]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
ext4: Properly update i_disksize.
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45
46
47 /*
48 * ext_pblock:
49 * combine low and high parts of physical block number into ext4_fsblk_t
50 */
51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
52 {
53 ext4_fsblk_t block;
54
55 block = le32_to_cpu(ex->ee_start_lo);
56 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
57 return block;
58 }
59
60 /*
61 * idx_pblock:
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
63 */
64 ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
65 {
66 ext4_fsblk_t block;
67
68 block = le32_to_cpu(ix->ei_leaf_lo);
69 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
70 return block;
71 }
72
73 /*
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
77 */
78 void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
79 {
80 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
81 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
82 }
83
84 /*
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
88 */
89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
90 {
91 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
92 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
93 }
94
95 static int ext4_ext_journal_restart(handle_t *handle, int needed)
96 {
97 int err;
98
99 if (handle->h_buffer_credits > needed)
100 return 0;
101 err = ext4_journal_extend(handle, needed);
102 if (err <= 0)
103 return err;
104 return ext4_journal_restart(handle, needed);
105 }
106
107 /*
108 * could return:
109 * - EROFS
110 * - ENOMEM
111 */
112 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
113 struct ext4_ext_path *path)
114 {
115 if (path->p_bh) {
116 /* path points to block */
117 return ext4_journal_get_write_access(handle, path->p_bh);
118 }
119 /* path points to leaf/index in inode body */
120 /* we use in-core data, no need to protect them */
121 return 0;
122 }
123
124 /*
125 * could return:
126 * - EROFS
127 * - ENOMEM
128 * - EIO
129 */
130 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
131 struct ext4_ext_path *path)
132 {
133 int err;
134 if (path->p_bh) {
135 /* path points to block */
136 err = ext4_journal_dirty_metadata(handle, path->p_bh);
137 } else {
138 /* path points to leaf/index in inode body */
139 err = ext4_mark_inode_dirty(handle, inode);
140 }
141 return err;
142 }
143
144 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
145 struct ext4_ext_path *path,
146 ext4_lblk_t block)
147 {
148 struct ext4_inode_info *ei = EXT4_I(inode);
149 ext4_fsblk_t bg_start;
150 ext4_fsblk_t last_block;
151 ext4_grpblk_t colour;
152 int depth;
153
154 if (path) {
155 struct ext4_extent *ex;
156 depth = path->p_depth;
157
158 /* try to predict block placement */
159 ex = path[depth].p_ext;
160 if (ex)
161 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
162
163 /* it looks like index is empty;
164 * try to find starting block from index itself */
165 if (path[depth].p_bh)
166 return path[depth].p_bh->b_blocknr;
167 }
168
169 /* OK. use inode's group */
170 bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
171 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
172 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
173
174 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
175 colour = (current->pid % 16) *
176 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
177 else
178 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
179 return bg_start + colour + block;
180 }
181
182 /*
183 * Allocation for a meta data block
184 */
185 static ext4_fsblk_t
186 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
187 struct ext4_ext_path *path,
188 struct ext4_extent *ex, int *err)
189 {
190 ext4_fsblk_t goal, newblock;
191
192 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
193 newblock = ext4_new_meta_block(handle, inode, goal, err);
194 return newblock;
195 }
196
197 static int ext4_ext_space_block(struct inode *inode)
198 {
199 int size;
200
201 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
202 / sizeof(struct ext4_extent);
203 #ifdef AGGRESSIVE_TEST
204 if (size > 6)
205 size = 6;
206 #endif
207 return size;
208 }
209
210 static int ext4_ext_space_block_idx(struct inode *inode)
211 {
212 int size;
213
214 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
215 / sizeof(struct ext4_extent_idx);
216 #ifdef AGGRESSIVE_TEST
217 if (size > 5)
218 size = 5;
219 #endif
220 return size;
221 }
222
223 static int ext4_ext_space_root(struct inode *inode)
224 {
225 int size;
226
227 size = sizeof(EXT4_I(inode)->i_data);
228 size -= sizeof(struct ext4_extent_header);
229 size /= sizeof(struct ext4_extent);
230 #ifdef AGGRESSIVE_TEST
231 if (size > 3)
232 size = 3;
233 #endif
234 return size;
235 }
236
237 static int ext4_ext_space_root_idx(struct inode *inode)
238 {
239 int size;
240
241 size = sizeof(EXT4_I(inode)->i_data);
242 size -= sizeof(struct ext4_extent_header);
243 size /= sizeof(struct ext4_extent_idx);
244 #ifdef AGGRESSIVE_TEST
245 if (size > 4)
246 size = 4;
247 #endif
248 return size;
249 }
250
251 /*
252 * Calculate the number of metadata blocks needed
253 * to allocate @blocks
254 * Worse case is one block per extent
255 */
256 int ext4_ext_calc_metadata_amount(struct inode *inode, int blocks)
257 {
258 int lcap, icap, rcap, leafs, idxs, num;
259 int newextents = blocks;
260
261 rcap = ext4_ext_space_root_idx(inode);
262 lcap = ext4_ext_space_block(inode);
263 icap = ext4_ext_space_block_idx(inode);
264
265 /* number of new leaf blocks needed */
266 num = leafs = (newextents + lcap - 1) / lcap;
267
268 /*
269 * Worse case, we need separate index block(s)
270 * to link all new leaf blocks
271 */
272 idxs = (leafs + icap - 1) / icap;
273 do {
274 num += idxs;
275 idxs = (idxs + icap - 1) / icap;
276 } while (idxs > rcap);
277
278 return num;
279 }
280
281 static int
282 ext4_ext_max_entries(struct inode *inode, int depth)
283 {
284 int max;
285
286 if (depth == ext_depth(inode)) {
287 if (depth == 0)
288 max = ext4_ext_space_root(inode);
289 else
290 max = ext4_ext_space_root_idx(inode);
291 } else {
292 if (depth == 0)
293 max = ext4_ext_space_block(inode);
294 else
295 max = ext4_ext_space_block_idx(inode);
296 }
297
298 return max;
299 }
300
301 static int __ext4_ext_check_header(const char *function, struct inode *inode,
302 struct ext4_extent_header *eh,
303 int depth)
304 {
305 const char *error_msg;
306 int max = 0;
307
308 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
309 error_msg = "invalid magic";
310 goto corrupted;
311 }
312 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
313 error_msg = "unexpected eh_depth";
314 goto corrupted;
315 }
316 if (unlikely(eh->eh_max == 0)) {
317 error_msg = "invalid eh_max";
318 goto corrupted;
319 }
320 max = ext4_ext_max_entries(inode, depth);
321 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
322 error_msg = "too large eh_max";
323 goto corrupted;
324 }
325 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
326 error_msg = "invalid eh_entries";
327 goto corrupted;
328 }
329 return 0;
330
331 corrupted:
332 ext4_error(inode->i_sb, function,
333 "bad header in inode #%lu: %s - magic %x, "
334 "entries %u, max %u(%u), depth %u(%u)",
335 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
336 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
337 max, le16_to_cpu(eh->eh_depth), depth);
338
339 return -EIO;
340 }
341
342 #define ext4_ext_check_header(inode, eh, depth) \
343 __ext4_ext_check_header(__func__, inode, eh, depth)
344
345 #ifdef EXT_DEBUG
346 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
347 {
348 int k, l = path->p_depth;
349
350 ext_debug("path:");
351 for (k = 0; k <= l; k++, path++) {
352 if (path->p_idx) {
353 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
354 idx_pblock(path->p_idx));
355 } else if (path->p_ext) {
356 ext_debug(" %d:%d:%llu ",
357 le32_to_cpu(path->p_ext->ee_block),
358 ext4_ext_get_actual_len(path->p_ext),
359 ext_pblock(path->p_ext));
360 } else
361 ext_debug(" []");
362 }
363 ext_debug("\n");
364 }
365
366 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
367 {
368 int depth = ext_depth(inode);
369 struct ext4_extent_header *eh;
370 struct ext4_extent *ex;
371 int i;
372
373 if (!path)
374 return;
375
376 eh = path[depth].p_hdr;
377 ex = EXT_FIRST_EXTENT(eh);
378
379 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
380 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
381 ext4_ext_get_actual_len(ex), ext_pblock(ex));
382 }
383 ext_debug("\n");
384 }
385 #else
386 #define ext4_ext_show_path(inode, path)
387 #define ext4_ext_show_leaf(inode, path)
388 #endif
389
390 void ext4_ext_drop_refs(struct ext4_ext_path *path)
391 {
392 int depth = path->p_depth;
393 int i;
394
395 for (i = 0; i <= depth; i++, path++)
396 if (path->p_bh) {
397 brelse(path->p_bh);
398 path->p_bh = NULL;
399 }
400 }
401
402 /*
403 * ext4_ext_binsearch_idx:
404 * binary search for the closest index of the given block
405 * the header must be checked before calling this
406 */
407 static void
408 ext4_ext_binsearch_idx(struct inode *inode,
409 struct ext4_ext_path *path, ext4_lblk_t block)
410 {
411 struct ext4_extent_header *eh = path->p_hdr;
412 struct ext4_extent_idx *r, *l, *m;
413
414
415 ext_debug("binsearch for %u(idx): ", block);
416
417 l = EXT_FIRST_INDEX(eh) + 1;
418 r = EXT_LAST_INDEX(eh);
419 while (l <= r) {
420 m = l + (r - l) / 2;
421 if (block < le32_to_cpu(m->ei_block))
422 r = m - 1;
423 else
424 l = m + 1;
425 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
426 m, le32_to_cpu(m->ei_block),
427 r, le32_to_cpu(r->ei_block));
428 }
429
430 path->p_idx = l - 1;
431 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
432 idx_pblock(path->p_idx));
433
434 #ifdef CHECK_BINSEARCH
435 {
436 struct ext4_extent_idx *chix, *ix;
437 int k;
438
439 chix = ix = EXT_FIRST_INDEX(eh);
440 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
441 if (k != 0 &&
442 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
443 printk(KERN_DEBUG "k=%d, ix=0x%p, "
444 "first=0x%p\n", k,
445 ix, EXT_FIRST_INDEX(eh));
446 printk(KERN_DEBUG "%u <= %u\n",
447 le32_to_cpu(ix->ei_block),
448 le32_to_cpu(ix[-1].ei_block));
449 }
450 BUG_ON(k && le32_to_cpu(ix->ei_block)
451 <= le32_to_cpu(ix[-1].ei_block));
452 if (block < le32_to_cpu(ix->ei_block))
453 break;
454 chix = ix;
455 }
456 BUG_ON(chix != path->p_idx);
457 }
458 #endif
459
460 }
461
462 /*
463 * ext4_ext_binsearch:
464 * binary search for closest extent of the given block
465 * the header must be checked before calling this
466 */
467 static void
468 ext4_ext_binsearch(struct inode *inode,
469 struct ext4_ext_path *path, ext4_lblk_t block)
470 {
471 struct ext4_extent_header *eh = path->p_hdr;
472 struct ext4_extent *r, *l, *m;
473
474 if (eh->eh_entries == 0) {
475 /*
476 * this leaf is empty:
477 * we get such a leaf in split/add case
478 */
479 return;
480 }
481
482 ext_debug("binsearch for %u: ", block);
483
484 l = EXT_FIRST_EXTENT(eh) + 1;
485 r = EXT_LAST_EXTENT(eh);
486
487 while (l <= r) {
488 m = l + (r - l) / 2;
489 if (block < le32_to_cpu(m->ee_block))
490 r = m - 1;
491 else
492 l = m + 1;
493 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
494 m, le32_to_cpu(m->ee_block),
495 r, le32_to_cpu(r->ee_block));
496 }
497
498 path->p_ext = l - 1;
499 ext_debug(" -> %d:%llu:%d ",
500 le32_to_cpu(path->p_ext->ee_block),
501 ext_pblock(path->p_ext),
502 ext4_ext_get_actual_len(path->p_ext));
503
504 #ifdef CHECK_BINSEARCH
505 {
506 struct ext4_extent *chex, *ex;
507 int k;
508
509 chex = ex = EXT_FIRST_EXTENT(eh);
510 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
511 BUG_ON(k && le32_to_cpu(ex->ee_block)
512 <= le32_to_cpu(ex[-1].ee_block));
513 if (block < le32_to_cpu(ex->ee_block))
514 break;
515 chex = ex;
516 }
517 BUG_ON(chex != path->p_ext);
518 }
519 #endif
520
521 }
522
523 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
524 {
525 struct ext4_extent_header *eh;
526
527 eh = ext_inode_hdr(inode);
528 eh->eh_depth = 0;
529 eh->eh_entries = 0;
530 eh->eh_magic = EXT4_EXT_MAGIC;
531 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
532 ext4_mark_inode_dirty(handle, inode);
533 ext4_ext_invalidate_cache(inode);
534 return 0;
535 }
536
537 struct ext4_ext_path *
538 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
539 struct ext4_ext_path *path)
540 {
541 struct ext4_extent_header *eh;
542 struct buffer_head *bh;
543 short int depth, i, ppos = 0, alloc = 0;
544
545 eh = ext_inode_hdr(inode);
546 depth = ext_depth(inode);
547 if (ext4_ext_check_header(inode, eh, depth))
548 return ERR_PTR(-EIO);
549
550
551 /* account possible depth increase */
552 if (!path) {
553 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
554 GFP_NOFS);
555 if (!path)
556 return ERR_PTR(-ENOMEM);
557 alloc = 1;
558 }
559 path[0].p_hdr = eh;
560 path[0].p_bh = NULL;
561
562 i = depth;
563 /* walk through the tree */
564 while (i) {
565 ext_debug("depth %d: num %d, max %d\n",
566 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
567
568 ext4_ext_binsearch_idx(inode, path + ppos, block);
569 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
570 path[ppos].p_depth = i;
571 path[ppos].p_ext = NULL;
572
573 bh = sb_bread(inode->i_sb, path[ppos].p_block);
574 if (!bh)
575 goto err;
576
577 eh = ext_block_hdr(bh);
578 ppos++;
579 BUG_ON(ppos > depth);
580 path[ppos].p_bh = bh;
581 path[ppos].p_hdr = eh;
582 i--;
583
584 if (ext4_ext_check_header(inode, eh, i))
585 goto err;
586 }
587
588 path[ppos].p_depth = i;
589 path[ppos].p_ext = NULL;
590 path[ppos].p_idx = NULL;
591
592 /* find extent */
593 ext4_ext_binsearch(inode, path + ppos, block);
594 /* if not an empty leaf */
595 if (path[ppos].p_ext)
596 path[ppos].p_block = ext_pblock(path[ppos].p_ext);
597
598 ext4_ext_show_path(inode, path);
599
600 return path;
601
602 err:
603 ext4_ext_drop_refs(path);
604 if (alloc)
605 kfree(path);
606 return ERR_PTR(-EIO);
607 }
608
609 /*
610 * ext4_ext_insert_index:
611 * insert new index [@logical;@ptr] into the block at @curp;
612 * check where to insert: before @curp or after @curp
613 */
614 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
615 struct ext4_ext_path *curp,
616 int logical, ext4_fsblk_t ptr)
617 {
618 struct ext4_extent_idx *ix;
619 int len, err;
620
621 err = ext4_ext_get_access(handle, inode, curp);
622 if (err)
623 return err;
624
625 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
626 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
627 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
628 /* insert after */
629 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
630 len = (len - 1) * sizeof(struct ext4_extent_idx);
631 len = len < 0 ? 0 : len;
632 ext_debug("insert new index %d after: %llu. "
633 "move %d from 0x%p to 0x%p\n",
634 logical, ptr, len,
635 (curp->p_idx + 1), (curp->p_idx + 2));
636 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
637 }
638 ix = curp->p_idx + 1;
639 } else {
640 /* insert before */
641 len = len * sizeof(struct ext4_extent_idx);
642 len = len < 0 ? 0 : len;
643 ext_debug("insert new index %d before: %llu. "
644 "move %d from 0x%p to 0x%p\n",
645 logical, ptr, len,
646 curp->p_idx, (curp->p_idx + 1));
647 memmove(curp->p_idx + 1, curp->p_idx, len);
648 ix = curp->p_idx;
649 }
650
651 ix->ei_block = cpu_to_le32(logical);
652 ext4_idx_store_pblock(ix, ptr);
653 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
654
655 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
656 > le16_to_cpu(curp->p_hdr->eh_max));
657 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
658
659 err = ext4_ext_dirty(handle, inode, curp);
660 ext4_std_error(inode->i_sb, err);
661
662 return err;
663 }
664
665 /*
666 * ext4_ext_split:
667 * inserts new subtree into the path, using free index entry
668 * at depth @at:
669 * - allocates all needed blocks (new leaf and all intermediate index blocks)
670 * - makes decision where to split
671 * - moves remaining extents and index entries (right to the split point)
672 * into the newly allocated blocks
673 * - initializes subtree
674 */
675 static int ext4_ext_split(handle_t *handle, struct inode *inode,
676 struct ext4_ext_path *path,
677 struct ext4_extent *newext, int at)
678 {
679 struct buffer_head *bh = NULL;
680 int depth = ext_depth(inode);
681 struct ext4_extent_header *neh;
682 struct ext4_extent_idx *fidx;
683 struct ext4_extent *ex;
684 int i = at, k, m, a;
685 ext4_fsblk_t newblock, oldblock;
686 __le32 border;
687 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
688 int err = 0;
689
690 /* make decision: where to split? */
691 /* FIXME: now decision is simplest: at current extent */
692
693 /* if current leaf will be split, then we should use
694 * border from split point */
695 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
696 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
697 border = path[depth].p_ext[1].ee_block;
698 ext_debug("leaf will be split."
699 " next leaf starts at %d\n",
700 le32_to_cpu(border));
701 } else {
702 border = newext->ee_block;
703 ext_debug("leaf will be added."
704 " next leaf starts at %d\n",
705 le32_to_cpu(border));
706 }
707
708 /*
709 * If error occurs, then we break processing
710 * and mark filesystem read-only. index won't
711 * be inserted and tree will be in consistent
712 * state. Next mount will repair buffers too.
713 */
714
715 /*
716 * Get array to track all allocated blocks.
717 * We need this to handle errors and free blocks
718 * upon them.
719 */
720 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
721 if (!ablocks)
722 return -ENOMEM;
723
724 /* allocate all needed blocks */
725 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
726 for (a = 0; a < depth - at; a++) {
727 newblock = ext4_ext_new_meta_block(handle, inode, path,
728 newext, &err);
729 if (newblock == 0)
730 goto cleanup;
731 ablocks[a] = newblock;
732 }
733
734 /* initialize new leaf */
735 newblock = ablocks[--a];
736 BUG_ON(newblock == 0);
737 bh = sb_getblk(inode->i_sb, newblock);
738 if (!bh) {
739 err = -EIO;
740 goto cleanup;
741 }
742 lock_buffer(bh);
743
744 err = ext4_journal_get_create_access(handle, bh);
745 if (err)
746 goto cleanup;
747
748 neh = ext_block_hdr(bh);
749 neh->eh_entries = 0;
750 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
751 neh->eh_magic = EXT4_EXT_MAGIC;
752 neh->eh_depth = 0;
753 ex = EXT_FIRST_EXTENT(neh);
754
755 /* move remainder of path[depth] to the new leaf */
756 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
757 /* start copy from next extent */
758 /* TODO: we could do it by single memmove */
759 m = 0;
760 path[depth].p_ext++;
761 while (path[depth].p_ext <=
762 EXT_MAX_EXTENT(path[depth].p_hdr)) {
763 ext_debug("move %d:%llu:%d in new leaf %llu\n",
764 le32_to_cpu(path[depth].p_ext->ee_block),
765 ext_pblock(path[depth].p_ext),
766 ext4_ext_get_actual_len(path[depth].p_ext),
767 newblock);
768 /*memmove(ex++, path[depth].p_ext++,
769 sizeof(struct ext4_extent));
770 neh->eh_entries++;*/
771 path[depth].p_ext++;
772 m++;
773 }
774 if (m) {
775 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
776 le16_add_cpu(&neh->eh_entries, m);
777 }
778
779 set_buffer_uptodate(bh);
780 unlock_buffer(bh);
781
782 err = ext4_journal_dirty_metadata(handle, bh);
783 if (err)
784 goto cleanup;
785 brelse(bh);
786 bh = NULL;
787
788 /* correct old leaf */
789 if (m) {
790 err = ext4_ext_get_access(handle, inode, path + depth);
791 if (err)
792 goto cleanup;
793 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
794 err = ext4_ext_dirty(handle, inode, path + depth);
795 if (err)
796 goto cleanup;
797
798 }
799
800 /* create intermediate indexes */
801 k = depth - at - 1;
802 BUG_ON(k < 0);
803 if (k)
804 ext_debug("create %d intermediate indices\n", k);
805 /* insert new index into current index block */
806 /* current depth stored in i var */
807 i = depth - 1;
808 while (k--) {
809 oldblock = newblock;
810 newblock = ablocks[--a];
811 bh = sb_getblk(inode->i_sb, newblock);
812 if (!bh) {
813 err = -EIO;
814 goto cleanup;
815 }
816 lock_buffer(bh);
817
818 err = ext4_journal_get_create_access(handle, bh);
819 if (err)
820 goto cleanup;
821
822 neh = ext_block_hdr(bh);
823 neh->eh_entries = cpu_to_le16(1);
824 neh->eh_magic = EXT4_EXT_MAGIC;
825 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
826 neh->eh_depth = cpu_to_le16(depth - i);
827 fidx = EXT_FIRST_INDEX(neh);
828 fidx->ei_block = border;
829 ext4_idx_store_pblock(fidx, oldblock);
830
831 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
832 i, newblock, le32_to_cpu(border), oldblock);
833 /* copy indexes */
834 m = 0;
835 path[i].p_idx++;
836
837 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
838 EXT_MAX_INDEX(path[i].p_hdr));
839 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
840 EXT_LAST_INDEX(path[i].p_hdr));
841 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
842 ext_debug("%d: move %d:%llu in new index %llu\n", i,
843 le32_to_cpu(path[i].p_idx->ei_block),
844 idx_pblock(path[i].p_idx),
845 newblock);
846 /*memmove(++fidx, path[i].p_idx++,
847 sizeof(struct ext4_extent_idx));
848 neh->eh_entries++;
849 BUG_ON(neh->eh_entries > neh->eh_max);*/
850 path[i].p_idx++;
851 m++;
852 }
853 if (m) {
854 memmove(++fidx, path[i].p_idx - m,
855 sizeof(struct ext4_extent_idx) * m);
856 le16_add_cpu(&neh->eh_entries, m);
857 }
858 set_buffer_uptodate(bh);
859 unlock_buffer(bh);
860
861 err = ext4_journal_dirty_metadata(handle, bh);
862 if (err)
863 goto cleanup;
864 brelse(bh);
865 bh = NULL;
866
867 /* correct old index */
868 if (m) {
869 err = ext4_ext_get_access(handle, inode, path + i);
870 if (err)
871 goto cleanup;
872 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
873 err = ext4_ext_dirty(handle, inode, path + i);
874 if (err)
875 goto cleanup;
876 }
877
878 i--;
879 }
880
881 /* insert new index */
882 err = ext4_ext_insert_index(handle, inode, path + at,
883 le32_to_cpu(border), newblock);
884
885 cleanup:
886 if (bh) {
887 if (buffer_locked(bh))
888 unlock_buffer(bh);
889 brelse(bh);
890 }
891
892 if (err) {
893 /* free all allocated blocks in error case */
894 for (i = 0; i < depth; i++) {
895 if (!ablocks[i])
896 continue;
897 ext4_free_blocks(handle, inode, ablocks[i], 1, 1);
898 }
899 }
900 kfree(ablocks);
901
902 return err;
903 }
904
905 /*
906 * ext4_ext_grow_indepth:
907 * implements tree growing procedure:
908 * - allocates new block
909 * - moves top-level data (index block or leaf) into the new block
910 * - initializes new top-level, creating index that points to the
911 * just created block
912 */
913 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
914 struct ext4_ext_path *path,
915 struct ext4_extent *newext)
916 {
917 struct ext4_ext_path *curp = path;
918 struct ext4_extent_header *neh;
919 struct ext4_extent_idx *fidx;
920 struct buffer_head *bh;
921 ext4_fsblk_t newblock;
922 int err = 0;
923
924 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
925 if (newblock == 0)
926 return err;
927
928 bh = sb_getblk(inode->i_sb, newblock);
929 if (!bh) {
930 err = -EIO;
931 ext4_std_error(inode->i_sb, err);
932 return err;
933 }
934 lock_buffer(bh);
935
936 err = ext4_journal_get_create_access(handle, bh);
937 if (err) {
938 unlock_buffer(bh);
939 goto out;
940 }
941
942 /* move top-level index/leaf into new block */
943 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
944
945 /* set size of new block */
946 neh = ext_block_hdr(bh);
947 /* old root could have indexes or leaves
948 * so calculate e_max right way */
949 if (ext_depth(inode))
950 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
951 else
952 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
953 neh->eh_magic = EXT4_EXT_MAGIC;
954 set_buffer_uptodate(bh);
955 unlock_buffer(bh);
956
957 err = ext4_journal_dirty_metadata(handle, bh);
958 if (err)
959 goto out;
960
961 /* create index in new top-level index: num,max,pointer */
962 err = ext4_ext_get_access(handle, inode, curp);
963 if (err)
964 goto out;
965
966 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
967 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
968 curp->p_hdr->eh_entries = cpu_to_le16(1);
969 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
970
971 if (path[0].p_hdr->eh_depth)
972 curp->p_idx->ei_block =
973 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
974 else
975 curp->p_idx->ei_block =
976 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
977 ext4_idx_store_pblock(curp->p_idx, newblock);
978
979 neh = ext_inode_hdr(inode);
980 fidx = EXT_FIRST_INDEX(neh);
981 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
982 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
983 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
984
985 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
986 err = ext4_ext_dirty(handle, inode, curp);
987 out:
988 brelse(bh);
989
990 return err;
991 }
992
993 /*
994 * ext4_ext_create_new_leaf:
995 * finds empty index and adds new leaf.
996 * if no free index is found, then it requests in-depth growing.
997 */
998 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
999 struct ext4_ext_path *path,
1000 struct ext4_extent *newext)
1001 {
1002 struct ext4_ext_path *curp;
1003 int depth, i, err = 0;
1004
1005 repeat:
1006 i = depth = ext_depth(inode);
1007
1008 /* walk up to the tree and look for free index entry */
1009 curp = path + depth;
1010 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1011 i--;
1012 curp--;
1013 }
1014
1015 /* we use already allocated block for index block,
1016 * so subsequent data blocks should be contiguous */
1017 if (EXT_HAS_FREE_INDEX(curp)) {
1018 /* if we found index with free entry, then use that
1019 * entry: create all needed subtree and add new leaf */
1020 err = ext4_ext_split(handle, inode, path, newext, i);
1021 if (err)
1022 goto out;
1023
1024 /* refill path */
1025 ext4_ext_drop_refs(path);
1026 path = ext4_ext_find_extent(inode,
1027 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1028 path);
1029 if (IS_ERR(path))
1030 err = PTR_ERR(path);
1031 } else {
1032 /* tree is full, time to grow in depth */
1033 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1034 if (err)
1035 goto out;
1036
1037 /* refill path */
1038 ext4_ext_drop_refs(path);
1039 path = ext4_ext_find_extent(inode,
1040 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1041 path);
1042 if (IS_ERR(path)) {
1043 err = PTR_ERR(path);
1044 goto out;
1045 }
1046
1047 /*
1048 * only first (depth 0 -> 1) produces free space;
1049 * in all other cases we have to split the grown tree
1050 */
1051 depth = ext_depth(inode);
1052 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1053 /* now we need to split */
1054 goto repeat;
1055 }
1056 }
1057
1058 out:
1059 return err;
1060 }
1061
1062 /*
1063 * search the closest allocated block to the left for *logical
1064 * and returns it at @logical + it's physical address at @phys
1065 * if *logical is the smallest allocated block, the function
1066 * returns 0 at @phys
1067 * return value contains 0 (success) or error code
1068 */
1069 int
1070 ext4_ext_search_left(struct inode *inode, struct ext4_ext_path *path,
1071 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1072 {
1073 struct ext4_extent_idx *ix;
1074 struct ext4_extent *ex;
1075 int depth, ee_len;
1076
1077 BUG_ON(path == NULL);
1078 depth = path->p_depth;
1079 *phys = 0;
1080
1081 if (depth == 0 && path->p_ext == NULL)
1082 return 0;
1083
1084 /* usually extent in the path covers blocks smaller
1085 * then *logical, but it can be that extent is the
1086 * first one in the file */
1087
1088 ex = path[depth].p_ext;
1089 ee_len = ext4_ext_get_actual_len(ex);
1090 if (*logical < le32_to_cpu(ex->ee_block)) {
1091 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1092 while (--depth >= 0) {
1093 ix = path[depth].p_idx;
1094 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1095 }
1096 return 0;
1097 }
1098
1099 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1100
1101 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1102 *phys = ext_pblock(ex) + ee_len - 1;
1103 return 0;
1104 }
1105
1106 /*
1107 * search the closest allocated block to the right for *logical
1108 * and returns it at @logical + it's physical address at @phys
1109 * if *logical is the smallest allocated block, the function
1110 * returns 0 at @phys
1111 * return value contains 0 (success) or error code
1112 */
1113 int
1114 ext4_ext_search_right(struct inode *inode, struct ext4_ext_path *path,
1115 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1116 {
1117 struct buffer_head *bh = NULL;
1118 struct ext4_extent_header *eh;
1119 struct ext4_extent_idx *ix;
1120 struct ext4_extent *ex;
1121 ext4_fsblk_t block;
1122 int depth, ee_len;
1123
1124 BUG_ON(path == NULL);
1125 depth = path->p_depth;
1126 *phys = 0;
1127
1128 if (depth == 0 && path->p_ext == NULL)
1129 return 0;
1130
1131 /* usually extent in the path covers blocks smaller
1132 * then *logical, but it can be that extent is the
1133 * first one in the file */
1134
1135 ex = path[depth].p_ext;
1136 ee_len = ext4_ext_get_actual_len(ex);
1137 if (*logical < le32_to_cpu(ex->ee_block)) {
1138 BUG_ON(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex);
1139 while (--depth >= 0) {
1140 ix = path[depth].p_idx;
1141 BUG_ON(ix != EXT_FIRST_INDEX(path[depth].p_hdr));
1142 }
1143 *logical = le32_to_cpu(ex->ee_block);
1144 *phys = ext_pblock(ex);
1145 return 0;
1146 }
1147
1148 BUG_ON(*logical < (le32_to_cpu(ex->ee_block) + ee_len));
1149
1150 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1151 /* next allocated block in this leaf */
1152 ex++;
1153 *logical = le32_to_cpu(ex->ee_block);
1154 *phys = ext_pblock(ex);
1155 return 0;
1156 }
1157
1158 /* go up and search for index to the right */
1159 while (--depth >= 0) {
1160 ix = path[depth].p_idx;
1161 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1162 break;
1163 }
1164
1165 if (depth < 0) {
1166 /* we've gone up to the root and
1167 * found no index to the right */
1168 return 0;
1169 }
1170
1171 /* we've found index to the right, let's
1172 * follow it and find the closest allocated
1173 * block to the right */
1174 ix++;
1175 block = idx_pblock(ix);
1176 while (++depth < path->p_depth) {
1177 bh = sb_bread(inode->i_sb, block);
1178 if (bh == NULL)
1179 return -EIO;
1180 eh = ext_block_hdr(bh);
1181 if (ext4_ext_check_header(inode, eh, depth)) {
1182 put_bh(bh);
1183 return -EIO;
1184 }
1185 ix = EXT_FIRST_INDEX(eh);
1186 block = idx_pblock(ix);
1187 put_bh(bh);
1188 }
1189
1190 bh = sb_bread(inode->i_sb, block);
1191 if (bh == NULL)
1192 return -EIO;
1193 eh = ext_block_hdr(bh);
1194 if (ext4_ext_check_header(inode, eh, path->p_depth - depth)) {
1195 put_bh(bh);
1196 return -EIO;
1197 }
1198 ex = EXT_FIRST_EXTENT(eh);
1199 *logical = le32_to_cpu(ex->ee_block);
1200 *phys = ext_pblock(ex);
1201 put_bh(bh);
1202 return 0;
1203
1204 }
1205
1206 /*
1207 * ext4_ext_next_allocated_block:
1208 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1209 * NOTE: it considers block number from index entry as
1210 * allocated block. Thus, index entries have to be consistent
1211 * with leaves.
1212 */
1213 static ext4_lblk_t
1214 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1215 {
1216 int depth;
1217
1218 BUG_ON(path == NULL);
1219 depth = path->p_depth;
1220
1221 if (depth == 0 && path->p_ext == NULL)
1222 return EXT_MAX_BLOCK;
1223
1224 while (depth >= 0) {
1225 if (depth == path->p_depth) {
1226 /* leaf */
1227 if (path[depth].p_ext !=
1228 EXT_LAST_EXTENT(path[depth].p_hdr))
1229 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1230 } else {
1231 /* index */
1232 if (path[depth].p_idx !=
1233 EXT_LAST_INDEX(path[depth].p_hdr))
1234 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1235 }
1236 depth--;
1237 }
1238
1239 return EXT_MAX_BLOCK;
1240 }
1241
1242 /*
1243 * ext4_ext_next_leaf_block:
1244 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1245 */
1246 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1247 struct ext4_ext_path *path)
1248 {
1249 int depth;
1250
1251 BUG_ON(path == NULL);
1252 depth = path->p_depth;
1253
1254 /* zero-tree has no leaf blocks at all */
1255 if (depth == 0)
1256 return EXT_MAX_BLOCK;
1257
1258 /* go to index block */
1259 depth--;
1260
1261 while (depth >= 0) {
1262 if (path[depth].p_idx !=
1263 EXT_LAST_INDEX(path[depth].p_hdr))
1264 return (ext4_lblk_t)
1265 le32_to_cpu(path[depth].p_idx[1].ei_block);
1266 depth--;
1267 }
1268
1269 return EXT_MAX_BLOCK;
1270 }
1271
1272 /*
1273 * ext4_ext_correct_indexes:
1274 * if leaf gets modified and modified extent is first in the leaf,
1275 * then we have to correct all indexes above.
1276 * TODO: do we need to correct tree in all cases?
1277 */
1278 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1279 struct ext4_ext_path *path)
1280 {
1281 struct ext4_extent_header *eh;
1282 int depth = ext_depth(inode);
1283 struct ext4_extent *ex;
1284 __le32 border;
1285 int k, err = 0;
1286
1287 eh = path[depth].p_hdr;
1288 ex = path[depth].p_ext;
1289 BUG_ON(ex == NULL);
1290 BUG_ON(eh == NULL);
1291
1292 if (depth == 0) {
1293 /* there is no tree at all */
1294 return 0;
1295 }
1296
1297 if (ex != EXT_FIRST_EXTENT(eh)) {
1298 /* we correct tree if first leaf got modified only */
1299 return 0;
1300 }
1301
1302 /*
1303 * TODO: we need correction if border is smaller than current one
1304 */
1305 k = depth - 1;
1306 border = path[depth].p_ext->ee_block;
1307 err = ext4_ext_get_access(handle, inode, path + k);
1308 if (err)
1309 return err;
1310 path[k].p_idx->ei_block = border;
1311 err = ext4_ext_dirty(handle, inode, path + k);
1312 if (err)
1313 return err;
1314
1315 while (k--) {
1316 /* change all left-side indexes */
1317 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1318 break;
1319 err = ext4_ext_get_access(handle, inode, path + k);
1320 if (err)
1321 break;
1322 path[k].p_idx->ei_block = border;
1323 err = ext4_ext_dirty(handle, inode, path + k);
1324 if (err)
1325 break;
1326 }
1327
1328 return err;
1329 }
1330
1331 static int
1332 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1333 struct ext4_extent *ex2)
1334 {
1335 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1336
1337 /*
1338 * Make sure that either both extents are uninitialized, or
1339 * both are _not_.
1340 */
1341 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1342 return 0;
1343
1344 if (ext4_ext_is_uninitialized(ex1))
1345 max_len = EXT_UNINIT_MAX_LEN;
1346 else
1347 max_len = EXT_INIT_MAX_LEN;
1348
1349 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1350 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1351
1352 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1353 le32_to_cpu(ex2->ee_block))
1354 return 0;
1355
1356 /*
1357 * To allow future support for preallocated extents to be added
1358 * as an RO_COMPAT feature, refuse to merge to extents if
1359 * this can result in the top bit of ee_len being set.
1360 */
1361 if (ext1_ee_len + ext2_ee_len > max_len)
1362 return 0;
1363 #ifdef AGGRESSIVE_TEST
1364 if (ext1_ee_len >= 4)
1365 return 0;
1366 #endif
1367
1368 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1369 return 1;
1370 return 0;
1371 }
1372
1373 /*
1374 * This function tries to merge the "ex" extent to the next extent in the tree.
1375 * It always tries to merge towards right. If you want to merge towards
1376 * left, pass "ex - 1" as argument instead of "ex".
1377 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1378 * 1 if they got merged.
1379 */
1380 int ext4_ext_try_to_merge(struct inode *inode,
1381 struct ext4_ext_path *path,
1382 struct ext4_extent *ex)
1383 {
1384 struct ext4_extent_header *eh;
1385 unsigned int depth, len;
1386 int merge_done = 0;
1387 int uninitialized = 0;
1388
1389 depth = ext_depth(inode);
1390 BUG_ON(path[depth].p_hdr == NULL);
1391 eh = path[depth].p_hdr;
1392
1393 while (ex < EXT_LAST_EXTENT(eh)) {
1394 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1395 break;
1396 /* merge with next extent! */
1397 if (ext4_ext_is_uninitialized(ex))
1398 uninitialized = 1;
1399 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1400 + ext4_ext_get_actual_len(ex + 1));
1401 if (uninitialized)
1402 ext4_ext_mark_uninitialized(ex);
1403
1404 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1405 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1406 * sizeof(struct ext4_extent);
1407 memmove(ex + 1, ex + 2, len);
1408 }
1409 le16_add_cpu(&eh->eh_entries, -1);
1410 merge_done = 1;
1411 WARN_ON(eh->eh_entries == 0);
1412 if (!eh->eh_entries)
1413 ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1414 "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1415 }
1416
1417 return merge_done;
1418 }
1419
1420 /*
1421 * check if a portion of the "newext" extent overlaps with an
1422 * existing extent.
1423 *
1424 * If there is an overlap discovered, it updates the length of the newext
1425 * such that there will be no overlap, and then returns 1.
1426 * If there is no overlap found, it returns 0.
1427 */
1428 unsigned int ext4_ext_check_overlap(struct inode *inode,
1429 struct ext4_extent *newext,
1430 struct ext4_ext_path *path)
1431 {
1432 ext4_lblk_t b1, b2;
1433 unsigned int depth, len1;
1434 unsigned int ret = 0;
1435
1436 b1 = le32_to_cpu(newext->ee_block);
1437 len1 = ext4_ext_get_actual_len(newext);
1438 depth = ext_depth(inode);
1439 if (!path[depth].p_ext)
1440 goto out;
1441 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1442
1443 /*
1444 * get the next allocated block if the extent in the path
1445 * is before the requested block(s)
1446 */
1447 if (b2 < b1) {
1448 b2 = ext4_ext_next_allocated_block(path);
1449 if (b2 == EXT_MAX_BLOCK)
1450 goto out;
1451 }
1452
1453 /* check for wrap through zero on extent logical start block*/
1454 if (b1 + len1 < b1) {
1455 len1 = EXT_MAX_BLOCK - b1;
1456 newext->ee_len = cpu_to_le16(len1);
1457 ret = 1;
1458 }
1459
1460 /* check for overlap */
1461 if (b1 + len1 > b2) {
1462 newext->ee_len = cpu_to_le16(b2 - b1);
1463 ret = 1;
1464 }
1465 out:
1466 return ret;
1467 }
1468
1469 /*
1470 * ext4_ext_insert_extent:
1471 * tries to merge requsted extent into the existing extent or
1472 * inserts requested extent as new one into the tree,
1473 * creating new leaf in the no-space case.
1474 */
1475 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1476 struct ext4_ext_path *path,
1477 struct ext4_extent *newext)
1478 {
1479 struct ext4_extent_header *eh;
1480 struct ext4_extent *ex, *fex;
1481 struct ext4_extent *nearex; /* nearest extent */
1482 struct ext4_ext_path *npath = NULL;
1483 int depth, len, err;
1484 ext4_lblk_t next;
1485 unsigned uninitialized = 0;
1486
1487 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1488 depth = ext_depth(inode);
1489 ex = path[depth].p_ext;
1490 BUG_ON(path[depth].p_hdr == NULL);
1491
1492 /* try to insert block into found extent and return */
1493 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1494 ext_debug("append %d block to %d:%d (from %llu)\n",
1495 ext4_ext_get_actual_len(newext),
1496 le32_to_cpu(ex->ee_block),
1497 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1498 err = ext4_ext_get_access(handle, inode, path + depth);
1499 if (err)
1500 return err;
1501
1502 /*
1503 * ext4_can_extents_be_merged should have checked that either
1504 * both extents are uninitialized, or both aren't. Thus we
1505 * need to check only one of them here.
1506 */
1507 if (ext4_ext_is_uninitialized(ex))
1508 uninitialized = 1;
1509 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1510 + ext4_ext_get_actual_len(newext));
1511 if (uninitialized)
1512 ext4_ext_mark_uninitialized(ex);
1513 eh = path[depth].p_hdr;
1514 nearex = ex;
1515 goto merge;
1516 }
1517
1518 repeat:
1519 depth = ext_depth(inode);
1520 eh = path[depth].p_hdr;
1521 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1522 goto has_space;
1523
1524 /* probably next leaf has space for us? */
1525 fex = EXT_LAST_EXTENT(eh);
1526 next = ext4_ext_next_leaf_block(inode, path);
1527 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1528 && next != EXT_MAX_BLOCK) {
1529 ext_debug("next leaf block - %d\n", next);
1530 BUG_ON(npath != NULL);
1531 npath = ext4_ext_find_extent(inode, next, NULL);
1532 if (IS_ERR(npath))
1533 return PTR_ERR(npath);
1534 BUG_ON(npath->p_depth != path->p_depth);
1535 eh = npath[depth].p_hdr;
1536 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1537 ext_debug("next leaf isnt full(%d)\n",
1538 le16_to_cpu(eh->eh_entries));
1539 path = npath;
1540 goto repeat;
1541 }
1542 ext_debug("next leaf has no free space(%d,%d)\n",
1543 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1544 }
1545
1546 /*
1547 * There is no free space in the found leaf.
1548 * We're gonna add a new leaf in the tree.
1549 */
1550 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1551 if (err)
1552 goto cleanup;
1553 depth = ext_depth(inode);
1554 eh = path[depth].p_hdr;
1555
1556 has_space:
1557 nearex = path[depth].p_ext;
1558
1559 err = ext4_ext_get_access(handle, inode, path + depth);
1560 if (err)
1561 goto cleanup;
1562
1563 if (!nearex) {
1564 /* there is no extent in this leaf, create first one */
1565 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1566 le32_to_cpu(newext->ee_block),
1567 ext_pblock(newext),
1568 ext4_ext_get_actual_len(newext));
1569 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1570 } else if (le32_to_cpu(newext->ee_block)
1571 > le32_to_cpu(nearex->ee_block)) {
1572 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1573 if (nearex != EXT_LAST_EXTENT(eh)) {
1574 len = EXT_MAX_EXTENT(eh) - nearex;
1575 len = (len - 1) * sizeof(struct ext4_extent);
1576 len = len < 0 ? 0 : len;
1577 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1578 "move %d from 0x%p to 0x%p\n",
1579 le32_to_cpu(newext->ee_block),
1580 ext_pblock(newext),
1581 ext4_ext_get_actual_len(newext),
1582 nearex, len, nearex + 1, nearex + 2);
1583 memmove(nearex + 2, nearex + 1, len);
1584 }
1585 path[depth].p_ext = nearex + 1;
1586 } else {
1587 BUG_ON(newext->ee_block == nearex->ee_block);
1588 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1589 len = len < 0 ? 0 : len;
1590 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1591 "move %d from 0x%p to 0x%p\n",
1592 le32_to_cpu(newext->ee_block),
1593 ext_pblock(newext),
1594 ext4_ext_get_actual_len(newext),
1595 nearex, len, nearex + 1, nearex + 2);
1596 memmove(nearex + 1, nearex, len);
1597 path[depth].p_ext = nearex;
1598 }
1599
1600 le16_add_cpu(&eh->eh_entries, 1);
1601 nearex = path[depth].p_ext;
1602 nearex->ee_block = newext->ee_block;
1603 ext4_ext_store_pblock(nearex, ext_pblock(newext));
1604 nearex->ee_len = newext->ee_len;
1605
1606 merge:
1607 /* try to merge extents to the right */
1608 ext4_ext_try_to_merge(inode, path, nearex);
1609
1610 /* try to merge extents to the left */
1611
1612 /* time to correct all indexes above */
1613 err = ext4_ext_correct_indexes(handle, inode, path);
1614 if (err)
1615 goto cleanup;
1616
1617 err = ext4_ext_dirty(handle, inode, path + depth);
1618
1619 cleanup:
1620 if (npath) {
1621 ext4_ext_drop_refs(npath);
1622 kfree(npath);
1623 }
1624 ext4_ext_tree_changed(inode);
1625 ext4_ext_invalidate_cache(inode);
1626 return err;
1627 }
1628
1629 static void
1630 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1631 __u32 len, ext4_fsblk_t start, int type)
1632 {
1633 struct ext4_ext_cache *cex;
1634 BUG_ON(len == 0);
1635 cex = &EXT4_I(inode)->i_cached_extent;
1636 cex->ec_type = type;
1637 cex->ec_block = block;
1638 cex->ec_len = len;
1639 cex->ec_start = start;
1640 }
1641
1642 /*
1643 * ext4_ext_put_gap_in_cache:
1644 * calculate boundaries of the gap that the requested block fits into
1645 * and cache this gap
1646 */
1647 static void
1648 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1649 ext4_lblk_t block)
1650 {
1651 int depth = ext_depth(inode);
1652 unsigned long len;
1653 ext4_lblk_t lblock;
1654 struct ext4_extent *ex;
1655
1656 ex = path[depth].p_ext;
1657 if (ex == NULL) {
1658 /* there is no extent yet, so gap is [0;-] */
1659 lblock = 0;
1660 len = EXT_MAX_BLOCK;
1661 ext_debug("cache gap(whole file):");
1662 } else if (block < le32_to_cpu(ex->ee_block)) {
1663 lblock = block;
1664 len = le32_to_cpu(ex->ee_block) - block;
1665 ext_debug("cache gap(before): %u [%u:%u]",
1666 block,
1667 le32_to_cpu(ex->ee_block),
1668 ext4_ext_get_actual_len(ex));
1669 } else if (block >= le32_to_cpu(ex->ee_block)
1670 + ext4_ext_get_actual_len(ex)) {
1671 ext4_lblk_t next;
1672 lblock = le32_to_cpu(ex->ee_block)
1673 + ext4_ext_get_actual_len(ex);
1674
1675 next = ext4_ext_next_allocated_block(path);
1676 ext_debug("cache gap(after): [%u:%u] %u",
1677 le32_to_cpu(ex->ee_block),
1678 ext4_ext_get_actual_len(ex),
1679 block);
1680 BUG_ON(next == lblock);
1681 len = next - lblock;
1682 } else {
1683 lblock = len = 0;
1684 BUG();
1685 }
1686
1687 ext_debug(" -> %u:%lu\n", lblock, len);
1688 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1689 }
1690
1691 static int
1692 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
1693 struct ext4_extent *ex)
1694 {
1695 struct ext4_ext_cache *cex;
1696
1697 cex = &EXT4_I(inode)->i_cached_extent;
1698
1699 /* has cache valid data? */
1700 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1701 return EXT4_EXT_CACHE_NO;
1702
1703 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1704 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1705 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1706 ex->ee_block = cpu_to_le32(cex->ec_block);
1707 ext4_ext_store_pblock(ex, cex->ec_start);
1708 ex->ee_len = cpu_to_le16(cex->ec_len);
1709 ext_debug("%u cached by %u:%u:%llu\n",
1710 block,
1711 cex->ec_block, cex->ec_len, cex->ec_start);
1712 return cex->ec_type;
1713 }
1714
1715 /* not in cache */
1716 return EXT4_EXT_CACHE_NO;
1717 }
1718
1719 /*
1720 * ext4_ext_rm_idx:
1721 * removes index from the index block.
1722 * It's used in truncate case only, thus all requests are for
1723 * last index in the block only.
1724 */
1725 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1726 struct ext4_ext_path *path)
1727 {
1728 struct buffer_head *bh;
1729 int err;
1730 ext4_fsblk_t leaf;
1731
1732 /* free index block */
1733 path--;
1734 leaf = idx_pblock(path->p_idx);
1735 BUG_ON(path->p_hdr->eh_entries == 0);
1736 err = ext4_ext_get_access(handle, inode, path);
1737 if (err)
1738 return err;
1739 le16_add_cpu(&path->p_hdr->eh_entries, -1);
1740 err = ext4_ext_dirty(handle, inode, path);
1741 if (err)
1742 return err;
1743 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1744 bh = sb_find_get_block(inode->i_sb, leaf);
1745 ext4_forget(handle, 1, inode, bh, leaf);
1746 ext4_free_blocks(handle, inode, leaf, 1, 1);
1747 return err;
1748 }
1749
1750 /*
1751 * ext4_ext_calc_credits_for_single_extent:
1752 * This routine returns max. credits that needed to insert an extent
1753 * to the extent tree.
1754 * When pass the actual path, the caller should calculate credits
1755 * under i_data_sem.
1756 */
1757 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
1758 struct ext4_ext_path *path)
1759 {
1760 if (path) {
1761 int depth = ext_depth(inode);
1762 int ret = 0;
1763
1764 /* probably there is space in leaf? */
1765 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1766 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
1767
1768 /*
1769 * There are some space in the leaf tree, no
1770 * need to account for leaf block credit
1771 *
1772 * bitmaps and block group descriptor blocks
1773 * and other metadat blocks still need to be
1774 * accounted.
1775 */
1776 /* 1 bitmap, 1 block group descriptor */
1777 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
1778 }
1779 }
1780
1781 return ext4_chunk_trans_blocks(inode, nrblocks);
1782 }
1783
1784 /*
1785 * How many index/leaf blocks need to change/allocate to modify nrblocks?
1786 *
1787 * if nrblocks are fit in a single extent (chunk flag is 1), then
1788 * in the worse case, each tree level index/leaf need to be changed
1789 * if the tree split due to insert a new extent, then the old tree
1790 * index/leaf need to be updated too
1791 *
1792 * If the nrblocks are discontiguous, they could cause
1793 * the whole tree split more than once, but this is really rare.
1794 */
1795 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
1796 {
1797 int index;
1798 int depth = ext_depth(inode);
1799
1800 if (chunk)
1801 index = depth * 2;
1802 else
1803 index = depth * 3;
1804
1805 return index;
1806 }
1807
1808 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1809 struct ext4_extent *ex,
1810 ext4_lblk_t from, ext4_lblk_t to)
1811 {
1812 struct buffer_head *bh;
1813 unsigned short ee_len = ext4_ext_get_actual_len(ex);
1814 int i, metadata = 0;
1815
1816 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1817 metadata = 1;
1818 #ifdef EXTENTS_STATS
1819 {
1820 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1821 spin_lock(&sbi->s_ext_stats_lock);
1822 sbi->s_ext_blocks += ee_len;
1823 sbi->s_ext_extents++;
1824 if (ee_len < sbi->s_ext_min)
1825 sbi->s_ext_min = ee_len;
1826 if (ee_len > sbi->s_ext_max)
1827 sbi->s_ext_max = ee_len;
1828 if (ext_depth(inode) > sbi->s_depth_max)
1829 sbi->s_depth_max = ext_depth(inode);
1830 spin_unlock(&sbi->s_ext_stats_lock);
1831 }
1832 #endif
1833 if (from >= le32_to_cpu(ex->ee_block)
1834 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1835 /* tail removal */
1836 ext4_lblk_t num;
1837 ext4_fsblk_t start;
1838
1839 num = le32_to_cpu(ex->ee_block) + ee_len - from;
1840 start = ext_pblock(ex) + ee_len - num;
1841 ext_debug("free last %u blocks starting %llu\n", num, start);
1842 for (i = 0; i < num; i++) {
1843 bh = sb_find_get_block(inode->i_sb, start + i);
1844 ext4_forget(handle, 0, inode, bh, start + i);
1845 }
1846 ext4_free_blocks(handle, inode, start, num, metadata);
1847 } else if (from == le32_to_cpu(ex->ee_block)
1848 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1849 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
1850 from, to, le32_to_cpu(ex->ee_block), ee_len);
1851 } else {
1852 printk(KERN_INFO "strange request: removal(2) "
1853 "%u-%u from %u:%u\n",
1854 from, to, le32_to_cpu(ex->ee_block), ee_len);
1855 }
1856 return 0;
1857 }
1858
1859 static int
1860 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1861 struct ext4_ext_path *path, ext4_lblk_t start)
1862 {
1863 int err = 0, correct_index = 0;
1864 int depth = ext_depth(inode), credits;
1865 struct ext4_extent_header *eh;
1866 ext4_lblk_t a, b, block;
1867 unsigned num;
1868 ext4_lblk_t ex_ee_block;
1869 unsigned short ex_ee_len;
1870 unsigned uninitialized = 0;
1871 struct ext4_extent *ex;
1872
1873 /* the header must be checked already in ext4_ext_remove_space() */
1874 ext_debug("truncate since %u in leaf\n", start);
1875 if (!path[depth].p_hdr)
1876 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1877 eh = path[depth].p_hdr;
1878 BUG_ON(eh == NULL);
1879
1880 /* find where to start removing */
1881 ex = EXT_LAST_EXTENT(eh);
1882
1883 ex_ee_block = le32_to_cpu(ex->ee_block);
1884 if (ext4_ext_is_uninitialized(ex))
1885 uninitialized = 1;
1886 ex_ee_len = ext4_ext_get_actual_len(ex);
1887
1888 while (ex >= EXT_FIRST_EXTENT(eh) &&
1889 ex_ee_block + ex_ee_len > start) {
1890 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1891 path[depth].p_ext = ex;
1892
1893 a = ex_ee_block > start ? ex_ee_block : start;
1894 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
1895 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
1896
1897 ext_debug(" border %u:%u\n", a, b);
1898
1899 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
1900 block = 0;
1901 num = 0;
1902 BUG();
1903 } else if (a != ex_ee_block) {
1904 /* remove tail of the extent */
1905 block = ex_ee_block;
1906 num = a - block;
1907 } else if (b != ex_ee_block + ex_ee_len - 1) {
1908 /* remove head of the extent */
1909 block = a;
1910 num = b - a;
1911 /* there is no "make a hole" API yet */
1912 BUG();
1913 } else {
1914 /* remove whole extent: excellent! */
1915 block = ex_ee_block;
1916 num = 0;
1917 BUG_ON(a != ex_ee_block);
1918 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
1919 }
1920
1921 /*
1922 * 3 for leaf, sb, and inode plus 2 (bmap and group
1923 * descriptor) for each block group; assume two block
1924 * groups plus ex_ee_len/blocks_per_block_group for
1925 * the worst case
1926 */
1927 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
1928 if (ex == EXT_FIRST_EXTENT(eh)) {
1929 correct_index = 1;
1930 credits += (ext_depth(inode)) + 1;
1931 }
1932 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
1933
1934 err = ext4_ext_journal_restart(handle, credits);
1935 if (err)
1936 goto out;
1937
1938 err = ext4_ext_get_access(handle, inode, path + depth);
1939 if (err)
1940 goto out;
1941
1942 err = ext4_remove_blocks(handle, inode, ex, a, b);
1943 if (err)
1944 goto out;
1945
1946 if (num == 0) {
1947 /* this extent is removed; mark slot entirely unused */
1948 ext4_ext_store_pblock(ex, 0);
1949 le16_add_cpu(&eh->eh_entries, -1);
1950 }
1951
1952 ex->ee_block = cpu_to_le32(block);
1953 ex->ee_len = cpu_to_le16(num);
1954 /*
1955 * Do not mark uninitialized if all the blocks in the
1956 * extent have been removed.
1957 */
1958 if (uninitialized && num)
1959 ext4_ext_mark_uninitialized(ex);
1960
1961 err = ext4_ext_dirty(handle, inode, path + depth);
1962 if (err)
1963 goto out;
1964
1965 ext_debug("new extent: %u:%u:%llu\n", block, num,
1966 ext_pblock(ex));
1967 ex--;
1968 ex_ee_block = le32_to_cpu(ex->ee_block);
1969 ex_ee_len = ext4_ext_get_actual_len(ex);
1970 }
1971
1972 if (correct_index && eh->eh_entries)
1973 err = ext4_ext_correct_indexes(handle, inode, path);
1974
1975 /* if this leaf is free, then we should
1976 * remove it from index block above */
1977 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
1978 err = ext4_ext_rm_idx(handle, inode, path + depth);
1979
1980 out:
1981 return err;
1982 }
1983
1984 /*
1985 * ext4_ext_more_to_rm:
1986 * returns 1 if current index has to be freed (even partial)
1987 */
1988 static int
1989 ext4_ext_more_to_rm(struct ext4_ext_path *path)
1990 {
1991 BUG_ON(path->p_idx == NULL);
1992
1993 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
1994 return 0;
1995
1996 /*
1997 * if truncate on deeper level happened, it wasn't partial,
1998 * so we have to consider current index for truncation
1999 */
2000 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2001 return 0;
2002 return 1;
2003 }
2004
2005 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2006 {
2007 struct super_block *sb = inode->i_sb;
2008 int depth = ext_depth(inode);
2009 struct ext4_ext_path *path;
2010 handle_t *handle;
2011 int i = 0, err = 0;
2012
2013 ext_debug("truncate since %u\n", start);
2014
2015 /* probably first extent we're gonna free will be last in block */
2016 handle = ext4_journal_start(inode, depth + 1);
2017 if (IS_ERR(handle))
2018 return PTR_ERR(handle);
2019
2020 ext4_ext_invalidate_cache(inode);
2021
2022 /*
2023 * We start scanning from right side, freeing all the blocks
2024 * after i_size and walking into the tree depth-wise.
2025 */
2026 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2027 if (path == NULL) {
2028 ext4_journal_stop(handle);
2029 return -ENOMEM;
2030 }
2031 path[0].p_hdr = ext_inode_hdr(inode);
2032 if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
2033 err = -EIO;
2034 goto out;
2035 }
2036 path[0].p_depth = depth;
2037
2038 while (i >= 0 && err == 0) {
2039 if (i == depth) {
2040 /* this is leaf block */
2041 err = ext4_ext_rm_leaf(handle, inode, path, start);
2042 /* root level has p_bh == NULL, brelse() eats this */
2043 brelse(path[i].p_bh);
2044 path[i].p_bh = NULL;
2045 i--;
2046 continue;
2047 }
2048
2049 /* this is index block */
2050 if (!path[i].p_hdr) {
2051 ext_debug("initialize header\n");
2052 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2053 }
2054
2055 if (!path[i].p_idx) {
2056 /* this level hasn't been touched yet */
2057 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2058 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2059 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2060 path[i].p_hdr,
2061 le16_to_cpu(path[i].p_hdr->eh_entries));
2062 } else {
2063 /* we were already here, see at next index */
2064 path[i].p_idx--;
2065 }
2066
2067 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2068 i, EXT_FIRST_INDEX(path[i].p_hdr),
2069 path[i].p_idx);
2070 if (ext4_ext_more_to_rm(path + i)) {
2071 struct buffer_head *bh;
2072 /* go to the next level */
2073 ext_debug("move to level %d (block %llu)\n",
2074 i + 1, idx_pblock(path[i].p_idx));
2075 memset(path + i + 1, 0, sizeof(*path));
2076 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
2077 if (!bh) {
2078 /* should we reset i_size? */
2079 err = -EIO;
2080 break;
2081 }
2082 if (WARN_ON(i + 1 > depth)) {
2083 err = -EIO;
2084 break;
2085 }
2086 if (ext4_ext_check_header(inode, ext_block_hdr(bh),
2087 depth - i - 1)) {
2088 err = -EIO;
2089 break;
2090 }
2091 path[i + 1].p_bh = bh;
2092
2093 /* save actual number of indexes since this
2094 * number is changed at the next iteration */
2095 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2096 i++;
2097 } else {
2098 /* we finished processing this index, go up */
2099 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2100 /* index is empty, remove it;
2101 * handle must be already prepared by the
2102 * truncatei_leaf() */
2103 err = ext4_ext_rm_idx(handle, inode, path + i);
2104 }
2105 /* root level has p_bh == NULL, brelse() eats this */
2106 brelse(path[i].p_bh);
2107 path[i].p_bh = NULL;
2108 i--;
2109 ext_debug("return to level %d\n", i);
2110 }
2111 }
2112
2113 /* TODO: flexible tree reduction should be here */
2114 if (path->p_hdr->eh_entries == 0) {
2115 /*
2116 * truncate to zero freed all the tree,
2117 * so we need to correct eh_depth
2118 */
2119 err = ext4_ext_get_access(handle, inode, path);
2120 if (err == 0) {
2121 ext_inode_hdr(inode)->eh_depth = 0;
2122 ext_inode_hdr(inode)->eh_max =
2123 cpu_to_le16(ext4_ext_space_root(inode));
2124 err = ext4_ext_dirty(handle, inode, path);
2125 }
2126 }
2127 out:
2128 ext4_ext_tree_changed(inode);
2129 ext4_ext_drop_refs(path);
2130 kfree(path);
2131 ext4_journal_stop(handle);
2132
2133 return err;
2134 }
2135
2136 /*
2137 * called at mount time
2138 */
2139 void ext4_ext_init(struct super_block *sb)
2140 {
2141 /*
2142 * possible initialization would be here
2143 */
2144
2145 if (test_opt(sb, EXTENTS)) {
2146 printk(KERN_INFO "EXT4-fs: file extents enabled");
2147 #ifdef AGGRESSIVE_TEST
2148 printk(", aggressive tests");
2149 #endif
2150 #ifdef CHECK_BINSEARCH
2151 printk(", check binsearch");
2152 #endif
2153 #ifdef EXTENTS_STATS
2154 printk(", stats");
2155 #endif
2156 printk("\n");
2157 #ifdef EXTENTS_STATS
2158 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2159 EXT4_SB(sb)->s_ext_min = 1 << 30;
2160 EXT4_SB(sb)->s_ext_max = 0;
2161 #endif
2162 }
2163 }
2164
2165 /*
2166 * called at umount time
2167 */
2168 void ext4_ext_release(struct super_block *sb)
2169 {
2170 if (!test_opt(sb, EXTENTS))
2171 return;
2172
2173 #ifdef EXTENTS_STATS
2174 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2175 struct ext4_sb_info *sbi = EXT4_SB(sb);
2176 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2177 sbi->s_ext_blocks, sbi->s_ext_extents,
2178 sbi->s_ext_blocks / sbi->s_ext_extents);
2179 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2180 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2181 }
2182 #endif
2183 }
2184
2185 static void bi_complete(struct bio *bio, int error)
2186 {
2187 complete((struct completion *)bio->bi_private);
2188 }
2189
2190 /* FIXME!! we need to try to merge to left or right after zero-out */
2191 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2192 {
2193 int ret = -EIO;
2194 struct bio *bio;
2195 int blkbits, blocksize;
2196 sector_t ee_pblock;
2197 struct completion event;
2198 unsigned int ee_len, len, done, offset;
2199
2200
2201 blkbits = inode->i_blkbits;
2202 blocksize = inode->i_sb->s_blocksize;
2203 ee_len = ext4_ext_get_actual_len(ex);
2204 ee_pblock = ext_pblock(ex);
2205
2206 /* convert ee_pblock to 512 byte sectors */
2207 ee_pblock = ee_pblock << (blkbits - 9);
2208
2209 while (ee_len > 0) {
2210
2211 if (ee_len > BIO_MAX_PAGES)
2212 len = BIO_MAX_PAGES;
2213 else
2214 len = ee_len;
2215
2216 bio = bio_alloc(GFP_NOIO, len);
2217 if (!bio)
2218 return -ENOMEM;
2219 bio->bi_sector = ee_pblock;
2220 bio->bi_bdev = inode->i_sb->s_bdev;
2221
2222 done = 0;
2223 offset = 0;
2224 while (done < len) {
2225 ret = bio_add_page(bio, ZERO_PAGE(0),
2226 blocksize, offset);
2227 if (ret != blocksize) {
2228 /*
2229 * We can't add any more pages because of
2230 * hardware limitations. Start a new bio.
2231 */
2232 break;
2233 }
2234 done++;
2235 offset += blocksize;
2236 if (offset >= PAGE_CACHE_SIZE)
2237 offset = 0;
2238 }
2239
2240 init_completion(&event);
2241 bio->bi_private = &event;
2242 bio->bi_end_io = bi_complete;
2243 submit_bio(WRITE, bio);
2244 wait_for_completion(&event);
2245
2246 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
2247 ret = 0;
2248 else {
2249 ret = -EIO;
2250 break;
2251 }
2252 bio_put(bio);
2253 ee_len -= done;
2254 ee_pblock += done << (blkbits - 9);
2255 }
2256 return ret;
2257 }
2258
2259 #define EXT4_EXT_ZERO_LEN 7
2260
2261 /*
2262 * This function is called by ext4_ext_get_blocks() if someone tries to write
2263 * to an uninitialized extent. It may result in splitting the uninitialized
2264 * extent into multiple extents (upto three - one initialized and two
2265 * uninitialized).
2266 * There are three possibilities:
2267 * a> There is no split required: Entire extent should be initialized
2268 * b> Splits in two extents: Write is happening at either end of the extent
2269 * c> Splits in three extents: Somone is writing in middle of the extent
2270 */
2271 static int ext4_ext_convert_to_initialized(handle_t *handle,
2272 struct inode *inode,
2273 struct ext4_ext_path *path,
2274 ext4_lblk_t iblock,
2275 unsigned long max_blocks)
2276 {
2277 struct ext4_extent *ex, newex, orig_ex;
2278 struct ext4_extent *ex1 = NULL;
2279 struct ext4_extent *ex2 = NULL;
2280 struct ext4_extent *ex3 = NULL;
2281 struct ext4_extent_header *eh;
2282 ext4_lblk_t ee_block;
2283 unsigned int allocated, ee_len, depth;
2284 ext4_fsblk_t newblock;
2285 int err = 0;
2286 int ret = 0;
2287
2288 depth = ext_depth(inode);
2289 eh = path[depth].p_hdr;
2290 ex = path[depth].p_ext;
2291 ee_block = le32_to_cpu(ex->ee_block);
2292 ee_len = ext4_ext_get_actual_len(ex);
2293 allocated = ee_len - (iblock - ee_block);
2294 newblock = iblock - ee_block + ext_pblock(ex);
2295 ex2 = ex;
2296 orig_ex.ee_block = ex->ee_block;
2297 orig_ex.ee_len = cpu_to_le16(ee_len);
2298 ext4_ext_store_pblock(&orig_ex, ext_pblock(ex));
2299
2300 err = ext4_ext_get_access(handle, inode, path + depth);
2301 if (err)
2302 goto out;
2303 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2304 if (ee_len <= 2*EXT4_EXT_ZERO_LEN) {
2305 err = ext4_ext_zeroout(inode, &orig_ex);
2306 if (err)
2307 goto fix_extent_len;
2308 /* update the extent length and mark as initialized */
2309 ex->ee_block = orig_ex.ee_block;
2310 ex->ee_len = orig_ex.ee_len;
2311 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2312 ext4_ext_dirty(handle, inode, path + depth);
2313 /* zeroed the full extent */
2314 return allocated;
2315 }
2316
2317 /* ex1: ee_block to iblock - 1 : uninitialized */
2318 if (iblock > ee_block) {
2319 ex1 = ex;
2320 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2321 ext4_ext_mark_uninitialized(ex1);
2322 ex2 = &newex;
2323 }
2324 /*
2325 * for sanity, update the length of the ex2 extent before
2326 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2327 * overlap of blocks.
2328 */
2329 if (!ex1 && allocated > max_blocks)
2330 ex2->ee_len = cpu_to_le16(max_blocks);
2331 /* ex3: to ee_block + ee_len : uninitialised */
2332 if (allocated > max_blocks) {
2333 unsigned int newdepth;
2334 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2335 if (allocated <= EXT4_EXT_ZERO_LEN) {
2336 /*
2337 * iblock == ee_block is handled by the zerouout
2338 * at the beginning.
2339 * Mark first half uninitialized.
2340 * Mark second half initialized and zero out the
2341 * initialized extent
2342 */
2343 ex->ee_block = orig_ex.ee_block;
2344 ex->ee_len = cpu_to_le16(ee_len - allocated);
2345 ext4_ext_mark_uninitialized(ex);
2346 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2347 ext4_ext_dirty(handle, inode, path + depth);
2348
2349 ex3 = &newex;
2350 ex3->ee_block = cpu_to_le32(iblock);
2351 ext4_ext_store_pblock(ex3, newblock);
2352 ex3->ee_len = cpu_to_le16(allocated);
2353 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2354 if (err == -ENOSPC) {
2355 err = ext4_ext_zeroout(inode, &orig_ex);
2356 if (err)
2357 goto fix_extent_len;
2358 ex->ee_block = orig_ex.ee_block;
2359 ex->ee_len = orig_ex.ee_len;
2360 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2361 ext4_ext_dirty(handle, inode, path + depth);
2362 /* blocks available from iblock */
2363 return allocated;
2364
2365 } else if (err)
2366 goto fix_extent_len;
2367
2368 /*
2369 * We need to zero out the second half because
2370 * an fallocate request can update file size and
2371 * converting the second half to initialized extent
2372 * implies that we can leak some junk data to user
2373 * space.
2374 */
2375 err = ext4_ext_zeroout(inode, ex3);
2376 if (err) {
2377 /*
2378 * We should actually mark the
2379 * second half as uninit and return error
2380 * Insert would have changed the extent
2381 */
2382 depth = ext_depth(inode);
2383 ext4_ext_drop_refs(path);
2384 path = ext4_ext_find_extent(inode,
2385 iblock, path);
2386 if (IS_ERR(path)) {
2387 err = PTR_ERR(path);
2388 return err;
2389 }
2390 /* get the second half extent details */
2391 ex = path[depth].p_ext;
2392 err = ext4_ext_get_access(handle, inode,
2393 path + depth);
2394 if (err)
2395 return err;
2396 ext4_ext_mark_uninitialized(ex);
2397 ext4_ext_dirty(handle, inode, path + depth);
2398 return err;
2399 }
2400
2401 /* zeroed the second half */
2402 return allocated;
2403 }
2404 ex3 = &newex;
2405 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2406 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2407 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2408 ext4_ext_mark_uninitialized(ex3);
2409 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2410 if (err == -ENOSPC) {
2411 err = ext4_ext_zeroout(inode, &orig_ex);
2412 if (err)
2413 goto fix_extent_len;
2414 /* update the extent length and mark as initialized */
2415 ex->ee_block = orig_ex.ee_block;
2416 ex->ee_len = orig_ex.ee_len;
2417 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2418 ext4_ext_dirty(handle, inode, path + depth);
2419 /* zeroed the full extent */
2420 /* blocks available from iblock */
2421 return allocated;
2422
2423 } else if (err)
2424 goto fix_extent_len;
2425 /*
2426 * The depth, and hence eh & ex might change
2427 * as part of the insert above.
2428 */
2429 newdepth = ext_depth(inode);
2430 /*
2431 * update the extent length after successfull insert of the
2432 * split extent
2433 */
2434 orig_ex.ee_len = cpu_to_le16(ee_len -
2435 ext4_ext_get_actual_len(ex3));
2436 depth = newdepth;
2437 ext4_ext_drop_refs(path);
2438 path = ext4_ext_find_extent(inode, iblock, path);
2439 if (IS_ERR(path)) {
2440 err = PTR_ERR(path);
2441 goto out;
2442 }
2443 eh = path[depth].p_hdr;
2444 ex = path[depth].p_ext;
2445 if (ex2 != &newex)
2446 ex2 = ex;
2447
2448 err = ext4_ext_get_access(handle, inode, path + depth);
2449 if (err)
2450 goto out;
2451
2452 allocated = max_blocks;
2453
2454 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2455 * to insert a extent in the middle zerout directly
2456 * otherwise give the extent a chance to merge to left
2457 */
2458 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2459 iblock != ee_block) {
2460 err = ext4_ext_zeroout(inode, &orig_ex);
2461 if (err)
2462 goto fix_extent_len;
2463 /* update the extent length and mark as initialized */
2464 ex->ee_block = orig_ex.ee_block;
2465 ex->ee_len = orig_ex.ee_len;
2466 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2467 ext4_ext_dirty(handle, inode, path + depth);
2468 /* zero out the first half */
2469 /* blocks available from iblock */
2470 return allocated;
2471 }
2472 }
2473 /*
2474 * If there was a change of depth as part of the
2475 * insertion of ex3 above, we need to update the length
2476 * of the ex1 extent again here
2477 */
2478 if (ex1 && ex1 != ex) {
2479 ex1 = ex;
2480 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2481 ext4_ext_mark_uninitialized(ex1);
2482 ex2 = &newex;
2483 }
2484 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2485 ex2->ee_block = cpu_to_le32(iblock);
2486 ext4_ext_store_pblock(ex2, newblock);
2487 ex2->ee_len = cpu_to_le16(allocated);
2488 if (ex2 != ex)
2489 goto insert;
2490 /*
2491 * New (initialized) extent starts from the first block
2492 * in the current extent. i.e., ex2 == ex
2493 * We have to see if it can be merged with the extent
2494 * on the left.
2495 */
2496 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2497 /*
2498 * To merge left, pass "ex2 - 1" to try_to_merge(),
2499 * since it merges towards right _only_.
2500 */
2501 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2502 if (ret) {
2503 err = ext4_ext_correct_indexes(handle, inode, path);
2504 if (err)
2505 goto out;
2506 depth = ext_depth(inode);
2507 ex2--;
2508 }
2509 }
2510 /*
2511 * Try to Merge towards right. This might be required
2512 * only when the whole extent is being written to.
2513 * i.e. ex2 == ex and ex3 == NULL.
2514 */
2515 if (!ex3) {
2516 ret = ext4_ext_try_to_merge(inode, path, ex2);
2517 if (ret) {
2518 err = ext4_ext_correct_indexes(handle, inode, path);
2519 if (err)
2520 goto out;
2521 }
2522 }
2523 /* Mark modified extent as dirty */
2524 err = ext4_ext_dirty(handle, inode, path + depth);
2525 goto out;
2526 insert:
2527 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2528 if (err == -ENOSPC) {
2529 err = ext4_ext_zeroout(inode, &orig_ex);
2530 if (err)
2531 goto fix_extent_len;
2532 /* update the extent length and mark as initialized */
2533 ex->ee_block = orig_ex.ee_block;
2534 ex->ee_len = orig_ex.ee_len;
2535 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2536 ext4_ext_dirty(handle, inode, path + depth);
2537 /* zero out the first half */
2538 return allocated;
2539 } else if (err)
2540 goto fix_extent_len;
2541 out:
2542 return err ? err : allocated;
2543
2544 fix_extent_len:
2545 ex->ee_block = orig_ex.ee_block;
2546 ex->ee_len = orig_ex.ee_len;
2547 ext4_ext_store_pblock(ex, ext_pblock(&orig_ex));
2548 ext4_ext_mark_uninitialized(ex);
2549 ext4_ext_dirty(handle, inode, path + depth);
2550 return err;
2551 }
2552
2553 /*
2554 * Block allocation/map/preallocation routine for extents based files
2555 *
2556 *
2557 * Need to be called with
2558 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
2559 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
2560 *
2561 * return > 0, number of of blocks already mapped/allocated
2562 * if create == 0 and these are pre-allocated blocks
2563 * buffer head is unmapped
2564 * otherwise blocks are mapped
2565 *
2566 * return = 0, if plain look up failed (blocks have not been allocated)
2567 * buffer head is unmapped
2568 *
2569 * return < 0, error case.
2570 */
2571 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2572 ext4_lblk_t iblock,
2573 unsigned long max_blocks, struct buffer_head *bh_result,
2574 int create, int extend_disksize)
2575 {
2576 struct ext4_ext_path *path = NULL;
2577 struct ext4_extent_header *eh;
2578 struct ext4_extent newex, *ex;
2579 ext4_fsblk_t goal, newblock;
2580 int err = 0, depth, ret;
2581 unsigned long allocated = 0;
2582 struct ext4_allocation_request ar;
2583 loff_t disksize;
2584
2585 __clear_bit(BH_New, &bh_result->b_state);
2586 ext_debug("blocks %u/%lu requested for inode %u\n",
2587 iblock, max_blocks, inode->i_ino);
2588
2589 /* check in cache */
2590 goal = ext4_ext_in_cache(inode, iblock, &newex);
2591 if (goal) {
2592 if (goal == EXT4_EXT_CACHE_GAP) {
2593 if (!create) {
2594 /*
2595 * block isn't allocated yet and
2596 * user doesn't want to allocate it
2597 */
2598 goto out2;
2599 }
2600 /* we should allocate requested block */
2601 } else if (goal == EXT4_EXT_CACHE_EXTENT) {
2602 /* block is already allocated */
2603 newblock = iblock
2604 - le32_to_cpu(newex.ee_block)
2605 + ext_pblock(&newex);
2606 /* number of remaining blocks in the extent */
2607 allocated = ext4_ext_get_actual_len(&newex) -
2608 (iblock - le32_to_cpu(newex.ee_block));
2609 goto out;
2610 } else {
2611 BUG();
2612 }
2613 }
2614
2615 /* find extent for this block */
2616 path = ext4_ext_find_extent(inode, iblock, NULL);
2617 if (IS_ERR(path)) {
2618 err = PTR_ERR(path);
2619 path = NULL;
2620 goto out2;
2621 }
2622
2623 depth = ext_depth(inode);
2624
2625 /*
2626 * consistent leaf must not be empty;
2627 * this situation is possible, though, _during_ tree modification;
2628 * this is why assert can't be put in ext4_ext_find_extent()
2629 */
2630 BUG_ON(path[depth].p_ext == NULL && depth != 0);
2631 eh = path[depth].p_hdr;
2632
2633 ex = path[depth].p_ext;
2634 if (ex) {
2635 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
2636 ext4_fsblk_t ee_start = ext_pblock(ex);
2637 unsigned short ee_len;
2638
2639 /*
2640 * Uninitialized extents are treated as holes, except that
2641 * we split out initialized portions during a write.
2642 */
2643 ee_len = ext4_ext_get_actual_len(ex);
2644 /* if found extent covers block, simply return it */
2645 if (iblock >= ee_block && iblock < ee_block + ee_len) {
2646 newblock = iblock - ee_block + ee_start;
2647 /* number of remaining blocks in the extent */
2648 allocated = ee_len - (iblock - ee_block);
2649 ext_debug("%u fit into %lu:%d -> %llu\n", iblock,
2650 ee_block, ee_len, newblock);
2651
2652 /* Do not put uninitialized extent in the cache */
2653 if (!ext4_ext_is_uninitialized(ex)) {
2654 ext4_ext_put_in_cache(inode, ee_block,
2655 ee_len, ee_start,
2656 EXT4_EXT_CACHE_EXTENT);
2657 goto out;
2658 }
2659 if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2660 goto out;
2661 if (!create) {
2662 /*
2663 * We have blocks reserved already. We
2664 * return allocated blocks so that delalloc
2665 * won't do block reservation for us. But
2666 * the buffer head will be unmapped so that
2667 * a read from the block returns 0s.
2668 */
2669 if (allocated > max_blocks)
2670 allocated = max_blocks;
2671 set_buffer_unwritten(bh_result);
2672 goto out2;
2673 }
2674
2675 ret = ext4_ext_convert_to_initialized(handle, inode,
2676 path, iblock,
2677 max_blocks);
2678 if (ret <= 0) {
2679 err = ret;
2680 goto out2;
2681 } else
2682 allocated = ret;
2683 goto outnew;
2684 }
2685 }
2686
2687 /*
2688 * requested block isn't allocated yet;
2689 * we couldn't try to create block if create flag is zero
2690 */
2691 if (!create) {
2692 /*
2693 * put just found gap into cache to speed up
2694 * subsequent requests
2695 */
2696 ext4_ext_put_gap_in_cache(inode, path, iblock);
2697 goto out2;
2698 }
2699 /*
2700 * Okay, we need to do block allocation. Lazily initialize the block
2701 * allocation info here if necessary.
2702 */
2703 if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info))
2704 ext4_init_block_alloc_info(inode);
2705
2706 /* find neighbour allocated blocks */
2707 ar.lleft = iblock;
2708 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
2709 if (err)
2710 goto out2;
2711 ar.lright = iblock;
2712 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
2713 if (err)
2714 goto out2;
2715
2716 /*
2717 * See if request is beyond maximum number of blocks we can have in
2718 * a single extent. For an initialized extent this limit is
2719 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2720 * EXT_UNINIT_MAX_LEN.
2721 */
2722 if (max_blocks > EXT_INIT_MAX_LEN &&
2723 create != EXT4_CREATE_UNINITIALIZED_EXT)
2724 max_blocks = EXT_INIT_MAX_LEN;
2725 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2726 create == EXT4_CREATE_UNINITIALIZED_EXT)
2727 max_blocks = EXT_UNINIT_MAX_LEN;
2728
2729 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2730 newex.ee_block = cpu_to_le32(iblock);
2731 newex.ee_len = cpu_to_le16(max_blocks);
2732 err = ext4_ext_check_overlap(inode, &newex, path);
2733 if (err)
2734 allocated = ext4_ext_get_actual_len(&newex);
2735 else
2736 allocated = max_blocks;
2737
2738 /* allocate new block */
2739 ar.inode = inode;
2740 ar.goal = ext4_ext_find_goal(inode, path, iblock);
2741 ar.logical = iblock;
2742 ar.len = allocated;
2743 if (S_ISREG(inode->i_mode))
2744 ar.flags = EXT4_MB_HINT_DATA;
2745 else
2746 /* disable in-core preallocation for non-regular files */
2747 ar.flags = 0;
2748 newblock = ext4_mb_new_blocks(handle, &ar, &err);
2749 if (!newblock)
2750 goto out2;
2751 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2752 goal, newblock, allocated);
2753
2754 /* try to insert new extent into found leaf and return */
2755 ext4_ext_store_pblock(&newex, newblock);
2756 newex.ee_len = cpu_to_le16(ar.len);
2757 if (create == EXT4_CREATE_UNINITIALIZED_EXT) /* Mark uninitialized */
2758 ext4_ext_mark_uninitialized(&newex);
2759 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2760 if (err) {
2761 /* free data blocks we just allocated */
2762 /* not a good idea to call discard here directly,
2763 * but otherwise we'd need to call it every free() */
2764 ext4_mb_discard_inode_preallocations(inode);
2765 ext4_free_blocks(handle, inode, ext_pblock(&newex),
2766 ext4_ext_get_actual_len(&newex), 0);
2767 goto out2;
2768 }
2769
2770 /* previous routine could use block we allocated */
2771 newblock = ext_pblock(&newex);
2772 allocated = ext4_ext_get_actual_len(&newex);
2773 outnew:
2774 if (extend_disksize) {
2775 disksize = ((loff_t) iblock + ar.len) << inode->i_blkbits;
2776 if (disksize > i_size_read(inode))
2777 disksize = i_size_read(inode);
2778 if (disksize > EXT4_I(inode)->i_disksize)
2779 EXT4_I(inode)->i_disksize = disksize;
2780 }
2781
2782 set_buffer_new(bh_result);
2783
2784 /* Cache only when it is _not_ an uninitialized extent */
2785 if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2786 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2787 EXT4_EXT_CACHE_EXTENT);
2788 out:
2789 if (allocated > max_blocks)
2790 allocated = max_blocks;
2791 ext4_ext_show_leaf(inode, path);
2792 set_buffer_mapped(bh_result);
2793 bh_result->b_bdev = inode->i_sb->s_bdev;
2794 bh_result->b_blocknr = newblock;
2795 out2:
2796 if (path) {
2797 ext4_ext_drop_refs(path);
2798 kfree(path);
2799 }
2800 return err ? err : allocated;
2801 }
2802
2803 void ext4_ext_truncate(struct inode *inode)
2804 {
2805 struct address_space *mapping = inode->i_mapping;
2806 struct super_block *sb = inode->i_sb;
2807 ext4_lblk_t last_block;
2808 handle_t *handle;
2809 int err = 0;
2810
2811 /*
2812 * probably first extent we're gonna free will be last in block
2813 */
2814 err = ext4_writepage_trans_blocks(inode);
2815 handle = ext4_journal_start(inode, err);
2816 if (IS_ERR(handle))
2817 return;
2818
2819 if (inode->i_size & (sb->s_blocksize - 1))
2820 ext4_block_truncate_page(handle, mapping, inode->i_size);
2821
2822 if (ext4_orphan_add(handle, inode))
2823 goto out_stop;
2824
2825 down_write(&EXT4_I(inode)->i_data_sem);
2826 ext4_ext_invalidate_cache(inode);
2827
2828 ext4_discard_reservation(inode);
2829
2830 /*
2831 * TODO: optimization is possible here.
2832 * Probably we need not scan at all,
2833 * because page truncation is enough.
2834 */
2835
2836 /* we have to know where to truncate from in crash case */
2837 EXT4_I(inode)->i_disksize = inode->i_size;
2838 ext4_mark_inode_dirty(handle, inode);
2839
2840 last_block = (inode->i_size + sb->s_blocksize - 1)
2841 >> EXT4_BLOCK_SIZE_BITS(sb);
2842 err = ext4_ext_remove_space(inode, last_block);
2843
2844 /* In a multi-transaction truncate, we only make the final
2845 * transaction synchronous.
2846 */
2847 if (IS_SYNC(inode))
2848 handle->h_sync = 1;
2849
2850 out_stop:
2851 up_write(&EXT4_I(inode)->i_data_sem);
2852 /*
2853 * If this was a simple ftruncate() and the file will remain alive,
2854 * then we need to clear up the orphan record which we created above.
2855 * However, if this was a real unlink then we were called by
2856 * ext4_delete_inode(), and we allow that function to clean up the
2857 * orphan info for us.
2858 */
2859 if (inode->i_nlink)
2860 ext4_orphan_del(handle, inode);
2861
2862 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2863 ext4_mark_inode_dirty(handle, inode);
2864 ext4_journal_stop(handle);
2865 }
2866
2867 static void ext4_falloc_update_inode(struct inode *inode,
2868 int mode, loff_t new_size, int update_ctime)
2869 {
2870 struct timespec now;
2871
2872 if (update_ctime) {
2873 now = current_fs_time(inode->i_sb);
2874 if (!timespec_equal(&inode->i_ctime, &now))
2875 inode->i_ctime = now;
2876 }
2877 /*
2878 * Update only when preallocation was requested beyond
2879 * the file size.
2880 */
2881 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
2882 if (new_size > i_size_read(inode))
2883 i_size_write(inode, new_size);
2884 if (new_size > EXT4_I(inode)->i_disksize)
2885 ext4_update_i_disksize(inode, new_size);
2886 }
2887
2888 }
2889
2890 /*
2891 * preallocate space for a file. This implements ext4's fallocate inode
2892 * operation, which gets called from sys_fallocate system call.
2893 * For block-mapped files, posix_fallocate should fall back to the method
2894 * of writing zeroes to the required new blocks (the same behavior which is
2895 * expected for file systems which do not support fallocate() system call).
2896 */
2897 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
2898 {
2899 handle_t *handle;
2900 ext4_lblk_t block;
2901 loff_t new_size;
2902 unsigned long max_blocks;
2903 int ret = 0;
2904 int ret2 = 0;
2905 int retries = 0;
2906 struct buffer_head map_bh;
2907 unsigned int credits, blkbits = inode->i_blkbits;
2908
2909 /*
2910 * currently supporting (pre)allocate mode for extent-based
2911 * files _only_
2912 */
2913 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
2914 return -EOPNOTSUPP;
2915
2916 /* preallocation to directories is currently not supported */
2917 if (S_ISDIR(inode->i_mode))
2918 return -ENODEV;
2919
2920 block = offset >> blkbits;
2921 /*
2922 * We can't just convert len to max_blocks because
2923 * If blocksize = 4096 offset = 3072 and len = 2048
2924 */
2925 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
2926 - block;
2927 /*
2928 * credits to insert 1 extent into extent tree
2929 */
2930 credits = ext4_chunk_trans_blocks(inode, max_blocks);
2931 mutex_lock(&inode->i_mutex);
2932 retry:
2933 while (ret >= 0 && ret < max_blocks) {
2934 block = block + ret;
2935 max_blocks = max_blocks - ret;
2936 handle = ext4_journal_start(inode, credits);
2937 if (IS_ERR(handle)) {
2938 ret = PTR_ERR(handle);
2939 break;
2940 }
2941 ret = ext4_get_blocks_wrap(handle, inode, block,
2942 max_blocks, &map_bh,
2943 EXT4_CREATE_UNINITIALIZED_EXT, 0, 0);
2944 if (ret <= 0) {
2945 #ifdef EXT4FS_DEBUG
2946 WARN_ON(ret <= 0);
2947 printk(KERN_ERR "%s: ext4_ext_get_blocks "
2948 "returned error inode#%lu, block=%u, "
2949 "max_blocks=%lu", __func__,
2950 inode->i_ino, block, max_blocks);
2951 #endif
2952 ext4_mark_inode_dirty(handle, inode);
2953 ret2 = ext4_journal_stop(handle);
2954 break;
2955 }
2956 if ((block + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
2957 blkbits) >> blkbits))
2958 new_size = offset + len;
2959 else
2960 new_size = (block + ret) << blkbits;
2961
2962 ext4_falloc_update_inode(inode, mode, new_size,
2963 buffer_new(&map_bh));
2964 ext4_mark_inode_dirty(handle, inode);
2965 ret2 = ext4_journal_stop(handle);
2966 if (ret2)
2967 break;
2968 }
2969 if (ret == -ENOSPC &&
2970 ext4_should_retry_alloc(inode->i_sb, &retries)) {
2971 ret = 0;
2972 goto retry;
2973 }
2974 mutex_unlock(&inode->i_mutex);
2975 return ret > 0 ? ret2 : ret;
2976 }