]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/extents.c
ext4: add normal write support for inline data
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
80
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
89 {
90 struct ext4_extent_tail *et;
91
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
95
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct ext4_ext_cache *newex);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
120 {
121 int err;
122
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
133
134 return err;
135 }
136
137 /*
138 * could return:
139 * - EROFS
140 * - ENOMEM
141 */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 handle_t *handle, struct inode *inode,
164 struct ext4_ext_path *path)
165 {
166 int err;
167 if (path->p_bh) {
168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 /* path points to block */
170 err = __ext4_handle_dirty_metadata(where, line, handle,
171 inode, path->p_bh);
172 } else {
173 /* path points to leaf/index in inode body */
174 err = ext4_mark_inode_dirty(handle, inode);
175 }
176 return err;
177 }
178
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 struct ext4_ext_path *path,
181 ext4_lblk_t block)
182 {
183 if (path) {
184 int depth = path->p_depth;
185 struct ext4_extent *ex;
186
187 /*
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
202 * common.
203 */
204 ex = path[depth].p_ext;
205 if (ex) {
206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209 if (block > ext_block)
210 return ext_pblk + (block - ext_block);
211 else
212 return ext_pblk - (ext_block - block);
213 }
214
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path[depth].p_bh)
218 return path[depth].p_bh->b_blocknr;
219 }
220
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode);
223 }
224
225 /*
226 * Allocation for a meta data block
227 */
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 struct ext4_ext_path *path,
231 struct ext4_extent *ex, int *err, unsigned int flags)
232 {
233 ext4_fsblk_t goal, newblock;
234
235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237 NULL, err);
238 return newblock;
239 }
240
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 {
243 int size;
244
245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 if (!check && size > 6)
249 size = 6;
250 #endif
251 return size;
252 }
253
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 {
256 int size;
257
258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 if (!check && size > 5)
262 size = 5;
263 #endif
264 return size;
265 }
266
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 {
269 int size;
270
271 size = sizeof(EXT4_I(inode)->i_data);
272 size -= sizeof(struct ext4_extent_header);
273 size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 if (!check && size > 3)
276 size = 3;
277 #endif
278 return size;
279 }
280
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 {
283 int size;
284
285 size = sizeof(EXT4_I(inode)->i_data);
286 size -= sizeof(struct ext4_extent_header);
287 size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 if (!check && size > 4)
290 size = 4;
291 #endif
292 return size;
293 }
294
295 /*
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
299 */
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301 {
302 struct ext4_inode_info *ei = EXT4_I(inode);
303 int idxs;
304
305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 / sizeof(struct ext4_extent_idx));
307
308 /*
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
315 */
316 if (ei->i_da_metadata_calc_len &&
317 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318 int num = 0;
319
320 if ((ei->i_da_metadata_calc_len % idxs) == 0)
321 num++;
322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323 num++;
324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325 num++;
326 ei->i_da_metadata_calc_len = 0;
327 } else
328 ei->i_da_metadata_calc_len++;
329 ei->i_da_metadata_calc_last_lblock++;
330 return num;
331 }
332
333 /*
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
336 */
337 ei->i_da_metadata_calc_len = 1;
338 ei->i_da_metadata_calc_last_lblock = lblock;
339 return ext_depth(inode) + 1;
340 }
341
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
344 {
345 int max;
346
347 if (depth == ext_depth(inode)) {
348 if (depth == 0)
349 max = ext4_ext_space_root(inode, 1);
350 else
351 max = ext4_ext_space_root_idx(inode, 1);
352 } else {
353 if (depth == 0)
354 max = ext4_ext_space_block(inode, 1);
355 else
356 max = ext4_ext_space_block_idx(inode, 1);
357 }
358
359 return max;
360 }
361
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363 {
364 ext4_fsblk_t block = ext4_ext_pblock(ext);
365 int len = ext4_ext_get_actual_len(ext);
366
367 if (len == 0)
368 return 0;
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 }
371
372 static int ext4_valid_extent_idx(struct inode *inode,
373 struct ext4_extent_idx *ext_idx)
374 {
375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 }
379
380 static int ext4_valid_extent_entries(struct inode *inode,
381 struct ext4_extent_header *eh,
382 int depth)
383 {
384 unsigned short entries;
385 if (eh->eh_entries == 0)
386 return 1;
387
388 entries = le16_to_cpu(eh->eh_entries);
389
390 if (depth == 0) {
391 /* leaf entries */
392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393 while (entries) {
394 if (!ext4_valid_extent(inode, ext))
395 return 0;
396 ext++;
397 entries--;
398 }
399 } else {
400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401 while (entries) {
402 if (!ext4_valid_extent_idx(inode, ext_idx))
403 return 0;
404 ext_idx++;
405 entries--;
406 }
407 }
408 return 1;
409 }
410
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 struct inode *inode, struct ext4_extent_header *eh,
413 int depth)
414 {
415 const char *error_msg;
416 int max = 0;
417
418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 error_msg = "invalid magic";
420 goto corrupted;
421 }
422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 error_msg = "unexpected eh_depth";
424 goto corrupted;
425 }
426 if (unlikely(eh->eh_max == 0)) {
427 error_msg = "invalid eh_max";
428 goto corrupted;
429 }
430 max = ext4_ext_max_entries(inode, depth);
431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 error_msg = "too large eh_max";
433 goto corrupted;
434 }
435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 error_msg = "invalid eh_entries";
437 goto corrupted;
438 }
439 if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 error_msg = "invalid extent entries";
441 goto corrupted;
442 }
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode) != depth &&
445 !ext4_extent_block_csum_verify(inode, eh)) {
446 error_msg = "extent tree corrupted";
447 goto corrupted;
448 }
449 return 0;
450
451 corrupted:
452 ext4_error_inode(inode, function, line, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg, le16_to_cpu(eh->eh_magic),
456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 max, le16_to_cpu(eh->eh_depth), depth);
458
459 return -EIO;
460 }
461
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465 int ext4_ext_check_inode(struct inode *inode)
466 {
467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468 }
469
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471 struct inode *inode,
472 struct ext4_extent_header *eh,
473 int depth,
474 struct buffer_head *bh)
475 {
476 int ret;
477
478 if (buffer_verified(bh))
479 return 0;
480 ret = ext4_ext_check(inode, eh, depth);
481 if (ret)
482 return ret;
483 set_buffer_verified(bh);
484 return ret;
485 }
486
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492 {
493 int k, l = path->p_depth;
494
495 ext_debug("path:");
496 for (k = 0; k <= l; k++, path++) {
497 if (path->p_idx) {
498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 ext4_idx_pblock(path->p_idx));
500 } else if (path->p_ext) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path->p_ext->ee_block),
503 ext4_ext_is_uninitialized(path->p_ext),
504 ext4_ext_get_actual_len(path->p_ext),
505 ext4_ext_pblock(path->p_ext));
506 } else
507 ext_debug(" []");
508 }
509 ext_debug("\n");
510 }
511
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513 {
514 int depth = ext_depth(inode);
515 struct ext4_extent_header *eh;
516 struct ext4_extent *ex;
517 int i;
518
519 if (!path)
520 return;
521
522 eh = path[depth].p_hdr;
523 ex = EXT_FIRST_EXTENT(eh);
524
525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 ext4_ext_is_uninitialized(ex),
530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531 }
532 ext_debug("\n");
533 }
534
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 ext4_fsblk_t newblock, int level)
537 {
538 int depth = ext_depth(inode);
539 struct ext4_extent *ex;
540
541 if (depth != level) {
542 struct ext4_extent_idx *idx;
543 idx = path[level].p_idx;
544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 le32_to_cpu(idx->ei_block),
547 ext4_idx_pblock(idx),
548 newblock);
549 idx++;
550 }
551
552 return;
553 }
554
555 ex = path[depth].p_ext;
556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex->ee_block),
559 ext4_ext_pblock(ex),
560 ext4_ext_is_uninitialized(ex),
561 ext4_ext_get_actual_len(ex),
562 newblock);
563 ex++;
564 }
565 }
566
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
572
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
574 {
575 int depth = path->p_depth;
576 int i;
577
578 for (i = 0; i <= depth; i++, path++)
579 if (path->p_bh) {
580 brelse(path->p_bh);
581 path->p_bh = NULL;
582 }
583 }
584
585 /*
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
589 */
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592 struct ext4_ext_path *path, ext4_lblk_t block)
593 {
594 struct ext4_extent_header *eh = path->p_hdr;
595 struct ext4_extent_idx *r, *l, *m;
596
597
598 ext_debug("binsearch for %u(idx): ", block);
599
600 l = EXT_FIRST_INDEX(eh) + 1;
601 r = EXT_LAST_INDEX(eh);
602 while (l <= r) {
603 m = l + (r - l) / 2;
604 if (block < le32_to_cpu(m->ei_block))
605 r = m - 1;
606 else
607 l = m + 1;
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 m, le32_to_cpu(m->ei_block),
610 r, le32_to_cpu(r->ei_block));
611 }
612
613 path->p_idx = l - 1;
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 ext4_idx_pblock(path->p_idx));
616
617 #ifdef CHECK_BINSEARCH
618 {
619 struct ext4_extent_idx *chix, *ix;
620 int k;
621
622 chix = ix = EXT_FIRST_INDEX(eh);
623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624 if (k != 0 &&
625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 printk(KERN_DEBUG "k=%d, ix=0x%p, "
627 "first=0x%p\n", k,
628 ix, EXT_FIRST_INDEX(eh));
629 printk(KERN_DEBUG "%u <= %u\n",
630 le32_to_cpu(ix->ei_block),
631 le32_to_cpu(ix[-1].ei_block));
632 }
633 BUG_ON(k && le32_to_cpu(ix->ei_block)
634 <= le32_to_cpu(ix[-1].ei_block));
635 if (block < le32_to_cpu(ix->ei_block))
636 break;
637 chix = ix;
638 }
639 BUG_ON(chix != path->p_idx);
640 }
641 #endif
642
643 }
644
645 /*
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
649 */
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652 struct ext4_ext_path *path, ext4_lblk_t block)
653 {
654 struct ext4_extent_header *eh = path->p_hdr;
655 struct ext4_extent *r, *l, *m;
656
657 if (eh->eh_entries == 0) {
658 /*
659 * this leaf is empty:
660 * we get such a leaf in split/add case
661 */
662 return;
663 }
664
665 ext_debug("binsearch for %u: ", block);
666
667 l = EXT_FIRST_EXTENT(eh) + 1;
668 r = EXT_LAST_EXTENT(eh);
669
670 while (l <= r) {
671 m = l + (r - l) / 2;
672 if (block < le32_to_cpu(m->ee_block))
673 r = m - 1;
674 else
675 l = m + 1;
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 m, le32_to_cpu(m->ee_block),
678 r, le32_to_cpu(r->ee_block));
679 }
680
681 path->p_ext = l - 1;
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path->p_ext->ee_block),
684 ext4_ext_pblock(path->p_ext),
685 ext4_ext_is_uninitialized(path->p_ext),
686 ext4_ext_get_actual_len(path->p_ext));
687
688 #ifdef CHECK_BINSEARCH
689 {
690 struct ext4_extent *chex, *ex;
691 int k;
692
693 chex = ex = EXT_FIRST_EXTENT(eh);
694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 BUG_ON(k && le32_to_cpu(ex->ee_block)
696 <= le32_to_cpu(ex[-1].ee_block));
697 if (block < le32_to_cpu(ex->ee_block))
698 break;
699 chex = ex;
700 }
701 BUG_ON(chex != path->p_ext);
702 }
703 #endif
704
705 }
706
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708 {
709 struct ext4_extent_header *eh;
710
711 eh = ext_inode_hdr(inode);
712 eh->eh_depth = 0;
713 eh->eh_entries = 0;
714 eh->eh_magic = EXT4_EXT_MAGIC;
715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 ext4_mark_inode_dirty(handle, inode);
717 ext4_ext_invalidate_cache(inode);
718 return 0;
719 }
720
721 struct ext4_ext_path *
722 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
723 struct ext4_ext_path *path)
724 {
725 struct ext4_extent_header *eh;
726 struct buffer_head *bh;
727 short int depth, i, ppos = 0, alloc = 0;
728
729 eh = ext_inode_hdr(inode);
730 depth = ext_depth(inode);
731
732 /* account possible depth increase */
733 if (!path) {
734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
735 GFP_NOFS);
736 if (!path)
737 return ERR_PTR(-ENOMEM);
738 alloc = 1;
739 }
740 path[0].p_hdr = eh;
741 path[0].p_bh = NULL;
742
743 i = depth;
744 /* walk through the tree */
745 while (i) {
746 ext_debug("depth %d: num %d, max %d\n",
747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
748
749 ext4_ext_binsearch_idx(inode, path + ppos, block);
750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751 path[ppos].p_depth = i;
752 path[ppos].p_ext = NULL;
753
754 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
755 if (unlikely(!bh))
756 goto err;
757 if (!bh_uptodate_or_lock(bh)) {
758 trace_ext4_ext_load_extent(inode, block,
759 path[ppos].p_block);
760 if (bh_submit_read(bh) < 0) {
761 put_bh(bh);
762 goto err;
763 }
764 }
765 eh = ext_block_hdr(bh);
766 ppos++;
767 if (unlikely(ppos > depth)) {
768 put_bh(bh);
769 EXT4_ERROR_INODE(inode,
770 "ppos %d > depth %d", ppos, depth);
771 goto err;
772 }
773 path[ppos].p_bh = bh;
774 path[ppos].p_hdr = eh;
775 i--;
776
777 if (ext4_ext_check_block(inode, eh, i, bh))
778 goto err;
779 }
780
781 path[ppos].p_depth = i;
782 path[ppos].p_ext = NULL;
783 path[ppos].p_idx = NULL;
784
785 /* find extent */
786 ext4_ext_binsearch(inode, path + ppos, block);
787 /* if not an empty leaf */
788 if (path[ppos].p_ext)
789 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
790
791 ext4_ext_show_path(inode, path);
792
793 return path;
794
795 err:
796 ext4_ext_drop_refs(path);
797 if (alloc)
798 kfree(path);
799 return ERR_PTR(-EIO);
800 }
801
802 /*
803 * ext4_ext_insert_index:
804 * insert new index [@logical;@ptr] into the block at @curp;
805 * check where to insert: before @curp or after @curp
806 */
807 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
808 struct ext4_ext_path *curp,
809 int logical, ext4_fsblk_t ptr)
810 {
811 struct ext4_extent_idx *ix;
812 int len, err;
813
814 err = ext4_ext_get_access(handle, inode, curp);
815 if (err)
816 return err;
817
818 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
819 EXT4_ERROR_INODE(inode,
820 "logical %d == ei_block %d!",
821 logical, le32_to_cpu(curp->p_idx->ei_block));
822 return -EIO;
823 }
824
825 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
826 >= le16_to_cpu(curp->p_hdr->eh_max))) {
827 EXT4_ERROR_INODE(inode,
828 "eh_entries %d >= eh_max %d!",
829 le16_to_cpu(curp->p_hdr->eh_entries),
830 le16_to_cpu(curp->p_hdr->eh_max));
831 return -EIO;
832 }
833
834 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
835 /* insert after */
836 ext_debug("insert new index %d after: %llu\n", logical, ptr);
837 ix = curp->p_idx + 1;
838 } else {
839 /* insert before */
840 ext_debug("insert new index %d before: %llu\n", logical, ptr);
841 ix = curp->p_idx;
842 }
843
844 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
845 BUG_ON(len < 0);
846 if (len > 0) {
847 ext_debug("insert new index %d: "
848 "move %d indices from 0x%p to 0x%p\n",
849 logical, len, ix, ix + 1);
850 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
851 }
852
853 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
854 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
855 return -EIO;
856 }
857
858 ix->ei_block = cpu_to_le32(logical);
859 ext4_idx_store_pblock(ix, ptr);
860 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
861
862 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
863 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
864 return -EIO;
865 }
866
867 err = ext4_ext_dirty(handle, inode, curp);
868 ext4_std_error(inode->i_sb, err);
869
870 return err;
871 }
872
873 /*
874 * ext4_ext_split:
875 * inserts new subtree into the path, using free index entry
876 * at depth @at:
877 * - allocates all needed blocks (new leaf and all intermediate index blocks)
878 * - makes decision where to split
879 * - moves remaining extents and index entries (right to the split point)
880 * into the newly allocated blocks
881 * - initializes subtree
882 */
883 static int ext4_ext_split(handle_t *handle, struct inode *inode,
884 unsigned int flags,
885 struct ext4_ext_path *path,
886 struct ext4_extent *newext, int at)
887 {
888 struct buffer_head *bh = NULL;
889 int depth = ext_depth(inode);
890 struct ext4_extent_header *neh;
891 struct ext4_extent_idx *fidx;
892 int i = at, k, m, a;
893 ext4_fsblk_t newblock, oldblock;
894 __le32 border;
895 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
896 int err = 0;
897
898 /* make decision: where to split? */
899 /* FIXME: now decision is simplest: at current extent */
900
901 /* if current leaf will be split, then we should use
902 * border from split point */
903 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
904 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
905 return -EIO;
906 }
907 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
908 border = path[depth].p_ext[1].ee_block;
909 ext_debug("leaf will be split."
910 " next leaf starts at %d\n",
911 le32_to_cpu(border));
912 } else {
913 border = newext->ee_block;
914 ext_debug("leaf will be added."
915 " next leaf starts at %d\n",
916 le32_to_cpu(border));
917 }
918
919 /*
920 * If error occurs, then we break processing
921 * and mark filesystem read-only. index won't
922 * be inserted and tree will be in consistent
923 * state. Next mount will repair buffers too.
924 */
925
926 /*
927 * Get array to track all allocated blocks.
928 * We need this to handle errors and free blocks
929 * upon them.
930 */
931 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
932 if (!ablocks)
933 return -ENOMEM;
934
935 /* allocate all needed blocks */
936 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
937 for (a = 0; a < depth - at; a++) {
938 newblock = ext4_ext_new_meta_block(handle, inode, path,
939 newext, &err, flags);
940 if (newblock == 0)
941 goto cleanup;
942 ablocks[a] = newblock;
943 }
944
945 /* initialize new leaf */
946 newblock = ablocks[--a];
947 if (unlikely(newblock == 0)) {
948 EXT4_ERROR_INODE(inode, "newblock == 0!");
949 err = -EIO;
950 goto cleanup;
951 }
952 bh = sb_getblk(inode->i_sb, newblock);
953 if (!bh) {
954 err = -EIO;
955 goto cleanup;
956 }
957 lock_buffer(bh);
958
959 err = ext4_journal_get_create_access(handle, bh);
960 if (err)
961 goto cleanup;
962
963 neh = ext_block_hdr(bh);
964 neh->eh_entries = 0;
965 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
966 neh->eh_magic = EXT4_EXT_MAGIC;
967 neh->eh_depth = 0;
968
969 /* move remainder of path[depth] to the new leaf */
970 if (unlikely(path[depth].p_hdr->eh_entries !=
971 path[depth].p_hdr->eh_max)) {
972 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
973 path[depth].p_hdr->eh_entries,
974 path[depth].p_hdr->eh_max);
975 err = -EIO;
976 goto cleanup;
977 }
978 /* start copy from next extent */
979 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
980 ext4_ext_show_move(inode, path, newblock, depth);
981 if (m) {
982 struct ext4_extent *ex;
983 ex = EXT_FIRST_EXTENT(neh);
984 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
985 le16_add_cpu(&neh->eh_entries, m);
986 }
987
988 ext4_extent_block_csum_set(inode, neh);
989 set_buffer_uptodate(bh);
990 unlock_buffer(bh);
991
992 err = ext4_handle_dirty_metadata(handle, inode, bh);
993 if (err)
994 goto cleanup;
995 brelse(bh);
996 bh = NULL;
997
998 /* correct old leaf */
999 if (m) {
1000 err = ext4_ext_get_access(handle, inode, path + depth);
1001 if (err)
1002 goto cleanup;
1003 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1004 err = ext4_ext_dirty(handle, inode, path + depth);
1005 if (err)
1006 goto cleanup;
1007
1008 }
1009
1010 /* create intermediate indexes */
1011 k = depth - at - 1;
1012 if (unlikely(k < 0)) {
1013 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1014 err = -EIO;
1015 goto cleanup;
1016 }
1017 if (k)
1018 ext_debug("create %d intermediate indices\n", k);
1019 /* insert new index into current index block */
1020 /* current depth stored in i var */
1021 i = depth - 1;
1022 while (k--) {
1023 oldblock = newblock;
1024 newblock = ablocks[--a];
1025 bh = sb_getblk(inode->i_sb, newblock);
1026 if (!bh) {
1027 err = -EIO;
1028 goto cleanup;
1029 }
1030 lock_buffer(bh);
1031
1032 err = ext4_journal_get_create_access(handle, bh);
1033 if (err)
1034 goto cleanup;
1035
1036 neh = ext_block_hdr(bh);
1037 neh->eh_entries = cpu_to_le16(1);
1038 neh->eh_magic = EXT4_EXT_MAGIC;
1039 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1040 neh->eh_depth = cpu_to_le16(depth - i);
1041 fidx = EXT_FIRST_INDEX(neh);
1042 fidx->ei_block = border;
1043 ext4_idx_store_pblock(fidx, oldblock);
1044
1045 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1046 i, newblock, le32_to_cpu(border), oldblock);
1047
1048 /* move remainder of path[i] to the new index block */
1049 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1050 EXT_LAST_INDEX(path[i].p_hdr))) {
1051 EXT4_ERROR_INODE(inode,
1052 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1053 le32_to_cpu(path[i].p_ext->ee_block));
1054 err = -EIO;
1055 goto cleanup;
1056 }
1057 /* start copy indexes */
1058 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1059 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1060 EXT_MAX_INDEX(path[i].p_hdr));
1061 ext4_ext_show_move(inode, path, newblock, i);
1062 if (m) {
1063 memmove(++fidx, path[i].p_idx,
1064 sizeof(struct ext4_extent_idx) * m);
1065 le16_add_cpu(&neh->eh_entries, m);
1066 }
1067 ext4_extent_block_csum_set(inode, neh);
1068 set_buffer_uptodate(bh);
1069 unlock_buffer(bh);
1070
1071 err = ext4_handle_dirty_metadata(handle, inode, bh);
1072 if (err)
1073 goto cleanup;
1074 brelse(bh);
1075 bh = NULL;
1076
1077 /* correct old index */
1078 if (m) {
1079 err = ext4_ext_get_access(handle, inode, path + i);
1080 if (err)
1081 goto cleanup;
1082 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1083 err = ext4_ext_dirty(handle, inode, path + i);
1084 if (err)
1085 goto cleanup;
1086 }
1087
1088 i--;
1089 }
1090
1091 /* insert new index */
1092 err = ext4_ext_insert_index(handle, inode, path + at,
1093 le32_to_cpu(border), newblock);
1094
1095 cleanup:
1096 if (bh) {
1097 if (buffer_locked(bh))
1098 unlock_buffer(bh);
1099 brelse(bh);
1100 }
1101
1102 if (err) {
1103 /* free all allocated blocks in error case */
1104 for (i = 0; i < depth; i++) {
1105 if (!ablocks[i])
1106 continue;
1107 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1108 EXT4_FREE_BLOCKS_METADATA);
1109 }
1110 }
1111 kfree(ablocks);
1112
1113 return err;
1114 }
1115
1116 /*
1117 * ext4_ext_grow_indepth:
1118 * implements tree growing procedure:
1119 * - allocates new block
1120 * - moves top-level data (index block or leaf) into the new block
1121 * - initializes new top-level, creating index that points to the
1122 * just created block
1123 */
1124 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1125 unsigned int flags,
1126 struct ext4_extent *newext)
1127 {
1128 struct ext4_extent_header *neh;
1129 struct buffer_head *bh;
1130 ext4_fsblk_t newblock;
1131 int err = 0;
1132
1133 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1134 newext, &err, flags);
1135 if (newblock == 0)
1136 return err;
1137
1138 bh = sb_getblk(inode->i_sb, newblock);
1139 if (!bh) {
1140 err = -EIO;
1141 ext4_std_error(inode->i_sb, err);
1142 return err;
1143 }
1144 lock_buffer(bh);
1145
1146 err = ext4_journal_get_create_access(handle, bh);
1147 if (err) {
1148 unlock_buffer(bh);
1149 goto out;
1150 }
1151
1152 /* move top-level index/leaf into new block */
1153 memmove(bh->b_data, EXT4_I(inode)->i_data,
1154 sizeof(EXT4_I(inode)->i_data));
1155
1156 /* set size of new block */
1157 neh = ext_block_hdr(bh);
1158 /* old root could have indexes or leaves
1159 * so calculate e_max right way */
1160 if (ext_depth(inode))
1161 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1162 else
1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1164 neh->eh_magic = EXT4_EXT_MAGIC;
1165 ext4_extent_block_csum_set(inode, neh);
1166 set_buffer_uptodate(bh);
1167 unlock_buffer(bh);
1168
1169 err = ext4_handle_dirty_metadata(handle, inode, bh);
1170 if (err)
1171 goto out;
1172
1173 /* Update top-level index: num,max,pointer */
1174 neh = ext_inode_hdr(inode);
1175 neh->eh_entries = cpu_to_le16(1);
1176 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1177 if (neh->eh_depth == 0) {
1178 /* Root extent block becomes index block */
1179 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1180 EXT_FIRST_INDEX(neh)->ei_block =
1181 EXT_FIRST_EXTENT(neh)->ee_block;
1182 }
1183 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1184 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1185 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1186 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1187
1188 le16_add_cpu(&neh->eh_depth, 1);
1189 ext4_mark_inode_dirty(handle, inode);
1190 out:
1191 brelse(bh);
1192
1193 return err;
1194 }
1195
1196 /*
1197 * ext4_ext_create_new_leaf:
1198 * finds empty index and adds new leaf.
1199 * if no free index is found, then it requests in-depth growing.
1200 */
1201 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1202 unsigned int flags,
1203 struct ext4_ext_path *path,
1204 struct ext4_extent *newext)
1205 {
1206 struct ext4_ext_path *curp;
1207 int depth, i, err = 0;
1208
1209 repeat:
1210 i = depth = ext_depth(inode);
1211
1212 /* walk up to the tree and look for free index entry */
1213 curp = path + depth;
1214 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1215 i--;
1216 curp--;
1217 }
1218
1219 /* we use already allocated block for index block,
1220 * so subsequent data blocks should be contiguous */
1221 if (EXT_HAS_FREE_INDEX(curp)) {
1222 /* if we found index with free entry, then use that
1223 * entry: create all needed subtree and add new leaf */
1224 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1225 if (err)
1226 goto out;
1227
1228 /* refill path */
1229 ext4_ext_drop_refs(path);
1230 path = ext4_ext_find_extent(inode,
1231 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1232 path);
1233 if (IS_ERR(path))
1234 err = PTR_ERR(path);
1235 } else {
1236 /* tree is full, time to grow in depth */
1237 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1238 if (err)
1239 goto out;
1240
1241 /* refill path */
1242 ext4_ext_drop_refs(path);
1243 path = ext4_ext_find_extent(inode,
1244 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1245 path);
1246 if (IS_ERR(path)) {
1247 err = PTR_ERR(path);
1248 goto out;
1249 }
1250
1251 /*
1252 * only first (depth 0 -> 1) produces free space;
1253 * in all other cases we have to split the grown tree
1254 */
1255 depth = ext_depth(inode);
1256 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1257 /* now we need to split */
1258 goto repeat;
1259 }
1260 }
1261
1262 out:
1263 return err;
1264 }
1265
1266 /*
1267 * search the closest allocated block to the left for *logical
1268 * and returns it at @logical + it's physical address at @phys
1269 * if *logical is the smallest allocated block, the function
1270 * returns 0 at @phys
1271 * return value contains 0 (success) or error code
1272 */
1273 static int ext4_ext_search_left(struct inode *inode,
1274 struct ext4_ext_path *path,
1275 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1276 {
1277 struct ext4_extent_idx *ix;
1278 struct ext4_extent *ex;
1279 int depth, ee_len;
1280
1281 if (unlikely(path == NULL)) {
1282 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1283 return -EIO;
1284 }
1285 depth = path->p_depth;
1286 *phys = 0;
1287
1288 if (depth == 0 && path->p_ext == NULL)
1289 return 0;
1290
1291 /* usually extent in the path covers blocks smaller
1292 * then *logical, but it can be that extent is the
1293 * first one in the file */
1294
1295 ex = path[depth].p_ext;
1296 ee_len = ext4_ext_get_actual_len(ex);
1297 if (*logical < le32_to_cpu(ex->ee_block)) {
1298 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1299 EXT4_ERROR_INODE(inode,
1300 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1301 *logical, le32_to_cpu(ex->ee_block));
1302 return -EIO;
1303 }
1304 while (--depth >= 0) {
1305 ix = path[depth].p_idx;
1306 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1307 EXT4_ERROR_INODE(inode,
1308 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1309 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1310 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1311 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1312 depth);
1313 return -EIO;
1314 }
1315 }
1316 return 0;
1317 }
1318
1319 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1320 EXT4_ERROR_INODE(inode,
1321 "logical %d < ee_block %d + ee_len %d!",
1322 *logical, le32_to_cpu(ex->ee_block), ee_len);
1323 return -EIO;
1324 }
1325
1326 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1327 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1328 return 0;
1329 }
1330
1331 /*
1332 * search the closest allocated block to the right for *logical
1333 * and returns it at @logical + it's physical address at @phys
1334 * if *logical is the largest allocated block, the function
1335 * returns 0 at @phys
1336 * return value contains 0 (success) or error code
1337 */
1338 static int ext4_ext_search_right(struct inode *inode,
1339 struct ext4_ext_path *path,
1340 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1341 struct ext4_extent **ret_ex)
1342 {
1343 struct buffer_head *bh = NULL;
1344 struct ext4_extent_header *eh;
1345 struct ext4_extent_idx *ix;
1346 struct ext4_extent *ex;
1347 ext4_fsblk_t block;
1348 int depth; /* Note, NOT eh_depth; depth from top of tree */
1349 int ee_len;
1350
1351 if (unlikely(path == NULL)) {
1352 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1353 return -EIO;
1354 }
1355 depth = path->p_depth;
1356 *phys = 0;
1357
1358 if (depth == 0 && path->p_ext == NULL)
1359 return 0;
1360
1361 /* usually extent in the path covers blocks smaller
1362 * then *logical, but it can be that extent is the
1363 * first one in the file */
1364
1365 ex = path[depth].p_ext;
1366 ee_len = ext4_ext_get_actual_len(ex);
1367 if (*logical < le32_to_cpu(ex->ee_block)) {
1368 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1369 EXT4_ERROR_INODE(inode,
1370 "first_extent(path[%d].p_hdr) != ex",
1371 depth);
1372 return -EIO;
1373 }
1374 while (--depth >= 0) {
1375 ix = path[depth].p_idx;
1376 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1377 EXT4_ERROR_INODE(inode,
1378 "ix != EXT_FIRST_INDEX *logical %d!",
1379 *logical);
1380 return -EIO;
1381 }
1382 }
1383 goto found_extent;
1384 }
1385
1386 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1387 EXT4_ERROR_INODE(inode,
1388 "logical %d < ee_block %d + ee_len %d!",
1389 *logical, le32_to_cpu(ex->ee_block), ee_len);
1390 return -EIO;
1391 }
1392
1393 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1394 /* next allocated block in this leaf */
1395 ex++;
1396 goto found_extent;
1397 }
1398
1399 /* go up and search for index to the right */
1400 while (--depth >= 0) {
1401 ix = path[depth].p_idx;
1402 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1403 goto got_index;
1404 }
1405
1406 /* we've gone up to the root and found no index to the right */
1407 return 0;
1408
1409 got_index:
1410 /* we've found index to the right, let's
1411 * follow it and find the closest allocated
1412 * block to the right */
1413 ix++;
1414 block = ext4_idx_pblock(ix);
1415 while (++depth < path->p_depth) {
1416 bh = sb_bread(inode->i_sb, block);
1417 if (bh == NULL)
1418 return -EIO;
1419 eh = ext_block_hdr(bh);
1420 /* subtract from p_depth to get proper eh_depth */
1421 if (ext4_ext_check_block(inode, eh,
1422 path->p_depth - depth, bh)) {
1423 put_bh(bh);
1424 return -EIO;
1425 }
1426 ix = EXT_FIRST_INDEX(eh);
1427 block = ext4_idx_pblock(ix);
1428 put_bh(bh);
1429 }
1430
1431 bh = sb_bread(inode->i_sb, block);
1432 if (bh == NULL)
1433 return -EIO;
1434 eh = ext_block_hdr(bh);
1435 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1436 put_bh(bh);
1437 return -EIO;
1438 }
1439 ex = EXT_FIRST_EXTENT(eh);
1440 found_extent:
1441 *logical = le32_to_cpu(ex->ee_block);
1442 *phys = ext4_ext_pblock(ex);
1443 *ret_ex = ex;
1444 if (bh)
1445 put_bh(bh);
1446 return 0;
1447 }
1448
1449 /*
1450 * ext4_ext_next_allocated_block:
1451 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1452 * NOTE: it considers block number from index entry as
1453 * allocated block. Thus, index entries have to be consistent
1454 * with leaves.
1455 */
1456 static ext4_lblk_t
1457 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1458 {
1459 int depth;
1460
1461 BUG_ON(path == NULL);
1462 depth = path->p_depth;
1463
1464 if (depth == 0 && path->p_ext == NULL)
1465 return EXT_MAX_BLOCKS;
1466
1467 while (depth >= 0) {
1468 if (depth == path->p_depth) {
1469 /* leaf */
1470 if (path[depth].p_ext &&
1471 path[depth].p_ext !=
1472 EXT_LAST_EXTENT(path[depth].p_hdr))
1473 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1474 } else {
1475 /* index */
1476 if (path[depth].p_idx !=
1477 EXT_LAST_INDEX(path[depth].p_hdr))
1478 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1479 }
1480 depth--;
1481 }
1482
1483 return EXT_MAX_BLOCKS;
1484 }
1485
1486 /*
1487 * ext4_ext_next_leaf_block:
1488 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1489 */
1490 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1491 {
1492 int depth;
1493
1494 BUG_ON(path == NULL);
1495 depth = path->p_depth;
1496
1497 /* zero-tree has no leaf blocks at all */
1498 if (depth == 0)
1499 return EXT_MAX_BLOCKS;
1500
1501 /* go to index block */
1502 depth--;
1503
1504 while (depth >= 0) {
1505 if (path[depth].p_idx !=
1506 EXT_LAST_INDEX(path[depth].p_hdr))
1507 return (ext4_lblk_t)
1508 le32_to_cpu(path[depth].p_idx[1].ei_block);
1509 depth--;
1510 }
1511
1512 return EXT_MAX_BLOCKS;
1513 }
1514
1515 /*
1516 * ext4_ext_correct_indexes:
1517 * if leaf gets modified and modified extent is first in the leaf,
1518 * then we have to correct all indexes above.
1519 * TODO: do we need to correct tree in all cases?
1520 */
1521 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1522 struct ext4_ext_path *path)
1523 {
1524 struct ext4_extent_header *eh;
1525 int depth = ext_depth(inode);
1526 struct ext4_extent *ex;
1527 __le32 border;
1528 int k, err = 0;
1529
1530 eh = path[depth].p_hdr;
1531 ex = path[depth].p_ext;
1532
1533 if (unlikely(ex == NULL || eh == NULL)) {
1534 EXT4_ERROR_INODE(inode,
1535 "ex %p == NULL or eh %p == NULL", ex, eh);
1536 return -EIO;
1537 }
1538
1539 if (depth == 0) {
1540 /* there is no tree at all */
1541 return 0;
1542 }
1543
1544 if (ex != EXT_FIRST_EXTENT(eh)) {
1545 /* we correct tree if first leaf got modified only */
1546 return 0;
1547 }
1548
1549 /*
1550 * TODO: we need correction if border is smaller than current one
1551 */
1552 k = depth - 1;
1553 border = path[depth].p_ext->ee_block;
1554 err = ext4_ext_get_access(handle, inode, path + k);
1555 if (err)
1556 return err;
1557 path[k].p_idx->ei_block = border;
1558 err = ext4_ext_dirty(handle, inode, path + k);
1559 if (err)
1560 return err;
1561
1562 while (k--) {
1563 /* change all left-side indexes */
1564 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1565 break;
1566 err = ext4_ext_get_access(handle, inode, path + k);
1567 if (err)
1568 break;
1569 path[k].p_idx->ei_block = border;
1570 err = ext4_ext_dirty(handle, inode, path + k);
1571 if (err)
1572 break;
1573 }
1574
1575 return err;
1576 }
1577
1578 int
1579 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1580 struct ext4_extent *ex2)
1581 {
1582 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1583
1584 /*
1585 * Make sure that either both extents are uninitialized, or
1586 * both are _not_.
1587 */
1588 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1589 return 0;
1590
1591 if (ext4_ext_is_uninitialized(ex1))
1592 max_len = EXT_UNINIT_MAX_LEN;
1593 else
1594 max_len = EXT_INIT_MAX_LEN;
1595
1596 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1597 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1598
1599 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1600 le32_to_cpu(ex2->ee_block))
1601 return 0;
1602
1603 /*
1604 * To allow future support for preallocated extents to be added
1605 * as an RO_COMPAT feature, refuse to merge to extents if
1606 * this can result in the top bit of ee_len being set.
1607 */
1608 if (ext1_ee_len + ext2_ee_len > max_len)
1609 return 0;
1610 #ifdef AGGRESSIVE_TEST
1611 if (ext1_ee_len >= 4)
1612 return 0;
1613 #endif
1614
1615 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1616 return 1;
1617 return 0;
1618 }
1619
1620 /*
1621 * This function tries to merge the "ex" extent to the next extent in the tree.
1622 * It always tries to merge towards right. If you want to merge towards
1623 * left, pass "ex - 1" as argument instead of "ex".
1624 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1625 * 1 if they got merged.
1626 */
1627 static int ext4_ext_try_to_merge_right(struct inode *inode,
1628 struct ext4_ext_path *path,
1629 struct ext4_extent *ex)
1630 {
1631 struct ext4_extent_header *eh;
1632 unsigned int depth, len;
1633 int merge_done = 0;
1634 int uninitialized = 0;
1635
1636 depth = ext_depth(inode);
1637 BUG_ON(path[depth].p_hdr == NULL);
1638 eh = path[depth].p_hdr;
1639
1640 while (ex < EXT_LAST_EXTENT(eh)) {
1641 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1642 break;
1643 /* merge with next extent! */
1644 if (ext4_ext_is_uninitialized(ex))
1645 uninitialized = 1;
1646 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1647 + ext4_ext_get_actual_len(ex + 1));
1648 if (uninitialized)
1649 ext4_ext_mark_uninitialized(ex);
1650
1651 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1652 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1653 * sizeof(struct ext4_extent);
1654 memmove(ex + 1, ex + 2, len);
1655 }
1656 le16_add_cpu(&eh->eh_entries, -1);
1657 merge_done = 1;
1658 WARN_ON(eh->eh_entries == 0);
1659 if (!eh->eh_entries)
1660 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1661 }
1662
1663 return merge_done;
1664 }
1665
1666 /*
1667 * This function does a very simple check to see if we can collapse
1668 * an extent tree with a single extent tree leaf block into the inode.
1669 */
1670 static void ext4_ext_try_to_merge_up(handle_t *handle,
1671 struct inode *inode,
1672 struct ext4_ext_path *path)
1673 {
1674 size_t s;
1675 unsigned max_root = ext4_ext_space_root(inode, 0);
1676 ext4_fsblk_t blk;
1677
1678 if ((path[0].p_depth != 1) ||
1679 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1680 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1681 return;
1682
1683 /*
1684 * We need to modify the block allocation bitmap and the block
1685 * group descriptor to release the extent tree block. If we
1686 * can't get the journal credits, give up.
1687 */
1688 if (ext4_journal_extend(handle, 2))
1689 return;
1690
1691 /*
1692 * Copy the extent data up to the inode
1693 */
1694 blk = ext4_idx_pblock(path[0].p_idx);
1695 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1696 sizeof(struct ext4_extent_idx);
1697 s += sizeof(struct ext4_extent_header);
1698
1699 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1700 path[0].p_depth = 0;
1701 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1702 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1703 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1704
1705 brelse(path[1].p_bh);
1706 ext4_free_blocks(handle, inode, NULL, blk, 1,
1707 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1708 }
1709
1710 /*
1711 * This function tries to merge the @ex extent to neighbours in the tree.
1712 * return 1 if merge left else 0.
1713 */
1714 static void ext4_ext_try_to_merge(handle_t *handle,
1715 struct inode *inode,
1716 struct ext4_ext_path *path,
1717 struct ext4_extent *ex) {
1718 struct ext4_extent_header *eh;
1719 unsigned int depth;
1720 int merge_done = 0;
1721
1722 depth = ext_depth(inode);
1723 BUG_ON(path[depth].p_hdr == NULL);
1724 eh = path[depth].p_hdr;
1725
1726 if (ex > EXT_FIRST_EXTENT(eh))
1727 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1728
1729 if (!merge_done)
1730 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1731
1732 ext4_ext_try_to_merge_up(handle, inode, path);
1733 }
1734
1735 /*
1736 * check if a portion of the "newext" extent overlaps with an
1737 * existing extent.
1738 *
1739 * If there is an overlap discovered, it updates the length of the newext
1740 * such that there will be no overlap, and then returns 1.
1741 * If there is no overlap found, it returns 0.
1742 */
1743 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1744 struct inode *inode,
1745 struct ext4_extent *newext,
1746 struct ext4_ext_path *path)
1747 {
1748 ext4_lblk_t b1, b2;
1749 unsigned int depth, len1;
1750 unsigned int ret = 0;
1751
1752 b1 = le32_to_cpu(newext->ee_block);
1753 len1 = ext4_ext_get_actual_len(newext);
1754 depth = ext_depth(inode);
1755 if (!path[depth].p_ext)
1756 goto out;
1757 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1758 b2 &= ~(sbi->s_cluster_ratio - 1);
1759
1760 /*
1761 * get the next allocated block if the extent in the path
1762 * is before the requested block(s)
1763 */
1764 if (b2 < b1) {
1765 b2 = ext4_ext_next_allocated_block(path);
1766 if (b2 == EXT_MAX_BLOCKS)
1767 goto out;
1768 b2 &= ~(sbi->s_cluster_ratio - 1);
1769 }
1770
1771 /* check for wrap through zero on extent logical start block*/
1772 if (b1 + len1 < b1) {
1773 len1 = EXT_MAX_BLOCKS - b1;
1774 newext->ee_len = cpu_to_le16(len1);
1775 ret = 1;
1776 }
1777
1778 /* check for overlap */
1779 if (b1 + len1 > b2) {
1780 newext->ee_len = cpu_to_le16(b2 - b1);
1781 ret = 1;
1782 }
1783 out:
1784 return ret;
1785 }
1786
1787 /*
1788 * ext4_ext_insert_extent:
1789 * tries to merge requsted extent into the existing extent or
1790 * inserts requested extent as new one into the tree,
1791 * creating new leaf in the no-space case.
1792 */
1793 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1794 struct ext4_ext_path *path,
1795 struct ext4_extent *newext, int flag)
1796 {
1797 struct ext4_extent_header *eh;
1798 struct ext4_extent *ex, *fex;
1799 struct ext4_extent *nearex; /* nearest extent */
1800 struct ext4_ext_path *npath = NULL;
1801 int depth, len, err;
1802 ext4_lblk_t next;
1803 unsigned uninitialized = 0;
1804 int flags = 0;
1805
1806 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1807 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1808 return -EIO;
1809 }
1810 depth = ext_depth(inode);
1811 ex = path[depth].p_ext;
1812 if (unlikely(path[depth].p_hdr == NULL)) {
1813 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1814 return -EIO;
1815 }
1816
1817 /* try to insert block into found extent and return */
1818 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1819 && ext4_can_extents_be_merged(inode, ex, newext)) {
1820 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1821 ext4_ext_is_uninitialized(newext),
1822 ext4_ext_get_actual_len(newext),
1823 le32_to_cpu(ex->ee_block),
1824 ext4_ext_is_uninitialized(ex),
1825 ext4_ext_get_actual_len(ex),
1826 ext4_ext_pblock(ex));
1827 err = ext4_ext_get_access(handle, inode, path + depth);
1828 if (err)
1829 return err;
1830
1831 /*
1832 * ext4_can_extents_be_merged should have checked that either
1833 * both extents are uninitialized, or both aren't. Thus we
1834 * need to check only one of them here.
1835 */
1836 if (ext4_ext_is_uninitialized(ex))
1837 uninitialized = 1;
1838 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1839 + ext4_ext_get_actual_len(newext));
1840 if (uninitialized)
1841 ext4_ext_mark_uninitialized(ex);
1842 eh = path[depth].p_hdr;
1843 nearex = ex;
1844 goto merge;
1845 }
1846
1847 depth = ext_depth(inode);
1848 eh = path[depth].p_hdr;
1849 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1850 goto has_space;
1851
1852 /* probably next leaf has space for us? */
1853 fex = EXT_LAST_EXTENT(eh);
1854 next = EXT_MAX_BLOCKS;
1855 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1856 next = ext4_ext_next_leaf_block(path);
1857 if (next != EXT_MAX_BLOCKS) {
1858 ext_debug("next leaf block - %u\n", next);
1859 BUG_ON(npath != NULL);
1860 npath = ext4_ext_find_extent(inode, next, NULL);
1861 if (IS_ERR(npath))
1862 return PTR_ERR(npath);
1863 BUG_ON(npath->p_depth != path->p_depth);
1864 eh = npath[depth].p_hdr;
1865 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1866 ext_debug("next leaf isn't full(%d)\n",
1867 le16_to_cpu(eh->eh_entries));
1868 path = npath;
1869 goto has_space;
1870 }
1871 ext_debug("next leaf has no free space(%d,%d)\n",
1872 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1873 }
1874
1875 /*
1876 * There is no free space in the found leaf.
1877 * We're gonna add a new leaf in the tree.
1878 */
1879 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1880 flags = EXT4_MB_USE_ROOT_BLOCKS;
1881 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1882 if (err)
1883 goto cleanup;
1884 depth = ext_depth(inode);
1885 eh = path[depth].p_hdr;
1886
1887 has_space:
1888 nearex = path[depth].p_ext;
1889
1890 err = ext4_ext_get_access(handle, inode, path + depth);
1891 if (err)
1892 goto cleanup;
1893
1894 if (!nearex) {
1895 /* there is no extent in this leaf, create first one */
1896 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1897 le32_to_cpu(newext->ee_block),
1898 ext4_ext_pblock(newext),
1899 ext4_ext_is_uninitialized(newext),
1900 ext4_ext_get_actual_len(newext));
1901 nearex = EXT_FIRST_EXTENT(eh);
1902 } else {
1903 if (le32_to_cpu(newext->ee_block)
1904 > le32_to_cpu(nearex->ee_block)) {
1905 /* Insert after */
1906 ext_debug("insert %u:%llu:[%d]%d before: "
1907 "nearest %p\n",
1908 le32_to_cpu(newext->ee_block),
1909 ext4_ext_pblock(newext),
1910 ext4_ext_is_uninitialized(newext),
1911 ext4_ext_get_actual_len(newext),
1912 nearex);
1913 nearex++;
1914 } else {
1915 /* Insert before */
1916 BUG_ON(newext->ee_block == nearex->ee_block);
1917 ext_debug("insert %u:%llu:[%d]%d after: "
1918 "nearest %p\n",
1919 le32_to_cpu(newext->ee_block),
1920 ext4_ext_pblock(newext),
1921 ext4_ext_is_uninitialized(newext),
1922 ext4_ext_get_actual_len(newext),
1923 nearex);
1924 }
1925 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1926 if (len > 0) {
1927 ext_debug("insert %u:%llu:[%d]%d: "
1928 "move %d extents from 0x%p to 0x%p\n",
1929 le32_to_cpu(newext->ee_block),
1930 ext4_ext_pblock(newext),
1931 ext4_ext_is_uninitialized(newext),
1932 ext4_ext_get_actual_len(newext),
1933 len, nearex, nearex + 1);
1934 memmove(nearex + 1, nearex,
1935 len * sizeof(struct ext4_extent));
1936 }
1937 }
1938
1939 le16_add_cpu(&eh->eh_entries, 1);
1940 path[depth].p_ext = nearex;
1941 nearex->ee_block = newext->ee_block;
1942 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1943 nearex->ee_len = newext->ee_len;
1944
1945 merge:
1946 /* try to merge extents */
1947 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1948 ext4_ext_try_to_merge(handle, inode, path, nearex);
1949
1950
1951 /* time to correct all indexes above */
1952 err = ext4_ext_correct_indexes(handle, inode, path);
1953 if (err)
1954 goto cleanup;
1955
1956 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1957
1958 cleanup:
1959 if (npath) {
1960 ext4_ext_drop_refs(npath);
1961 kfree(npath);
1962 }
1963 ext4_ext_invalidate_cache(inode);
1964 return err;
1965 }
1966
1967 static int ext4_fill_fiemap_extents(struct inode *inode,
1968 ext4_lblk_t block, ext4_lblk_t num,
1969 struct fiemap_extent_info *fieinfo)
1970 {
1971 struct ext4_ext_path *path = NULL;
1972 struct ext4_ext_cache newex;
1973 struct ext4_extent *ex;
1974 ext4_lblk_t next, next_del, start = 0, end = 0;
1975 ext4_lblk_t last = block + num;
1976 int exists, depth = 0, err = 0;
1977 unsigned int flags = 0;
1978 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1979
1980 while (block < last && block != EXT_MAX_BLOCKS) {
1981 num = last - block;
1982 /* find extent for this block */
1983 down_read(&EXT4_I(inode)->i_data_sem);
1984
1985 if (path && ext_depth(inode) != depth) {
1986 /* depth was changed. we have to realloc path */
1987 kfree(path);
1988 path = NULL;
1989 }
1990
1991 path = ext4_ext_find_extent(inode, block, path);
1992 if (IS_ERR(path)) {
1993 up_read(&EXT4_I(inode)->i_data_sem);
1994 err = PTR_ERR(path);
1995 path = NULL;
1996 break;
1997 }
1998
1999 depth = ext_depth(inode);
2000 if (unlikely(path[depth].p_hdr == NULL)) {
2001 up_read(&EXT4_I(inode)->i_data_sem);
2002 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2003 err = -EIO;
2004 break;
2005 }
2006 ex = path[depth].p_ext;
2007 next = ext4_ext_next_allocated_block(path);
2008 ext4_ext_drop_refs(path);
2009
2010 flags = 0;
2011 exists = 0;
2012 if (!ex) {
2013 /* there is no extent yet, so try to allocate
2014 * all requested space */
2015 start = block;
2016 end = block + num;
2017 } else if (le32_to_cpu(ex->ee_block) > block) {
2018 /* need to allocate space before found extent */
2019 start = block;
2020 end = le32_to_cpu(ex->ee_block);
2021 if (block + num < end)
2022 end = block + num;
2023 } else if (block >= le32_to_cpu(ex->ee_block)
2024 + ext4_ext_get_actual_len(ex)) {
2025 /* need to allocate space after found extent */
2026 start = block;
2027 end = block + num;
2028 if (end >= next)
2029 end = next;
2030 } else if (block >= le32_to_cpu(ex->ee_block)) {
2031 /*
2032 * some part of requested space is covered
2033 * by found extent
2034 */
2035 start = block;
2036 end = le32_to_cpu(ex->ee_block)
2037 + ext4_ext_get_actual_len(ex);
2038 if (block + num < end)
2039 end = block + num;
2040 exists = 1;
2041 } else {
2042 BUG();
2043 }
2044 BUG_ON(end <= start);
2045
2046 if (!exists) {
2047 newex.ec_block = start;
2048 newex.ec_len = end - start;
2049 newex.ec_start = 0;
2050 } else {
2051 newex.ec_block = le32_to_cpu(ex->ee_block);
2052 newex.ec_len = ext4_ext_get_actual_len(ex);
2053 newex.ec_start = ext4_ext_pblock(ex);
2054 if (ext4_ext_is_uninitialized(ex))
2055 flags |= FIEMAP_EXTENT_UNWRITTEN;
2056 }
2057
2058 /*
2059 * Find delayed extent and update newex accordingly. We call
2060 * it even in !exists case to find out whether newex is the
2061 * last existing extent or not.
2062 */
2063 next_del = ext4_find_delayed_extent(inode, &newex);
2064 if (!exists && next_del) {
2065 exists = 1;
2066 flags |= FIEMAP_EXTENT_DELALLOC;
2067 }
2068 up_read(&EXT4_I(inode)->i_data_sem);
2069
2070 if (unlikely(newex.ec_len == 0)) {
2071 EXT4_ERROR_INODE(inode, "newex.ec_len == 0");
2072 err = -EIO;
2073 break;
2074 }
2075
2076 /* This is possible iff next == next_del == EXT_MAX_BLOCKS */
2077 if (next == next_del) {
2078 flags |= FIEMAP_EXTENT_LAST;
2079 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2080 next != EXT_MAX_BLOCKS)) {
2081 EXT4_ERROR_INODE(inode,
2082 "next extent == %u, next "
2083 "delalloc extent = %u",
2084 next, next_del);
2085 err = -EIO;
2086 break;
2087 }
2088 }
2089
2090 if (exists) {
2091 err = fiemap_fill_next_extent(fieinfo,
2092 (__u64)newex.ec_block << blksize_bits,
2093 (__u64)newex.ec_start << blksize_bits,
2094 (__u64)newex.ec_len << blksize_bits,
2095 flags);
2096 if (err < 0)
2097 break;
2098 if (err == 1) {
2099 err = 0;
2100 break;
2101 }
2102 }
2103
2104 block = newex.ec_block + newex.ec_len;
2105 }
2106
2107 if (path) {
2108 ext4_ext_drop_refs(path);
2109 kfree(path);
2110 }
2111
2112 return err;
2113 }
2114
2115 static void
2116 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
2117 __u32 len, ext4_fsblk_t start)
2118 {
2119 struct ext4_ext_cache *cex;
2120 BUG_ON(len == 0);
2121 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2122 trace_ext4_ext_put_in_cache(inode, block, len, start);
2123 cex = &EXT4_I(inode)->i_cached_extent;
2124 cex->ec_block = block;
2125 cex->ec_len = len;
2126 cex->ec_start = start;
2127 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2128 }
2129
2130 /*
2131 * ext4_ext_put_gap_in_cache:
2132 * calculate boundaries of the gap that the requested block fits into
2133 * and cache this gap
2134 */
2135 static void
2136 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2137 ext4_lblk_t block)
2138 {
2139 int depth = ext_depth(inode);
2140 unsigned long len;
2141 ext4_lblk_t lblock;
2142 struct ext4_extent *ex;
2143
2144 ex = path[depth].p_ext;
2145 if (ex == NULL) {
2146 /* there is no extent yet, so gap is [0;-] */
2147 lblock = 0;
2148 len = EXT_MAX_BLOCKS;
2149 ext_debug("cache gap(whole file):");
2150 } else if (block < le32_to_cpu(ex->ee_block)) {
2151 lblock = block;
2152 len = le32_to_cpu(ex->ee_block) - block;
2153 ext_debug("cache gap(before): %u [%u:%u]",
2154 block,
2155 le32_to_cpu(ex->ee_block),
2156 ext4_ext_get_actual_len(ex));
2157 } else if (block >= le32_to_cpu(ex->ee_block)
2158 + ext4_ext_get_actual_len(ex)) {
2159 ext4_lblk_t next;
2160 lblock = le32_to_cpu(ex->ee_block)
2161 + ext4_ext_get_actual_len(ex);
2162
2163 next = ext4_ext_next_allocated_block(path);
2164 ext_debug("cache gap(after): [%u:%u] %u",
2165 le32_to_cpu(ex->ee_block),
2166 ext4_ext_get_actual_len(ex),
2167 block);
2168 BUG_ON(next == lblock);
2169 len = next - lblock;
2170 } else {
2171 lblock = len = 0;
2172 BUG();
2173 }
2174
2175 ext_debug(" -> %u:%lu\n", lblock, len);
2176 ext4_ext_put_in_cache(inode, lblock, len, 0);
2177 }
2178
2179 /*
2180 * ext4_ext_in_cache()
2181 * Checks to see if the given block is in the cache.
2182 * If it is, the cached extent is stored in the given
2183 * cache extent pointer.
2184 *
2185 * @inode: The files inode
2186 * @block: The block to look for in the cache
2187 * @ex: Pointer where the cached extent will be stored
2188 * if it contains block
2189 *
2190 * Return 0 if cache is invalid; 1 if the cache is valid
2191 */
2192 static int
2193 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2194 struct ext4_extent *ex)
2195 {
2196 struct ext4_ext_cache *cex;
2197 struct ext4_sb_info *sbi;
2198 int ret = 0;
2199
2200 /*
2201 * We borrow i_block_reservation_lock to protect i_cached_extent
2202 */
2203 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2204 cex = &EXT4_I(inode)->i_cached_extent;
2205 sbi = EXT4_SB(inode->i_sb);
2206
2207 /* has cache valid data? */
2208 if (cex->ec_len == 0)
2209 goto errout;
2210
2211 if (in_range(block, cex->ec_block, cex->ec_len)) {
2212 ex->ee_block = cpu_to_le32(cex->ec_block);
2213 ext4_ext_store_pblock(ex, cex->ec_start);
2214 ex->ee_len = cpu_to_le16(cex->ec_len);
2215 ext_debug("%u cached by %u:%u:%llu\n",
2216 block,
2217 cex->ec_block, cex->ec_len, cex->ec_start);
2218 ret = 1;
2219 }
2220 errout:
2221 trace_ext4_ext_in_cache(inode, block, ret);
2222 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2223 return ret;
2224 }
2225
2226 /*
2227 * ext4_ext_rm_idx:
2228 * removes index from the index block.
2229 */
2230 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2231 struct ext4_ext_path *path)
2232 {
2233 int err;
2234 ext4_fsblk_t leaf;
2235
2236 /* free index block */
2237 path--;
2238 leaf = ext4_idx_pblock(path->p_idx);
2239 if (unlikely(path->p_hdr->eh_entries == 0)) {
2240 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2241 return -EIO;
2242 }
2243 err = ext4_ext_get_access(handle, inode, path);
2244 if (err)
2245 return err;
2246
2247 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2248 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2249 len *= sizeof(struct ext4_extent_idx);
2250 memmove(path->p_idx, path->p_idx + 1, len);
2251 }
2252
2253 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2254 err = ext4_ext_dirty(handle, inode, path);
2255 if (err)
2256 return err;
2257 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2258 trace_ext4_ext_rm_idx(inode, leaf);
2259
2260 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2261 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2262 return err;
2263 }
2264
2265 /*
2266 * ext4_ext_calc_credits_for_single_extent:
2267 * This routine returns max. credits that needed to insert an extent
2268 * to the extent tree.
2269 * When pass the actual path, the caller should calculate credits
2270 * under i_data_sem.
2271 */
2272 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2273 struct ext4_ext_path *path)
2274 {
2275 if (path) {
2276 int depth = ext_depth(inode);
2277 int ret = 0;
2278
2279 /* probably there is space in leaf? */
2280 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2281 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2282
2283 /*
2284 * There are some space in the leaf tree, no
2285 * need to account for leaf block credit
2286 *
2287 * bitmaps and block group descriptor blocks
2288 * and other metadata blocks still need to be
2289 * accounted.
2290 */
2291 /* 1 bitmap, 1 block group descriptor */
2292 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2293 return ret;
2294 }
2295 }
2296
2297 return ext4_chunk_trans_blocks(inode, nrblocks);
2298 }
2299
2300 /*
2301 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2302 *
2303 * if nrblocks are fit in a single extent (chunk flag is 1), then
2304 * in the worse case, each tree level index/leaf need to be changed
2305 * if the tree split due to insert a new extent, then the old tree
2306 * index/leaf need to be updated too
2307 *
2308 * If the nrblocks are discontiguous, they could cause
2309 * the whole tree split more than once, but this is really rare.
2310 */
2311 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2312 {
2313 int index;
2314 int depth;
2315
2316 /* If we are converting the inline data, only one is needed here. */
2317 if (ext4_has_inline_data(inode))
2318 return 1;
2319
2320 depth = ext_depth(inode);
2321
2322 if (chunk)
2323 index = depth * 2;
2324 else
2325 index = depth * 3;
2326
2327 return index;
2328 }
2329
2330 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2331 struct ext4_extent *ex,
2332 ext4_fsblk_t *partial_cluster,
2333 ext4_lblk_t from, ext4_lblk_t to)
2334 {
2335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2336 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2337 ext4_fsblk_t pblk;
2338 int flags = 0;
2339
2340 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2341 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2342 else if (ext4_should_journal_data(inode))
2343 flags |= EXT4_FREE_BLOCKS_FORGET;
2344
2345 /*
2346 * For bigalloc file systems, we never free a partial cluster
2347 * at the beginning of the extent. Instead, we make a note
2348 * that we tried freeing the cluster, and check to see if we
2349 * need to free it on a subsequent call to ext4_remove_blocks,
2350 * or at the end of the ext4_truncate() operation.
2351 */
2352 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2353
2354 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2355 /*
2356 * If we have a partial cluster, and it's different from the
2357 * cluster of the last block, we need to explicitly free the
2358 * partial cluster here.
2359 */
2360 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2361 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2362 ext4_free_blocks(handle, inode, NULL,
2363 EXT4_C2B(sbi, *partial_cluster),
2364 sbi->s_cluster_ratio, flags);
2365 *partial_cluster = 0;
2366 }
2367
2368 #ifdef EXTENTS_STATS
2369 {
2370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2371 spin_lock(&sbi->s_ext_stats_lock);
2372 sbi->s_ext_blocks += ee_len;
2373 sbi->s_ext_extents++;
2374 if (ee_len < sbi->s_ext_min)
2375 sbi->s_ext_min = ee_len;
2376 if (ee_len > sbi->s_ext_max)
2377 sbi->s_ext_max = ee_len;
2378 if (ext_depth(inode) > sbi->s_depth_max)
2379 sbi->s_depth_max = ext_depth(inode);
2380 spin_unlock(&sbi->s_ext_stats_lock);
2381 }
2382 #endif
2383 if (from >= le32_to_cpu(ex->ee_block)
2384 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2385 /* tail removal */
2386 ext4_lblk_t num;
2387
2388 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2389 pblk = ext4_ext_pblock(ex) + ee_len - num;
2390 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2391 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2392 /*
2393 * If the block range to be freed didn't start at the
2394 * beginning of a cluster, and we removed the entire
2395 * extent, save the partial cluster here, since we
2396 * might need to delete if we determine that the
2397 * truncate operation has removed all of the blocks in
2398 * the cluster.
2399 */
2400 if (pblk & (sbi->s_cluster_ratio - 1) &&
2401 (ee_len == num))
2402 *partial_cluster = EXT4_B2C(sbi, pblk);
2403 else
2404 *partial_cluster = 0;
2405 } else if (from == le32_to_cpu(ex->ee_block)
2406 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2407 /* head removal */
2408 ext4_lblk_t num;
2409 ext4_fsblk_t start;
2410
2411 num = to - from;
2412 start = ext4_ext_pblock(ex);
2413
2414 ext_debug("free first %u blocks starting %llu\n", num, start);
2415 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2416
2417 } else {
2418 printk(KERN_INFO "strange request: removal(2) "
2419 "%u-%u from %u:%u\n",
2420 from, to, le32_to_cpu(ex->ee_block), ee_len);
2421 }
2422 return 0;
2423 }
2424
2425
2426 /*
2427 * ext4_ext_rm_leaf() Removes the extents associated with the
2428 * blocks appearing between "start" and "end", and splits the extents
2429 * if "start" and "end" appear in the same extent
2430 *
2431 * @handle: The journal handle
2432 * @inode: The files inode
2433 * @path: The path to the leaf
2434 * @start: The first block to remove
2435 * @end: The last block to remove
2436 */
2437 static int
2438 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2439 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2440 ext4_lblk_t start, ext4_lblk_t end)
2441 {
2442 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2443 int err = 0, correct_index = 0;
2444 int depth = ext_depth(inode), credits;
2445 struct ext4_extent_header *eh;
2446 ext4_lblk_t a, b;
2447 unsigned num;
2448 ext4_lblk_t ex_ee_block;
2449 unsigned short ex_ee_len;
2450 unsigned uninitialized = 0;
2451 struct ext4_extent *ex;
2452
2453 /* the header must be checked already in ext4_ext_remove_space() */
2454 ext_debug("truncate since %u in leaf to %u\n", start, end);
2455 if (!path[depth].p_hdr)
2456 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2457 eh = path[depth].p_hdr;
2458 if (unlikely(path[depth].p_hdr == NULL)) {
2459 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2460 return -EIO;
2461 }
2462 /* find where to start removing */
2463 ex = EXT_LAST_EXTENT(eh);
2464
2465 ex_ee_block = le32_to_cpu(ex->ee_block);
2466 ex_ee_len = ext4_ext_get_actual_len(ex);
2467
2468 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2469
2470 while (ex >= EXT_FIRST_EXTENT(eh) &&
2471 ex_ee_block + ex_ee_len > start) {
2472
2473 if (ext4_ext_is_uninitialized(ex))
2474 uninitialized = 1;
2475 else
2476 uninitialized = 0;
2477
2478 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2479 uninitialized, ex_ee_len);
2480 path[depth].p_ext = ex;
2481
2482 a = ex_ee_block > start ? ex_ee_block : start;
2483 b = ex_ee_block+ex_ee_len - 1 < end ?
2484 ex_ee_block+ex_ee_len - 1 : end;
2485
2486 ext_debug(" border %u:%u\n", a, b);
2487
2488 /* If this extent is beyond the end of the hole, skip it */
2489 if (end < ex_ee_block) {
2490 ex--;
2491 ex_ee_block = le32_to_cpu(ex->ee_block);
2492 ex_ee_len = ext4_ext_get_actual_len(ex);
2493 continue;
2494 } else if (b != ex_ee_block + ex_ee_len - 1) {
2495 EXT4_ERROR_INODE(inode,
2496 "can not handle truncate %u:%u "
2497 "on extent %u:%u",
2498 start, end, ex_ee_block,
2499 ex_ee_block + ex_ee_len - 1);
2500 err = -EIO;
2501 goto out;
2502 } else if (a != ex_ee_block) {
2503 /* remove tail of the extent */
2504 num = a - ex_ee_block;
2505 } else {
2506 /* remove whole extent: excellent! */
2507 num = 0;
2508 }
2509 /*
2510 * 3 for leaf, sb, and inode plus 2 (bmap and group
2511 * descriptor) for each block group; assume two block
2512 * groups plus ex_ee_len/blocks_per_block_group for
2513 * the worst case
2514 */
2515 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2516 if (ex == EXT_FIRST_EXTENT(eh)) {
2517 correct_index = 1;
2518 credits += (ext_depth(inode)) + 1;
2519 }
2520 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2521
2522 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2523 if (err)
2524 goto out;
2525
2526 err = ext4_ext_get_access(handle, inode, path + depth);
2527 if (err)
2528 goto out;
2529
2530 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2531 a, b);
2532 if (err)
2533 goto out;
2534
2535 if (num == 0)
2536 /* this extent is removed; mark slot entirely unused */
2537 ext4_ext_store_pblock(ex, 0);
2538
2539 ex->ee_len = cpu_to_le16(num);
2540 /*
2541 * Do not mark uninitialized if all the blocks in the
2542 * extent have been removed.
2543 */
2544 if (uninitialized && num)
2545 ext4_ext_mark_uninitialized(ex);
2546 /*
2547 * If the extent was completely released,
2548 * we need to remove it from the leaf
2549 */
2550 if (num == 0) {
2551 if (end != EXT_MAX_BLOCKS - 1) {
2552 /*
2553 * For hole punching, we need to scoot all the
2554 * extents up when an extent is removed so that
2555 * we dont have blank extents in the middle
2556 */
2557 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2558 sizeof(struct ext4_extent));
2559
2560 /* Now get rid of the one at the end */
2561 memset(EXT_LAST_EXTENT(eh), 0,
2562 sizeof(struct ext4_extent));
2563 }
2564 le16_add_cpu(&eh->eh_entries, -1);
2565 } else
2566 *partial_cluster = 0;
2567
2568 err = ext4_ext_dirty(handle, inode, path + depth);
2569 if (err)
2570 goto out;
2571
2572 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2573 ext4_ext_pblock(ex));
2574 ex--;
2575 ex_ee_block = le32_to_cpu(ex->ee_block);
2576 ex_ee_len = ext4_ext_get_actual_len(ex);
2577 }
2578
2579 if (correct_index && eh->eh_entries)
2580 err = ext4_ext_correct_indexes(handle, inode, path);
2581
2582 /*
2583 * If there is still a entry in the leaf node, check to see if
2584 * it references the partial cluster. This is the only place
2585 * where it could; if it doesn't, we can free the cluster.
2586 */
2587 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2588 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2589 *partial_cluster)) {
2590 int flags = EXT4_FREE_BLOCKS_FORGET;
2591
2592 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2593 flags |= EXT4_FREE_BLOCKS_METADATA;
2594
2595 ext4_free_blocks(handle, inode, NULL,
2596 EXT4_C2B(sbi, *partial_cluster),
2597 sbi->s_cluster_ratio, flags);
2598 *partial_cluster = 0;
2599 }
2600
2601 /* if this leaf is free, then we should
2602 * remove it from index block above */
2603 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2604 err = ext4_ext_rm_idx(handle, inode, path + depth);
2605
2606 out:
2607 return err;
2608 }
2609
2610 /*
2611 * ext4_ext_more_to_rm:
2612 * returns 1 if current index has to be freed (even partial)
2613 */
2614 static int
2615 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2616 {
2617 BUG_ON(path->p_idx == NULL);
2618
2619 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2620 return 0;
2621
2622 /*
2623 * if truncate on deeper level happened, it wasn't partial,
2624 * so we have to consider current index for truncation
2625 */
2626 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2627 return 0;
2628 return 1;
2629 }
2630
2631 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2632 ext4_lblk_t end)
2633 {
2634 struct super_block *sb = inode->i_sb;
2635 int depth = ext_depth(inode);
2636 struct ext4_ext_path *path = NULL;
2637 ext4_fsblk_t partial_cluster = 0;
2638 handle_t *handle;
2639 int i = 0, err = 0;
2640
2641 ext_debug("truncate since %u to %u\n", start, end);
2642
2643 /* probably first extent we're gonna free will be last in block */
2644 handle = ext4_journal_start(inode, depth + 1);
2645 if (IS_ERR(handle))
2646 return PTR_ERR(handle);
2647
2648 again:
2649 ext4_ext_invalidate_cache(inode);
2650
2651 trace_ext4_ext_remove_space(inode, start, depth);
2652
2653 /*
2654 * Check if we are removing extents inside the extent tree. If that
2655 * is the case, we are going to punch a hole inside the extent tree
2656 * so we have to check whether we need to split the extent covering
2657 * the last block to remove so we can easily remove the part of it
2658 * in ext4_ext_rm_leaf().
2659 */
2660 if (end < EXT_MAX_BLOCKS - 1) {
2661 struct ext4_extent *ex;
2662 ext4_lblk_t ee_block;
2663
2664 /* find extent for this block */
2665 path = ext4_ext_find_extent(inode, end, NULL);
2666 if (IS_ERR(path)) {
2667 ext4_journal_stop(handle);
2668 return PTR_ERR(path);
2669 }
2670 depth = ext_depth(inode);
2671 /* Leaf not may not exist only if inode has no blocks at all */
2672 ex = path[depth].p_ext;
2673 if (!ex) {
2674 if (depth) {
2675 EXT4_ERROR_INODE(inode,
2676 "path[%d].p_hdr == NULL",
2677 depth);
2678 err = -EIO;
2679 }
2680 goto out;
2681 }
2682
2683 ee_block = le32_to_cpu(ex->ee_block);
2684
2685 /*
2686 * See if the last block is inside the extent, if so split
2687 * the extent at 'end' block so we can easily remove the
2688 * tail of the first part of the split extent in
2689 * ext4_ext_rm_leaf().
2690 */
2691 if (end >= ee_block &&
2692 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2693 int split_flag = 0;
2694
2695 if (ext4_ext_is_uninitialized(ex))
2696 split_flag = EXT4_EXT_MARK_UNINIT1 |
2697 EXT4_EXT_MARK_UNINIT2;
2698
2699 /*
2700 * Split the extent in two so that 'end' is the last
2701 * block in the first new extent
2702 */
2703 err = ext4_split_extent_at(handle, inode, path,
2704 end + 1, split_flag,
2705 EXT4_GET_BLOCKS_PRE_IO |
2706 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2707
2708 if (err < 0)
2709 goto out;
2710 }
2711 }
2712 /*
2713 * We start scanning from right side, freeing all the blocks
2714 * after i_size and walking into the tree depth-wise.
2715 */
2716 depth = ext_depth(inode);
2717 if (path) {
2718 int k = i = depth;
2719 while (--k > 0)
2720 path[k].p_block =
2721 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2722 } else {
2723 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2724 GFP_NOFS);
2725 if (path == NULL) {
2726 ext4_journal_stop(handle);
2727 return -ENOMEM;
2728 }
2729 path[0].p_depth = depth;
2730 path[0].p_hdr = ext_inode_hdr(inode);
2731 i = 0;
2732
2733 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2734 err = -EIO;
2735 goto out;
2736 }
2737 }
2738 err = 0;
2739
2740 while (i >= 0 && err == 0) {
2741 if (i == depth) {
2742 /* this is leaf block */
2743 err = ext4_ext_rm_leaf(handle, inode, path,
2744 &partial_cluster, start,
2745 end);
2746 /* root level has p_bh == NULL, brelse() eats this */
2747 brelse(path[i].p_bh);
2748 path[i].p_bh = NULL;
2749 i--;
2750 continue;
2751 }
2752
2753 /* this is index block */
2754 if (!path[i].p_hdr) {
2755 ext_debug("initialize header\n");
2756 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2757 }
2758
2759 if (!path[i].p_idx) {
2760 /* this level hasn't been touched yet */
2761 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2762 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2763 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2764 path[i].p_hdr,
2765 le16_to_cpu(path[i].p_hdr->eh_entries));
2766 } else {
2767 /* we were already here, see at next index */
2768 path[i].p_idx--;
2769 }
2770
2771 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2772 i, EXT_FIRST_INDEX(path[i].p_hdr),
2773 path[i].p_idx);
2774 if (ext4_ext_more_to_rm(path + i)) {
2775 struct buffer_head *bh;
2776 /* go to the next level */
2777 ext_debug("move to level %d (block %llu)\n",
2778 i + 1, ext4_idx_pblock(path[i].p_idx));
2779 memset(path + i + 1, 0, sizeof(*path));
2780 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2781 if (!bh) {
2782 /* should we reset i_size? */
2783 err = -EIO;
2784 break;
2785 }
2786 if (WARN_ON(i + 1 > depth)) {
2787 err = -EIO;
2788 break;
2789 }
2790 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2791 depth - i - 1, bh)) {
2792 err = -EIO;
2793 break;
2794 }
2795 path[i + 1].p_bh = bh;
2796
2797 /* save actual number of indexes since this
2798 * number is changed at the next iteration */
2799 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2800 i++;
2801 } else {
2802 /* we finished processing this index, go up */
2803 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2804 /* index is empty, remove it;
2805 * handle must be already prepared by the
2806 * truncatei_leaf() */
2807 err = ext4_ext_rm_idx(handle, inode, path + i);
2808 }
2809 /* root level has p_bh == NULL, brelse() eats this */
2810 brelse(path[i].p_bh);
2811 path[i].p_bh = NULL;
2812 i--;
2813 ext_debug("return to level %d\n", i);
2814 }
2815 }
2816
2817 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2818 path->p_hdr->eh_entries);
2819
2820 /* If we still have something in the partial cluster and we have removed
2821 * even the first extent, then we should free the blocks in the partial
2822 * cluster as well. */
2823 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2824 int flags = EXT4_FREE_BLOCKS_FORGET;
2825
2826 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2827 flags |= EXT4_FREE_BLOCKS_METADATA;
2828
2829 ext4_free_blocks(handle, inode, NULL,
2830 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2831 EXT4_SB(sb)->s_cluster_ratio, flags);
2832 partial_cluster = 0;
2833 }
2834
2835 /* TODO: flexible tree reduction should be here */
2836 if (path->p_hdr->eh_entries == 0) {
2837 /*
2838 * truncate to zero freed all the tree,
2839 * so we need to correct eh_depth
2840 */
2841 err = ext4_ext_get_access(handle, inode, path);
2842 if (err == 0) {
2843 ext_inode_hdr(inode)->eh_depth = 0;
2844 ext_inode_hdr(inode)->eh_max =
2845 cpu_to_le16(ext4_ext_space_root(inode, 0));
2846 err = ext4_ext_dirty(handle, inode, path);
2847 }
2848 }
2849 out:
2850 ext4_ext_drop_refs(path);
2851 kfree(path);
2852 if (err == -EAGAIN) {
2853 path = NULL;
2854 goto again;
2855 }
2856 ext4_journal_stop(handle);
2857
2858 return err;
2859 }
2860
2861 /*
2862 * called at mount time
2863 */
2864 void ext4_ext_init(struct super_block *sb)
2865 {
2866 /*
2867 * possible initialization would be here
2868 */
2869
2870 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2871 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2872 printk(KERN_INFO "EXT4-fs: file extents enabled"
2873 #ifdef AGGRESSIVE_TEST
2874 ", aggressive tests"
2875 #endif
2876 #ifdef CHECK_BINSEARCH
2877 ", check binsearch"
2878 #endif
2879 #ifdef EXTENTS_STATS
2880 ", stats"
2881 #endif
2882 "\n");
2883 #endif
2884 #ifdef EXTENTS_STATS
2885 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2886 EXT4_SB(sb)->s_ext_min = 1 << 30;
2887 EXT4_SB(sb)->s_ext_max = 0;
2888 #endif
2889 }
2890 }
2891
2892 /*
2893 * called at umount time
2894 */
2895 void ext4_ext_release(struct super_block *sb)
2896 {
2897 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2898 return;
2899
2900 #ifdef EXTENTS_STATS
2901 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2902 struct ext4_sb_info *sbi = EXT4_SB(sb);
2903 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2904 sbi->s_ext_blocks, sbi->s_ext_extents,
2905 sbi->s_ext_blocks / sbi->s_ext_extents);
2906 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2907 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2908 }
2909 #endif
2910 }
2911
2912 /* FIXME!! we need to try to merge to left or right after zero-out */
2913 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2914 {
2915 ext4_fsblk_t ee_pblock;
2916 unsigned int ee_len;
2917 int ret;
2918
2919 ee_len = ext4_ext_get_actual_len(ex);
2920 ee_pblock = ext4_ext_pblock(ex);
2921
2922 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2923 if (ret > 0)
2924 ret = 0;
2925
2926 return ret;
2927 }
2928
2929 /*
2930 * ext4_split_extent_at() splits an extent at given block.
2931 *
2932 * @handle: the journal handle
2933 * @inode: the file inode
2934 * @path: the path to the extent
2935 * @split: the logical block where the extent is splitted.
2936 * @split_flags: indicates if the extent could be zeroout if split fails, and
2937 * the states(init or uninit) of new extents.
2938 * @flags: flags used to insert new extent to extent tree.
2939 *
2940 *
2941 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2942 * of which are deterimined by split_flag.
2943 *
2944 * There are two cases:
2945 * a> the extent are splitted into two extent.
2946 * b> split is not needed, and just mark the extent.
2947 *
2948 * return 0 on success.
2949 */
2950 static int ext4_split_extent_at(handle_t *handle,
2951 struct inode *inode,
2952 struct ext4_ext_path *path,
2953 ext4_lblk_t split,
2954 int split_flag,
2955 int flags)
2956 {
2957 ext4_fsblk_t newblock;
2958 ext4_lblk_t ee_block;
2959 struct ext4_extent *ex, newex, orig_ex;
2960 struct ext4_extent *ex2 = NULL;
2961 unsigned int ee_len, depth;
2962 int err = 0;
2963
2964 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2965 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2966
2967 ext_debug("ext4_split_extents_at: inode %lu, logical"
2968 "block %llu\n", inode->i_ino, (unsigned long long)split);
2969
2970 ext4_ext_show_leaf(inode, path);
2971
2972 depth = ext_depth(inode);
2973 ex = path[depth].p_ext;
2974 ee_block = le32_to_cpu(ex->ee_block);
2975 ee_len = ext4_ext_get_actual_len(ex);
2976 newblock = split - ee_block + ext4_ext_pblock(ex);
2977
2978 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2979
2980 err = ext4_ext_get_access(handle, inode, path + depth);
2981 if (err)
2982 goto out;
2983
2984 if (split == ee_block) {
2985 /*
2986 * case b: block @split is the block that the extent begins with
2987 * then we just change the state of the extent, and splitting
2988 * is not needed.
2989 */
2990 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2991 ext4_ext_mark_uninitialized(ex);
2992 else
2993 ext4_ext_mark_initialized(ex);
2994
2995 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2996 ext4_ext_try_to_merge(handle, inode, path, ex);
2997
2998 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2999 goto out;
3000 }
3001
3002 /* case a */
3003 memcpy(&orig_ex, ex, sizeof(orig_ex));
3004 ex->ee_len = cpu_to_le16(split - ee_block);
3005 if (split_flag & EXT4_EXT_MARK_UNINIT1)
3006 ext4_ext_mark_uninitialized(ex);
3007
3008 /*
3009 * path may lead to new leaf, not to original leaf any more
3010 * after ext4_ext_insert_extent() returns,
3011 */
3012 err = ext4_ext_dirty(handle, inode, path + depth);
3013 if (err)
3014 goto fix_extent_len;
3015
3016 ex2 = &newex;
3017 ex2->ee_block = cpu_to_le32(split);
3018 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3019 ext4_ext_store_pblock(ex2, newblock);
3020 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3021 ext4_ext_mark_uninitialized(ex2);
3022
3023 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3024 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3025 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3026 if (split_flag & EXT4_EXT_DATA_VALID1)
3027 err = ext4_ext_zeroout(inode, ex2);
3028 else
3029 err = ext4_ext_zeroout(inode, ex);
3030 } else
3031 err = ext4_ext_zeroout(inode, &orig_ex);
3032
3033 if (err)
3034 goto fix_extent_len;
3035 /* update the extent length and mark as initialized */
3036 ex->ee_len = cpu_to_le16(ee_len);
3037 ext4_ext_try_to_merge(handle, inode, path, ex);
3038 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3039 goto out;
3040 } else if (err)
3041 goto fix_extent_len;
3042
3043 out:
3044 ext4_ext_show_leaf(inode, path);
3045 return err;
3046
3047 fix_extent_len:
3048 ex->ee_len = orig_ex.ee_len;
3049 ext4_ext_dirty(handle, inode, path + depth);
3050 return err;
3051 }
3052
3053 /*
3054 * ext4_split_extents() splits an extent and mark extent which is covered
3055 * by @map as split_flags indicates
3056 *
3057 * It may result in splitting the extent into multiple extents (upto three)
3058 * There are three possibilities:
3059 * a> There is no split required
3060 * b> Splits in two extents: Split is happening at either end of the extent
3061 * c> Splits in three extents: Somone is splitting in middle of the extent
3062 *
3063 */
3064 static int ext4_split_extent(handle_t *handle,
3065 struct inode *inode,
3066 struct ext4_ext_path *path,
3067 struct ext4_map_blocks *map,
3068 int split_flag,
3069 int flags)
3070 {
3071 ext4_lblk_t ee_block;
3072 struct ext4_extent *ex;
3073 unsigned int ee_len, depth;
3074 int err = 0;
3075 int uninitialized;
3076 int split_flag1, flags1;
3077
3078 depth = ext_depth(inode);
3079 ex = path[depth].p_ext;
3080 ee_block = le32_to_cpu(ex->ee_block);
3081 ee_len = ext4_ext_get_actual_len(ex);
3082 uninitialized = ext4_ext_is_uninitialized(ex);
3083
3084 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3085 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3086 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3087 if (uninitialized)
3088 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3089 EXT4_EXT_MARK_UNINIT2;
3090 if (split_flag & EXT4_EXT_DATA_VALID2)
3091 split_flag1 |= EXT4_EXT_DATA_VALID1;
3092 err = ext4_split_extent_at(handle, inode, path,
3093 map->m_lblk + map->m_len, split_flag1, flags1);
3094 if (err)
3095 goto out;
3096 }
3097
3098 ext4_ext_drop_refs(path);
3099 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3100 if (IS_ERR(path))
3101 return PTR_ERR(path);
3102
3103 if (map->m_lblk >= ee_block) {
3104 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3105 EXT4_EXT_DATA_VALID2);
3106 if (uninitialized)
3107 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3108 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3109 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3110 err = ext4_split_extent_at(handle, inode, path,
3111 map->m_lblk, split_flag1, flags);
3112 if (err)
3113 goto out;
3114 }
3115
3116 ext4_ext_show_leaf(inode, path);
3117 out:
3118 return err ? err : map->m_len;
3119 }
3120
3121 /*
3122 * This function is called by ext4_ext_map_blocks() if someone tries to write
3123 * to an uninitialized extent. It may result in splitting the uninitialized
3124 * extent into multiple extents (up to three - one initialized and two
3125 * uninitialized).
3126 * There are three possibilities:
3127 * a> There is no split required: Entire extent should be initialized
3128 * b> Splits in two extents: Write is happening at either end of the extent
3129 * c> Splits in three extents: Somone is writing in middle of the extent
3130 *
3131 * Pre-conditions:
3132 * - The extent pointed to by 'path' is uninitialized.
3133 * - The extent pointed to by 'path' contains a superset
3134 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3135 *
3136 * Post-conditions on success:
3137 * - the returned value is the number of blocks beyond map->l_lblk
3138 * that are allocated and initialized.
3139 * It is guaranteed to be >= map->m_len.
3140 */
3141 static int ext4_ext_convert_to_initialized(handle_t *handle,
3142 struct inode *inode,
3143 struct ext4_map_blocks *map,
3144 struct ext4_ext_path *path)
3145 {
3146 struct ext4_sb_info *sbi;
3147 struct ext4_extent_header *eh;
3148 struct ext4_map_blocks split_map;
3149 struct ext4_extent zero_ex;
3150 struct ext4_extent *ex;
3151 ext4_lblk_t ee_block, eof_block;
3152 unsigned int ee_len, depth;
3153 int allocated, max_zeroout = 0;
3154 int err = 0;
3155 int split_flag = 0;
3156
3157 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3158 "block %llu, max_blocks %u\n", inode->i_ino,
3159 (unsigned long long)map->m_lblk, map->m_len);
3160
3161 sbi = EXT4_SB(inode->i_sb);
3162 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3163 inode->i_sb->s_blocksize_bits;
3164 if (eof_block < map->m_lblk + map->m_len)
3165 eof_block = map->m_lblk + map->m_len;
3166
3167 depth = ext_depth(inode);
3168 eh = path[depth].p_hdr;
3169 ex = path[depth].p_ext;
3170 ee_block = le32_to_cpu(ex->ee_block);
3171 ee_len = ext4_ext_get_actual_len(ex);
3172 allocated = ee_len - (map->m_lblk - ee_block);
3173
3174 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3175
3176 /* Pre-conditions */
3177 BUG_ON(!ext4_ext_is_uninitialized(ex));
3178 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3179
3180 /*
3181 * Attempt to transfer newly initialized blocks from the currently
3182 * uninitialized extent to its left neighbor. This is much cheaper
3183 * than an insertion followed by a merge as those involve costly
3184 * memmove() calls. This is the common case in steady state for
3185 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3186 * writes.
3187 *
3188 * Limitations of the current logic:
3189 * - L1: we only deal with writes at the start of the extent.
3190 * The approach could be extended to writes at the end
3191 * of the extent but this scenario was deemed less common.
3192 * - L2: we do not deal with writes covering the whole extent.
3193 * This would require removing the extent if the transfer
3194 * is possible.
3195 * - L3: we only attempt to merge with an extent stored in the
3196 * same extent tree node.
3197 */
3198 if ((map->m_lblk == ee_block) && /*L1*/
3199 (map->m_len < ee_len) && /*L2*/
3200 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3201 struct ext4_extent *prev_ex;
3202 ext4_lblk_t prev_lblk;
3203 ext4_fsblk_t prev_pblk, ee_pblk;
3204 unsigned int prev_len, write_len;
3205
3206 prev_ex = ex - 1;
3207 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3208 prev_len = ext4_ext_get_actual_len(prev_ex);
3209 prev_pblk = ext4_ext_pblock(prev_ex);
3210 ee_pblk = ext4_ext_pblock(ex);
3211 write_len = map->m_len;
3212
3213 /*
3214 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3215 * upon those conditions:
3216 * - C1: prev_ex is initialized,
3217 * - C2: prev_ex is logically abutting ex,
3218 * - C3: prev_ex is physically abutting ex,
3219 * - C4: prev_ex can receive the additional blocks without
3220 * overflowing the (initialized) length limit.
3221 */
3222 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3223 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3224 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3225 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3226 err = ext4_ext_get_access(handle, inode, path + depth);
3227 if (err)
3228 goto out;
3229
3230 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3231 map, ex, prev_ex);
3232
3233 /* Shift the start of ex by 'write_len' blocks */
3234 ex->ee_block = cpu_to_le32(ee_block + write_len);
3235 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3236 ex->ee_len = cpu_to_le16(ee_len - write_len);
3237 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3238
3239 /* Extend prev_ex by 'write_len' blocks */
3240 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3241
3242 /* Mark the block containing both extents as dirty */
3243 ext4_ext_dirty(handle, inode, path + depth);
3244
3245 /* Update path to point to the right extent */
3246 path[depth].p_ext = prev_ex;
3247
3248 /* Result: number of initialized blocks past m_lblk */
3249 allocated = write_len;
3250 goto out;
3251 }
3252 }
3253
3254 WARN_ON(map->m_lblk < ee_block);
3255 /*
3256 * It is safe to convert extent to initialized via explicit
3257 * zeroout only if extent is fully insde i_size or new_size.
3258 */
3259 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3260
3261 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3262 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3263 inode->i_sb->s_blocksize_bits;
3264
3265 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3266 if (max_zeroout && (ee_len <= max_zeroout)) {
3267 err = ext4_ext_zeroout(inode, ex);
3268 if (err)
3269 goto out;
3270
3271 err = ext4_ext_get_access(handle, inode, path + depth);
3272 if (err)
3273 goto out;
3274 ext4_ext_mark_initialized(ex);
3275 ext4_ext_try_to_merge(handle, inode, path, ex);
3276 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3277 goto out;
3278 }
3279
3280 /*
3281 * four cases:
3282 * 1. split the extent into three extents.
3283 * 2. split the extent into two extents, zeroout the first half.
3284 * 3. split the extent into two extents, zeroout the second half.
3285 * 4. split the extent into two extents with out zeroout.
3286 */
3287 split_map.m_lblk = map->m_lblk;
3288 split_map.m_len = map->m_len;
3289
3290 if (max_zeroout && (allocated > map->m_len)) {
3291 if (allocated <= max_zeroout) {
3292 /* case 3 */
3293 zero_ex.ee_block =
3294 cpu_to_le32(map->m_lblk);
3295 zero_ex.ee_len = cpu_to_le16(allocated);
3296 ext4_ext_store_pblock(&zero_ex,
3297 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3298 err = ext4_ext_zeroout(inode, &zero_ex);
3299 if (err)
3300 goto out;
3301 split_map.m_lblk = map->m_lblk;
3302 split_map.m_len = allocated;
3303 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3304 /* case 2 */
3305 if (map->m_lblk != ee_block) {
3306 zero_ex.ee_block = ex->ee_block;
3307 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3308 ee_block);
3309 ext4_ext_store_pblock(&zero_ex,
3310 ext4_ext_pblock(ex));
3311 err = ext4_ext_zeroout(inode, &zero_ex);
3312 if (err)
3313 goto out;
3314 }
3315
3316 split_map.m_lblk = ee_block;
3317 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3318 allocated = map->m_len;
3319 }
3320 }
3321
3322 allocated = ext4_split_extent(handle, inode, path,
3323 &split_map, split_flag, 0);
3324 if (allocated < 0)
3325 err = allocated;
3326
3327 out:
3328 return err ? err : allocated;
3329 }
3330
3331 /*
3332 * This function is called by ext4_ext_map_blocks() from
3333 * ext4_get_blocks_dio_write() when DIO to write
3334 * to an uninitialized extent.
3335 *
3336 * Writing to an uninitialized extent may result in splitting the uninitialized
3337 * extent into multiple initialized/uninitialized extents (up to three)
3338 * There are three possibilities:
3339 * a> There is no split required: Entire extent should be uninitialized
3340 * b> Splits in two extents: Write is happening at either end of the extent
3341 * c> Splits in three extents: Somone is writing in middle of the extent
3342 *
3343 * One of more index blocks maybe needed if the extent tree grow after
3344 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3345 * complete, we need to split the uninitialized extent before DIO submit
3346 * the IO. The uninitialized extent called at this time will be split
3347 * into three uninitialized extent(at most). After IO complete, the part
3348 * being filled will be convert to initialized by the end_io callback function
3349 * via ext4_convert_unwritten_extents().
3350 *
3351 * Returns the size of uninitialized extent to be written on success.
3352 */
3353 static int ext4_split_unwritten_extents(handle_t *handle,
3354 struct inode *inode,
3355 struct ext4_map_blocks *map,
3356 struct ext4_ext_path *path,
3357 int flags)
3358 {
3359 ext4_lblk_t eof_block;
3360 ext4_lblk_t ee_block;
3361 struct ext4_extent *ex;
3362 unsigned int ee_len;
3363 int split_flag = 0, depth;
3364
3365 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3366 "block %llu, max_blocks %u\n", inode->i_ino,
3367 (unsigned long long)map->m_lblk, map->m_len);
3368
3369 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3370 inode->i_sb->s_blocksize_bits;
3371 if (eof_block < map->m_lblk + map->m_len)
3372 eof_block = map->m_lblk + map->m_len;
3373 /*
3374 * It is safe to convert extent to initialized via explicit
3375 * zeroout only if extent is fully insde i_size or new_size.
3376 */
3377 depth = ext_depth(inode);
3378 ex = path[depth].p_ext;
3379 ee_block = le32_to_cpu(ex->ee_block);
3380 ee_len = ext4_ext_get_actual_len(ex);
3381
3382 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3383 split_flag |= EXT4_EXT_MARK_UNINIT2;
3384 if (flags & EXT4_GET_BLOCKS_CONVERT)
3385 split_flag |= EXT4_EXT_DATA_VALID2;
3386 flags |= EXT4_GET_BLOCKS_PRE_IO;
3387 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3388 }
3389
3390 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3391 struct inode *inode,
3392 struct ext4_map_blocks *map,
3393 struct ext4_ext_path *path)
3394 {
3395 struct ext4_extent *ex;
3396 ext4_lblk_t ee_block;
3397 unsigned int ee_len;
3398 int depth;
3399 int err = 0;
3400
3401 depth = ext_depth(inode);
3402 ex = path[depth].p_ext;
3403 ee_block = le32_to_cpu(ex->ee_block);
3404 ee_len = ext4_ext_get_actual_len(ex);
3405
3406 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3407 "block %llu, max_blocks %u\n", inode->i_ino,
3408 (unsigned long long)ee_block, ee_len);
3409
3410 /* If extent is larger than requested then split is required */
3411 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3412 err = ext4_split_unwritten_extents(handle, inode, map, path,
3413 EXT4_GET_BLOCKS_CONVERT);
3414 if (err < 0)
3415 goto out;
3416 ext4_ext_drop_refs(path);
3417 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3418 if (IS_ERR(path)) {
3419 err = PTR_ERR(path);
3420 goto out;
3421 }
3422 depth = ext_depth(inode);
3423 ex = path[depth].p_ext;
3424 }
3425
3426 err = ext4_ext_get_access(handle, inode, path + depth);
3427 if (err)
3428 goto out;
3429 /* first mark the extent as initialized */
3430 ext4_ext_mark_initialized(ex);
3431
3432 /* note: ext4_ext_correct_indexes() isn't needed here because
3433 * borders are not changed
3434 */
3435 ext4_ext_try_to_merge(handle, inode, path, ex);
3436
3437 /* Mark modified extent as dirty */
3438 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3439 out:
3440 ext4_ext_show_leaf(inode, path);
3441 return err;
3442 }
3443
3444 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3445 sector_t block, int count)
3446 {
3447 int i;
3448 for (i = 0; i < count; i++)
3449 unmap_underlying_metadata(bdev, block + i);
3450 }
3451
3452 /*
3453 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3454 */
3455 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3456 ext4_lblk_t lblk,
3457 struct ext4_ext_path *path,
3458 unsigned int len)
3459 {
3460 int i, depth;
3461 struct ext4_extent_header *eh;
3462 struct ext4_extent *last_ex;
3463
3464 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3465 return 0;
3466
3467 depth = ext_depth(inode);
3468 eh = path[depth].p_hdr;
3469
3470 /*
3471 * We're going to remove EOFBLOCKS_FL entirely in future so we
3472 * do not care for this case anymore. Simply remove the flag
3473 * if there are no extents.
3474 */
3475 if (unlikely(!eh->eh_entries))
3476 goto out;
3477 last_ex = EXT_LAST_EXTENT(eh);
3478 /*
3479 * We should clear the EOFBLOCKS_FL flag if we are writing the
3480 * last block in the last extent in the file. We test this by
3481 * first checking to see if the caller to
3482 * ext4_ext_get_blocks() was interested in the last block (or
3483 * a block beyond the last block) in the current extent. If
3484 * this turns out to be false, we can bail out from this
3485 * function immediately.
3486 */
3487 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3488 ext4_ext_get_actual_len(last_ex))
3489 return 0;
3490 /*
3491 * If the caller does appear to be planning to write at or
3492 * beyond the end of the current extent, we then test to see
3493 * if the current extent is the last extent in the file, by
3494 * checking to make sure it was reached via the rightmost node
3495 * at each level of the tree.
3496 */
3497 for (i = depth-1; i >= 0; i--)
3498 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3499 return 0;
3500 out:
3501 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3502 return ext4_mark_inode_dirty(handle, inode);
3503 }
3504
3505 /**
3506 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3507 *
3508 * Return 1 if there is a delalloc block in the range, otherwise 0.
3509 */
3510 static int ext4_find_delalloc_range(struct inode *inode,
3511 ext4_lblk_t lblk_start,
3512 ext4_lblk_t lblk_end)
3513 {
3514 struct extent_status es;
3515
3516 es.start = lblk_start;
3517 ext4_es_find_extent(inode, &es);
3518 if (es.len == 0)
3519 return 0; /* there is no delay extent in this tree */
3520 else if (es.start <= lblk_start && lblk_start < es.start + es.len)
3521 return 1;
3522 else if (lblk_start <= es.start && es.start <= lblk_end)
3523 return 1;
3524 else
3525 return 0;
3526 }
3527
3528 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3529 {
3530 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3531 ext4_lblk_t lblk_start, lblk_end;
3532 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3533 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3534
3535 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3536 }
3537
3538 /**
3539 * Determines how many complete clusters (out of those specified by the 'map')
3540 * are under delalloc and were reserved quota for.
3541 * This function is called when we are writing out the blocks that were
3542 * originally written with their allocation delayed, but then the space was
3543 * allocated using fallocate() before the delayed allocation could be resolved.
3544 * The cases to look for are:
3545 * ('=' indicated delayed allocated blocks
3546 * '-' indicates non-delayed allocated blocks)
3547 * (a) partial clusters towards beginning and/or end outside of allocated range
3548 * are not delalloc'ed.
3549 * Ex:
3550 * |----c---=|====c====|====c====|===-c----|
3551 * |++++++ allocated ++++++|
3552 * ==> 4 complete clusters in above example
3553 *
3554 * (b) partial cluster (outside of allocated range) towards either end is
3555 * marked for delayed allocation. In this case, we will exclude that
3556 * cluster.
3557 * Ex:
3558 * |----====c========|========c========|
3559 * |++++++ allocated ++++++|
3560 * ==> 1 complete clusters in above example
3561 *
3562 * Ex:
3563 * |================c================|
3564 * |++++++ allocated ++++++|
3565 * ==> 0 complete clusters in above example
3566 *
3567 * The ext4_da_update_reserve_space will be called only if we
3568 * determine here that there were some "entire" clusters that span
3569 * this 'allocated' range.
3570 * In the non-bigalloc case, this function will just end up returning num_blks
3571 * without ever calling ext4_find_delalloc_range.
3572 */
3573 static unsigned int
3574 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3575 unsigned int num_blks)
3576 {
3577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3578 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3579 ext4_lblk_t lblk_from, lblk_to, c_offset;
3580 unsigned int allocated_clusters = 0;
3581
3582 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3583 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3584
3585 /* max possible clusters for this allocation */
3586 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3587
3588 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3589
3590 /* Check towards left side */
3591 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3592 if (c_offset) {
3593 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3594 lblk_to = lblk_from + c_offset - 1;
3595
3596 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3597 allocated_clusters--;
3598 }
3599
3600 /* Now check towards right. */
3601 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3602 if (allocated_clusters && c_offset) {
3603 lblk_from = lblk_start + num_blks;
3604 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3605
3606 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3607 allocated_clusters--;
3608 }
3609
3610 return allocated_clusters;
3611 }
3612
3613 static int
3614 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3615 struct ext4_map_blocks *map,
3616 struct ext4_ext_path *path, int flags,
3617 unsigned int allocated, ext4_fsblk_t newblock)
3618 {
3619 int ret = 0;
3620 int err = 0;
3621 ext4_io_end_t *io = ext4_inode_aio(inode);
3622
3623 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3624 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3625 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3626 flags, allocated);
3627 ext4_ext_show_leaf(inode, path);
3628
3629 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3630 allocated, newblock);
3631
3632 /* get_block() before submit the IO, split the extent */
3633 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3634 ret = ext4_split_unwritten_extents(handle, inode, map,
3635 path, flags);
3636 if (ret <= 0)
3637 goto out;
3638 /*
3639 * Flag the inode(non aio case) or end_io struct (aio case)
3640 * that this IO needs to conversion to written when IO is
3641 * completed
3642 */
3643 if (io)
3644 ext4_set_io_unwritten_flag(inode, io);
3645 else
3646 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3647 if (ext4_should_dioread_nolock(inode))
3648 map->m_flags |= EXT4_MAP_UNINIT;
3649 goto out;
3650 }
3651 /* IO end_io complete, convert the filled extent to written */
3652 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3653 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3654 path);
3655 if (ret >= 0) {
3656 ext4_update_inode_fsync_trans(handle, inode, 1);
3657 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3658 path, map->m_len);
3659 } else
3660 err = ret;
3661 goto out2;
3662 }
3663 /* buffered IO case */
3664 /*
3665 * repeat fallocate creation request
3666 * we already have an unwritten extent
3667 */
3668 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3669 goto map_out;
3670
3671 /* buffered READ or buffered write_begin() lookup */
3672 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3673 /*
3674 * We have blocks reserved already. We
3675 * return allocated blocks so that delalloc
3676 * won't do block reservation for us. But
3677 * the buffer head will be unmapped so that
3678 * a read from the block returns 0s.
3679 */
3680 map->m_flags |= EXT4_MAP_UNWRITTEN;
3681 goto out1;
3682 }
3683
3684 /* buffered write, writepage time, convert*/
3685 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3686 if (ret >= 0)
3687 ext4_update_inode_fsync_trans(handle, inode, 1);
3688 out:
3689 if (ret <= 0) {
3690 err = ret;
3691 goto out2;
3692 } else
3693 allocated = ret;
3694 map->m_flags |= EXT4_MAP_NEW;
3695 /*
3696 * if we allocated more blocks than requested
3697 * we need to make sure we unmap the extra block
3698 * allocated. The actual needed block will get
3699 * unmapped later when we find the buffer_head marked
3700 * new.
3701 */
3702 if (allocated > map->m_len) {
3703 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3704 newblock + map->m_len,
3705 allocated - map->m_len);
3706 allocated = map->m_len;
3707 }
3708
3709 /*
3710 * If we have done fallocate with the offset that is already
3711 * delayed allocated, we would have block reservation
3712 * and quota reservation done in the delayed write path.
3713 * But fallocate would have already updated quota and block
3714 * count for this offset. So cancel these reservation
3715 */
3716 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3717 unsigned int reserved_clusters;
3718 reserved_clusters = get_reserved_cluster_alloc(inode,
3719 map->m_lblk, map->m_len);
3720 if (reserved_clusters)
3721 ext4_da_update_reserve_space(inode,
3722 reserved_clusters,
3723 0);
3724 }
3725
3726 map_out:
3727 map->m_flags |= EXT4_MAP_MAPPED;
3728 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3729 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3730 map->m_len);
3731 if (err < 0)
3732 goto out2;
3733 }
3734 out1:
3735 if (allocated > map->m_len)
3736 allocated = map->m_len;
3737 ext4_ext_show_leaf(inode, path);
3738 map->m_pblk = newblock;
3739 map->m_len = allocated;
3740 out2:
3741 if (path) {
3742 ext4_ext_drop_refs(path);
3743 kfree(path);
3744 }
3745 return err ? err : allocated;
3746 }
3747
3748 /*
3749 * get_implied_cluster_alloc - check to see if the requested
3750 * allocation (in the map structure) overlaps with a cluster already
3751 * allocated in an extent.
3752 * @sb The filesystem superblock structure
3753 * @map The requested lblk->pblk mapping
3754 * @ex The extent structure which might contain an implied
3755 * cluster allocation
3756 *
3757 * This function is called by ext4_ext_map_blocks() after we failed to
3758 * find blocks that were already in the inode's extent tree. Hence,
3759 * we know that the beginning of the requested region cannot overlap
3760 * the extent from the inode's extent tree. There are three cases we
3761 * want to catch. The first is this case:
3762 *
3763 * |--- cluster # N--|
3764 * |--- extent ---| |---- requested region ---|
3765 * |==========|
3766 *
3767 * The second case that we need to test for is this one:
3768 *
3769 * |--------- cluster # N ----------------|
3770 * |--- requested region --| |------- extent ----|
3771 * |=======================|
3772 *
3773 * The third case is when the requested region lies between two extents
3774 * within the same cluster:
3775 * |------------- cluster # N-------------|
3776 * |----- ex -----| |---- ex_right ----|
3777 * |------ requested region ------|
3778 * |================|
3779 *
3780 * In each of the above cases, we need to set the map->m_pblk and
3781 * map->m_len so it corresponds to the return the extent labelled as
3782 * "|====|" from cluster #N, since it is already in use for data in
3783 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3784 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3785 * as a new "allocated" block region. Otherwise, we will return 0 and
3786 * ext4_ext_map_blocks() will then allocate one or more new clusters
3787 * by calling ext4_mb_new_blocks().
3788 */
3789 static int get_implied_cluster_alloc(struct super_block *sb,
3790 struct ext4_map_blocks *map,
3791 struct ext4_extent *ex,
3792 struct ext4_ext_path *path)
3793 {
3794 struct ext4_sb_info *sbi = EXT4_SB(sb);
3795 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3796 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3797 ext4_lblk_t rr_cluster_start;
3798 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3799 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3800 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3801
3802 /* The extent passed in that we are trying to match */
3803 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3804 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3805
3806 /* The requested region passed into ext4_map_blocks() */
3807 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3808
3809 if ((rr_cluster_start == ex_cluster_end) ||
3810 (rr_cluster_start == ex_cluster_start)) {
3811 if (rr_cluster_start == ex_cluster_end)
3812 ee_start += ee_len - 1;
3813 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3814 c_offset;
3815 map->m_len = min(map->m_len,
3816 (unsigned) sbi->s_cluster_ratio - c_offset);
3817 /*
3818 * Check for and handle this case:
3819 *
3820 * |--------- cluster # N-------------|
3821 * |------- extent ----|
3822 * |--- requested region ---|
3823 * |===========|
3824 */
3825
3826 if (map->m_lblk < ee_block)
3827 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3828
3829 /*
3830 * Check for the case where there is already another allocated
3831 * block to the right of 'ex' but before the end of the cluster.
3832 *
3833 * |------------- cluster # N-------------|
3834 * |----- ex -----| |---- ex_right ----|
3835 * |------ requested region ------|
3836 * |================|
3837 */
3838 if (map->m_lblk > ee_block) {
3839 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3840 map->m_len = min(map->m_len, next - map->m_lblk);
3841 }
3842
3843 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3844 return 1;
3845 }
3846
3847 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3848 return 0;
3849 }
3850
3851
3852 /*
3853 * Block allocation/map/preallocation routine for extents based files
3854 *
3855 *
3856 * Need to be called with
3857 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3858 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3859 *
3860 * return > 0, number of of blocks already mapped/allocated
3861 * if create == 0 and these are pre-allocated blocks
3862 * buffer head is unmapped
3863 * otherwise blocks are mapped
3864 *
3865 * return = 0, if plain look up failed (blocks have not been allocated)
3866 * buffer head is unmapped
3867 *
3868 * return < 0, error case.
3869 */
3870 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3871 struct ext4_map_blocks *map, int flags)
3872 {
3873 struct ext4_ext_path *path = NULL;
3874 struct ext4_extent newex, *ex, *ex2;
3875 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3876 ext4_fsblk_t newblock = 0;
3877 int free_on_err = 0, err = 0, depth;
3878 unsigned int allocated = 0, offset = 0;
3879 unsigned int allocated_clusters = 0;
3880 struct ext4_allocation_request ar;
3881 ext4_io_end_t *io = ext4_inode_aio(inode);
3882 ext4_lblk_t cluster_offset;
3883 int set_unwritten = 0;
3884
3885 ext_debug("blocks %u/%u requested for inode %lu\n",
3886 map->m_lblk, map->m_len, inode->i_ino);
3887 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3888
3889 /* check in cache */
3890 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3891 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3892 if ((sbi->s_cluster_ratio > 1) &&
3893 ext4_find_delalloc_cluster(inode, map->m_lblk))
3894 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3895
3896 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3897 /*
3898 * block isn't allocated yet and
3899 * user doesn't want to allocate it
3900 */
3901 goto out2;
3902 }
3903 /* we should allocate requested block */
3904 } else {
3905 /* block is already allocated */
3906 if (sbi->s_cluster_ratio > 1)
3907 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3908 newblock = map->m_lblk
3909 - le32_to_cpu(newex.ee_block)
3910 + ext4_ext_pblock(&newex);
3911 /* number of remaining blocks in the extent */
3912 allocated = ext4_ext_get_actual_len(&newex) -
3913 (map->m_lblk - le32_to_cpu(newex.ee_block));
3914 goto out;
3915 }
3916 }
3917
3918 /* find extent for this block */
3919 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3920 if (IS_ERR(path)) {
3921 err = PTR_ERR(path);
3922 path = NULL;
3923 goto out2;
3924 }
3925
3926 depth = ext_depth(inode);
3927
3928 /*
3929 * consistent leaf must not be empty;
3930 * this situation is possible, though, _during_ tree modification;
3931 * this is why assert can't be put in ext4_ext_find_extent()
3932 */
3933 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3934 EXT4_ERROR_INODE(inode, "bad extent address "
3935 "lblock: %lu, depth: %d pblock %lld",
3936 (unsigned long) map->m_lblk, depth,
3937 path[depth].p_block);
3938 err = -EIO;
3939 goto out2;
3940 }
3941
3942 ex = path[depth].p_ext;
3943 if (ex) {
3944 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3945 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3946 unsigned short ee_len;
3947
3948 /*
3949 * Uninitialized extents are treated as holes, except that
3950 * we split out initialized portions during a write.
3951 */
3952 ee_len = ext4_ext_get_actual_len(ex);
3953
3954 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3955
3956 /* if found extent covers block, simply return it */
3957 if (in_range(map->m_lblk, ee_block, ee_len)) {
3958 newblock = map->m_lblk - ee_block + ee_start;
3959 /* number of remaining blocks in the extent */
3960 allocated = ee_len - (map->m_lblk - ee_block);
3961 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3962 ee_block, ee_len, newblock);
3963
3964 /*
3965 * Do not put uninitialized extent
3966 * in the cache
3967 */
3968 if (!ext4_ext_is_uninitialized(ex)) {
3969 ext4_ext_put_in_cache(inode, ee_block,
3970 ee_len, ee_start);
3971 goto out;
3972 }
3973 allocated = ext4_ext_handle_uninitialized_extents(
3974 handle, inode, map, path, flags,
3975 allocated, newblock);
3976 goto out3;
3977 }
3978 }
3979
3980 if ((sbi->s_cluster_ratio > 1) &&
3981 ext4_find_delalloc_cluster(inode, map->m_lblk))
3982 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3983
3984 /*
3985 * requested block isn't allocated yet;
3986 * we couldn't try to create block if create flag is zero
3987 */
3988 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3989 /*
3990 * put just found gap into cache to speed up
3991 * subsequent requests
3992 */
3993 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3994 goto out2;
3995 }
3996
3997 /*
3998 * Okay, we need to do block allocation.
3999 */
4000 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
4001 newex.ee_block = cpu_to_le32(map->m_lblk);
4002 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
4003
4004 /*
4005 * If we are doing bigalloc, check to see if the extent returned
4006 * by ext4_ext_find_extent() implies a cluster we can use.
4007 */
4008 if (cluster_offset && ex &&
4009 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4010 ar.len = allocated = map->m_len;
4011 newblock = map->m_pblk;
4012 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4013 goto got_allocated_blocks;
4014 }
4015
4016 /* find neighbour allocated blocks */
4017 ar.lleft = map->m_lblk;
4018 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4019 if (err)
4020 goto out2;
4021 ar.lright = map->m_lblk;
4022 ex2 = NULL;
4023 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4024 if (err)
4025 goto out2;
4026
4027 /* Check if the extent after searching to the right implies a
4028 * cluster we can use. */
4029 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4030 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4031 ar.len = allocated = map->m_len;
4032 newblock = map->m_pblk;
4033 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4034 goto got_allocated_blocks;
4035 }
4036
4037 /*
4038 * See if request is beyond maximum number of blocks we can have in
4039 * a single extent. For an initialized extent this limit is
4040 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4041 * EXT_UNINIT_MAX_LEN.
4042 */
4043 if (map->m_len > EXT_INIT_MAX_LEN &&
4044 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4045 map->m_len = EXT_INIT_MAX_LEN;
4046 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4047 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4048 map->m_len = EXT_UNINIT_MAX_LEN;
4049
4050 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4051 newex.ee_len = cpu_to_le16(map->m_len);
4052 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4053 if (err)
4054 allocated = ext4_ext_get_actual_len(&newex);
4055 else
4056 allocated = map->m_len;
4057
4058 /* allocate new block */
4059 ar.inode = inode;
4060 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4061 ar.logical = map->m_lblk;
4062 /*
4063 * We calculate the offset from the beginning of the cluster
4064 * for the logical block number, since when we allocate a
4065 * physical cluster, the physical block should start at the
4066 * same offset from the beginning of the cluster. This is
4067 * needed so that future calls to get_implied_cluster_alloc()
4068 * work correctly.
4069 */
4070 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4071 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4072 ar.goal -= offset;
4073 ar.logical -= offset;
4074 if (S_ISREG(inode->i_mode))
4075 ar.flags = EXT4_MB_HINT_DATA;
4076 else
4077 /* disable in-core preallocation for non-regular files */
4078 ar.flags = 0;
4079 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4080 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4081 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4082 if (!newblock)
4083 goto out2;
4084 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4085 ar.goal, newblock, allocated);
4086 free_on_err = 1;
4087 allocated_clusters = ar.len;
4088 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4089 if (ar.len > allocated)
4090 ar.len = allocated;
4091
4092 got_allocated_blocks:
4093 /* try to insert new extent into found leaf and return */
4094 ext4_ext_store_pblock(&newex, newblock + offset);
4095 newex.ee_len = cpu_to_le16(ar.len);
4096 /* Mark uninitialized */
4097 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4098 ext4_ext_mark_uninitialized(&newex);
4099 /*
4100 * io_end structure was created for every IO write to an
4101 * uninitialized extent. To avoid unnecessary conversion,
4102 * here we flag the IO that really needs the conversion.
4103 * For non asycn direct IO case, flag the inode state
4104 * that we need to perform conversion when IO is done.
4105 */
4106 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4107 set_unwritten = 1;
4108 if (ext4_should_dioread_nolock(inode))
4109 map->m_flags |= EXT4_MAP_UNINIT;
4110 }
4111
4112 err = 0;
4113 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4114 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4115 path, ar.len);
4116 if (!err)
4117 err = ext4_ext_insert_extent(handle, inode, path,
4118 &newex, flags);
4119
4120 if (!err && set_unwritten) {
4121 if (io)
4122 ext4_set_io_unwritten_flag(inode, io);
4123 else
4124 ext4_set_inode_state(inode,
4125 EXT4_STATE_DIO_UNWRITTEN);
4126 }
4127
4128 if (err && free_on_err) {
4129 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4130 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4131 /* free data blocks we just allocated */
4132 /* not a good idea to call discard here directly,
4133 * but otherwise we'd need to call it every free() */
4134 ext4_discard_preallocations(inode);
4135 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4136 ext4_ext_get_actual_len(&newex), fb_flags);
4137 goto out2;
4138 }
4139
4140 /* previous routine could use block we allocated */
4141 newblock = ext4_ext_pblock(&newex);
4142 allocated = ext4_ext_get_actual_len(&newex);
4143 if (allocated > map->m_len)
4144 allocated = map->m_len;
4145 map->m_flags |= EXT4_MAP_NEW;
4146
4147 /*
4148 * Update reserved blocks/metadata blocks after successful
4149 * block allocation which had been deferred till now.
4150 */
4151 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4152 unsigned int reserved_clusters;
4153 /*
4154 * Check how many clusters we had reserved this allocated range
4155 */
4156 reserved_clusters = get_reserved_cluster_alloc(inode,
4157 map->m_lblk, allocated);
4158 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4159 if (reserved_clusters) {
4160 /*
4161 * We have clusters reserved for this range.
4162 * But since we are not doing actual allocation
4163 * and are simply using blocks from previously
4164 * allocated cluster, we should release the
4165 * reservation and not claim quota.
4166 */
4167 ext4_da_update_reserve_space(inode,
4168 reserved_clusters, 0);
4169 }
4170 } else {
4171 BUG_ON(allocated_clusters < reserved_clusters);
4172 /* We will claim quota for all newly allocated blocks.*/
4173 ext4_da_update_reserve_space(inode, allocated_clusters,
4174 1);
4175 if (reserved_clusters < allocated_clusters) {
4176 struct ext4_inode_info *ei = EXT4_I(inode);
4177 int reservation = allocated_clusters -
4178 reserved_clusters;
4179 /*
4180 * It seems we claimed few clusters outside of
4181 * the range of this allocation. We should give
4182 * it back to the reservation pool. This can
4183 * happen in the following case:
4184 *
4185 * * Suppose s_cluster_ratio is 4 (i.e., each
4186 * cluster has 4 blocks. Thus, the clusters
4187 * are [0-3],[4-7],[8-11]...
4188 * * First comes delayed allocation write for
4189 * logical blocks 10 & 11. Since there were no
4190 * previous delayed allocated blocks in the
4191 * range [8-11], we would reserve 1 cluster
4192 * for this write.
4193 * * Next comes write for logical blocks 3 to 8.
4194 * In this case, we will reserve 2 clusters
4195 * (for [0-3] and [4-7]; and not for [8-11] as
4196 * that range has a delayed allocated blocks.
4197 * Thus total reserved clusters now becomes 3.
4198 * * Now, during the delayed allocation writeout
4199 * time, we will first write blocks [3-8] and
4200 * allocate 3 clusters for writing these
4201 * blocks. Also, we would claim all these
4202 * three clusters above.
4203 * * Now when we come here to writeout the
4204 * blocks [10-11], we would expect to claim
4205 * the reservation of 1 cluster we had made
4206 * (and we would claim it since there are no
4207 * more delayed allocated blocks in the range
4208 * [8-11]. But our reserved cluster count had
4209 * already gone to 0.
4210 *
4211 * Thus, at the step 4 above when we determine
4212 * that there are still some unwritten delayed
4213 * allocated blocks outside of our current
4214 * block range, we should increment the
4215 * reserved clusters count so that when the
4216 * remaining blocks finally gets written, we
4217 * could claim them.
4218 */
4219 dquot_reserve_block(inode,
4220 EXT4_C2B(sbi, reservation));
4221 spin_lock(&ei->i_block_reservation_lock);
4222 ei->i_reserved_data_blocks += reservation;
4223 spin_unlock(&ei->i_block_reservation_lock);
4224 }
4225 }
4226 }
4227
4228 /*
4229 * Cache the extent and update transaction to commit on fdatasync only
4230 * when it is _not_ an uninitialized extent.
4231 */
4232 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4233 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4234 ext4_update_inode_fsync_trans(handle, inode, 1);
4235 } else
4236 ext4_update_inode_fsync_trans(handle, inode, 0);
4237 out:
4238 if (allocated > map->m_len)
4239 allocated = map->m_len;
4240 ext4_ext_show_leaf(inode, path);
4241 map->m_flags |= EXT4_MAP_MAPPED;
4242 map->m_pblk = newblock;
4243 map->m_len = allocated;
4244 out2:
4245 if (path) {
4246 ext4_ext_drop_refs(path);
4247 kfree(path);
4248 }
4249
4250 out3:
4251 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4252
4253 return err ? err : allocated;
4254 }
4255
4256 void ext4_ext_truncate(struct inode *inode)
4257 {
4258 struct address_space *mapping = inode->i_mapping;
4259 struct super_block *sb = inode->i_sb;
4260 ext4_lblk_t last_block;
4261 handle_t *handle;
4262 loff_t page_len;
4263 int err = 0;
4264
4265 /*
4266 * finish any pending end_io work so we won't run the risk of
4267 * converting any truncated blocks to initialized later
4268 */
4269 ext4_flush_unwritten_io(inode);
4270
4271 /*
4272 * probably first extent we're gonna free will be last in block
4273 */
4274 err = ext4_writepage_trans_blocks(inode);
4275 handle = ext4_journal_start(inode, err);
4276 if (IS_ERR(handle))
4277 return;
4278
4279 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4280 page_len = PAGE_CACHE_SIZE -
4281 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4282
4283 err = ext4_discard_partial_page_buffers(handle,
4284 mapping, inode->i_size, page_len, 0);
4285
4286 if (err)
4287 goto out_stop;
4288 }
4289
4290 if (ext4_orphan_add(handle, inode))
4291 goto out_stop;
4292
4293 down_write(&EXT4_I(inode)->i_data_sem);
4294 ext4_ext_invalidate_cache(inode);
4295
4296 ext4_discard_preallocations(inode);
4297
4298 /*
4299 * TODO: optimization is possible here.
4300 * Probably we need not scan at all,
4301 * because page truncation is enough.
4302 */
4303
4304 /* we have to know where to truncate from in crash case */
4305 EXT4_I(inode)->i_disksize = inode->i_size;
4306 ext4_mark_inode_dirty(handle, inode);
4307
4308 last_block = (inode->i_size + sb->s_blocksize - 1)
4309 >> EXT4_BLOCK_SIZE_BITS(sb);
4310 err = ext4_es_remove_extent(inode, last_block,
4311 EXT_MAX_BLOCKS - last_block);
4312 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4313
4314 /* In a multi-transaction truncate, we only make the final
4315 * transaction synchronous.
4316 */
4317 if (IS_SYNC(inode))
4318 ext4_handle_sync(handle);
4319
4320 up_write(&EXT4_I(inode)->i_data_sem);
4321
4322 out_stop:
4323 /*
4324 * If this was a simple ftruncate() and the file will remain alive,
4325 * then we need to clear up the orphan record which we created above.
4326 * However, if this was a real unlink then we were called by
4327 * ext4_delete_inode(), and we allow that function to clean up the
4328 * orphan info for us.
4329 */
4330 if (inode->i_nlink)
4331 ext4_orphan_del(handle, inode);
4332
4333 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4334 ext4_mark_inode_dirty(handle, inode);
4335 ext4_journal_stop(handle);
4336 }
4337
4338 static void ext4_falloc_update_inode(struct inode *inode,
4339 int mode, loff_t new_size, int update_ctime)
4340 {
4341 struct timespec now;
4342
4343 if (update_ctime) {
4344 now = current_fs_time(inode->i_sb);
4345 if (!timespec_equal(&inode->i_ctime, &now))
4346 inode->i_ctime = now;
4347 }
4348 /*
4349 * Update only when preallocation was requested beyond
4350 * the file size.
4351 */
4352 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4353 if (new_size > i_size_read(inode))
4354 i_size_write(inode, new_size);
4355 if (new_size > EXT4_I(inode)->i_disksize)
4356 ext4_update_i_disksize(inode, new_size);
4357 } else {
4358 /*
4359 * Mark that we allocate beyond EOF so the subsequent truncate
4360 * can proceed even if the new size is the same as i_size.
4361 */
4362 if (new_size > i_size_read(inode))
4363 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4364 }
4365
4366 }
4367
4368 /*
4369 * preallocate space for a file. This implements ext4's fallocate file
4370 * operation, which gets called from sys_fallocate system call.
4371 * For block-mapped files, posix_fallocate should fall back to the method
4372 * of writing zeroes to the required new blocks (the same behavior which is
4373 * expected for file systems which do not support fallocate() system call).
4374 */
4375 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4376 {
4377 struct inode *inode = file->f_path.dentry->d_inode;
4378 handle_t *handle;
4379 loff_t new_size;
4380 unsigned int max_blocks;
4381 int ret = 0;
4382 int ret2 = 0;
4383 int retries = 0;
4384 int flags;
4385 struct ext4_map_blocks map;
4386 unsigned int credits, blkbits = inode->i_blkbits;
4387
4388 /*
4389 * currently supporting (pre)allocate mode for extent-based
4390 * files _only_
4391 */
4392 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4393 return -EOPNOTSUPP;
4394
4395 /* Return error if mode is not supported */
4396 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4397 return -EOPNOTSUPP;
4398
4399 if (mode & FALLOC_FL_PUNCH_HOLE)
4400 return ext4_punch_hole(file, offset, len);
4401
4402 trace_ext4_fallocate_enter(inode, offset, len, mode);
4403 map.m_lblk = offset >> blkbits;
4404 /*
4405 * We can't just convert len to max_blocks because
4406 * If blocksize = 4096 offset = 3072 and len = 2048
4407 */
4408 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4409 - map.m_lblk;
4410 /*
4411 * credits to insert 1 extent into extent tree
4412 */
4413 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4414 mutex_lock(&inode->i_mutex);
4415 ret = inode_newsize_ok(inode, (len + offset));
4416 if (ret) {
4417 mutex_unlock(&inode->i_mutex);
4418 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4419 return ret;
4420 }
4421 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4422 if (mode & FALLOC_FL_KEEP_SIZE)
4423 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4424 /*
4425 * Don't normalize the request if it can fit in one extent so
4426 * that it doesn't get unnecessarily split into multiple
4427 * extents.
4428 */
4429 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4430 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4431
4432 /* Prevent race condition between unwritten */
4433 ext4_flush_unwritten_io(inode);
4434 retry:
4435 while (ret >= 0 && ret < max_blocks) {
4436 map.m_lblk = map.m_lblk + ret;
4437 map.m_len = max_blocks = max_blocks - ret;
4438 handle = ext4_journal_start(inode, credits);
4439 if (IS_ERR(handle)) {
4440 ret = PTR_ERR(handle);
4441 break;
4442 }
4443 ret = ext4_map_blocks(handle, inode, &map, flags);
4444 if (ret <= 0) {
4445 #ifdef EXT4FS_DEBUG
4446 WARN_ON(ret <= 0);
4447 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4448 "returned error inode#%lu, block=%u, "
4449 "max_blocks=%u", __func__,
4450 inode->i_ino, map.m_lblk, max_blocks);
4451 #endif
4452 ext4_mark_inode_dirty(handle, inode);
4453 ret2 = ext4_journal_stop(handle);
4454 break;
4455 }
4456 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4457 blkbits) >> blkbits))
4458 new_size = offset + len;
4459 else
4460 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4461
4462 ext4_falloc_update_inode(inode, mode, new_size,
4463 (map.m_flags & EXT4_MAP_NEW));
4464 ext4_mark_inode_dirty(handle, inode);
4465 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4466 ext4_handle_sync(handle);
4467 ret2 = ext4_journal_stop(handle);
4468 if (ret2)
4469 break;
4470 }
4471 if (ret == -ENOSPC &&
4472 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4473 ret = 0;
4474 goto retry;
4475 }
4476 mutex_unlock(&inode->i_mutex);
4477 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4478 ret > 0 ? ret2 : ret);
4479 return ret > 0 ? ret2 : ret;
4480 }
4481
4482 /*
4483 * This function convert a range of blocks to written extents
4484 * The caller of this function will pass the start offset and the size.
4485 * all unwritten extents within this range will be converted to
4486 * written extents.
4487 *
4488 * This function is called from the direct IO end io call back
4489 * function, to convert the fallocated extents after IO is completed.
4490 * Returns 0 on success.
4491 */
4492 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4493 ssize_t len)
4494 {
4495 handle_t *handle;
4496 unsigned int max_blocks;
4497 int ret = 0;
4498 int ret2 = 0;
4499 struct ext4_map_blocks map;
4500 unsigned int credits, blkbits = inode->i_blkbits;
4501
4502 map.m_lblk = offset >> blkbits;
4503 /*
4504 * We can't just convert len to max_blocks because
4505 * If blocksize = 4096 offset = 3072 and len = 2048
4506 */
4507 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4508 map.m_lblk);
4509 /*
4510 * credits to insert 1 extent into extent tree
4511 */
4512 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4513 while (ret >= 0 && ret < max_blocks) {
4514 map.m_lblk += ret;
4515 map.m_len = (max_blocks -= ret);
4516 handle = ext4_journal_start(inode, credits);
4517 if (IS_ERR(handle)) {
4518 ret = PTR_ERR(handle);
4519 break;
4520 }
4521 ret = ext4_map_blocks(handle, inode, &map,
4522 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4523 if (ret <= 0) {
4524 WARN_ON(ret <= 0);
4525 ext4_msg(inode->i_sb, KERN_ERR,
4526 "%s:%d: inode #%lu: block %u: len %u: "
4527 "ext4_ext_map_blocks returned %d",
4528 __func__, __LINE__, inode->i_ino, map.m_lblk,
4529 map.m_len, ret);
4530 }
4531 ext4_mark_inode_dirty(handle, inode);
4532 ret2 = ext4_journal_stop(handle);
4533 if (ret <= 0 || ret2 )
4534 break;
4535 }
4536 return ret > 0 ? ret2 : ret;
4537 }
4538
4539 /*
4540 * If newex is not existing extent (newex->ec_start equals zero) find
4541 * delayed extent at start of newex and update newex accordingly and
4542 * return start of the next delayed extent.
4543 *
4544 * If newex is existing extent (newex->ec_start is not equal zero)
4545 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4546 * extent found. Leave newex unmodified.
4547 */
4548 static int ext4_find_delayed_extent(struct inode *inode,
4549 struct ext4_ext_cache *newex)
4550 {
4551 struct extent_status es;
4552 ext4_lblk_t next_del;
4553
4554 es.start = newex->ec_block;
4555 next_del = ext4_es_find_extent(inode, &es);
4556
4557 if (newex->ec_start == 0) {
4558 /*
4559 * No extent in extent-tree contains block @newex->ec_start,
4560 * then the block may stay in 1)a hole or 2)delayed-extent.
4561 */
4562 if (es.len == 0)
4563 /* A hole found. */
4564 return 0;
4565
4566 if (es.start > newex->ec_block) {
4567 /* A hole found. */
4568 newex->ec_len = min(es.start - newex->ec_block,
4569 newex->ec_len);
4570 return 0;
4571 }
4572
4573 newex->ec_len = es.start + es.len - newex->ec_block;
4574 }
4575
4576 return next_del;
4577 }
4578 /* fiemap flags we can handle specified here */
4579 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4580
4581 static int ext4_xattr_fiemap(struct inode *inode,
4582 struct fiemap_extent_info *fieinfo)
4583 {
4584 __u64 physical = 0;
4585 __u64 length;
4586 __u32 flags = FIEMAP_EXTENT_LAST;
4587 int blockbits = inode->i_sb->s_blocksize_bits;
4588 int error = 0;
4589
4590 /* in-inode? */
4591 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4592 struct ext4_iloc iloc;
4593 int offset; /* offset of xattr in inode */
4594
4595 error = ext4_get_inode_loc(inode, &iloc);
4596 if (error)
4597 return error;
4598 physical = iloc.bh->b_blocknr << blockbits;
4599 offset = EXT4_GOOD_OLD_INODE_SIZE +
4600 EXT4_I(inode)->i_extra_isize;
4601 physical += offset;
4602 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4603 flags |= FIEMAP_EXTENT_DATA_INLINE;
4604 brelse(iloc.bh);
4605 } else { /* external block */
4606 physical = EXT4_I(inode)->i_file_acl << blockbits;
4607 length = inode->i_sb->s_blocksize;
4608 }
4609
4610 if (physical)
4611 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4612 length, flags);
4613 return (error < 0 ? error : 0);
4614 }
4615
4616 /*
4617 * ext4_ext_punch_hole
4618 *
4619 * Punches a hole of "length" bytes in a file starting
4620 * at byte "offset"
4621 *
4622 * @inode: The inode of the file to punch a hole in
4623 * @offset: The starting byte offset of the hole
4624 * @length: The length of the hole
4625 *
4626 * Returns the number of blocks removed or negative on err
4627 */
4628 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4629 {
4630 struct inode *inode = file->f_path.dentry->d_inode;
4631 struct super_block *sb = inode->i_sb;
4632 ext4_lblk_t first_block, stop_block;
4633 struct address_space *mapping = inode->i_mapping;
4634 handle_t *handle;
4635 loff_t first_page, last_page, page_len;
4636 loff_t first_page_offset, last_page_offset;
4637 int credits, err = 0;
4638
4639 /*
4640 * Write out all dirty pages to avoid race conditions
4641 * Then release them.
4642 */
4643 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4644 err = filemap_write_and_wait_range(mapping,
4645 offset, offset + length - 1);
4646
4647 if (err)
4648 return err;
4649 }
4650
4651 mutex_lock(&inode->i_mutex);
4652 /* It's not possible punch hole on append only file */
4653 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4654 err = -EPERM;
4655 goto out_mutex;
4656 }
4657 if (IS_SWAPFILE(inode)) {
4658 err = -ETXTBSY;
4659 goto out_mutex;
4660 }
4661
4662 /* No need to punch hole beyond i_size */
4663 if (offset >= inode->i_size)
4664 goto out_mutex;
4665
4666 /*
4667 * If the hole extends beyond i_size, set the hole
4668 * to end after the page that contains i_size
4669 */
4670 if (offset + length > inode->i_size) {
4671 length = inode->i_size +
4672 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4673 offset;
4674 }
4675
4676 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4677 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4678
4679 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4680 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4681
4682 /* Now release the pages */
4683 if (last_page_offset > first_page_offset) {
4684 truncate_pagecache_range(inode, first_page_offset,
4685 last_page_offset - 1);
4686 }
4687
4688 /* Wait all existing dio workers, newcomers will block on i_mutex */
4689 ext4_inode_block_unlocked_dio(inode);
4690 err = ext4_flush_unwritten_io(inode);
4691 if (err)
4692 goto out_dio;
4693 inode_dio_wait(inode);
4694
4695 credits = ext4_writepage_trans_blocks(inode);
4696 handle = ext4_journal_start(inode, credits);
4697 if (IS_ERR(handle)) {
4698 err = PTR_ERR(handle);
4699 goto out_dio;
4700 }
4701
4702
4703 /*
4704 * Now we need to zero out the non-page-aligned data in the
4705 * pages at the start and tail of the hole, and unmap the buffer
4706 * heads for the block aligned regions of the page that were
4707 * completely zeroed.
4708 */
4709 if (first_page > last_page) {
4710 /*
4711 * If the file space being truncated is contained within a page
4712 * just zero out and unmap the middle of that page
4713 */
4714 err = ext4_discard_partial_page_buffers(handle,
4715 mapping, offset, length, 0);
4716
4717 if (err)
4718 goto out;
4719 } else {
4720 /*
4721 * zero out and unmap the partial page that contains
4722 * the start of the hole
4723 */
4724 page_len = first_page_offset - offset;
4725 if (page_len > 0) {
4726 err = ext4_discard_partial_page_buffers(handle, mapping,
4727 offset, page_len, 0);
4728 if (err)
4729 goto out;
4730 }
4731
4732 /*
4733 * zero out and unmap the partial page that contains
4734 * the end of the hole
4735 */
4736 page_len = offset + length - last_page_offset;
4737 if (page_len > 0) {
4738 err = ext4_discard_partial_page_buffers(handle, mapping,
4739 last_page_offset, page_len, 0);
4740 if (err)
4741 goto out;
4742 }
4743 }
4744
4745 /*
4746 * If i_size is contained in the last page, we need to
4747 * unmap and zero the partial page after i_size
4748 */
4749 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4750 inode->i_size % PAGE_CACHE_SIZE != 0) {
4751
4752 page_len = PAGE_CACHE_SIZE -
4753 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4754
4755 if (page_len > 0) {
4756 err = ext4_discard_partial_page_buffers(handle,
4757 mapping, inode->i_size, page_len, 0);
4758
4759 if (err)
4760 goto out;
4761 }
4762 }
4763
4764 first_block = (offset + sb->s_blocksize - 1) >>
4765 EXT4_BLOCK_SIZE_BITS(sb);
4766 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4767
4768 /* If there are no blocks to remove, return now */
4769 if (first_block >= stop_block)
4770 goto out;
4771
4772 down_write(&EXT4_I(inode)->i_data_sem);
4773 ext4_ext_invalidate_cache(inode);
4774 ext4_discard_preallocations(inode);
4775
4776 err = ext4_es_remove_extent(inode, first_block,
4777 stop_block - first_block);
4778 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4779
4780 ext4_ext_invalidate_cache(inode);
4781 ext4_discard_preallocations(inode);
4782
4783 if (IS_SYNC(inode))
4784 ext4_handle_sync(handle);
4785
4786 up_write(&EXT4_I(inode)->i_data_sem);
4787
4788 out:
4789 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4790 ext4_mark_inode_dirty(handle, inode);
4791 ext4_journal_stop(handle);
4792 out_dio:
4793 ext4_inode_resume_unlocked_dio(inode);
4794 out_mutex:
4795 mutex_unlock(&inode->i_mutex);
4796 return err;
4797 }
4798
4799 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4800 __u64 start, __u64 len)
4801 {
4802 ext4_lblk_t start_blk;
4803 int error = 0;
4804
4805 /* fallback to generic here if not in extents fmt */
4806 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4807 return generic_block_fiemap(inode, fieinfo, start, len,
4808 ext4_get_block);
4809
4810 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4811 return -EBADR;
4812
4813 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4814 error = ext4_xattr_fiemap(inode, fieinfo);
4815 } else {
4816 ext4_lblk_t len_blks;
4817 __u64 last_blk;
4818
4819 start_blk = start >> inode->i_sb->s_blocksize_bits;
4820 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4821 if (last_blk >= EXT_MAX_BLOCKS)
4822 last_blk = EXT_MAX_BLOCKS-1;
4823 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4824
4825 /*
4826 * Walk the extent tree gathering extent information
4827 * and pushing extents back to the user.
4828 */
4829 error = ext4_fill_fiemap_extents(inode, start_blk,
4830 len_blks, fieinfo);
4831 }
4832
4833 return error;
4834 }