]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/extents.c
ext4: add more tracepoints and use dev_t in the trace buffer
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 static int ext4_ext_truncate_extend_restart(handle_t *handle,
50 struct inode *inode,
51 int needed)
52 {
53 int err;
54
55 if (!ext4_handle_valid(handle))
56 return 0;
57 if (handle->h_buffer_credits > needed)
58 return 0;
59 err = ext4_journal_extend(handle, needed);
60 if (err <= 0)
61 return err;
62 err = ext4_truncate_restart_trans(handle, inode, needed);
63 if (err == 0)
64 err = -EAGAIN;
65
66 return err;
67 }
68
69 /*
70 * could return:
71 * - EROFS
72 * - ENOMEM
73 */
74 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
75 struct ext4_ext_path *path)
76 {
77 if (path->p_bh) {
78 /* path points to block */
79 return ext4_journal_get_write_access(handle, path->p_bh);
80 }
81 /* path points to leaf/index in inode body */
82 /* we use in-core data, no need to protect them */
83 return 0;
84 }
85
86 /*
87 * could return:
88 * - EROFS
89 * - ENOMEM
90 * - EIO
91 */
92 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
93 struct ext4_ext_path *path)
94 {
95 int err;
96 if (path->p_bh) {
97 /* path points to block */
98 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
99 } else {
100 /* path points to leaf/index in inode body */
101 err = ext4_mark_inode_dirty(handle, inode);
102 }
103 return err;
104 }
105
106 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
107 struct ext4_ext_path *path,
108 ext4_lblk_t block)
109 {
110 struct ext4_inode_info *ei = EXT4_I(inode);
111 ext4_fsblk_t bg_start;
112 ext4_fsblk_t last_block;
113 ext4_grpblk_t colour;
114 ext4_group_t block_group;
115 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
116 int depth;
117
118 if (path) {
119 struct ext4_extent *ex;
120 depth = path->p_depth;
121
122 /*
123 * Try to predict block placement assuming that we are
124 * filling in a file which will eventually be
125 * non-sparse --- i.e., in the case of libbfd writing
126 * an ELF object sections out-of-order but in a way
127 * the eventually results in a contiguous object or
128 * executable file, or some database extending a table
129 * space file. However, this is actually somewhat
130 * non-ideal if we are writing a sparse file such as
131 * qemu or KVM writing a raw image file that is going
132 * to stay fairly sparse, since it will end up
133 * fragmenting the file system's free space. Maybe we
134 * should have some hueristics or some way to allow
135 * userspace to pass a hint to file system,
136 * especiially if the latter case turns out to be
137 * common.
138 */
139 ex = path[depth].p_ext;
140 if (ex) {
141 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
142 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
143
144 if (block > ext_block)
145 return ext_pblk + (block - ext_block);
146 else
147 return ext_pblk - (ext_block - block);
148 }
149
150 /* it looks like index is empty;
151 * try to find starting block from index itself */
152 if (path[depth].p_bh)
153 return path[depth].p_bh->b_blocknr;
154 }
155
156 /* OK. use inode's group */
157 block_group = ei->i_block_group;
158 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
159 /*
160 * If there are at least EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
161 * block groups per flexgroup, reserve the first block
162 * group for directories and special files. Regular
163 * files will start at the second block group. This
164 * tends to speed up directory access and improves
165 * fsck times.
166 */
167 block_group &= ~(flex_size-1);
168 if (S_ISREG(inode->i_mode))
169 block_group++;
170 }
171 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
172 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
173
174 /*
175 * If we are doing delayed allocation, we don't need take
176 * colour into account.
177 */
178 if (test_opt(inode->i_sb, DELALLOC))
179 return bg_start;
180
181 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
182 colour = (current->pid % 16) *
183 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
184 else
185 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
186 return bg_start + colour + block;
187 }
188
189 /*
190 * Allocation for a meta data block
191 */
192 static ext4_fsblk_t
193 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
194 struct ext4_ext_path *path,
195 struct ext4_extent *ex, int *err)
196 {
197 ext4_fsblk_t goal, newblock;
198
199 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
200 newblock = ext4_new_meta_blocks(handle, inode, goal, NULL, err);
201 return newblock;
202 }
203
204 static inline int ext4_ext_space_block(struct inode *inode, int check)
205 {
206 int size;
207
208 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
209 / sizeof(struct ext4_extent);
210 if (!check) {
211 #ifdef AGGRESSIVE_TEST
212 if (size > 6)
213 size = 6;
214 #endif
215 }
216 return size;
217 }
218
219 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
220 {
221 int size;
222
223 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
224 / sizeof(struct ext4_extent_idx);
225 if (!check) {
226 #ifdef AGGRESSIVE_TEST
227 if (size > 5)
228 size = 5;
229 #endif
230 }
231 return size;
232 }
233
234 static inline int ext4_ext_space_root(struct inode *inode, int check)
235 {
236 int size;
237
238 size = sizeof(EXT4_I(inode)->i_data);
239 size -= sizeof(struct ext4_extent_header);
240 size /= sizeof(struct ext4_extent);
241 if (!check) {
242 #ifdef AGGRESSIVE_TEST
243 if (size > 3)
244 size = 3;
245 #endif
246 }
247 return size;
248 }
249
250 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
251 {
252 int size;
253
254 size = sizeof(EXT4_I(inode)->i_data);
255 size -= sizeof(struct ext4_extent_header);
256 size /= sizeof(struct ext4_extent_idx);
257 if (!check) {
258 #ifdef AGGRESSIVE_TEST
259 if (size > 4)
260 size = 4;
261 #endif
262 }
263 return size;
264 }
265
266 /*
267 * Calculate the number of metadata blocks needed
268 * to allocate @blocks
269 * Worse case is one block per extent
270 */
271 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
272 {
273 struct ext4_inode_info *ei = EXT4_I(inode);
274 int idxs, num = 0;
275
276 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
277 / sizeof(struct ext4_extent_idx));
278
279 /*
280 * If the new delayed allocation block is contiguous with the
281 * previous da block, it can share index blocks with the
282 * previous block, so we only need to allocate a new index
283 * block every idxs leaf blocks. At ldxs**2 blocks, we need
284 * an additional index block, and at ldxs**3 blocks, yet
285 * another index blocks.
286 */
287 if (ei->i_da_metadata_calc_len &&
288 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
289 if ((ei->i_da_metadata_calc_len % idxs) == 0)
290 num++;
291 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
292 num++;
293 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
294 num++;
295 ei->i_da_metadata_calc_len = 0;
296 } else
297 ei->i_da_metadata_calc_len++;
298 ei->i_da_metadata_calc_last_lblock++;
299 return num;
300 }
301
302 /*
303 * In the worst case we need a new set of index blocks at
304 * every level of the inode's extent tree.
305 */
306 ei->i_da_metadata_calc_len = 1;
307 ei->i_da_metadata_calc_last_lblock = lblock;
308 return ext_depth(inode) + 1;
309 }
310
311 static int
312 ext4_ext_max_entries(struct inode *inode, int depth)
313 {
314 int max;
315
316 if (depth == ext_depth(inode)) {
317 if (depth == 0)
318 max = ext4_ext_space_root(inode, 1);
319 else
320 max = ext4_ext_space_root_idx(inode, 1);
321 } else {
322 if (depth == 0)
323 max = ext4_ext_space_block(inode, 1);
324 else
325 max = ext4_ext_space_block_idx(inode, 1);
326 }
327
328 return max;
329 }
330
331 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
332 {
333 ext4_fsblk_t block = ext4_ext_pblock(ext);
334 int len = ext4_ext_get_actual_len(ext);
335
336 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
337 }
338
339 static int ext4_valid_extent_idx(struct inode *inode,
340 struct ext4_extent_idx *ext_idx)
341 {
342 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
343
344 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
345 }
346
347 static int ext4_valid_extent_entries(struct inode *inode,
348 struct ext4_extent_header *eh,
349 int depth)
350 {
351 struct ext4_extent *ext;
352 struct ext4_extent_idx *ext_idx;
353 unsigned short entries;
354 if (eh->eh_entries == 0)
355 return 1;
356
357 entries = le16_to_cpu(eh->eh_entries);
358
359 if (depth == 0) {
360 /* leaf entries */
361 ext = EXT_FIRST_EXTENT(eh);
362 while (entries) {
363 if (!ext4_valid_extent(inode, ext))
364 return 0;
365 ext++;
366 entries--;
367 }
368 } else {
369 ext_idx = EXT_FIRST_INDEX(eh);
370 while (entries) {
371 if (!ext4_valid_extent_idx(inode, ext_idx))
372 return 0;
373 ext_idx++;
374 entries--;
375 }
376 }
377 return 1;
378 }
379
380 static int __ext4_ext_check(const char *function, unsigned int line,
381 struct inode *inode, struct ext4_extent_header *eh,
382 int depth)
383 {
384 const char *error_msg;
385 int max = 0;
386
387 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
388 error_msg = "invalid magic";
389 goto corrupted;
390 }
391 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
392 error_msg = "unexpected eh_depth";
393 goto corrupted;
394 }
395 if (unlikely(eh->eh_max == 0)) {
396 error_msg = "invalid eh_max";
397 goto corrupted;
398 }
399 max = ext4_ext_max_entries(inode, depth);
400 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
401 error_msg = "too large eh_max";
402 goto corrupted;
403 }
404 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
405 error_msg = "invalid eh_entries";
406 goto corrupted;
407 }
408 if (!ext4_valid_extent_entries(inode, eh, depth)) {
409 error_msg = "invalid extent entries";
410 goto corrupted;
411 }
412 return 0;
413
414 corrupted:
415 ext4_error_inode(inode, function, line, 0,
416 "bad header/extent: %s - magic %x, "
417 "entries %u, max %u(%u), depth %u(%u)",
418 error_msg, le16_to_cpu(eh->eh_magic),
419 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
420 max, le16_to_cpu(eh->eh_depth), depth);
421
422 return -EIO;
423 }
424
425 #define ext4_ext_check(inode, eh, depth) \
426 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
427
428 int ext4_ext_check_inode(struct inode *inode)
429 {
430 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
431 }
432
433 #ifdef EXT_DEBUG
434 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
435 {
436 int k, l = path->p_depth;
437
438 ext_debug("path:");
439 for (k = 0; k <= l; k++, path++) {
440 if (path->p_idx) {
441 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
442 ext4_idx_pblock(path->p_idx));
443 } else if (path->p_ext) {
444 ext_debug(" %d:[%d]%d:%llu ",
445 le32_to_cpu(path->p_ext->ee_block),
446 ext4_ext_is_uninitialized(path->p_ext),
447 ext4_ext_get_actual_len(path->p_ext),
448 ext4_ext_pblock(path->p_ext));
449 } else
450 ext_debug(" []");
451 }
452 ext_debug("\n");
453 }
454
455 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
456 {
457 int depth = ext_depth(inode);
458 struct ext4_extent_header *eh;
459 struct ext4_extent *ex;
460 int i;
461
462 if (!path)
463 return;
464
465 eh = path[depth].p_hdr;
466 ex = EXT_FIRST_EXTENT(eh);
467
468 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
469
470 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
471 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
472 ext4_ext_is_uninitialized(ex),
473 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
474 }
475 ext_debug("\n");
476 }
477 #else
478 #define ext4_ext_show_path(inode, path)
479 #define ext4_ext_show_leaf(inode, path)
480 #endif
481
482 void ext4_ext_drop_refs(struct ext4_ext_path *path)
483 {
484 int depth = path->p_depth;
485 int i;
486
487 for (i = 0; i <= depth; i++, path++)
488 if (path->p_bh) {
489 brelse(path->p_bh);
490 path->p_bh = NULL;
491 }
492 }
493
494 /*
495 * ext4_ext_binsearch_idx:
496 * binary search for the closest index of the given block
497 * the header must be checked before calling this
498 */
499 static void
500 ext4_ext_binsearch_idx(struct inode *inode,
501 struct ext4_ext_path *path, ext4_lblk_t block)
502 {
503 struct ext4_extent_header *eh = path->p_hdr;
504 struct ext4_extent_idx *r, *l, *m;
505
506
507 ext_debug("binsearch for %u(idx): ", block);
508
509 l = EXT_FIRST_INDEX(eh) + 1;
510 r = EXT_LAST_INDEX(eh);
511 while (l <= r) {
512 m = l + (r - l) / 2;
513 if (block < le32_to_cpu(m->ei_block))
514 r = m - 1;
515 else
516 l = m + 1;
517 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
518 m, le32_to_cpu(m->ei_block),
519 r, le32_to_cpu(r->ei_block));
520 }
521
522 path->p_idx = l - 1;
523 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
524 ext4_idx_pblock(path->p_idx));
525
526 #ifdef CHECK_BINSEARCH
527 {
528 struct ext4_extent_idx *chix, *ix;
529 int k;
530
531 chix = ix = EXT_FIRST_INDEX(eh);
532 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
533 if (k != 0 &&
534 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
535 printk(KERN_DEBUG "k=%d, ix=0x%p, "
536 "first=0x%p\n", k,
537 ix, EXT_FIRST_INDEX(eh));
538 printk(KERN_DEBUG "%u <= %u\n",
539 le32_to_cpu(ix->ei_block),
540 le32_to_cpu(ix[-1].ei_block));
541 }
542 BUG_ON(k && le32_to_cpu(ix->ei_block)
543 <= le32_to_cpu(ix[-1].ei_block));
544 if (block < le32_to_cpu(ix->ei_block))
545 break;
546 chix = ix;
547 }
548 BUG_ON(chix != path->p_idx);
549 }
550 #endif
551
552 }
553
554 /*
555 * ext4_ext_binsearch:
556 * binary search for closest extent of the given block
557 * the header must be checked before calling this
558 */
559 static void
560 ext4_ext_binsearch(struct inode *inode,
561 struct ext4_ext_path *path, ext4_lblk_t block)
562 {
563 struct ext4_extent_header *eh = path->p_hdr;
564 struct ext4_extent *r, *l, *m;
565
566 if (eh->eh_entries == 0) {
567 /*
568 * this leaf is empty:
569 * we get such a leaf in split/add case
570 */
571 return;
572 }
573
574 ext_debug("binsearch for %u: ", block);
575
576 l = EXT_FIRST_EXTENT(eh) + 1;
577 r = EXT_LAST_EXTENT(eh);
578
579 while (l <= r) {
580 m = l + (r - l) / 2;
581 if (block < le32_to_cpu(m->ee_block))
582 r = m - 1;
583 else
584 l = m + 1;
585 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
586 m, le32_to_cpu(m->ee_block),
587 r, le32_to_cpu(r->ee_block));
588 }
589
590 path->p_ext = l - 1;
591 ext_debug(" -> %d:%llu:[%d]%d ",
592 le32_to_cpu(path->p_ext->ee_block),
593 ext4_ext_pblock(path->p_ext),
594 ext4_ext_is_uninitialized(path->p_ext),
595 ext4_ext_get_actual_len(path->p_ext));
596
597 #ifdef CHECK_BINSEARCH
598 {
599 struct ext4_extent *chex, *ex;
600 int k;
601
602 chex = ex = EXT_FIRST_EXTENT(eh);
603 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
604 BUG_ON(k && le32_to_cpu(ex->ee_block)
605 <= le32_to_cpu(ex[-1].ee_block));
606 if (block < le32_to_cpu(ex->ee_block))
607 break;
608 chex = ex;
609 }
610 BUG_ON(chex != path->p_ext);
611 }
612 #endif
613
614 }
615
616 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
617 {
618 struct ext4_extent_header *eh;
619
620 eh = ext_inode_hdr(inode);
621 eh->eh_depth = 0;
622 eh->eh_entries = 0;
623 eh->eh_magic = EXT4_EXT_MAGIC;
624 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
625 ext4_mark_inode_dirty(handle, inode);
626 ext4_ext_invalidate_cache(inode);
627 return 0;
628 }
629
630 struct ext4_ext_path *
631 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
632 struct ext4_ext_path *path)
633 {
634 struct ext4_extent_header *eh;
635 struct buffer_head *bh;
636 short int depth, i, ppos = 0, alloc = 0;
637
638 eh = ext_inode_hdr(inode);
639 depth = ext_depth(inode);
640
641 /* account possible depth increase */
642 if (!path) {
643 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
644 GFP_NOFS);
645 if (!path)
646 return ERR_PTR(-ENOMEM);
647 alloc = 1;
648 }
649 path[0].p_hdr = eh;
650 path[0].p_bh = NULL;
651
652 i = depth;
653 /* walk through the tree */
654 while (i) {
655 int need_to_validate = 0;
656
657 ext_debug("depth %d: num %d, max %d\n",
658 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
659
660 ext4_ext_binsearch_idx(inode, path + ppos, block);
661 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
662 path[ppos].p_depth = i;
663 path[ppos].p_ext = NULL;
664
665 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
666 if (unlikely(!bh))
667 goto err;
668 if (!bh_uptodate_or_lock(bh)) {
669 trace_ext4_ext_load_extent(inode, block,
670 path[ppos].p_block);
671 if (bh_submit_read(bh) < 0) {
672 put_bh(bh);
673 goto err;
674 }
675 /* validate the extent entries */
676 need_to_validate = 1;
677 }
678 eh = ext_block_hdr(bh);
679 ppos++;
680 if (unlikely(ppos > depth)) {
681 put_bh(bh);
682 EXT4_ERROR_INODE(inode,
683 "ppos %d > depth %d", ppos, depth);
684 goto err;
685 }
686 path[ppos].p_bh = bh;
687 path[ppos].p_hdr = eh;
688 i--;
689
690 if (need_to_validate && ext4_ext_check(inode, eh, i))
691 goto err;
692 }
693
694 path[ppos].p_depth = i;
695 path[ppos].p_ext = NULL;
696 path[ppos].p_idx = NULL;
697
698 /* find extent */
699 ext4_ext_binsearch(inode, path + ppos, block);
700 /* if not an empty leaf */
701 if (path[ppos].p_ext)
702 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
703
704 ext4_ext_show_path(inode, path);
705
706 return path;
707
708 err:
709 ext4_ext_drop_refs(path);
710 if (alloc)
711 kfree(path);
712 return ERR_PTR(-EIO);
713 }
714
715 /*
716 * ext4_ext_insert_index:
717 * insert new index [@logical;@ptr] into the block at @curp;
718 * check where to insert: before @curp or after @curp
719 */
720 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
721 struct ext4_ext_path *curp,
722 int logical, ext4_fsblk_t ptr)
723 {
724 struct ext4_extent_idx *ix;
725 int len, err;
726
727 err = ext4_ext_get_access(handle, inode, curp);
728 if (err)
729 return err;
730
731 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
732 EXT4_ERROR_INODE(inode,
733 "logical %d == ei_block %d!",
734 logical, le32_to_cpu(curp->p_idx->ei_block));
735 return -EIO;
736 }
737 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
738 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
739 /* insert after */
740 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
741 len = (len - 1) * sizeof(struct ext4_extent_idx);
742 len = len < 0 ? 0 : len;
743 ext_debug("insert new index %d after: %llu. "
744 "move %d from 0x%p to 0x%p\n",
745 logical, ptr, len,
746 (curp->p_idx + 1), (curp->p_idx + 2));
747 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
748 }
749 ix = curp->p_idx + 1;
750 } else {
751 /* insert before */
752 len = len * sizeof(struct ext4_extent_idx);
753 len = len < 0 ? 0 : len;
754 ext_debug("insert new index %d before: %llu. "
755 "move %d from 0x%p to 0x%p\n",
756 logical, ptr, len,
757 curp->p_idx, (curp->p_idx + 1));
758 memmove(curp->p_idx + 1, curp->p_idx, len);
759 ix = curp->p_idx;
760 }
761
762 ix->ei_block = cpu_to_le32(logical);
763 ext4_idx_store_pblock(ix, ptr);
764 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
765
766 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
767 > le16_to_cpu(curp->p_hdr->eh_max))) {
768 EXT4_ERROR_INODE(inode,
769 "logical %d == ei_block %d!",
770 logical, le32_to_cpu(curp->p_idx->ei_block));
771 return -EIO;
772 }
773 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
774 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
775 return -EIO;
776 }
777
778 err = ext4_ext_dirty(handle, inode, curp);
779 ext4_std_error(inode->i_sb, err);
780
781 return err;
782 }
783
784 /*
785 * ext4_ext_split:
786 * inserts new subtree into the path, using free index entry
787 * at depth @at:
788 * - allocates all needed blocks (new leaf and all intermediate index blocks)
789 * - makes decision where to split
790 * - moves remaining extents and index entries (right to the split point)
791 * into the newly allocated blocks
792 * - initializes subtree
793 */
794 static int ext4_ext_split(handle_t *handle, struct inode *inode,
795 struct ext4_ext_path *path,
796 struct ext4_extent *newext, int at)
797 {
798 struct buffer_head *bh = NULL;
799 int depth = ext_depth(inode);
800 struct ext4_extent_header *neh;
801 struct ext4_extent_idx *fidx;
802 struct ext4_extent *ex;
803 int i = at, k, m, a;
804 ext4_fsblk_t newblock, oldblock;
805 __le32 border;
806 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
807 int err = 0;
808
809 /* make decision: where to split? */
810 /* FIXME: now decision is simplest: at current extent */
811
812 /* if current leaf will be split, then we should use
813 * border from split point */
814 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
815 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
816 return -EIO;
817 }
818 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
819 border = path[depth].p_ext[1].ee_block;
820 ext_debug("leaf will be split."
821 " next leaf starts at %d\n",
822 le32_to_cpu(border));
823 } else {
824 border = newext->ee_block;
825 ext_debug("leaf will be added."
826 " next leaf starts at %d\n",
827 le32_to_cpu(border));
828 }
829
830 /*
831 * If error occurs, then we break processing
832 * and mark filesystem read-only. index won't
833 * be inserted and tree will be in consistent
834 * state. Next mount will repair buffers too.
835 */
836
837 /*
838 * Get array to track all allocated blocks.
839 * We need this to handle errors and free blocks
840 * upon them.
841 */
842 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
843 if (!ablocks)
844 return -ENOMEM;
845
846 /* allocate all needed blocks */
847 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
848 for (a = 0; a < depth - at; a++) {
849 newblock = ext4_ext_new_meta_block(handle, inode, path,
850 newext, &err);
851 if (newblock == 0)
852 goto cleanup;
853 ablocks[a] = newblock;
854 }
855
856 /* initialize new leaf */
857 newblock = ablocks[--a];
858 if (unlikely(newblock == 0)) {
859 EXT4_ERROR_INODE(inode, "newblock == 0!");
860 err = -EIO;
861 goto cleanup;
862 }
863 bh = sb_getblk(inode->i_sb, newblock);
864 if (!bh) {
865 err = -EIO;
866 goto cleanup;
867 }
868 lock_buffer(bh);
869
870 err = ext4_journal_get_create_access(handle, bh);
871 if (err)
872 goto cleanup;
873
874 neh = ext_block_hdr(bh);
875 neh->eh_entries = 0;
876 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
877 neh->eh_magic = EXT4_EXT_MAGIC;
878 neh->eh_depth = 0;
879 ex = EXT_FIRST_EXTENT(neh);
880
881 /* move remainder of path[depth] to the new leaf */
882 if (unlikely(path[depth].p_hdr->eh_entries !=
883 path[depth].p_hdr->eh_max)) {
884 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
885 path[depth].p_hdr->eh_entries,
886 path[depth].p_hdr->eh_max);
887 err = -EIO;
888 goto cleanup;
889 }
890 /* start copy from next extent */
891 /* TODO: we could do it by single memmove */
892 m = 0;
893 path[depth].p_ext++;
894 while (path[depth].p_ext <=
895 EXT_MAX_EXTENT(path[depth].p_hdr)) {
896 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
897 le32_to_cpu(path[depth].p_ext->ee_block),
898 ext4_ext_pblock(path[depth].p_ext),
899 ext4_ext_is_uninitialized(path[depth].p_ext),
900 ext4_ext_get_actual_len(path[depth].p_ext),
901 newblock);
902 /*memmove(ex++, path[depth].p_ext++,
903 sizeof(struct ext4_extent));
904 neh->eh_entries++;*/
905 path[depth].p_ext++;
906 m++;
907 }
908 if (m) {
909 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
910 le16_add_cpu(&neh->eh_entries, m);
911 }
912
913 set_buffer_uptodate(bh);
914 unlock_buffer(bh);
915
916 err = ext4_handle_dirty_metadata(handle, inode, bh);
917 if (err)
918 goto cleanup;
919 brelse(bh);
920 bh = NULL;
921
922 /* correct old leaf */
923 if (m) {
924 err = ext4_ext_get_access(handle, inode, path + depth);
925 if (err)
926 goto cleanup;
927 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
928 err = ext4_ext_dirty(handle, inode, path + depth);
929 if (err)
930 goto cleanup;
931
932 }
933
934 /* create intermediate indexes */
935 k = depth - at - 1;
936 if (unlikely(k < 0)) {
937 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
938 err = -EIO;
939 goto cleanup;
940 }
941 if (k)
942 ext_debug("create %d intermediate indices\n", k);
943 /* insert new index into current index block */
944 /* current depth stored in i var */
945 i = depth - 1;
946 while (k--) {
947 oldblock = newblock;
948 newblock = ablocks[--a];
949 bh = sb_getblk(inode->i_sb, newblock);
950 if (!bh) {
951 err = -EIO;
952 goto cleanup;
953 }
954 lock_buffer(bh);
955
956 err = ext4_journal_get_create_access(handle, bh);
957 if (err)
958 goto cleanup;
959
960 neh = ext_block_hdr(bh);
961 neh->eh_entries = cpu_to_le16(1);
962 neh->eh_magic = EXT4_EXT_MAGIC;
963 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
964 neh->eh_depth = cpu_to_le16(depth - i);
965 fidx = EXT_FIRST_INDEX(neh);
966 fidx->ei_block = border;
967 ext4_idx_store_pblock(fidx, oldblock);
968
969 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
970 i, newblock, le32_to_cpu(border), oldblock);
971 /* copy indexes */
972 m = 0;
973 path[i].p_idx++;
974
975 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
976 EXT_MAX_INDEX(path[i].p_hdr));
977 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
978 EXT_LAST_INDEX(path[i].p_hdr))) {
979 EXT4_ERROR_INODE(inode,
980 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
981 le32_to_cpu(path[i].p_ext->ee_block));
982 err = -EIO;
983 goto cleanup;
984 }
985 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
986 ext_debug("%d: move %d:%llu in new index %llu\n", i,
987 le32_to_cpu(path[i].p_idx->ei_block),
988 ext4_idx_pblock(path[i].p_idx),
989 newblock);
990 /*memmove(++fidx, path[i].p_idx++,
991 sizeof(struct ext4_extent_idx));
992 neh->eh_entries++;
993 BUG_ON(neh->eh_entries > neh->eh_max);*/
994 path[i].p_idx++;
995 m++;
996 }
997 if (m) {
998 memmove(++fidx, path[i].p_idx - m,
999 sizeof(struct ext4_extent_idx) * m);
1000 le16_add_cpu(&neh->eh_entries, m);
1001 }
1002 set_buffer_uptodate(bh);
1003 unlock_buffer(bh);
1004
1005 err = ext4_handle_dirty_metadata(handle, inode, bh);
1006 if (err)
1007 goto cleanup;
1008 brelse(bh);
1009 bh = NULL;
1010
1011 /* correct old index */
1012 if (m) {
1013 err = ext4_ext_get_access(handle, inode, path + i);
1014 if (err)
1015 goto cleanup;
1016 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1017 err = ext4_ext_dirty(handle, inode, path + i);
1018 if (err)
1019 goto cleanup;
1020 }
1021
1022 i--;
1023 }
1024
1025 /* insert new index */
1026 err = ext4_ext_insert_index(handle, inode, path + at,
1027 le32_to_cpu(border), newblock);
1028
1029 cleanup:
1030 if (bh) {
1031 if (buffer_locked(bh))
1032 unlock_buffer(bh);
1033 brelse(bh);
1034 }
1035
1036 if (err) {
1037 /* free all allocated blocks in error case */
1038 for (i = 0; i < depth; i++) {
1039 if (!ablocks[i])
1040 continue;
1041 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1042 EXT4_FREE_BLOCKS_METADATA);
1043 }
1044 }
1045 kfree(ablocks);
1046
1047 return err;
1048 }
1049
1050 /*
1051 * ext4_ext_grow_indepth:
1052 * implements tree growing procedure:
1053 * - allocates new block
1054 * - moves top-level data (index block or leaf) into the new block
1055 * - initializes new top-level, creating index that points to the
1056 * just created block
1057 */
1058 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1059 struct ext4_ext_path *path,
1060 struct ext4_extent *newext)
1061 {
1062 struct ext4_ext_path *curp = path;
1063 struct ext4_extent_header *neh;
1064 struct buffer_head *bh;
1065 ext4_fsblk_t newblock;
1066 int err = 0;
1067
1068 newblock = ext4_ext_new_meta_block(handle, inode, path, newext, &err);
1069 if (newblock == 0)
1070 return err;
1071
1072 bh = sb_getblk(inode->i_sb, newblock);
1073 if (!bh) {
1074 err = -EIO;
1075 ext4_std_error(inode->i_sb, err);
1076 return err;
1077 }
1078 lock_buffer(bh);
1079
1080 err = ext4_journal_get_create_access(handle, bh);
1081 if (err) {
1082 unlock_buffer(bh);
1083 goto out;
1084 }
1085
1086 /* move top-level index/leaf into new block */
1087 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1088
1089 /* set size of new block */
1090 neh = ext_block_hdr(bh);
1091 /* old root could have indexes or leaves
1092 * so calculate e_max right way */
1093 if (ext_depth(inode))
1094 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1095 else
1096 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1097 neh->eh_magic = EXT4_EXT_MAGIC;
1098 set_buffer_uptodate(bh);
1099 unlock_buffer(bh);
1100
1101 err = ext4_handle_dirty_metadata(handle, inode, bh);
1102 if (err)
1103 goto out;
1104
1105 /* create index in new top-level index: num,max,pointer */
1106 err = ext4_ext_get_access(handle, inode, curp);
1107 if (err)
1108 goto out;
1109
1110 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1111 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1112 curp->p_hdr->eh_entries = cpu_to_le16(1);
1113 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1114
1115 if (path[0].p_hdr->eh_depth)
1116 curp->p_idx->ei_block =
1117 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1118 else
1119 curp->p_idx->ei_block =
1120 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1121 ext4_idx_store_pblock(curp->p_idx, newblock);
1122
1123 neh = ext_inode_hdr(inode);
1124 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1125 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1126 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1127 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1128
1129 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1130 err = ext4_ext_dirty(handle, inode, curp);
1131 out:
1132 brelse(bh);
1133
1134 return err;
1135 }
1136
1137 /*
1138 * ext4_ext_create_new_leaf:
1139 * finds empty index and adds new leaf.
1140 * if no free index is found, then it requests in-depth growing.
1141 */
1142 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1143 struct ext4_ext_path *path,
1144 struct ext4_extent *newext)
1145 {
1146 struct ext4_ext_path *curp;
1147 int depth, i, err = 0;
1148
1149 repeat:
1150 i = depth = ext_depth(inode);
1151
1152 /* walk up to the tree and look for free index entry */
1153 curp = path + depth;
1154 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1155 i--;
1156 curp--;
1157 }
1158
1159 /* we use already allocated block for index block,
1160 * so subsequent data blocks should be contiguous */
1161 if (EXT_HAS_FREE_INDEX(curp)) {
1162 /* if we found index with free entry, then use that
1163 * entry: create all needed subtree and add new leaf */
1164 err = ext4_ext_split(handle, inode, path, newext, i);
1165 if (err)
1166 goto out;
1167
1168 /* refill path */
1169 ext4_ext_drop_refs(path);
1170 path = ext4_ext_find_extent(inode,
1171 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1172 path);
1173 if (IS_ERR(path))
1174 err = PTR_ERR(path);
1175 } else {
1176 /* tree is full, time to grow in depth */
1177 err = ext4_ext_grow_indepth(handle, inode, path, newext);
1178 if (err)
1179 goto out;
1180
1181 /* refill path */
1182 ext4_ext_drop_refs(path);
1183 path = ext4_ext_find_extent(inode,
1184 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1185 path);
1186 if (IS_ERR(path)) {
1187 err = PTR_ERR(path);
1188 goto out;
1189 }
1190
1191 /*
1192 * only first (depth 0 -> 1) produces free space;
1193 * in all other cases we have to split the grown tree
1194 */
1195 depth = ext_depth(inode);
1196 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1197 /* now we need to split */
1198 goto repeat;
1199 }
1200 }
1201
1202 out:
1203 return err;
1204 }
1205
1206 /*
1207 * search the closest allocated block to the left for *logical
1208 * and returns it at @logical + it's physical address at @phys
1209 * if *logical is the smallest allocated block, the function
1210 * returns 0 at @phys
1211 * return value contains 0 (success) or error code
1212 */
1213 static int ext4_ext_search_left(struct inode *inode,
1214 struct ext4_ext_path *path,
1215 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1216 {
1217 struct ext4_extent_idx *ix;
1218 struct ext4_extent *ex;
1219 int depth, ee_len;
1220
1221 if (unlikely(path == NULL)) {
1222 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1223 return -EIO;
1224 }
1225 depth = path->p_depth;
1226 *phys = 0;
1227
1228 if (depth == 0 && path->p_ext == NULL)
1229 return 0;
1230
1231 /* usually extent in the path covers blocks smaller
1232 * then *logical, but it can be that extent is the
1233 * first one in the file */
1234
1235 ex = path[depth].p_ext;
1236 ee_len = ext4_ext_get_actual_len(ex);
1237 if (*logical < le32_to_cpu(ex->ee_block)) {
1238 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1239 EXT4_ERROR_INODE(inode,
1240 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1241 *logical, le32_to_cpu(ex->ee_block));
1242 return -EIO;
1243 }
1244 while (--depth >= 0) {
1245 ix = path[depth].p_idx;
1246 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1247 EXT4_ERROR_INODE(inode,
1248 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1249 ix != NULL ? ix->ei_block : 0,
1250 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1251 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1252 depth);
1253 return -EIO;
1254 }
1255 }
1256 return 0;
1257 }
1258
1259 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1260 EXT4_ERROR_INODE(inode,
1261 "logical %d < ee_block %d + ee_len %d!",
1262 *logical, le32_to_cpu(ex->ee_block), ee_len);
1263 return -EIO;
1264 }
1265
1266 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1267 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1268 return 0;
1269 }
1270
1271 /*
1272 * search the closest allocated block to the right for *logical
1273 * and returns it at @logical + it's physical address at @phys
1274 * if *logical is the smallest allocated block, the function
1275 * returns 0 at @phys
1276 * return value contains 0 (success) or error code
1277 */
1278 static int ext4_ext_search_right(struct inode *inode,
1279 struct ext4_ext_path *path,
1280 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1281 {
1282 struct buffer_head *bh = NULL;
1283 struct ext4_extent_header *eh;
1284 struct ext4_extent_idx *ix;
1285 struct ext4_extent *ex;
1286 ext4_fsblk_t block;
1287 int depth; /* Note, NOT eh_depth; depth from top of tree */
1288 int ee_len;
1289
1290 if (unlikely(path == NULL)) {
1291 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1292 return -EIO;
1293 }
1294 depth = path->p_depth;
1295 *phys = 0;
1296
1297 if (depth == 0 && path->p_ext == NULL)
1298 return 0;
1299
1300 /* usually extent in the path covers blocks smaller
1301 * then *logical, but it can be that extent is the
1302 * first one in the file */
1303
1304 ex = path[depth].p_ext;
1305 ee_len = ext4_ext_get_actual_len(ex);
1306 if (*logical < le32_to_cpu(ex->ee_block)) {
1307 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1308 EXT4_ERROR_INODE(inode,
1309 "first_extent(path[%d].p_hdr) != ex",
1310 depth);
1311 return -EIO;
1312 }
1313 while (--depth >= 0) {
1314 ix = path[depth].p_idx;
1315 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1316 EXT4_ERROR_INODE(inode,
1317 "ix != EXT_FIRST_INDEX *logical %d!",
1318 *logical);
1319 return -EIO;
1320 }
1321 }
1322 *logical = le32_to_cpu(ex->ee_block);
1323 *phys = ext4_ext_pblock(ex);
1324 return 0;
1325 }
1326
1327 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1328 EXT4_ERROR_INODE(inode,
1329 "logical %d < ee_block %d + ee_len %d!",
1330 *logical, le32_to_cpu(ex->ee_block), ee_len);
1331 return -EIO;
1332 }
1333
1334 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1335 /* next allocated block in this leaf */
1336 ex++;
1337 *logical = le32_to_cpu(ex->ee_block);
1338 *phys = ext4_ext_pblock(ex);
1339 return 0;
1340 }
1341
1342 /* go up and search for index to the right */
1343 while (--depth >= 0) {
1344 ix = path[depth].p_idx;
1345 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1346 goto got_index;
1347 }
1348
1349 /* we've gone up to the root and found no index to the right */
1350 return 0;
1351
1352 got_index:
1353 /* we've found index to the right, let's
1354 * follow it and find the closest allocated
1355 * block to the right */
1356 ix++;
1357 block = ext4_idx_pblock(ix);
1358 while (++depth < path->p_depth) {
1359 bh = sb_bread(inode->i_sb, block);
1360 if (bh == NULL)
1361 return -EIO;
1362 eh = ext_block_hdr(bh);
1363 /* subtract from p_depth to get proper eh_depth */
1364 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1365 put_bh(bh);
1366 return -EIO;
1367 }
1368 ix = EXT_FIRST_INDEX(eh);
1369 block = ext4_idx_pblock(ix);
1370 put_bh(bh);
1371 }
1372
1373 bh = sb_bread(inode->i_sb, block);
1374 if (bh == NULL)
1375 return -EIO;
1376 eh = ext_block_hdr(bh);
1377 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1378 put_bh(bh);
1379 return -EIO;
1380 }
1381 ex = EXT_FIRST_EXTENT(eh);
1382 *logical = le32_to_cpu(ex->ee_block);
1383 *phys = ext4_ext_pblock(ex);
1384 put_bh(bh);
1385 return 0;
1386 }
1387
1388 /*
1389 * ext4_ext_next_allocated_block:
1390 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1391 * NOTE: it considers block number from index entry as
1392 * allocated block. Thus, index entries have to be consistent
1393 * with leaves.
1394 */
1395 static ext4_lblk_t
1396 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1397 {
1398 int depth;
1399
1400 BUG_ON(path == NULL);
1401 depth = path->p_depth;
1402
1403 if (depth == 0 && path->p_ext == NULL)
1404 return EXT_MAX_BLOCK;
1405
1406 while (depth >= 0) {
1407 if (depth == path->p_depth) {
1408 /* leaf */
1409 if (path[depth].p_ext !=
1410 EXT_LAST_EXTENT(path[depth].p_hdr))
1411 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1412 } else {
1413 /* index */
1414 if (path[depth].p_idx !=
1415 EXT_LAST_INDEX(path[depth].p_hdr))
1416 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1417 }
1418 depth--;
1419 }
1420
1421 return EXT_MAX_BLOCK;
1422 }
1423
1424 /*
1425 * ext4_ext_next_leaf_block:
1426 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1427 */
1428 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1429 struct ext4_ext_path *path)
1430 {
1431 int depth;
1432
1433 BUG_ON(path == NULL);
1434 depth = path->p_depth;
1435
1436 /* zero-tree has no leaf blocks at all */
1437 if (depth == 0)
1438 return EXT_MAX_BLOCK;
1439
1440 /* go to index block */
1441 depth--;
1442
1443 while (depth >= 0) {
1444 if (path[depth].p_idx !=
1445 EXT_LAST_INDEX(path[depth].p_hdr))
1446 return (ext4_lblk_t)
1447 le32_to_cpu(path[depth].p_idx[1].ei_block);
1448 depth--;
1449 }
1450
1451 return EXT_MAX_BLOCK;
1452 }
1453
1454 /*
1455 * ext4_ext_correct_indexes:
1456 * if leaf gets modified and modified extent is first in the leaf,
1457 * then we have to correct all indexes above.
1458 * TODO: do we need to correct tree in all cases?
1459 */
1460 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1461 struct ext4_ext_path *path)
1462 {
1463 struct ext4_extent_header *eh;
1464 int depth = ext_depth(inode);
1465 struct ext4_extent *ex;
1466 __le32 border;
1467 int k, err = 0;
1468
1469 eh = path[depth].p_hdr;
1470 ex = path[depth].p_ext;
1471
1472 if (unlikely(ex == NULL || eh == NULL)) {
1473 EXT4_ERROR_INODE(inode,
1474 "ex %p == NULL or eh %p == NULL", ex, eh);
1475 return -EIO;
1476 }
1477
1478 if (depth == 0) {
1479 /* there is no tree at all */
1480 return 0;
1481 }
1482
1483 if (ex != EXT_FIRST_EXTENT(eh)) {
1484 /* we correct tree if first leaf got modified only */
1485 return 0;
1486 }
1487
1488 /*
1489 * TODO: we need correction if border is smaller than current one
1490 */
1491 k = depth - 1;
1492 border = path[depth].p_ext->ee_block;
1493 err = ext4_ext_get_access(handle, inode, path + k);
1494 if (err)
1495 return err;
1496 path[k].p_idx->ei_block = border;
1497 err = ext4_ext_dirty(handle, inode, path + k);
1498 if (err)
1499 return err;
1500
1501 while (k--) {
1502 /* change all left-side indexes */
1503 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1504 break;
1505 err = ext4_ext_get_access(handle, inode, path + k);
1506 if (err)
1507 break;
1508 path[k].p_idx->ei_block = border;
1509 err = ext4_ext_dirty(handle, inode, path + k);
1510 if (err)
1511 break;
1512 }
1513
1514 return err;
1515 }
1516
1517 int
1518 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1519 struct ext4_extent *ex2)
1520 {
1521 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1522
1523 /*
1524 * Make sure that either both extents are uninitialized, or
1525 * both are _not_.
1526 */
1527 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1528 return 0;
1529
1530 if (ext4_ext_is_uninitialized(ex1))
1531 max_len = EXT_UNINIT_MAX_LEN;
1532 else
1533 max_len = EXT_INIT_MAX_LEN;
1534
1535 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1536 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1537
1538 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1539 le32_to_cpu(ex2->ee_block))
1540 return 0;
1541
1542 /*
1543 * To allow future support for preallocated extents to be added
1544 * as an RO_COMPAT feature, refuse to merge to extents if
1545 * this can result in the top bit of ee_len being set.
1546 */
1547 if (ext1_ee_len + ext2_ee_len > max_len)
1548 return 0;
1549 #ifdef AGGRESSIVE_TEST
1550 if (ext1_ee_len >= 4)
1551 return 0;
1552 #endif
1553
1554 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1555 return 1;
1556 return 0;
1557 }
1558
1559 /*
1560 * This function tries to merge the "ex" extent to the next extent in the tree.
1561 * It always tries to merge towards right. If you want to merge towards
1562 * left, pass "ex - 1" as argument instead of "ex".
1563 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1564 * 1 if they got merged.
1565 */
1566 static int ext4_ext_try_to_merge(struct inode *inode,
1567 struct ext4_ext_path *path,
1568 struct ext4_extent *ex)
1569 {
1570 struct ext4_extent_header *eh;
1571 unsigned int depth, len;
1572 int merge_done = 0;
1573 int uninitialized = 0;
1574
1575 depth = ext_depth(inode);
1576 BUG_ON(path[depth].p_hdr == NULL);
1577 eh = path[depth].p_hdr;
1578
1579 while (ex < EXT_LAST_EXTENT(eh)) {
1580 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1581 break;
1582 /* merge with next extent! */
1583 if (ext4_ext_is_uninitialized(ex))
1584 uninitialized = 1;
1585 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1586 + ext4_ext_get_actual_len(ex + 1));
1587 if (uninitialized)
1588 ext4_ext_mark_uninitialized(ex);
1589
1590 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1591 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1592 * sizeof(struct ext4_extent);
1593 memmove(ex + 1, ex + 2, len);
1594 }
1595 le16_add_cpu(&eh->eh_entries, -1);
1596 merge_done = 1;
1597 WARN_ON(eh->eh_entries == 0);
1598 if (!eh->eh_entries)
1599 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1600 }
1601
1602 return merge_done;
1603 }
1604
1605 /*
1606 * check if a portion of the "newext" extent overlaps with an
1607 * existing extent.
1608 *
1609 * If there is an overlap discovered, it updates the length of the newext
1610 * such that there will be no overlap, and then returns 1.
1611 * If there is no overlap found, it returns 0.
1612 */
1613 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1614 struct ext4_extent *newext,
1615 struct ext4_ext_path *path)
1616 {
1617 ext4_lblk_t b1, b2;
1618 unsigned int depth, len1;
1619 unsigned int ret = 0;
1620
1621 b1 = le32_to_cpu(newext->ee_block);
1622 len1 = ext4_ext_get_actual_len(newext);
1623 depth = ext_depth(inode);
1624 if (!path[depth].p_ext)
1625 goto out;
1626 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1627
1628 /*
1629 * get the next allocated block if the extent in the path
1630 * is before the requested block(s)
1631 */
1632 if (b2 < b1) {
1633 b2 = ext4_ext_next_allocated_block(path);
1634 if (b2 == EXT_MAX_BLOCK)
1635 goto out;
1636 }
1637
1638 /* check for wrap through zero on extent logical start block*/
1639 if (b1 + len1 < b1) {
1640 len1 = EXT_MAX_BLOCK - b1;
1641 newext->ee_len = cpu_to_le16(len1);
1642 ret = 1;
1643 }
1644
1645 /* check for overlap */
1646 if (b1 + len1 > b2) {
1647 newext->ee_len = cpu_to_le16(b2 - b1);
1648 ret = 1;
1649 }
1650 out:
1651 return ret;
1652 }
1653
1654 /*
1655 * ext4_ext_insert_extent:
1656 * tries to merge requsted extent into the existing extent or
1657 * inserts requested extent as new one into the tree,
1658 * creating new leaf in the no-space case.
1659 */
1660 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1661 struct ext4_ext_path *path,
1662 struct ext4_extent *newext, int flag)
1663 {
1664 struct ext4_extent_header *eh;
1665 struct ext4_extent *ex, *fex;
1666 struct ext4_extent *nearex; /* nearest extent */
1667 struct ext4_ext_path *npath = NULL;
1668 int depth, len, err;
1669 ext4_lblk_t next;
1670 unsigned uninitialized = 0;
1671
1672 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1673 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1674 return -EIO;
1675 }
1676 depth = ext_depth(inode);
1677 ex = path[depth].p_ext;
1678 if (unlikely(path[depth].p_hdr == NULL)) {
1679 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1680 return -EIO;
1681 }
1682
1683 /* try to insert block into found extent and return */
1684 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1685 && ext4_can_extents_be_merged(inode, ex, newext)) {
1686 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1687 ext4_ext_is_uninitialized(newext),
1688 ext4_ext_get_actual_len(newext),
1689 le32_to_cpu(ex->ee_block),
1690 ext4_ext_is_uninitialized(ex),
1691 ext4_ext_get_actual_len(ex),
1692 ext4_ext_pblock(ex));
1693 err = ext4_ext_get_access(handle, inode, path + depth);
1694 if (err)
1695 return err;
1696
1697 /*
1698 * ext4_can_extents_be_merged should have checked that either
1699 * both extents are uninitialized, or both aren't. Thus we
1700 * need to check only one of them here.
1701 */
1702 if (ext4_ext_is_uninitialized(ex))
1703 uninitialized = 1;
1704 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1705 + ext4_ext_get_actual_len(newext));
1706 if (uninitialized)
1707 ext4_ext_mark_uninitialized(ex);
1708 eh = path[depth].p_hdr;
1709 nearex = ex;
1710 goto merge;
1711 }
1712
1713 repeat:
1714 depth = ext_depth(inode);
1715 eh = path[depth].p_hdr;
1716 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1717 goto has_space;
1718
1719 /* probably next leaf has space for us? */
1720 fex = EXT_LAST_EXTENT(eh);
1721 next = ext4_ext_next_leaf_block(inode, path);
1722 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1723 && next != EXT_MAX_BLOCK) {
1724 ext_debug("next leaf block - %d\n", next);
1725 BUG_ON(npath != NULL);
1726 npath = ext4_ext_find_extent(inode, next, NULL);
1727 if (IS_ERR(npath))
1728 return PTR_ERR(npath);
1729 BUG_ON(npath->p_depth != path->p_depth);
1730 eh = npath[depth].p_hdr;
1731 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1732 ext_debug("next leaf isnt full(%d)\n",
1733 le16_to_cpu(eh->eh_entries));
1734 path = npath;
1735 goto repeat;
1736 }
1737 ext_debug("next leaf has no free space(%d,%d)\n",
1738 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1739 }
1740
1741 /*
1742 * There is no free space in the found leaf.
1743 * We're gonna add a new leaf in the tree.
1744 */
1745 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1746 if (err)
1747 goto cleanup;
1748 depth = ext_depth(inode);
1749 eh = path[depth].p_hdr;
1750
1751 has_space:
1752 nearex = path[depth].p_ext;
1753
1754 err = ext4_ext_get_access(handle, inode, path + depth);
1755 if (err)
1756 goto cleanup;
1757
1758 if (!nearex) {
1759 /* there is no extent in this leaf, create first one */
1760 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1761 le32_to_cpu(newext->ee_block),
1762 ext4_ext_pblock(newext),
1763 ext4_ext_is_uninitialized(newext),
1764 ext4_ext_get_actual_len(newext));
1765 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1766 } else if (le32_to_cpu(newext->ee_block)
1767 > le32_to_cpu(nearex->ee_block)) {
1768 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1769 if (nearex != EXT_LAST_EXTENT(eh)) {
1770 len = EXT_MAX_EXTENT(eh) - nearex;
1771 len = (len - 1) * sizeof(struct ext4_extent);
1772 len = len < 0 ? 0 : len;
1773 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1774 "move %d from 0x%p to 0x%p\n",
1775 le32_to_cpu(newext->ee_block),
1776 ext4_ext_pblock(newext),
1777 ext4_ext_is_uninitialized(newext),
1778 ext4_ext_get_actual_len(newext),
1779 nearex, len, nearex + 1, nearex + 2);
1780 memmove(nearex + 2, nearex + 1, len);
1781 }
1782 path[depth].p_ext = nearex + 1;
1783 } else {
1784 BUG_ON(newext->ee_block == nearex->ee_block);
1785 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1786 len = len < 0 ? 0 : len;
1787 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1788 "move %d from 0x%p to 0x%p\n",
1789 le32_to_cpu(newext->ee_block),
1790 ext4_ext_pblock(newext),
1791 ext4_ext_is_uninitialized(newext),
1792 ext4_ext_get_actual_len(newext),
1793 nearex, len, nearex + 1, nearex + 2);
1794 memmove(nearex + 1, nearex, len);
1795 path[depth].p_ext = nearex;
1796 }
1797
1798 le16_add_cpu(&eh->eh_entries, 1);
1799 nearex = path[depth].p_ext;
1800 nearex->ee_block = newext->ee_block;
1801 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1802 nearex->ee_len = newext->ee_len;
1803
1804 merge:
1805 /* try to merge extents to the right */
1806 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1807 ext4_ext_try_to_merge(inode, path, nearex);
1808
1809 /* try to merge extents to the left */
1810
1811 /* time to correct all indexes above */
1812 err = ext4_ext_correct_indexes(handle, inode, path);
1813 if (err)
1814 goto cleanup;
1815
1816 err = ext4_ext_dirty(handle, inode, path + depth);
1817
1818 cleanup:
1819 if (npath) {
1820 ext4_ext_drop_refs(npath);
1821 kfree(npath);
1822 }
1823 ext4_ext_invalidate_cache(inode);
1824 return err;
1825 }
1826
1827 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1828 ext4_lblk_t num, ext_prepare_callback func,
1829 void *cbdata)
1830 {
1831 struct ext4_ext_path *path = NULL;
1832 struct ext4_ext_cache cbex;
1833 struct ext4_extent *ex;
1834 ext4_lblk_t next, start = 0, end = 0;
1835 ext4_lblk_t last = block + num;
1836 int depth, exists, err = 0;
1837
1838 BUG_ON(func == NULL);
1839 BUG_ON(inode == NULL);
1840
1841 while (block < last && block != EXT_MAX_BLOCK) {
1842 num = last - block;
1843 /* find extent for this block */
1844 down_read(&EXT4_I(inode)->i_data_sem);
1845 path = ext4_ext_find_extent(inode, block, path);
1846 up_read(&EXT4_I(inode)->i_data_sem);
1847 if (IS_ERR(path)) {
1848 err = PTR_ERR(path);
1849 path = NULL;
1850 break;
1851 }
1852
1853 depth = ext_depth(inode);
1854 if (unlikely(path[depth].p_hdr == NULL)) {
1855 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1856 err = -EIO;
1857 break;
1858 }
1859 ex = path[depth].p_ext;
1860 next = ext4_ext_next_allocated_block(path);
1861
1862 exists = 0;
1863 if (!ex) {
1864 /* there is no extent yet, so try to allocate
1865 * all requested space */
1866 start = block;
1867 end = block + num;
1868 } else if (le32_to_cpu(ex->ee_block) > block) {
1869 /* need to allocate space before found extent */
1870 start = block;
1871 end = le32_to_cpu(ex->ee_block);
1872 if (block + num < end)
1873 end = block + num;
1874 } else if (block >= le32_to_cpu(ex->ee_block)
1875 + ext4_ext_get_actual_len(ex)) {
1876 /* need to allocate space after found extent */
1877 start = block;
1878 end = block + num;
1879 if (end >= next)
1880 end = next;
1881 } else if (block >= le32_to_cpu(ex->ee_block)) {
1882 /*
1883 * some part of requested space is covered
1884 * by found extent
1885 */
1886 start = block;
1887 end = le32_to_cpu(ex->ee_block)
1888 + ext4_ext_get_actual_len(ex);
1889 if (block + num < end)
1890 end = block + num;
1891 exists = 1;
1892 } else {
1893 BUG();
1894 }
1895 BUG_ON(end <= start);
1896
1897 if (!exists) {
1898 cbex.ec_block = start;
1899 cbex.ec_len = end - start;
1900 cbex.ec_start = 0;
1901 } else {
1902 cbex.ec_block = le32_to_cpu(ex->ee_block);
1903 cbex.ec_len = ext4_ext_get_actual_len(ex);
1904 cbex.ec_start = ext4_ext_pblock(ex);
1905 }
1906
1907 if (unlikely(cbex.ec_len == 0)) {
1908 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1909 err = -EIO;
1910 break;
1911 }
1912 err = func(inode, path, &cbex, ex, cbdata);
1913 ext4_ext_drop_refs(path);
1914
1915 if (err < 0)
1916 break;
1917
1918 if (err == EXT_REPEAT)
1919 continue;
1920 else if (err == EXT_BREAK) {
1921 err = 0;
1922 break;
1923 }
1924
1925 if (ext_depth(inode) != depth) {
1926 /* depth was changed. we have to realloc path */
1927 kfree(path);
1928 path = NULL;
1929 }
1930
1931 block = cbex.ec_block + cbex.ec_len;
1932 }
1933
1934 if (path) {
1935 ext4_ext_drop_refs(path);
1936 kfree(path);
1937 }
1938
1939 return err;
1940 }
1941
1942 static void
1943 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1944 __u32 len, ext4_fsblk_t start)
1945 {
1946 struct ext4_ext_cache *cex;
1947 BUG_ON(len == 0);
1948 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1949 cex = &EXT4_I(inode)->i_cached_extent;
1950 cex->ec_block = block;
1951 cex->ec_len = len;
1952 cex->ec_start = start;
1953 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1954 }
1955
1956 /*
1957 * ext4_ext_put_gap_in_cache:
1958 * calculate boundaries of the gap that the requested block fits into
1959 * and cache this gap
1960 */
1961 static void
1962 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1963 ext4_lblk_t block)
1964 {
1965 int depth = ext_depth(inode);
1966 unsigned long len;
1967 ext4_lblk_t lblock;
1968 struct ext4_extent *ex;
1969
1970 ex = path[depth].p_ext;
1971 if (ex == NULL) {
1972 /* there is no extent yet, so gap is [0;-] */
1973 lblock = 0;
1974 len = EXT_MAX_BLOCK;
1975 ext_debug("cache gap(whole file):");
1976 } else if (block < le32_to_cpu(ex->ee_block)) {
1977 lblock = block;
1978 len = le32_to_cpu(ex->ee_block) - block;
1979 ext_debug("cache gap(before): %u [%u:%u]",
1980 block,
1981 le32_to_cpu(ex->ee_block),
1982 ext4_ext_get_actual_len(ex));
1983 } else if (block >= le32_to_cpu(ex->ee_block)
1984 + ext4_ext_get_actual_len(ex)) {
1985 ext4_lblk_t next;
1986 lblock = le32_to_cpu(ex->ee_block)
1987 + ext4_ext_get_actual_len(ex);
1988
1989 next = ext4_ext_next_allocated_block(path);
1990 ext_debug("cache gap(after): [%u:%u] %u",
1991 le32_to_cpu(ex->ee_block),
1992 ext4_ext_get_actual_len(ex),
1993 block);
1994 BUG_ON(next == lblock);
1995 len = next - lblock;
1996 } else {
1997 lblock = len = 0;
1998 BUG();
1999 }
2000
2001 ext_debug(" -> %u:%lu\n", lblock, len);
2002 ext4_ext_put_in_cache(inode, lblock, len, 0);
2003 }
2004
2005 /*
2006 * Return 0 if cache is invalid; 1 if the cache is valid
2007 */
2008 static int
2009 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2010 struct ext4_extent *ex)
2011 {
2012 struct ext4_ext_cache *cex;
2013 int ret = 0;
2014
2015 /*
2016 * We borrow i_block_reservation_lock to protect i_cached_extent
2017 */
2018 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2019 cex = &EXT4_I(inode)->i_cached_extent;
2020
2021 /* has cache valid data? */
2022 if (cex->ec_len == 0)
2023 goto errout;
2024
2025 if (in_range(block, cex->ec_block, cex->ec_len)) {
2026 ex->ee_block = cpu_to_le32(cex->ec_block);
2027 ext4_ext_store_pblock(ex, cex->ec_start);
2028 ex->ee_len = cpu_to_le16(cex->ec_len);
2029 ext_debug("%u cached by %u:%u:%llu\n",
2030 block,
2031 cex->ec_block, cex->ec_len, cex->ec_start);
2032 ret = 1;
2033 }
2034 errout:
2035 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2036 return ret;
2037 }
2038
2039 /*
2040 * ext4_ext_rm_idx:
2041 * removes index from the index block.
2042 * It's used in truncate case only, thus all requests are for
2043 * last index in the block only.
2044 */
2045 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2046 struct ext4_ext_path *path)
2047 {
2048 int err;
2049 ext4_fsblk_t leaf;
2050
2051 /* free index block */
2052 path--;
2053 leaf = ext4_idx_pblock(path->p_idx);
2054 if (unlikely(path->p_hdr->eh_entries == 0)) {
2055 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2056 return -EIO;
2057 }
2058 err = ext4_ext_get_access(handle, inode, path);
2059 if (err)
2060 return err;
2061 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2062 err = ext4_ext_dirty(handle, inode, path);
2063 if (err)
2064 return err;
2065 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2066 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2067 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2068 return err;
2069 }
2070
2071 /*
2072 * ext4_ext_calc_credits_for_single_extent:
2073 * This routine returns max. credits that needed to insert an extent
2074 * to the extent tree.
2075 * When pass the actual path, the caller should calculate credits
2076 * under i_data_sem.
2077 */
2078 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2079 struct ext4_ext_path *path)
2080 {
2081 if (path) {
2082 int depth = ext_depth(inode);
2083 int ret = 0;
2084
2085 /* probably there is space in leaf? */
2086 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2087 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2088
2089 /*
2090 * There are some space in the leaf tree, no
2091 * need to account for leaf block credit
2092 *
2093 * bitmaps and block group descriptor blocks
2094 * and other metadat blocks still need to be
2095 * accounted.
2096 */
2097 /* 1 bitmap, 1 block group descriptor */
2098 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2099 return ret;
2100 }
2101 }
2102
2103 return ext4_chunk_trans_blocks(inode, nrblocks);
2104 }
2105
2106 /*
2107 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2108 *
2109 * if nrblocks are fit in a single extent (chunk flag is 1), then
2110 * in the worse case, each tree level index/leaf need to be changed
2111 * if the tree split due to insert a new extent, then the old tree
2112 * index/leaf need to be updated too
2113 *
2114 * If the nrblocks are discontiguous, they could cause
2115 * the whole tree split more than once, but this is really rare.
2116 */
2117 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2118 {
2119 int index;
2120 int depth = ext_depth(inode);
2121
2122 if (chunk)
2123 index = depth * 2;
2124 else
2125 index = depth * 3;
2126
2127 return index;
2128 }
2129
2130 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2131 struct ext4_extent *ex,
2132 ext4_lblk_t from, ext4_lblk_t to)
2133 {
2134 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2135 int flags = EXT4_FREE_BLOCKS_FORGET;
2136
2137 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2138 flags |= EXT4_FREE_BLOCKS_METADATA;
2139 #ifdef EXTENTS_STATS
2140 {
2141 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2142 spin_lock(&sbi->s_ext_stats_lock);
2143 sbi->s_ext_blocks += ee_len;
2144 sbi->s_ext_extents++;
2145 if (ee_len < sbi->s_ext_min)
2146 sbi->s_ext_min = ee_len;
2147 if (ee_len > sbi->s_ext_max)
2148 sbi->s_ext_max = ee_len;
2149 if (ext_depth(inode) > sbi->s_depth_max)
2150 sbi->s_depth_max = ext_depth(inode);
2151 spin_unlock(&sbi->s_ext_stats_lock);
2152 }
2153 #endif
2154 if (from >= le32_to_cpu(ex->ee_block)
2155 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2156 /* tail removal */
2157 ext4_lblk_t num;
2158 ext4_fsblk_t start;
2159
2160 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2161 start = ext4_ext_pblock(ex) + ee_len - num;
2162 ext_debug("free last %u blocks starting %llu\n", num, start);
2163 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2164 } else if (from == le32_to_cpu(ex->ee_block)
2165 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2166 printk(KERN_INFO "strange request: removal %u-%u from %u:%u\n",
2167 from, to, le32_to_cpu(ex->ee_block), ee_len);
2168 } else {
2169 printk(KERN_INFO "strange request: removal(2) "
2170 "%u-%u from %u:%u\n",
2171 from, to, le32_to_cpu(ex->ee_block), ee_len);
2172 }
2173 return 0;
2174 }
2175
2176 static int
2177 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2178 struct ext4_ext_path *path, ext4_lblk_t start)
2179 {
2180 int err = 0, correct_index = 0;
2181 int depth = ext_depth(inode), credits;
2182 struct ext4_extent_header *eh;
2183 ext4_lblk_t a, b, block;
2184 unsigned num;
2185 ext4_lblk_t ex_ee_block;
2186 unsigned short ex_ee_len;
2187 unsigned uninitialized = 0;
2188 struct ext4_extent *ex;
2189
2190 /* the header must be checked already in ext4_ext_remove_space() */
2191 ext_debug("truncate since %u in leaf\n", start);
2192 if (!path[depth].p_hdr)
2193 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2194 eh = path[depth].p_hdr;
2195 if (unlikely(path[depth].p_hdr == NULL)) {
2196 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2197 return -EIO;
2198 }
2199 /* find where to start removing */
2200 ex = EXT_LAST_EXTENT(eh);
2201
2202 ex_ee_block = le32_to_cpu(ex->ee_block);
2203 ex_ee_len = ext4_ext_get_actual_len(ex);
2204
2205 while (ex >= EXT_FIRST_EXTENT(eh) &&
2206 ex_ee_block + ex_ee_len > start) {
2207
2208 if (ext4_ext_is_uninitialized(ex))
2209 uninitialized = 1;
2210 else
2211 uninitialized = 0;
2212
2213 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2214 uninitialized, ex_ee_len);
2215 path[depth].p_ext = ex;
2216
2217 a = ex_ee_block > start ? ex_ee_block : start;
2218 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
2219 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
2220
2221 ext_debug(" border %u:%u\n", a, b);
2222
2223 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
2224 block = 0;
2225 num = 0;
2226 BUG();
2227 } else if (a != ex_ee_block) {
2228 /* remove tail of the extent */
2229 block = ex_ee_block;
2230 num = a - block;
2231 } else if (b != ex_ee_block + ex_ee_len - 1) {
2232 /* remove head of the extent */
2233 block = a;
2234 num = b - a;
2235 /* there is no "make a hole" API yet */
2236 BUG();
2237 } else {
2238 /* remove whole extent: excellent! */
2239 block = ex_ee_block;
2240 num = 0;
2241 BUG_ON(a != ex_ee_block);
2242 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
2243 }
2244
2245 /*
2246 * 3 for leaf, sb, and inode plus 2 (bmap and group
2247 * descriptor) for each block group; assume two block
2248 * groups plus ex_ee_len/blocks_per_block_group for
2249 * the worst case
2250 */
2251 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2252 if (ex == EXT_FIRST_EXTENT(eh)) {
2253 correct_index = 1;
2254 credits += (ext_depth(inode)) + 1;
2255 }
2256 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2257
2258 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2259 if (err)
2260 goto out;
2261
2262 err = ext4_ext_get_access(handle, inode, path + depth);
2263 if (err)
2264 goto out;
2265
2266 err = ext4_remove_blocks(handle, inode, ex, a, b);
2267 if (err)
2268 goto out;
2269
2270 if (num == 0) {
2271 /* this extent is removed; mark slot entirely unused */
2272 ext4_ext_store_pblock(ex, 0);
2273 le16_add_cpu(&eh->eh_entries, -1);
2274 }
2275
2276 ex->ee_block = cpu_to_le32(block);
2277 ex->ee_len = cpu_to_le16(num);
2278 /*
2279 * Do not mark uninitialized if all the blocks in the
2280 * extent have been removed.
2281 */
2282 if (uninitialized && num)
2283 ext4_ext_mark_uninitialized(ex);
2284
2285 err = ext4_ext_dirty(handle, inode, path + depth);
2286 if (err)
2287 goto out;
2288
2289 ext_debug("new extent: %u:%u:%llu\n", block, num,
2290 ext4_ext_pblock(ex));
2291 ex--;
2292 ex_ee_block = le32_to_cpu(ex->ee_block);
2293 ex_ee_len = ext4_ext_get_actual_len(ex);
2294 }
2295
2296 if (correct_index && eh->eh_entries)
2297 err = ext4_ext_correct_indexes(handle, inode, path);
2298
2299 /* if this leaf is free, then we should
2300 * remove it from index block above */
2301 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2302 err = ext4_ext_rm_idx(handle, inode, path + depth);
2303
2304 out:
2305 return err;
2306 }
2307
2308 /*
2309 * ext4_ext_more_to_rm:
2310 * returns 1 if current index has to be freed (even partial)
2311 */
2312 static int
2313 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2314 {
2315 BUG_ON(path->p_idx == NULL);
2316
2317 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2318 return 0;
2319
2320 /*
2321 * if truncate on deeper level happened, it wasn't partial,
2322 * so we have to consider current index for truncation
2323 */
2324 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2325 return 0;
2326 return 1;
2327 }
2328
2329 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2330 {
2331 struct super_block *sb = inode->i_sb;
2332 int depth = ext_depth(inode);
2333 struct ext4_ext_path *path;
2334 handle_t *handle;
2335 int i, err;
2336
2337 ext_debug("truncate since %u\n", start);
2338
2339 /* probably first extent we're gonna free will be last in block */
2340 handle = ext4_journal_start(inode, depth + 1);
2341 if (IS_ERR(handle))
2342 return PTR_ERR(handle);
2343
2344 again:
2345 ext4_ext_invalidate_cache(inode);
2346
2347 /*
2348 * We start scanning from right side, freeing all the blocks
2349 * after i_size and walking into the tree depth-wise.
2350 */
2351 depth = ext_depth(inode);
2352 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2353 if (path == NULL) {
2354 ext4_journal_stop(handle);
2355 return -ENOMEM;
2356 }
2357 path[0].p_depth = depth;
2358 path[0].p_hdr = ext_inode_hdr(inode);
2359 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2360 err = -EIO;
2361 goto out;
2362 }
2363 i = err = 0;
2364
2365 while (i >= 0 && err == 0) {
2366 if (i == depth) {
2367 /* this is leaf block */
2368 err = ext4_ext_rm_leaf(handle, inode, path, start);
2369 /* root level has p_bh == NULL, brelse() eats this */
2370 brelse(path[i].p_bh);
2371 path[i].p_bh = NULL;
2372 i--;
2373 continue;
2374 }
2375
2376 /* this is index block */
2377 if (!path[i].p_hdr) {
2378 ext_debug("initialize header\n");
2379 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2380 }
2381
2382 if (!path[i].p_idx) {
2383 /* this level hasn't been touched yet */
2384 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2385 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2386 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2387 path[i].p_hdr,
2388 le16_to_cpu(path[i].p_hdr->eh_entries));
2389 } else {
2390 /* we were already here, see at next index */
2391 path[i].p_idx--;
2392 }
2393
2394 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2395 i, EXT_FIRST_INDEX(path[i].p_hdr),
2396 path[i].p_idx);
2397 if (ext4_ext_more_to_rm(path + i)) {
2398 struct buffer_head *bh;
2399 /* go to the next level */
2400 ext_debug("move to level %d (block %llu)\n",
2401 i + 1, ext4_idx_pblock(path[i].p_idx));
2402 memset(path + i + 1, 0, sizeof(*path));
2403 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2404 if (!bh) {
2405 /* should we reset i_size? */
2406 err = -EIO;
2407 break;
2408 }
2409 if (WARN_ON(i + 1 > depth)) {
2410 err = -EIO;
2411 break;
2412 }
2413 if (ext4_ext_check(inode, ext_block_hdr(bh),
2414 depth - i - 1)) {
2415 err = -EIO;
2416 break;
2417 }
2418 path[i + 1].p_bh = bh;
2419
2420 /* save actual number of indexes since this
2421 * number is changed at the next iteration */
2422 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2423 i++;
2424 } else {
2425 /* we finished processing this index, go up */
2426 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2427 /* index is empty, remove it;
2428 * handle must be already prepared by the
2429 * truncatei_leaf() */
2430 err = ext4_ext_rm_idx(handle, inode, path + i);
2431 }
2432 /* root level has p_bh == NULL, brelse() eats this */
2433 brelse(path[i].p_bh);
2434 path[i].p_bh = NULL;
2435 i--;
2436 ext_debug("return to level %d\n", i);
2437 }
2438 }
2439
2440 /* TODO: flexible tree reduction should be here */
2441 if (path->p_hdr->eh_entries == 0) {
2442 /*
2443 * truncate to zero freed all the tree,
2444 * so we need to correct eh_depth
2445 */
2446 err = ext4_ext_get_access(handle, inode, path);
2447 if (err == 0) {
2448 ext_inode_hdr(inode)->eh_depth = 0;
2449 ext_inode_hdr(inode)->eh_max =
2450 cpu_to_le16(ext4_ext_space_root(inode, 0));
2451 err = ext4_ext_dirty(handle, inode, path);
2452 }
2453 }
2454 out:
2455 ext4_ext_drop_refs(path);
2456 kfree(path);
2457 if (err == -EAGAIN)
2458 goto again;
2459 ext4_journal_stop(handle);
2460
2461 return err;
2462 }
2463
2464 /*
2465 * called at mount time
2466 */
2467 void ext4_ext_init(struct super_block *sb)
2468 {
2469 /*
2470 * possible initialization would be here
2471 */
2472
2473 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2474 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2475 printk(KERN_INFO "EXT4-fs: file extents enabled");
2476 #ifdef AGGRESSIVE_TEST
2477 printk(", aggressive tests");
2478 #endif
2479 #ifdef CHECK_BINSEARCH
2480 printk(", check binsearch");
2481 #endif
2482 #ifdef EXTENTS_STATS
2483 printk(", stats");
2484 #endif
2485 printk("\n");
2486 #endif
2487 #ifdef EXTENTS_STATS
2488 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2489 EXT4_SB(sb)->s_ext_min = 1 << 30;
2490 EXT4_SB(sb)->s_ext_max = 0;
2491 #endif
2492 }
2493 }
2494
2495 /*
2496 * called at umount time
2497 */
2498 void ext4_ext_release(struct super_block *sb)
2499 {
2500 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2501 return;
2502
2503 #ifdef EXTENTS_STATS
2504 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2505 struct ext4_sb_info *sbi = EXT4_SB(sb);
2506 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2507 sbi->s_ext_blocks, sbi->s_ext_extents,
2508 sbi->s_ext_blocks / sbi->s_ext_extents);
2509 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2510 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2511 }
2512 #endif
2513 }
2514
2515 /* FIXME!! we need to try to merge to left or right after zero-out */
2516 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2517 {
2518 ext4_fsblk_t ee_pblock;
2519 unsigned int ee_len;
2520 int ret;
2521
2522 ee_len = ext4_ext_get_actual_len(ex);
2523 ee_pblock = ext4_ext_pblock(ex);
2524
2525 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2526 if (ret > 0)
2527 ret = 0;
2528
2529 return ret;
2530 }
2531
2532 #define EXT4_EXT_ZERO_LEN 7
2533 /*
2534 * This function is called by ext4_ext_map_blocks() if someone tries to write
2535 * to an uninitialized extent. It may result in splitting the uninitialized
2536 * extent into multiple extents (upto three - one initialized and two
2537 * uninitialized).
2538 * There are three possibilities:
2539 * a> There is no split required: Entire extent should be initialized
2540 * b> Splits in two extents: Write is happening at either end of the extent
2541 * c> Splits in three extents: Somone is writing in middle of the extent
2542 */
2543 static int ext4_ext_convert_to_initialized(handle_t *handle,
2544 struct inode *inode,
2545 struct ext4_map_blocks *map,
2546 struct ext4_ext_path *path)
2547 {
2548 struct ext4_extent *ex, newex, orig_ex;
2549 struct ext4_extent *ex1 = NULL;
2550 struct ext4_extent *ex2 = NULL;
2551 struct ext4_extent *ex3 = NULL;
2552 struct ext4_extent_header *eh;
2553 ext4_lblk_t ee_block, eof_block;
2554 unsigned int allocated, ee_len, depth;
2555 ext4_fsblk_t newblock;
2556 int err = 0;
2557 int ret = 0;
2558 int may_zeroout;
2559
2560 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2561 "block %llu, max_blocks %u\n", inode->i_ino,
2562 (unsigned long long)map->m_lblk, map->m_len);
2563
2564 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2565 inode->i_sb->s_blocksize_bits;
2566 if (eof_block < map->m_lblk + map->m_len)
2567 eof_block = map->m_lblk + map->m_len;
2568
2569 depth = ext_depth(inode);
2570 eh = path[depth].p_hdr;
2571 ex = path[depth].p_ext;
2572 ee_block = le32_to_cpu(ex->ee_block);
2573 ee_len = ext4_ext_get_actual_len(ex);
2574 allocated = ee_len - (map->m_lblk - ee_block);
2575 newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2576
2577 ex2 = ex;
2578 orig_ex.ee_block = ex->ee_block;
2579 orig_ex.ee_len = cpu_to_le16(ee_len);
2580 ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2581
2582 /*
2583 * It is safe to convert extent to initialized via explicit
2584 * zeroout only if extent is fully insde i_size or new_size.
2585 */
2586 may_zeroout = ee_block + ee_len <= eof_block;
2587
2588 err = ext4_ext_get_access(handle, inode, path + depth);
2589 if (err)
2590 goto out;
2591 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2592 if (ee_len <= 2*EXT4_EXT_ZERO_LEN && may_zeroout) {
2593 err = ext4_ext_zeroout(inode, &orig_ex);
2594 if (err)
2595 goto fix_extent_len;
2596 /* update the extent length and mark as initialized */
2597 ex->ee_block = orig_ex.ee_block;
2598 ex->ee_len = orig_ex.ee_len;
2599 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2600 ext4_ext_dirty(handle, inode, path + depth);
2601 /* zeroed the full extent */
2602 return allocated;
2603 }
2604
2605 /* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2606 if (map->m_lblk > ee_block) {
2607 ex1 = ex;
2608 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2609 ext4_ext_mark_uninitialized(ex1);
2610 ex2 = &newex;
2611 }
2612 /*
2613 * for sanity, update the length of the ex2 extent before
2614 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2615 * overlap of blocks.
2616 */
2617 if (!ex1 && allocated > map->m_len)
2618 ex2->ee_len = cpu_to_le16(map->m_len);
2619 /* ex3: to ee_block + ee_len : uninitialised */
2620 if (allocated > map->m_len) {
2621 unsigned int newdepth;
2622 /* If extent has less than EXT4_EXT_ZERO_LEN zerout directly */
2623 if (allocated <= EXT4_EXT_ZERO_LEN && may_zeroout) {
2624 /*
2625 * map->m_lblk == ee_block is handled by the zerouout
2626 * at the beginning.
2627 * Mark first half uninitialized.
2628 * Mark second half initialized and zero out the
2629 * initialized extent
2630 */
2631 ex->ee_block = orig_ex.ee_block;
2632 ex->ee_len = cpu_to_le16(ee_len - allocated);
2633 ext4_ext_mark_uninitialized(ex);
2634 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2635 ext4_ext_dirty(handle, inode, path + depth);
2636
2637 ex3 = &newex;
2638 ex3->ee_block = cpu_to_le32(map->m_lblk);
2639 ext4_ext_store_pblock(ex3, newblock);
2640 ex3->ee_len = cpu_to_le16(allocated);
2641 err = ext4_ext_insert_extent(handle, inode, path,
2642 ex3, 0);
2643 if (err == -ENOSPC) {
2644 err = ext4_ext_zeroout(inode, &orig_ex);
2645 if (err)
2646 goto fix_extent_len;
2647 ex->ee_block = orig_ex.ee_block;
2648 ex->ee_len = orig_ex.ee_len;
2649 ext4_ext_store_pblock(ex,
2650 ext4_ext_pblock(&orig_ex));
2651 ext4_ext_dirty(handle, inode, path + depth);
2652 /* blocks available from map->m_lblk */
2653 return allocated;
2654
2655 } else if (err)
2656 goto fix_extent_len;
2657
2658 /*
2659 * We need to zero out the second half because
2660 * an fallocate request can update file size and
2661 * converting the second half to initialized extent
2662 * implies that we can leak some junk data to user
2663 * space.
2664 */
2665 err = ext4_ext_zeroout(inode, ex3);
2666 if (err) {
2667 /*
2668 * We should actually mark the
2669 * second half as uninit and return error
2670 * Insert would have changed the extent
2671 */
2672 depth = ext_depth(inode);
2673 ext4_ext_drop_refs(path);
2674 path = ext4_ext_find_extent(inode, map->m_lblk,
2675 path);
2676 if (IS_ERR(path)) {
2677 err = PTR_ERR(path);
2678 return err;
2679 }
2680 /* get the second half extent details */
2681 ex = path[depth].p_ext;
2682 err = ext4_ext_get_access(handle, inode,
2683 path + depth);
2684 if (err)
2685 return err;
2686 ext4_ext_mark_uninitialized(ex);
2687 ext4_ext_dirty(handle, inode, path + depth);
2688 return err;
2689 }
2690
2691 /* zeroed the second half */
2692 return allocated;
2693 }
2694 ex3 = &newex;
2695 ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2696 ext4_ext_store_pblock(ex3, newblock + map->m_len);
2697 ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2698 ext4_ext_mark_uninitialized(ex3);
2699 err = ext4_ext_insert_extent(handle, inode, path, ex3, 0);
2700 if (err == -ENOSPC && may_zeroout) {
2701 err = ext4_ext_zeroout(inode, &orig_ex);
2702 if (err)
2703 goto fix_extent_len;
2704 /* update the extent length and mark as initialized */
2705 ex->ee_block = orig_ex.ee_block;
2706 ex->ee_len = orig_ex.ee_len;
2707 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2708 ext4_ext_dirty(handle, inode, path + depth);
2709 /* zeroed the full extent */
2710 /* blocks available from map->m_lblk */
2711 return allocated;
2712
2713 } else if (err)
2714 goto fix_extent_len;
2715 /*
2716 * The depth, and hence eh & ex might change
2717 * as part of the insert above.
2718 */
2719 newdepth = ext_depth(inode);
2720 /*
2721 * update the extent length after successful insert of the
2722 * split extent
2723 */
2724 ee_len -= ext4_ext_get_actual_len(ex3);
2725 orig_ex.ee_len = cpu_to_le16(ee_len);
2726 may_zeroout = ee_block + ee_len <= eof_block;
2727
2728 depth = newdepth;
2729 ext4_ext_drop_refs(path);
2730 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2731 if (IS_ERR(path)) {
2732 err = PTR_ERR(path);
2733 goto out;
2734 }
2735 eh = path[depth].p_hdr;
2736 ex = path[depth].p_ext;
2737 if (ex2 != &newex)
2738 ex2 = ex;
2739
2740 err = ext4_ext_get_access(handle, inode, path + depth);
2741 if (err)
2742 goto out;
2743
2744 allocated = map->m_len;
2745
2746 /* If extent has less than EXT4_EXT_ZERO_LEN and we are trying
2747 * to insert a extent in the middle zerout directly
2748 * otherwise give the extent a chance to merge to left
2749 */
2750 if (le16_to_cpu(orig_ex.ee_len) <= EXT4_EXT_ZERO_LEN &&
2751 map->m_lblk != ee_block && may_zeroout) {
2752 err = ext4_ext_zeroout(inode, &orig_ex);
2753 if (err)
2754 goto fix_extent_len;
2755 /* update the extent length and mark as initialized */
2756 ex->ee_block = orig_ex.ee_block;
2757 ex->ee_len = orig_ex.ee_len;
2758 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2759 ext4_ext_dirty(handle, inode, path + depth);
2760 /* zero out the first half */
2761 /* blocks available from map->m_lblk */
2762 return allocated;
2763 }
2764 }
2765 /*
2766 * If there was a change of depth as part of the
2767 * insertion of ex3 above, we need to update the length
2768 * of the ex1 extent again here
2769 */
2770 if (ex1 && ex1 != ex) {
2771 ex1 = ex;
2772 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2773 ext4_ext_mark_uninitialized(ex1);
2774 ex2 = &newex;
2775 }
2776 /* ex2: map->m_lblk to map->m_lblk + maxblocks-1 : initialised */
2777 ex2->ee_block = cpu_to_le32(map->m_lblk);
2778 ext4_ext_store_pblock(ex2, newblock);
2779 ex2->ee_len = cpu_to_le16(allocated);
2780 if (ex2 != ex)
2781 goto insert;
2782 /*
2783 * New (initialized) extent starts from the first block
2784 * in the current extent. i.e., ex2 == ex
2785 * We have to see if it can be merged with the extent
2786 * on the left.
2787 */
2788 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2789 /*
2790 * To merge left, pass "ex2 - 1" to try_to_merge(),
2791 * since it merges towards right _only_.
2792 */
2793 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2794 if (ret) {
2795 err = ext4_ext_correct_indexes(handle, inode, path);
2796 if (err)
2797 goto out;
2798 depth = ext_depth(inode);
2799 ex2--;
2800 }
2801 }
2802 /*
2803 * Try to Merge towards right. This might be required
2804 * only when the whole extent is being written to.
2805 * i.e. ex2 == ex and ex3 == NULL.
2806 */
2807 if (!ex3) {
2808 ret = ext4_ext_try_to_merge(inode, path, ex2);
2809 if (ret) {
2810 err = ext4_ext_correct_indexes(handle, inode, path);
2811 if (err)
2812 goto out;
2813 }
2814 }
2815 /* Mark modified extent as dirty */
2816 err = ext4_ext_dirty(handle, inode, path + depth);
2817 goto out;
2818 insert:
2819 err = ext4_ext_insert_extent(handle, inode, path, &newex, 0);
2820 if (err == -ENOSPC && may_zeroout) {
2821 err = ext4_ext_zeroout(inode, &orig_ex);
2822 if (err)
2823 goto fix_extent_len;
2824 /* update the extent length and mark as initialized */
2825 ex->ee_block = orig_ex.ee_block;
2826 ex->ee_len = orig_ex.ee_len;
2827 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2828 ext4_ext_dirty(handle, inode, path + depth);
2829 /* zero out the first half */
2830 return allocated;
2831 } else if (err)
2832 goto fix_extent_len;
2833 out:
2834 ext4_ext_show_leaf(inode, path);
2835 return err ? err : allocated;
2836
2837 fix_extent_len:
2838 ex->ee_block = orig_ex.ee_block;
2839 ex->ee_len = orig_ex.ee_len;
2840 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2841 ext4_ext_mark_uninitialized(ex);
2842 ext4_ext_dirty(handle, inode, path + depth);
2843 return err;
2844 }
2845
2846 /*
2847 * This function is called by ext4_ext_map_blocks() from
2848 * ext4_get_blocks_dio_write() when DIO to write
2849 * to an uninitialized extent.
2850 *
2851 * Writing to an uninitized extent may result in splitting the uninitialized
2852 * extent into multiple /initialized uninitialized extents (up to three)
2853 * There are three possibilities:
2854 * a> There is no split required: Entire extent should be uninitialized
2855 * b> Splits in two extents: Write is happening at either end of the extent
2856 * c> Splits in three extents: Somone is writing in middle of the extent
2857 *
2858 * One of more index blocks maybe needed if the extent tree grow after
2859 * the uninitialized extent split. To prevent ENOSPC occur at the IO
2860 * complete, we need to split the uninitialized extent before DIO submit
2861 * the IO. The uninitialized extent called at this time will be split
2862 * into three uninitialized extent(at most). After IO complete, the part
2863 * being filled will be convert to initialized by the end_io callback function
2864 * via ext4_convert_unwritten_extents().
2865 *
2866 * Returns the size of uninitialized extent to be written on success.
2867 */
2868 static int ext4_split_unwritten_extents(handle_t *handle,
2869 struct inode *inode,
2870 struct ext4_map_blocks *map,
2871 struct ext4_ext_path *path,
2872 int flags)
2873 {
2874 struct ext4_extent *ex, newex, orig_ex;
2875 struct ext4_extent *ex1 = NULL;
2876 struct ext4_extent *ex2 = NULL;
2877 struct ext4_extent *ex3 = NULL;
2878 ext4_lblk_t ee_block, eof_block;
2879 unsigned int allocated, ee_len, depth;
2880 ext4_fsblk_t newblock;
2881 int err = 0;
2882 int may_zeroout;
2883
2884 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
2885 "block %llu, max_blocks %u\n", inode->i_ino,
2886 (unsigned long long)map->m_lblk, map->m_len);
2887
2888 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2889 inode->i_sb->s_blocksize_bits;
2890 if (eof_block < map->m_lblk + map->m_len)
2891 eof_block = map->m_lblk + map->m_len;
2892
2893 depth = ext_depth(inode);
2894 ex = path[depth].p_ext;
2895 ee_block = le32_to_cpu(ex->ee_block);
2896 ee_len = ext4_ext_get_actual_len(ex);
2897 allocated = ee_len - (map->m_lblk - ee_block);
2898 newblock = map->m_lblk - ee_block + ext4_ext_pblock(ex);
2899
2900 ex2 = ex;
2901 orig_ex.ee_block = ex->ee_block;
2902 orig_ex.ee_len = cpu_to_le16(ee_len);
2903 ext4_ext_store_pblock(&orig_ex, ext4_ext_pblock(ex));
2904
2905 /*
2906 * It is safe to convert extent to initialized via explicit
2907 * zeroout only if extent is fully insde i_size or new_size.
2908 */
2909 may_zeroout = ee_block + ee_len <= eof_block;
2910
2911 /*
2912 * If the uninitialized extent begins at the same logical
2913 * block where the write begins, and the write completely
2914 * covers the extent, then we don't need to split it.
2915 */
2916 if ((map->m_lblk == ee_block) && (allocated <= map->m_len))
2917 return allocated;
2918
2919 err = ext4_ext_get_access(handle, inode, path + depth);
2920 if (err)
2921 goto out;
2922 /* ex1: ee_block to map->m_lblk - 1 : uninitialized */
2923 if (map->m_lblk > ee_block) {
2924 ex1 = ex;
2925 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2926 ext4_ext_mark_uninitialized(ex1);
2927 ex2 = &newex;
2928 }
2929 /*
2930 * for sanity, update the length of the ex2 extent before
2931 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2932 * overlap of blocks.
2933 */
2934 if (!ex1 && allocated > map->m_len)
2935 ex2->ee_len = cpu_to_le16(map->m_len);
2936 /* ex3: to ee_block + ee_len : uninitialised */
2937 if (allocated > map->m_len) {
2938 unsigned int newdepth;
2939 ex3 = &newex;
2940 ex3->ee_block = cpu_to_le32(map->m_lblk + map->m_len);
2941 ext4_ext_store_pblock(ex3, newblock + map->m_len);
2942 ex3->ee_len = cpu_to_le16(allocated - map->m_len);
2943 ext4_ext_mark_uninitialized(ex3);
2944 err = ext4_ext_insert_extent(handle, inode, path, ex3, flags);
2945 if (err == -ENOSPC && may_zeroout) {
2946 err = ext4_ext_zeroout(inode, &orig_ex);
2947 if (err)
2948 goto fix_extent_len;
2949 /* update the extent length and mark as initialized */
2950 ex->ee_block = orig_ex.ee_block;
2951 ex->ee_len = orig_ex.ee_len;
2952 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
2953 ext4_ext_dirty(handle, inode, path + depth);
2954 /* zeroed the full extent */
2955 /* blocks available from map->m_lblk */
2956 return allocated;
2957
2958 } else if (err)
2959 goto fix_extent_len;
2960 /*
2961 * The depth, and hence eh & ex might change
2962 * as part of the insert above.
2963 */
2964 newdepth = ext_depth(inode);
2965 /*
2966 * update the extent length after successful insert of the
2967 * split extent
2968 */
2969 ee_len -= ext4_ext_get_actual_len(ex3);
2970 orig_ex.ee_len = cpu_to_le16(ee_len);
2971 may_zeroout = ee_block + ee_len <= eof_block;
2972
2973 depth = newdepth;
2974 ext4_ext_drop_refs(path);
2975 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2976 if (IS_ERR(path)) {
2977 err = PTR_ERR(path);
2978 goto out;
2979 }
2980 ex = path[depth].p_ext;
2981 if (ex2 != &newex)
2982 ex2 = ex;
2983
2984 err = ext4_ext_get_access(handle, inode, path + depth);
2985 if (err)
2986 goto out;
2987
2988 allocated = map->m_len;
2989 }
2990 /*
2991 * If there was a change of depth as part of the
2992 * insertion of ex3 above, we need to update the length
2993 * of the ex1 extent again here
2994 */
2995 if (ex1 && ex1 != ex) {
2996 ex1 = ex;
2997 ex1->ee_len = cpu_to_le16(map->m_lblk - ee_block);
2998 ext4_ext_mark_uninitialized(ex1);
2999 ex2 = &newex;
3000 }
3001 /*
3002 * ex2: map->m_lblk to map->m_lblk + map->m_len-1 : to be written
3003 * using direct I/O, uninitialised still.
3004 */
3005 ex2->ee_block = cpu_to_le32(map->m_lblk);
3006 ext4_ext_store_pblock(ex2, newblock);
3007 ex2->ee_len = cpu_to_le16(allocated);
3008 ext4_ext_mark_uninitialized(ex2);
3009 if (ex2 != ex)
3010 goto insert;
3011 /* Mark modified extent as dirty */
3012 err = ext4_ext_dirty(handle, inode, path + depth);
3013 ext_debug("out here\n");
3014 goto out;
3015 insert:
3016 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3017 if (err == -ENOSPC && may_zeroout) {
3018 err = ext4_ext_zeroout(inode, &orig_ex);
3019 if (err)
3020 goto fix_extent_len;
3021 /* update the extent length and mark as initialized */
3022 ex->ee_block = orig_ex.ee_block;
3023 ex->ee_len = orig_ex.ee_len;
3024 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3025 ext4_ext_dirty(handle, inode, path + depth);
3026 /* zero out the first half */
3027 return allocated;
3028 } else if (err)
3029 goto fix_extent_len;
3030 out:
3031 ext4_ext_show_leaf(inode, path);
3032 return err ? err : allocated;
3033
3034 fix_extent_len:
3035 ex->ee_block = orig_ex.ee_block;
3036 ex->ee_len = orig_ex.ee_len;
3037 ext4_ext_store_pblock(ex, ext4_ext_pblock(&orig_ex));
3038 ext4_ext_mark_uninitialized(ex);
3039 ext4_ext_dirty(handle, inode, path + depth);
3040 return err;
3041 }
3042 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3043 struct inode *inode,
3044 struct ext4_ext_path *path)
3045 {
3046 struct ext4_extent *ex;
3047 struct ext4_extent_header *eh;
3048 int depth;
3049 int err = 0;
3050 int ret = 0;
3051
3052 depth = ext_depth(inode);
3053 eh = path[depth].p_hdr;
3054 ex = path[depth].p_ext;
3055
3056 err = ext4_ext_get_access(handle, inode, path + depth);
3057 if (err)
3058 goto out;
3059 /* first mark the extent as initialized */
3060 ext4_ext_mark_initialized(ex);
3061
3062 /*
3063 * We have to see if it can be merged with the extent
3064 * on the left.
3065 */
3066 if (ex > EXT_FIRST_EXTENT(eh)) {
3067 /*
3068 * To merge left, pass "ex - 1" to try_to_merge(),
3069 * since it merges towards right _only_.
3070 */
3071 ret = ext4_ext_try_to_merge(inode, path, ex - 1);
3072 if (ret) {
3073 err = ext4_ext_correct_indexes(handle, inode, path);
3074 if (err)
3075 goto out;
3076 depth = ext_depth(inode);
3077 ex--;
3078 }
3079 }
3080 /*
3081 * Try to Merge towards right.
3082 */
3083 ret = ext4_ext_try_to_merge(inode, path, ex);
3084 if (ret) {
3085 err = ext4_ext_correct_indexes(handle, inode, path);
3086 if (err)
3087 goto out;
3088 depth = ext_depth(inode);
3089 }
3090 /* Mark modified extent as dirty */
3091 err = ext4_ext_dirty(handle, inode, path + depth);
3092 out:
3093 ext4_ext_show_leaf(inode, path);
3094 return err;
3095 }
3096
3097 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3098 sector_t block, int count)
3099 {
3100 int i;
3101 for (i = 0; i < count; i++)
3102 unmap_underlying_metadata(bdev, block + i);
3103 }
3104
3105 /*
3106 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3107 */
3108 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3109 ext4_lblk_t lblk,
3110 struct ext4_ext_path *path,
3111 unsigned int len)
3112 {
3113 int i, depth;
3114 struct ext4_extent_header *eh;
3115 struct ext4_extent *ex, *last_ex;
3116
3117 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3118 return 0;
3119
3120 depth = ext_depth(inode);
3121 eh = path[depth].p_hdr;
3122 ex = path[depth].p_ext;
3123
3124 if (unlikely(!eh->eh_entries)) {
3125 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3126 "EOFBLOCKS_FL set");
3127 return -EIO;
3128 }
3129 last_ex = EXT_LAST_EXTENT(eh);
3130 /*
3131 * We should clear the EOFBLOCKS_FL flag if we are writing the
3132 * last block in the last extent in the file. We test this by
3133 * first checking to see if the caller to
3134 * ext4_ext_get_blocks() was interested in the last block (or
3135 * a block beyond the last block) in the current extent. If
3136 * this turns out to be false, we can bail out from this
3137 * function immediately.
3138 */
3139 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3140 ext4_ext_get_actual_len(last_ex))
3141 return 0;
3142 /*
3143 * If the caller does appear to be planning to write at or
3144 * beyond the end of the current extent, we then test to see
3145 * if the current extent is the last extent in the file, by
3146 * checking to make sure it was reached via the rightmost node
3147 * at each level of the tree.
3148 */
3149 for (i = depth-1; i >= 0; i--)
3150 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3151 return 0;
3152 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3153 return ext4_mark_inode_dirty(handle, inode);
3154 }
3155
3156 static int
3157 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3158 struct ext4_map_blocks *map,
3159 struct ext4_ext_path *path, int flags,
3160 unsigned int allocated, ext4_fsblk_t newblock)
3161 {
3162 int ret = 0;
3163 int err = 0;
3164 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3165
3166 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3167 "block %llu, max_blocks %u, flags %d, allocated %u",
3168 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3169 flags, allocated);
3170 ext4_ext_show_leaf(inode, path);
3171
3172 /* get_block() before submit the IO, split the extent */
3173 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3174 ret = ext4_split_unwritten_extents(handle, inode, map,
3175 path, flags);
3176 /*
3177 * Flag the inode(non aio case) or end_io struct (aio case)
3178 * that this IO needs to convertion to written when IO is
3179 * completed
3180 */
3181 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3182 io->flag = EXT4_IO_END_UNWRITTEN;
3183 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3184 } else
3185 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3186 if (ext4_should_dioread_nolock(inode))
3187 map->m_flags |= EXT4_MAP_UNINIT;
3188 goto out;
3189 }
3190 /* IO end_io complete, convert the filled extent to written */
3191 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3192 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3193 path);
3194 if (ret >= 0) {
3195 ext4_update_inode_fsync_trans(handle, inode, 1);
3196 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3197 path, map->m_len);
3198 } else
3199 err = ret;
3200 goto out2;
3201 }
3202 /* buffered IO case */
3203 /*
3204 * repeat fallocate creation request
3205 * we already have an unwritten extent
3206 */
3207 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3208 goto map_out;
3209
3210 /* buffered READ or buffered write_begin() lookup */
3211 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3212 /*
3213 * We have blocks reserved already. We
3214 * return allocated blocks so that delalloc
3215 * won't do block reservation for us. But
3216 * the buffer head will be unmapped so that
3217 * a read from the block returns 0s.
3218 */
3219 map->m_flags |= EXT4_MAP_UNWRITTEN;
3220 goto out1;
3221 }
3222
3223 /* buffered write, writepage time, convert*/
3224 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3225 if (ret >= 0) {
3226 ext4_update_inode_fsync_trans(handle, inode, 1);
3227 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3228 map->m_len);
3229 if (err < 0)
3230 goto out2;
3231 }
3232
3233 out:
3234 if (ret <= 0) {
3235 err = ret;
3236 goto out2;
3237 } else
3238 allocated = ret;
3239 map->m_flags |= EXT4_MAP_NEW;
3240 /*
3241 * if we allocated more blocks than requested
3242 * we need to make sure we unmap the extra block
3243 * allocated. The actual needed block will get
3244 * unmapped later when we find the buffer_head marked
3245 * new.
3246 */
3247 if (allocated > map->m_len) {
3248 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3249 newblock + map->m_len,
3250 allocated - map->m_len);
3251 allocated = map->m_len;
3252 }
3253
3254 /*
3255 * If we have done fallocate with the offset that is already
3256 * delayed allocated, we would have block reservation
3257 * and quota reservation done in the delayed write path.
3258 * But fallocate would have already updated quota and block
3259 * count for this offset. So cancel these reservation
3260 */
3261 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3262 ext4_da_update_reserve_space(inode, allocated, 0);
3263
3264 map_out:
3265 map->m_flags |= EXT4_MAP_MAPPED;
3266 out1:
3267 if (allocated > map->m_len)
3268 allocated = map->m_len;
3269 ext4_ext_show_leaf(inode, path);
3270 map->m_pblk = newblock;
3271 map->m_len = allocated;
3272 out2:
3273 if (path) {
3274 ext4_ext_drop_refs(path);
3275 kfree(path);
3276 }
3277 return err ? err : allocated;
3278 }
3279
3280 /*
3281 * Block allocation/map/preallocation routine for extents based files
3282 *
3283 *
3284 * Need to be called with
3285 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3286 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3287 *
3288 * return > 0, number of of blocks already mapped/allocated
3289 * if create == 0 and these are pre-allocated blocks
3290 * buffer head is unmapped
3291 * otherwise blocks are mapped
3292 *
3293 * return = 0, if plain look up failed (blocks have not been allocated)
3294 * buffer head is unmapped
3295 *
3296 * return < 0, error case.
3297 */
3298 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3299 struct ext4_map_blocks *map, int flags)
3300 {
3301 struct ext4_ext_path *path = NULL;
3302 struct ext4_extent_header *eh;
3303 struct ext4_extent newex, *ex;
3304 ext4_fsblk_t newblock = 0;
3305 int err = 0, depth, ret;
3306 unsigned int allocated = 0;
3307 struct ext4_allocation_request ar;
3308 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3309
3310 ext_debug("blocks %u/%u requested for inode %lu\n",
3311 map->m_lblk, map->m_len, inode->i_ino);
3312 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3313
3314 /* check in cache */
3315 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3316 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3317 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3318 /*
3319 * block isn't allocated yet and
3320 * user doesn't want to allocate it
3321 */
3322 goto out2;
3323 }
3324 /* we should allocate requested block */
3325 } else {
3326 /* block is already allocated */
3327 newblock = map->m_lblk
3328 - le32_to_cpu(newex.ee_block)
3329 + ext4_ext_pblock(&newex);
3330 /* number of remaining blocks in the extent */
3331 allocated = ext4_ext_get_actual_len(&newex) -
3332 (map->m_lblk - le32_to_cpu(newex.ee_block));
3333 goto out;
3334 }
3335 }
3336
3337 /* find extent for this block */
3338 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3339 if (IS_ERR(path)) {
3340 err = PTR_ERR(path);
3341 path = NULL;
3342 goto out2;
3343 }
3344
3345 depth = ext_depth(inode);
3346
3347 /*
3348 * consistent leaf must not be empty;
3349 * this situation is possible, though, _during_ tree modification;
3350 * this is why assert can't be put in ext4_ext_find_extent()
3351 */
3352 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3353 EXT4_ERROR_INODE(inode, "bad extent address "
3354 "lblock: %lu, depth: %d pblock %lld",
3355 (unsigned long) map->m_lblk, depth,
3356 path[depth].p_block);
3357 err = -EIO;
3358 goto out2;
3359 }
3360 eh = path[depth].p_hdr;
3361
3362 ex = path[depth].p_ext;
3363 if (ex) {
3364 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3365 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3366 unsigned short ee_len;
3367
3368 /*
3369 * Uninitialized extents are treated as holes, except that
3370 * we split out initialized portions during a write.
3371 */
3372 ee_len = ext4_ext_get_actual_len(ex);
3373 /* if found extent covers block, simply return it */
3374 if (in_range(map->m_lblk, ee_block, ee_len)) {
3375 newblock = map->m_lblk - ee_block + ee_start;
3376 /* number of remaining blocks in the extent */
3377 allocated = ee_len - (map->m_lblk - ee_block);
3378 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3379 ee_block, ee_len, newblock);
3380
3381 /* Do not put uninitialized extent in the cache */
3382 if (!ext4_ext_is_uninitialized(ex)) {
3383 ext4_ext_put_in_cache(inode, ee_block,
3384 ee_len, ee_start);
3385 goto out;
3386 }
3387 ret = ext4_ext_handle_uninitialized_extents(handle,
3388 inode, map, path, flags, allocated,
3389 newblock);
3390 return ret;
3391 }
3392 }
3393
3394 /*
3395 * requested block isn't allocated yet;
3396 * we couldn't try to create block if create flag is zero
3397 */
3398 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3399 /*
3400 * put just found gap into cache to speed up
3401 * subsequent requests
3402 */
3403 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3404 goto out2;
3405 }
3406 /*
3407 * Okay, we need to do block allocation.
3408 */
3409
3410 /* find neighbour allocated blocks */
3411 ar.lleft = map->m_lblk;
3412 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3413 if (err)
3414 goto out2;
3415 ar.lright = map->m_lblk;
3416 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3417 if (err)
3418 goto out2;
3419
3420 /*
3421 * See if request is beyond maximum number of blocks we can have in
3422 * a single extent. For an initialized extent this limit is
3423 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3424 * EXT_UNINIT_MAX_LEN.
3425 */
3426 if (map->m_len > EXT_INIT_MAX_LEN &&
3427 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3428 map->m_len = EXT_INIT_MAX_LEN;
3429 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3430 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3431 map->m_len = EXT_UNINIT_MAX_LEN;
3432
3433 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3434 newex.ee_block = cpu_to_le32(map->m_lblk);
3435 newex.ee_len = cpu_to_le16(map->m_len);
3436 err = ext4_ext_check_overlap(inode, &newex, path);
3437 if (err)
3438 allocated = ext4_ext_get_actual_len(&newex);
3439 else
3440 allocated = map->m_len;
3441
3442 /* allocate new block */
3443 ar.inode = inode;
3444 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3445 ar.logical = map->m_lblk;
3446 ar.len = allocated;
3447 if (S_ISREG(inode->i_mode))
3448 ar.flags = EXT4_MB_HINT_DATA;
3449 else
3450 /* disable in-core preallocation for non-regular files */
3451 ar.flags = 0;
3452 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3453 if (!newblock)
3454 goto out2;
3455 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3456 ar.goal, newblock, allocated);
3457
3458 /* try to insert new extent into found leaf and return */
3459 ext4_ext_store_pblock(&newex, newblock);
3460 newex.ee_len = cpu_to_le16(ar.len);
3461 /* Mark uninitialized */
3462 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3463 ext4_ext_mark_uninitialized(&newex);
3464 /*
3465 * io_end structure was created for every IO write to an
3466 * uninitialized extent. To avoid unecessary conversion,
3467 * here we flag the IO that really needs the conversion.
3468 * For non asycn direct IO case, flag the inode state
3469 * that we need to perform convertion when IO is done.
3470 */
3471 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3472 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3473 io->flag = EXT4_IO_END_UNWRITTEN;
3474 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3475 } else
3476 ext4_set_inode_state(inode,
3477 EXT4_STATE_DIO_UNWRITTEN);
3478 }
3479 if (ext4_should_dioread_nolock(inode))
3480 map->m_flags |= EXT4_MAP_UNINIT;
3481 }
3482
3483 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3484 if (err)
3485 goto out2;
3486
3487 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
3488 if (err) {
3489 /* free data blocks we just allocated */
3490 /* not a good idea to call discard here directly,
3491 * but otherwise we'd need to call it every free() */
3492 ext4_discard_preallocations(inode);
3493 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3494 ext4_ext_get_actual_len(&newex), 0);
3495 goto out2;
3496 }
3497
3498 /* previous routine could use block we allocated */
3499 newblock = ext4_ext_pblock(&newex);
3500 allocated = ext4_ext_get_actual_len(&newex);
3501 if (allocated > map->m_len)
3502 allocated = map->m_len;
3503 map->m_flags |= EXT4_MAP_NEW;
3504
3505 /*
3506 * Update reserved blocks/metadata blocks after successful
3507 * block allocation which had been deferred till now.
3508 */
3509 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3510 ext4_da_update_reserve_space(inode, allocated, 1);
3511
3512 /*
3513 * Cache the extent and update transaction to commit on fdatasync only
3514 * when it is _not_ an uninitialized extent.
3515 */
3516 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3517 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3518 ext4_update_inode_fsync_trans(handle, inode, 1);
3519 } else
3520 ext4_update_inode_fsync_trans(handle, inode, 0);
3521 out:
3522 if (allocated > map->m_len)
3523 allocated = map->m_len;
3524 ext4_ext_show_leaf(inode, path);
3525 map->m_flags |= EXT4_MAP_MAPPED;
3526 map->m_pblk = newblock;
3527 map->m_len = allocated;
3528 out2:
3529 if (path) {
3530 ext4_ext_drop_refs(path);
3531 kfree(path);
3532 }
3533 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3534 newblock, map->m_len, err ? err : allocated);
3535 return err ? err : allocated;
3536 }
3537
3538 void ext4_ext_truncate(struct inode *inode)
3539 {
3540 struct address_space *mapping = inode->i_mapping;
3541 struct super_block *sb = inode->i_sb;
3542 ext4_lblk_t last_block;
3543 handle_t *handle;
3544 int err = 0;
3545
3546 /*
3547 * finish any pending end_io work so we won't run the risk of
3548 * converting any truncated blocks to initialized later
3549 */
3550 ext4_flush_completed_IO(inode);
3551
3552 /*
3553 * probably first extent we're gonna free will be last in block
3554 */
3555 err = ext4_writepage_trans_blocks(inode);
3556 handle = ext4_journal_start(inode, err);
3557 if (IS_ERR(handle))
3558 return;
3559
3560 if (inode->i_size & (sb->s_blocksize - 1))
3561 ext4_block_truncate_page(handle, mapping, inode->i_size);
3562
3563 if (ext4_orphan_add(handle, inode))
3564 goto out_stop;
3565
3566 down_write(&EXT4_I(inode)->i_data_sem);
3567 ext4_ext_invalidate_cache(inode);
3568
3569 ext4_discard_preallocations(inode);
3570
3571 /*
3572 * TODO: optimization is possible here.
3573 * Probably we need not scan at all,
3574 * because page truncation is enough.
3575 */
3576
3577 /* we have to know where to truncate from in crash case */
3578 EXT4_I(inode)->i_disksize = inode->i_size;
3579 ext4_mark_inode_dirty(handle, inode);
3580
3581 last_block = (inode->i_size + sb->s_blocksize - 1)
3582 >> EXT4_BLOCK_SIZE_BITS(sb);
3583 err = ext4_ext_remove_space(inode, last_block);
3584
3585 /* In a multi-transaction truncate, we only make the final
3586 * transaction synchronous.
3587 */
3588 if (IS_SYNC(inode))
3589 ext4_handle_sync(handle);
3590
3591 out_stop:
3592 up_write(&EXT4_I(inode)->i_data_sem);
3593 /*
3594 * If this was a simple ftruncate() and the file will remain alive,
3595 * then we need to clear up the orphan record which we created above.
3596 * However, if this was a real unlink then we were called by
3597 * ext4_delete_inode(), and we allow that function to clean up the
3598 * orphan info for us.
3599 */
3600 if (inode->i_nlink)
3601 ext4_orphan_del(handle, inode);
3602
3603 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3604 ext4_mark_inode_dirty(handle, inode);
3605 ext4_journal_stop(handle);
3606 }
3607
3608 static void ext4_falloc_update_inode(struct inode *inode,
3609 int mode, loff_t new_size, int update_ctime)
3610 {
3611 struct timespec now;
3612
3613 if (update_ctime) {
3614 now = current_fs_time(inode->i_sb);
3615 if (!timespec_equal(&inode->i_ctime, &now))
3616 inode->i_ctime = now;
3617 }
3618 /*
3619 * Update only when preallocation was requested beyond
3620 * the file size.
3621 */
3622 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3623 if (new_size > i_size_read(inode))
3624 i_size_write(inode, new_size);
3625 if (new_size > EXT4_I(inode)->i_disksize)
3626 ext4_update_i_disksize(inode, new_size);
3627 } else {
3628 /*
3629 * Mark that we allocate beyond EOF so the subsequent truncate
3630 * can proceed even if the new size is the same as i_size.
3631 */
3632 if (new_size > i_size_read(inode))
3633 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3634 }
3635
3636 }
3637
3638 /*
3639 * preallocate space for a file. This implements ext4's fallocate file
3640 * operation, which gets called from sys_fallocate system call.
3641 * For block-mapped files, posix_fallocate should fall back to the method
3642 * of writing zeroes to the required new blocks (the same behavior which is
3643 * expected for file systems which do not support fallocate() system call).
3644 */
3645 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3646 {
3647 struct inode *inode = file->f_path.dentry->d_inode;
3648 handle_t *handle;
3649 loff_t new_size;
3650 unsigned int max_blocks;
3651 int ret = 0;
3652 int ret2 = 0;
3653 int retries = 0;
3654 struct ext4_map_blocks map;
3655 unsigned int credits, blkbits = inode->i_blkbits;
3656
3657 /* We only support the FALLOC_FL_KEEP_SIZE mode */
3658 if (mode & ~FALLOC_FL_KEEP_SIZE)
3659 return -EOPNOTSUPP;
3660
3661 /*
3662 * currently supporting (pre)allocate mode for extent-based
3663 * files _only_
3664 */
3665 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3666 return -EOPNOTSUPP;
3667
3668 trace_ext4_fallocate_enter(inode, offset, len, mode);
3669 map.m_lblk = offset >> blkbits;
3670 /*
3671 * We can't just convert len to max_blocks because
3672 * If blocksize = 4096 offset = 3072 and len = 2048
3673 */
3674 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3675 - map.m_lblk;
3676 /*
3677 * credits to insert 1 extent into extent tree
3678 */
3679 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3680 mutex_lock(&inode->i_mutex);
3681 ret = inode_newsize_ok(inode, (len + offset));
3682 if (ret) {
3683 mutex_unlock(&inode->i_mutex);
3684 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3685 return ret;
3686 }
3687 retry:
3688 while (ret >= 0 && ret < max_blocks) {
3689 map.m_lblk = map.m_lblk + ret;
3690 map.m_len = max_blocks = max_blocks - ret;
3691 handle = ext4_journal_start(inode, credits);
3692 if (IS_ERR(handle)) {
3693 ret = PTR_ERR(handle);
3694 break;
3695 }
3696 ret = ext4_map_blocks(handle, inode, &map,
3697 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT);
3698 if (ret <= 0) {
3699 #ifdef EXT4FS_DEBUG
3700 WARN_ON(ret <= 0);
3701 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3702 "returned error inode#%lu, block=%u, "
3703 "max_blocks=%u", __func__,
3704 inode->i_ino, map.m_lblk, max_blocks);
3705 #endif
3706 ext4_mark_inode_dirty(handle, inode);
3707 ret2 = ext4_journal_stop(handle);
3708 break;
3709 }
3710 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3711 blkbits) >> blkbits))
3712 new_size = offset + len;
3713 else
3714 new_size = (map.m_lblk + ret) << blkbits;
3715
3716 ext4_falloc_update_inode(inode, mode, new_size,
3717 (map.m_flags & EXT4_MAP_NEW));
3718 ext4_mark_inode_dirty(handle, inode);
3719 ret2 = ext4_journal_stop(handle);
3720 if (ret2)
3721 break;
3722 }
3723 if (ret == -ENOSPC &&
3724 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3725 ret = 0;
3726 goto retry;
3727 }
3728 mutex_unlock(&inode->i_mutex);
3729 trace_ext4_fallocate_exit(inode, offset, max_blocks,
3730 ret > 0 ? ret2 : ret);
3731 return ret > 0 ? ret2 : ret;
3732 }
3733
3734 /*
3735 * This function convert a range of blocks to written extents
3736 * The caller of this function will pass the start offset and the size.
3737 * all unwritten extents within this range will be converted to
3738 * written extents.
3739 *
3740 * This function is called from the direct IO end io call back
3741 * function, to convert the fallocated extents after IO is completed.
3742 * Returns 0 on success.
3743 */
3744 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3745 ssize_t len)
3746 {
3747 handle_t *handle;
3748 unsigned int max_blocks;
3749 int ret = 0;
3750 int ret2 = 0;
3751 struct ext4_map_blocks map;
3752 unsigned int credits, blkbits = inode->i_blkbits;
3753
3754 map.m_lblk = offset >> blkbits;
3755 /*
3756 * We can't just convert len to max_blocks because
3757 * If blocksize = 4096 offset = 3072 and len = 2048
3758 */
3759 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3760 map.m_lblk);
3761 /*
3762 * credits to insert 1 extent into extent tree
3763 */
3764 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3765 while (ret >= 0 && ret < max_blocks) {
3766 map.m_lblk += ret;
3767 map.m_len = (max_blocks -= ret);
3768 handle = ext4_journal_start(inode, credits);
3769 if (IS_ERR(handle)) {
3770 ret = PTR_ERR(handle);
3771 break;
3772 }
3773 ret = ext4_map_blocks(handle, inode, &map,
3774 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3775 if (ret <= 0) {
3776 WARN_ON(ret <= 0);
3777 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3778 "returned error inode#%lu, block=%u, "
3779 "max_blocks=%u", __func__,
3780 inode->i_ino, map.m_lblk, map.m_len);
3781 }
3782 ext4_mark_inode_dirty(handle, inode);
3783 ret2 = ext4_journal_stop(handle);
3784 if (ret <= 0 || ret2 )
3785 break;
3786 }
3787 return ret > 0 ? ret2 : ret;
3788 }
3789
3790 /*
3791 * Callback function called for each extent to gather FIEMAP information.
3792 */
3793 static int ext4_ext_fiemap_cb(struct inode *inode, struct ext4_ext_path *path,
3794 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3795 void *data)
3796 {
3797 __u64 logical;
3798 __u64 physical;
3799 __u64 length;
3800 loff_t size;
3801 __u32 flags = 0;
3802 int ret = 0;
3803 struct fiemap_extent_info *fieinfo = data;
3804 unsigned char blksize_bits;
3805
3806 blksize_bits = inode->i_sb->s_blocksize_bits;
3807 logical = (__u64)newex->ec_block << blksize_bits;
3808
3809 if (newex->ec_start == 0) {
3810 /*
3811 * No extent in extent-tree contains block @newex->ec_start,
3812 * then the block may stay in 1)a hole or 2)delayed-extent.
3813 *
3814 * Holes or delayed-extents are processed as follows.
3815 * 1. lookup dirty pages with specified range in pagecache.
3816 * If no page is got, then there is no delayed-extent and
3817 * return with EXT_CONTINUE.
3818 * 2. find the 1st mapped buffer,
3819 * 3. check if the mapped buffer is both in the request range
3820 * and a delayed buffer. If not, there is no delayed-extent,
3821 * then return.
3822 * 4. a delayed-extent is found, the extent will be collected.
3823 */
3824 ext4_lblk_t end = 0;
3825 pgoff_t last_offset;
3826 pgoff_t offset;
3827 pgoff_t index;
3828 struct page **pages = NULL;
3829 struct buffer_head *bh = NULL;
3830 struct buffer_head *head = NULL;
3831 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3832
3833 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3834 if (pages == NULL)
3835 return -ENOMEM;
3836
3837 offset = logical >> PAGE_SHIFT;
3838 repeat:
3839 last_offset = offset;
3840 head = NULL;
3841 ret = find_get_pages_tag(inode->i_mapping, &offset,
3842 PAGECACHE_TAG_DIRTY, nr_pages, pages);
3843
3844 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3845 /* First time, try to find a mapped buffer. */
3846 if (ret == 0) {
3847 out:
3848 for (index = 0; index < ret; index++)
3849 page_cache_release(pages[index]);
3850 /* just a hole. */
3851 kfree(pages);
3852 return EXT_CONTINUE;
3853 }
3854
3855 /* Try to find the 1st mapped buffer. */
3856 end = ((__u64)pages[0]->index << PAGE_SHIFT) >>
3857 blksize_bits;
3858 if (!page_has_buffers(pages[0]))
3859 goto out;
3860 head = page_buffers(pages[0]);
3861 if (!head)
3862 goto out;
3863
3864 bh = head;
3865 do {
3866 if (buffer_mapped(bh)) {
3867 /* get the 1st mapped buffer. */
3868 if (end > newex->ec_block +
3869 newex->ec_len)
3870 /* The buffer is out of
3871 * the request range.
3872 */
3873 goto out;
3874 goto found_mapped_buffer;
3875 }
3876 bh = bh->b_this_page;
3877 end++;
3878 } while (bh != head);
3879
3880 /* No mapped buffer found. */
3881 goto out;
3882 } else {
3883 /*Find contiguous delayed buffers. */
3884 if (ret > 0 && pages[0]->index == last_offset)
3885 head = page_buffers(pages[0]);
3886 bh = head;
3887 }
3888
3889 found_mapped_buffer:
3890 if (bh != NULL && buffer_delay(bh)) {
3891 /* 1st or contiguous delayed buffer found. */
3892 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3893 /*
3894 * 1st delayed buffer found, record
3895 * the start of extent.
3896 */
3897 flags |= FIEMAP_EXTENT_DELALLOC;
3898 newex->ec_block = end;
3899 logical = (__u64)end << blksize_bits;
3900 }
3901 /* Find contiguous delayed buffers. */
3902 do {
3903 if (!buffer_delay(bh))
3904 goto found_delayed_extent;
3905 bh = bh->b_this_page;
3906 end++;
3907 } while (bh != head);
3908
3909 for (index = 1; index < ret; index++) {
3910 if (!page_has_buffers(pages[index])) {
3911 bh = NULL;
3912 break;
3913 }
3914 head = page_buffers(pages[index]);
3915 if (!head) {
3916 bh = NULL;
3917 break;
3918 }
3919 if (pages[index]->index !=
3920 pages[0]->index + index) {
3921 /* Blocks are not contiguous. */
3922 bh = NULL;
3923 break;
3924 }
3925 bh = head;
3926 do {
3927 if (!buffer_delay(bh))
3928 /* Delayed-extent ends. */
3929 goto found_delayed_extent;
3930 bh = bh->b_this_page;
3931 end++;
3932 } while (bh != head);
3933 }
3934 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
3935 /* a hole found. */
3936 goto out;
3937
3938 found_delayed_extent:
3939 newex->ec_len = min(end - newex->ec_block,
3940 (ext4_lblk_t)EXT_INIT_MAX_LEN);
3941 if (ret == nr_pages && bh != NULL &&
3942 newex->ec_len < EXT_INIT_MAX_LEN &&
3943 buffer_delay(bh)) {
3944 /* Have not collected an extent and continue. */
3945 for (index = 0; index < ret; index++)
3946 page_cache_release(pages[index]);
3947 goto repeat;
3948 }
3949
3950 for (index = 0; index < ret; index++)
3951 page_cache_release(pages[index]);
3952 kfree(pages);
3953 }
3954
3955 physical = (__u64)newex->ec_start << blksize_bits;
3956 length = (__u64)newex->ec_len << blksize_bits;
3957
3958 if (ex && ext4_ext_is_uninitialized(ex))
3959 flags |= FIEMAP_EXTENT_UNWRITTEN;
3960
3961 size = i_size_read(inode);
3962 if (logical + length >= size)
3963 flags |= FIEMAP_EXTENT_LAST;
3964
3965 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
3966 length, flags);
3967 if (ret < 0)
3968 return ret;
3969 if (ret == 1)
3970 return EXT_BREAK;
3971 return EXT_CONTINUE;
3972 }
3973
3974 /* fiemap flags we can handle specified here */
3975 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
3976
3977 static int ext4_xattr_fiemap(struct inode *inode,
3978 struct fiemap_extent_info *fieinfo)
3979 {
3980 __u64 physical = 0;
3981 __u64 length;
3982 __u32 flags = FIEMAP_EXTENT_LAST;
3983 int blockbits = inode->i_sb->s_blocksize_bits;
3984 int error = 0;
3985
3986 /* in-inode? */
3987 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
3988 struct ext4_iloc iloc;
3989 int offset; /* offset of xattr in inode */
3990
3991 error = ext4_get_inode_loc(inode, &iloc);
3992 if (error)
3993 return error;
3994 physical = iloc.bh->b_blocknr << blockbits;
3995 offset = EXT4_GOOD_OLD_INODE_SIZE +
3996 EXT4_I(inode)->i_extra_isize;
3997 physical += offset;
3998 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
3999 flags |= FIEMAP_EXTENT_DATA_INLINE;
4000 brelse(iloc.bh);
4001 } else { /* external block */
4002 physical = EXT4_I(inode)->i_file_acl << blockbits;
4003 length = inode->i_sb->s_blocksize;
4004 }
4005
4006 if (physical)
4007 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4008 length, flags);
4009 return (error < 0 ? error : 0);
4010 }
4011
4012 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4013 __u64 start, __u64 len)
4014 {
4015 ext4_lblk_t start_blk;
4016 int error = 0;
4017
4018 /* fallback to generic here if not in extents fmt */
4019 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4020 return generic_block_fiemap(inode, fieinfo, start, len,
4021 ext4_get_block);
4022
4023 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4024 return -EBADR;
4025
4026 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4027 error = ext4_xattr_fiemap(inode, fieinfo);
4028 } else {
4029 ext4_lblk_t len_blks;
4030 __u64 last_blk;
4031
4032 start_blk = start >> inode->i_sb->s_blocksize_bits;
4033 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4034 if (last_blk >= EXT_MAX_BLOCK)
4035 last_blk = EXT_MAX_BLOCK-1;
4036 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4037
4038 /*
4039 * Walk the extent tree gathering extent information.
4040 * ext4_ext_fiemap_cb will push extents back to user.
4041 */
4042 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4043 ext4_ext_fiemap_cb, fieinfo);
4044 }
4045
4046 return error;
4047 }
4048