]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
ext4: use s_extent_max_zeroout_kb value as number of kb
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
80
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
89 {
90 struct ext4_extent_tail *et;
91
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
95
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
120 {
121 int err;
122
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
133
134 return err;
135 }
136
137 /*
138 * could return:
139 * - EROFS
140 * - ENOMEM
141 */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 handle_t *handle, struct inode *inode,
164 struct ext4_ext_path *path)
165 {
166 int err;
167 if (path->p_bh) {
168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 /* path points to block */
170 err = __ext4_handle_dirty_metadata(where, line, handle,
171 inode, path->p_bh);
172 } else {
173 /* path points to leaf/index in inode body */
174 err = ext4_mark_inode_dirty(handle, inode);
175 }
176 return err;
177 }
178
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 struct ext4_ext_path *path,
181 ext4_lblk_t block)
182 {
183 if (path) {
184 int depth = path->p_depth;
185 struct ext4_extent *ex;
186
187 /*
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
202 * common.
203 */
204 ex = path[depth].p_ext;
205 if (ex) {
206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209 if (block > ext_block)
210 return ext_pblk + (block - ext_block);
211 else
212 return ext_pblk - (ext_block - block);
213 }
214
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path[depth].p_bh)
218 return path[depth].p_bh->b_blocknr;
219 }
220
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode);
223 }
224
225 /*
226 * Allocation for a meta data block
227 */
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 struct ext4_ext_path *path,
231 struct ext4_extent *ex, int *err, unsigned int flags)
232 {
233 ext4_fsblk_t goal, newblock;
234
235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237 NULL, err);
238 return newblock;
239 }
240
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 {
243 int size;
244
245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 if (!check && size > 6)
249 size = 6;
250 #endif
251 return size;
252 }
253
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 {
256 int size;
257
258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 if (!check && size > 5)
262 size = 5;
263 #endif
264 return size;
265 }
266
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 {
269 int size;
270
271 size = sizeof(EXT4_I(inode)->i_data);
272 size -= sizeof(struct ext4_extent_header);
273 size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 if (!check && size > 3)
276 size = 3;
277 #endif
278 return size;
279 }
280
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 {
283 int size;
284
285 size = sizeof(EXT4_I(inode)->i_data);
286 size -= sizeof(struct ext4_extent_header);
287 size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 if (!check && size > 4)
290 size = 4;
291 #endif
292 return size;
293 }
294
295 /*
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
299 */
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301 {
302 struct ext4_inode_info *ei = EXT4_I(inode);
303 int idxs;
304
305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 / sizeof(struct ext4_extent_idx));
307
308 /*
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
315 */
316 if (ei->i_da_metadata_calc_len &&
317 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318 int num = 0;
319
320 if ((ei->i_da_metadata_calc_len % idxs) == 0)
321 num++;
322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323 num++;
324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325 num++;
326 ei->i_da_metadata_calc_len = 0;
327 } else
328 ei->i_da_metadata_calc_len++;
329 ei->i_da_metadata_calc_last_lblock++;
330 return num;
331 }
332
333 /*
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
336 */
337 ei->i_da_metadata_calc_len = 1;
338 ei->i_da_metadata_calc_last_lblock = lblock;
339 return ext_depth(inode) + 1;
340 }
341
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
344 {
345 int max;
346
347 if (depth == ext_depth(inode)) {
348 if (depth == 0)
349 max = ext4_ext_space_root(inode, 1);
350 else
351 max = ext4_ext_space_root_idx(inode, 1);
352 } else {
353 if (depth == 0)
354 max = ext4_ext_space_block(inode, 1);
355 else
356 max = ext4_ext_space_block_idx(inode, 1);
357 }
358
359 return max;
360 }
361
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363 {
364 ext4_fsblk_t block = ext4_ext_pblock(ext);
365 int len = ext4_ext_get_actual_len(ext);
366
367 if (len == 0)
368 return 0;
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 }
371
372 static int ext4_valid_extent_idx(struct inode *inode,
373 struct ext4_extent_idx *ext_idx)
374 {
375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 }
379
380 static int ext4_valid_extent_entries(struct inode *inode,
381 struct ext4_extent_header *eh,
382 int depth)
383 {
384 unsigned short entries;
385 if (eh->eh_entries == 0)
386 return 1;
387
388 entries = le16_to_cpu(eh->eh_entries);
389
390 if (depth == 0) {
391 /* leaf entries */
392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393 while (entries) {
394 if (!ext4_valid_extent(inode, ext))
395 return 0;
396 ext++;
397 entries--;
398 }
399 } else {
400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401 while (entries) {
402 if (!ext4_valid_extent_idx(inode, ext_idx))
403 return 0;
404 ext_idx++;
405 entries--;
406 }
407 }
408 return 1;
409 }
410
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 struct inode *inode, struct ext4_extent_header *eh,
413 int depth)
414 {
415 const char *error_msg;
416 int max = 0;
417
418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 error_msg = "invalid magic";
420 goto corrupted;
421 }
422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 error_msg = "unexpected eh_depth";
424 goto corrupted;
425 }
426 if (unlikely(eh->eh_max == 0)) {
427 error_msg = "invalid eh_max";
428 goto corrupted;
429 }
430 max = ext4_ext_max_entries(inode, depth);
431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 error_msg = "too large eh_max";
433 goto corrupted;
434 }
435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 error_msg = "invalid eh_entries";
437 goto corrupted;
438 }
439 if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 error_msg = "invalid extent entries";
441 goto corrupted;
442 }
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode) != depth &&
445 !ext4_extent_block_csum_verify(inode, eh)) {
446 error_msg = "extent tree corrupted";
447 goto corrupted;
448 }
449 return 0;
450
451 corrupted:
452 ext4_error_inode(inode, function, line, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg, le16_to_cpu(eh->eh_magic),
456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 max, le16_to_cpu(eh->eh_depth), depth);
458
459 return -EIO;
460 }
461
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465 int ext4_ext_check_inode(struct inode *inode)
466 {
467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468 }
469
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471 struct inode *inode,
472 struct ext4_extent_header *eh,
473 int depth,
474 struct buffer_head *bh)
475 {
476 int ret;
477
478 if (buffer_verified(bh))
479 return 0;
480 ret = ext4_ext_check(inode, eh, depth);
481 if (ret)
482 return ret;
483 set_buffer_verified(bh);
484 return ret;
485 }
486
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492 {
493 int k, l = path->p_depth;
494
495 ext_debug("path:");
496 for (k = 0; k <= l; k++, path++) {
497 if (path->p_idx) {
498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 ext4_idx_pblock(path->p_idx));
500 } else if (path->p_ext) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path->p_ext->ee_block),
503 ext4_ext_is_uninitialized(path->p_ext),
504 ext4_ext_get_actual_len(path->p_ext),
505 ext4_ext_pblock(path->p_ext));
506 } else
507 ext_debug(" []");
508 }
509 ext_debug("\n");
510 }
511
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513 {
514 int depth = ext_depth(inode);
515 struct ext4_extent_header *eh;
516 struct ext4_extent *ex;
517 int i;
518
519 if (!path)
520 return;
521
522 eh = path[depth].p_hdr;
523 ex = EXT_FIRST_EXTENT(eh);
524
525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 ext4_ext_is_uninitialized(ex),
530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531 }
532 ext_debug("\n");
533 }
534
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 ext4_fsblk_t newblock, int level)
537 {
538 int depth = ext_depth(inode);
539 struct ext4_extent *ex;
540
541 if (depth != level) {
542 struct ext4_extent_idx *idx;
543 idx = path[level].p_idx;
544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 le32_to_cpu(idx->ei_block),
547 ext4_idx_pblock(idx),
548 newblock);
549 idx++;
550 }
551
552 return;
553 }
554
555 ex = path[depth].p_ext;
556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex->ee_block),
559 ext4_ext_pblock(ex),
560 ext4_ext_is_uninitialized(ex),
561 ext4_ext_get_actual_len(ex),
562 newblock);
563 ex++;
564 }
565 }
566
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
572
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
574 {
575 int depth = path->p_depth;
576 int i;
577
578 for (i = 0; i <= depth; i++, path++)
579 if (path->p_bh) {
580 brelse(path->p_bh);
581 path->p_bh = NULL;
582 }
583 }
584
585 /*
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
589 */
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592 struct ext4_ext_path *path, ext4_lblk_t block)
593 {
594 struct ext4_extent_header *eh = path->p_hdr;
595 struct ext4_extent_idx *r, *l, *m;
596
597
598 ext_debug("binsearch for %u(idx): ", block);
599
600 l = EXT_FIRST_INDEX(eh) + 1;
601 r = EXT_LAST_INDEX(eh);
602 while (l <= r) {
603 m = l + (r - l) / 2;
604 if (block < le32_to_cpu(m->ei_block))
605 r = m - 1;
606 else
607 l = m + 1;
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 m, le32_to_cpu(m->ei_block),
610 r, le32_to_cpu(r->ei_block));
611 }
612
613 path->p_idx = l - 1;
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 ext4_idx_pblock(path->p_idx));
616
617 #ifdef CHECK_BINSEARCH
618 {
619 struct ext4_extent_idx *chix, *ix;
620 int k;
621
622 chix = ix = EXT_FIRST_INDEX(eh);
623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624 if (k != 0 &&
625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 printk(KERN_DEBUG "k=%d, ix=0x%p, "
627 "first=0x%p\n", k,
628 ix, EXT_FIRST_INDEX(eh));
629 printk(KERN_DEBUG "%u <= %u\n",
630 le32_to_cpu(ix->ei_block),
631 le32_to_cpu(ix[-1].ei_block));
632 }
633 BUG_ON(k && le32_to_cpu(ix->ei_block)
634 <= le32_to_cpu(ix[-1].ei_block));
635 if (block < le32_to_cpu(ix->ei_block))
636 break;
637 chix = ix;
638 }
639 BUG_ON(chix != path->p_idx);
640 }
641 #endif
642
643 }
644
645 /*
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
649 */
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652 struct ext4_ext_path *path, ext4_lblk_t block)
653 {
654 struct ext4_extent_header *eh = path->p_hdr;
655 struct ext4_extent *r, *l, *m;
656
657 if (eh->eh_entries == 0) {
658 /*
659 * this leaf is empty:
660 * we get such a leaf in split/add case
661 */
662 return;
663 }
664
665 ext_debug("binsearch for %u: ", block);
666
667 l = EXT_FIRST_EXTENT(eh) + 1;
668 r = EXT_LAST_EXTENT(eh);
669
670 while (l <= r) {
671 m = l + (r - l) / 2;
672 if (block < le32_to_cpu(m->ee_block))
673 r = m - 1;
674 else
675 l = m + 1;
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 m, le32_to_cpu(m->ee_block),
678 r, le32_to_cpu(r->ee_block));
679 }
680
681 path->p_ext = l - 1;
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path->p_ext->ee_block),
684 ext4_ext_pblock(path->p_ext),
685 ext4_ext_is_uninitialized(path->p_ext),
686 ext4_ext_get_actual_len(path->p_ext));
687
688 #ifdef CHECK_BINSEARCH
689 {
690 struct ext4_extent *chex, *ex;
691 int k;
692
693 chex = ex = EXT_FIRST_EXTENT(eh);
694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 BUG_ON(k && le32_to_cpu(ex->ee_block)
696 <= le32_to_cpu(ex[-1].ee_block));
697 if (block < le32_to_cpu(ex->ee_block))
698 break;
699 chex = ex;
700 }
701 BUG_ON(chex != path->p_ext);
702 }
703 #endif
704
705 }
706
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708 {
709 struct ext4_extent_header *eh;
710
711 eh = ext_inode_hdr(inode);
712 eh->eh_depth = 0;
713 eh->eh_entries = 0;
714 eh->eh_magic = EXT4_EXT_MAGIC;
715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 ext4_mark_inode_dirty(handle, inode);
717 return 0;
718 }
719
720 struct ext4_ext_path *
721 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
722 struct ext4_ext_path *path)
723 {
724 struct ext4_extent_header *eh;
725 struct buffer_head *bh;
726 short int depth, i, ppos = 0, alloc = 0;
727 int ret;
728
729 eh = ext_inode_hdr(inode);
730 depth = ext_depth(inode);
731
732 /* account possible depth increase */
733 if (!path) {
734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
735 GFP_NOFS);
736 if (!path)
737 return ERR_PTR(-ENOMEM);
738 alloc = 1;
739 }
740 path[0].p_hdr = eh;
741 path[0].p_bh = NULL;
742
743 i = depth;
744 /* walk through the tree */
745 while (i) {
746 ext_debug("depth %d: num %d, max %d\n",
747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
748
749 ext4_ext_binsearch_idx(inode, path + ppos, block);
750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751 path[ppos].p_depth = i;
752 path[ppos].p_ext = NULL;
753
754 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
755 if (unlikely(!bh)) {
756 ret = -ENOMEM;
757 goto err;
758 }
759 if (!bh_uptodate_or_lock(bh)) {
760 trace_ext4_ext_load_extent(inode, block,
761 path[ppos].p_block);
762 ret = bh_submit_read(bh);
763 if (ret < 0) {
764 put_bh(bh);
765 goto err;
766 }
767 }
768 eh = ext_block_hdr(bh);
769 ppos++;
770 if (unlikely(ppos > depth)) {
771 put_bh(bh);
772 EXT4_ERROR_INODE(inode,
773 "ppos %d > depth %d", ppos, depth);
774 ret = -EIO;
775 goto err;
776 }
777 path[ppos].p_bh = bh;
778 path[ppos].p_hdr = eh;
779 i--;
780
781 ret = ext4_ext_check_block(inode, eh, i, bh);
782 if (ret < 0)
783 goto err;
784 }
785
786 path[ppos].p_depth = i;
787 path[ppos].p_ext = NULL;
788 path[ppos].p_idx = NULL;
789
790 /* find extent */
791 ext4_ext_binsearch(inode, path + ppos, block);
792 /* if not an empty leaf */
793 if (path[ppos].p_ext)
794 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
795
796 ext4_ext_show_path(inode, path);
797
798 return path;
799
800 err:
801 ext4_ext_drop_refs(path);
802 if (alloc)
803 kfree(path);
804 return ERR_PTR(ret);
805 }
806
807 /*
808 * ext4_ext_insert_index:
809 * insert new index [@logical;@ptr] into the block at @curp;
810 * check where to insert: before @curp or after @curp
811 */
812 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
813 struct ext4_ext_path *curp,
814 int logical, ext4_fsblk_t ptr)
815 {
816 struct ext4_extent_idx *ix;
817 int len, err;
818
819 err = ext4_ext_get_access(handle, inode, curp);
820 if (err)
821 return err;
822
823 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
824 EXT4_ERROR_INODE(inode,
825 "logical %d == ei_block %d!",
826 logical, le32_to_cpu(curp->p_idx->ei_block));
827 return -EIO;
828 }
829
830 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
831 >= le16_to_cpu(curp->p_hdr->eh_max))) {
832 EXT4_ERROR_INODE(inode,
833 "eh_entries %d >= eh_max %d!",
834 le16_to_cpu(curp->p_hdr->eh_entries),
835 le16_to_cpu(curp->p_hdr->eh_max));
836 return -EIO;
837 }
838
839 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
840 /* insert after */
841 ext_debug("insert new index %d after: %llu\n", logical, ptr);
842 ix = curp->p_idx + 1;
843 } else {
844 /* insert before */
845 ext_debug("insert new index %d before: %llu\n", logical, ptr);
846 ix = curp->p_idx;
847 }
848
849 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
850 BUG_ON(len < 0);
851 if (len > 0) {
852 ext_debug("insert new index %d: "
853 "move %d indices from 0x%p to 0x%p\n",
854 logical, len, ix, ix + 1);
855 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
856 }
857
858 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
859 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
860 return -EIO;
861 }
862
863 ix->ei_block = cpu_to_le32(logical);
864 ext4_idx_store_pblock(ix, ptr);
865 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
866
867 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
868 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
869 return -EIO;
870 }
871
872 err = ext4_ext_dirty(handle, inode, curp);
873 ext4_std_error(inode->i_sb, err);
874
875 return err;
876 }
877
878 /*
879 * ext4_ext_split:
880 * inserts new subtree into the path, using free index entry
881 * at depth @at:
882 * - allocates all needed blocks (new leaf and all intermediate index blocks)
883 * - makes decision where to split
884 * - moves remaining extents and index entries (right to the split point)
885 * into the newly allocated blocks
886 * - initializes subtree
887 */
888 static int ext4_ext_split(handle_t *handle, struct inode *inode,
889 unsigned int flags,
890 struct ext4_ext_path *path,
891 struct ext4_extent *newext, int at)
892 {
893 struct buffer_head *bh = NULL;
894 int depth = ext_depth(inode);
895 struct ext4_extent_header *neh;
896 struct ext4_extent_idx *fidx;
897 int i = at, k, m, a;
898 ext4_fsblk_t newblock, oldblock;
899 __le32 border;
900 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
901 int err = 0;
902
903 /* make decision: where to split? */
904 /* FIXME: now decision is simplest: at current extent */
905
906 /* if current leaf will be split, then we should use
907 * border from split point */
908 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
909 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
910 return -EIO;
911 }
912 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
913 border = path[depth].p_ext[1].ee_block;
914 ext_debug("leaf will be split."
915 " next leaf starts at %d\n",
916 le32_to_cpu(border));
917 } else {
918 border = newext->ee_block;
919 ext_debug("leaf will be added."
920 " next leaf starts at %d\n",
921 le32_to_cpu(border));
922 }
923
924 /*
925 * If error occurs, then we break processing
926 * and mark filesystem read-only. index won't
927 * be inserted and tree will be in consistent
928 * state. Next mount will repair buffers too.
929 */
930
931 /*
932 * Get array to track all allocated blocks.
933 * We need this to handle errors and free blocks
934 * upon them.
935 */
936 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
937 if (!ablocks)
938 return -ENOMEM;
939
940 /* allocate all needed blocks */
941 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
942 for (a = 0; a < depth - at; a++) {
943 newblock = ext4_ext_new_meta_block(handle, inode, path,
944 newext, &err, flags);
945 if (newblock == 0)
946 goto cleanup;
947 ablocks[a] = newblock;
948 }
949
950 /* initialize new leaf */
951 newblock = ablocks[--a];
952 if (unlikely(newblock == 0)) {
953 EXT4_ERROR_INODE(inode, "newblock == 0!");
954 err = -EIO;
955 goto cleanup;
956 }
957 bh = sb_getblk(inode->i_sb, newblock);
958 if (unlikely(!bh)) {
959 err = -ENOMEM;
960 goto cleanup;
961 }
962 lock_buffer(bh);
963
964 err = ext4_journal_get_create_access(handle, bh);
965 if (err)
966 goto cleanup;
967
968 neh = ext_block_hdr(bh);
969 neh->eh_entries = 0;
970 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
971 neh->eh_magic = EXT4_EXT_MAGIC;
972 neh->eh_depth = 0;
973
974 /* move remainder of path[depth] to the new leaf */
975 if (unlikely(path[depth].p_hdr->eh_entries !=
976 path[depth].p_hdr->eh_max)) {
977 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
978 path[depth].p_hdr->eh_entries,
979 path[depth].p_hdr->eh_max);
980 err = -EIO;
981 goto cleanup;
982 }
983 /* start copy from next extent */
984 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
985 ext4_ext_show_move(inode, path, newblock, depth);
986 if (m) {
987 struct ext4_extent *ex;
988 ex = EXT_FIRST_EXTENT(neh);
989 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
990 le16_add_cpu(&neh->eh_entries, m);
991 }
992
993 ext4_extent_block_csum_set(inode, neh);
994 set_buffer_uptodate(bh);
995 unlock_buffer(bh);
996
997 err = ext4_handle_dirty_metadata(handle, inode, bh);
998 if (err)
999 goto cleanup;
1000 brelse(bh);
1001 bh = NULL;
1002
1003 /* correct old leaf */
1004 if (m) {
1005 err = ext4_ext_get_access(handle, inode, path + depth);
1006 if (err)
1007 goto cleanup;
1008 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1009 err = ext4_ext_dirty(handle, inode, path + depth);
1010 if (err)
1011 goto cleanup;
1012
1013 }
1014
1015 /* create intermediate indexes */
1016 k = depth - at - 1;
1017 if (unlikely(k < 0)) {
1018 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1019 err = -EIO;
1020 goto cleanup;
1021 }
1022 if (k)
1023 ext_debug("create %d intermediate indices\n", k);
1024 /* insert new index into current index block */
1025 /* current depth stored in i var */
1026 i = depth - 1;
1027 while (k--) {
1028 oldblock = newblock;
1029 newblock = ablocks[--a];
1030 bh = sb_getblk(inode->i_sb, newblock);
1031 if (unlikely(!bh)) {
1032 err = -ENOMEM;
1033 goto cleanup;
1034 }
1035 lock_buffer(bh);
1036
1037 err = ext4_journal_get_create_access(handle, bh);
1038 if (err)
1039 goto cleanup;
1040
1041 neh = ext_block_hdr(bh);
1042 neh->eh_entries = cpu_to_le16(1);
1043 neh->eh_magic = EXT4_EXT_MAGIC;
1044 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1045 neh->eh_depth = cpu_to_le16(depth - i);
1046 fidx = EXT_FIRST_INDEX(neh);
1047 fidx->ei_block = border;
1048 ext4_idx_store_pblock(fidx, oldblock);
1049
1050 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1051 i, newblock, le32_to_cpu(border), oldblock);
1052
1053 /* move remainder of path[i] to the new index block */
1054 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1055 EXT_LAST_INDEX(path[i].p_hdr))) {
1056 EXT4_ERROR_INODE(inode,
1057 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1058 le32_to_cpu(path[i].p_ext->ee_block));
1059 err = -EIO;
1060 goto cleanup;
1061 }
1062 /* start copy indexes */
1063 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1064 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1065 EXT_MAX_INDEX(path[i].p_hdr));
1066 ext4_ext_show_move(inode, path, newblock, i);
1067 if (m) {
1068 memmove(++fidx, path[i].p_idx,
1069 sizeof(struct ext4_extent_idx) * m);
1070 le16_add_cpu(&neh->eh_entries, m);
1071 }
1072 ext4_extent_block_csum_set(inode, neh);
1073 set_buffer_uptodate(bh);
1074 unlock_buffer(bh);
1075
1076 err = ext4_handle_dirty_metadata(handle, inode, bh);
1077 if (err)
1078 goto cleanup;
1079 brelse(bh);
1080 bh = NULL;
1081
1082 /* correct old index */
1083 if (m) {
1084 err = ext4_ext_get_access(handle, inode, path + i);
1085 if (err)
1086 goto cleanup;
1087 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1088 err = ext4_ext_dirty(handle, inode, path + i);
1089 if (err)
1090 goto cleanup;
1091 }
1092
1093 i--;
1094 }
1095
1096 /* insert new index */
1097 err = ext4_ext_insert_index(handle, inode, path + at,
1098 le32_to_cpu(border), newblock);
1099
1100 cleanup:
1101 if (bh) {
1102 if (buffer_locked(bh))
1103 unlock_buffer(bh);
1104 brelse(bh);
1105 }
1106
1107 if (err) {
1108 /* free all allocated blocks in error case */
1109 for (i = 0; i < depth; i++) {
1110 if (!ablocks[i])
1111 continue;
1112 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1113 EXT4_FREE_BLOCKS_METADATA);
1114 }
1115 }
1116 kfree(ablocks);
1117
1118 return err;
1119 }
1120
1121 /*
1122 * ext4_ext_grow_indepth:
1123 * implements tree growing procedure:
1124 * - allocates new block
1125 * - moves top-level data (index block or leaf) into the new block
1126 * - initializes new top-level, creating index that points to the
1127 * just created block
1128 */
1129 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1130 unsigned int flags,
1131 struct ext4_extent *newext)
1132 {
1133 struct ext4_extent_header *neh;
1134 struct buffer_head *bh;
1135 ext4_fsblk_t newblock;
1136 int err = 0;
1137
1138 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1139 newext, &err, flags);
1140 if (newblock == 0)
1141 return err;
1142
1143 bh = sb_getblk(inode->i_sb, newblock);
1144 if (unlikely(!bh))
1145 return -ENOMEM;
1146 lock_buffer(bh);
1147
1148 err = ext4_journal_get_create_access(handle, bh);
1149 if (err) {
1150 unlock_buffer(bh);
1151 goto out;
1152 }
1153
1154 /* move top-level index/leaf into new block */
1155 memmove(bh->b_data, EXT4_I(inode)->i_data,
1156 sizeof(EXT4_I(inode)->i_data));
1157
1158 /* set size of new block */
1159 neh = ext_block_hdr(bh);
1160 /* old root could have indexes or leaves
1161 * so calculate e_max right way */
1162 if (ext_depth(inode))
1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1164 else
1165 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1166 neh->eh_magic = EXT4_EXT_MAGIC;
1167 ext4_extent_block_csum_set(inode, neh);
1168 set_buffer_uptodate(bh);
1169 unlock_buffer(bh);
1170
1171 err = ext4_handle_dirty_metadata(handle, inode, bh);
1172 if (err)
1173 goto out;
1174
1175 /* Update top-level index: num,max,pointer */
1176 neh = ext_inode_hdr(inode);
1177 neh->eh_entries = cpu_to_le16(1);
1178 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1179 if (neh->eh_depth == 0) {
1180 /* Root extent block becomes index block */
1181 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1182 EXT_FIRST_INDEX(neh)->ei_block =
1183 EXT_FIRST_EXTENT(neh)->ee_block;
1184 }
1185 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1186 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1187 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1188 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1189
1190 le16_add_cpu(&neh->eh_depth, 1);
1191 ext4_mark_inode_dirty(handle, inode);
1192 out:
1193 brelse(bh);
1194
1195 return err;
1196 }
1197
1198 /*
1199 * ext4_ext_create_new_leaf:
1200 * finds empty index and adds new leaf.
1201 * if no free index is found, then it requests in-depth growing.
1202 */
1203 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1204 unsigned int flags,
1205 struct ext4_ext_path *path,
1206 struct ext4_extent *newext)
1207 {
1208 struct ext4_ext_path *curp;
1209 int depth, i, err = 0;
1210
1211 repeat:
1212 i = depth = ext_depth(inode);
1213
1214 /* walk up to the tree and look for free index entry */
1215 curp = path + depth;
1216 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1217 i--;
1218 curp--;
1219 }
1220
1221 /* we use already allocated block for index block,
1222 * so subsequent data blocks should be contiguous */
1223 if (EXT_HAS_FREE_INDEX(curp)) {
1224 /* if we found index with free entry, then use that
1225 * entry: create all needed subtree and add new leaf */
1226 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1227 if (err)
1228 goto out;
1229
1230 /* refill path */
1231 ext4_ext_drop_refs(path);
1232 path = ext4_ext_find_extent(inode,
1233 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1234 path);
1235 if (IS_ERR(path))
1236 err = PTR_ERR(path);
1237 } else {
1238 /* tree is full, time to grow in depth */
1239 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1240 if (err)
1241 goto out;
1242
1243 /* refill path */
1244 ext4_ext_drop_refs(path);
1245 path = ext4_ext_find_extent(inode,
1246 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1247 path);
1248 if (IS_ERR(path)) {
1249 err = PTR_ERR(path);
1250 goto out;
1251 }
1252
1253 /*
1254 * only first (depth 0 -> 1) produces free space;
1255 * in all other cases we have to split the grown tree
1256 */
1257 depth = ext_depth(inode);
1258 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1259 /* now we need to split */
1260 goto repeat;
1261 }
1262 }
1263
1264 out:
1265 return err;
1266 }
1267
1268 /*
1269 * search the closest allocated block to the left for *logical
1270 * and returns it at @logical + it's physical address at @phys
1271 * if *logical is the smallest allocated block, the function
1272 * returns 0 at @phys
1273 * return value contains 0 (success) or error code
1274 */
1275 static int ext4_ext_search_left(struct inode *inode,
1276 struct ext4_ext_path *path,
1277 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1278 {
1279 struct ext4_extent_idx *ix;
1280 struct ext4_extent *ex;
1281 int depth, ee_len;
1282
1283 if (unlikely(path == NULL)) {
1284 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1285 return -EIO;
1286 }
1287 depth = path->p_depth;
1288 *phys = 0;
1289
1290 if (depth == 0 && path->p_ext == NULL)
1291 return 0;
1292
1293 /* usually extent in the path covers blocks smaller
1294 * then *logical, but it can be that extent is the
1295 * first one in the file */
1296
1297 ex = path[depth].p_ext;
1298 ee_len = ext4_ext_get_actual_len(ex);
1299 if (*logical < le32_to_cpu(ex->ee_block)) {
1300 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1301 EXT4_ERROR_INODE(inode,
1302 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1303 *logical, le32_to_cpu(ex->ee_block));
1304 return -EIO;
1305 }
1306 while (--depth >= 0) {
1307 ix = path[depth].p_idx;
1308 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1309 EXT4_ERROR_INODE(inode,
1310 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1311 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1312 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1313 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1314 depth);
1315 return -EIO;
1316 }
1317 }
1318 return 0;
1319 }
1320
1321 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1322 EXT4_ERROR_INODE(inode,
1323 "logical %d < ee_block %d + ee_len %d!",
1324 *logical, le32_to_cpu(ex->ee_block), ee_len);
1325 return -EIO;
1326 }
1327
1328 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1329 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1330 return 0;
1331 }
1332
1333 /*
1334 * search the closest allocated block to the right for *logical
1335 * and returns it at @logical + it's physical address at @phys
1336 * if *logical is the largest allocated block, the function
1337 * returns 0 at @phys
1338 * return value contains 0 (success) or error code
1339 */
1340 static int ext4_ext_search_right(struct inode *inode,
1341 struct ext4_ext_path *path,
1342 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1343 struct ext4_extent **ret_ex)
1344 {
1345 struct buffer_head *bh = NULL;
1346 struct ext4_extent_header *eh;
1347 struct ext4_extent_idx *ix;
1348 struct ext4_extent *ex;
1349 ext4_fsblk_t block;
1350 int depth; /* Note, NOT eh_depth; depth from top of tree */
1351 int ee_len;
1352
1353 if (unlikely(path == NULL)) {
1354 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1355 return -EIO;
1356 }
1357 depth = path->p_depth;
1358 *phys = 0;
1359
1360 if (depth == 0 && path->p_ext == NULL)
1361 return 0;
1362
1363 /* usually extent in the path covers blocks smaller
1364 * then *logical, but it can be that extent is the
1365 * first one in the file */
1366
1367 ex = path[depth].p_ext;
1368 ee_len = ext4_ext_get_actual_len(ex);
1369 if (*logical < le32_to_cpu(ex->ee_block)) {
1370 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1371 EXT4_ERROR_INODE(inode,
1372 "first_extent(path[%d].p_hdr) != ex",
1373 depth);
1374 return -EIO;
1375 }
1376 while (--depth >= 0) {
1377 ix = path[depth].p_idx;
1378 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1379 EXT4_ERROR_INODE(inode,
1380 "ix != EXT_FIRST_INDEX *logical %d!",
1381 *logical);
1382 return -EIO;
1383 }
1384 }
1385 goto found_extent;
1386 }
1387
1388 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1389 EXT4_ERROR_INODE(inode,
1390 "logical %d < ee_block %d + ee_len %d!",
1391 *logical, le32_to_cpu(ex->ee_block), ee_len);
1392 return -EIO;
1393 }
1394
1395 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1396 /* next allocated block in this leaf */
1397 ex++;
1398 goto found_extent;
1399 }
1400
1401 /* go up and search for index to the right */
1402 while (--depth >= 0) {
1403 ix = path[depth].p_idx;
1404 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1405 goto got_index;
1406 }
1407
1408 /* we've gone up to the root and found no index to the right */
1409 return 0;
1410
1411 got_index:
1412 /* we've found index to the right, let's
1413 * follow it and find the closest allocated
1414 * block to the right */
1415 ix++;
1416 block = ext4_idx_pblock(ix);
1417 while (++depth < path->p_depth) {
1418 bh = sb_bread(inode->i_sb, block);
1419 if (bh == NULL)
1420 return -EIO;
1421 eh = ext_block_hdr(bh);
1422 /* subtract from p_depth to get proper eh_depth */
1423 if (ext4_ext_check_block(inode, eh,
1424 path->p_depth - depth, bh)) {
1425 put_bh(bh);
1426 return -EIO;
1427 }
1428 ix = EXT_FIRST_INDEX(eh);
1429 block = ext4_idx_pblock(ix);
1430 put_bh(bh);
1431 }
1432
1433 bh = sb_bread(inode->i_sb, block);
1434 if (bh == NULL)
1435 return -EIO;
1436 eh = ext_block_hdr(bh);
1437 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1438 put_bh(bh);
1439 return -EIO;
1440 }
1441 ex = EXT_FIRST_EXTENT(eh);
1442 found_extent:
1443 *logical = le32_to_cpu(ex->ee_block);
1444 *phys = ext4_ext_pblock(ex);
1445 *ret_ex = ex;
1446 if (bh)
1447 put_bh(bh);
1448 return 0;
1449 }
1450
1451 /*
1452 * ext4_ext_next_allocated_block:
1453 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1454 * NOTE: it considers block number from index entry as
1455 * allocated block. Thus, index entries have to be consistent
1456 * with leaves.
1457 */
1458 static ext4_lblk_t
1459 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1460 {
1461 int depth;
1462
1463 BUG_ON(path == NULL);
1464 depth = path->p_depth;
1465
1466 if (depth == 0 && path->p_ext == NULL)
1467 return EXT_MAX_BLOCKS;
1468
1469 while (depth >= 0) {
1470 if (depth == path->p_depth) {
1471 /* leaf */
1472 if (path[depth].p_ext &&
1473 path[depth].p_ext !=
1474 EXT_LAST_EXTENT(path[depth].p_hdr))
1475 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1476 } else {
1477 /* index */
1478 if (path[depth].p_idx !=
1479 EXT_LAST_INDEX(path[depth].p_hdr))
1480 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1481 }
1482 depth--;
1483 }
1484
1485 return EXT_MAX_BLOCKS;
1486 }
1487
1488 /*
1489 * ext4_ext_next_leaf_block:
1490 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1491 */
1492 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1493 {
1494 int depth;
1495
1496 BUG_ON(path == NULL);
1497 depth = path->p_depth;
1498
1499 /* zero-tree has no leaf blocks at all */
1500 if (depth == 0)
1501 return EXT_MAX_BLOCKS;
1502
1503 /* go to index block */
1504 depth--;
1505
1506 while (depth >= 0) {
1507 if (path[depth].p_idx !=
1508 EXT_LAST_INDEX(path[depth].p_hdr))
1509 return (ext4_lblk_t)
1510 le32_to_cpu(path[depth].p_idx[1].ei_block);
1511 depth--;
1512 }
1513
1514 return EXT_MAX_BLOCKS;
1515 }
1516
1517 /*
1518 * ext4_ext_correct_indexes:
1519 * if leaf gets modified and modified extent is first in the leaf,
1520 * then we have to correct all indexes above.
1521 * TODO: do we need to correct tree in all cases?
1522 */
1523 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1524 struct ext4_ext_path *path)
1525 {
1526 struct ext4_extent_header *eh;
1527 int depth = ext_depth(inode);
1528 struct ext4_extent *ex;
1529 __le32 border;
1530 int k, err = 0;
1531
1532 eh = path[depth].p_hdr;
1533 ex = path[depth].p_ext;
1534
1535 if (unlikely(ex == NULL || eh == NULL)) {
1536 EXT4_ERROR_INODE(inode,
1537 "ex %p == NULL or eh %p == NULL", ex, eh);
1538 return -EIO;
1539 }
1540
1541 if (depth == 0) {
1542 /* there is no tree at all */
1543 return 0;
1544 }
1545
1546 if (ex != EXT_FIRST_EXTENT(eh)) {
1547 /* we correct tree if first leaf got modified only */
1548 return 0;
1549 }
1550
1551 /*
1552 * TODO: we need correction if border is smaller than current one
1553 */
1554 k = depth - 1;
1555 border = path[depth].p_ext->ee_block;
1556 err = ext4_ext_get_access(handle, inode, path + k);
1557 if (err)
1558 return err;
1559 path[k].p_idx->ei_block = border;
1560 err = ext4_ext_dirty(handle, inode, path + k);
1561 if (err)
1562 return err;
1563
1564 while (k--) {
1565 /* change all left-side indexes */
1566 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1567 break;
1568 err = ext4_ext_get_access(handle, inode, path + k);
1569 if (err)
1570 break;
1571 path[k].p_idx->ei_block = border;
1572 err = ext4_ext_dirty(handle, inode, path + k);
1573 if (err)
1574 break;
1575 }
1576
1577 return err;
1578 }
1579
1580 int
1581 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1582 struct ext4_extent *ex2)
1583 {
1584 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1585
1586 /*
1587 * Make sure that both extents are initialized. We don't merge
1588 * uninitialized extents so that we can be sure that end_io code has
1589 * the extent that was written properly split out and conversion to
1590 * initialized is trivial.
1591 */
1592 if (ext4_ext_is_uninitialized(ex1) || ext4_ext_is_uninitialized(ex2))
1593 return 0;
1594
1595 if (ext4_ext_is_uninitialized(ex1))
1596 max_len = EXT_UNINIT_MAX_LEN;
1597 else
1598 max_len = EXT_INIT_MAX_LEN;
1599
1600 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1601 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1602
1603 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1604 le32_to_cpu(ex2->ee_block))
1605 return 0;
1606
1607 /*
1608 * To allow future support for preallocated extents to be added
1609 * as an RO_COMPAT feature, refuse to merge to extents if
1610 * this can result in the top bit of ee_len being set.
1611 */
1612 if (ext1_ee_len + ext2_ee_len > max_len)
1613 return 0;
1614 #ifdef AGGRESSIVE_TEST
1615 if (ext1_ee_len >= 4)
1616 return 0;
1617 #endif
1618
1619 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1620 return 1;
1621 return 0;
1622 }
1623
1624 /*
1625 * This function tries to merge the "ex" extent to the next extent in the tree.
1626 * It always tries to merge towards right. If you want to merge towards
1627 * left, pass "ex - 1" as argument instead of "ex".
1628 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1629 * 1 if they got merged.
1630 */
1631 static int ext4_ext_try_to_merge_right(struct inode *inode,
1632 struct ext4_ext_path *path,
1633 struct ext4_extent *ex)
1634 {
1635 struct ext4_extent_header *eh;
1636 unsigned int depth, len;
1637 int merge_done = 0;
1638 int uninitialized = 0;
1639
1640 depth = ext_depth(inode);
1641 BUG_ON(path[depth].p_hdr == NULL);
1642 eh = path[depth].p_hdr;
1643
1644 while (ex < EXT_LAST_EXTENT(eh)) {
1645 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1646 break;
1647 /* merge with next extent! */
1648 if (ext4_ext_is_uninitialized(ex))
1649 uninitialized = 1;
1650 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1651 + ext4_ext_get_actual_len(ex + 1));
1652 if (uninitialized)
1653 ext4_ext_mark_uninitialized(ex);
1654
1655 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1656 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1657 * sizeof(struct ext4_extent);
1658 memmove(ex + 1, ex + 2, len);
1659 }
1660 le16_add_cpu(&eh->eh_entries, -1);
1661 merge_done = 1;
1662 WARN_ON(eh->eh_entries == 0);
1663 if (!eh->eh_entries)
1664 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1665 }
1666
1667 return merge_done;
1668 }
1669
1670 /*
1671 * This function does a very simple check to see if we can collapse
1672 * an extent tree with a single extent tree leaf block into the inode.
1673 */
1674 static void ext4_ext_try_to_merge_up(handle_t *handle,
1675 struct inode *inode,
1676 struct ext4_ext_path *path)
1677 {
1678 size_t s;
1679 unsigned max_root = ext4_ext_space_root(inode, 0);
1680 ext4_fsblk_t blk;
1681
1682 if ((path[0].p_depth != 1) ||
1683 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1684 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1685 return;
1686
1687 /*
1688 * We need to modify the block allocation bitmap and the block
1689 * group descriptor to release the extent tree block. If we
1690 * can't get the journal credits, give up.
1691 */
1692 if (ext4_journal_extend(handle, 2))
1693 return;
1694
1695 /*
1696 * Copy the extent data up to the inode
1697 */
1698 blk = ext4_idx_pblock(path[0].p_idx);
1699 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1700 sizeof(struct ext4_extent_idx);
1701 s += sizeof(struct ext4_extent_header);
1702
1703 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1704 path[0].p_depth = 0;
1705 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1706 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1707 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1708
1709 brelse(path[1].p_bh);
1710 ext4_free_blocks(handle, inode, NULL, blk, 1,
1711 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1712 }
1713
1714 /*
1715 * This function tries to merge the @ex extent to neighbours in the tree.
1716 * return 1 if merge left else 0.
1717 */
1718 static void ext4_ext_try_to_merge(handle_t *handle,
1719 struct inode *inode,
1720 struct ext4_ext_path *path,
1721 struct ext4_extent *ex) {
1722 struct ext4_extent_header *eh;
1723 unsigned int depth;
1724 int merge_done = 0;
1725
1726 depth = ext_depth(inode);
1727 BUG_ON(path[depth].p_hdr == NULL);
1728 eh = path[depth].p_hdr;
1729
1730 if (ex > EXT_FIRST_EXTENT(eh))
1731 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1732
1733 if (!merge_done)
1734 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1735
1736 ext4_ext_try_to_merge_up(handle, inode, path);
1737 }
1738
1739 /*
1740 * check if a portion of the "newext" extent overlaps with an
1741 * existing extent.
1742 *
1743 * If there is an overlap discovered, it updates the length of the newext
1744 * such that there will be no overlap, and then returns 1.
1745 * If there is no overlap found, it returns 0.
1746 */
1747 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1748 struct inode *inode,
1749 struct ext4_extent *newext,
1750 struct ext4_ext_path *path)
1751 {
1752 ext4_lblk_t b1, b2;
1753 unsigned int depth, len1;
1754 unsigned int ret = 0;
1755
1756 b1 = le32_to_cpu(newext->ee_block);
1757 len1 = ext4_ext_get_actual_len(newext);
1758 depth = ext_depth(inode);
1759 if (!path[depth].p_ext)
1760 goto out;
1761 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1762 b2 &= ~(sbi->s_cluster_ratio - 1);
1763
1764 /*
1765 * get the next allocated block if the extent in the path
1766 * is before the requested block(s)
1767 */
1768 if (b2 < b1) {
1769 b2 = ext4_ext_next_allocated_block(path);
1770 if (b2 == EXT_MAX_BLOCKS)
1771 goto out;
1772 b2 &= ~(sbi->s_cluster_ratio - 1);
1773 }
1774
1775 /* check for wrap through zero on extent logical start block*/
1776 if (b1 + len1 < b1) {
1777 len1 = EXT_MAX_BLOCKS - b1;
1778 newext->ee_len = cpu_to_le16(len1);
1779 ret = 1;
1780 }
1781
1782 /* check for overlap */
1783 if (b1 + len1 > b2) {
1784 newext->ee_len = cpu_to_le16(b2 - b1);
1785 ret = 1;
1786 }
1787 out:
1788 return ret;
1789 }
1790
1791 /*
1792 * ext4_ext_insert_extent:
1793 * tries to merge requsted extent into the existing extent or
1794 * inserts requested extent as new one into the tree,
1795 * creating new leaf in the no-space case.
1796 */
1797 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1798 struct ext4_ext_path *path,
1799 struct ext4_extent *newext, int flag)
1800 {
1801 struct ext4_extent_header *eh;
1802 struct ext4_extent *ex, *fex;
1803 struct ext4_extent *nearex; /* nearest extent */
1804 struct ext4_ext_path *npath = NULL;
1805 int depth, len, err;
1806 ext4_lblk_t next;
1807 unsigned uninitialized = 0;
1808 int flags = 0;
1809
1810 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1811 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1812 return -EIO;
1813 }
1814 depth = ext_depth(inode);
1815 ex = path[depth].p_ext;
1816 if (unlikely(path[depth].p_hdr == NULL)) {
1817 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1818 return -EIO;
1819 }
1820
1821 /* try to insert block into found extent and return */
1822 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1823 && ext4_can_extents_be_merged(inode, ex, newext)) {
1824 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1825 ext4_ext_is_uninitialized(newext),
1826 ext4_ext_get_actual_len(newext),
1827 le32_to_cpu(ex->ee_block),
1828 ext4_ext_is_uninitialized(ex),
1829 ext4_ext_get_actual_len(ex),
1830 ext4_ext_pblock(ex));
1831 err = ext4_ext_get_access(handle, inode, path + depth);
1832 if (err)
1833 return err;
1834
1835 /*
1836 * ext4_can_extents_be_merged should have checked that either
1837 * both extents are uninitialized, or both aren't. Thus we
1838 * need to check only one of them here.
1839 */
1840 if (ext4_ext_is_uninitialized(ex))
1841 uninitialized = 1;
1842 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1843 + ext4_ext_get_actual_len(newext));
1844 if (uninitialized)
1845 ext4_ext_mark_uninitialized(ex);
1846 eh = path[depth].p_hdr;
1847 nearex = ex;
1848 goto merge;
1849 }
1850
1851 depth = ext_depth(inode);
1852 eh = path[depth].p_hdr;
1853 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1854 goto has_space;
1855
1856 /* probably next leaf has space for us? */
1857 fex = EXT_LAST_EXTENT(eh);
1858 next = EXT_MAX_BLOCKS;
1859 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1860 next = ext4_ext_next_leaf_block(path);
1861 if (next != EXT_MAX_BLOCKS) {
1862 ext_debug("next leaf block - %u\n", next);
1863 BUG_ON(npath != NULL);
1864 npath = ext4_ext_find_extent(inode, next, NULL);
1865 if (IS_ERR(npath))
1866 return PTR_ERR(npath);
1867 BUG_ON(npath->p_depth != path->p_depth);
1868 eh = npath[depth].p_hdr;
1869 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1870 ext_debug("next leaf isn't full(%d)\n",
1871 le16_to_cpu(eh->eh_entries));
1872 path = npath;
1873 goto has_space;
1874 }
1875 ext_debug("next leaf has no free space(%d,%d)\n",
1876 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1877 }
1878
1879 /*
1880 * There is no free space in the found leaf.
1881 * We're gonna add a new leaf in the tree.
1882 */
1883 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1884 flags = EXT4_MB_USE_ROOT_BLOCKS;
1885 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1886 if (err)
1887 goto cleanup;
1888 depth = ext_depth(inode);
1889 eh = path[depth].p_hdr;
1890
1891 has_space:
1892 nearex = path[depth].p_ext;
1893
1894 err = ext4_ext_get_access(handle, inode, path + depth);
1895 if (err)
1896 goto cleanup;
1897
1898 if (!nearex) {
1899 /* there is no extent in this leaf, create first one */
1900 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1901 le32_to_cpu(newext->ee_block),
1902 ext4_ext_pblock(newext),
1903 ext4_ext_is_uninitialized(newext),
1904 ext4_ext_get_actual_len(newext));
1905 nearex = EXT_FIRST_EXTENT(eh);
1906 } else {
1907 if (le32_to_cpu(newext->ee_block)
1908 > le32_to_cpu(nearex->ee_block)) {
1909 /* Insert after */
1910 ext_debug("insert %u:%llu:[%d]%d before: "
1911 "nearest %p\n",
1912 le32_to_cpu(newext->ee_block),
1913 ext4_ext_pblock(newext),
1914 ext4_ext_is_uninitialized(newext),
1915 ext4_ext_get_actual_len(newext),
1916 nearex);
1917 nearex++;
1918 } else {
1919 /* Insert before */
1920 BUG_ON(newext->ee_block == nearex->ee_block);
1921 ext_debug("insert %u:%llu:[%d]%d after: "
1922 "nearest %p\n",
1923 le32_to_cpu(newext->ee_block),
1924 ext4_ext_pblock(newext),
1925 ext4_ext_is_uninitialized(newext),
1926 ext4_ext_get_actual_len(newext),
1927 nearex);
1928 }
1929 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1930 if (len > 0) {
1931 ext_debug("insert %u:%llu:[%d]%d: "
1932 "move %d extents from 0x%p to 0x%p\n",
1933 le32_to_cpu(newext->ee_block),
1934 ext4_ext_pblock(newext),
1935 ext4_ext_is_uninitialized(newext),
1936 ext4_ext_get_actual_len(newext),
1937 len, nearex, nearex + 1);
1938 memmove(nearex + 1, nearex,
1939 len * sizeof(struct ext4_extent));
1940 }
1941 }
1942
1943 le16_add_cpu(&eh->eh_entries, 1);
1944 path[depth].p_ext = nearex;
1945 nearex->ee_block = newext->ee_block;
1946 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1947 nearex->ee_len = newext->ee_len;
1948
1949 merge:
1950 /* try to merge extents */
1951 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1952 ext4_ext_try_to_merge(handle, inode, path, nearex);
1953
1954
1955 /* time to correct all indexes above */
1956 err = ext4_ext_correct_indexes(handle, inode, path);
1957 if (err)
1958 goto cleanup;
1959
1960 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1961
1962 cleanup:
1963 if (npath) {
1964 ext4_ext_drop_refs(npath);
1965 kfree(npath);
1966 }
1967 return err;
1968 }
1969
1970 static int ext4_fill_fiemap_extents(struct inode *inode,
1971 ext4_lblk_t block, ext4_lblk_t num,
1972 struct fiemap_extent_info *fieinfo)
1973 {
1974 struct ext4_ext_path *path = NULL;
1975 struct ext4_extent *ex;
1976 struct extent_status es;
1977 ext4_lblk_t next, next_del, start = 0, end = 0;
1978 ext4_lblk_t last = block + num;
1979 int exists, depth = 0, err = 0;
1980 unsigned int flags = 0;
1981 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1982
1983 while (block < last && block != EXT_MAX_BLOCKS) {
1984 num = last - block;
1985 /* find extent for this block */
1986 down_read(&EXT4_I(inode)->i_data_sem);
1987
1988 if (path && ext_depth(inode) != depth) {
1989 /* depth was changed. we have to realloc path */
1990 kfree(path);
1991 path = NULL;
1992 }
1993
1994 path = ext4_ext_find_extent(inode, block, path);
1995 if (IS_ERR(path)) {
1996 up_read(&EXT4_I(inode)->i_data_sem);
1997 err = PTR_ERR(path);
1998 path = NULL;
1999 break;
2000 }
2001
2002 depth = ext_depth(inode);
2003 if (unlikely(path[depth].p_hdr == NULL)) {
2004 up_read(&EXT4_I(inode)->i_data_sem);
2005 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2006 err = -EIO;
2007 break;
2008 }
2009 ex = path[depth].p_ext;
2010 next = ext4_ext_next_allocated_block(path);
2011 ext4_ext_drop_refs(path);
2012
2013 flags = 0;
2014 exists = 0;
2015 if (!ex) {
2016 /* there is no extent yet, so try to allocate
2017 * all requested space */
2018 start = block;
2019 end = block + num;
2020 } else if (le32_to_cpu(ex->ee_block) > block) {
2021 /* need to allocate space before found extent */
2022 start = block;
2023 end = le32_to_cpu(ex->ee_block);
2024 if (block + num < end)
2025 end = block + num;
2026 } else if (block >= le32_to_cpu(ex->ee_block)
2027 + ext4_ext_get_actual_len(ex)) {
2028 /* need to allocate space after found extent */
2029 start = block;
2030 end = block + num;
2031 if (end >= next)
2032 end = next;
2033 } else if (block >= le32_to_cpu(ex->ee_block)) {
2034 /*
2035 * some part of requested space is covered
2036 * by found extent
2037 */
2038 start = block;
2039 end = le32_to_cpu(ex->ee_block)
2040 + ext4_ext_get_actual_len(ex);
2041 if (block + num < end)
2042 end = block + num;
2043 exists = 1;
2044 } else {
2045 BUG();
2046 }
2047 BUG_ON(end <= start);
2048
2049 if (!exists) {
2050 es.es_lblk = start;
2051 es.es_len = end - start;
2052 es.es_pblk = 0;
2053 } else {
2054 es.es_lblk = le32_to_cpu(ex->ee_block);
2055 es.es_len = ext4_ext_get_actual_len(ex);
2056 es.es_pblk = ext4_ext_pblock(ex);
2057 if (ext4_ext_is_uninitialized(ex))
2058 flags |= FIEMAP_EXTENT_UNWRITTEN;
2059 }
2060
2061 /*
2062 * Find delayed extent and update es accordingly. We call
2063 * it even in !exists case to find out whether es is the
2064 * last existing extent or not.
2065 */
2066 next_del = ext4_find_delayed_extent(inode, &es);
2067 if (!exists && next_del) {
2068 exists = 1;
2069 flags |= FIEMAP_EXTENT_DELALLOC;
2070 }
2071 up_read(&EXT4_I(inode)->i_data_sem);
2072
2073 if (unlikely(es.es_len == 0)) {
2074 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2075 err = -EIO;
2076 break;
2077 }
2078
2079 /*
2080 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2081 * we need to check next == EXT_MAX_BLOCKS because it is
2082 * possible that an extent is with unwritten and delayed
2083 * status due to when an extent is delayed allocated and
2084 * is allocated by fallocate status tree will track both of
2085 * them in a extent.
2086 *
2087 * So we could return a unwritten and delayed extent, and
2088 * its block is equal to 'next'.
2089 */
2090 if (next == next_del && next == EXT_MAX_BLOCKS) {
2091 flags |= FIEMAP_EXTENT_LAST;
2092 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2093 next != EXT_MAX_BLOCKS)) {
2094 EXT4_ERROR_INODE(inode,
2095 "next extent == %u, next "
2096 "delalloc extent = %u",
2097 next, next_del);
2098 err = -EIO;
2099 break;
2100 }
2101 }
2102
2103 if (exists) {
2104 err = fiemap_fill_next_extent(fieinfo,
2105 (__u64)es.es_lblk << blksize_bits,
2106 (__u64)es.es_pblk << blksize_bits,
2107 (__u64)es.es_len << blksize_bits,
2108 flags);
2109 if (err < 0)
2110 break;
2111 if (err == 1) {
2112 err = 0;
2113 break;
2114 }
2115 }
2116
2117 block = es.es_lblk + es.es_len;
2118 }
2119
2120 if (path) {
2121 ext4_ext_drop_refs(path);
2122 kfree(path);
2123 }
2124
2125 return err;
2126 }
2127
2128 /*
2129 * ext4_ext_put_gap_in_cache:
2130 * calculate boundaries of the gap that the requested block fits into
2131 * and cache this gap
2132 */
2133 static void
2134 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2135 ext4_lblk_t block)
2136 {
2137 int depth = ext_depth(inode);
2138 unsigned long len;
2139 ext4_lblk_t lblock;
2140 struct ext4_extent *ex;
2141
2142 ex = path[depth].p_ext;
2143 if (ex == NULL) {
2144 /*
2145 * there is no extent yet, so gap is [0;-] and we
2146 * don't cache it
2147 */
2148 ext_debug("cache gap(whole file):");
2149 } else if (block < le32_to_cpu(ex->ee_block)) {
2150 lblock = block;
2151 len = le32_to_cpu(ex->ee_block) - block;
2152 ext_debug("cache gap(before): %u [%u:%u]",
2153 block,
2154 le32_to_cpu(ex->ee_block),
2155 ext4_ext_get_actual_len(ex));
2156 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2157 ext4_es_insert_extent(inode, lblock, len, ~0,
2158 EXTENT_STATUS_HOLE);
2159 } else if (block >= le32_to_cpu(ex->ee_block)
2160 + ext4_ext_get_actual_len(ex)) {
2161 ext4_lblk_t next;
2162 lblock = le32_to_cpu(ex->ee_block)
2163 + ext4_ext_get_actual_len(ex);
2164
2165 next = ext4_ext_next_allocated_block(path);
2166 ext_debug("cache gap(after): [%u:%u] %u",
2167 le32_to_cpu(ex->ee_block),
2168 ext4_ext_get_actual_len(ex),
2169 block);
2170 BUG_ON(next == lblock);
2171 len = next - lblock;
2172 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2173 ext4_es_insert_extent(inode, lblock, len, ~0,
2174 EXTENT_STATUS_HOLE);
2175 } else {
2176 lblock = len = 0;
2177 BUG();
2178 }
2179
2180 ext_debug(" -> %u:%lu\n", lblock, len);
2181 }
2182
2183 /*
2184 * ext4_ext_rm_idx:
2185 * removes index from the index block.
2186 */
2187 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2188 struct ext4_ext_path *path, int depth)
2189 {
2190 int err;
2191 ext4_fsblk_t leaf;
2192
2193 /* free index block */
2194 depth--;
2195 path = path + depth;
2196 leaf = ext4_idx_pblock(path->p_idx);
2197 if (unlikely(path->p_hdr->eh_entries == 0)) {
2198 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2199 return -EIO;
2200 }
2201 err = ext4_ext_get_access(handle, inode, path);
2202 if (err)
2203 return err;
2204
2205 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2206 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2207 len *= sizeof(struct ext4_extent_idx);
2208 memmove(path->p_idx, path->p_idx + 1, len);
2209 }
2210
2211 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2212 err = ext4_ext_dirty(handle, inode, path);
2213 if (err)
2214 return err;
2215 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2216 trace_ext4_ext_rm_idx(inode, leaf);
2217
2218 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2219 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2220
2221 while (--depth >= 0) {
2222 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2223 break;
2224 path--;
2225 err = ext4_ext_get_access(handle, inode, path);
2226 if (err)
2227 break;
2228 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2229 err = ext4_ext_dirty(handle, inode, path);
2230 if (err)
2231 break;
2232 }
2233 return err;
2234 }
2235
2236 /*
2237 * ext4_ext_calc_credits_for_single_extent:
2238 * This routine returns max. credits that needed to insert an extent
2239 * to the extent tree.
2240 * When pass the actual path, the caller should calculate credits
2241 * under i_data_sem.
2242 */
2243 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2244 struct ext4_ext_path *path)
2245 {
2246 if (path) {
2247 int depth = ext_depth(inode);
2248 int ret = 0;
2249
2250 /* probably there is space in leaf? */
2251 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2252 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2253
2254 /*
2255 * There are some space in the leaf tree, no
2256 * need to account for leaf block credit
2257 *
2258 * bitmaps and block group descriptor blocks
2259 * and other metadata blocks still need to be
2260 * accounted.
2261 */
2262 /* 1 bitmap, 1 block group descriptor */
2263 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2264 return ret;
2265 }
2266 }
2267
2268 return ext4_chunk_trans_blocks(inode, nrblocks);
2269 }
2270
2271 /*
2272 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2273 *
2274 * if nrblocks are fit in a single extent (chunk flag is 1), then
2275 * in the worse case, each tree level index/leaf need to be changed
2276 * if the tree split due to insert a new extent, then the old tree
2277 * index/leaf need to be updated too
2278 *
2279 * If the nrblocks are discontiguous, they could cause
2280 * the whole tree split more than once, but this is really rare.
2281 */
2282 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2283 {
2284 int index;
2285 int depth;
2286
2287 /* If we are converting the inline data, only one is needed here. */
2288 if (ext4_has_inline_data(inode))
2289 return 1;
2290
2291 depth = ext_depth(inode);
2292
2293 if (chunk)
2294 index = depth * 2;
2295 else
2296 index = depth * 3;
2297
2298 return index;
2299 }
2300
2301 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2302 struct ext4_extent *ex,
2303 ext4_fsblk_t *partial_cluster,
2304 ext4_lblk_t from, ext4_lblk_t to)
2305 {
2306 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2307 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2308 ext4_fsblk_t pblk;
2309 int flags = 0;
2310
2311 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2312 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2313 else if (ext4_should_journal_data(inode))
2314 flags |= EXT4_FREE_BLOCKS_FORGET;
2315
2316 /*
2317 * For bigalloc file systems, we never free a partial cluster
2318 * at the beginning of the extent. Instead, we make a note
2319 * that we tried freeing the cluster, and check to see if we
2320 * need to free it on a subsequent call to ext4_remove_blocks,
2321 * or at the end of the ext4_truncate() operation.
2322 */
2323 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2324
2325 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2326 /*
2327 * If we have a partial cluster, and it's different from the
2328 * cluster of the last block, we need to explicitly free the
2329 * partial cluster here.
2330 */
2331 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2332 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2333 ext4_free_blocks(handle, inode, NULL,
2334 EXT4_C2B(sbi, *partial_cluster),
2335 sbi->s_cluster_ratio, flags);
2336 *partial_cluster = 0;
2337 }
2338
2339 #ifdef EXTENTS_STATS
2340 {
2341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2342 spin_lock(&sbi->s_ext_stats_lock);
2343 sbi->s_ext_blocks += ee_len;
2344 sbi->s_ext_extents++;
2345 if (ee_len < sbi->s_ext_min)
2346 sbi->s_ext_min = ee_len;
2347 if (ee_len > sbi->s_ext_max)
2348 sbi->s_ext_max = ee_len;
2349 if (ext_depth(inode) > sbi->s_depth_max)
2350 sbi->s_depth_max = ext_depth(inode);
2351 spin_unlock(&sbi->s_ext_stats_lock);
2352 }
2353 #endif
2354 if (from >= le32_to_cpu(ex->ee_block)
2355 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2356 /* tail removal */
2357 ext4_lblk_t num;
2358
2359 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2360 pblk = ext4_ext_pblock(ex) + ee_len - num;
2361 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2362 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2363 /*
2364 * If the block range to be freed didn't start at the
2365 * beginning of a cluster, and we removed the entire
2366 * extent, save the partial cluster here, since we
2367 * might need to delete if we determine that the
2368 * truncate operation has removed all of the blocks in
2369 * the cluster.
2370 */
2371 if (pblk & (sbi->s_cluster_ratio - 1) &&
2372 (ee_len == num))
2373 *partial_cluster = EXT4_B2C(sbi, pblk);
2374 else
2375 *partial_cluster = 0;
2376 } else if (from == le32_to_cpu(ex->ee_block)
2377 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2378 /* head removal */
2379 ext4_lblk_t num;
2380 ext4_fsblk_t start;
2381
2382 num = to - from;
2383 start = ext4_ext_pblock(ex);
2384
2385 ext_debug("free first %u blocks starting %llu\n", num, start);
2386 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2387
2388 } else {
2389 printk(KERN_INFO "strange request: removal(2) "
2390 "%u-%u from %u:%u\n",
2391 from, to, le32_to_cpu(ex->ee_block), ee_len);
2392 }
2393 return 0;
2394 }
2395
2396
2397 /*
2398 * ext4_ext_rm_leaf() Removes the extents associated with the
2399 * blocks appearing between "start" and "end", and splits the extents
2400 * if "start" and "end" appear in the same extent
2401 *
2402 * @handle: The journal handle
2403 * @inode: The files inode
2404 * @path: The path to the leaf
2405 * @start: The first block to remove
2406 * @end: The last block to remove
2407 */
2408 static int
2409 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2410 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2411 ext4_lblk_t start, ext4_lblk_t end)
2412 {
2413 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2414 int err = 0, correct_index = 0;
2415 int depth = ext_depth(inode), credits;
2416 struct ext4_extent_header *eh;
2417 ext4_lblk_t a, b;
2418 unsigned num;
2419 ext4_lblk_t ex_ee_block;
2420 unsigned short ex_ee_len;
2421 unsigned uninitialized = 0;
2422 struct ext4_extent *ex;
2423
2424 /* the header must be checked already in ext4_ext_remove_space() */
2425 ext_debug("truncate since %u in leaf to %u\n", start, end);
2426 if (!path[depth].p_hdr)
2427 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2428 eh = path[depth].p_hdr;
2429 if (unlikely(path[depth].p_hdr == NULL)) {
2430 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2431 return -EIO;
2432 }
2433 /* find where to start removing */
2434 ex = EXT_LAST_EXTENT(eh);
2435
2436 ex_ee_block = le32_to_cpu(ex->ee_block);
2437 ex_ee_len = ext4_ext_get_actual_len(ex);
2438
2439 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2440
2441 while (ex >= EXT_FIRST_EXTENT(eh) &&
2442 ex_ee_block + ex_ee_len > start) {
2443
2444 if (ext4_ext_is_uninitialized(ex))
2445 uninitialized = 1;
2446 else
2447 uninitialized = 0;
2448
2449 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2450 uninitialized, ex_ee_len);
2451 path[depth].p_ext = ex;
2452
2453 a = ex_ee_block > start ? ex_ee_block : start;
2454 b = ex_ee_block+ex_ee_len - 1 < end ?
2455 ex_ee_block+ex_ee_len - 1 : end;
2456
2457 ext_debug(" border %u:%u\n", a, b);
2458
2459 /* If this extent is beyond the end of the hole, skip it */
2460 if (end < ex_ee_block) {
2461 ex--;
2462 ex_ee_block = le32_to_cpu(ex->ee_block);
2463 ex_ee_len = ext4_ext_get_actual_len(ex);
2464 continue;
2465 } else if (b != ex_ee_block + ex_ee_len - 1) {
2466 EXT4_ERROR_INODE(inode,
2467 "can not handle truncate %u:%u "
2468 "on extent %u:%u",
2469 start, end, ex_ee_block,
2470 ex_ee_block + ex_ee_len - 1);
2471 err = -EIO;
2472 goto out;
2473 } else if (a != ex_ee_block) {
2474 /* remove tail of the extent */
2475 num = a - ex_ee_block;
2476 } else {
2477 /* remove whole extent: excellent! */
2478 num = 0;
2479 }
2480 /*
2481 * 3 for leaf, sb, and inode plus 2 (bmap and group
2482 * descriptor) for each block group; assume two block
2483 * groups plus ex_ee_len/blocks_per_block_group for
2484 * the worst case
2485 */
2486 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2487 if (ex == EXT_FIRST_EXTENT(eh)) {
2488 correct_index = 1;
2489 credits += (ext_depth(inode)) + 1;
2490 }
2491 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2492
2493 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2494 if (err)
2495 goto out;
2496
2497 err = ext4_ext_get_access(handle, inode, path + depth);
2498 if (err)
2499 goto out;
2500
2501 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2502 a, b);
2503 if (err)
2504 goto out;
2505
2506 if (num == 0)
2507 /* this extent is removed; mark slot entirely unused */
2508 ext4_ext_store_pblock(ex, 0);
2509
2510 ex->ee_len = cpu_to_le16(num);
2511 /*
2512 * Do not mark uninitialized if all the blocks in the
2513 * extent have been removed.
2514 */
2515 if (uninitialized && num)
2516 ext4_ext_mark_uninitialized(ex);
2517 /*
2518 * If the extent was completely released,
2519 * we need to remove it from the leaf
2520 */
2521 if (num == 0) {
2522 if (end != EXT_MAX_BLOCKS - 1) {
2523 /*
2524 * For hole punching, we need to scoot all the
2525 * extents up when an extent is removed so that
2526 * we dont have blank extents in the middle
2527 */
2528 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2529 sizeof(struct ext4_extent));
2530
2531 /* Now get rid of the one at the end */
2532 memset(EXT_LAST_EXTENT(eh), 0,
2533 sizeof(struct ext4_extent));
2534 }
2535 le16_add_cpu(&eh->eh_entries, -1);
2536 } else
2537 *partial_cluster = 0;
2538
2539 err = ext4_ext_dirty(handle, inode, path + depth);
2540 if (err)
2541 goto out;
2542
2543 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2544 ext4_ext_pblock(ex));
2545 ex--;
2546 ex_ee_block = le32_to_cpu(ex->ee_block);
2547 ex_ee_len = ext4_ext_get_actual_len(ex);
2548 }
2549
2550 if (correct_index && eh->eh_entries)
2551 err = ext4_ext_correct_indexes(handle, inode, path);
2552
2553 /*
2554 * If there is still a entry in the leaf node, check to see if
2555 * it references the partial cluster. This is the only place
2556 * where it could; if it doesn't, we can free the cluster.
2557 */
2558 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2559 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2560 *partial_cluster)) {
2561 int flags = EXT4_FREE_BLOCKS_FORGET;
2562
2563 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2564 flags |= EXT4_FREE_BLOCKS_METADATA;
2565
2566 ext4_free_blocks(handle, inode, NULL,
2567 EXT4_C2B(sbi, *partial_cluster),
2568 sbi->s_cluster_ratio, flags);
2569 *partial_cluster = 0;
2570 }
2571
2572 /* if this leaf is free, then we should
2573 * remove it from index block above */
2574 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2575 err = ext4_ext_rm_idx(handle, inode, path, depth);
2576
2577 out:
2578 return err;
2579 }
2580
2581 /*
2582 * ext4_ext_more_to_rm:
2583 * returns 1 if current index has to be freed (even partial)
2584 */
2585 static int
2586 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2587 {
2588 BUG_ON(path->p_idx == NULL);
2589
2590 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2591 return 0;
2592
2593 /*
2594 * if truncate on deeper level happened, it wasn't partial,
2595 * so we have to consider current index for truncation
2596 */
2597 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2598 return 0;
2599 return 1;
2600 }
2601
2602 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2603 ext4_lblk_t end)
2604 {
2605 struct super_block *sb = inode->i_sb;
2606 int depth = ext_depth(inode);
2607 struct ext4_ext_path *path = NULL;
2608 ext4_fsblk_t partial_cluster = 0;
2609 handle_t *handle;
2610 int i = 0, err = 0;
2611
2612 ext_debug("truncate since %u to %u\n", start, end);
2613
2614 /* probably first extent we're gonna free will be last in block */
2615 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2616 if (IS_ERR(handle))
2617 return PTR_ERR(handle);
2618
2619 again:
2620 trace_ext4_ext_remove_space(inode, start, depth);
2621
2622 /*
2623 * Check if we are removing extents inside the extent tree. If that
2624 * is the case, we are going to punch a hole inside the extent tree
2625 * so we have to check whether we need to split the extent covering
2626 * the last block to remove so we can easily remove the part of it
2627 * in ext4_ext_rm_leaf().
2628 */
2629 if (end < EXT_MAX_BLOCKS - 1) {
2630 struct ext4_extent *ex;
2631 ext4_lblk_t ee_block;
2632
2633 /* find extent for this block */
2634 path = ext4_ext_find_extent(inode, end, NULL);
2635 if (IS_ERR(path)) {
2636 ext4_journal_stop(handle);
2637 return PTR_ERR(path);
2638 }
2639 depth = ext_depth(inode);
2640 /* Leaf not may not exist only if inode has no blocks at all */
2641 ex = path[depth].p_ext;
2642 if (!ex) {
2643 if (depth) {
2644 EXT4_ERROR_INODE(inode,
2645 "path[%d].p_hdr == NULL",
2646 depth);
2647 err = -EIO;
2648 }
2649 goto out;
2650 }
2651
2652 ee_block = le32_to_cpu(ex->ee_block);
2653
2654 /*
2655 * See if the last block is inside the extent, if so split
2656 * the extent at 'end' block so we can easily remove the
2657 * tail of the first part of the split extent in
2658 * ext4_ext_rm_leaf().
2659 */
2660 if (end >= ee_block &&
2661 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2662 int split_flag = 0;
2663
2664 if (ext4_ext_is_uninitialized(ex))
2665 split_flag = EXT4_EXT_MARK_UNINIT1 |
2666 EXT4_EXT_MARK_UNINIT2;
2667
2668 /*
2669 * Split the extent in two so that 'end' is the last
2670 * block in the first new extent
2671 */
2672 err = ext4_split_extent_at(handle, inode, path,
2673 end + 1, split_flag,
2674 EXT4_GET_BLOCKS_PRE_IO |
2675 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2676
2677 if (err < 0)
2678 goto out;
2679 }
2680 }
2681 /*
2682 * We start scanning from right side, freeing all the blocks
2683 * after i_size and walking into the tree depth-wise.
2684 */
2685 depth = ext_depth(inode);
2686 if (path) {
2687 int k = i = depth;
2688 while (--k > 0)
2689 path[k].p_block =
2690 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2691 } else {
2692 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2693 GFP_NOFS);
2694 if (path == NULL) {
2695 ext4_journal_stop(handle);
2696 return -ENOMEM;
2697 }
2698 path[0].p_depth = depth;
2699 path[0].p_hdr = ext_inode_hdr(inode);
2700 i = 0;
2701
2702 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2703 err = -EIO;
2704 goto out;
2705 }
2706 }
2707 err = 0;
2708
2709 while (i >= 0 && err == 0) {
2710 if (i == depth) {
2711 /* this is leaf block */
2712 err = ext4_ext_rm_leaf(handle, inode, path,
2713 &partial_cluster, start,
2714 end);
2715 /* root level has p_bh == NULL, brelse() eats this */
2716 brelse(path[i].p_bh);
2717 path[i].p_bh = NULL;
2718 i--;
2719 continue;
2720 }
2721
2722 /* this is index block */
2723 if (!path[i].p_hdr) {
2724 ext_debug("initialize header\n");
2725 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2726 }
2727
2728 if (!path[i].p_idx) {
2729 /* this level hasn't been touched yet */
2730 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2731 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2732 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2733 path[i].p_hdr,
2734 le16_to_cpu(path[i].p_hdr->eh_entries));
2735 } else {
2736 /* we were already here, see at next index */
2737 path[i].p_idx--;
2738 }
2739
2740 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2741 i, EXT_FIRST_INDEX(path[i].p_hdr),
2742 path[i].p_idx);
2743 if (ext4_ext_more_to_rm(path + i)) {
2744 struct buffer_head *bh;
2745 /* go to the next level */
2746 ext_debug("move to level %d (block %llu)\n",
2747 i + 1, ext4_idx_pblock(path[i].p_idx));
2748 memset(path + i + 1, 0, sizeof(*path));
2749 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2750 if (!bh) {
2751 /* should we reset i_size? */
2752 err = -EIO;
2753 break;
2754 }
2755 if (WARN_ON(i + 1 > depth)) {
2756 err = -EIO;
2757 break;
2758 }
2759 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2760 depth - i - 1, bh)) {
2761 err = -EIO;
2762 break;
2763 }
2764 path[i + 1].p_bh = bh;
2765
2766 /* save actual number of indexes since this
2767 * number is changed at the next iteration */
2768 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2769 i++;
2770 } else {
2771 /* we finished processing this index, go up */
2772 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2773 /* index is empty, remove it;
2774 * handle must be already prepared by the
2775 * truncatei_leaf() */
2776 err = ext4_ext_rm_idx(handle, inode, path, i);
2777 }
2778 /* root level has p_bh == NULL, brelse() eats this */
2779 brelse(path[i].p_bh);
2780 path[i].p_bh = NULL;
2781 i--;
2782 ext_debug("return to level %d\n", i);
2783 }
2784 }
2785
2786 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2787 path->p_hdr->eh_entries);
2788
2789 /* If we still have something in the partial cluster and we have removed
2790 * even the first extent, then we should free the blocks in the partial
2791 * cluster as well. */
2792 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2793 int flags = EXT4_FREE_BLOCKS_FORGET;
2794
2795 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2796 flags |= EXT4_FREE_BLOCKS_METADATA;
2797
2798 ext4_free_blocks(handle, inode, NULL,
2799 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2800 EXT4_SB(sb)->s_cluster_ratio, flags);
2801 partial_cluster = 0;
2802 }
2803
2804 /* TODO: flexible tree reduction should be here */
2805 if (path->p_hdr->eh_entries == 0) {
2806 /*
2807 * truncate to zero freed all the tree,
2808 * so we need to correct eh_depth
2809 */
2810 err = ext4_ext_get_access(handle, inode, path);
2811 if (err == 0) {
2812 ext_inode_hdr(inode)->eh_depth = 0;
2813 ext_inode_hdr(inode)->eh_max =
2814 cpu_to_le16(ext4_ext_space_root(inode, 0));
2815 err = ext4_ext_dirty(handle, inode, path);
2816 }
2817 }
2818 out:
2819 ext4_ext_drop_refs(path);
2820 kfree(path);
2821 if (err == -EAGAIN) {
2822 path = NULL;
2823 goto again;
2824 }
2825 ext4_journal_stop(handle);
2826
2827 return err;
2828 }
2829
2830 /*
2831 * called at mount time
2832 */
2833 void ext4_ext_init(struct super_block *sb)
2834 {
2835 /*
2836 * possible initialization would be here
2837 */
2838
2839 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2840 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2841 printk(KERN_INFO "EXT4-fs: file extents enabled"
2842 #ifdef AGGRESSIVE_TEST
2843 ", aggressive tests"
2844 #endif
2845 #ifdef CHECK_BINSEARCH
2846 ", check binsearch"
2847 #endif
2848 #ifdef EXTENTS_STATS
2849 ", stats"
2850 #endif
2851 "\n");
2852 #endif
2853 #ifdef EXTENTS_STATS
2854 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2855 EXT4_SB(sb)->s_ext_min = 1 << 30;
2856 EXT4_SB(sb)->s_ext_max = 0;
2857 #endif
2858 }
2859 }
2860
2861 /*
2862 * called at umount time
2863 */
2864 void ext4_ext_release(struct super_block *sb)
2865 {
2866 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2867 return;
2868
2869 #ifdef EXTENTS_STATS
2870 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2871 struct ext4_sb_info *sbi = EXT4_SB(sb);
2872 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2873 sbi->s_ext_blocks, sbi->s_ext_extents,
2874 sbi->s_ext_blocks / sbi->s_ext_extents);
2875 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2876 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2877 }
2878 #endif
2879 }
2880
2881 /* FIXME!! we need to try to merge to left or right after zero-out */
2882 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2883 {
2884 ext4_fsblk_t ee_pblock;
2885 unsigned int ee_len;
2886 int ret;
2887
2888 ee_len = ext4_ext_get_actual_len(ex);
2889 ee_pblock = ext4_ext_pblock(ex);
2890
2891 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2892 if (ret > 0)
2893 ret = 0;
2894
2895 return ret;
2896 }
2897
2898 /*
2899 * ext4_split_extent_at() splits an extent at given block.
2900 *
2901 * @handle: the journal handle
2902 * @inode: the file inode
2903 * @path: the path to the extent
2904 * @split: the logical block where the extent is splitted.
2905 * @split_flags: indicates if the extent could be zeroout if split fails, and
2906 * the states(init or uninit) of new extents.
2907 * @flags: flags used to insert new extent to extent tree.
2908 *
2909 *
2910 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2911 * of which are deterimined by split_flag.
2912 *
2913 * There are two cases:
2914 * a> the extent are splitted into two extent.
2915 * b> split is not needed, and just mark the extent.
2916 *
2917 * return 0 on success.
2918 */
2919 static int ext4_split_extent_at(handle_t *handle,
2920 struct inode *inode,
2921 struct ext4_ext_path *path,
2922 ext4_lblk_t split,
2923 int split_flag,
2924 int flags)
2925 {
2926 ext4_fsblk_t newblock;
2927 ext4_lblk_t ee_block;
2928 struct ext4_extent *ex, newex, orig_ex, zero_ex;
2929 struct ext4_extent *ex2 = NULL;
2930 unsigned int ee_len, depth;
2931 int err = 0;
2932
2933 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2934 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2935
2936 ext_debug("ext4_split_extents_at: inode %lu, logical"
2937 "block %llu\n", inode->i_ino, (unsigned long long)split);
2938
2939 ext4_ext_show_leaf(inode, path);
2940
2941 depth = ext_depth(inode);
2942 ex = path[depth].p_ext;
2943 ee_block = le32_to_cpu(ex->ee_block);
2944 ee_len = ext4_ext_get_actual_len(ex);
2945 newblock = split - ee_block + ext4_ext_pblock(ex);
2946
2947 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2948 BUG_ON(!ext4_ext_is_uninitialized(ex) &&
2949 split_flag & (EXT4_EXT_MAY_ZEROOUT |
2950 EXT4_EXT_MARK_UNINIT1 |
2951 EXT4_EXT_MARK_UNINIT2));
2952
2953 err = ext4_ext_get_access(handle, inode, path + depth);
2954 if (err)
2955 goto out;
2956
2957 if (split == ee_block) {
2958 /*
2959 * case b: block @split is the block that the extent begins with
2960 * then we just change the state of the extent, and splitting
2961 * is not needed.
2962 */
2963 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2964 ext4_ext_mark_uninitialized(ex);
2965 else
2966 ext4_ext_mark_initialized(ex);
2967
2968 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2969 ext4_ext_try_to_merge(handle, inode, path, ex);
2970
2971 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2972 goto out;
2973 }
2974
2975 /* case a */
2976 memcpy(&orig_ex, ex, sizeof(orig_ex));
2977 ex->ee_len = cpu_to_le16(split - ee_block);
2978 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2979 ext4_ext_mark_uninitialized(ex);
2980
2981 /*
2982 * path may lead to new leaf, not to original leaf any more
2983 * after ext4_ext_insert_extent() returns,
2984 */
2985 err = ext4_ext_dirty(handle, inode, path + depth);
2986 if (err)
2987 goto fix_extent_len;
2988
2989 ex2 = &newex;
2990 ex2->ee_block = cpu_to_le32(split);
2991 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2992 ext4_ext_store_pblock(ex2, newblock);
2993 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2994 ext4_ext_mark_uninitialized(ex2);
2995
2996 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2997 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2998 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2999 if (split_flag & EXT4_EXT_DATA_VALID1) {
3000 err = ext4_ext_zeroout(inode, ex2);
3001 zero_ex.ee_block = ex2->ee_block;
3002 zero_ex.ee_len = ext4_ext_get_actual_len(ex2);
3003 ext4_ext_store_pblock(&zero_ex,
3004 ext4_ext_pblock(ex2));
3005 } else {
3006 err = ext4_ext_zeroout(inode, ex);
3007 zero_ex.ee_block = ex->ee_block;
3008 zero_ex.ee_len = ext4_ext_get_actual_len(ex);
3009 ext4_ext_store_pblock(&zero_ex,
3010 ext4_ext_pblock(ex));
3011 }
3012 } else {
3013 err = ext4_ext_zeroout(inode, &orig_ex);
3014 zero_ex.ee_block = orig_ex.ee_block;
3015 zero_ex.ee_len = ext4_ext_get_actual_len(&orig_ex);
3016 ext4_ext_store_pblock(&zero_ex,
3017 ext4_ext_pblock(&orig_ex));
3018 }
3019
3020 if (err)
3021 goto fix_extent_len;
3022 /* update the extent length and mark as initialized */
3023 ex->ee_len = cpu_to_le16(ee_len);
3024 ext4_ext_try_to_merge(handle, inode, path, ex);
3025 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3026 if (err)
3027 goto fix_extent_len;
3028
3029 /* update extent status tree */
3030 err = ext4_es_zeroout(inode, &zero_ex);
3031
3032 goto out;
3033 } else if (err)
3034 goto fix_extent_len;
3035
3036 out:
3037 ext4_ext_show_leaf(inode, path);
3038 return err;
3039
3040 fix_extent_len:
3041 ex->ee_len = orig_ex.ee_len;
3042 ext4_ext_dirty(handle, inode, path + depth);
3043 return err;
3044 }
3045
3046 /*
3047 * ext4_split_extents() splits an extent and mark extent which is covered
3048 * by @map as split_flags indicates
3049 *
3050 * It may result in splitting the extent into multiple extents (upto three)
3051 * There are three possibilities:
3052 * a> There is no split required
3053 * b> Splits in two extents: Split is happening at either end of the extent
3054 * c> Splits in three extents: Somone is splitting in middle of the extent
3055 *
3056 */
3057 static int ext4_split_extent(handle_t *handle,
3058 struct inode *inode,
3059 struct ext4_ext_path *path,
3060 struct ext4_map_blocks *map,
3061 int split_flag,
3062 int flags)
3063 {
3064 ext4_lblk_t ee_block;
3065 struct ext4_extent *ex;
3066 unsigned int ee_len, depth;
3067 int err = 0;
3068 int uninitialized;
3069 int split_flag1, flags1;
3070 int allocated = map->m_len;
3071
3072 depth = ext_depth(inode);
3073 ex = path[depth].p_ext;
3074 ee_block = le32_to_cpu(ex->ee_block);
3075 ee_len = ext4_ext_get_actual_len(ex);
3076 uninitialized = ext4_ext_is_uninitialized(ex);
3077
3078 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3079 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3080 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3081 if (uninitialized)
3082 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3083 EXT4_EXT_MARK_UNINIT2;
3084 if (split_flag & EXT4_EXT_DATA_VALID2)
3085 split_flag1 |= EXT4_EXT_DATA_VALID1;
3086 err = ext4_split_extent_at(handle, inode, path,
3087 map->m_lblk + map->m_len, split_flag1, flags1);
3088 if (err)
3089 goto out;
3090 } else {
3091 allocated = ee_len - (map->m_lblk - ee_block);
3092 }
3093 /*
3094 * Update path is required because previous ext4_split_extent_at() may
3095 * result in split of original leaf or extent zeroout.
3096 */
3097 ext4_ext_drop_refs(path);
3098 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3099 if (IS_ERR(path))
3100 return PTR_ERR(path);
3101 depth = ext_depth(inode);
3102 ex = path[depth].p_ext;
3103 uninitialized = ext4_ext_is_uninitialized(ex);
3104 split_flag1 = 0;
3105
3106 if (map->m_lblk >= ee_block) {
3107 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3108 if (uninitialized) {
3109 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3110 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3111 EXT4_EXT_MARK_UNINIT2);
3112 }
3113 err = ext4_split_extent_at(handle, inode, path,
3114 map->m_lblk, split_flag1, flags);
3115 if (err)
3116 goto out;
3117 }
3118
3119 ext4_ext_show_leaf(inode, path);
3120 out:
3121 return err ? err : allocated;
3122 }
3123
3124 /*
3125 * This function is called by ext4_ext_map_blocks() if someone tries to write
3126 * to an uninitialized extent. It may result in splitting the uninitialized
3127 * extent into multiple extents (up to three - one initialized and two
3128 * uninitialized).
3129 * There are three possibilities:
3130 * a> There is no split required: Entire extent should be initialized
3131 * b> Splits in two extents: Write is happening at either end of the extent
3132 * c> Splits in three extents: Somone is writing in middle of the extent
3133 *
3134 * Pre-conditions:
3135 * - The extent pointed to by 'path' is uninitialized.
3136 * - The extent pointed to by 'path' contains a superset
3137 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3138 *
3139 * Post-conditions on success:
3140 * - the returned value is the number of blocks beyond map->l_lblk
3141 * that are allocated and initialized.
3142 * It is guaranteed to be >= map->m_len.
3143 */
3144 static int ext4_ext_convert_to_initialized(handle_t *handle,
3145 struct inode *inode,
3146 struct ext4_map_blocks *map,
3147 struct ext4_ext_path *path)
3148 {
3149 struct ext4_sb_info *sbi;
3150 struct ext4_extent_header *eh;
3151 struct ext4_map_blocks split_map;
3152 struct ext4_extent zero_ex;
3153 struct ext4_extent *ex;
3154 ext4_lblk_t ee_block, eof_block;
3155 unsigned int ee_len, depth;
3156 int allocated, max_zeroout = 0;
3157 int err = 0;
3158 int split_flag = 0;
3159
3160 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3161 "block %llu, max_blocks %u\n", inode->i_ino,
3162 (unsigned long long)map->m_lblk, map->m_len);
3163
3164 sbi = EXT4_SB(inode->i_sb);
3165 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3166 inode->i_sb->s_blocksize_bits;
3167 if (eof_block < map->m_lblk + map->m_len)
3168 eof_block = map->m_lblk + map->m_len;
3169
3170 depth = ext_depth(inode);
3171 eh = path[depth].p_hdr;
3172 ex = path[depth].p_ext;
3173 ee_block = le32_to_cpu(ex->ee_block);
3174 ee_len = ext4_ext_get_actual_len(ex);
3175 allocated = ee_len - (map->m_lblk - ee_block);
3176 zero_ex.ee_len = 0;
3177
3178 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3179
3180 /* Pre-conditions */
3181 BUG_ON(!ext4_ext_is_uninitialized(ex));
3182 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3183
3184 /*
3185 * Attempt to transfer newly initialized blocks from the currently
3186 * uninitialized extent to its left neighbor. This is much cheaper
3187 * than an insertion followed by a merge as those involve costly
3188 * memmove() calls. This is the common case in steady state for
3189 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3190 * writes.
3191 *
3192 * Limitations of the current logic:
3193 * - L1: we only deal with writes at the start of the extent.
3194 * The approach could be extended to writes at the end
3195 * of the extent but this scenario was deemed less common.
3196 * - L2: we do not deal with writes covering the whole extent.
3197 * This would require removing the extent if the transfer
3198 * is possible.
3199 * - L3: we only attempt to merge with an extent stored in the
3200 * same extent tree node.
3201 */
3202 if ((map->m_lblk == ee_block) && /*L1*/
3203 (map->m_len < ee_len) && /*L2*/
3204 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3205 struct ext4_extent *prev_ex;
3206 ext4_lblk_t prev_lblk;
3207 ext4_fsblk_t prev_pblk, ee_pblk;
3208 unsigned int prev_len, write_len;
3209
3210 prev_ex = ex - 1;
3211 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3212 prev_len = ext4_ext_get_actual_len(prev_ex);
3213 prev_pblk = ext4_ext_pblock(prev_ex);
3214 ee_pblk = ext4_ext_pblock(ex);
3215 write_len = map->m_len;
3216
3217 /*
3218 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3219 * upon those conditions:
3220 * - C1: prev_ex is initialized,
3221 * - C2: prev_ex is logically abutting ex,
3222 * - C3: prev_ex is physically abutting ex,
3223 * - C4: prev_ex can receive the additional blocks without
3224 * overflowing the (initialized) length limit.
3225 */
3226 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3227 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3228 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3229 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3230 err = ext4_ext_get_access(handle, inode, path + depth);
3231 if (err)
3232 goto out;
3233
3234 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3235 map, ex, prev_ex);
3236
3237 /* Shift the start of ex by 'write_len' blocks */
3238 ex->ee_block = cpu_to_le32(ee_block + write_len);
3239 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3240 ex->ee_len = cpu_to_le16(ee_len - write_len);
3241 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3242
3243 /* Extend prev_ex by 'write_len' blocks */
3244 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3245
3246 /* Mark the block containing both extents as dirty */
3247 ext4_ext_dirty(handle, inode, path + depth);
3248
3249 /* Update path to point to the right extent */
3250 path[depth].p_ext = prev_ex;
3251
3252 /* Result: number of initialized blocks past m_lblk */
3253 allocated = write_len;
3254 goto out;
3255 }
3256 }
3257
3258 WARN_ON(map->m_lblk < ee_block);
3259 /*
3260 * It is safe to convert extent to initialized via explicit
3261 * zeroout only if extent is fully insde i_size or new_size.
3262 */
3263 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3264
3265 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3266 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3267 (inode->i_sb->s_blocksize_bits - 10);
3268
3269 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3270 if (max_zeroout && (ee_len <= max_zeroout)) {
3271 err = ext4_ext_zeroout(inode, ex);
3272 if (err)
3273 goto out;
3274 zero_ex.ee_block = ex->ee_block;
3275 zero_ex.ee_len = ext4_ext_get_actual_len(ex);
3276 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3277
3278 err = ext4_ext_get_access(handle, inode, path + depth);
3279 if (err)
3280 goto out;
3281 ext4_ext_mark_initialized(ex);
3282 ext4_ext_try_to_merge(handle, inode, path, ex);
3283 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3284 goto out;
3285 }
3286
3287 /*
3288 * four cases:
3289 * 1. split the extent into three extents.
3290 * 2. split the extent into two extents, zeroout the first half.
3291 * 3. split the extent into two extents, zeroout the second half.
3292 * 4. split the extent into two extents with out zeroout.
3293 */
3294 split_map.m_lblk = map->m_lblk;
3295 split_map.m_len = map->m_len;
3296
3297 if (max_zeroout && (allocated > map->m_len)) {
3298 if (allocated <= max_zeroout) {
3299 /* case 3 */
3300 zero_ex.ee_block =
3301 cpu_to_le32(map->m_lblk);
3302 zero_ex.ee_len = cpu_to_le16(allocated);
3303 ext4_ext_store_pblock(&zero_ex,
3304 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3305 err = ext4_ext_zeroout(inode, &zero_ex);
3306 if (err)
3307 goto out;
3308 split_map.m_lblk = map->m_lblk;
3309 split_map.m_len = allocated;
3310 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3311 /* case 2 */
3312 if (map->m_lblk != ee_block) {
3313 zero_ex.ee_block = ex->ee_block;
3314 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3315 ee_block);
3316 ext4_ext_store_pblock(&zero_ex,
3317 ext4_ext_pblock(ex));
3318 err = ext4_ext_zeroout(inode, &zero_ex);
3319 if (err)
3320 goto out;
3321 }
3322
3323 split_map.m_lblk = ee_block;
3324 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3325 allocated = map->m_len;
3326 }
3327 }
3328
3329 allocated = ext4_split_extent(handle, inode, path,
3330 &split_map, split_flag, 0);
3331 if (allocated < 0)
3332 err = allocated;
3333
3334 out:
3335 /* If we have gotten a failure, don't zero out status tree */
3336 if (!err)
3337 err = ext4_es_zeroout(inode, &zero_ex);
3338 return err ? err : allocated;
3339 }
3340
3341 /*
3342 * This function is called by ext4_ext_map_blocks() from
3343 * ext4_get_blocks_dio_write() when DIO to write
3344 * to an uninitialized extent.
3345 *
3346 * Writing to an uninitialized extent may result in splitting the uninitialized
3347 * extent into multiple initialized/uninitialized extents (up to three)
3348 * There are three possibilities:
3349 * a> There is no split required: Entire extent should be uninitialized
3350 * b> Splits in two extents: Write is happening at either end of the extent
3351 * c> Splits in three extents: Somone is writing in middle of the extent
3352 *
3353 * One of more index blocks maybe needed if the extent tree grow after
3354 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3355 * complete, we need to split the uninitialized extent before DIO submit
3356 * the IO. The uninitialized extent called at this time will be split
3357 * into three uninitialized extent(at most). After IO complete, the part
3358 * being filled will be convert to initialized by the end_io callback function
3359 * via ext4_convert_unwritten_extents().
3360 *
3361 * Returns the size of uninitialized extent to be written on success.
3362 */
3363 static int ext4_split_unwritten_extents(handle_t *handle,
3364 struct inode *inode,
3365 struct ext4_map_blocks *map,
3366 struct ext4_ext_path *path,
3367 int flags)
3368 {
3369 ext4_lblk_t eof_block;
3370 ext4_lblk_t ee_block;
3371 struct ext4_extent *ex;
3372 unsigned int ee_len;
3373 int split_flag = 0, depth;
3374
3375 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3376 "block %llu, max_blocks %u\n", inode->i_ino,
3377 (unsigned long long)map->m_lblk, map->m_len);
3378
3379 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3380 inode->i_sb->s_blocksize_bits;
3381 if (eof_block < map->m_lblk + map->m_len)
3382 eof_block = map->m_lblk + map->m_len;
3383 /*
3384 * It is safe to convert extent to initialized via explicit
3385 * zeroout only if extent is fully insde i_size or new_size.
3386 */
3387 depth = ext_depth(inode);
3388 ex = path[depth].p_ext;
3389 ee_block = le32_to_cpu(ex->ee_block);
3390 ee_len = ext4_ext_get_actual_len(ex);
3391
3392 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3393 split_flag |= EXT4_EXT_MARK_UNINIT2;
3394 if (flags & EXT4_GET_BLOCKS_CONVERT)
3395 split_flag |= EXT4_EXT_DATA_VALID2;
3396 flags |= EXT4_GET_BLOCKS_PRE_IO;
3397 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3398 }
3399
3400 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3401 struct inode *inode,
3402 struct ext4_map_blocks *map,
3403 struct ext4_ext_path *path)
3404 {
3405 struct ext4_extent *ex;
3406 ext4_lblk_t ee_block;
3407 unsigned int ee_len;
3408 int depth;
3409 int err = 0;
3410
3411 depth = ext_depth(inode);
3412 ex = path[depth].p_ext;
3413 ee_block = le32_to_cpu(ex->ee_block);
3414 ee_len = ext4_ext_get_actual_len(ex);
3415
3416 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3417 "block %llu, max_blocks %u\n", inode->i_ino,
3418 (unsigned long long)ee_block, ee_len);
3419
3420 /* If extent is larger than requested it is a clear sign that we still
3421 * have some extent state machine issues left. So extent_split is still
3422 * required.
3423 * TODO: Once all related issues will be fixed this situation should be
3424 * illegal.
3425 */
3426 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3427 #ifdef EXT4_DEBUG
3428 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3429 " len %u; IO logical block %llu, len %u\n",
3430 inode->i_ino, (unsigned long long)ee_block, ee_len,
3431 (unsigned long long)map->m_lblk, map->m_len);
3432 #endif
3433 err = ext4_split_unwritten_extents(handle, inode, map, path,
3434 EXT4_GET_BLOCKS_CONVERT);
3435 if (err < 0)
3436 goto out;
3437 ext4_ext_drop_refs(path);
3438 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3439 if (IS_ERR(path)) {
3440 err = PTR_ERR(path);
3441 goto out;
3442 }
3443 depth = ext_depth(inode);
3444 ex = path[depth].p_ext;
3445 }
3446
3447 err = ext4_ext_get_access(handle, inode, path + depth);
3448 if (err)
3449 goto out;
3450 /* first mark the extent as initialized */
3451 ext4_ext_mark_initialized(ex);
3452
3453 /* note: ext4_ext_correct_indexes() isn't needed here because
3454 * borders are not changed
3455 */
3456 ext4_ext_try_to_merge(handle, inode, path, ex);
3457
3458 /* Mark modified extent as dirty */
3459 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3460 out:
3461 ext4_ext_show_leaf(inode, path);
3462 return err;
3463 }
3464
3465 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3466 sector_t block, int count)
3467 {
3468 int i;
3469 for (i = 0; i < count; i++)
3470 unmap_underlying_metadata(bdev, block + i);
3471 }
3472
3473 /*
3474 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3475 */
3476 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3477 ext4_lblk_t lblk,
3478 struct ext4_ext_path *path,
3479 unsigned int len)
3480 {
3481 int i, depth;
3482 struct ext4_extent_header *eh;
3483 struct ext4_extent *last_ex;
3484
3485 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3486 return 0;
3487
3488 depth = ext_depth(inode);
3489 eh = path[depth].p_hdr;
3490
3491 /*
3492 * We're going to remove EOFBLOCKS_FL entirely in future so we
3493 * do not care for this case anymore. Simply remove the flag
3494 * if there are no extents.
3495 */
3496 if (unlikely(!eh->eh_entries))
3497 goto out;
3498 last_ex = EXT_LAST_EXTENT(eh);
3499 /*
3500 * We should clear the EOFBLOCKS_FL flag if we are writing the
3501 * last block in the last extent in the file. We test this by
3502 * first checking to see if the caller to
3503 * ext4_ext_get_blocks() was interested in the last block (or
3504 * a block beyond the last block) in the current extent. If
3505 * this turns out to be false, we can bail out from this
3506 * function immediately.
3507 */
3508 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3509 ext4_ext_get_actual_len(last_ex))
3510 return 0;
3511 /*
3512 * If the caller does appear to be planning to write at or
3513 * beyond the end of the current extent, we then test to see
3514 * if the current extent is the last extent in the file, by
3515 * checking to make sure it was reached via the rightmost node
3516 * at each level of the tree.
3517 */
3518 for (i = depth-1; i >= 0; i--)
3519 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3520 return 0;
3521 out:
3522 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3523 return ext4_mark_inode_dirty(handle, inode);
3524 }
3525
3526 /**
3527 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3528 *
3529 * Return 1 if there is a delalloc block in the range, otherwise 0.
3530 */
3531 int ext4_find_delalloc_range(struct inode *inode,
3532 ext4_lblk_t lblk_start,
3533 ext4_lblk_t lblk_end)
3534 {
3535 struct extent_status es;
3536
3537 ext4_es_find_delayed_extent(inode, lblk_start, &es);
3538 if (es.es_len == 0)
3539 return 0; /* there is no delay extent in this tree */
3540 else if (es.es_lblk <= lblk_start &&
3541 lblk_start < es.es_lblk + es.es_len)
3542 return 1;
3543 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3544 return 1;
3545 else
3546 return 0;
3547 }
3548
3549 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3550 {
3551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3552 ext4_lblk_t lblk_start, lblk_end;
3553 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3554 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3555
3556 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3557 }
3558
3559 /**
3560 * Determines how many complete clusters (out of those specified by the 'map')
3561 * are under delalloc and were reserved quota for.
3562 * This function is called when we are writing out the blocks that were
3563 * originally written with their allocation delayed, but then the space was
3564 * allocated using fallocate() before the delayed allocation could be resolved.
3565 * The cases to look for are:
3566 * ('=' indicated delayed allocated blocks
3567 * '-' indicates non-delayed allocated blocks)
3568 * (a) partial clusters towards beginning and/or end outside of allocated range
3569 * are not delalloc'ed.
3570 * Ex:
3571 * |----c---=|====c====|====c====|===-c----|
3572 * |++++++ allocated ++++++|
3573 * ==> 4 complete clusters in above example
3574 *
3575 * (b) partial cluster (outside of allocated range) towards either end is
3576 * marked for delayed allocation. In this case, we will exclude that
3577 * cluster.
3578 * Ex:
3579 * |----====c========|========c========|
3580 * |++++++ allocated ++++++|
3581 * ==> 1 complete clusters in above example
3582 *
3583 * Ex:
3584 * |================c================|
3585 * |++++++ allocated ++++++|
3586 * ==> 0 complete clusters in above example
3587 *
3588 * The ext4_da_update_reserve_space will be called only if we
3589 * determine here that there were some "entire" clusters that span
3590 * this 'allocated' range.
3591 * In the non-bigalloc case, this function will just end up returning num_blks
3592 * without ever calling ext4_find_delalloc_range.
3593 */
3594 static unsigned int
3595 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3596 unsigned int num_blks)
3597 {
3598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3599 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3600 ext4_lblk_t lblk_from, lblk_to, c_offset;
3601 unsigned int allocated_clusters = 0;
3602
3603 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3604 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3605
3606 /* max possible clusters for this allocation */
3607 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3608
3609 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3610
3611 /* Check towards left side */
3612 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3613 if (c_offset) {
3614 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3615 lblk_to = lblk_from + c_offset - 1;
3616
3617 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3618 allocated_clusters--;
3619 }
3620
3621 /* Now check towards right. */
3622 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3623 if (allocated_clusters && c_offset) {
3624 lblk_from = lblk_start + num_blks;
3625 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3626
3627 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3628 allocated_clusters--;
3629 }
3630
3631 return allocated_clusters;
3632 }
3633
3634 static int
3635 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3636 struct ext4_map_blocks *map,
3637 struct ext4_ext_path *path, int flags,
3638 unsigned int allocated, ext4_fsblk_t newblock)
3639 {
3640 int ret = 0;
3641 int err = 0;
3642 ext4_io_end_t *io = ext4_inode_aio(inode);
3643
3644 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3645 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3646 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3647 flags, allocated);
3648 ext4_ext_show_leaf(inode, path);
3649
3650 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3651 allocated, newblock);
3652
3653 /* get_block() before submit the IO, split the extent */
3654 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3655 ret = ext4_split_unwritten_extents(handle, inode, map,
3656 path, flags);
3657 if (ret <= 0)
3658 goto out;
3659 /*
3660 * Flag the inode(non aio case) or end_io struct (aio case)
3661 * that this IO needs to conversion to written when IO is
3662 * completed
3663 */
3664 if (io)
3665 ext4_set_io_unwritten_flag(inode, io);
3666 else
3667 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3668 map->m_flags |= EXT4_MAP_UNWRITTEN;
3669 if (ext4_should_dioread_nolock(inode))
3670 map->m_flags |= EXT4_MAP_UNINIT;
3671 goto out;
3672 }
3673 /* IO end_io complete, convert the filled extent to written */
3674 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3675 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3676 path);
3677 if (ret >= 0) {
3678 ext4_update_inode_fsync_trans(handle, inode, 1);
3679 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3680 path, map->m_len);
3681 } else
3682 err = ret;
3683 map->m_flags |= EXT4_MAP_MAPPED;
3684 if (allocated > map->m_len)
3685 allocated = map->m_len;
3686 map->m_len = allocated;
3687 goto out2;
3688 }
3689 /* buffered IO case */
3690 /*
3691 * repeat fallocate creation request
3692 * we already have an unwritten extent
3693 */
3694 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3695 map->m_flags |= EXT4_MAP_UNWRITTEN;
3696 goto map_out;
3697 }
3698
3699 /* buffered READ or buffered write_begin() lookup */
3700 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3701 /*
3702 * We have blocks reserved already. We
3703 * return allocated blocks so that delalloc
3704 * won't do block reservation for us. But
3705 * the buffer head will be unmapped so that
3706 * a read from the block returns 0s.
3707 */
3708 map->m_flags |= EXT4_MAP_UNWRITTEN;
3709 goto out1;
3710 }
3711
3712 /* buffered write, writepage time, convert*/
3713 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3714 if (ret >= 0)
3715 ext4_update_inode_fsync_trans(handle, inode, 1);
3716 out:
3717 if (ret <= 0) {
3718 err = ret;
3719 goto out2;
3720 } else
3721 allocated = ret;
3722 map->m_flags |= EXT4_MAP_NEW;
3723 /*
3724 * if we allocated more blocks than requested
3725 * we need to make sure we unmap the extra block
3726 * allocated. The actual needed block will get
3727 * unmapped later when we find the buffer_head marked
3728 * new.
3729 */
3730 if (allocated > map->m_len) {
3731 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3732 newblock + map->m_len,
3733 allocated - map->m_len);
3734 allocated = map->m_len;
3735 }
3736 map->m_len = allocated;
3737
3738 /*
3739 * If we have done fallocate with the offset that is already
3740 * delayed allocated, we would have block reservation
3741 * and quota reservation done in the delayed write path.
3742 * But fallocate would have already updated quota and block
3743 * count for this offset. So cancel these reservation
3744 */
3745 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3746 unsigned int reserved_clusters;
3747 reserved_clusters = get_reserved_cluster_alloc(inode,
3748 map->m_lblk, map->m_len);
3749 if (reserved_clusters)
3750 ext4_da_update_reserve_space(inode,
3751 reserved_clusters,
3752 0);
3753 }
3754
3755 map_out:
3756 map->m_flags |= EXT4_MAP_MAPPED;
3757 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3758 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3759 map->m_len);
3760 if (err < 0)
3761 goto out2;
3762 }
3763 out1:
3764 if (allocated > map->m_len)
3765 allocated = map->m_len;
3766 ext4_ext_show_leaf(inode, path);
3767 map->m_pblk = newblock;
3768 map->m_len = allocated;
3769 out2:
3770 if (path) {
3771 ext4_ext_drop_refs(path);
3772 kfree(path);
3773 }
3774 return err ? err : allocated;
3775 }
3776
3777 /*
3778 * get_implied_cluster_alloc - check to see if the requested
3779 * allocation (in the map structure) overlaps with a cluster already
3780 * allocated in an extent.
3781 * @sb The filesystem superblock structure
3782 * @map The requested lblk->pblk mapping
3783 * @ex The extent structure which might contain an implied
3784 * cluster allocation
3785 *
3786 * This function is called by ext4_ext_map_blocks() after we failed to
3787 * find blocks that were already in the inode's extent tree. Hence,
3788 * we know that the beginning of the requested region cannot overlap
3789 * the extent from the inode's extent tree. There are three cases we
3790 * want to catch. The first is this case:
3791 *
3792 * |--- cluster # N--|
3793 * |--- extent ---| |---- requested region ---|
3794 * |==========|
3795 *
3796 * The second case that we need to test for is this one:
3797 *
3798 * |--------- cluster # N ----------------|
3799 * |--- requested region --| |------- extent ----|
3800 * |=======================|
3801 *
3802 * The third case is when the requested region lies between two extents
3803 * within the same cluster:
3804 * |------------- cluster # N-------------|
3805 * |----- ex -----| |---- ex_right ----|
3806 * |------ requested region ------|
3807 * |================|
3808 *
3809 * In each of the above cases, we need to set the map->m_pblk and
3810 * map->m_len so it corresponds to the return the extent labelled as
3811 * "|====|" from cluster #N, since it is already in use for data in
3812 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3813 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3814 * as a new "allocated" block region. Otherwise, we will return 0 and
3815 * ext4_ext_map_blocks() will then allocate one or more new clusters
3816 * by calling ext4_mb_new_blocks().
3817 */
3818 static int get_implied_cluster_alloc(struct super_block *sb,
3819 struct ext4_map_blocks *map,
3820 struct ext4_extent *ex,
3821 struct ext4_ext_path *path)
3822 {
3823 struct ext4_sb_info *sbi = EXT4_SB(sb);
3824 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3825 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3826 ext4_lblk_t rr_cluster_start;
3827 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3828 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3829 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3830
3831 /* The extent passed in that we are trying to match */
3832 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3833 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3834
3835 /* The requested region passed into ext4_map_blocks() */
3836 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3837
3838 if ((rr_cluster_start == ex_cluster_end) ||
3839 (rr_cluster_start == ex_cluster_start)) {
3840 if (rr_cluster_start == ex_cluster_end)
3841 ee_start += ee_len - 1;
3842 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3843 c_offset;
3844 map->m_len = min(map->m_len,
3845 (unsigned) sbi->s_cluster_ratio - c_offset);
3846 /*
3847 * Check for and handle this case:
3848 *
3849 * |--------- cluster # N-------------|
3850 * |------- extent ----|
3851 * |--- requested region ---|
3852 * |===========|
3853 */
3854
3855 if (map->m_lblk < ee_block)
3856 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3857
3858 /*
3859 * Check for the case where there is already another allocated
3860 * block to the right of 'ex' but before the end of the cluster.
3861 *
3862 * |------------- cluster # N-------------|
3863 * |----- ex -----| |---- ex_right ----|
3864 * |------ requested region ------|
3865 * |================|
3866 */
3867 if (map->m_lblk > ee_block) {
3868 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3869 map->m_len = min(map->m_len, next - map->m_lblk);
3870 }
3871
3872 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3873 return 1;
3874 }
3875
3876 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3877 return 0;
3878 }
3879
3880
3881 /*
3882 * Block allocation/map/preallocation routine for extents based files
3883 *
3884 *
3885 * Need to be called with
3886 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3887 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3888 *
3889 * return > 0, number of of blocks already mapped/allocated
3890 * if create == 0 and these are pre-allocated blocks
3891 * buffer head is unmapped
3892 * otherwise blocks are mapped
3893 *
3894 * return = 0, if plain look up failed (blocks have not been allocated)
3895 * buffer head is unmapped
3896 *
3897 * return < 0, error case.
3898 */
3899 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3900 struct ext4_map_blocks *map, int flags)
3901 {
3902 struct ext4_ext_path *path = NULL;
3903 struct ext4_extent newex, *ex, *ex2;
3904 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3905 ext4_fsblk_t newblock = 0;
3906 int free_on_err = 0, err = 0, depth;
3907 unsigned int allocated = 0, offset = 0;
3908 unsigned int allocated_clusters = 0;
3909 struct ext4_allocation_request ar;
3910 ext4_io_end_t *io = ext4_inode_aio(inode);
3911 ext4_lblk_t cluster_offset;
3912 int set_unwritten = 0;
3913
3914 ext_debug("blocks %u/%u requested for inode %lu\n",
3915 map->m_lblk, map->m_len, inode->i_ino);
3916 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3917
3918 /* find extent for this block */
3919 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3920 if (IS_ERR(path)) {
3921 err = PTR_ERR(path);
3922 path = NULL;
3923 goto out2;
3924 }
3925
3926 depth = ext_depth(inode);
3927
3928 /*
3929 * consistent leaf must not be empty;
3930 * this situation is possible, though, _during_ tree modification;
3931 * this is why assert can't be put in ext4_ext_find_extent()
3932 */
3933 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3934 EXT4_ERROR_INODE(inode, "bad extent address "
3935 "lblock: %lu, depth: %d pblock %lld",
3936 (unsigned long) map->m_lblk, depth,
3937 path[depth].p_block);
3938 err = -EIO;
3939 goto out2;
3940 }
3941
3942 ex = path[depth].p_ext;
3943 if (ex) {
3944 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3945 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3946 unsigned short ee_len;
3947
3948 /*
3949 * Uninitialized extents are treated as holes, except that
3950 * we split out initialized portions during a write.
3951 */
3952 ee_len = ext4_ext_get_actual_len(ex);
3953
3954 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3955
3956 /* if found extent covers block, simply return it */
3957 if (in_range(map->m_lblk, ee_block, ee_len)) {
3958 newblock = map->m_lblk - ee_block + ee_start;
3959 /* number of remaining blocks in the extent */
3960 allocated = ee_len - (map->m_lblk - ee_block);
3961 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3962 ee_block, ee_len, newblock);
3963
3964 if (!ext4_ext_is_uninitialized(ex))
3965 goto out;
3966
3967 allocated = ext4_ext_handle_uninitialized_extents(
3968 handle, inode, map, path, flags,
3969 allocated, newblock);
3970 goto out3;
3971 }
3972 }
3973
3974 if ((sbi->s_cluster_ratio > 1) &&
3975 ext4_find_delalloc_cluster(inode, map->m_lblk))
3976 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3977
3978 /*
3979 * requested block isn't allocated yet;
3980 * we couldn't try to create block if create flag is zero
3981 */
3982 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3983 /*
3984 * put just found gap into cache to speed up
3985 * subsequent requests
3986 */
3987 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
3988 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3989 goto out2;
3990 }
3991
3992 /*
3993 * Okay, we need to do block allocation.
3994 */
3995 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3996 newex.ee_block = cpu_to_le32(map->m_lblk);
3997 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3998
3999 /*
4000 * If we are doing bigalloc, check to see if the extent returned
4001 * by ext4_ext_find_extent() implies a cluster we can use.
4002 */
4003 if (cluster_offset && ex &&
4004 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4005 ar.len = allocated = map->m_len;
4006 newblock = map->m_pblk;
4007 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4008 goto got_allocated_blocks;
4009 }
4010
4011 /* find neighbour allocated blocks */
4012 ar.lleft = map->m_lblk;
4013 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4014 if (err)
4015 goto out2;
4016 ar.lright = map->m_lblk;
4017 ex2 = NULL;
4018 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4019 if (err)
4020 goto out2;
4021
4022 /* Check if the extent after searching to the right implies a
4023 * cluster we can use. */
4024 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4025 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4026 ar.len = allocated = map->m_len;
4027 newblock = map->m_pblk;
4028 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4029 goto got_allocated_blocks;
4030 }
4031
4032 /*
4033 * See if request is beyond maximum number of blocks we can have in
4034 * a single extent. For an initialized extent this limit is
4035 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4036 * EXT_UNINIT_MAX_LEN.
4037 */
4038 if (map->m_len > EXT_INIT_MAX_LEN &&
4039 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4040 map->m_len = EXT_INIT_MAX_LEN;
4041 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4042 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4043 map->m_len = EXT_UNINIT_MAX_LEN;
4044
4045 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4046 newex.ee_len = cpu_to_le16(map->m_len);
4047 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4048 if (err)
4049 allocated = ext4_ext_get_actual_len(&newex);
4050 else
4051 allocated = map->m_len;
4052
4053 /* allocate new block */
4054 ar.inode = inode;
4055 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4056 ar.logical = map->m_lblk;
4057 /*
4058 * We calculate the offset from the beginning of the cluster
4059 * for the logical block number, since when we allocate a
4060 * physical cluster, the physical block should start at the
4061 * same offset from the beginning of the cluster. This is
4062 * needed so that future calls to get_implied_cluster_alloc()
4063 * work correctly.
4064 */
4065 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4066 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4067 ar.goal -= offset;
4068 ar.logical -= offset;
4069 if (S_ISREG(inode->i_mode))
4070 ar.flags = EXT4_MB_HINT_DATA;
4071 else
4072 /* disable in-core preallocation for non-regular files */
4073 ar.flags = 0;
4074 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4075 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4076 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4077 if (!newblock)
4078 goto out2;
4079 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4080 ar.goal, newblock, allocated);
4081 free_on_err = 1;
4082 allocated_clusters = ar.len;
4083 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4084 if (ar.len > allocated)
4085 ar.len = allocated;
4086
4087 got_allocated_blocks:
4088 /* try to insert new extent into found leaf and return */
4089 ext4_ext_store_pblock(&newex, newblock + offset);
4090 newex.ee_len = cpu_to_le16(ar.len);
4091 /* Mark uninitialized */
4092 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4093 ext4_ext_mark_uninitialized(&newex);
4094 map->m_flags |= EXT4_MAP_UNWRITTEN;
4095 /*
4096 * io_end structure was created for every IO write to an
4097 * uninitialized extent. To avoid unnecessary conversion,
4098 * here we flag the IO that really needs the conversion.
4099 * For non asycn direct IO case, flag the inode state
4100 * that we need to perform conversion when IO is done.
4101 */
4102 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4103 set_unwritten = 1;
4104 if (ext4_should_dioread_nolock(inode))
4105 map->m_flags |= EXT4_MAP_UNINIT;
4106 }
4107
4108 err = 0;
4109 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4110 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4111 path, ar.len);
4112 if (!err)
4113 err = ext4_ext_insert_extent(handle, inode, path,
4114 &newex, flags);
4115
4116 if (!err && set_unwritten) {
4117 if (io)
4118 ext4_set_io_unwritten_flag(inode, io);
4119 else
4120 ext4_set_inode_state(inode,
4121 EXT4_STATE_DIO_UNWRITTEN);
4122 }
4123
4124 if (err && free_on_err) {
4125 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4126 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4127 /* free data blocks we just allocated */
4128 /* not a good idea to call discard here directly,
4129 * but otherwise we'd need to call it every free() */
4130 ext4_discard_preallocations(inode);
4131 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4132 ext4_ext_get_actual_len(&newex), fb_flags);
4133 goto out2;
4134 }
4135
4136 /* previous routine could use block we allocated */
4137 newblock = ext4_ext_pblock(&newex);
4138 allocated = ext4_ext_get_actual_len(&newex);
4139 if (allocated > map->m_len)
4140 allocated = map->m_len;
4141 map->m_flags |= EXT4_MAP_NEW;
4142
4143 /*
4144 * Update reserved blocks/metadata blocks after successful
4145 * block allocation which had been deferred till now.
4146 */
4147 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4148 unsigned int reserved_clusters;
4149 /*
4150 * Check how many clusters we had reserved this allocated range
4151 */
4152 reserved_clusters = get_reserved_cluster_alloc(inode,
4153 map->m_lblk, allocated);
4154 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4155 if (reserved_clusters) {
4156 /*
4157 * We have clusters reserved for this range.
4158 * But since we are not doing actual allocation
4159 * and are simply using blocks from previously
4160 * allocated cluster, we should release the
4161 * reservation and not claim quota.
4162 */
4163 ext4_da_update_reserve_space(inode,
4164 reserved_clusters, 0);
4165 }
4166 } else {
4167 BUG_ON(allocated_clusters < reserved_clusters);
4168 if (reserved_clusters < allocated_clusters) {
4169 struct ext4_inode_info *ei = EXT4_I(inode);
4170 int reservation = allocated_clusters -
4171 reserved_clusters;
4172 /*
4173 * It seems we claimed few clusters outside of
4174 * the range of this allocation. We should give
4175 * it back to the reservation pool. This can
4176 * happen in the following case:
4177 *
4178 * * Suppose s_cluster_ratio is 4 (i.e., each
4179 * cluster has 4 blocks. Thus, the clusters
4180 * are [0-3],[4-7],[8-11]...
4181 * * First comes delayed allocation write for
4182 * logical blocks 10 & 11. Since there were no
4183 * previous delayed allocated blocks in the
4184 * range [8-11], we would reserve 1 cluster
4185 * for this write.
4186 * * Next comes write for logical blocks 3 to 8.
4187 * In this case, we will reserve 2 clusters
4188 * (for [0-3] and [4-7]; and not for [8-11] as
4189 * that range has a delayed allocated blocks.
4190 * Thus total reserved clusters now becomes 3.
4191 * * Now, during the delayed allocation writeout
4192 * time, we will first write blocks [3-8] and
4193 * allocate 3 clusters for writing these
4194 * blocks. Also, we would claim all these
4195 * three clusters above.
4196 * * Now when we come here to writeout the
4197 * blocks [10-11], we would expect to claim
4198 * the reservation of 1 cluster we had made
4199 * (and we would claim it since there are no
4200 * more delayed allocated blocks in the range
4201 * [8-11]. But our reserved cluster count had
4202 * already gone to 0.
4203 *
4204 * Thus, at the step 4 above when we determine
4205 * that there are still some unwritten delayed
4206 * allocated blocks outside of our current
4207 * block range, we should increment the
4208 * reserved clusters count so that when the
4209 * remaining blocks finally gets written, we
4210 * could claim them.
4211 */
4212 dquot_reserve_block(inode,
4213 EXT4_C2B(sbi, reservation));
4214 spin_lock(&ei->i_block_reservation_lock);
4215 ei->i_reserved_data_blocks += reservation;
4216 spin_unlock(&ei->i_block_reservation_lock);
4217 }
4218 /*
4219 * We will claim quota for all newly allocated blocks.
4220 * We're updating the reserved space *after* the
4221 * correction above so we do not accidentally free
4222 * all the metadata reservation because we might
4223 * actually need it later on.
4224 */
4225 ext4_da_update_reserve_space(inode, allocated_clusters,
4226 1);
4227 }
4228 }
4229
4230 /*
4231 * Cache the extent and update transaction to commit on fdatasync only
4232 * when it is _not_ an uninitialized extent.
4233 */
4234 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4235 ext4_update_inode_fsync_trans(handle, inode, 1);
4236 else
4237 ext4_update_inode_fsync_trans(handle, inode, 0);
4238 out:
4239 if (allocated > map->m_len)
4240 allocated = map->m_len;
4241 ext4_ext_show_leaf(inode, path);
4242 map->m_flags |= EXT4_MAP_MAPPED;
4243 map->m_pblk = newblock;
4244 map->m_len = allocated;
4245 out2:
4246 if (path) {
4247 ext4_ext_drop_refs(path);
4248 kfree(path);
4249 }
4250
4251 out3:
4252 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4253
4254 return err ? err : allocated;
4255 }
4256
4257 void ext4_ext_truncate(struct inode *inode)
4258 {
4259 struct address_space *mapping = inode->i_mapping;
4260 struct super_block *sb = inode->i_sb;
4261 ext4_lblk_t last_block;
4262 handle_t *handle;
4263 loff_t page_len;
4264 int err = 0;
4265
4266 /*
4267 * finish any pending end_io work so we won't run the risk of
4268 * converting any truncated blocks to initialized later
4269 */
4270 ext4_flush_unwritten_io(inode);
4271
4272 /*
4273 * probably first extent we're gonna free will be last in block
4274 */
4275 err = ext4_writepage_trans_blocks(inode);
4276 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4277 if (IS_ERR(handle))
4278 return;
4279
4280 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4281 page_len = PAGE_CACHE_SIZE -
4282 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4283
4284 err = ext4_discard_partial_page_buffers(handle,
4285 mapping, inode->i_size, page_len, 0);
4286
4287 if (err)
4288 goto out_stop;
4289 }
4290
4291 if (ext4_orphan_add(handle, inode))
4292 goto out_stop;
4293
4294 down_write(&EXT4_I(inode)->i_data_sem);
4295
4296 ext4_discard_preallocations(inode);
4297
4298 /*
4299 * TODO: optimization is possible here.
4300 * Probably we need not scan at all,
4301 * because page truncation is enough.
4302 */
4303
4304 /* we have to know where to truncate from in crash case */
4305 EXT4_I(inode)->i_disksize = inode->i_size;
4306 ext4_mark_inode_dirty(handle, inode);
4307
4308 last_block = (inode->i_size + sb->s_blocksize - 1)
4309 >> EXT4_BLOCK_SIZE_BITS(sb);
4310 err = ext4_es_remove_extent(inode, last_block,
4311 EXT_MAX_BLOCKS - last_block);
4312 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4313
4314 /* In a multi-transaction truncate, we only make the final
4315 * transaction synchronous.
4316 */
4317 if (IS_SYNC(inode))
4318 ext4_handle_sync(handle);
4319
4320 up_write(&EXT4_I(inode)->i_data_sem);
4321
4322 out_stop:
4323 /*
4324 * If this was a simple ftruncate() and the file will remain alive,
4325 * then we need to clear up the orphan record which we created above.
4326 * However, if this was a real unlink then we were called by
4327 * ext4_delete_inode(), and we allow that function to clean up the
4328 * orphan info for us.
4329 */
4330 if (inode->i_nlink)
4331 ext4_orphan_del(handle, inode);
4332
4333 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4334 ext4_mark_inode_dirty(handle, inode);
4335 ext4_journal_stop(handle);
4336 }
4337
4338 static void ext4_falloc_update_inode(struct inode *inode,
4339 int mode, loff_t new_size, int update_ctime)
4340 {
4341 struct timespec now;
4342
4343 if (update_ctime) {
4344 now = current_fs_time(inode->i_sb);
4345 if (!timespec_equal(&inode->i_ctime, &now))
4346 inode->i_ctime = now;
4347 }
4348 /*
4349 * Update only when preallocation was requested beyond
4350 * the file size.
4351 */
4352 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4353 if (new_size > i_size_read(inode))
4354 i_size_write(inode, new_size);
4355 if (new_size > EXT4_I(inode)->i_disksize)
4356 ext4_update_i_disksize(inode, new_size);
4357 } else {
4358 /*
4359 * Mark that we allocate beyond EOF so the subsequent truncate
4360 * can proceed even if the new size is the same as i_size.
4361 */
4362 if (new_size > i_size_read(inode))
4363 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4364 }
4365
4366 }
4367
4368 /*
4369 * preallocate space for a file. This implements ext4's fallocate file
4370 * operation, which gets called from sys_fallocate system call.
4371 * For block-mapped files, posix_fallocate should fall back to the method
4372 * of writing zeroes to the required new blocks (the same behavior which is
4373 * expected for file systems which do not support fallocate() system call).
4374 */
4375 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4376 {
4377 struct inode *inode = file->f_path.dentry->d_inode;
4378 handle_t *handle;
4379 loff_t new_size;
4380 unsigned int max_blocks;
4381 int ret = 0;
4382 int ret2 = 0;
4383 int retries = 0;
4384 int flags;
4385 struct ext4_map_blocks map;
4386 unsigned int credits, blkbits = inode->i_blkbits;
4387
4388 /* Return error if mode is not supported */
4389 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4390 return -EOPNOTSUPP;
4391
4392 if (mode & FALLOC_FL_PUNCH_HOLE)
4393 return ext4_punch_hole(file, offset, len);
4394
4395 ret = ext4_convert_inline_data(inode);
4396 if (ret)
4397 return ret;
4398
4399 /*
4400 * currently supporting (pre)allocate mode for extent-based
4401 * files _only_
4402 */
4403 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4404 return -EOPNOTSUPP;
4405
4406 trace_ext4_fallocate_enter(inode, offset, len, mode);
4407 map.m_lblk = offset >> blkbits;
4408 /*
4409 * We can't just convert len to max_blocks because
4410 * If blocksize = 4096 offset = 3072 and len = 2048
4411 */
4412 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4413 - map.m_lblk;
4414 /*
4415 * credits to insert 1 extent into extent tree
4416 */
4417 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4418 mutex_lock(&inode->i_mutex);
4419 ret = inode_newsize_ok(inode, (len + offset));
4420 if (ret) {
4421 mutex_unlock(&inode->i_mutex);
4422 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4423 return ret;
4424 }
4425 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4426 if (mode & FALLOC_FL_KEEP_SIZE)
4427 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4428 /*
4429 * Don't normalize the request if it can fit in one extent so
4430 * that it doesn't get unnecessarily split into multiple
4431 * extents.
4432 */
4433 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4434 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4435
4436 retry:
4437 while (ret >= 0 && ret < max_blocks) {
4438 map.m_lblk = map.m_lblk + ret;
4439 map.m_len = max_blocks = max_blocks - ret;
4440 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4441 credits);
4442 if (IS_ERR(handle)) {
4443 ret = PTR_ERR(handle);
4444 break;
4445 }
4446 ret = ext4_map_blocks(handle, inode, &map, flags);
4447 if (ret <= 0) {
4448 #ifdef EXT4FS_DEBUG
4449 ext4_warning(inode->i_sb,
4450 "inode #%lu: block %u: len %u: "
4451 "ext4_ext_map_blocks returned %d",
4452 inode->i_ino, map.m_lblk,
4453 map.m_len, ret);
4454 #endif
4455 ext4_mark_inode_dirty(handle, inode);
4456 ret2 = ext4_journal_stop(handle);
4457 break;
4458 }
4459 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4460 blkbits) >> blkbits))
4461 new_size = offset + len;
4462 else
4463 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4464
4465 ext4_falloc_update_inode(inode, mode, new_size,
4466 (map.m_flags & EXT4_MAP_NEW));
4467 ext4_mark_inode_dirty(handle, inode);
4468 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4469 ext4_handle_sync(handle);
4470 ret2 = ext4_journal_stop(handle);
4471 if (ret2)
4472 break;
4473 }
4474 if (ret == -ENOSPC &&
4475 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4476 ret = 0;
4477 goto retry;
4478 }
4479 mutex_unlock(&inode->i_mutex);
4480 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4481 ret > 0 ? ret2 : ret);
4482 return ret > 0 ? ret2 : ret;
4483 }
4484
4485 /*
4486 * This function convert a range of blocks to written extents
4487 * The caller of this function will pass the start offset and the size.
4488 * all unwritten extents within this range will be converted to
4489 * written extents.
4490 *
4491 * This function is called from the direct IO end io call back
4492 * function, to convert the fallocated extents after IO is completed.
4493 * Returns 0 on success.
4494 */
4495 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4496 ssize_t len)
4497 {
4498 handle_t *handle;
4499 unsigned int max_blocks;
4500 int ret = 0;
4501 int ret2 = 0;
4502 struct ext4_map_blocks map;
4503 unsigned int credits, blkbits = inode->i_blkbits;
4504
4505 map.m_lblk = offset >> blkbits;
4506 /*
4507 * We can't just convert len to max_blocks because
4508 * If blocksize = 4096 offset = 3072 and len = 2048
4509 */
4510 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4511 map.m_lblk);
4512 /*
4513 * credits to insert 1 extent into extent tree
4514 */
4515 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4516 while (ret >= 0 && ret < max_blocks) {
4517 map.m_lblk += ret;
4518 map.m_len = (max_blocks -= ret);
4519 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4520 if (IS_ERR(handle)) {
4521 ret = PTR_ERR(handle);
4522 break;
4523 }
4524 ret = ext4_map_blocks(handle, inode, &map,
4525 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4526 if (ret <= 0)
4527 ext4_warning(inode->i_sb,
4528 "inode #%lu: block %u: len %u: "
4529 "ext4_ext_map_blocks returned %d",
4530 inode->i_ino, map.m_lblk,
4531 map.m_len, ret);
4532 ext4_mark_inode_dirty(handle, inode);
4533 ret2 = ext4_journal_stop(handle);
4534 if (ret <= 0 || ret2 )
4535 break;
4536 }
4537 return ret > 0 ? ret2 : ret;
4538 }
4539
4540 /*
4541 * If newes is not existing extent (newes->ec_pblk equals zero) find
4542 * delayed extent at start of newes and update newes accordingly and
4543 * return start of the next delayed extent.
4544 *
4545 * If newes is existing extent (newes->ec_pblk is not equal zero)
4546 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4547 * extent found. Leave newes unmodified.
4548 */
4549 static int ext4_find_delayed_extent(struct inode *inode,
4550 struct extent_status *newes)
4551 {
4552 struct extent_status es;
4553 ext4_lblk_t block, next_del;
4554
4555 ext4_es_find_delayed_extent(inode, newes->es_lblk, &es);
4556
4557 if (newes->es_pblk == 0) {
4558 /*
4559 * No extent in extent-tree contains block @newes->es_pblk,
4560 * then the block may stay in 1)a hole or 2)delayed-extent.
4561 */
4562 if (es.es_len == 0)
4563 /* A hole found. */
4564 return 0;
4565
4566 if (es.es_lblk > newes->es_lblk) {
4567 /* A hole found. */
4568 newes->es_len = min(es.es_lblk - newes->es_lblk,
4569 newes->es_len);
4570 return 0;
4571 }
4572
4573 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4574 }
4575
4576 block = newes->es_lblk + newes->es_len;
4577 ext4_es_find_delayed_extent(inode, block, &es);
4578 if (es.es_len == 0)
4579 next_del = EXT_MAX_BLOCKS;
4580 else
4581 next_del = es.es_lblk;
4582
4583 return next_del;
4584 }
4585 /* fiemap flags we can handle specified here */
4586 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4587
4588 static int ext4_xattr_fiemap(struct inode *inode,
4589 struct fiemap_extent_info *fieinfo)
4590 {
4591 __u64 physical = 0;
4592 __u64 length;
4593 __u32 flags = FIEMAP_EXTENT_LAST;
4594 int blockbits = inode->i_sb->s_blocksize_bits;
4595 int error = 0;
4596
4597 /* in-inode? */
4598 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4599 struct ext4_iloc iloc;
4600 int offset; /* offset of xattr in inode */
4601
4602 error = ext4_get_inode_loc(inode, &iloc);
4603 if (error)
4604 return error;
4605 physical = iloc.bh->b_blocknr << blockbits;
4606 offset = EXT4_GOOD_OLD_INODE_SIZE +
4607 EXT4_I(inode)->i_extra_isize;
4608 physical += offset;
4609 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4610 flags |= FIEMAP_EXTENT_DATA_INLINE;
4611 brelse(iloc.bh);
4612 } else { /* external block */
4613 physical = EXT4_I(inode)->i_file_acl << blockbits;
4614 length = inode->i_sb->s_blocksize;
4615 }
4616
4617 if (physical)
4618 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4619 length, flags);
4620 return (error < 0 ? error : 0);
4621 }
4622
4623 /*
4624 * ext4_ext_punch_hole
4625 *
4626 * Punches a hole of "length" bytes in a file starting
4627 * at byte "offset"
4628 *
4629 * @inode: The inode of the file to punch a hole in
4630 * @offset: The starting byte offset of the hole
4631 * @length: The length of the hole
4632 *
4633 * Returns the number of blocks removed or negative on err
4634 */
4635 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4636 {
4637 struct inode *inode = file->f_path.dentry->d_inode;
4638 struct super_block *sb = inode->i_sb;
4639 ext4_lblk_t first_block, stop_block;
4640 struct address_space *mapping = inode->i_mapping;
4641 handle_t *handle;
4642 loff_t first_page, last_page, page_len;
4643 loff_t first_page_offset, last_page_offset;
4644 int credits, err = 0;
4645
4646 /*
4647 * Write out all dirty pages to avoid race conditions
4648 * Then release them.
4649 */
4650 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4651 err = filemap_write_and_wait_range(mapping,
4652 offset, offset + length - 1);
4653
4654 if (err)
4655 return err;
4656 }
4657
4658 mutex_lock(&inode->i_mutex);
4659 /* It's not possible punch hole on append only file */
4660 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4661 err = -EPERM;
4662 goto out_mutex;
4663 }
4664 if (IS_SWAPFILE(inode)) {
4665 err = -ETXTBSY;
4666 goto out_mutex;
4667 }
4668
4669 /* No need to punch hole beyond i_size */
4670 if (offset >= inode->i_size)
4671 goto out_mutex;
4672
4673 /*
4674 * If the hole extends beyond i_size, set the hole
4675 * to end after the page that contains i_size
4676 */
4677 if (offset + length > inode->i_size) {
4678 length = inode->i_size +
4679 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4680 offset;
4681 }
4682
4683 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4684 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4685
4686 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4687 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4688
4689 /* Now release the pages */
4690 if (last_page_offset > first_page_offset) {
4691 truncate_pagecache_range(inode, first_page_offset,
4692 last_page_offset - 1);
4693 }
4694
4695 /* Wait all existing dio workers, newcomers will block on i_mutex */
4696 ext4_inode_block_unlocked_dio(inode);
4697 err = ext4_flush_unwritten_io(inode);
4698 if (err)
4699 goto out_dio;
4700 inode_dio_wait(inode);
4701
4702 credits = ext4_writepage_trans_blocks(inode);
4703 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4704 if (IS_ERR(handle)) {
4705 err = PTR_ERR(handle);
4706 goto out_dio;
4707 }
4708
4709
4710 /*
4711 * Now we need to zero out the non-page-aligned data in the
4712 * pages at the start and tail of the hole, and unmap the buffer
4713 * heads for the block aligned regions of the page that were
4714 * completely zeroed.
4715 */
4716 if (first_page > last_page) {
4717 /*
4718 * If the file space being truncated is contained within a page
4719 * just zero out and unmap the middle of that page
4720 */
4721 err = ext4_discard_partial_page_buffers(handle,
4722 mapping, offset, length, 0);
4723
4724 if (err)
4725 goto out;
4726 } else {
4727 /*
4728 * zero out and unmap the partial page that contains
4729 * the start of the hole
4730 */
4731 page_len = first_page_offset - offset;
4732 if (page_len > 0) {
4733 err = ext4_discard_partial_page_buffers(handle, mapping,
4734 offset, page_len, 0);
4735 if (err)
4736 goto out;
4737 }
4738
4739 /*
4740 * zero out and unmap the partial page that contains
4741 * the end of the hole
4742 */
4743 page_len = offset + length - last_page_offset;
4744 if (page_len > 0) {
4745 err = ext4_discard_partial_page_buffers(handle, mapping,
4746 last_page_offset, page_len, 0);
4747 if (err)
4748 goto out;
4749 }
4750 }
4751
4752 /*
4753 * If i_size is contained in the last page, we need to
4754 * unmap and zero the partial page after i_size
4755 */
4756 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4757 inode->i_size % PAGE_CACHE_SIZE != 0) {
4758
4759 page_len = PAGE_CACHE_SIZE -
4760 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4761
4762 if (page_len > 0) {
4763 err = ext4_discard_partial_page_buffers(handle,
4764 mapping, inode->i_size, page_len, 0);
4765
4766 if (err)
4767 goto out;
4768 }
4769 }
4770
4771 first_block = (offset + sb->s_blocksize - 1) >>
4772 EXT4_BLOCK_SIZE_BITS(sb);
4773 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4774
4775 /* If there are no blocks to remove, return now */
4776 if (first_block >= stop_block)
4777 goto out;
4778
4779 down_write(&EXT4_I(inode)->i_data_sem);
4780 ext4_discard_preallocations(inode);
4781
4782 err = ext4_es_remove_extent(inode, first_block,
4783 stop_block - first_block);
4784 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4785
4786 ext4_discard_preallocations(inode);
4787
4788 if (IS_SYNC(inode))
4789 ext4_handle_sync(handle);
4790
4791 up_write(&EXT4_I(inode)->i_data_sem);
4792
4793 out:
4794 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4795 ext4_mark_inode_dirty(handle, inode);
4796 ext4_journal_stop(handle);
4797 out_dio:
4798 ext4_inode_resume_unlocked_dio(inode);
4799 out_mutex:
4800 mutex_unlock(&inode->i_mutex);
4801 return err;
4802 }
4803
4804 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4805 __u64 start, __u64 len)
4806 {
4807 ext4_lblk_t start_blk;
4808 int error = 0;
4809
4810 if (ext4_has_inline_data(inode)) {
4811 int has_inline = 1;
4812
4813 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4814
4815 if (has_inline)
4816 return error;
4817 }
4818
4819 /* fallback to generic here if not in extents fmt */
4820 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4821 return generic_block_fiemap(inode, fieinfo, start, len,
4822 ext4_get_block);
4823
4824 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4825 return -EBADR;
4826
4827 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4828 error = ext4_xattr_fiemap(inode, fieinfo);
4829 } else {
4830 ext4_lblk_t len_blks;
4831 __u64 last_blk;
4832
4833 start_blk = start >> inode->i_sb->s_blocksize_bits;
4834 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4835 if (last_blk >= EXT_MAX_BLOCKS)
4836 last_blk = EXT_MAX_BLOCKS-1;
4837 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4838
4839 /*
4840 * Walk the extent tree gathering extent information
4841 * and pushing extents back to the user.
4842 */
4843 error = ext4_fill_fiemap_extents(inode, start_blk,
4844 len_blks, fieinfo);
4845 }
4846
4847 return error;
4848 }