
1559 return err;
1560 path[k].p_idx->ei_block = border;
1561 err = ext4_ext_dirty(handle, inode, path + k);
1562 if (err)
1563 return err;
1564
1565 while (k--) {
1566 /* change all left-side indexes */
1567 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1568 break;
1569 err = ext4_ext_get_access(handle, inode, path + k);
1570 if (err)
1571 break;
1572 path[k].p_idx->ei_block = border;
1573 err = ext4_ext_dirty(handle, inode, path + k);
1574 if (err)
1575 break;
1576 }
1577
1578 return err;
1579 }
1580
1581 int
1582 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1583 struct ext4_extent *ex2)
1584 {
1585 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1586
1587 /*
1588 * Make sure that either both extents are uninitialized, or
1589 * both are _not_.
1590 */
1591 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1592 return 0;
1593
1594 if (ext4_ext_is_uninitialized(ex1))
1595 max_len = EXT_UNINIT_MAX_LEN;
1596 else
1597 max_len = EXT_INIT_MAX_LEN;
1598
1599 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1600 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1601
1602 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1603 le32_to_cpu(ex2->ee_block))
1604 return 0;
1605
1606 /*
1607 * To allow future support for preallocated extents to be added
1608 * as an RO_COMPAT feature, refuse to merge to extents if
1609 * this can result in the top bit of ee_len being set.
1610 */
1611 if (ext1_ee_len + ext2_ee_len > max_len)
1612 return 0;
1613 #ifdef AGGRESSIVE_TEST
1614 if (ext1_ee_len >= 4)
1615 return 0;
1616 #endif
1617
1618 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1619 return 1;
1620 return 0;
1621 }
1622
1623 /*
1624 * This function tries to merge the "ex" extent to the next extent in the tree.
1625 * It always tries to merge towards right. If you want to merge towards
1626 * left, pass "ex - 1" as argument instead of "ex".
1627 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1628 * 1 if they got merged.
1629 */
1630 static int ext4_ext_try_to_merge_right(struct inode *inode,
1631 struct ext4_ext_path *path,
1632 struct ext4_extent *ex)
1633 {
1634 struct ext4_extent_header *eh;
1635 unsigned int depth, len;
1636 int merge_done = 0;
1637 int uninitialized = 0;
1638
1639 depth = ext_depth(inode);
1640 BUG_ON(path[depth].p_hdr == NULL);
1641 eh = path[depth].p_hdr;
1642
1643 while (ex < EXT_LAST_EXTENT(eh)) {
1644 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1645 break;
1646 /* merge with next extent! */
1647 if (ext4_ext_is_uninitialized(ex))
1648 uninitialized = 1;
1649 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1650 + ext4_ext_get_actual_len(ex + 1));
1651 if (uninitialized)
1652 ext4_ext_mark_uninitialized(ex);
1653
1654 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1655 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1656 * sizeof(struct ext4_extent);
1657 memmove(ex + 1, ex + 2, len);
1658 }
1659 le16_add_cpu(&eh->eh_entries, -1);
1660 merge_done = 1;
1661 WARN_ON(eh->eh_entries == 0);
1662 if (!eh->eh_entries)
1663 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1664 }
1665
1666 return merge_done;
1667 }
1668
1669 /*
1670 * This function does a very simple check to see if we can collapse
1671 * an extent tree with a single extent tree leaf block into the inode.
1672 */
1673 static void ext4_ext_try_to_merge_up(handle_t *handle,
1674 struct inode *inode,
1675 struct ext4_ext_path *path)
1676 {
1677 size_t s;
1678 unsigned max_root = ext4_ext_space_root(inode, 0);
1679 ext4_fsblk_t blk;
1680
1681 if ((path[0].p_depth != 1) ||
1682 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1683 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1684 return;
1685
1686 /*
1687 * We need to modify the block allocation bitmap and the block
1688 * group descriptor to release the extent tree block. If we
1689 * can't get the journal credits, give up.
1690 */
1691 if (ext4_journal_extend(handle, 2))
1692 return;
1693
1694 /*
1695 * Copy the extent data up to the inode
1696 */
1697 blk = ext4_idx_pblock(path[0].p_idx);
1698 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1699 sizeof(struct ext4_extent_idx);
1700 s += sizeof(struct ext4_extent_header);
1701
1702 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1703 path[0].p_depth = 0;
1704 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1705 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1706 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1707
1708 brelse(path[1].p_bh);
1709 ext4_free_blocks(handle, inode, NULL, blk, 1,
1710 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1711 }
1712
1713 /*
1714 * This function tries to merge the @ex extent to neighbours in the tree.
1715 * return 1 if merge left else 0.
1716 */
1717 static void ext4_ext_try_to_merge(handle_t *handle,
1718 struct inode *inode,
1719 struct ext4_ext_path *path,
1720 struct ext4_extent *ex) {
1721 struct ext4_extent_header *eh;
1722 unsigned int depth;
1723 int merge_done = 0;
1724
1725 depth = ext_depth(inode);
1726 BUG_ON(path[depth].p_hdr == NULL);
1727 eh = path[depth].p_hdr;
1728
1729 if (ex > EXT_FIRST_EXTENT(eh))
1730 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1731
1732 if (!merge_done)
1733 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1734
1735 ext4_ext_try_to_merge_up(handle, inode, path);
1736 }
1737
1738 /*
1739 * check if a portion of the "newext" extent overlaps with an
1740 * existing extent.
1741 *
1742 * If there is an overlap discovered, it updates the length of the newext
1743 * such that there will be no overlap, and then returns 1.
1744 * If there is no overlap found, it returns 0.
1745 */
1746 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1747 struct inode *inode,
1748 struct ext4_extent *newext,
1749 struct ext4_ext_path *path)
1750 {
1751 ext4_lblk_t b1, b2;
1752 unsigned int depth, len1;
1753 unsigned int ret = 0;
1754
1755 b1 = le32_to_cpu(newext->ee_block);
1756 len1 = ext4_ext_get_actual_len(newext);
1757 depth = ext_depth(inode);
1758 if (!path[depth].p_ext)
1759 goto out;
1760 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1761 b2 &= ~(sbi->s_cluster_ratio - 1);
1762
1763 /*
1764 * get the next allocated block if the extent in the path
1765 * is before the requested block(s)
1766 */
1767 if (b2 < b1) {
1768 b2 = ext4_ext_next_allocated_block(path);
1769 if (b2 == EXT_MAX_BLOCKS)
1770 goto out;
1771 b2 &= ~(sbi->s_cluster_ratio - 1);
1772 }
1773
1774 /* check for wrap through zero on extent logical start block*/
1775 if (b1 + len1 < b1) {
1776 len1 = EXT_MAX_BLOCKS - b1;
1777 newext->ee_len = cpu_to_le16(len1);
1778 ret = 1;
1779 }
1780
1781 /* check for overlap */
1782 if (b1 + len1 > b2) {
1783 newext->ee_len = cpu_to_le16(b2 - b1);
1784 ret = 1;
1785 }
1786 out:
1787 return ret;
1788 }
1789
1790 /*
1791 * ext4_ext_insert_extent:
1792 * tries to merge requsted extent into the existing extent or
1793 * inserts requested extent as new one into the tree,
1794 * creating new leaf in the no-space case.
1795 */
1796 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1797 struct ext4_ext_path *path,
1798 struct ext4_extent *newext, int flag)
1799 {
1800 struct ext4_extent_header *eh;
1801 struct ext4_extent *ex, *fex;
1802 struct ext4_extent *nearex; /* nearest extent */
1803 struct ext4_ext_path *npath = NULL;
1804 int depth, len, err;
1805 ext4_lblk_t next;
1806 unsigned uninitialized = 0;
1807 int flags = 0;
1808
1809 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1810 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1811 return -EIO;
1812 }
1813 depth = ext_depth(inode);
1814 ex = path[depth].p_ext;
1815 if (unlikely(path[depth].p_hdr == NULL)) {
1816 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1817 return -EIO;
1818 }
1819
1820 /* try to insert block into found extent and return */
1821 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1822 && ext4_can_extents_be_merged(inode, ex, newext)) {
1823 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1824 ext4_ext_is_uninitialized(newext),
1825 ext4_ext_get_actual_len(newext),
1826 le32_to_cpu(ex->ee_block),
1827 ext4_ext_is_uninitialized(ex),
1828 ext4_ext_get_actual_len(ex),
1829 ext4_ext_pblock(ex));
1830 err = ext4_ext_get_access(handle, inode, path + depth);
1831 if (err)
1832 return err;
1833
1834 /*
1835 * ext4_can_extents_be_merged should have checked that either
1836 * both extents are uninitialized, or both aren't. Thus we
1837 * need to check only one of them here.
1838 */
1839 if (ext4_ext_is_uninitialized(ex))
1840 uninitialized = 1;
1841 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1842 + ext4_ext_get_actual_len(newext));
1843 if (uninitialized)
1844 ext4_ext_mark_uninitialized(ex);
1845 eh = path[depth].p_hdr;
1846 nearex = ex;
1847 goto merge;
1848 }
1849
1850 depth = ext_depth(inode);
1851 eh = path[depth].p_hdr;
1852 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1853 goto has_space;
1854
1855 /* probably next leaf has space for us? */
1856 fex = EXT_LAST_EXTENT(eh);
1857 next = EXT_MAX_BLOCKS;
1858 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1859 next = ext4_ext_next_leaf_block(path);
1860 if (next != EXT_MAX_BLOCKS) {
1861 ext_debug("next leaf block - %u\n", next);
1862 BUG_ON(npath != NULL);
1863 npath = ext4_ext_find_extent(inode, next, NULL);
1864 if (IS_ERR(npath))
1865 return PTR_ERR(npath);
1866 BUG_ON(npath->p_depth != path->p_depth);
1867 eh = npath[depth].p_hdr;
1868 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1869 ext_debug("next leaf isn't full(%d)\n",
1870 le16_to_cpu(eh->eh_entries));
1871 path = npath;
1872 goto has_space;
1873 }
1874 ext_debug("next leaf has no free space(%d,%d)\n",
1875 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1876 }
1877
1878 /*
1879 * There is no free space in the found leaf.
1880 * We're gonna add a new leaf in the tree.
1881 */
1882 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1883 flags = EXT4_MB_USE_ROOT_BLOCKS;
1884 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1885 if (err)
1886 goto cleanup;
1887 depth = ext_depth(inode);
1888 eh = path[depth].p_hdr;
1889
1890 has_space:
1891 nearex = path[depth].p_ext;
1892
1893 err = ext4_ext_get_access(handle, inode, path + depth);
1894 if (err)
1895 goto cleanup;
1896
1897 if (!nearex) {
1898 /* there is no extent in this leaf, create first one */
1899 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1900 le32_to_cpu(newext->ee_block),
1901 ext4_ext_pblock(newext),
1902 ext4_ext_is_uninitialized(newext),
1903 ext4_ext_get_actual_len(newext));
1904 nearex = EXT_FIRST_EXTENT(eh);
1905 } else {
1906 if (le32_to_cpu(newext->ee_block)
1907 > le32_to_cpu(nearex->ee_block)) {
1908 /* Insert after */
1909 ext_debug("insert %u:%llu:[%d]%d before: "
1910 "nearest %p\n",
1911 le32_to_cpu(newext->ee_block),
1912 ext4_ext_pblock(newext),
1913 ext4_ext_is_uninitialized(newext),
1914 ext4_ext_get_actual_len(newext),
1915 nearex);
1916 nearex++;
1917 } else {
1918 /* Insert before */
1919 BUG_ON(newext->ee_block == nearex->ee_block);
1920 ext_debug("insert %u:%llu:[%d]%d after: "
1921 "nearest %p\n",
1922 le32_to_cpu(newext->ee_block),
1923 ext4_ext_pblock(newext),
1924 ext4_ext_is_uninitialized(newext),
1925 ext4_ext_get_actual_len(newext),
1926 nearex);
1927 }
1928 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1929 if (len > 0) {
1930 ext_debug("insert %u:%llu:[%d]%d: "
1931 "move %d extents from 0x%p to 0x%p\n",
1932 le32_to_cpu(newext->ee_block),
1933 ext4_ext_pblock(newext),
1934 ext4_ext_is_uninitialized(newext),
1935 ext4_ext_get_actual_len(newext),
1936 len, nearex, nearex + 1);
1937 memmove(nearex + 1, nearex,
1938 len * sizeof(struct ext4_extent));
1939 }
1940 }
1941
1942 le16_add_cpu(&eh->eh_entries, 1);
1943 path[depth].p_ext = nearex;
1944 nearex->ee_block = newext->ee_block;
1945 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1946 nearex->ee_len = newext->ee_len;
1947
1948 merge:
1949 /* try to merge extents */
1950 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1951 ext4_ext_try_to_merge(handle, inode, path, nearex);
1952
1953
1954 /* time to correct all indexes above */
1955 err = ext4_ext_correct_indexes(handle, inode, path);
1956 if (err)
1957 goto cleanup;
1958
1959 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1960
1961 cleanup:
1962 if (npath) {
1963 ext4_ext_drop_refs(npath);
1964 kfree(npath);
1965 }
1966 ext4_ext_invalidate_cache(inode);
1967 return err;
1968 }
1969
1970 static int ext4_fill_fiemap_extents(struct inode *inode,
1971 ext4_lblk_t block, ext4_lblk_t num,
1972 struct fiemap_extent_info *fieinfo)
1973 {
1974 struct ext4_ext_path *path = NULL;
1975 struct ext4_ext_cache newex;
1976 struct ext4_extent *ex;
1977 ext4_lblk_t next, next_del, start = 0, end = 0;
1978 ext4_lblk_t last = block + num;
1979 int exists, depth = 0, err = 0;
1980 unsigned int flags = 0;
1981 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1982
1983 while (block < last && block != EXT_MAX_BLOCKS) {
1984 num = last - block;
1985 /* find extent for this block */
1986 down_read(&EXT4_I(inode)->i_data_sem);
1987
1988 if (path && ext_depth(inode) != depth) {
1989 /* depth was changed. we have to realloc path */
1990 kfree(path);
1991 path = NULL;
1992 }
1993
1994 path = ext4_ext_find_extent(inode, block, path);
1995 if (IS_ERR(path)) {
1996 up_read(&EXT4_I(inode)->i_data_sem);
1997 err = PTR_ERR(path);
1998 path = NULL;
1999 break;
2000 }
2001
2002 depth = ext_depth(inode);
2003 if (unlikely(path[depth].p_hdr == NULL)) {
2004 up_read(&EXT4_I(inode)->i_data_sem);
2005 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006 err = -EIO;
2007 break;
2008 }
2009 ex = path[depth].p_ext;
2010 next = ext4_ext_next_allocated_block(path);
2011 ext4_ext_drop_refs(path);
2012
2013 flags = 0;
2014 exists = 0;
2015 if (!ex) {
2016 /* there is no extent yet, so try to allocate
2017 * all requested space */
2018 start = block;
2019 end = block + num;
2020 } else if (le32_to_cpu(ex->ee_block) > block) {
2021 /* need to allocate space before found extent */
2022 start = block;
2023 end = le32_to_cpu(ex->ee_block);
2024 if (block + num < end)
2025 end = block + num;
2026 } else if (block >= le32_to_cpu(ex->ee_block)
2027 + ext4_ext_get_actual_len(ex)) {
2028 /* need to allocate space after found extent */
2029 start = block;
2030 end = block + num;
2031 if (end >= next)
2032 end = next;
2033 } else if (block >= le32_to_cpu(ex->ee_block)) {
2034 /*
2035 * some part of requested space is covered
2036 * by found extent
2037 */
2038 start = block;
2039 end = le32_to_cpu(ex->ee_block)
2040 + ext4_ext_get_actual_len(ex);
2041 if (block + num < end)
2042 end = block + num;
2043 exists = 1;
2044 } else {
2045 BUG();
2046 }
2047 BUG_ON(end <= start);
2048
2049 if (!exists) {
2050 newex.ec_block = start;
2051 newex.ec_len = end - start;
2052 newex.ec_start = 0;
2053 } else {
2054 newex.ec_block = le32_to_cpu(ex->ee_block);
2055 newex.ec_len = ext4_ext_get_actual_len(ex);
2056 newex.ec_start = ext4_ext_pblock(ex);
2057 if (ext4_ext_is_uninitialized(ex))
2058 flags |= FIEMAP_EXTENT_UNWRITTEN;
2059 }
2060
2061 /*
2062 * Find delayed extent and update newex accordingly. We call
2063 * it even in !exists case to find out whether newex is the
2064 * last existing extent or not.
2065 */
2066 next_del = ext4_find_delayed_extent(inode, &newex);
2067 if (!exists && next_del) {
2068 exists = 1;
2069 flags |= FIEMAP_EXTENT_DELALLOC;
2070 }
2071 up_read(&EXT4_I(inode)->i_data_sem);
2072
2073 if (unlikely(newex.ec_len == 0)) {
2074 EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2075 err = -EIO;
2076 break;
2077 }
2078
2079 /* This is possible iff next == next_del == EXT_MAX_BLOCKS */
2080 if (next == next_del) {
2081 flags |= FIEMAP_EXTENT_LAST;
2082 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2083 next != EXT_MAX_BLOCKS)) {
2084 EXT4_ERROR_INODE(inode,
2085 "next extent == %u, next "
2086 "delalloc extent = %u",
2087 next, next_del);
2088 err = -EIO;
2089 break;
2090 }
2091 }
2092
2093 if (exists) {
2094 err = fiemap_fill_next_extent(fieinfo,
2095 (__u64)newex.ec_block << blksize_bits,
2096 (__u64)newex.ec_start << blksize_bits,
2097 (__u64)newex.ec_len << blksize_bits,
2098 flags);
2099 if (err < 0)
2100 break;
2101 if (err == 1) {
2102 err = 0;
2103 break;
2104 }
2105 }
2106
2107 block = newex.ec_block + newex.ec_len;
2108 }
2109
2110 if (path) {
2111 ext4_ext_drop_refs(path);
2112 kfree(path);
2113 }
2114
2115 return err;
2116 }
2117
2118 static void
2119 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2120 __u32 len, ext4_fsblk_t start)
2121 {
2122 struct ext4_ext_cache *cex;
2123 BUG_ON(len == 0);
2124 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2125 trace_ext4_ext_put_in_cache(inode, block, len, start);
2126 cex = &EXT4_I(inode)->i_cached_extent;
2127 cex->ec_block = block;
2128 cex->ec_len = len;
2129 cex->ec_start = start;
2130 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2131 }
2132
2133 /*
2134 * ext4_ext_put_gap_in_cache:
2135 * calculate boundaries of the gap that the requested block fits into
2136 * and cache this gap
2137 */
2138 static void
2139 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2140 ext4_lblk_t block)
2141 {
2142 int depth = ext_depth(inode);
2143 unsigned long len;
2144 ext4_lblk_t lblock;
2145 struct ext4_extent *ex;
2146
2147 ex = path[depth].p_ext;
2148 if (ex == NULL) {
2149 /* there is no extent yet, so gap is [0;-] */
2150 lblock = 0;
2151 len = EXT_MAX_BLOCKS;
2152 ext_debug("cache gap(whole file):");
2153 } else if (block < le32_to_cpu(ex->ee_block)) {
2154 lblock = block;
2155 len = le32_to_cpu(ex->ee_block) - block;
2156 ext_debug("cache gap(before): %u [%u:%u]",
2157 block,
2158 le32_to_cpu(ex->ee_block),
2159 ext4_ext_get_actual_len(ex));
2160 } else if (block >= le32_to_cpu(ex->ee_block)
2161 + ext4_ext_get_actual_len(ex)) {
2162 ext4_lblk_t next;
2163 lblock = le32_to_cpu(ex->ee_block)
2164 + ext4_ext_get_actual_len(ex);
2165
2166 next = ext4_ext_next_allocated_block(path);
2167 ext_debug("cache gap(after): [%u:%u] %u",
2168 le32_to_cpu(ex->ee_block),
2169 ext4_ext_get_actual_len(ex),
2170 block);
2171 BUG_ON(next == lblock);
2172 len = next - lblock;
2173 } else {
2174 lblock = len = 0;
2175 BUG();
2176 }
2177
2178 ext_debug(" -> %u:%lu\n", lblock, len);
2179 ext4_ext_put_in_cache(inode, lblock, len, 0);
2180 }
2181
2182 /*
2183 * ext4_ext_in_cache()
2184 * Checks to see if the given block is in the cache.
2185 * If it is, the cached extent is stored in the given
2186 * cache extent pointer.
2187 *
2188 * @inode: The files inode
2189 * @block: The block to look for in the cache
2190 * @ex: Pointer where the cached extent will be stored
2191 * if it contains block
2192 *
2193 * Return 0 if cache is invalid; 1 if the cache is valid
2194 */
2195 static int
2196 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2197 struct ext4_extent *ex)
2198 {
2199 struct ext4_ext_cache *cex;
2200 int ret = 0;
2201
2202 /*
2203 * We borrow i_block_reservation_lock to protect i_cached_extent
2204 */
2205 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2206 cex = &EXT4_I(inode)->i_cached_extent;
2207
2208 /* has cache valid data? */
2209 if (cex->ec_len == 0)
2210 goto errout;
2211
2212 if (in_range(block, cex->ec_block, cex->ec_len)) {
2213 ex->ee_block = cpu_to_le32(cex->ec_block);
2214 ext4_ext_store_pblock(ex, cex->ec_start);
2215 ex->ee_len = cpu_to_le16(cex->ec_len);
2216 ext_debug("%u cached by %u:%u:%llu\n",
2217 block,
2218 cex->ec_block, cex->ec_len, cex->ec_start);
2219 ret = 1;
2220 }
2221 errout:
2222 trace_ext4_ext_in_cache(inode, block, ret);
2223 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2224 return ret;
2225 }
2226
2227 /*
2228 * ext4_ext_rm_idx:
2229 * removes index from the index block.
2230 */
2231 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2232 struct ext4_ext_path *path, int depth)
2233 {
2234 int err;
2235 ext4_fsblk_t leaf;
2236
2237 /* free index block */
2238 depth--;
2239 path = path + depth;
2240 leaf = ext4_idx_pblock(path->p_idx);
2241 if (unlikely(path->p_hdr->eh_entries == 0)) {
2242 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2243 return -EIO;
2244 }
2245 err = ext4_ext_get_access(handle, inode, path);
2246 if (err)
2247 return err;
2248
2249 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2250 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2251 len *= sizeof(struct ext4_extent_idx);
2252 memmove(path->p_idx, path->p_idx + 1, len);
2253 }
2254
2255 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2256 err = ext4_ext_dirty(handle, inode, path);
2257 if (err)
2258 return err;
2259 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2260 trace_ext4_ext_rm_idx(inode, leaf);
2261
2262 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2263 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2264
2265 while (--depth >= 0) {
2266 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2267 break;
2268 path--;
2269 err = ext4_ext_get_access(handle, inode, path);
2270 if (err)
2271 break;
2272 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2273 err = ext4_ext_dirty(handle, inode, path);
2274 if (err)
2275 break;
2276 }
2277 return err;
2278 }
2279
2280 /*
2281 * ext4_ext_calc_credits_for_single_extent:
2282 * This routine returns max. credits that needed to insert an extent
2283 * to the extent tree.
2284 * When pass the actual path, the caller should calculate credits
2285 * under i_data_sem.
2286 */
2287 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2288 struct ext4_ext_path *path)
2289 {
2290 if (path) {
2291 int depth = ext_depth(inode);
2292 int ret = 0;
2293
2294 /* probably there is space in leaf? */
2295 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2296 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2297
2298 /*
2299 * There are some space in the leaf tree, no
2300 * need to account for leaf block credit
2301 *
2302 * bitmaps and block group descriptor blocks
2303 * and other metadata blocks still need to be
2304 * accounted.
2305 */
2306 /* 1 bitmap, 1 block group descriptor */
2307 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2308 return ret;
2309 }
2310 }
2311
2312 return ext4_chunk_trans_blocks(inode, nrblocks);
2313 }
2314
2315 /*
2316 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2317 *
2318 * if nrblocks are fit in a single extent (chunk flag is 1), then
2319 * in the worse case, each tree level index/leaf need to be changed
2320 * if the tree split due to insert a new extent, then the old tree
2321 * index/leaf need to be updated too
2322 *
2323 * If the nrblocks are discontiguous, they could cause
2324 * the whole tree split more than once, but this is really rare.
2325 */
2326 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2327 {
2328 int index;
2329 int depth;
2330
2331 /* If we are converting the inline data, only one is needed here. */
2332 if (ext4_has_inline_data(inode))
2333 return 1;
2334
2335 depth = ext_depth(inode);
2336
2337 if (chunk)
2338 index = depth * 2;
2339 else
2340 index = depth * 3;
2341
2342 return index;
2343 }
2344
2345 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2346 struct ext4_extent *ex,
2347 ext4_fsblk_t *partial_cluster,
2348 ext4_lblk_t from, ext4_lblk_t to)
2349 {
2350 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2351 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2352 ext4_fsblk_t pblk;
2353 int flags = 0;
2354
2355 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2356 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2357 else if (ext4_should_journal_data(inode))
2358 flags |= EXT4_FREE_BLOCKS_FORGET;
2359
2360 /*
2361 * For bigalloc file systems, we never free a partial cluster
2362 * at the beginning of the extent. Instead, we make a note
2363 * that we tried freeing the cluster, and check to see if we
2364 * need to free it on a subsequent call to ext4_remove_blocks,
2365 * or at the end of the ext4_truncate() operation.
2366 */
2367 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2368
2369 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2370 /*
2371 * If we have a partial cluster, and it's different from the
2372 * cluster of the last block, we need to explicitly free the
2373 * partial cluster here.
2374 */
2375 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2376 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2377 ext4_free_blocks(handle, inode, NULL,
2378 EXT4_C2B(sbi, *partial_cluster),
2379 sbi->s_cluster_ratio, flags);
2380 *partial_cluster = 0;
2381 }
2382
2383 #ifdef EXTENTS_STATS
2384 {
2385 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2386 spin_lock(&sbi->s_ext_stats_lock);
2387 sbi->s_ext_blocks += ee_len;
2388 sbi->s_ext_extents++;
2389 if (ee_len < sbi->s_ext_min)
2390 sbi->s_ext_min = ee_len;
2391 if (ee_len > sbi->s_ext_max)
2392 sbi->s_ext_max = ee_len;
2393 if (ext_depth(inode) > sbi->s_depth_max)
2394 sbi->s_depth_max = ext_depth(inode);
2395 spin_unlock(&sbi->s_ext_stats_lock);
2396 }
2397 #endif
2398 if (from >= le32_to_cpu(ex->ee_block)
2399 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2400 /* tail removal */
2401 ext4_lblk_t num;
2402
2403 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2404 pblk = ext4_ext_pblock(ex) + ee_len - num;
2405 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2406 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2407 /*
2408 * If the block range to be freed didn't start at the
2409 * beginning of a cluster, and we removed the entire
2410 * extent, save the partial cluster here, since we
2411 * might need to delete if we determine that the
2412 * truncate operation has removed all of the blocks in
2413 * the cluster.
2414 */
2415 if (pblk & (sbi->s_cluster_ratio - 1) &&
2416 (ee_len == num))
2417 *partial_cluster = EXT4_B2C(sbi, pblk);
2418 else
2419 *partial_cluster = 0;
2420 } else if (from == le32_to_cpu(ex->ee_block)
2421 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2422 /* head removal */
2423 ext4_lblk_t num;
2424 ext4_fsblk_t start;
2425
2426 num = to - from;
2427 start = ext4_ext_pblock(ex);
2428
2429 ext_debug("free first %u blocks starting %llu\n", num, start);
2430 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2431
2432 } else {
2433 printk(KERN_INFO "strange request: removal(2) "
2434 "%u-%u from %u:%u\n",
2435 from, to, le32_to_cpu(ex->ee_block), ee_len);
2436 }
2437 return 0;
2438 }
2439
2440
2441 /*
2442 * ext4_ext_rm_leaf() Removes the extents associated with the
2443 * blocks appearing between "start" and "end", and splits the extents
2444 * if "start" and "end" appear in the same extent
2445 *
2446 * @handle: The journal handle
2447 * @inode: The files inode
2448 * @path: The path to the leaf
2449 * @start: The first block to remove
2450 * @end: The last block to remove
2451 */
2452 static int
2453 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2454 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2455 ext4_lblk_t start, ext4_lblk_t end)
2456 {
2457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2458 int err = 0, correct_index = 0;
2459 int depth = ext_depth(inode), credits;
2460 struct ext4_extent_header *eh;
2461 ext4_lblk_t a, b;
2462 unsigned num;
2463 ext4_lblk_t ex_ee_block;
2464 unsigned short ex_ee_len;
2465 unsigned uninitialized = 0;
2466 struct ext4_extent *ex;
2467
2468 /* the header must be checked already in ext4_ext_remove_space() */
2469 ext_debug("truncate since %u in leaf to %u\n", start, end);
2470 if (!path[depth].p_hdr)
2471 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2472 eh = path[depth].p_hdr;
2473 if (unlikely(path[depth].p_hdr == NULL)) {
2474 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2475 return -EIO;
2476 }
2477 /* find where to start removing */
2478 ex = EXT_LAST_EXTENT(eh);
2479
2480 ex_ee_block = le32_to_cpu(ex->ee_block);
2481 ex_ee_len = ext4_ext_get_actual_len(ex);
2482
2483 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2484
2485 while (ex >= EXT_FIRST_EXTENT(eh) &&
2486 ex_ee_block + ex_ee_len > start) {
2487
2488 if (ext4_ext_is_uninitialized(ex))
2489 uninitialized = 1;
2490 else
2491 uninitialized = 0;
2492
2493 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2494 uninitialized, ex_ee_len);
2495 path[depth].p_ext = ex;
2496
2497 a = ex_ee_block > start ? ex_ee_block : start;
2498 b = ex_ee_block+ex_ee_len - 1 < end ?
2499 ex_ee_block+ex_ee_len - 1 : end;
2500
2501 ext_debug(" border %u:%u\n", a, b);
2502
2503 /* If this extent is beyond the end of the hole, skip it */
2504 if (end < ex_ee_block) {
2505 ex--;
2506 ex_ee_block = le32_to_cpu(ex->ee_block);
2507 ex_ee_len = ext4_ext_get_actual_len(ex);
2508 continue;
2509 } else if (b != ex_ee_block + ex_ee_len - 1) {
2510 EXT4_ERROR_INODE(inode,
2511 "can not handle truncate %u:%u "
2512 "on extent %u:%u",
2513 start, end, ex_ee_block,
2514 ex_ee_block + ex_ee_len - 1);
2515 err = -EIO;
2516 goto out;
2517 } else if (a != ex_ee_block) {
2518 /* remove tail of the extent */
2519 num = a - ex_ee_block;
2520 } else {
2521 /* remove whole extent: excellent! */
2522 num = 0;
2523 }
2524 /*
2525 * 3 for leaf, sb, and inode plus 2 (bmap and group
2526 * descriptor) for each block group; assume two block
2527 * groups plus ex_ee_len/blocks_per_block_group for
2528 * the worst case
2529 */
2530 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2531 if (ex == EXT_FIRST_EXTENT(eh)) {
2532 correct_index = 1;
2533 credits += (ext_depth(inode)) + 1;
2534 }
2535 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2536
2537 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2538 if (err)
2539 goto out;
2540
2541 err = ext4_ext_get_access(handle, inode, path + depth);
2542 if (err)
2543 goto out;
2544
2545 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2546 a, b);
2547 if (err)
2548 goto out;
2549
2550 if (num == 0)
2551 /* this extent is removed; mark slot entirely unused */
2552 ext4_ext_store_pblock(ex, 0);
2553
2554 ex->ee_len = cpu_to_le16(num);
2555 /*
2556 * Do not mark uninitialized if all the blocks in the
2557 * extent have been removed.
2558 */
2559 if (uninitialized && num)
2560 ext4_ext_mark_uninitialized(ex);
2561 /*
2562 * If the extent was completely released,
2563 * we need to remove it from the leaf
2564 */
2565 if (num == 0) {
2566 if (end != EXT_MAX_BLOCKS - 1) {
2567 /*
2568 * For hole punching, we need to scoot all the
2569 * extents up when an extent is removed so that
2570 * we dont have blank extents in the middle
2571 */
2572 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2573 sizeof(struct ext4_extent));
2574
2575 /* Now get rid of the one at the end */
2576 memset(EXT_LAST_EXTENT(eh), 0,
2577 sizeof(struct ext4_extent));
2578 }
2579 le16_add_cpu(&eh->eh_entries, -1);
2580 } else
2581 *partial_cluster = 0;
2582
2583 err = ext4_ext_dirty(handle, inode, path + depth);
2584 if (err)
2585 goto out;
2586
2587 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2588 ext4_ext_pblock(ex));
2589 ex--;
2590 ex_ee_block = le32_to_cpu(ex->ee_block);
2591 ex_ee_len = ext4_ext_get_actual_len(ex);
2592 }
2593
2594 if (correct_index && eh->eh_entries)
2595 err = ext4_ext_correct_indexes(handle, inode, path);
2596
2597 /*
2598 * If there is still a entry in the leaf node, check to see if
2599 * it references the partial cluster. This is the only place
2600 * where it could; if it doesn't, we can free the cluster.
2601 */
2602 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2603 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2604 *partial_cluster)) {
2605 int flags = EXT4_FREE_BLOCKS_FORGET;
2606
2607 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2608 flags |= EXT4_FREE_BLOCKS_METADATA;
2609
2610 ext4_free_blocks(handle, inode, NULL,
2611 EXT4_C2B(sbi, *partial_cluster),
2612 sbi->s_cluster_ratio, flags);
2613 *partial_cluster = 0;
2614 }
2615
2616 /* if this leaf is free, then we should
2617 * remove it from index block above */
2618 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2619 err = ext4_ext_rm_idx(handle, inode, path, depth);
2620
2621 out:
2622 return err;
2623 }
2624
2625 /*
2626 * ext4_ext_more_to_rm:
2627 * returns 1 if current index has to be freed (even partial)
2628 */
2629 static int
2630 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2631 {
2632 BUG_ON(path->p_idx == NULL);
2633
2634 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2635 return 0;
2636
2637 /*
2638 * if truncate on deeper level happened, it wasn't partial,
2639 * so we have to consider current index for truncation
2640 */
2641 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2642 return 0;
2643 return 1;
2644 }
2645
2646 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2647 ext4_lblk_t end)
2648 {
2649 struct super_block *sb = inode->i_sb;
2650 int depth = ext_depth(inode);
2651 struct ext4_ext_path *path = NULL;
2652 ext4_fsblk_t partial_cluster = 0;
2653 handle_t *handle;
2654 int i = 0, err = 0;
2655
2656 ext_debug("truncate since %u to %u\n", start, end);
2657
2658 /* probably first extent we're gonna free will be last in block */
2659 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2660 if (IS_ERR(handle))
2661 return PTR_ERR(handle);
2662
2663 again:
2664 ext4_ext_invalidate_cache(inode);
2665
2666 trace_ext4_ext_remove_space(inode, start, depth);
2667
2668 /*
2669 * Check if we are removing extents inside the extent tree. If that
2670 * is the case, we are going to punch a hole inside the extent tree
2671 * so we have to check whether we need to split the extent covering
2672 * the last block to remove so we can easily remove the part of it
2673 * in ext4_ext_rm_leaf().
2674 */
2675 if (end < EXT_MAX_BLOCKS - 1) {
2676 struct ext4_extent *ex;
2677 ext4_lblk_t ee_block;
2678
2679 /* find extent for this block */
2680 path = ext4_ext_find_extent(inode, end, NULL);
2681 if (IS_ERR(path)) {
2682 ext4_journal_stop(handle);
2683 return PTR_ERR(path);
2684 }
2685 depth = ext_depth(inode);
2686 /* Leaf not may not exist only if inode has no blocks at all */
2687 ex = path[depth].p_ext;
2688 if (!ex) {
2689 if (depth) {
2690 EXT4_ERROR_INODE(inode,
2691 "path[%d].p_hdr == NULL",
2692 depth);
2693 err = -EIO;
2694 }
2695 goto out;
2696 }
2697
2698 ee_block = le32_to_cpu(ex->ee_block);
2699
2700 /*
2701 * See if the last block is inside the extent, if so split
2702 * the extent at 'end' block so we can easily remove the
2703 * tail of the first part of the split extent in
2704 * ext4_ext_rm_leaf().
2705 */
2706 if (end >= ee_block &&
2707 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2708 int split_flag = 0;
2709
2710 if (ext4_ext_is_uninitialized(ex))
2711 split_flag = EXT4_EXT_MARK_UNINIT1 |
2712 EXT4_EXT_MARK_UNINIT2;
2713
2714 /*
2715 * Split the extent in two so that 'end' is the last
2716 * block in the first new extent
2717 */
2718 err = ext4_split_extent_at(handle, inode, path,
2719 end + 1, split_flag,
2720 EXT4_GET_BLOCKS_PRE_IO |
2721 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2722
2723 if (err < 0)
2724 goto out;
2725 }
2726 }
2727 /*
2728 * We start scanning from right side, freeing all the blocks
2729 * after i_size and walking into the tree depth-wise.
2730 */
2731 depth = ext_depth(inode);
2732 if (path) {
2733 int k = i = depth;
2734 while (--k > 0)
2735 path[k].p_block =
2736 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2737 } else {
2738 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2739 GFP_NOFS);
2740 if (path == NULL) {
2741 ext4_journal_stop(handle);
2742 return -ENOMEM;
2743 }
2744 path[0].p_depth = depth;
2745 path[0].p_hdr = ext_inode_hdr(inode);
2746 i = 0;
2747
2748 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2749 err = -EIO;
2750 goto out;
2751 }
2752 }
2753 err = 0;
2754
2755 while (i >= 0 && err == 0) {
2756 if (i == depth) {
2757 /* this is leaf block */
2758 err = ext4_ext_rm_leaf(handle, inode, path,
2759 &partial_cluster, start,
2760 end);
2761 /* root level has p_bh == NULL, brelse() eats this */
2762 brelse(path[i].p_bh);
2763 path[i].p_bh = NULL;
2764 i--;
2765 continue;
2766 }
2767
2768 /* this is index block */
2769 if (!path[i].p_hdr) {
2770 ext_debug("initialize header\n");
2771 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2772 }
2773
2774 if (!path[i].p_idx) {
2775 /* this level hasn't been touched yet */
2776 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2777 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2778 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2779 path[i].p_hdr,
2780 le16_to_cpu(path[i].p_hdr->eh_entries));
2781 } else {
2782 /* we were already here, see at next index */
2783 path[i].p_idx--;
2784 }
2785
2786 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2787 i, EXT_FIRST_INDEX(path[i].p_hdr),
2788 path[i].p_idx);
2789 if (ext4_ext_more_to_rm(path + i)) {
2790 struct buffer_head *bh;
2791 /* go to the next level */
2792 ext_debug("move to level %d (block %llu)\n",
2793 i + 1, ext4_idx_pblock(path[i].p_idx));
2794 memset(path + i + 1, 0, sizeof(*path));
2795 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2796 if (!bh) {
2797 /* should we reset i_size? */
2798 err = -EIO;
2799 break;
2800 }
2801 if (WARN_ON(i + 1 > depth)) {
2802 err = -EIO;
2803 break;
2804 }
2805 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2806 depth - i - 1, bh)) {
2807 err = -EIO;
2808 break;
2809 }
2810 path[i + 1].p_bh = bh;
2811
2812 /* save actual number of indexes since this
2813 * number is changed at the next iteration */
2814 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2815 i++;
2816 } else {
2817 /* we finished processing this index, go up */
2818 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2819 /* index is empty, remove it;
2820 * handle must be already prepared by the
2821 * truncatei_leaf() */
2822 err = ext4_ext_rm_idx(handle, inode, path, i);
2823 }
2824 /* root level has p_bh == NULL, brelse() eats this */
2825 brelse(path[i].p_bh);
2826 path[i].p_bh = NULL;
2827 i--;
2828 ext_debug("return to level %d\n", i);
2829 }
2830 }
2831
2832 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2833 path->p_hdr->eh_entries);
2834
2835 /* If we still have something in the partial cluster and we have removed
2836 * even the first extent, then we should free the blocks in the partial
2837 * cluster as well. */
2838 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2839 int flags = EXT4_FREE_BLOCKS_FORGET;
2840
2841 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2842 flags |= EXT4_FREE_BLOCKS_METADATA;
2843
2844 ext4_free_blocks(handle, inode, NULL,
2845 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2846 EXT4_SB(sb)->s_cluster_ratio, flags);
2847 partial_cluster = 0;
2848 }
2849
2850 /* TODO: flexible tree reduction should be here */
2851 if (path->p_hdr->eh_entries == 0) {
2852 /*
2853 * truncate to zero freed all the tree,
2854 * so we need to correct eh_depth
2855 */
2856 err = ext4_ext_get_access(handle, inode, path);
2857 if (err == 0) {
2858 ext_inode_hdr(inode)->eh_depth = 0;
2859 ext_inode_hdr(inode)->eh_max =
2860 cpu_to_le16(ext4_ext_space_root(inode, 0));
2861 err = ext4_ext_dirty(handle, inode, path);
2862 }
2863 }
2864 out:
2865 ext4_ext_drop_refs(path);
2866 kfree(path);
2867 if (err == -EAGAIN) {
2868 path = NULL;
2869 goto again;
2870 }
2871 ext4_journal_stop(handle);
2872
2873 return err;
2874 }
2875
2876 /*
2877 * called at mount time
2878 */
2879 void ext4_ext_init(struct super_block *sb)
2880 {
2881 /*
2882 * possible initialization would be here
2883 */
2884
2885 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2886 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2887 printk(KERN_INFO "EXT4-fs: file extents enabled"
2888 #ifdef AGGRESSIVE_TEST
2889 ", aggressive tests"
2890 #endif
2891 #ifdef CHECK_BINSEARCH
2892 ", check binsearch"
2893 #endif
2894 #ifdef EXTENTS_STATS
2895 ", stats"
2896 #endif
2897 "\n");
2898 #endif
2899 #ifdef EXTENTS_STATS
2900 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2901 EXT4_SB(sb)->s_ext_min = 1 << 30;
2902 EXT4_SB(sb)->s_ext_max = 0;
2903 #endif
2904 }
2905 }
2906
2907 /*
2908 * called at umount time
2909 */
2910 void ext4_ext_release(struct super_block *sb)
2911 {
2912 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2913 return;
2914
2915 #ifdef EXTENTS_STATS
2916 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2917 struct ext4_sb_info *sbi = EXT4_SB(sb);
2918 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2919 sbi->s_ext_blocks, sbi->s_ext_extents,
2920 sbi->s_ext_blocks / sbi->s_ext_extents);
2921 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2922 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2923 }
2924 #endif
2925 }
2926
2927 /* FIXME!! we need to try to merge to left or right after zero-out */
2928 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2929 {
2930 ext4_fsblk_t ee_pblock;
2931 unsigned int ee_len;
2932 int ret;
2933
2934 ee_len = ext4_ext_get_actual_len(ex);
2935 ee_pblock = ext4_ext_pblock(ex);
2936
2937 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2938 if (ret > 0)
2939 ret = 0;
2940
2941 return ret;
2942 }
2943
2944 /*
2945 * ext4_split_extent_at() splits an extent at given block.
2946 *
2947 * @handle: the journal handle
2948 * @inode: the file inode
2949 * @path: the path to the extent
2950 * @split: the logical block where the extent is splitted.
2951 * @split_flags: indicates if the extent could be zeroout if split fails, and
2952 * the states(init or uninit) of new extents.
2953 * @flags: flags used to insert new extent to extent tree.
2954 *
2955 *
2956 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2957 * of which are deterimined by split_flag.
2958 *
2959 * There are two cases:
2960 * a> the extent are splitted into two extent.
2961 * b> split is not needed, and just mark the extent.
2962 *
2963 * return 0 on success.
2964 */
2965 static int ext4_split_extent_at(handle_t *handle,
2966 struct inode *inode,
2967 struct ext4_ext_path *path,
2968 ext4_lblk_t split,
2969 int split_flag,
2970 int flags)
2971 {
2972 ext4_fsblk_t newblock;
2973 ext4_lblk_t ee_block;
2974 struct ext4_extent *ex, newex, orig_ex;
2975 struct ext4_extent *ex2 = NULL;
2976 unsigned int ee_len, depth;
2977 int err = 0;
2978
2979 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2980 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2981
2982 ext_debug("ext4_split_extents_at: inode %lu, logical"
2983 "block %llu\n", inode->i_ino, (unsigned long long)split);
2984
2985 ext4_ext_show_leaf(inode, path);
2986
2987 depth = ext_depth(inode);
2988 ex = path[depth].p_ext;
2989 ee_block = le32_to_cpu(ex->ee_block);
2990 ee_len = ext4_ext_get_actual_len(ex);
2991 newblock = split - ee_block + ext4_ext_pblock(ex);
2992
2993 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2994
2995 err = ext4_ext_get_access(handle, inode, path + depth);
2996 if (err)
2997 goto out;
2998
2999 if (split == ee_block) {
3000 /*
3001 * case b: block @split is the block that the extent begins with
3002 * then we just change the state of the extent, and splitting
3003 * is not needed.
3004 */
3005 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3006 ext4_ext_mark_uninitialized(ex);
3007 else
3008 ext4_ext_mark_initialized(ex);
3009
3010 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3011 ext4_ext_try_to_merge(handle, inode, path, ex);
3012
3013 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3014 goto out;
3015 }
3016
3017 /* case a */
3018 memcpy(&orig_ex, ex, sizeof(orig_ex));
3019 ex->ee_len = cpu_to_le16(split - ee_block);
3020 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3021 ext4_ext_mark_uninitialized(ex);
3022
3023 /*
3024 * path may lead to new leaf, not to original leaf any more
3025 * after ext4_ext_insert_extent() returns,
3026 */
3027 err = ext4_ext_dirty(handle, inode, path + depth);
3028 if (err)
3029 goto fix_extent_len;
3030
3031 ex2 = &newex;
3032 ex2->ee_block = cpu_to_le32(split);
3033 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3034 ext4_ext_store_pblock(ex2, newblock);
3035 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3036 ext4_ext_mark_uninitialized(ex2);
3037
3038 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3039 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3040 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3041 if (split_flag & EXT4_EXT_DATA_VALID1)
3042 err = ext4_ext_zeroout(inode, ex2);
3043 else
3044 err = ext4_ext_zeroout(inode, ex);
3045 } else
3046 err = ext4_ext_zeroout(inode, &orig_ex);
3047
3048 if (err)
3049 goto fix_extent_len;
3050 /* update the extent length and mark as initialized */
3051 ex->ee_len = cpu_to_le16(ee_len);
3052 ext4_ext_try_to_merge(handle, inode, path, ex);
3053 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3054 goto out;
3055 } else if (err)
3056 goto fix_extent_len;
3057
3058 out:
3059 ext4_ext_show_leaf(inode, path);
3060 return err;
3061
3062 fix_extent_len:
3063 ex->ee_len = orig_ex.ee_len;
3064 ext4_ext_dirty(handle, inode, path + depth);
3065 return err;
3066 }
3067
3068 /*
3069 * ext4_split_extents() splits an extent and mark extent which is covered
3070 * by @map as split_flags indicates
3071 *
3072 * It may result in splitting the extent into multiple extents (upto three)
3073 * There are three possibilities:
3074 * a> There is no split required
3075 * b> Splits in two extents: Split is happening at either end of the extent
3076 * c> Splits in three extents: Somone is splitting in middle of the extent
3077 *
3078 */
3079 static int ext4_split_extent(handle_t *handle,
3080 struct inode *inode,
3081 struct ext4_ext_path *path,
3082 struct ext4_map_blocks *map,
3083 int split_flag,
3084 int flags)
3085 {
3086 ext4_lblk_t ee_block;
3087 struct ext4_extent *ex;
3088 unsigned int ee_len, depth;
3089 int err = 0;
3090 int uninitialized;
3091 int split_flag1, flags1;
3092
3093 depth = ext_depth(inode);
3094 ex = path[depth].p_ext;
3095 ee_block = le32_to_cpu(ex->ee_block);
3096 ee_len = ext4_ext_get_actual_len(ex);
3097 uninitialized = ext4_ext_is_uninitialized(ex);
3098
3099 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3100 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3101 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3102 if (uninitialized)
3103 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3104 EXT4_EXT_MARK_UNINIT2;
3105 if (split_flag & EXT4_EXT_DATA_VALID2)
3106 split_flag1 |= EXT4_EXT_DATA_VALID1;
3107 err = ext4_split_extent_at(handle, inode, path,
3108 map->m_lblk + map->m_len, split_flag1, flags1);
3109 if (err)
3110 goto out;
3111 }
3112
3113 ext4_ext_drop_refs(path);
3114 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3115 if (IS_ERR(path))
3116 return PTR_ERR(path);
3117
3118 if (map->m_lblk >= ee_block) {
3119 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3120 EXT4_EXT_DATA_VALID2);
3121 if (uninitialized)
3122 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3123 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3124 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3125 err = ext4_split_extent_at(handle, inode, path,
3126 map->m_lblk, split_flag1, flags);
3127 if (err)
3128 goto out;
3129 }
3130
3131 ext4_ext_show_leaf(inode, path);
3132 out:
3133 return err ? err : map->m_len;
3134 }
3135
3136 /*
3137 * This function is called by ext4_ext_map_blocks() if someone tries to write
3138 * to an uninitialized extent. It may result in splitting the uninitialized
3139 * extent into multiple extents (up to three - one initialized and two
3140 * uninitialized).
3141 * There are three possibilities:
3142 * a> There is no split required: Entire extent should be initialized
3143 * b> Splits in two extents: Write is happening at either end of the extent
3144 * c> Splits in three extents: Somone is writing in middle of the extent
3145 *
3146 * Pre-conditions:
3147 * - The extent pointed to by 'path' is uninitialized.
3148 * - The extent pointed to by 'path' contains a superset
3149 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3150 *
3151 * Post-conditions on success:
3152 * - the returned value is the number of blocks beyond map->l_lblk
3153 * that are allocated and initialized.
3154 * It is guaranteed to be >= map->m_len.
3155 */
3156 static int ext4_ext_convert_to_initialized(handle_t *handle,
3157 struct inode *inode,
3158 struct ext4_map_blocks *map,
3159 struct ext4_ext_path *path)
3160 {
3161 struct ext4_sb_info *sbi;
3162 struct ext4_extent_header *eh;
3163 struct ext4_map_blocks split_map;
3164 struct ext4_extent zero_ex;
3165 struct ext4_extent *ex;
3166 ext4_lblk_t ee_block, eof_block;
3167 unsigned int ee_len, depth;
3168 int allocated, max_zeroout = 0;
3169 int err = 0;
3170 int split_flag = 0;
3171
3172 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3173 "block %llu, max_blocks %u\n", inode->i_ino,
3174 (unsigned long long)map->m_lblk, map->m_len);
3175
3176 sbi = EXT4_SB(inode->i_sb);
3177 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3178 inode->i_sb->s_blocksize_bits;
3179 if (eof_block < map->m_lblk + map->m_len)
3180 eof_block = map->m_lblk + map->m_len;
3181
3182 depth = ext_depth(inode);
3183 eh = path[depth].p_hdr;
3184 ex = path[depth].p_ext;
3185 ee_block = le32_to_cpu(ex->ee_block);
3186 ee_len = ext4_ext_get_actual_len(ex);
3187 allocated = ee_len - (map->m_lblk - ee_block);
3188
3189 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3190
3191 /* Pre-conditions */
3192 BUG_ON(!ext4_ext_is_uninitialized(ex));
3193 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3194
3195 /*
3196 * Attempt to transfer newly initialized blocks from the currently
3197 * uninitialized extent to its left neighbor. This is much cheaper
3198 * than an insertion followed by a merge as those involve costly
3199 * memmove() calls. This is the common case in steady state for
3200 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3201 * writes.
3202 *
3203 * Limitations of the current logic:
3204 * - L1: we only deal with writes at the start of the extent.
3205 * The approach could be extended to writes at the end
3206 * of the extent but this scenario was deemed less common.
3207 * - L2: we do not deal with writes covering the whole extent.
3208 * This would require removing the extent if the transfer
3209 * is possible.
3210 * - L3: we only attempt to merge with an extent stored in the
3211 * same extent tree node.
3212 */
3213 if ((map->m_lblk == ee_block) && /*L1*/
3214 (map->m_len < ee_len) && /*L2*/
3215 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3216 struct ext4_extent *prev_ex;
3217 ext4_lblk_t prev_lblk;
3218 ext4_fsblk_t prev_pblk, ee_pblk;
3219 unsigned int prev_len, write_len;
3220
3221 prev_ex = ex - 1;
3222 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3223 prev_len = ext4_ext_get_actual_len(prev_ex);
3224 prev_pblk = ext4_ext_pblock(prev_ex);
3225 ee_pblk = ext4_ext_pblock(ex);
3226 write_len = map->m_len;
3227
3228 /*
3229 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3230 * upon those conditions:
3231 * - C1: prev_ex is initialized,
3232 * - C2: prev_ex is logically abutting ex,
3233 * - C3: prev_ex is physically abutting ex,
3234 * - C4: prev_ex can receive the additional blocks without
3235 * overflowing the (initialized) length limit.
3236 */
3237 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3238 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3239 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3240 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3241 err = ext4_ext_get_access(handle, inode, path + depth);
3242 if (err)
3243 goto out;
3244
3245 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3246 map, ex, prev_ex);
3247
3248 /* Shift the start of ex by 'write_len' blocks */
3249 ex->ee_block = cpu_to_le32(ee_block + write_len);
3250 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3251 ex->ee_len = cpu_to_le16(ee_len - write_len);
3252 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3253
3254 /* Extend prev_ex by 'write_len' blocks */
3255 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3256
3257 /* Mark the block containing both extents as dirty */
3258 ext4_ext_dirty(handle, inode, path + depth);
3259
3260 /* Update path to point to the right extent */
3261 path[depth].p_ext = prev_ex;
3262
3263 /* Result: number of initialized blocks past m_lblk */
3264 allocated = write_len;
3265 goto out;
3266 }
3267 }
3268
3269 WARN_ON(map->m_lblk < ee_block);
3270 /*
3271 * It is safe to convert extent to initialized via explicit
3272 * zeroout only if extent is fully insde i_size or new_size.
3273 */
3274 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3275
3276 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3277 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3278 inode->i_sb->s_blocksize_bits;
3279
3280 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3281 if (max_zeroout && (ee_len <= max_zeroout)) {
3282 err = ext4_ext_zeroout(inode, ex);
3283 if (err)
3284 goto out;
3285
3286 err = ext4_ext_get_access(handle, inode, path + depth);
3287 if (err)
3288 goto out;
3289 ext4_ext_mark_initialized(ex);
3290 ext4_ext_try_to_merge(handle, inode, path, ex);
3291 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3292 goto out;
3293 }
3294
3295 /*
3296 * four cases:
3297 * 1. split the extent into three extents.
3298 * 2. split the extent into two extents, zeroout the first half.
3299 * 3. split the extent into two extents, zeroout the second half.
3300 * 4. split the extent into two extents with out zeroout.
3301 */
3302 split_map.m_lblk = map->m_lblk;
3303 split_map.m_len = map->m_len;
3304
3305 if (max_zeroout && (allocated > map->m_len)) {
3306 if (allocated <= max_zeroout) {
3307 /* case 3 */
3308 zero_ex.ee_block =
3309 cpu_to_le32(map->m_lblk);
3310 zero_ex.ee_len = cpu_to_le16(allocated);
3311 ext4_ext_store_pblock(&zero_ex,
3312 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3313 err = ext4_ext_zeroout(inode, &zero_ex);
3314 if (err)
3315 goto out;
3316 split_map.m_lblk = map->m_lblk;
3317 split_map.m_len = allocated;
3318 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3319 /* case 2 */
3320 if (map->m_lblk != ee_block) {
3321 zero_ex.ee_block = ex->ee_block;
3322 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3323 ee_block);
3324 ext4_ext_store_pblock(&zero_ex,
3325 ext4_ext_pblock(ex));
3326 err = ext4_ext_zeroout(inode, &zero_ex);
3327 if (err)
3328 goto out;
3329 }
3330
3331 split_map.m_lblk = ee_block;
3332 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3333 allocated = map->m_len;
3334 }
3335 }
3336
3337 allocated = ext4_split_extent(handle, inode, path,
3338 &split_map, split_flag, 0);
3339 if (allocated < 0)
3340 err = allocated;
3341
3342 out:
3343 return err ? err : allocated;
3344 }
3345
3346 /*
3347 * This function is called by ext4_ext_map_blocks() from
3348 * ext4_get_blocks_dio_write() when DIO to write
3349 * to an uninitialized extent.
3350 *
3351 * Writing to an uninitialized extent may result in splitting the uninitialized
3352 * extent into multiple initialized/uninitialized extents (up to three)
3353 * There are three possibilities:
3354 * a> There is no split required: Entire extent should be uninitialized
3355 * b> Splits in two extents: Write is happening at either end of the extent
3356 * c> Splits in three extents: Somone is writing in middle of the extent
3357 *
3358 * One of more index blocks maybe needed if the extent tree grow after
3359 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3360 * complete, we need to split the uninitialized extent before DIO submit
3361 * the IO. The uninitialized extent called at this time will be split
3362 * into three uninitialized extent(at most). After IO complete, the part
3363 * being filled will be convert to initialized by the end_io callback function
3364 * via ext4_convert_unwritten_extents().
3365 *
3366 * Returns the size of uninitialized extent to be written on success.
3367 */
3368 static int ext4_split_unwritten_extents(handle_t *handle,
3369 struct inode *inode,
3370 struct ext4_map_blocks *map,
3371 struct ext4_ext_path *path,
3372 int flags)
3373 {
3374 ext4_lblk_t eof_block;
3375 ext4_lblk_t ee_block;
3376 struct ext4_extent *ex;
3377 unsigned int ee_len;
3378 int split_flag = 0, depth;
3379
3380 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3381 "block %llu, max_blocks %u\n", inode->i_ino,
3382 (unsigned long long)map->m_lblk, map->m_len);
3383
3384 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3385 inode->i_sb->s_blocksize_bits;
3386 if (eof_block < map->m_lblk + map->m_len)
3387 eof_block = map->m_lblk + map->m_len;
3388 /*
3389 * It is safe to convert extent to initialized via explicit
3390 * zeroout only if extent is fully insde i_size or new_size.
3391 */
3392 depth = ext_depth(inode);
3393 ex = path[depth].p_ext;
3394 ee_block = le32_to_cpu(ex->ee_block);
3395 ee_len = ext4_ext_get_actual_len(ex);
3396
3397 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3398 split_flag |= EXT4_EXT_MARK_UNINIT2;
3399 if (flags & EXT4_GET_BLOCKS_CONVERT)
3400 split_flag |= EXT4_EXT_DATA_VALID2;
3401 flags |= EXT4_GET_BLOCKS_PRE_IO;
3402 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3403 }
3404
3405 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3406 struct inode *inode,
3407 struct ext4_map_blocks *map,
3408 struct ext4_ext_path *path)
3409 {
3410 struct ext4_extent *ex;
3411 ext4_lblk_t ee_block;
3412 unsigned int ee_len;
3413 int depth;
3414 int err = 0;
3415
3416 depth = ext_depth(inode);
3417 ex = path[depth].p_ext;
3418 ee_block = le32_to_cpu(ex->ee_block);
3419 ee_len = ext4_ext_get_actual_len(ex);
3420
3421 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3422 "block %llu, max_blocks %u\n", inode->i_ino,
3423 (unsigned long long)ee_block, ee_len);
3424
3425 /* If extent is larger than requested then split is required */
3426 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3427 err = ext4_split_unwritten_extents(handle, inode, map, path,
3428 EXT4_GET_BLOCKS_CONVERT);
3429 if (err < 0)
3430 goto out;
3431 ext4_ext_drop_refs(path);
3432 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3433 if (IS_ERR(path)) {
3434 err = PTR_ERR(path);
3435 goto out;
3436 }
3437 depth = ext_depth(inode);
3438 ex = path[depth].p_ext;
3439 }
3440
3441 err = ext4_ext_get_access(handle, inode, path + depth);
3442 if (err)
3443 goto out;
3444 /* first mark the extent as initialized */
3445 ext4_ext_mark_initialized(ex);
3446
3447 /* note: ext4_ext_correct_indexes() isn't needed here because
3448 * borders are not changed
3449 */
3450 ext4_ext_try_to_merge(handle, inode, path, ex);
3451
3452 /* Mark modified extent as dirty */
3453 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3454 out:
3455 ext4_ext_show_leaf(inode, path);
3456 return err;
3457 }
3458
3459 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3460 sector_t block, int count)
3461 {
3462 int i;
3463 for (i = 0; i < count; i++)
3464 unmap_underlying_metadata(bdev, block + i);
3465 }
3466
3467 /*
3468 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3469 */
3470 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3471 ext4_lblk_t lblk,
3472 struct ext4_ext_path *path,
3473 unsigned int len)
3474 {
3475 int i, depth;
3476 struct ext4_extent_header *eh;
3477 struct ext4_extent *last_ex;
3478
3479 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3480 return 0;
3481
3482 depth = ext_depth(inode);
3483 eh = path[depth].p_hdr;
3484
3485 /*
3486 * We're going to remove EOFBLOCKS_FL entirely in future so we
3487 * do not care for this case anymore. Simply remove the flag
3488 * if there are no extents.
3489 */
3490 if (unlikely(!eh->eh_entries))
3491 goto out;
3492 last_ex = EXT_LAST_EXTENT(eh);
3493 /*
3494 * We should clear the EOFBLOCKS_FL flag if we are writing the
3495 * last block in the last extent in the file. We test this by
3496 * first checking to see if the caller to
3497 * ext4_ext_get_blocks() was interested in the last block (or
3498 * a block beyond the last block) in the current extent. If
3499 * this turns out to be false, we can bail out from this
3500 * function immediately.
3501 */
3502 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3503 ext4_ext_get_actual_len(last_ex))
3504 return 0;
3505 /*
3506 * If the caller does appear to be planning to write at or
3507 * beyond the end of the current extent, we then test to see
3508 * if the current extent is the last extent in the file, by
3509 * checking to make sure it was reached via the rightmost node
3510 * at each level of the tree.
3511 */
3512 for (i = depth-1; i >= 0; i--)
3513 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3514 return 0;
3515 out:
3516 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3517 return ext4_mark_inode_dirty(handle, inode);
3518 }
3519
3520 /**
3521 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3522 *
3523 * Return 1 if there is a delalloc block in the range, otherwise 0.
3524 */
3525 static int ext4_find_delalloc_range(struct inode *inode,
3526 ext4_lblk_t lblk_start,
3527 ext4_lblk_t lblk_end)
3528 {
3529 struct extent_status es;
3530
3531 ext4_es_find_delayed_extent(inode, lblk_start, &es);
3532 if (es.es_len == 0)
3533 return 0; /* there is no delay extent in this tree */
3534 else if (es.es_lblk <= lblk_start &&
3535 lblk_start < es.es_lblk + es.es_len)
3536 return 1;
3537 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3538 return 1;
3539 else
3540 return 0;
3541 }
3542
3543 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3544 {
3545 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3546 ext4_lblk_t lblk_start, lblk_end;
3547 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3548 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3549
3550 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3551 }
3552
3553 /**
3554 * Determines how many complete clusters (out of those specified by the 'map')
3555 * are under delalloc and were reserved quota for.
3556 * This function is called when we are writing out the blocks that were
3557 * originally written with their allocation delayed, but then the space was
3558 * allocated using fallocate() before the delayed allocation could be resolved.
3559 * The cases to look for are:
3560 * ('=' indicated delayed allocated blocks
3561 * '-' indicates non-delayed allocated blocks)
3562 * (a) partial clusters towards beginning and/or end outside of allocated range
3563 * are not delalloc'ed.
3564 * Ex:
3565 * |----c---=|====c====|====c====|===-c----|
3566 * |++++++ allocated ++++++|
3567 * ==> 4 complete clusters in above example
3568 *
3569 * (b) partial cluster (outside of allocated range) towards either end is
3570 * marked for delayed allocation. In this case, we will exclude that
3571 * cluster.
3572 * Ex:
3573 * |----====c========|========c========|
3574 * |++++++ allocated ++++++|
3575 * ==> 1 complete clusters in above example
3576 *
3577 * Ex:
3578 * |================c================|
3579 * |++++++ allocated ++++++|
3580 * ==> 0 complete clusters in above example
3581 *
3582 * The ext4_da_update_reserve_space will be called only if we
3583 * determine here that there were some "entire" clusters that span
3584 * this 'allocated' range.
3585 * In the non-bigalloc case, this function will just end up returning num_blks
3586 * without ever calling ext4_find_delalloc_range.
3587 */
3588 static unsigned int
3589 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3590 unsigned int num_blks)
3591 {
3592 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3593 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3594 ext4_lblk_t lblk_from, lblk_to, c_offset;
3595 unsigned int allocated_clusters = 0;
3596
3597 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3598 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3599
3600 /* max possible clusters for this allocation */
3601 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3602
3603 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3604
3605 /* Check towards left side */
3606 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3607 if (c_offset) {
3608 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3609 lblk_to = lblk_from + c_offset - 1;
3610
3611 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3612 allocated_clusters--;
3613 }
3614
3615 /* Now check towards right. */
3616 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3617 if (allocated_clusters && c_offset) {
3618 lblk_from = lblk_start + num_blks;
3619 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3620
3621 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3622 allocated_clusters--;
3623 }
3624
3625 return allocated_clusters;
3626 }
3627
3628 static int
3629 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3630 struct ext4_map_blocks *map,
3631 struct ext4_ext_path *path, int flags,
3632 unsigned int allocated, ext4_fsblk_t newblock)
3633 {
3634 int ret = 0;
3635 int err = 0;
3636 ext4_io_end_t *io = ext4_inode_aio(inode);
3637
3638 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3639 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3640 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3641 flags, allocated);
3642 ext4_ext_show_leaf(inode, path);
3643
3644 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3645 allocated, newblock);
3646
3647 /* get_block() before submit the IO, split the extent */
3648 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3649 ret = ext4_split_unwritten_extents(handle, inode, map,
3650 path, flags);
3651 if (ret <= 0)
3652 goto out;
3653 /*
3654 * Flag the inode(non aio case) or end_io struct (aio case)
3655 * that this IO needs to conversion to written when IO is
3656 * completed
3657 */
3658 if (io)
3659 ext4_set_io_unwritten_flag(inode, io);
3660 else
3661 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3662 map->m_flags |= EXT4_MAP_UNWRITTEN;
3663 if (ext4_should_dioread_nolock(inode))
3664 map->m_flags |= EXT4_MAP_UNINIT;
3665 goto out;
3666 }
3667 /* IO end_io complete, convert the filled extent to written */
3668 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3669 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3670 path);
3671 if (ret >= 0) {
3672 ext4_update_inode_fsync_trans(handle, inode, 1);
3673 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3674 path, map->m_len);
3675 } else
3676 err = ret;
3677 goto out2;
3678 }
3679 /* buffered IO case */
3680 /*
3681 * repeat fallocate creation request
3682 * we already have an unwritten extent
3683 */
3684 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3685 map->m_flags |= EXT4_MAP_UNWRITTEN;
3686 goto map_out;
3687 }
3688
3689 /* buffered READ or buffered write_begin() lookup */
3690 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3691 /*
3692 * We have blocks reserved already. We
3693 * return allocated blocks so that delalloc
3694 * won't do block reservation for us. But
3695 * the buffer head will be unmapped so that
3696 * a read from the block returns 0s.
3697 */
3698 map->m_flags |= EXT4_MAP_UNWRITTEN;
3699 goto out1;
3700 }
3701
3702 /* buffered write, writepage time, convert*/
3703 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3704 if (ret >= 0)
3705 ext4_update_inode_fsync_trans(handle, inode, 1);
3706 out:
3707 if (ret <= 0) {
3708 err = ret;
3709 goto out2;
3710 } else
3711 allocated = ret;
3712 map->m_flags |= EXT4_MAP_NEW;
3713 /*
3714 * if we allocated more blocks than requested
3715 * we need to make sure we unmap the extra block
3716 * allocated. The actual needed block will get
3717 * unmapped later when we find the buffer_head marked
3718 * new.
3719 */
3720 if (allocated > map->m_len) {
3721 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3722 newblock + map->m_len,
3723 allocated - map->m_len);
3724 allocated = map->m_len;
3725 }
3726
3727 /*
3728 * If we have done fallocate with the offset that is already
3729 * delayed allocated, we would have block reservation
3730 * and quota reservation done in the delayed write path.
3731 * But fallocate would have already updated quota and block
3732 * count for this offset. So cancel these reservation
3733 */
3734 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3735 unsigned int reserved_clusters;
3736 reserved_clusters = get_reserved_cluster_alloc(inode,
3737 map->m_lblk, map->m_len);
3738 if (reserved_clusters)
3739 ext4_da_update_reserve_space(inode,
3740 reserved_clusters,
3741 0);
3742 }
3743
3744 map_out:
3745 map->m_flags |= EXT4_MAP_MAPPED;
3746 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3747 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3748 map->m_len);
3749 if (err < 0)
3750 goto out2;
3751 }
3752 out1:
3753 if (allocated > map->m_len)
3754 allocated = map->m_len;
3755 ext4_ext_show_leaf(inode, path);
3756 map->m_pblk = newblock;
3757 map->m_len = allocated;
3758 out2:
3759 if (path) {
3760 ext4_ext_drop_refs(path);
3761 kfree(path);
3762 }
3763 return err ? err : allocated;
3764 }
3765
3766 /*
3767 * get_implied_cluster_alloc - check to see if the requested
3768 * allocation (in the map structure) overlaps with a cluster already
3769 * allocated in an extent.
3770 * @sb The filesystem superblock structure
3771 * @map The requested lblk->pblk mapping
3772 * @ex The extent structure which might contain an implied
3773 * cluster allocation
3774 *
3775 * This function is called by ext4_ext_map_blocks() after we failed to
3776 * find blocks that were already in the inode's extent tree. Hence,
3777 * we know that the beginning of the requested region cannot overlap
3778 * the extent from the inode's extent tree. There are three cases we
3779 * want to catch. The first is this case:
3780 *
3781 * |--- cluster # N--|
3782 * |--- extent ---| |---- requested region ---|
3783 * |==========|
3784 *
3785 * The second case that we need to test for is this one:
3786 *
3787 * |--------- cluster # N ----------------|
3788 * |--- requested region --| |------- extent ----|
3789 * |=======================|
3790 *
3791 * The third case is when the requested region lies between two extents
3792 * within the same cluster:
3793 * |------------- cluster # N-------------|
3794 * |----- ex -----| |---- ex_right ----|
3795 * |------ requested region ------|
3796 * |================|
3797 *
3798 * In each of the above cases, we need to set the map->m_pblk and
3799 * map->m_len so it corresponds to the return the extent labelled as
3800 * "|====|" from cluster #N, since it is already in use for data in
3801 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3802 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3803 * as a new "allocated" block region. Otherwise, we will return 0 and
3804 * ext4_ext_map_blocks() will then allocate one or more new clusters
3805 * by calling ext4_mb_new_blocks().
3806 */
3807 static int get_implied_cluster_alloc(struct super_block *sb,
3808 struct ext4_map_blocks *map,
3809 struct ext4_extent *ex,
3810 struct ext4_ext_path *path)
3811 {
3812 struct ext4_sb_info *sbi = EXT4_SB(sb);
3813 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3814 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3815 ext4_lblk_t rr_cluster_start;
3816 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3817 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3818 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3819
3820 /* The extent passed in that we are trying to match */
3821 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3822 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3823
3824 /* The requested region passed into ext4_map_blocks() */
3825 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3826
3827 if ((rr_cluster_start == ex_cluster_end) ||
3828 (rr_cluster_start == ex_cluster_start)) {
3829 if (rr_cluster_start == ex_cluster_end)
3830 ee_start += ee_len - 1;
3831 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3832 c_offset;
3833 map->m_len = min(map->m_len,
3834 (unsigned) sbi->s_cluster_ratio - c_offset);
3835 /*
3836 * Check for and handle this case:
3837 *
3838 * |--------- cluster # N-------------|
3839 * |------- extent ----|
3840 * |--- requested region ---|
3841 * |===========|
3842 */
3843
3844 if (map->m_lblk < ee_block)
3845 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3846
3847 /*
3848 * Check for the case where there is already another allocated
3849 * block to the right of 'ex' but before the end of the cluster.
3850 *
3851 * |------------- cluster # N-------------|
3852 * |----- ex -----| |---- ex_right ----|
3853 * |------ requested region ------|
3854 * |================|
3855 */
3856 if (map->m_lblk > ee_block) {
3857 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3858 map->m_len = min(map->m_len, next - map->m_lblk);
3859 }
3860
3861 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3862 return 1;
3863 }
3864
3865 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3866 return 0;
3867 }
3868
3869
3870 /*
3871 * Block allocation/map/preallocation routine for extents based files
3872 *
3873 *
3874 * Need to be called with
3875 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3876 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3877 *
3878 * return > 0, number of of blocks already mapped/allocated
3879 * if create == 0 and these are pre-allocated blocks
3880 * buffer head is unmapped
3881 * otherwise blocks are mapped
3882 *
3883 * return = 0, if plain look up failed (blocks have not been allocated)
3884 * buffer head is unmapped
3885 *
3886 * return < 0, error case.
3887 */
3888 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3889 struct ext4_map_blocks *map, int flags)
3890 {
3891 struct ext4_ext_path *path = NULL;
3892 struct ext4_extent newex, *ex, *ex2;
3893 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3894 ext4_fsblk_t newblock = 0;
3895 int free_on_err = 0, err = 0, depth;
3896 unsigned int allocated = 0, offset = 0;
3897 unsigned int allocated_clusters = 0;
3898 struct ext4_allocation_request ar;
3899 ext4_io_end_t *io = ext4_inode_aio(inode);
3900 ext4_lblk_t cluster_offset;
3901 int set_unwritten = 0;
3902
3903 ext_debug("blocks %u/%u requested for inode %lu\n",
3904 map->m_lblk, map->m_len, inode->i_ino);
3905 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3906
3907 /* check in cache */
3908 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3909 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3910 if ((sbi->s_cluster_ratio > 1) &&
3911 ext4_find_delalloc_cluster(inode, map->m_lblk))
3912 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3913
3914 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3915 /*
3916 * block isn't allocated yet and
3917 * user doesn't want to allocate it
3918 */
3919 goto out2;
3920 }
3921 /* we should allocate requested block */
3922 } else {
3923 /* block is already allocated */
3924 if (sbi->s_cluster_ratio > 1)
3925 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3926 newblock = map->m_lblk
3927 - le32_to_cpu(newex.ee_block)
3928 + ext4_ext_pblock(&newex);
3929 /* number of remaining blocks in the extent */
3930 allocated = ext4_ext_get_actual_len(&newex) -
3931 (map->m_lblk - le32_to_cpu(newex.ee_block));
3932 goto out;
3933 }
3934 }
3935
3936 /* find extent for this block */
3937 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3938 if (IS_ERR(path)) {
3939 err = PTR_ERR(path);
3940 path = NULL;
3941 goto out2;
3942 }
3943
3944 depth = ext_depth(inode);
3945
3946 /*
3947 * consistent leaf must not be empty;
3948 * this situation is possible, though, _during_ tree modification;
3949 * this is why assert can't be put in ext4_ext_find_extent()
3950 */
3951 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3952 EXT4_ERROR_INODE(inode, "bad extent address "
3953 "lblock: %lu, depth: %d pblock %lld",
3954 (unsigned long) map->m_lblk, depth,
3955 path[depth].p_block);
3956 err = -EIO;
3957 goto out2;
3958 }
3959
3960 ex = path[depth].p_ext;
3961 if (ex) {
3962 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3963 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3964 unsigned short ee_len;
3965
3966 /*
3967 * Uninitialized extents are treated as holes, except that
3968 * we split out initialized portions during a write.
3969 */
3970 ee_len = ext4_ext_get_actual_len(ex);
3971
3972 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3973
3974 /* if found extent covers block, simply return it */
3975 if (in_range(map->m_lblk, ee_block, ee_len)) {
3976 newblock = map->m_lblk - ee_block + ee_start;
3977 /* number of remaining blocks in the extent */
3978 allocated = ee_len - (map->m_lblk - ee_block);
3979 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3980 ee_block, ee_len, newblock);
3981
3982 /*
3983 * Do not put uninitialized extent
3984 * in the cache
3985 */
3986 if (!ext4_ext_is_uninitialized(ex)) {
3987 ext4_ext_put_in_cache(inode, ee_block,
3988 ee_len, ee_start);
3989 goto out;
3990 }
3991 allocated = ext4_ext_handle_uninitialized_extents(
3992 handle, inode, map, path, flags,
3993 allocated, newblock);
3994 goto out3;
3995 }
3996 }
3997
3998 if ((sbi->s_cluster_ratio > 1) &&
3999 ext4_find_delalloc_cluster(inode, map->m_lblk))
4000 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4001
4002 /*
4003 * requested block isn't allocated yet;
4004 * we couldn't try to create block if create flag is zero
4005 */
4006 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4007 /*
4008 * put just found gap into cache to speed up
4009 * subsequent requests
4010 */
4011 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
4012 goto out2;
4013 }
4014
4015 /*
4016 * Okay, we need to do block allocation.
4017 */
4018 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4019 newex.ee_block = cpu_to_le32(map->m_lblk);
4020 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4021
4022 /*
4023 * If we are doing bigalloc, check to see if the extent returned
4024 * by ext4_ext_find_extent() implies a cluster we can use.
4025 */
4026 if (cluster_offset && ex &&
4027 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4028 ar.len = allocated = map->m_len;
4029 newblock = map->m_pblk;
4030 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4031 goto got_allocated_blocks;
4032 }
4033
4034 /* find neighbour allocated blocks */
4035 ar.lleft = map->m_lblk;
4036 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4037 if (err)
4038 goto out2;
4039 ar.lright = map->m_lblk;
4040 ex2 = NULL;
4041 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4042 if (err)
4043 goto out2;
4044
4045 /* Check if the extent after searching to the right implies a
4046 * cluster we can use. */
4047 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4048 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4049 ar.len = allocated = map->m_len;
4050 newblock = map->m_pblk;
4051 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4052 goto got_allocated_blocks;
4053 }
4054
4055 /*
4056 * See if request is beyond maximum number of blocks we can have in
4057 * a single extent. For an initialized extent this limit is
4058 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4059 * EXT_UNINIT_MAX_LEN.
4060 */
4061 if (map->m_len > EXT_INIT_MAX_LEN &&
4062 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4063 map->m_len = EXT_INIT_MAX_LEN;
4064 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4065 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4066 map->m_len = EXT_UNINIT_MAX_LEN;
4067
4068 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4069 newex.ee_len = cpu_to_le16(map->m_len);
4070 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4071 if (err)
4072 allocated = ext4_ext_get_actual_len(&newex);
4073 else
4074 allocated = map->m_len;
4075
4076 /* allocate new block */
4077 ar.inode = inode;
4078 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4079 ar.logical = map->m_lblk;
4080 /*
4081 * We calculate the offset from the beginning of the cluster
4082 * for the logical block number, since when we allocate a
4083 * physical cluster, the physical block should start at the
4084 * same offset from the beginning of the cluster. This is
4085 * needed so that future calls to get_implied_cluster_alloc()
4086 * work correctly.
4087 */
4088 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4089 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4090 ar.goal -= offset;
4091 ar.logical -= offset;
4092 if (S_ISREG(inode->i_mode))
4093 ar.flags = EXT4_MB_HINT_DATA;
4094 else
4095 /* disable in-core preallocation for non-regular files */
4096 ar.flags = 0;
4097 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4098 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4099 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4100 if (!newblock)
4101 goto out2;
4102 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4103 ar.goal, newblock, allocated);
4104 free_on_err = 1;
4105 allocated_clusters = ar.len;
4106 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4107 if (ar.len > allocated)
4108 ar.len = allocated;
4109
4110 got_allocated_blocks:
4111 /* try to insert new extent into found leaf and return */
4112 ext4_ext_store_pblock(&newex, newblock + offset);
4113 newex.ee_len = cpu_to_le16(ar.len);
4114 /* Mark uninitialized */
4115 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4116 ext4_ext_mark_uninitialized(&newex);
4117 map->m_flags |= EXT4_MAP_UNWRITTEN;
4118 /*
4119 * io_end structure was created for every IO write to an
4120 * uninitialized extent. To avoid unnecessary conversion,
4121 * here we flag the IO that really needs the conversion.
4122 * For non asycn direct IO case, flag the inode state
4123 * that we need to perform conversion when IO is done.
4124 */
4125 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4126 set_unwritten = 1;
4127 if (ext4_should_dioread_nolock(inode))
4128 map->m_flags |= EXT4_MAP_UNINIT;
4129 }
4130
4131 err = 0;
4132 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4133 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4134 path, ar.len);
4135 if (!err)
4136 err = ext4_ext_insert_extent(handle, inode, path,
4137 &newex, flags);
4138
4139 if (!err && set_unwritten) {
4140 if (io)
4141 ext4_set_io_unwritten_flag(inode, io);
4142 else
4143 ext4_set_inode_state(inode,
4144 EXT4_STATE_DIO_UNWRITTEN);
4145 }
4146
4147 if (err && free_on_err) {
4148 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4149 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4150 /* free data blocks we just allocated */
4151 /* not a good idea to call discard here directly,
4152 * but otherwise we'd need to call it every free() */
4153 ext4_discard_preallocations(inode);
4154 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4155 ext4_ext_get_actual_len(&newex), fb_flags);
4156 goto out2;
4157 }
4158
4159 /* previous routine could use block we allocated */
4160 newblock = ext4_ext_pblock(&newex);
4161 allocated = ext4_ext_get_actual_len(&newex);
4162 if (allocated > map->m_len)
4163 allocated = map->m_len;
4164 map->m_flags |= EXT4_MAP_NEW;
4165
4166 /*
4167 * Update reserved blocks/metadata blocks after successful
4168 * block allocation which had been deferred till now.
4169 */
4170 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4171 unsigned int reserved_clusters;
4172 /*
4173 * Check how many clusters we had reserved this allocated range
4174 */
4175 reserved_clusters = get_reserved_cluster_alloc(inode,
4176 map->m_lblk, allocated);
4177 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4178 if (reserved_clusters) {
4179 /*
4180 * We have clusters reserved for this range.
4181 * But since we are not doing actual allocation
4182 * and are simply using blocks from previously
4183 * allocated cluster, we should release the
4184 * reservation and not claim quota.
4185 */
4186 ext4_da_update_reserve_space(inode,
4187 reserved_clusters, 0);
4188 }
4189 } else {
4190 BUG_ON(allocated_clusters < reserved_clusters);
4191 /* We will claim quota for all newly allocated blocks.*/
4192 ext4_da_update_reserve_space(inode, allocated_clusters,
4193 1);
4194 if (reserved_clusters < allocated_clusters) {
4195 struct ext4_inode_info *ei = EXT4_I(inode);
4196 int reservation = allocated_clusters -
4197 reserved_clusters;
4198 /*
4199 * It seems we claimed few clusters outside of
4200 * the range of this allocation. We should give
4201 * it back to the reservation pool. This can
4202 * happen in the following case:
4203 *
4204 * * Suppose s_cluster_ratio is 4 (i.e., each
4205 * cluster has 4 blocks. Thus, the clusters
4206 * are [0-3],[4-7],[8-11]...
4207 * * First comes delayed allocation write for
4208 * logical blocks 10 & 11. Since there were no
4209 * previous delayed allocated blocks in the
4210 * range [8-11], we would reserve 1 cluster
4211 * for this write.
4212 * * Next comes write for logical blocks 3 to 8.
4213 * In this case, we will reserve 2 clusters
4214 * (for [0-3] and [4-7]; and not for [8-11] as
4215 * that range has a delayed allocated blocks.
4216 * Thus total reserved clusters now becomes 3.
4217 * * Now, during the delayed allocation writeout
4218 * time, we will first write blocks [3-8] and
4219 * allocate 3 clusters for writing these
4220 * blocks. Also, we would claim all these
4221 * three clusters above.
4222 * * Now when we come here to writeout the
4223 * blocks [10-11], we would expect to claim
4224 * the reservation of 1 cluster we had made
4225 * (and we would claim it since there are no
4226 * more delayed allocated blocks in the range
4227 * [8-11]. But our reserved cluster count had
4228 * already gone to 0.
4229 *
4230 * Thus, at the step 4 above when we determine
4231 * that there are still some unwritten delayed
4232 * allocated blocks outside of our current
4233 * block range, we should increment the
4234 * reserved clusters count so that when the
4235 * remaining blocks finally gets written, we
4236 * could claim them.
4237 */
4238 dquot_reserve_block(inode,
4239 EXT4_C2B(sbi, reservation));
4240 spin_lock(&ei->i_block_reservation_lock);
4241 ei->i_reserved_data_blocks += reservation;
4242 spin_unlock(&ei->i_block_reservation_lock);
4243 }
4244 }
4245 }
4246
4247 /*
4248 * Cache the extent and update transaction to commit on fdatasync only
4249 * when it is _not_ an uninitialized extent.
4250 */
4251 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4252 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4253 ext4_update_inode_fsync_trans(handle, inode, 1);
4254 } else
4255 ext4_update_inode_fsync_trans(handle, inode, 0);
4256 out:
4257 if (allocated > map->m_len)
4258 allocated = map->m_len;
4259 ext4_ext_show_leaf(inode, path);
4260 map->m_flags |= EXT4_MAP_MAPPED;
4261 map->m_pblk = newblock;
4262 map->m_len = allocated;
4263 out2:
4264 if (path) {
4265 ext4_ext_drop_refs(path);
4266 kfree(path);
4267 }
4268
4269 out3:
4270 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4271
4272 return err ? err : allocated;
4273 }
4274
4275 void ext4_ext_truncate(struct inode *inode)
4276 {
4277 struct address_space *mapping = inode->i_mapping;
4278 struct super_block *sb = inode->i_sb;
4279 ext4_lblk_t last_block;
4280 handle_t *handle;
4281 loff_t page_len;
4282 int err = 0;
4283
4284 /*
4285 * finish any pending end_io work so we won't run the risk of
4286 * converting any truncated blocks to initialized later
4287 */
4288 ext4_flush_unwritten_io(inode);
4289
4290 /*
4291 * probably first extent we're gonna free will be last in block
4292 */
4293 err = ext4_writepage_trans_blocks(inode);
4294 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4295 if (IS_ERR(handle))
4296 return;
4297
4298 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4299 page_len = PAGE_CACHE_SIZE -
4300 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4301
4302 err = ext4_discard_partial_page_buffers(handle,
4303 mapping, inode->i_size, page_len, 0);
4304
4305 if (err)
4306 goto out_stop;
4307 }
4308
4309 if (ext4_orphan_add(handle, inode))
4310 goto out_stop;
4311
4312 down_write(&EXT4_I(inode)->i_data_sem);
4313 ext4_ext_invalidate_cache(inode);
4314
4315 ext4_discard_preallocations(inode);
4316
4317 /*
4318 * TODO: optimization is possible here.
4319 * Probably we need not scan at all,
4320 * because page truncation is enough.
4321 */
4322
4323 /* we have to know where to truncate from in crash case */
4324 EXT4_I(inode)->i_disksize = inode->i_size;
4325 ext4_mark_inode_dirty(handle, inode);
4326
4327 last_block = (inode->i_size + sb->s_blocksize - 1)
4328 >> EXT4_BLOCK_SIZE_BITS(sb);
4329 err = ext4_es_remove_extent(inode, last_block,
4330 EXT_MAX_BLOCKS - last_block);
4331 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4332
4333 /* In a multi-transaction truncate, we only make the final
4334 * transaction synchronous.
4335 */
4336 if (IS_SYNC(inode))
4337 ext4_handle_sync(handle);
4338
4339 up_write(&EXT4_I(inode)->i_data_sem);
4340
4341 out_stop:
4342 /*
4343 * If this was a simple ftruncate() and the file will remain alive,
4344 * then we need to clear up the orphan record which we created above.
4345 * However, if this was a real unlink then we were called by
4346 * ext4_delete_inode(), and we allow that function to clean up the
4347 * orphan info for us.
4348 */
4349 if (inode->i_nlink)
4350 ext4_orphan_del(handle, inode);
4351
4352 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4353 ext4_mark_inode_dirty(handle, inode);
4354 ext4_journal_stop(handle);
4355 }
4356
4357 static void ext4_falloc_update_inode(struct inode *inode,
4358 int mode, loff_t new_size, int update_ctime)
4359 {
4360 struct timespec now;
4361
4362 if (update_ctime) {
4363 now = current_fs_time(inode->i_sb);
4364 if (!timespec_equal(&inode->i_ctime, &now))
4365 inode->i_ctime = now;
4366 }
4367 /*
4368 * Update only when preallocation was requested beyond
4369 * the file size.
4370 */
4371 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4372 if (new_size > i_size_read(inode))
4373 i_size_write(inode, new_size);
4374 if (new_size > EXT4_I(inode)->i_disksize)
4375 ext4_update_i_disksize(inode, new_size);
4376 } else {
4377 /*
4378 * Mark that we allocate beyond EOF so the subsequent truncate
4379 * can proceed even if the new size is the same as i_size.
4380 */
4381 if (new_size > i_size_read(inode))
4382 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4383 }
4384
4385 }
4386
4387 /*
4388 * preallocate space for a file. This implements ext4's fallocate file
4389 * operation, which gets called from sys_fallocate system call.
4390 * For block-mapped files, posix_fallocate should fall back to the method
4391 * of writing zeroes to the required new blocks (the same behavior which is
4392 * expected for file systems which do not support fallocate() system call).
4393 */
4394 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4395 {
4396 struct inode *inode = file->f_path.dentry->d_inode;
4397 handle_t *handle;
4398 loff_t new_size;
4399 unsigned int max_blocks;
4400 int ret = 0;
4401 int ret2 = 0;
4402 int retries = 0;
4403 int flags;
4404 struct ext4_map_blocks map;
4405 unsigned int credits, blkbits = inode->i_blkbits;
4406
4407 /* Return error if mode is not supported */
4408 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4409 return -EOPNOTSUPP;
4410
4411 if (mode & FALLOC_FL_PUNCH_HOLE)
4412 return ext4_punch_hole(file, offset, len);
4413
4414 ret = ext4_convert_inline_data(inode);
4415 if (ret)
4416 return ret;
4417
4418 /*
4419 * currently supporting (pre)allocate mode for extent-based
4420 * files _only_
4421 */
4422 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4423 return -EOPNOTSUPP;
4424
4425 trace_ext4_fallocate_enter(inode, offset, len, mode);
4426 map.m_lblk = offset >> blkbits;
4427 /*
4428 * We can't just convert len to max_blocks because
4429 * If blocksize = 4096 offset = 3072 and len = 2048
4430 */
4431 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4432 - map.m_lblk;
4433 /*
4434 * credits to insert 1 extent into extent tree
4435 */
4436 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4437 mutex_lock(&inode->i_mutex);
4438 ret = inode_newsize_ok(inode, (len + offset));
4439 if (ret) {
4440 mutex_unlock(&inode->i_mutex);
4441 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4442 return ret;
4443 }
4444 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4445 if (mode & FALLOC_FL_KEEP_SIZE)
4446 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4447 /*
4448 * Don't normalize the request if it can fit in one extent so
4449 * that it doesn't get unnecessarily split into multiple
4450 * extents.
4451 */
4452 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4453 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4454
4455 /* Prevent race condition between unwritten */
4456 ext4_flush_unwritten_io(inode);
4457 retry:
4458 while (ret >= 0 && ret < max_blocks) {
4459 map.m_lblk = map.m_lblk + ret;
4460 map.m_len = max_blocks = max_blocks - ret;
4461 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4462 credits);
4463 if (IS_ERR(handle)) {
4464 ret = PTR_ERR(handle);
4465 break;
4466 }
4467 ret = ext4_map_blocks(handle, inode, &map, flags);
4468 if (ret <= 0) {
4469 #ifdef EXT4FS_DEBUG
4470 ext4_warning(inode->i_sb,
4471 "inode #%lu: block %u: len %u: "
4472 "ext4_ext_map_blocks returned %d",
4473 inode->i_ino, map.m_lblk,
4474 map.m_len, ret);
4475 #endif
4476 ext4_mark_inode_dirty(handle, inode);
4477 ret2 = ext4_journal_stop(handle);
4478 break;
4479 }
4480 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4481 blkbits) >> blkbits))
4482 new_size = offset + len;
4483 else
4484 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4485
4486 ext4_falloc_update_inode(inode, mode, new_size,
4487 (map.m_flags & EXT4_MAP_NEW));
4488 ext4_mark_inode_dirty(handle, inode);
4489 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4490 ext4_handle_sync(handle);
4491 ret2 = ext4_journal_stop(handle);
4492 if (ret2)
4493 break;
4494 }
4495 if (ret == -ENOSPC &&
4496 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4497 ret = 0;
4498 goto retry;
4499 }
4500 mutex_unlock(&inode->i_mutex);
4501 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4502 ret > 0 ? ret2 : ret);
4503 return ret > 0 ? ret2 : ret;
4504 }
4505
4506 /*
4507 * This function convert a range of blocks to written extents
4508 * The caller of this function will pass the start offset and the size.
4509 * all unwritten extents within this range will be converted to
4510 * written extents.
4511 *
4512 * This function is called from the direct IO end io call back
4513 * function, to convert the fallocated extents after IO is completed.
4514 * Returns 0 on success.
4515 */
4516 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4517 ssize_t len)
4518 {
4519 handle_t *handle;
4520 unsigned int max_blocks;
4521 int ret = 0;
4522 int ret2 = 0;
4523 struct ext4_map_blocks map;
4524 unsigned int credits, blkbits = inode->i_blkbits;
4525
4526 map.m_lblk = offset >> blkbits;
4527 /*
4528 * We can't just convert len to max_blocks because
4529 * If blocksize = 4096 offset = 3072 and len = 2048
4530 */
4531 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4532 map.m_lblk);
4533 /*
4534 * credits to insert 1 extent into extent tree
4535 */
4536 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4537 while (ret >= 0 && ret < max_blocks) {
4538 map.m_lblk += ret;
4539 map.m_len = (max_blocks -= ret);
4540 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4541 if (IS_ERR(handle)) {
4542 ret = PTR_ERR(handle);
4543 break;
4544 }
4545 ret = ext4_map_blocks(handle, inode, &map,
4546 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4547 if (ret <= 0)
4548 ext4_warning(inode->i_sb,
4549 "inode #%lu: block %u: len %u: "
4550 "ext4_ext_map_blocks returned %d",
4551 inode->i_ino, map.m_lblk,
4552 map.m_len, ret);
4553 ext4_mark_inode_dirty(handle, inode);
4554 ret2 = ext4_journal_stop(handle);
4555 if (ret <= 0 || ret2 )
4556 break;
4557 }
4558 return ret > 0 ? ret2 : ret;
4559 }
4560
4561 /*
4562 * If newex is not existing extent (newex->ec_start equals zero) find
4563 * delayed extent at start of newex and update newex accordingly and
4564 * return start of the next delayed extent.
4565 *
4566 * If newex is existing extent (newex->ec_start is not equal zero)
4567 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4568 * extent found. Leave newex unmodified.
4569 */
4570 static int ext4_find_delayed_extent(struct inode *inode,
4571 struct ext4_ext_cache *newex)
4572 {
4573 struct extent_status es;
4574 ext4_lblk_t block, next_del;
4575
4576 ext4_es_find_delayed_extent(inode, newex->ec_block, &es);
4577
4578 if (newex->ec_start == 0) {
4579 /*
4580 * No extent in extent-tree contains block @newex->ec_start,
4581 * then the block may stay in 1)a hole or 2)delayed-extent.
4582 */
4583 if (es.es_len == 0)
4584 /* A hole found. */
4585 return 0;
4586
4587 if (es.es_lblk > newex->ec_block) {
4588 /* A hole found. */
4589 newex->ec_len = min(es.es_lblk - newex->ec_block,
4590 newex->ec_len);
4591 return 0;
4592 }
4593
4594 newex->ec_len = es.es_lblk + es.es_len - newex->ec_block;
4595 }
4596
4597 block = newex->ec_block + newex->ec_len;
4598 ext4_es_find_delayed_extent(inode, block, &es);
4599 if (es.es_len == 0)
4600 next_del = EXT_MAX_BLOCKS;
4601 else
4602 next_del = es.es_lblk;
4603
4604 return next_del;
4605 }
4606 /* fiemap flags we can handle specified here */
4607 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4608
4609 static int ext4_xattr_fiemap(struct inode *inode,
4610 struct fiemap_extent_info *fieinfo)
4611 {
4612 __u64 physical = 0;
4613 __u64 length;
4614 __u32 flags = FIEMAP_EXTENT_LAST;
4615 int blockbits = inode->i_sb->s_blocksize_bits;
4616 int error = 0;
4617
4618 /* in-inode? */
4619 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4620 struct ext4_iloc iloc;
4621 int offset; /* offset of xattr in inode */
4622
4623 error = ext4_get_inode_loc(inode, &iloc);
4624 if (error)
4625 return error;
4626 physical = iloc.bh->b_blocknr << blockbits;
4627 offset = EXT4_GOOD_OLD_INODE_SIZE +
4628 EXT4_I(inode)->i_extra_isize;
4629 physical += offset;
4630 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4631 flags |= FIEMAP_EXTENT_DATA_INLINE;
4632 brelse(iloc.bh);
4633 } else { /* external block */
4634 physical = EXT4_I(inode)->i_file_acl << blockbits;
4635 length = inode->i_sb->s_blocksize;
4636 }
4637
4638 if (physical)
4639 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4640 length, flags);
4641 return (error < 0 ? error : 0);
4642 }
4643
4644 /*
4645 * ext4_ext_punch_hole
4646 *
4647 * Punches a hole of "length" bytes in a file starting
4648 * at byte "offset"
4649 *
4650 * @inode: The inode of the file to punch a hole in
4651 * @offset: The starting byte offset of the hole
4652 * @length: The length of the hole
4653 *
4654 * Returns the number of blocks removed or negative on err
4655 */
4656 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4657 {
4658 struct inode *inode = file->f_path.dentry->d_inode;
4659 struct super_block *sb = inode->i_sb;
4660 ext4_lblk_t first_block, stop_block;
4661 struct address_space *mapping = inode->i_mapping;
4662 handle_t *handle;
4663 loff_t first_page, last_page, page_len;
4664 loff_t first_page_offset, last_page_offset;
4665 int credits, err = 0;
4666
4667 /*
4668 * Write out all dirty pages to avoid race conditions
4669 * Then release them.
4670 */
4671 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4672 err = filemap_write_and_wait_range(mapping,
4673 offset, offset + length - 1);
4674
4675 if (err)
4676 return err;
4677 }
4678
4679 mutex_lock(&inode->i_mutex);
4680 /* It's not possible punch hole on append only file */
4681 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4682 err = -EPERM;
4683 goto out_mutex;
4684 }
4685 if (IS_SWAPFILE(inode)) {
4686 err = -ETXTBSY;
4687 goto out_mutex;
4688 }
4689
4690 /* No need to punch hole beyond i_size */
4691 if (offset >= inode->i_size)
4692 goto out_mutex;
4693
4694 /*
4695 * If the hole extends beyond i_size, set the hole
4696 * to end after the page that contains i_size
4697 */
4698 if (offset + length > inode->i_size) {
4699 length = inode->i_size +
4700 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4701 offset;
4702 }
4703
4704 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4705 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4706
4707 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4708 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4709
4710 /* Now release the pages */
4711 if (last_page_offset > first_page_offset) {
4712 truncate_pagecache_range(inode, first_page_offset,
4713 last_page_offset - 1);
4714 }
4715
4716 /* Wait all existing dio workers, newcomers will block on i_mutex */
4717 ext4_inode_block_unlocked_dio(inode);
4718 err = ext4_flush_unwritten_io(inode);
4719 if (err)
4720 goto out_dio;
4721 inode_dio_wait(inode);
4722
4723 credits = ext4_writepage_trans_blocks(inode);
4724 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4725 if (IS_ERR(handle)) {
4726 err = PTR_ERR(handle);
4727 goto out_dio;
4728 }
4729
4730
4731 /*
4732 * Now we need to zero out the non-page-aligned data in the
4733 * pages at the start and tail of the hole, and unmap the buffer
4734 * heads for the block aligned regions of the page that were
4735 * completely zeroed.
4736 */
4737 if (first_page > last_page) {
4738 /*
4739 * If the file space being truncated is contained within a page
4740 * just zero out and unmap the middle of that page
4741 */
4742 err = ext4_discard_partial_page_buffers(handle,
4743 mapping, offset, length, 0);
4744
4745 if (err)
4746 goto out;
4747 } else {
4748 /*
4749 * zero out and unmap the partial page that contains
4750 * the start of the hole
4751 */
4752 page_len = first_page_offset - offset;
4753 if (page_len > 0) {
4754 err = ext4_discard_partial_page_buffers(handle, mapping,
4755 offset, page_len, 0);
4756 if (err)
4757 goto out;
4758 }
4759
4760 /*
4761 * zero out and unmap the partial page that contains
4762 * the end of the hole
4763 */
4764 page_len = offset + length - last_page_offset;
4765 if (page_len > 0) {
4766 err = ext4_discard_partial_page_buffers(handle, mapping,
4767 last_page_offset, page_len, 0);
4768 if (err)
4769 goto out;
4770 }
4771 }
4772
4773 /*
4774 * If i_size is contained in the last page, we need to
4775 * unmap and zero the partial page after i_size
4776 */
4777 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4778 inode->i_size % PAGE_CACHE_SIZE != 0) {
4779
4780 page_len = PAGE_CACHE_SIZE -
4781 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4782
4783 if (page_len > 0) {
4784 err = ext4_discard_partial_page_buffers(handle,
4785 mapping, inode->i_size, page_len, 0);
4786
4787 if (err)
4788 goto out;
4789 }
4790 }
4791
4792 first_block = (offset + sb->s_blocksize - 1) >>
4793 EXT4_BLOCK_SIZE_BITS(sb);
4794 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4795
4796 /* If there are no blocks to remove, return now */
4797 if (first_block >= stop_block)
4798 goto out;
4799
4800 down_write(&EXT4_I(inode)->i_data_sem);
4801 ext4_ext_invalidate_cache(inode);
4802 ext4_discard_preallocations(inode);
4803
4804 err = ext4_es_remove_extent(inode, first_block,
4805 stop_block - first_block);
4806 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4807
4808 ext4_ext_invalidate_cache(inode);
4809 ext4_discard_preallocations(inode);
4810
4811 if (IS_SYNC(inode))
4812 ext4_handle_sync(handle);
4813
4814 up_write(&EXT4_I(inode)->i_data_sem);
4815
4816 out:
4817 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4818 ext4_mark_inode_dirty(handle, inode);
4819 ext4_journal_stop(handle);
4820 out_dio:
4821 ext4_inode_resume_unlocked_dio(inode);
4822 out_mutex:
4823 mutex_unlock(&inode->i_mutex);
4824 return err;
4825 }
4826
4827 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4828 __u64 start, __u64 len)
4829 {
4830 ext4_lblk_t start_blk;
4831 int error = 0;
4832
4833 if (ext4_has_inline_data(inode)) {
4834 int has_inline = 1;
4835
4836 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4837
4838 if (has_inline)
4839 return error;
4840 }
4841
4842 /* fallback to generic here if not in extents fmt */
4843 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4844 return generic_block_fiemap(inode, fieinfo, start, len,
4845 ext4_get_block);
4846
4847 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4848 return -EBADR;
4849
4850 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4851 error = ext4_xattr_fiemap(inode, fieinfo);
4852 } else {
4853 ext4_lblk_t len_blks;
4854 __u64 last_blk;
4855
4856 start_blk = start >> inode->i_sb->s_blocksize_bits;
4857 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4858 if (last_blk >= EXT_MAX_BLOCKS)
4859 last_blk = EXT_MAX_BLOCKS-1;
4860 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4861
4862 /*
4863 * Walk the extent tree gathering extent information
4864 * and pushing extents back to the user.
4865 */
4866 error = ext4_fill_fiemap_extents(inode, start_blk,
4867 len_blks, fieinfo);
4868 }
4869
4870 return error;
4871 }