]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/extents.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <asm/uaccess.h>
41 #include <linux/fiemap.h>
42 #include <linux/backing-dev.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
55 #define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!ext4_has_metadata_csum(inode->i_sb))
78 return 1;
79
80 et = find_ext4_extent_tail(eh);
81 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
82 return 0;
83 return 1;
84 }
85
86 static void ext4_extent_block_csum_set(struct inode *inode,
87 struct ext4_extent_header *eh)
88 {
89 struct ext4_extent_tail *et;
90
91 if (!ext4_has_metadata_csum(inode->i_sb))
92 return;
93
94 et = find_ext4_extent_tail(eh);
95 et->et_checksum = ext4_extent_block_csum(inode, eh);
96 }
97
98 static int ext4_split_extent(handle_t *handle,
99 struct inode *inode,
100 struct ext4_ext_path **ppath,
101 struct ext4_map_blocks *map,
102 int split_flag,
103 int flags);
104
105 static int ext4_split_extent_at(handle_t *handle,
106 struct inode *inode,
107 struct ext4_ext_path **ppath,
108 ext4_lblk_t split,
109 int split_flag,
110 int flags);
111
112 static int ext4_find_delayed_extent(struct inode *inode,
113 struct extent_status *newes);
114
115 static int ext4_ext_truncate_extend_restart(handle_t *handle,
116 struct inode *inode,
117 int needed)
118 {
119 int err;
120
121 if (!ext4_handle_valid(handle))
122 return 0;
123 if (handle->h_buffer_credits >= needed)
124 return 0;
125 /*
126 * If we need to extend the journal get a few extra blocks
127 * while we're at it for efficiency's sake.
128 */
129 needed += 3;
130 err = ext4_journal_extend(handle, needed - handle->h_buffer_credits);
131 if (err <= 0)
132 return err;
133 err = ext4_truncate_restart_trans(handle, inode, needed);
134 if (err == 0)
135 err = -EAGAIN;
136
137 return err;
138 }
139
140 /*
141 * could return:
142 * - EROFS
143 * - ENOMEM
144 */
145 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
146 struct ext4_ext_path *path)
147 {
148 if (path->p_bh) {
149 /* path points to block */
150 BUFFER_TRACE(path->p_bh, "get_write_access");
151 return ext4_journal_get_write_access(handle, path->p_bh);
152 }
153 /* path points to leaf/index in inode body */
154 /* we use in-core data, no need to protect them */
155 return 0;
156 }
157
158 /*
159 * could return:
160 * - EROFS
161 * - ENOMEM
162 * - EIO
163 */
164 int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
165 struct inode *inode, struct ext4_ext_path *path)
166 {
167 int err;
168
169 WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
170 if (path->p_bh) {
171 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
172 /* path points to block */
173 err = __ext4_handle_dirty_metadata(where, line, handle,
174 inode, path->p_bh);
175 } else {
176 /* path points to leaf/index in inode body */
177 err = ext4_mark_inode_dirty(handle, inode);
178 }
179 return err;
180 }
181
182 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
183 struct ext4_ext_path *path,
184 ext4_lblk_t block)
185 {
186 if (path) {
187 int depth = path->p_depth;
188 struct ext4_extent *ex;
189
190 /*
191 * Try to predict block placement assuming that we are
192 * filling in a file which will eventually be
193 * non-sparse --- i.e., in the case of libbfd writing
194 * an ELF object sections out-of-order but in a way
195 * the eventually results in a contiguous object or
196 * executable file, or some database extending a table
197 * space file. However, this is actually somewhat
198 * non-ideal if we are writing a sparse file such as
199 * qemu or KVM writing a raw image file that is going
200 * to stay fairly sparse, since it will end up
201 * fragmenting the file system's free space. Maybe we
202 * should have some hueristics or some way to allow
203 * userspace to pass a hint to file system,
204 * especially if the latter case turns out to be
205 * common.
206 */
207 ex = path[depth].p_ext;
208 if (ex) {
209 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
210 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
211
212 if (block > ext_block)
213 return ext_pblk + (block - ext_block);
214 else
215 return ext_pblk - (ext_block - block);
216 }
217
218 /* it looks like index is empty;
219 * try to find starting block from index itself */
220 if (path[depth].p_bh)
221 return path[depth].p_bh->b_blocknr;
222 }
223
224 /* OK. use inode's group */
225 return ext4_inode_to_goal_block(inode);
226 }
227
228 /*
229 * Allocation for a meta data block
230 */
231 static ext4_fsblk_t
232 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
233 struct ext4_ext_path *path,
234 struct ext4_extent *ex, int *err, unsigned int flags)
235 {
236 ext4_fsblk_t goal, newblock;
237
238 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
239 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
240 NULL, err);
241 return newblock;
242 }
243
244 static inline int ext4_ext_space_block(struct inode *inode, int check)
245 {
246 int size;
247
248 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
249 / sizeof(struct ext4_extent);
250 #ifdef AGGRESSIVE_TEST
251 if (!check && size > 6)
252 size = 6;
253 #endif
254 return size;
255 }
256
257 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
258 {
259 int size;
260
261 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
262 / sizeof(struct ext4_extent_idx);
263 #ifdef AGGRESSIVE_TEST
264 if (!check && size > 5)
265 size = 5;
266 #endif
267 return size;
268 }
269
270 static inline int ext4_ext_space_root(struct inode *inode, int check)
271 {
272 int size;
273
274 size = sizeof(EXT4_I(inode)->i_data);
275 size -= sizeof(struct ext4_extent_header);
276 size /= sizeof(struct ext4_extent);
277 #ifdef AGGRESSIVE_TEST
278 if (!check && size > 3)
279 size = 3;
280 #endif
281 return size;
282 }
283
284 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
285 {
286 int size;
287
288 size = sizeof(EXT4_I(inode)->i_data);
289 size -= sizeof(struct ext4_extent_header);
290 size /= sizeof(struct ext4_extent_idx);
291 #ifdef AGGRESSIVE_TEST
292 if (!check && size > 4)
293 size = 4;
294 #endif
295 return size;
296 }
297
298 static inline int
299 ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
300 struct ext4_ext_path **ppath, ext4_lblk_t lblk,
301 int nofail)
302 {
303 struct ext4_ext_path *path = *ppath;
304 int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
305
306 return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
307 EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
308 EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
309 (nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
310 }
311
312 /*
313 * Calculate the number of metadata blocks needed
314 * to allocate @blocks
315 * Worse case is one block per extent
316 */
317 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
318 {
319 struct ext4_inode_info *ei = EXT4_I(inode);
320 int idxs;
321
322 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
323 / sizeof(struct ext4_extent_idx));
324
325 /*
326 * If the new delayed allocation block is contiguous with the
327 * previous da block, it can share index blocks with the
328 * previous block, so we only need to allocate a new index
329 * block every idxs leaf blocks. At ldxs**2 blocks, we need
330 * an additional index block, and at ldxs**3 blocks, yet
331 * another index blocks.
332 */
333 if (ei->i_da_metadata_calc_len &&
334 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
335 int num = 0;
336
337 if ((ei->i_da_metadata_calc_len % idxs) == 0)
338 num++;
339 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
340 num++;
341 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
342 num++;
343 ei->i_da_metadata_calc_len = 0;
344 } else
345 ei->i_da_metadata_calc_len++;
346 ei->i_da_metadata_calc_last_lblock++;
347 return num;
348 }
349
350 /*
351 * In the worst case we need a new set of index blocks at
352 * every level of the inode's extent tree.
353 */
354 ei->i_da_metadata_calc_len = 1;
355 ei->i_da_metadata_calc_last_lblock = lblock;
356 return ext_depth(inode) + 1;
357 }
358
359 static int
360 ext4_ext_max_entries(struct inode *inode, int depth)
361 {
362 int max;
363
364 if (depth == ext_depth(inode)) {
365 if (depth == 0)
366 max = ext4_ext_space_root(inode, 1);
367 else
368 max = ext4_ext_space_root_idx(inode, 1);
369 } else {
370 if (depth == 0)
371 max = ext4_ext_space_block(inode, 1);
372 else
373 max = ext4_ext_space_block_idx(inode, 1);
374 }
375
376 return max;
377 }
378
379 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
380 {
381 ext4_fsblk_t block = ext4_ext_pblock(ext);
382 int len = ext4_ext_get_actual_len(ext);
383 ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
384 ext4_lblk_t last = lblock + len - 1;
385
386 if (len == 0 || lblock > last)
387 return 0;
388 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
389 }
390
391 static int ext4_valid_extent_idx(struct inode *inode,
392 struct ext4_extent_idx *ext_idx)
393 {
394 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
395
396 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
397 }
398
399 static int ext4_valid_extent_entries(struct inode *inode,
400 struct ext4_extent_header *eh,
401 int depth)
402 {
403 unsigned short entries;
404 if (eh->eh_entries == 0)
405 return 1;
406
407 entries = le16_to_cpu(eh->eh_entries);
408
409 if (depth == 0) {
410 /* leaf entries */
411 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
412 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
413 ext4_fsblk_t pblock = 0;
414 ext4_lblk_t lblock = 0;
415 ext4_lblk_t prev = 0;
416 int len = 0;
417 while (entries) {
418 if (!ext4_valid_extent(inode, ext))
419 return 0;
420
421 /* Check for overlapping extents */
422 lblock = le32_to_cpu(ext->ee_block);
423 len = ext4_ext_get_actual_len(ext);
424 if ((lblock <= prev) && prev) {
425 pblock = ext4_ext_pblock(ext);
426 es->s_last_error_block = cpu_to_le64(pblock);
427 return 0;
428 }
429 ext++;
430 entries--;
431 prev = lblock + len - 1;
432 }
433 } else {
434 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
435 while (entries) {
436 if (!ext4_valid_extent_idx(inode, ext_idx))
437 return 0;
438 ext_idx++;
439 entries--;
440 }
441 }
442 return 1;
443 }
444
445 static int __ext4_ext_check(const char *function, unsigned int line,
446 struct inode *inode, struct ext4_extent_header *eh,
447 int depth, ext4_fsblk_t pblk)
448 {
449 const char *error_msg;
450 int max = 0, err = -EFSCORRUPTED;
451
452 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
453 error_msg = "invalid magic";
454 goto corrupted;
455 }
456 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
457 error_msg = "unexpected eh_depth";
458 goto corrupted;
459 }
460 if (unlikely(eh->eh_max == 0)) {
461 error_msg = "invalid eh_max";
462 goto corrupted;
463 }
464 max = ext4_ext_max_entries(inode, depth);
465 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
466 error_msg = "too large eh_max";
467 goto corrupted;
468 }
469 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
470 error_msg = "invalid eh_entries";
471 goto corrupted;
472 }
473 if (!ext4_valid_extent_entries(inode, eh, depth)) {
474 error_msg = "invalid extent entries";
475 goto corrupted;
476 }
477 /* Verify checksum on non-root extent tree nodes */
478 if (ext_depth(inode) != depth &&
479 !ext4_extent_block_csum_verify(inode, eh)) {
480 error_msg = "extent tree corrupted";
481 err = -EFSBADCRC;
482 goto corrupted;
483 }
484 return 0;
485
486 corrupted:
487 ext4_error_inode(inode, function, line, 0,
488 "pblk %llu bad header/extent: %s - magic %x, "
489 "entries %u, max %u(%u), depth %u(%u)",
490 (unsigned long long) pblk, error_msg,
491 le16_to_cpu(eh->eh_magic),
492 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
493 max, le16_to_cpu(eh->eh_depth), depth);
494 return err;
495 }
496
497 #define ext4_ext_check(inode, eh, depth, pblk) \
498 __ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
499
500 int ext4_ext_check_inode(struct inode *inode)
501 {
502 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
503 }
504
505 static struct buffer_head *
506 __read_extent_tree_block(const char *function, unsigned int line,
507 struct inode *inode, ext4_fsblk_t pblk, int depth,
508 int flags)
509 {
510 struct buffer_head *bh;
511 int err;
512
513 bh = sb_getblk_gfp(inode->i_sb, pblk, __GFP_MOVABLE | GFP_NOFS);
514 if (unlikely(!bh))
515 return ERR_PTR(-ENOMEM);
516
517 if (!bh_uptodate_or_lock(bh)) {
518 trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
519 err = bh_submit_read(bh);
520 if (err < 0)
521 goto errout;
522 }
523 if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
524 return bh;
525 err = __ext4_ext_check(function, line, inode,
526 ext_block_hdr(bh), depth, pblk);
527 if (err)
528 goto errout;
529 set_buffer_verified(bh);
530 /*
531 * If this is a leaf block, cache all of its entries
532 */
533 if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
534 struct ext4_extent_header *eh = ext_block_hdr(bh);
535 struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
536 ext4_lblk_t prev = 0;
537 int i;
538
539 for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
540 unsigned int status = EXTENT_STATUS_WRITTEN;
541 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
542 int len = ext4_ext_get_actual_len(ex);
543
544 if (prev && (prev != lblk))
545 ext4_es_cache_extent(inode, prev,
546 lblk - prev, ~0,
547 EXTENT_STATUS_HOLE);
548
549 if (ext4_ext_is_unwritten(ex))
550 status = EXTENT_STATUS_UNWRITTEN;
551 ext4_es_cache_extent(inode, lblk, len,
552 ext4_ext_pblock(ex), status);
553 prev = lblk + len;
554 }
555 }
556 return bh;
557 errout:
558 put_bh(bh);
559 return ERR_PTR(err);
560
561 }
562
563 #define read_extent_tree_block(inode, pblk, depth, flags) \
564 __read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
565 (depth), (flags))
566
567 /*
568 * This function is called to cache a file's extent information in the
569 * extent status tree
570 */
571 int ext4_ext_precache(struct inode *inode)
572 {
573 struct ext4_inode_info *ei = EXT4_I(inode);
574 struct ext4_ext_path *path = NULL;
575 struct buffer_head *bh;
576 int i = 0, depth, ret = 0;
577
578 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
579 return 0; /* not an extent-mapped inode */
580
581 down_read(&ei->i_data_sem);
582 depth = ext_depth(inode);
583
584 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
585 GFP_NOFS);
586 if (path == NULL) {
587 up_read(&ei->i_data_sem);
588 return -ENOMEM;
589 }
590
591 /* Don't cache anything if there are no external extent blocks */
592 if (depth == 0)
593 goto out;
594 path[0].p_hdr = ext_inode_hdr(inode);
595 ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
596 if (ret)
597 goto out;
598 path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
599 while (i >= 0) {
600 /*
601 * If this is a leaf block or we've reached the end of
602 * the index block, go up
603 */
604 if ((i == depth) ||
605 path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
606 brelse(path[i].p_bh);
607 path[i].p_bh = NULL;
608 i--;
609 continue;
610 }
611 bh = read_extent_tree_block(inode,
612 ext4_idx_pblock(path[i].p_idx++),
613 depth - i - 1,
614 EXT4_EX_FORCE_CACHE);
615 if (IS_ERR(bh)) {
616 ret = PTR_ERR(bh);
617 break;
618 }
619 i++;
620 path[i].p_bh = bh;
621 path[i].p_hdr = ext_block_hdr(bh);
622 path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
623 }
624 ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
625 out:
626 up_read(&ei->i_data_sem);
627 ext4_ext_drop_refs(path);
628 kfree(path);
629 return ret;
630 }
631
632 #ifdef EXT_DEBUG
633 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
634 {
635 int k, l = path->p_depth;
636
637 ext_debug("path:");
638 for (k = 0; k <= l; k++, path++) {
639 if (path->p_idx) {
640 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
641 ext4_idx_pblock(path->p_idx));
642 } else if (path->p_ext) {
643 ext_debug(" %d:[%d]%d:%llu ",
644 le32_to_cpu(path->p_ext->ee_block),
645 ext4_ext_is_unwritten(path->p_ext),
646 ext4_ext_get_actual_len(path->p_ext),
647 ext4_ext_pblock(path->p_ext));
648 } else
649 ext_debug(" []");
650 }
651 ext_debug("\n");
652 }
653
654 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
655 {
656 int depth = ext_depth(inode);
657 struct ext4_extent_header *eh;
658 struct ext4_extent *ex;
659 int i;
660
661 if (!path)
662 return;
663
664 eh = path[depth].p_hdr;
665 ex = EXT_FIRST_EXTENT(eh);
666
667 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
668
669 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
670 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
671 ext4_ext_is_unwritten(ex),
672 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
673 }
674 ext_debug("\n");
675 }
676
677 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
678 ext4_fsblk_t newblock, int level)
679 {
680 int depth = ext_depth(inode);
681 struct ext4_extent *ex;
682
683 if (depth != level) {
684 struct ext4_extent_idx *idx;
685 idx = path[level].p_idx;
686 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
687 ext_debug("%d: move %d:%llu in new index %llu\n", level,
688 le32_to_cpu(idx->ei_block),
689 ext4_idx_pblock(idx),
690 newblock);
691 idx++;
692 }
693
694 return;
695 }
696
697 ex = path[depth].p_ext;
698 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
699 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
700 le32_to_cpu(ex->ee_block),
701 ext4_ext_pblock(ex),
702 ext4_ext_is_unwritten(ex),
703 ext4_ext_get_actual_len(ex),
704 newblock);
705 ex++;
706 }
707 }
708
709 #else
710 #define ext4_ext_show_path(inode, path)
711 #define ext4_ext_show_leaf(inode, path)
712 #define ext4_ext_show_move(inode, path, newblock, level)
713 #endif
714
715 void ext4_ext_drop_refs(struct ext4_ext_path *path)
716 {
717 int depth, i;
718
719 if (!path)
720 return;
721 depth = path->p_depth;
722 for (i = 0; i <= depth; i++, path++)
723 if (path->p_bh) {
724 brelse(path->p_bh);
725 path->p_bh = NULL;
726 }
727 }
728
729 /*
730 * ext4_ext_binsearch_idx:
731 * binary search for the closest index of the given block
732 * the header must be checked before calling this
733 */
734 static void
735 ext4_ext_binsearch_idx(struct inode *inode,
736 struct ext4_ext_path *path, ext4_lblk_t block)
737 {
738 struct ext4_extent_header *eh = path->p_hdr;
739 struct ext4_extent_idx *r, *l, *m;
740
741
742 ext_debug("binsearch for %u(idx): ", block);
743
744 l = EXT_FIRST_INDEX(eh) + 1;
745 r = EXT_LAST_INDEX(eh);
746 while (l <= r) {
747 m = l + (r - l) / 2;
748 if (block < le32_to_cpu(m->ei_block))
749 r = m - 1;
750 else
751 l = m + 1;
752 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
753 m, le32_to_cpu(m->ei_block),
754 r, le32_to_cpu(r->ei_block));
755 }
756
757 path->p_idx = l - 1;
758 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
759 ext4_idx_pblock(path->p_idx));
760
761 #ifdef CHECK_BINSEARCH
762 {
763 struct ext4_extent_idx *chix, *ix;
764 int k;
765
766 chix = ix = EXT_FIRST_INDEX(eh);
767 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
768 if (k != 0 &&
769 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
770 printk(KERN_DEBUG "k=%d, ix=0x%p, "
771 "first=0x%p\n", k,
772 ix, EXT_FIRST_INDEX(eh));
773 printk(KERN_DEBUG "%u <= %u\n",
774 le32_to_cpu(ix->ei_block),
775 le32_to_cpu(ix[-1].ei_block));
776 }
777 BUG_ON(k && le32_to_cpu(ix->ei_block)
778 <= le32_to_cpu(ix[-1].ei_block));
779 if (block < le32_to_cpu(ix->ei_block))
780 break;
781 chix = ix;
782 }
783 BUG_ON(chix != path->p_idx);
784 }
785 #endif
786
787 }
788
789 /*
790 * ext4_ext_binsearch:
791 * binary search for closest extent of the given block
792 * the header must be checked before calling this
793 */
794 static void
795 ext4_ext_binsearch(struct inode *inode,
796 struct ext4_ext_path *path, ext4_lblk_t block)
797 {
798 struct ext4_extent_header *eh = path->p_hdr;
799 struct ext4_extent *r, *l, *m;
800
801 if (eh->eh_entries == 0) {
802 /*
803 * this leaf is empty:
804 * we get such a leaf in split/add case
805 */
806 return;
807 }
808
809 ext_debug("binsearch for %u: ", block);
810
811 l = EXT_FIRST_EXTENT(eh) + 1;
812 r = EXT_LAST_EXTENT(eh);
813
814 while (l <= r) {
815 m = l + (r - l) / 2;
816 if (block < le32_to_cpu(m->ee_block))
817 r = m - 1;
818 else
819 l = m + 1;
820 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
821 m, le32_to_cpu(m->ee_block),
822 r, le32_to_cpu(r->ee_block));
823 }
824
825 path->p_ext = l - 1;
826 ext_debug(" -> %d:%llu:[%d]%d ",
827 le32_to_cpu(path->p_ext->ee_block),
828 ext4_ext_pblock(path->p_ext),
829 ext4_ext_is_unwritten(path->p_ext),
830 ext4_ext_get_actual_len(path->p_ext));
831
832 #ifdef CHECK_BINSEARCH
833 {
834 struct ext4_extent *chex, *ex;
835 int k;
836
837 chex = ex = EXT_FIRST_EXTENT(eh);
838 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
839 BUG_ON(k && le32_to_cpu(ex->ee_block)
840 <= le32_to_cpu(ex[-1].ee_block));
841 if (block < le32_to_cpu(ex->ee_block))
842 break;
843 chex = ex;
844 }
845 BUG_ON(chex != path->p_ext);
846 }
847 #endif
848
849 }
850
851 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
852 {
853 struct ext4_extent_header *eh;
854
855 eh = ext_inode_hdr(inode);
856 eh->eh_depth = 0;
857 eh->eh_entries = 0;
858 eh->eh_magic = EXT4_EXT_MAGIC;
859 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
860 ext4_mark_inode_dirty(handle, inode);
861 return 0;
862 }
863
864 struct ext4_ext_path *
865 ext4_find_extent(struct inode *inode, ext4_lblk_t block,
866 struct ext4_ext_path **orig_path, int flags)
867 {
868 struct ext4_extent_header *eh;
869 struct buffer_head *bh;
870 struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
871 short int depth, i, ppos = 0;
872 int ret;
873
874 eh = ext_inode_hdr(inode);
875 depth = ext_depth(inode);
876
877 if (path) {
878 ext4_ext_drop_refs(path);
879 if (depth > path[0].p_maxdepth) {
880 kfree(path);
881 *orig_path = path = NULL;
882 }
883 }
884 if (!path) {
885 /* account possible depth increase */
886 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
887 GFP_NOFS);
888 if (unlikely(!path))
889 return ERR_PTR(-ENOMEM);
890 path[0].p_maxdepth = depth + 1;
891 }
892 path[0].p_hdr = eh;
893 path[0].p_bh = NULL;
894
895 i = depth;
896 /* walk through the tree */
897 while (i) {
898 ext_debug("depth %d: num %d, max %d\n",
899 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
900
901 ext4_ext_binsearch_idx(inode, path + ppos, block);
902 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
903 path[ppos].p_depth = i;
904 path[ppos].p_ext = NULL;
905
906 bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
907 flags);
908 if (IS_ERR(bh)) {
909 ret = PTR_ERR(bh);
910 goto err;
911 }
912
913 eh = ext_block_hdr(bh);
914 ppos++;
915 path[ppos].p_bh = bh;
916 path[ppos].p_hdr = eh;
917 }
918
919 path[ppos].p_depth = i;
920 path[ppos].p_ext = NULL;
921 path[ppos].p_idx = NULL;
922
923 /* find extent */
924 ext4_ext_binsearch(inode, path + ppos, block);
925 /* if not an empty leaf */
926 if (path[ppos].p_ext)
927 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
928
929 ext4_ext_show_path(inode, path);
930
931 return path;
932
933 err:
934 ext4_ext_drop_refs(path);
935 kfree(path);
936 if (orig_path)
937 *orig_path = NULL;
938 return ERR_PTR(ret);
939 }
940
941 /*
942 * ext4_ext_insert_index:
943 * insert new index [@logical;@ptr] into the block at @curp;
944 * check where to insert: before @curp or after @curp
945 */
946 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
947 struct ext4_ext_path *curp,
948 int logical, ext4_fsblk_t ptr)
949 {
950 struct ext4_extent_idx *ix;
951 int len, err;
952
953 err = ext4_ext_get_access(handle, inode, curp);
954 if (err)
955 return err;
956
957 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
958 EXT4_ERROR_INODE(inode,
959 "logical %d == ei_block %d!",
960 logical, le32_to_cpu(curp->p_idx->ei_block));
961 return -EFSCORRUPTED;
962 }
963
964 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
965 >= le16_to_cpu(curp->p_hdr->eh_max))) {
966 EXT4_ERROR_INODE(inode,
967 "eh_entries %d >= eh_max %d!",
968 le16_to_cpu(curp->p_hdr->eh_entries),
969 le16_to_cpu(curp->p_hdr->eh_max));
970 return -EFSCORRUPTED;
971 }
972
973 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
974 /* insert after */
975 ext_debug("insert new index %d after: %llu\n", logical, ptr);
976 ix = curp->p_idx + 1;
977 } else {
978 /* insert before */
979 ext_debug("insert new index %d before: %llu\n", logical, ptr);
980 ix = curp->p_idx;
981 }
982
983 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
984 BUG_ON(len < 0);
985 if (len > 0) {
986 ext_debug("insert new index %d: "
987 "move %d indices from 0x%p to 0x%p\n",
988 logical, len, ix, ix + 1);
989 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
990 }
991
992 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
993 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
994 return -EFSCORRUPTED;
995 }
996
997 ix->ei_block = cpu_to_le32(logical);
998 ext4_idx_store_pblock(ix, ptr);
999 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
1000
1001 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
1002 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
1003 return -EFSCORRUPTED;
1004 }
1005
1006 err = ext4_ext_dirty(handle, inode, curp);
1007 ext4_std_error(inode->i_sb, err);
1008
1009 return err;
1010 }
1011
1012 /*
1013 * ext4_ext_split:
1014 * inserts new subtree into the path, using free index entry
1015 * at depth @at:
1016 * - allocates all needed blocks (new leaf and all intermediate index blocks)
1017 * - makes decision where to split
1018 * - moves remaining extents and index entries (right to the split point)
1019 * into the newly allocated blocks
1020 * - initializes subtree
1021 */
1022 static int ext4_ext_split(handle_t *handle, struct inode *inode,
1023 unsigned int flags,
1024 struct ext4_ext_path *path,
1025 struct ext4_extent *newext, int at)
1026 {
1027 struct buffer_head *bh = NULL;
1028 int depth = ext_depth(inode);
1029 struct ext4_extent_header *neh;
1030 struct ext4_extent_idx *fidx;
1031 int i = at, k, m, a;
1032 ext4_fsblk_t newblock, oldblock;
1033 __le32 border;
1034 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
1035 int err = 0;
1036
1037 /* make decision: where to split? */
1038 /* FIXME: now decision is simplest: at current extent */
1039
1040 /* if current leaf will be split, then we should use
1041 * border from split point */
1042 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
1043 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
1044 return -EFSCORRUPTED;
1045 }
1046 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
1047 border = path[depth].p_ext[1].ee_block;
1048 ext_debug("leaf will be split."
1049 " next leaf starts at %d\n",
1050 le32_to_cpu(border));
1051 } else {
1052 border = newext->ee_block;
1053 ext_debug("leaf will be added."
1054 " next leaf starts at %d\n",
1055 le32_to_cpu(border));
1056 }
1057
1058 /*
1059 * If error occurs, then we break processing
1060 * and mark filesystem read-only. index won't
1061 * be inserted and tree will be in consistent
1062 * state. Next mount will repair buffers too.
1063 */
1064
1065 /*
1066 * Get array to track all allocated blocks.
1067 * We need this to handle errors and free blocks
1068 * upon them.
1069 */
1070 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
1071 if (!ablocks)
1072 return -ENOMEM;
1073
1074 /* allocate all needed blocks */
1075 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
1076 for (a = 0; a < depth - at; a++) {
1077 newblock = ext4_ext_new_meta_block(handle, inode, path,
1078 newext, &err, flags);
1079 if (newblock == 0)
1080 goto cleanup;
1081 ablocks[a] = newblock;
1082 }
1083
1084 /* initialize new leaf */
1085 newblock = ablocks[--a];
1086 if (unlikely(newblock == 0)) {
1087 EXT4_ERROR_INODE(inode, "newblock == 0!");
1088 err = -EFSCORRUPTED;
1089 goto cleanup;
1090 }
1091 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1092 if (unlikely(!bh)) {
1093 err = -ENOMEM;
1094 goto cleanup;
1095 }
1096 lock_buffer(bh);
1097
1098 err = ext4_journal_get_create_access(handle, bh);
1099 if (err)
1100 goto cleanup;
1101
1102 neh = ext_block_hdr(bh);
1103 neh->eh_entries = 0;
1104 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1105 neh->eh_magic = EXT4_EXT_MAGIC;
1106 neh->eh_depth = 0;
1107
1108 /* move remainder of path[depth] to the new leaf */
1109 if (unlikely(path[depth].p_hdr->eh_entries !=
1110 path[depth].p_hdr->eh_max)) {
1111 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
1112 path[depth].p_hdr->eh_entries,
1113 path[depth].p_hdr->eh_max);
1114 err = -EFSCORRUPTED;
1115 goto cleanup;
1116 }
1117 /* start copy from next extent */
1118 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
1119 ext4_ext_show_move(inode, path, newblock, depth);
1120 if (m) {
1121 struct ext4_extent *ex;
1122 ex = EXT_FIRST_EXTENT(neh);
1123 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
1124 le16_add_cpu(&neh->eh_entries, m);
1125 }
1126
1127 ext4_extent_block_csum_set(inode, neh);
1128 set_buffer_uptodate(bh);
1129 unlock_buffer(bh);
1130
1131 err = ext4_handle_dirty_metadata(handle, inode, bh);
1132 if (err)
1133 goto cleanup;
1134 brelse(bh);
1135 bh = NULL;
1136
1137 /* correct old leaf */
1138 if (m) {
1139 err = ext4_ext_get_access(handle, inode, path + depth);
1140 if (err)
1141 goto cleanup;
1142 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1143 err = ext4_ext_dirty(handle, inode, path + depth);
1144 if (err)
1145 goto cleanup;
1146
1147 }
1148
1149 /* create intermediate indexes */
1150 k = depth - at - 1;
1151 if (unlikely(k < 0)) {
1152 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1153 err = -EFSCORRUPTED;
1154 goto cleanup;
1155 }
1156 if (k)
1157 ext_debug("create %d intermediate indices\n", k);
1158 /* insert new index into current index block */
1159 /* current depth stored in i var */
1160 i = depth - 1;
1161 while (k--) {
1162 oldblock = newblock;
1163 newblock = ablocks[--a];
1164 bh = sb_getblk(inode->i_sb, newblock);
1165 if (unlikely(!bh)) {
1166 err = -ENOMEM;
1167 goto cleanup;
1168 }
1169 lock_buffer(bh);
1170
1171 err = ext4_journal_get_create_access(handle, bh);
1172 if (err)
1173 goto cleanup;
1174
1175 neh = ext_block_hdr(bh);
1176 neh->eh_entries = cpu_to_le16(1);
1177 neh->eh_magic = EXT4_EXT_MAGIC;
1178 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1179 neh->eh_depth = cpu_to_le16(depth - i);
1180 fidx = EXT_FIRST_INDEX(neh);
1181 fidx->ei_block = border;
1182 ext4_idx_store_pblock(fidx, oldblock);
1183
1184 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1185 i, newblock, le32_to_cpu(border), oldblock);
1186
1187 /* move remainder of path[i] to the new index block */
1188 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1189 EXT_LAST_INDEX(path[i].p_hdr))) {
1190 EXT4_ERROR_INODE(inode,
1191 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1192 le32_to_cpu(path[i].p_ext->ee_block));
1193 err = -EFSCORRUPTED;
1194 goto cleanup;
1195 }
1196 /* start copy indexes */
1197 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1198 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1199 EXT_MAX_INDEX(path[i].p_hdr));
1200 ext4_ext_show_move(inode, path, newblock, i);
1201 if (m) {
1202 memmove(++fidx, path[i].p_idx,
1203 sizeof(struct ext4_extent_idx) * m);
1204 le16_add_cpu(&neh->eh_entries, m);
1205 }
1206 ext4_extent_block_csum_set(inode, neh);
1207 set_buffer_uptodate(bh);
1208 unlock_buffer(bh);
1209
1210 err = ext4_handle_dirty_metadata(handle, inode, bh);
1211 if (err)
1212 goto cleanup;
1213 brelse(bh);
1214 bh = NULL;
1215
1216 /* correct old index */
1217 if (m) {
1218 err = ext4_ext_get_access(handle, inode, path + i);
1219 if (err)
1220 goto cleanup;
1221 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1222 err = ext4_ext_dirty(handle, inode, path + i);
1223 if (err)
1224 goto cleanup;
1225 }
1226
1227 i--;
1228 }
1229
1230 /* insert new index */
1231 err = ext4_ext_insert_index(handle, inode, path + at,
1232 le32_to_cpu(border), newblock);
1233
1234 cleanup:
1235 if (bh) {
1236 if (buffer_locked(bh))
1237 unlock_buffer(bh);
1238 brelse(bh);
1239 }
1240
1241 if (err) {
1242 /* free all allocated blocks in error case */
1243 for (i = 0; i < depth; i++) {
1244 if (!ablocks[i])
1245 continue;
1246 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1247 EXT4_FREE_BLOCKS_METADATA);
1248 }
1249 }
1250 kfree(ablocks);
1251
1252 return err;
1253 }
1254
1255 /*
1256 * ext4_ext_grow_indepth:
1257 * implements tree growing procedure:
1258 * - allocates new block
1259 * - moves top-level data (index block or leaf) into the new block
1260 * - initializes new top-level, creating index that points to the
1261 * just created block
1262 */
1263 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1264 unsigned int flags)
1265 {
1266 struct ext4_extent_header *neh;
1267 struct buffer_head *bh;
1268 ext4_fsblk_t newblock, goal = 0;
1269 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
1270 int err = 0;
1271
1272 /* Try to prepend new index to old one */
1273 if (ext_depth(inode))
1274 goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
1275 if (goal > le32_to_cpu(es->s_first_data_block)) {
1276 flags |= EXT4_MB_HINT_TRY_GOAL;
1277 goal--;
1278 } else
1279 goal = ext4_inode_to_goal_block(inode);
1280 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
1281 NULL, &err);
1282 if (newblock == 0)
1283 return err;
1284
1285 bh = sb_getblk_gfp(inode->i_sb, newblock, __GFP_MOVABLE | GFP_NOFS);
1286 if (unlikely(!bh))
1287 return -ENOMEM;
1288 lock_buffer(bh);
1289
1290 err = ext4_journal_get_create_access(handle, bh);
1291 if (err) {
1292 unlock_buffer(bh);
1293 goto out;
1294 }
1295
1296 /* move top-level index/leaf into new block */
1297 memmove(bh->b_data, EXT4_I(inode)->i_data,
1298 sizeof(EXT4_I(inode)->i_data));
1299
1300 /* set size of new block */
1301 neh = ext_block_hdr(bh);
1302 /* old root could have indexes or leaves
1303 * so calculate e_max right way */
1304 if (ext_depth(inode))
1305 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1306 else
1307 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1308 neh->eh_magic = EXT4_EXT_MAGIC;
1309 ext4_extent_block_csum_set(inode, neh);
1310 set_buffer_uptodate(bh);
1311 unlock_buffer(bh);
1312
1313 err = ext4_handle_dirty_metadata(handle, inode, bh);
1314 if (err)
1315 goto out;
1316
1317 /* Update top-level index: num,max,pointer */
1318 neh = ext_inode_hdr(inode);
1319 neh->eh_entries = cpu_to_le16(1);
1320 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1321 if (neh->eh_depth == 0) {
1322 /* Root extent block becomes index block */
1323 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1324 EXT_FIRST_INDEX(neh)->ei_block =
1325 EXT_FIRST_EXTENT(neh)->ee_block;
1326 }
1327 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1328 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1329 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1330 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1331
1332 le16_add_cpu(&neh->eh_depth, 1);
1333 ext4_mark_inode_dirty(handle, inode);
1334 out:
1335 brelse(bh);
1336
1337 return err;
1338 }
1339
1340 /*
1341 * ext4_ext_create_new_leaf:
1342 * finds empty index and adds new leaf.
1343 * if no free index is found, then it requests in-depth growing.
1344 */
1345 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1346 unsigned int mb_flags,
1347 unsigned int gb_flags,
1348 struct ext4_ext_path **ppath,
1349 struct ext4_extent *newext)
1350 {
1351 struct ext4_ext_path *path = *ppath;
1352 struct ext4_ext_path *curp;
1353 int depth, i, err = 0;
1354
1355 repeat:
1356 i = depth = ext_depth(inode);
1357
1358 /* walk up to the tree and look for free index entry */
1359 curp = path + depth;
1360 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1361 i--;
1362 curp--;
1363 }
1364
1365 /* we use already allocated block for index block,
1366 * so subsequent data blocks should be contiguous */
1367 if (EXT_HAS_FREE_INDEX(curp)) {
1368 /* if we found index with free entry, then use that
1369 * entry: create all needed subtree and add new leaf */
1370 err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
1371 if (err)
1372 goto out;
1373
1374 /* refill path */
1375 path = ext4_find_extent(inode,
1376 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1377 ppath, gb_flags);
1378 if (IS_ERR(path))
1379 err = PTR_ERR(path);
1380 } else {
1381 /* tree is full, time to grow in depth */
1382 err = ext4_ext_grow_indepth(handle, inode, mb_flags);
1383 if (err)
1384 goto out;
1385
1386 /* refill path */
1387 path = ext4_find_extent(inode,
1388 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1389 ppath, gb_flags);
1390 if (IS_ERR(path)) {
1391 err = PTR_ERR(path);
1392 goto out;
1393 }
1394
1395 /*
1396 * only first (depth 0 -> 1) produces free space;
1397 * in all other cases we have to split the grown tree
1398 */
1399 depth = ext_depth(inode);
1400 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1401 /* now we need to split */
1402 goto repeat;
1403 }
1404 }
1405
1406 out:
1407 return err;
1408 }
1409
1410 /*
1411 * search the closest allocated block to the left for *logical
1412 * and returns it at @logical + it's physical address at @phys
1413 * if *logical is the smallest allocated block, the function
1414 * returns 0 at @phys
1415 * return value contains 0 (success) or error code
1416 */
1417 static int ext4_ext_search_left(struct inode *inode,
1418 struct ext4_ext_path *path,
1419 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1420 {
1421 struct ext4_extent_idx *ix;
1422 struct ext4_extent *ex;
1423 int depth, ee_len;
1424
1425 if (unlikely(path == NULL)) {
1426 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1427 return -EFSCORRUPTED;
1428 }
1429 depth = path->p_depth;
1430 *phys = 0;
1431
1432 if (depth == 0 && path->p_ext == NULL)
1433 return 0;
1434
1435 /* usually extent in the path covers blocks smaller
1436 * then *logical, but it can be that extent is the
1437 * first one in the file */
1438
1439 ex = path[depth].p_ext;
1440 ee_len = ext4_ext_get_actual_len(ex);
1441 if (*logical < le32_to_cpu(ex->ee_block)) {
1442 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1443 EXT4_ERROR_INODE(inode,
1444 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1445 *logical, le32_to_cpu(ex->ee_block));
1446 return -EFSCORRUPTED;
1447 }
1448 while (--depth >= 0) {
1449 ix = path[depth].p_idx;
1450 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1451 EXT4_ERROR_INODE(inode,
1452 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1453 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1454 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1455 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1456 depth);
1457 return -EFSCORRUPTED;
1458 }
1459 }
1460 return 0;
1461 }
1462
1463 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1464 EXT4_ERROR_INODE(inode,
1465 "logical %d < ee_block %d + ee_len %d!",
1466 *logical, le32_to_cpu(ex->ee_block), ee_len);
1467 return -EFSCORRUPTED;
1468 }
1469
1470 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1471 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1472 return 0;
1473 }
1474
1475 /*
1476 * search the closest allocated block to the right for *logical
1477 * and returns it at @logical + it's physical address at @phys
1478 * if *logical is the largest allocated block, the function
1479 * returns 0 at @phys
1480 * return value contains 0 (success) or error code
1481 */
1482 static int ext4_ext_search_right(struct inode *inode,
1483 struct ext4_ext_path *path,
1484 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1485 struct ext4_extent **ret_ex)
1486 {
1487 struct buffer_head *bh = NULL;
1488 struct ext4_extent_header *eh;
1489 struct ext4_extent_idx *ix;
1490 struct ext4_extent *ex;
1491 ext4_fsblk_t block;
1492 int depth; /* Note, NOT eh_depth; depth from top of tree */
1493 int ee_len;
1494
1495 if (unlikely(path == NULL)) {
1496 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1497 return -EFSCORRUPTED;
1498 }
1499 depth = path->p_depth;
1500 *phys = 0;
1501
1502 if (depth == 0 && path->p_ext == NULL)
1503 return 0;
1504
1505 /* usually extent in the path covers blocks smaller
1506 * then *logical, but it can be that extent is the
1507 * first one in the file */
1508
1509 ex = path[depth].p_ext;
1510 ee_len = ext4_ext_get_actual_len(ex);
1511 if (*logical < le32_to_cpu(ex->ee_block)) {
1512 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1513 EXT4_ERROR_INODE(inode,
1514 "first_extent(path[%d].p_hdr) != ex",
1515 depth);
1516 return -EFSCORRUPTED;
1517 }
1518 while (--depth >= 0) {
1519 ix = path[depth].p_idx;
1520 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1521 EXT4_ERROR_INODE(inode,
1522 "ix != EXT_FIRST_INDEX *logical %d!",
1523 *logical);
1524 return -EFSCORRUPTED;
1525 }
1526 }
1527 goto found_extent;
1528 }
1529
1530 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1531 EXT4_ERROR_INODE(inode,
1532 "logical %d < ee_block %d + ee_len %d!",
1533 *logical, le32_to_cpu(ex->ee_block), ee_len);
1534 return -EFSCORRUPTED;
1535 }
1536
1537 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1538 /* next allocated block in this leaf */
1539 ex++;
1540 goto found_extent;
1541 }
1542
1543 /* go up and search for index to the right */
1544 while (--depth >= 0) {
1545 ix = path[depth].p_idx;
1546 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1547 goto got_index;
1548 }
1549
1550 /* we've gone up to the root and found no index to the right */
1551 return 0;
1552
1553 got_index:
1554 /* we've found index to the right, let's
1555 * follow it and find the closest allocated
1556 * block to the right */
1557 ix++;
1558 block = ext4_idx_pblock(ix);
1559 while (++depth < path->p_depth) {
1560 /* subtract from p_depth to get proper eh_depth */
1561 bh = read_extent_tree_block(inode, block,
1562 path->p_depth - depth, 0);
1563 if (IS_ERR(bh))
1564 return PTR_ERR(bh);
1565 eh = ext_block_hdr(bh);
1566 ix = EXT_FIRST_INDEX(eh);
1567 block = ext4_idx_pblock(ix);
1568 put_bh(bh);
1569 }
1570
1571 bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
1572 if (IS_ERR(bh))
1573 return PTR_ERR(bh);
1574 eh = ext_block_hdr(bh);
1575 ex = EXT_FIRST_EXTENT(eh);
1576 found_extent:
1577 *logical = le32_to_cpu(ex->ee_block);
1578 *phys = ext4_ext_pblock(ex);
1579 *ret_ex = ex;
1580 if (bh)
1581 put_bh(bh);
1582 return 0;
1583 }
1584
1585 /*
1586 * ext4_ext_next_allocated_block:
1587 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1588 * NOTE: it considers block number from index entry as
1589 * allocated block. Thus, index entries have to be consistent
1590 * with leaves.
1591 */
1592 ext4_lblk_t
1593 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1594 {
1595 int depth;
1596
1597 BUG_ON(path == NULL);
1598 depth = path->p_depth;
1599
1600 if (depth == 0 && path->p_ext == NULL)
1601 return EXT_MAX_BLOCKS;
1602
1603 while (depth >= 0) {
1604 if (depth == path->p_depth) {
1605 /* leaf */
1606 if (path[depth].p_ext &&
1607 path[depth].p_ext !=
1608 EXT_LAST_EXTENT(path[depth].p_hdr))
1609 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1610 } else {
1611 /* index */
1612 if (path[depth].p_idx !=
1613 EXT_LAST_INDEX(path[depth].p_hdr))
1614 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1615 }
1616 depth--;
1617 }
1618
1619 return EXT_MAX_BLOCKS;
1620 }
1621
1622 /*
1623 * ext4_ext_next_leaf_block:
1624 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1625 */
1626 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1627 {
1628 int depth;
1629
1630 BUG_ON(path == NULL);
1631 depth = path->p_depth;
1632
1633 /* zero-tree has no leaf blocks at all */
1634 if (depth == 0)
1635 return EXT_MAX_BLOCKS;
1636
1637 /* go to index block */
1638 depth--;
1639
1640 while (depth >= 0) {
1641 if (path[depth].p_idx !=
1642 EXT_LAST_INDEX(path[depth].p_hdr))
1643 return (ext4_lblk_t)
1644 le32_to_cpu(path[depth].p_idx[1].ei_block);
1645 depth--;
1646 }
1647
1648 return EXT_MAX_BLOCKS;
1649 }
1650
1651 /*
1652 * ext4_ext_correct_indexes:
1653 * if leaf gets modified and modified extent is first in the leaf,
1654 * then we have to correct all indexes above.
1655 * TODO: do we need to correct tree in all cases?
1656 */
1657 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1658 struct ext4_ext_path *path)
1659 {
1660 struct ext4_extent_header *eh;
1661 int depth = ext_depth(inode);
1662 struct ext4_extent *ex;
1663 __le32 border;
1664 int k, err = 0;
1665
1666 eh = path[depth].p_hdr;
1667 ex = path[depth].p_ext;
1668
1669 if (unlikely(ex == NULL || eh == NULL)) {
1670 EXT4_ERROR_INODE(inode,
1671 "ex %p == NULL or eh %p == NULL", ex, eh);
1672 return -EFSCORRUPTED;
1673 }
1674
1675 if (depth == 0) {
1676 /* there is no tree at all */
1677 return 0;
1678 }
1679
1680 if (ex != EXT_FIRST_EXTENT(eh)) {
1681 /* we correct tree if first leaf got modified only */
1682 return 0;
1683 }
1684
1685 /*
1686 * TODO: we need correction if border is smaller than current one
1687 */
1688 k = depth - 1;
1689 border = path[depth].p_ext->ee_block;
1690 err = ext4_ext_get_access(handle, inode, path + k);
1691 if (err)
1692 return err;
1693 path[k].p_idx->ei_block = border;
1694 err = ext4_ext_dirty(handle, inode, path + k);
1695 if (err)
1696 return err;
1697
1698 while (k--) {
1699 /* change all left-side indexes */
1700 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1701 break;
1702 err = ext4_ext_get_access(handle, inode, path + k);
1703 if (err)
1704 break;
1705 path[k].p_idx->ei_block = border;
1706 err = ext4_ext_dirty(handle, inode, path + k);
1707 if (err)
1708 break;
1709 }
1710
1711 return err;
1712 }
1713
1714 int
1715 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1716 struct ext4_extent *ex2)
1717 {
1718 unsigned short ext1_ee_len, ext2_ee_len;
1719
1720 if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
1721 return 0;
1722
1723 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1724 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1725
1726 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1727 le32_to_cpu(ex2->ee_block))
1728 return 0;
1729
1730 /*
1731 * To allow future support for preallocated extents to be added
1732 * as an RO_COMPAT feature, refuse to merge to extents if
1733 * this can result in the top bit of ee_len being set.
1734 */
1735 if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
1736 return 0;
1737 /*
1738 * The check for IO to unwritten extent is somewhat racy as we
1739 * increment i_unwritten / set EXT4_STATE_DIO_UNWRITTEN only after
1740 * dropping i_data_sem. But reserved blocks should save us in that
1741 * case.
1742 */
1743 if (ext4_ext_is_unwritten(ex1) &&
1744 (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
1745 atomic_read(&EXT4_I(inode)->i_unwritten) ||
1746 (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
1747 return 0;
1748 #ifdef AGGRESSIVE_TEST
1749 if (ext1_ee_len >= 4)
1750 return 0;
1751 #endif
1752
1753 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1754 return 1;
1755 return 0;
1756 }
1757
1758 /*
1759 * This function tries to merge the "ex" extent to the next extent in the tree.
1760 * It always tries to merge towards right. If you want to merge towards
1761 * left, pass "ex - 1" as argument instead of "ex".
1762 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1763 * 1 if they got merged.
1764 */
1765 static int ext4_ext_try_to_merge_right(struct inode *inode,
1766 struct ext4_ext_path *path,
1767 struct ext4_extent *ex)
1768 {
1769 struct ext4_extent_header *eh;
1770 unsigned int depth, len;
1771 int merge_done = 0, unwritten;
1772
1773 depth = ext_depth(inode);
1774 BUG_ON(path[depth].p_hdr == NULL);
1775 eh = path[depth].p_hdr;
1776
1777 while (ex < EXT_LAST_EXTENT(eh)) {
1778 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1779 break;
1780 /* merge with next extent! */
1781 unwritten = ext4_ext_is_unwritten(ex);
1782 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1783 + ext4_ext_get_actual_len(ex + 1));
1784 if (unwritten)
1785 ext4_ext_mark_unwritten(ex);
1786
1787 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1788 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1789 * sizeof(struct ext4_extent);
1790 memmove(ex + 1, ex + 2, len);
1791 }
1792 le16_add_cpu(&eh->eh_entries, -1);
1793 merge_done = 1;
1794 WARN_ON(eh->eh_entries == 0);
1795 if (!eh->eh_entries)
1796 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1797 }
1798
1799 return merge_done;
1800 }
1801
1802 /*
1803 * This function does a very simple check to see if we can collapse
1804 * an extent tree with a single extent tree leaf block into the inode.
1805 */
1806 static void ext4_ext_try_to_merge_up(handle_t *handle,
1807 struct inode *inode,
1808 struct ext4_ext_path *path)
1809 {
1810 size_t s;
1811 unsigned max_root = ext4_ext_space_root(inode, 0);
1812 ext4_fsblk_t blk;
1813
1814 if ((path[0].p_depth != 1) ||
1815 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1816 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1817 return;
1818
1819 /*
1820 * We need to modify the block allocation bitmap and the block
1821 * group descriptor to release the extent tree block. If we
1822 * can't get the journal credits, give up.
1823 */
1824 if (ext4_journal_extend(handle, 2))
1825 return;
1826
1827 /*
1828 * Copy the extent data up to the inode
1829 */
1830 blk = ext4_idx_pblock(path[0].p_idx);
1831 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1832 sizeof(struct ext4_extent_idx);
1833 s += sizeof(struct ext4_extent_header);
1834
1835 path[1].p_maxdepth = path[0].p_maxdepth;
1836 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1837 path[0].p_depth = 0;
1838 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1839 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1840 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1841
1842 brelse(path[1].p_bh);
1843 ext4_free_blocks(handle, inode, NULL, blk, 1,
1844 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1845 }
1846
1847 /*
1848 * This function tries to merge the @ex extent to neighbours in the tree.
1849 * return 1 if merge left else 0.
1850 */
1851 static void ext4_ext_try_to_merge(handle_t *handle,
1852 struct inode *inode,
1853 struct ext4_ext_path *path,
1854 struct ext4_extent *ex) {
1855 struct ext4_extent_header *eh;
1856 unsigned int depth;
1857 int merge_done = 0;
1858
1859 depth = ext_depth(inode);
1860 BUG_ON(path[depth].p_hdr == NULL);
1861 eh = path[depth].p_hdr;
1862
1863 if (ex > EXT_FIRST_EXTENT(eh))
1864 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1865
1866 if (!merge_done)
1867 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1868
1869 ext4_ext_try_to_merge_up(handle, inode, path);
1870 }
1871
1872 /*
1873 * check if a portion of the "newext" extent overlaps with an
1874 * existing extent.
1875 *
1876 * If there is an overlap discovered, it updates the length of the newext
1877 * such that there will be no overlap, and then returns 1.
1878 * If there is no overlap found, it returns 0.
1879 */
1880 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1881 struct inode *inode,
1882 struct ext4_extent *newext,
1883 struct ext4_ext_path *path)
1884 {
1885 ext4_lblk_t b1, b2;
1886 unsigned int depth, len1;
1887 unsigned int ret = 0;
1888
1889 b1 = le32_to_cpu(newext->ee_block);
1890 len1 = ext4_ext_get_actual_len(newext);
1891 depth = ext_depth(inode);
1892 if (!path[depth].p_ext)
1893 goto out;
1894 b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
1895
1896 /*
1897 * get the next allocated block if the extent in the path
1898 * is before the requested block(s)
1899 */
1900 if (b2 < b1) {
1901 b2 = ext4_ext_next_allocated_block(path);
1902 if (b2 == EXT_MAX_BLOCKS)
1903 goto out;
1904 b2 = EXT4_LBLK_CMASK(sbi, b2);
1905 }
1906
1907 /* check for wrap through zero on extent logical start block*/
1908 if (b1 + len1 < b1) {
1909 len1 = EXT_MAX_BLOCKS - b1;
1910 newext->ee_len = cpu_to_le16(len1);
1911 ret = 1;
1912 }
1913
1914 /* check for overlap */
1915 if (b1 + len1 > b2) {
1916 newext->ee_len = cpu_to_le16(b2 - b1);
1917 ret = 1;
1918 }
1919 out:
1920 return ret;
1921 }
1922
1923 /*
1924 * ext4_ext_insert_extent:
1925 * tries to merge requsted extent into the existing extent or
1926 * inserts requested extent as new one into the tree,
1927 * creating new leaf in the no-space case.
1928 */
1929 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1930 struct ext4_ext_path **ppath,
1931 struct ext4_extent *newext, int gb_flags)
1932 {
1933 struct ext4_ext_path *path = *ppath;
1934 struct ext4_extent_header *eh;
1935 struct ext4_extent *ex, *fex;
1936 struct ext4_extent *nearex; /* nearest extent */
1937 struct ext4_ext_path *npath = NULL;
1938 int depth, len, err;
1939 ext4_lblk_t next;
1940 int mb_flags = 0, unwritten;
1941
1942 if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1943 mb_flags |= EXT4_MB_DELALLOC_RESERVED;
1944 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1945 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1946 return -EFSCORRUPTED;
1947 }
1948 depth = ext_depth(inode);
1949 ex = path[depth].p_ext;
1950 eh = path[depth].p_hdr;
1951 if (unlikely(path[depth].p_hdr == NULL)) {
1952 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1953 return -EFSCORRUPTED;
1954 }
1955
1956 /* try to insert block into found extent and return */
1957 if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
1958
1959 /*
1960 * Try to see whether we should rather test the extent on
1961 * right from ex, or from the left of ex. This is because
1962 * ext4_find_extent() can return either extent on the
1963 * left, or on the right from the searched position. This
1964 * will make merging more effective.
1965 */
1966 if (ex < EXT_LAST_EXTENT(eh) &&
1967 (le32_to_cpu(ex->ee_block) +
1968 ext4_ext_get_actual_len(ex) <
1969 le32_to_cpu(newext->ee_block))) {
1970 ex += 1;
1971 goto prepend;
1972 } else if ((ex > EXT_FIRST_EXTENT(eh)) &&
1973 (le32_to_cpu(newext->ee_block) +
1974 ext4_ext_get_actual_len(newext) <
1975 le32_to_cpu(ex->ee_block)))
1976 ex -= 1;
1977
1978 /* Try to append newex to the ex */
1979 if (ext4_can_extents_be_merged(inode, ex, newext)) {
1980 ext_debug("append [%d]%d block to %u:[%d]%d"
1981 "(from %llu)\n",
1982 ext4_ext_is_unwritten(newext),
1983 ext4_ext_get_actual_len(newext),
1984 le32_to_cpu(ex->ee_block),
1985 ext4_ext_is_unwritten(ex),
1986 ext4_ext_get_actual_len(ex),
1987 ext4_ext_pblock(ex));
1988 err = ext4_ext_get_access(handle, inode,
1989 path + depth);
1990 if (err)
1991 return err;
1992 unwritten = ext4_ext_is_unwritten(ex);
1993 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1994 + ext4_ext_get_actual_len(newext));
1995 if (unwritten)
1996 ext4_ext_mark_unwritten(ex);
1997 eh = path[depth].p_hdr;
1998 nearex = ex;
1999 goto merge;
2000 }
2001
2002 prepend:
2003 /* Try to prepend newex to the ex */
2004 if (ext4_can_extents_be_merged(inode, newext, ex)) {
2005 ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
2006 "(from %llu)\n",
2007 le32_to_cpu(newext->ee_block),
2008 ext4_ext_is_unwritten(newext),
2009 ext4_ext_get_actual_len(newext),
2010 le32_to_cpu(ex->ee_block),
2011 ext4_ext_is_unwritten(ex),
2012 ext4_ext_get_actual_len(ex),
2013 ext4_ext_pblock(ex));
2014 err = ext4_ext_get_access(handle, inode,
2015 path + depth);
2016 if (err)
2017 return err;
2018
2019 unwritten = ext4_ext_is_unwritten(ex);
2020 ex->ee_block = newext->ee_block;
2021 ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
2022 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
2023 + ext4_ext_get_actual_len(newext));
2024 if (unwritten)
2025 ext4_ext_mark_unwritten(ex);
2026 eh = path[depth].p_hdr;
2027 nearex = ex;
2028 goto merge;
2029 }
2030 }
2031
2032 depth = ext_depth(inode);
2033 eh = path[depth].p_hdr;
2034 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
2035 goto has_space;
2036
2037 /* probably next leaf has space for us? */
2038 fex = EXT_LAST_EXTENT(eh);
2039 next = EXT_MAX_BLOCKS;
2040 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
2041 next = ext4_ext_next_leaf_block(path);
2042 if (next != EXT_MAX_BLOCKS) {
2043 ext_debug("next leaf block - %u\n", next);
2044 BUG_ON(npath != NULL);
2045 npath = ext4_find_extent(inode, next, NULL, 0);
2046 if (IS_ERR(npath))
2047 return PTR_ERR(npath);
2048 BUG_ON(npath->p_depth != path->p_depth);
2049 eh = npath[depth].p_hdr;
2050 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
2051 ext_debug("next leaf isn't full(%d)\n",
2052 le16_to_cpu(eh->eh_entries));
2053 path = npath;
2054 goto has_space;
2055 }
2056 ext_debug("next leaf has no free space(%d,%d)\n",
2057 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
2058 }
2059
2060 /*
2061 * There is no free space in the found leaf.
2062 * We're gonna add a new leaf in the tree.
2063 */
2064 if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
2065 mb_flags |= EXT4_MB_USE_RESERVED;
2066 err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
2067 ppath, newext);
2068 if (err)
2069 goto cleanup;
2070 depth = ext_depth(inode);
2071 eh = path[depth].p_hdr;
2072
2073 has_space:
2074 nearex = path[depth].p_ext;
2075
2076 err = ext4_ext_get_access(handle, inode, path + depth);
2077 if (err)
2078 goto cleanup;
2079
2080 if (!nearex) {
2081 /* there is no extent in this leaf, create first one */
2082 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
2083 le32_to_cpu(newext->ee_block),
2084 ext4_ext_pblock(newext),
2085 ext4_ext_is_unwritten(newext),
2086 ext4_ext_get_actual_len(newext));
2087 nearex = EXT_FIRST_EXTENT(eh);
2088 } else {
2089 if (le32_to_cpu(newext->ee_block)
2090 > le32_to_cpu(nearex->ee_block)) {
2091 /* Insert after */
2092 ext_debug("insert %u:%llu:[%d]%d before: "
2093 "nearest %p\n",
2094 le32_to_cpu(newext->ee_block),
2095 ext4_ext_pblock(newext),
2096 ext4_ext_is_unwritten(newext),
2097 ext4_ext_get_actual_len(newext),
2098 nearex);
2099 nearex++;
2100 } else {
2101 /* Insert before */
2102 BUG_ON(newext->ee_block == nearex->ee_block);
2103 ext_debug("insert %u:%llu:[%d]%d after: "
2104 "nearest %p\n",
2105 le32_to_cpu(newext->ee_block),
2106 ext4_ext_pblock(newext),
2107 ext4_ext_is_unwritten(newext),
2108 ext4_ext_get_actual_len(newext),
2109 nearex);
2110 }
2111 len = EXT_LAST_EXTENT(eh) - nearex + 1;
2112 if (len > 0) {
2113 ext_debug("insert %u:%llu:[%d]%d: "
2114 "move %d extents from 0x%p to 0x%p\n",
2115 le32_to_cpu(newext->ee_block),
2116 ext4_ext_pblock(newext),
2117 ext4_ext_is_unwritten(newext),
2118 ext4_ext_get_actual_len(newext),
2119 len, nearex, nearex + 1);
2120 memmove(nearex + 1, nearex,
2121 len * sizeof(struct ext4_extent));
2122 }
2123 }
2124
2125 le16_add_cpu(&eh->eh_entries, 1);
2126 path[depth].p_ext = nearex;
2127 nearex->ee_block = newext->ee_block;
2128 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
2129 nearex->ee_len = newext->ee_len;
2130
2131 merge:
2132 /* try to merge extents */
2133 if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
2134 ext4_ext_try_to_merge(handle, inode, path, nearex);
2135
2136
2137 /* time to correct all indexes above */
2138 err = ext4_ext_correct_indexes(handle, inode, path);
2139 if (err)
2140 goto cleanup;
2141
2142 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2143
2144 cleanup:
2145 ext4_ext_drop_refs(npath);
2146 kfree(npath);
2147 return err;
2148 }
2149
2150 static int ext4_fill_fiemap_extents(struct inode *inode,
2151 ext4_lblk_t block, ext4_lblk_t num,
2152 struct fiemap_extent_info *fieinfo)
2153 {
2154 struct ext4_ext_path *path = NULL;
2155 struct ext4_extent *ex;
2156 struct extent_status es;
2157 ext4_lblk_t next, next_del, start = 0, end = 0;
2158 ext4_lblk_t last = block + num;
2159 int exists, depth = 0, err = 0;
2160 unsigned int flags = 0;
2161 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
2162
2163 while (block < last && block != EXT_MAX_BLOCKS) {
2164 num = last - block;
2165 /* find extent for this block */
2166 down_read(&EXT4_I(inode)->i_data_sem);
2167
2168 path = ext4_find_extent(inode, block, &path, 0);
2169 if (IS_ERR(path)) {
2170 up_read(&EXT4_I(inode)->i_data_sem);
2171 err = PTR_ERR(path);
2172 path = NULL;
2173 break;
2174 }
2175
2176 depth = ext_depth(inode);
2177 if (unlikely(path[depth].p_hdr == NULL)) {
2178 up_read(&EXT4_I(inode)->i_data_sem);
2179 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2180 err = -EFSCORRUPTED;
2181 break;
2182 }
2183 ex = path[depth].p_ext;
2184 next = ext4_ext_next_allocated_block(path);
2185
2186 flags = 0;
2187 exists = 0;
2188 if (!ex) {
2189 /* there is no extent yet, so try to allocate
2190 * all requested space */
2191 start = block;
2192 end = block + num;
2193 } else if (le32_to_cpu(ex->ee_block) > block) {
2194 /* need to allocate space before found extent */
2195 start = block;
2196 end = le32_to_cpu(ex->ee_block);
2197 if (block + num < end)
2198 end = block + num;
2199 } else if (block >= le32_to_cpu(ex->ee_block)
2200 + ext4_ext_get_actual_len(ex)) {
2201 /* need to allocate space after found extent */
2202 start = block;
2203 end = block + num;
2204 if (end >= next)
2205 end = next;
2206 } else if (block >= le32_to_cpu(ex->ee_block)) {
2207 /*
2208 * some part of requested space is covered
2209 * by found extent
2210 */
2211 start = block;
2212 end = le32_to_cpu(ex->ee_block)
2213 + ext4_ext_get_actual_len(ex);
2214 if (block + num < end)
2215 end = block + num;
2216 exists = 1;
2217 } else {
2218 BUG();
2219 }
2220 BUG_ON(end <= start);
2221
2222 if (!exists) {
2223 es.es_lblk = start;
2224 es.es_len = end - start;
2225 es.es_pblk = 0;
2226 } else {
2227 es.es_lblk = le32_to_cpu(ex->ee_block);
2228 es.es_len = ext4_ext_get_actual_len(ex);
2229 es.es_pblk = ext4_ext_pblock(ex);
2230 if (ext4_ext_is_unwritten(ex))
2231 flags |= FIEMAP_EXTENT_UNWRITTEN;
2232 }
2233
2234 /*
2235 * Find delayed extent and update es accordingly. We call
2236 * it even in !exists case to find out whether es is the
2237 * last existing extent or not.
2238 */
2239 next_del = ext4_find_delayed_extent(inode, &es);
2240 if (!exists && next_del) {
2241 exists = 1;
2242 flags |= (FIEMAP_EXTENT_DELALLOC |
2243 FIEMAP_EXTENT_UNKNOWN);
2244 }
2245 up_read(&EXT4_I(inode)->i_data_sem);
2246
2247 if (unlikely(es.es_len == 0)) {
2248 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2249 err = -EFSCORRUPTED;
2250 break;
2251 }
2252
2253 /*
2254 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2255 * we need to check next == EXT_MAX_BLOCKS because it is
2256 * possible that an extent is with unwritten and delayed
2257 * status due to when an extent is delayed allocated and
2258 * is allocated by fallocate status tree will track both of
2259 * them in a extent.
2260 *
2261 * So we could return a unwritten and delayed extent, and
2262 * its block is equal to 'next'.
2263 */
2264 if (next == next_del && next == EXT_MAX_BLOCKS) {
2265 flags |= FIEMAP_EXTENT_LAST;
2266 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2267 next != EXT_MAX_BLOCKS)) {
2268 EXT4_ERROR_INODE(inode,
2269 "next extent == %u, next "
2270 "delalloc extent = %u",
2271 next, next_del);
2272 err = -EFSCORRUPTED;
2273 break;
2274 }
2275 }
2276
2277 if (exists) {
2278 err = fiemap_fill_next_extent(fieinfo,
2279 (__u64)es.es_lblk << blksize_bits,
2280 (__u64)es.es_pblk << blksize_bits,
2281 (__u64)es.es_len << blksize_bits,
2282 flags);
2283 if (err < 0)
2284 break;
2285 if (err == 1) {
2286 err = 0;
2287 break;
2288 }
2289 }
2290
2291 block = es.es_lblk + es.es_len;
2292 }
2293
2294 ext4_ext_drop_refs(path);
2295 kfree(path);
2296 return err;
2297 }
2298
2299 /*
2300 * ext4_ext_determine_hole - determine hole around given block
2301 * @inode: inode we lookup in
2302 * @path: path in extent tree to @lblk
2303 * @lblk: pointer to logical block around which we want to determine hole
2304 *
2305 * Determine hole length (and start if easily possible) around given logical
2306 * block. We don't try too hard to find the beginning of the hole but @path
2307 * actually points to extent before @lblk, we provide it.
2308 *
2309 * The function returns the length of a hole starting at @lblk. We update @lblk
2310 * to the beginning of the hole if we managed to find it.
2311 */
2312 static ext4_lblk_t ext4_ext_determine_hole(struct inode *inode,
2313 struct ext4_ext_path *path,
2314 ext4_lblk_t *lblk)
2315 {
2316 int depth = ext_depth(inode);
2317 struct ext4_extent *ex;
2318 ext4_lblk_t len;
2319
2320 ex = path[depth].p_ext;
2321 if (ex == NULL) {
2322 /* there is no extent yet, so gap is [0;-] */
2323 *lblk = 0;
2324 len = EXT_MAX_BLOCKS;
2325 } else if (*lblk < le32_to_cpu(ex->ee_block)) {
2326 len = le32_to_cpu(ex->ee_block) - *lblk;
2327 } else if (*lblk >= le32_to_cpu(ex->ee_block)
2328 + ext4_ext_get_actual_len(ex)) {
2329 ext4_lblk_t next;
2330
2331 *lblk = le32_to_cpu(ex->ee_block) + ext4_ext_get_actual_len(ex);
2332 next = ext4_ext_next_allocated_block(path);
2333 BUG_ON(next == *lblk);
2334 len = next - *lblk;
2335 } else {
2336 BUG();
2337 }
2338 return len;
2339 }
2340
2341 /*
2342 * ext4_ext_put_gap_in_cache:
2343 * calculate boundaries of the gap that the requested block fits into
2344 * and cache this gap
2345 */
2346 static void
2347 ext4_ext_put_gap_in_cache(struct inode *inode, ext4_lblk_t hole_start,
2348 ext4_lblk_t hole_len)
2349 {
2350 struct extent_status es;
2351
2352 ext4_es_find_delayed_extent_range(inode, hole_start,
2353 hole_start + hole_len - 1, &es);
2354 if (es.es_len) {
2355 /* There's delayed extent containing lblock? */
2356 if (es.es_lblk <= hole_start)
2357 return;
2358 hole_len = min(es.es_lblk - hole_start, hole_len);
2359 }
2360 ext_debug(" -> %u:%u\n", hole_start, hole_len);
2361 ext4_es_insert_extent(inode, hole_start, hole_len, ~0,
2362 EXTENT_STATUS_HOLE);
2363 }
2364
2365 /*
2366 * ext4_ext_rm_idx:
2367 * removes index from the index block.
2368 */
2369 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2370 struct ext4_ext_path *path, int depth)
2371 {
2372 int err;
2373 ext4_fsblk_t leaf;
2374
2375 /* free index block */
2376 depth--;
2377 path = path + depth;
2378 leaf = ext4_idx_pblock(path->p_idx);
2379 if (unlikely(path->p_hdr->eh_entries == 0)) {
2380 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2381 return -EFSCORRUPTED;
2382 }
2383 err = ext4_ext_get_access(handle, inode, path);
2384 if (err)
2385 return err;
2386
2387 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2388 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2389 len *= sizeof(struct ext4_extent_idx);
2390 memmove(path->p_idx, path->p_idx + 1, len);
2391 }
2392
2393 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2394 err = ext4_ext_dirty(handle, inode, path);
2395 if (err)
2396 return err;
2397 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2398 trace_ext4_ext_rm_idx(inode, leaf);
2399
2400 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2401 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2402
2403 while (--depth >= 0) {
2404 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2405 break;
2406 path--;
2407 err = ext4_ext_get_access(handle, inode, path);
2408 if (err)
2409 break;
2410 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2411 err = ext4_ext_dirty(handle, inode, path);
2412 if (err)
2413 break;
2414 }
2415 return err;
2416 }
2417
2418 /*
2419 * ext4_ext_calc_credits_for_single_extent:
2420 * This routine returns max. credits that needed to insert an extent
2421 * to the extent tree.
2422 * When pass the actual path, the caller should calculate credits
2423 * under i_data_sem.
2424 */
2425 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2426 struct ext4_ext_path *path)
2427 {
2428 if (path) {
2429 int depth = ext_depth(inode);
2430 int ret = 0;
2431
2432 /* probably there is space in leaf? */
2433 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2434 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2435
2436 /*
2437 * There are some space in the leaf tree, no
2438 * need to account for leaf block credit
2439 *
2440 * bitmaps and block group descriptor blocks
2441 * and other metadata blocks still need to be
2442 * accounted.
2443 */
2444 /* 1 bitmap, 1 block group descriptor */
2445 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2446 return ret;
2447 }
2448 }
2449
2450 return ext4_chunk_trans_blocks(inode, nrblocks);
2451 }
2452
2453 /*
2454 * How many index/leaf blocks need to change/allocate to add @extents extents?
2455 *
2456 * If we add a single extent, then in the worse case, each tree level
2457 * index/leaf need to be changed in case of the tree split.
2458 *
2459 * If more extents are inserted, they could cause the whole tree split more
2460 * than once, but this is really rare.
2461 */
2462 int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
2463 {
2464 int index;
2465 int depth;
2466
2467 /* If we are converting the inline data, only one is needed here. */
2468 if (ext4_has_inline_data(inode))
2469 return 1;
2470
2471 depth = ext_depth(inode);
2472
2473 if (extents <= 1)
2474 index = depth * 2;
2475 else
2476 index = depth * 3;
2477
2478 return index;
2479 }
2480
2481 static inline int get_default_free_blocks_flags(struct inode *inode)
2482 {
2483 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2484 return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2485 else if (ext4_should_journal_data(inode))
2486 return EXT4_FREE_BLOCKS_FORGET;
2487 return 0;
2488 }
2489
2490 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2491 struct ext4_extent *ex,
2492 long long *partial_cluster,
2493 ext4_lblk_t from, ext4_lblk_t to)
2494 {
2495 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2496 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2497 ext4_fsblk_t pblk;
2498 int flags = get_default_free_blocks_flags(inode);
2499
2500 /*
2501 * For bigalloc file systems, we never free a partial cluster
2502 * at the beginning of the extent. Instead, we make a note
2503 * that we tried freeing the cluster, and check to see if we
2504 * need to free it on a subsequent call to ext4_remove_blocks,
2505 * or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
2506 */
2507 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2508
2509 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2510 /*
2511 * If we have a partial cluster, and it's different from the
2512 * cluster of the last block, we need to explicitly free the
2513 * partial cluster here.
2514 */
2515 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2516 if (*partial_cluster > 0 &&
2517 *partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2518 ext4_free_blocks(handle, inode, NULL,
2519 EXT4_C2B(sbi, *partial_cluster),
2520 sbi->s_cluster_ratio, flags);
2521 *partial_cluster = 0;
2522 }
2523
2524 #ifdef EXTENTS_STATS
2525 {
2526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2527 spin_lock(&sbi->s_ext_stats_lock);
2528 sbi->s_ext_blocks += ee_len;
2529 sbi->s_ext_extents++;
2530 if (ee_len < sbi->s_ext_min)
2531 sbi->s_ext_min = ee_len;
2532 if (ee_len > sbi->s_ext_max)
2533 sbi->s_ext_max = ee_len;
2534 if (ext_depth(inode) > sbi->s_depth_max)
2535 sbi->s_depth_max = ext_depth(inode);
2536 spin_unlock(&sbi->s_ext_stats_lock);
2537 }
2538 #endif
2539 if (from >= le32_to_cpu(ex->ee_block)
2540 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2541 /* tail removal */
2542 ext4_lblk_t num;
2543 long long first_cluster;
2544
2545 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2546 pblk = ext4_ext_pblock(ex) + ee_len - num;
2547 /*
2548 * Usually we want to free partial cluster at the end of the
2549 * extent, except for the situation when the cluster is still
2550 * used by any other extent (partial_cluster is negative).
2551 */
2552 if (*partial_cluster < 0 &&
2553 *partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
2554 flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
2555
2556 ext_debug("free last %u blocks starting %llu partial %lld\n",
2557 num, pblk, *partial_cluster);
2558 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2559 /*
2560 * If the block range to be freed didn't start at the
2561 * beginning of a cluster, and we removed the entire
2562 * extent and the cluster is not used by any other extent,
2563 * save the partial cluster here, since we might need to
2564 * delete if we determine that the truncate or punch hole
2565 * operation has removed all of the blocks in the cluster.
2566 * If that cluster is used by another extent, preserve its
2567 * negative value so it isn't freed later on.
2568 *
2569 * If the whole extent wasn't freed, we've reached the
2570 * start of the truncated/punched region and have finished
2571 * removing blocks. If there's a partial cluster here it's
2572 * shared with the remainder of the extent and is no longer
2573 * a candidate for removal.
2574 */
2575 if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
2576 first_cluster = (long long) EXT4_B2C(sbi, pblk);
2577 if (first_cluster != -*partial_cluster)
2578 *partial_cluster = first_cluster;
2579 } else {
2580 *partial_cluster = 0;
2581 }
2582 } else
2583 ext4_error(sbi->s_sb, "strange request: removal(2) "
2584 "%u-%u from %u:%u",
2585 from, to, le32_to_cpu(ex->ee_block), ee_len);
2586 return 0;
2587 }
2588
2589
2590 /*
2591 * ext4_ext_rm_leaf() Removes the extents associated with the
2592 * blocks appearing between "start" and "end". Both "start"
2593 * and "end" must appear in the same extent or EIO is returned.
2594 *
2595 * @handle: The journal handle
2596 * @inode: The files inode
2597 * @path: The path to the leaf
2598 * @partial_cluster: The cluster which we'll have to free if all extents
2599 * has been released from it. However, if this value is
2600 * negative, it's a cluster just to the right of the
2601 * punched region and it must not be freed.
2602 * @start: The first block to remove
2603 * @end: The last block to remove
2604 */
2605 static int
2606 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2607 struct ext4_ext_path *path,
2608 long long *partial_cluster,
2609 ext4_lblk_t start, ext4_lblk_t end)
2610 {
2611 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2612 int err = 0, correct_index = 0;
2613 int depth = ext_depth(inode), credits;
2614 struct ext4_extent_header *eh;
2615 ext4_lblk_t a, b;
2616 unsigned num;
2617 ext4_lblk_t ex_ee_block;
2618 unsigned short ex_ee_len;
2619 unsigned unwritten = 0;
2620 struct ext4_extent *ex;
2621 ext4_fsblk_t pblk;
2622
2623 /* the header must be checked already in ext4_ext_remove_space() */
2624 ext_debug("truncate since %u in leaf to %u\n", start, end);
2625 if (!path[depth].p_hdr)
2626 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2627 eh = path[depth].p_hdr;
2628 if (unlikely(path[depth].p_hdr == NULL)) {
2629 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2630 return -EFSCORRUPTED;
2631 }
2632 /* find where to start removing */
2633 ex = path[depth].p_ext;
2634 if (!ex)
2635 ex = EXT_LAST_EXTENT(eh);
2636
2637 ex_ee_block = le32_to_cpu(ex->ee_block);
2638 ex_ee_len = ext4_ext_get_actual_len(ex);
2639
2640 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2641
2642 while (ex >= EXT_FIRST_EXTENT(eh) &&
2643 ex_ee_block + ex_ee_len > start) {
2644
2645 if (ext4_ext_is_unwritten(ex))
2646 unwritten = 1;
2647 else
2648 unwritten = 0;
2649
2650 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2651 unwritten, ex_ee_len);
2652 path[depth].p_ext = ex;
2653
2654 a = ex_ee_block > start ? ex_ee_block : start;
2655 b = ex_ee_block+ex_ee_len - 1 < end ?
2656 ex_ee_block+ex_ee_len - 1 : end;
2657
2658 ext_debug(" border %u:%u\n", a, b);
2659
2660 /* If this extent is beyond the end of the hole, skip it */
2661 if (end < ex_ee_block) {
2662 /*
2663 * We're going to skip this extent and move to another,
2664 * so note that its first cluster is in use to avoid
2665 * freeing it when removing blocks. Eventually, the
2666 * right edge of the truncated/punched region will
2667 * be just to the left.
2668 */
2669 if (sbi->s_cluster_ratio > 1) {
2670 pblk = ext4_ext_pblock(ex);
2671 *partial_cluster =
2672 -(long long) EXT4_B2C(sbi, pblk);
2673 }
2674 ex--;
2675 ex_ee_block = le32_to_cpu(ex->ee_block);
2676 ex_ee_len = ext4_ext_get_actual_len(ex);
2677 continue;
2678 } else if (b != ex_ee_block + ex_ee_len - 1) {
2679 EXT4_ERROR_INODE(inode,
2680 "can not handle truncate %u:%u "
2681 "on extent %u:%u",
2682 start, end, ex_ee_block,
2683 ex_ee_block + ex_ee_len - 1);
2684 err = -EFSCORRUPTED;
2685 goto out;
2686 } else if (a != ex_ee_block) {
2687 /* remove tail of the extent */
2688 num = a - ex_ee_block;
2689 } else {
2690 /* remove whole extent: excellent! */
2691 num = 0;
2692 }
2693 /*
2694 * 3 for leaf, sb, and inode plus 2 (bmap and group
2695 * descriptor) for each block group; assume two block
2696 * groups plus ex_ee_len/blocks_per_block_group for
2697 * the worst case
2698 */
2699 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2700 if (ex == EXT_FIRST_EXTENT(eh)) {
2701 correct_index = 1;
2702 credits += (ext_depth(inode)) + 1;
2703 }
2704 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2705
2706 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2707 if (err)
2708 goto out;
2709
2710 err = ext4_ext_get_access(handle, inode, path + depth);
2711 if (err)
2712 goto out;
2713
2714 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2715 a, b);
2716 if (err)
2717 goto out;
2718
2719 if (num == 0)
2720 /* this extent is removed; mark slot entirely unused */
2721 ext4_ext_store_pblock(ex, 0);
2722
2723 ex->ee_len = cpu_to_le16(num);
2724 /*
2725 * Do not mark unwritten if all the blocks in the
2726 * extent have been removed.
2727 */
2728 if (unwritten && num)
2729 ext4_ext_mark_unwritten(ex);
2730 /*
2731 * If the extent was completely released,
2732 * we need to remove it from the leaf
2733 */
2734 if (num == 0) {
2735 if (end != EXT_MAX_BLOCKS - 1) {
2736 /*
2737 * For hole punching, we need to scoot all the
2738 * extents up when an extent is removed so that
2739 * we dont have blank extents in the middle
2740 */
2741 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2742 sizeof(struct ext4_extent));
2743
2744 /* Now get rid of the one at the end */
2745 memset(EXT_LAST_EXTENT(eh), 0,
2746 sizeof(struct ext4_extent));
2747 }
2748 le16_add_cpu(&eh->eh_entries, -1);
2749 }
2750
2751 err = ext4_ext_dirty(handle, inode, path + depth);
2752 if (err)
2753 goto out;
2754
2755 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2756 ext4_ext_pblock(ex));
2757 ex--;
2758 ex_ee_block = le32_to_cpu(ex->ee_block);
2759 ex_ee_len = ext4_ext_get_actual_len(ex);
2760 }
2761
2762 if (correct_index && eh->eh_entries)
2763 err = ext4_ext_correct_indexes(handle, inode, path);
2764
2765 /*
2766 * If there's a partial cluster and at least one extent remains in
2767 * the leaf, free the partial cluster if it isn't shared with the
2768 * current extent. If it is shared with the current extent
2769 * we zero partial_cluster because we've reached the start of the
2770 * truncated/punched region and we're done removing blocks.
2771 */
2772 if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
2773 pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
2774 if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
2775 ext4_free_blocks(handle, inode, NULL,
2776 EXT4_C2B(sbi, *partial_cluster),
2777 sbi->s_cluster_ratio,
2778 get_default_free_blocks_flags(inode));
2779 }
2780 *partial_cluster = 0;
2781 }
2782
2783 /* if this leaf is free, then we should
2784 * remove it from index block above */
2785 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2786 err = ext4_ext_rm_idx(handle, inode, path, depth);
2787
2788 out:
2789 return err;
2790 }
2791
2792 /*
2793 * ext4_ext_more_to_rm:
2794 * returns 1 if current index has to be freed (even partial)
2795 */
2796 static int
2797 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2798 {
2799 BUG_ON(path->p_idx == NULL);
2800
2801 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2802 return 0;
2803
2804 /*
2805 * if truncate on deeper level happened, it wasn't partial,
2806 * so we have to consider current index for truncation
2807 */
2808 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2809 return 0;
2810 return 1;
2811 }
2812
2813 int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2814 ext4_lblk_t end)
2815 {
2816 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2817 int depth = ext_depth(inode);
2818 struct ext4_ext_path *path = NULL;
2819 long long partial_cluster = 0;
2820 handle_t *handle;
2821 int i = 0, err = 0;
2822
2823 ext_debug("truncate since %u to %u\n", start, end);
2824
2825 /* probably first extent we're gonna free will be last in block */
2826 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2827 if (IS_ERR(handle))
2828 return PTR_ERR(handle);
2829
2830 again:
2831 trace_ext4_ext_remove_space(inode, start, end, depth);
2832
2833 /*
2834 * Check if we are removing extents inside the extent tree. If that
2835 * is the case, we are going to punch a hole inside the extent tree
2836 * so we have to check whether we need to split the extent covering
2837 * the last block to remove so we can easily remove the part of it
2838 * in ext4_ext_rm_leaf().
2839 */
2840 if (end < EXT_MAX_BLOCKS - 1) {
2841 struct ext4_extent *ex;
2842 ext4_lblk_t ee_block, ex_end, lblk;
2843 ext4_fsblk_t pblk;
2844
2845 /* find extent for or closest extent to this block */
2846 path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
2847 if (IS_ERR(path)) {
2848 ext4_journal_stop(handle);
2849 return PTR_ERR(path);
2850 }
2851 depth = ext_depth(inode);
2852 /* Leaf not may not exist only if inode has no blocks at all */
2853 ex = path[depth].p_ext;
2854 if (!ex) {
2855 if (depth) {
2856 EXT4_ERROR_INODE(inode,
2857 "path[%d].p_hdr == NULL",
2858 depth);
2859 err = -EFSCORRUPTED;
2860 }
2861 goto out;
2862 }
2863
2864 ee_block = le32_to_cpu(ex->ee_block);
2865 ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
2866
2867 /*
2868 * See if the last block is inside the extent, if so split
2869 * the extent at 'end' block so we can easily remove the
2870 * tail of the first part of the split extent in
2871 * ext4_ext_rm_leaf().
2872 */
2873 if (end >= ee_block && end < ex_end) {
2874
2875 /*
2876 * If we're going to split the extent, note that
2877 * the cluster containing the block after 'end' is
2878 * in use to avoid freeing it when removing blocks.
2879 */
2880 if (sbi->s_cluster_ratio > 1) {
2881 pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
2882 partial_cluster =
2883 -(long long) EXT4_B2C(sbi, pblk);
2884 }
2885
2886 /*
2887 * Split the extent in two so that 'end' is the last
2888 * block in the first new extent. Also we should not
2889 * fail removing space due to ENOSPC so try to use
2890 * reserved block if that happens.
2891 */
2892 err = ext4_force_split_extent_at(handle, inode, &path,
2893 end + 1, 1);
2894 if (err < 0)
2895 goto out;
2896
2897 } else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
2898 /*
2899 * If there's an extent to the right its first cluster
2900 * contains the immediate right boundary of the
2901 * truncated/punched region. Set partial_cluster to
2902 * its negative value so it won't be freed if shared
2903 * with the current extent. The end < ee_block case
2904 * is handled in ext4_ext_rm_leaf().
2905 */
2906 lblk = ex_end + 1;
2907 err = ext4_ext_search_right(inode, path, &lblk, &pblk,
2908 &ex);
2909 if (err)
2910 goto out;
2911 if (pblk)
2912 partial_cluster =
2913 -(long long) EXT4_B2C(sbi, pblk);
2914 }
2915 }
2916 /*
2917 * We start scanning from right side, freeing all the blocks
2918 * after i_size and walking into the tree depth-wise.
2919 */
2920 depth = ext_depth(inode);
2921 if (path) {
2922 int k = i = depth;
2923 while (--k > 0)
2924 path[k].p_block =
2925 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2926 } else {
2927 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2928 GFP_NOFS);
2929 if (path == NULL) {
2930 ext4_journal_stop(handle);
2931 return -ENOMEM;
2932 }
2933 path[0].p_maxdepth = path[0].p_depth = depth;
2934 path[0].p_hdr = ext_inode_hdr(inode);
2935 i = 0;
2936
2937 if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
2938 err = -EFSCORRUPTED;
2939 goto out;
2940 }
2941 }
2942 err = 0;
2943
2944 while (i >= 0 && err == 0) {
2945 if (i == depth) {
2946 /* this is leaf block */
2947 err = ext4_ext_rm_leaf(handle, inode, path,
2948 &partial_cluster, start,
2949 end);
2950 /* root level has p_bh == NULL, brelse() eats this */
2951 brelse(path[i].p_bh);
2952 path[i].p_bh = NULL;
2953 i--;
2954 continue;
2955 }
2956
2957 /* this is index block */
2958 if (!path[i].p_hdr) {
2959 ext_debug("initialize header\n");
2960 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2961 }
2962
2963 if (!path[i].p_idx) {
2964 /* this level hasn't been touched yet */
2965 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2966 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2967 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2968 path[i].p_hdr,
2969 le16_to_cpu(path[i].p_hdr->eh_entries));
2970 } else {
2971 /* we were already here, see at next index */
2972 path[i].p_idx--;
2973 }
2974
2975 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2976 i, EXT_FIRST_INDEX(path[i].p_hdr),
2977 path[i].p_idx);
2978 if (ext4_ext_more_to_rm(path + i)) {
2979 struct buffer_head *bh;
2980 /* go to the next level */
2981 ext_debug("move to level %d (block %llu)\n",
2982 i + 1, ext4_idx_pblock(path[i].p_idx));
2983 memset(path + i + 1, 0, sizeof(*path));
2984 bh = read_extent_tree_block(inode,
2985 ext4_idx_pblock(path[i].p_idx), depth - i - 1,
2986 EXT4_EX_NOCACHE);
2987 if (IS_ERR(bh)) {
2988 /* should we reset i_size? */
2989 err = PTR_ERR(bh);
2990 break;
2991 }
2992 /* Yield here to deal with large extent trees.
2993 * Should be a no-op if we did IO above. */
2994 cond_resched();
2995 if (WARN_ON(i + 1 > depth)) {
2996 err = -EFSCORRUPTED;
2997 break;
2998 }
2999 path[i + 1].p_bh = bh;
3000
3001 /* save actual number of indexes since this
3002 * number is changed at the next iteration */
3003 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
3004 i++;
3005 } else {
3006 /* we finished processing this index, go up */
3007 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
3008 /* index is empty, remove it;
3009 * handle must be already prepared by the
3010 * truncatei_leaf() */
3011 err = ext4_ext_rm_idx(handle, inode, path, i);
3012 }
3013 /* root level has p_bh == NULL, brelse() eats this */
3014 brelse(path[i].p_bh);
3015 path[i].p_bh = NULL;
3016 i--;
3017 ext_debug("return to level %d\n", i);
3018 }
3019 }
3020
3021 trace_ext4_ext_remove_space_done(inode, start, end, depth,
3022 partial_cluster, path->p_hdr->eh_entries);
3023
3024 /*
3025 * If we still have something in the partial cluster and we have removed
3026 * even the first extent, then we should free the blocks in the partial
3027 * cluster as well. (This code will only run when there are no leaves
3028 * to the immediate left of the truncated/punched region.)
3029 */
3030 if (partial_cluster > 0 && err == 0) {
3031 /* don't zero partial_cluster since it's not used afterwards */
3032 ext4_free_blocks(handle, inode, NULL,
3033 EXT4_C2B(sbi, partial_cluster),
3034 sbi->s_cluster_ratio,
3035 get_default_free_blocks_flags(inode));
3036 }
3037
3038 /* TODO: flexible tree reduction should be here */
3039 if (path->p_hdr->eh_entries == 0) {
3040 /*
3041 * truncate to zero freed all the tree,
3042 * so we need to correct eh_depth
3043 */
3044 err = ext4_ext_get_access(handle, inode, path);
3045 if (err == 0) {
3046 ext_inode_hdr(inode)->eh_depth = 0;
3047 ext_inode_hdr(inode)->eh_max =
3048 cpu_to_le16(ext4_ext_space_root(inode, 0));
3049 err = ext4_ext_dirty(handle, inode, path);
3050 }
3051 }
3052 out:
3053 ext4_ext_drop_refs(path);
3054 kfree(path);
3055 path = NULL;
3056 if (err == -EAGAIN)
3057 goto again;
3058 ext4_journal_stop(handle);
3059
3060 return err;
3061 }
3062
3063 /*
3064 * called at mount time
3065 */
3066 void ext4_ext_init(struct super_block *sb)
3067 {
3068 /*
3069 * possible initialization would be here
3070 */
3071
3072 if (ext4_has_feature_extents(sb)) {
3073 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
3074 printk(KERN_INFO "EXT4-fs: file extents enabled"
3075 #ifdef AGGRESSIVE_TEST
3076 ", aggressive tests"
3077 #endif
3078 #ifdef CHECK_BINSEARCH
3079 ", check binsearch"
3080 #endif
3081 #ifdef EXTENTS_STATS
3082 ", stats"
3083 #endif
3084 "\n");
3085 #endif
3086 #ifdef EXTENTS_STATS
3087 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
3088 EXT4_SB(sb)->s_ext_min = 1 << 30;
3089 EXT4_SB(sb)->s_ext_max = 0;
3090 #endif
3091 }
3092 }
3093
3094 /*
3095 * called at umount time
3096 */
3097 void ext4_ext_release(struct super_block *sb)
3098 {
3099 if (!ext4_has_feature_extents(sb))
3100 return;
3101
3102 #ifdef EXTENTS_STATS
3103 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
3104 struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
3106 sbi->s_ext_blocks, sbi->s_ext_extents,
3107 sbi->s_ext_blocks / sbi->s_ext_extents);
3108 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
3109 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
3110 }
3111 #endif
3112 }
3113
3114 static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
3115 {
3116 ext4_lblk_t ee_block;
3117 ext4_fsblk_t ee_pblock;
3118 unsigned int ee_len;
3119
3120 ee_block = le32_to_cpu(ex->ee_block);
3121 ee_len = ext4_ext_get_actual_len(ex);
3122 ee_pblock = ext4_ext_pblock(ex);
3123
3124 if (ee_len == 0)
3125 return 0;
3126
3127 return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
3128 EXTENT_STATUS_WRITTEN);
3129 }
3130
3131 /* FIXME!! we need to try to merge to left or right after zero-out */
3132 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
3133 {
3134 ext4_fsblk_t ee_pblock;
3135 unsigned int ee_len;
3136
3137 ee_len = ext4_ext_get_actual_len(ex);
3138 ee_pblock = ext4_ext_pblock(ex);
3139 return ext4_issue_zeroout(inode, le32_to_cpu(ex->ee_block), ee_pblock,
3140 ee_len);
3141 }
3142
3143 /*
3144 * ext4_split_extent_at() splits an extent at given block.
3145 *
3146 * @handle: the journal handle
3147 * @inode: the file inode
3148 * @path: the path to the extent
3149 * @split: the logical block where the extent is splitted.
3150 * @split_flags: indicates if the extent could be zeroout if split fails, and
3151 * the states(init or unwritten) of new extents.
3152 * @flags: flags used to insert new extent to extent tree.
3153 *
3154 *
3155 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
3156 * of which are deterimined by split_flag.
3157 *
3158 * There are two cases:
3159 * a> the extent are splitted into two extent.
3160 * b> split is not needed, and just mark the extent.
3161 *
3162 * return 0 on success.
3163 */
3164 static int ext4_split_extent_at(handle_t *handle,
3165 struct inode *inode,
3166 struct ext4_ext_path **ppath,
3167 ext4_lblk_t split,
3168 int split_flag,
3169 int flags)
3170 {
3171 struct ext4_ext_path *path = *ppath;
3172 ext4_fsblk_t newblock;
3173 ext4_lblk_t ee_block;
3174 struct ext4_extent *ex, newex, orig_ex, zero_ex;
3175 struct ext4_extent *ex2 = NULL;
3176 unsigned int ee_len, depth;
3177 int err = 0;
3178
3179 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
3180 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
3181
3182 ext_debug("ext4_split_extents_at: inode %lu, logical"
3183 "block %llu\n", inode->i_ino, (unsigned long long)split);
3184
3185 ext4_ext_show_leaf(inode, path);
3186
3187 depth = ext_depth(inode);
3188 ex = path[depth].p_ext;
3189 ee_block = le32_to_cpu(ex->ee_block);
3190 ee_len = ext4_ext_get_actual_len(ex);
3191 newblock = split - ee_block + ext4_ext_pblock(ex);
3192
3193 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
3194 BUG_ON(!ext4_ext_is_unwritten(ex) &&
3195 split_flag & (EXT4_EXT_MAY_ZEROOUT |
3196 EXT4_EXT_MARK_UNWRIT1 |
3197 EXT4_EXT_MARK_UNWRIT2));
3198
3199 err = ext4_ext_get_access(handle, inode, path + depth);
3200 if (err)
3201 goto out;
3202
3203 if (split == ee_block) {
3204 /*
3205 * case b: block @split is the block that the extent begins with
3206 * then we just change the state of the extent, and splitting
3207 * is not needed.
3208 */
3209 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3210 ext4_ext_mark_unwritten(ex);
3211 else
3212 ext4_ext_mark_initialized(ex);
3213
3214 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
3215 ext4_ext_try_to_merge(handle, inode, path, ex);
3216
3217 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3218 goto out;
3219 }
3220
3221 /* case a */
3222 memcpy(&orig_ex, ex, sizeof(orig_ex));
3223 ex->ee_len = cpu_to_le16(split - ee_block);
3224 if (split_flag & EXT4_EXT_MARK_UNWRIT1)
3225 ext4_ext_mark_unwritten(ex);
3226
3227 /*
3228 * path may lead to new leaf, not to original leaf any more
3229 * after ext4_ext_insert_extent() returns,
3230 */
3231 err = ext4_ext_dirty(handle, inode, path + depth);
3232 if (err)
3233 goto fix_extent_len;
3234
3235 ex2 = &newex;
3236 ex2->ee_block = cpu_to_le32(split);
3237 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
3238 ext4_ext_store_pblock(ex2, newblock);
3239 if (split_flag & EXT4_EXT_MARK_UNWRIT2)
3240 ext4_ext_mark_unwritten(ex2);
3241
3242 err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
3243 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3244 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
3245 if (split_flag & EXT4_EXT_DATA_VALID1) {
3246 err = ext4_ext_zeroout(inode, ex2);
3247 zero_ex.ee_block = ex2->ee_block;
3248 zero_ex.ee_len = cpu_to_le16(
3249 ext4_ext_get_actual_len(ex2));
3250 ext4_ext_store_pblock(&zero_ex,
3251 ext4_ext_pblock(ex2));
3252 } else {
3253 err = ext4_ext_zeroout(inode, ex);
3254 zero_ex.ee_block = ex->ee_block;
3255 zero_ex.ee_len = cpu_to_le16(
3256 ext4_ext_get_actual_len(ex));
3257 ext4_ext_store_pblock(&zero_ex,
3258 ext4_ext_pblock(ex));
3259 }
3260 } else {
3261 err = ext4_ext_zeroout(inode, &orig_ex);
3262 zero_ex.ee_block = orig_ex.ee_block;
3263 zero_ex.ee_len = cpu_to_le16(
3264 ext4_ext_get_actual_len(&orig_ex));
3265 ext4_ext_store_pblock(&zero_ex,
3266 ext4_ext_pblock(&orig_ex));
3267 }
3268
3269 if (err)
3270 goto fix_extent_len;
3271 /* update the extent length and mark as initialized */
3272 ex->ee_len = cpu_to_le16(ee_len);
3273 ext4_ext_try_to_merge(handle, inode, path, ex);
3274 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3275 if (err)
3276 goto fix_extent_len;
3277
3278 /* update extent status tree */
3279 err = ext4_zeroout_es(inode, &zero_ex);
3280
3281 goto out;
3282 } else if (err)
3283 goto fix_extent_len;
3284
3285 out:
3286 ext4_ext_show_leaf(inode, path);
3287 return err;
3288
3289 fix_extent_len:
3290 ex->ee_len = orig_ex.ee_len;
3291 ext4_ext_dirty(handle, inode, path + path->p_depth);
3292 return err;
3293 }
3294
3295 /*
3296 * ext4_split_extents() splits an extent and mark extent which is covered
3297 * by @map as split_flags indicates
3298 *
3299 * It may result in splitting the extent into multiple extents (up to three)
3300 * There are three possibilities:
3301 * a> There is no split required
3302 * b> Splits in two extents: Split is happening at either end of the extent
3303 * c> Splits in three extents: Somone is splitting in middle of the extent
3304 *
3305 */
3306 static int ext4_split_extent(handle_t *handle,
3307 struct inode *inode,
3308 struct ext4_ext_path **ppath,
3309 struct ext4_map_blocks *map,
3310 int split_flag,
3311 int flags)
3312 {
3313 struct ext4_ext_path *path = *ppath;
3314 ext4_lblk_t ee_block;
3315 struct ext4_extent *ex;
3316 unsigned int ee_len, depth;
3317 int err = 0;
3318 int unwritten;
3319 int split_flag1, flags1;
3320 int allocated = map->m_len;
3321
3322 depth = ext_depth(inode);
3323 ex = path[depth].p_ext;
3324 ee_block = le32_to_cpu(ex->ee_block);
3325 ee_len = ext4_ext_get_actual_len(ex);
3326 unwritten = ext4_ext_is_unwritten(ex);
3327
3328 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3329 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3330 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3331 if (unwritten)
3332 split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
3333 EXT4_EXT_MARK_UNWRIT2;
3334 if (split_flag & EXT4_EXT_DATA_VALID2)
3335 split_flag1 |= EXT4_EXT_DATA_VALID1;
3336 err = ext4_split_extent_at(handle, inode, ppath,
3337 map->m_lblk + map->m_len, split_flag1, flags1);
3338 if (err)
3339 goto out;
3340 } else {
3341 allocated = ee_len - (map->m_lblk - ee_block);
3342 }
3343 /*
3344 * Update path is required because previous ext4_split_extent_at() may
3345 * result in split of original leaf or extent zeroout.
3346 */
3347 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3348 if (IS_ERR(path))
3349 return PTR_ERR(path);
3350 depth = ext_depth(inode);
3351 ex = path[depth].p_ext;
3352 if (!ex) {
3353 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3354 (unsigned long) map->m_lblk);
3355 return -EFSCORRUPTED;
3356 }
3357 unwritten = ext4_ext_is_unwritten(ex);
3358 split_flag1 = 0;
3359
3360 if (map->m_lblk >= ee_block) {
3361 split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
3362 if (unwritten) {
3363 split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
3364 split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
3365 EXT4_EXT_MARK_UNWRIT2);
3366 }
3367 err = ext4_split_extent_at(handle, inode, ppath,
3368 map->m_lblk, split_flag1, flags);
3369 if (err)
3370 goto out;
3371 }
3372
3373 ext4_ext_show_leaf(inode, path);
3374 out:
3375 return err ? err : allocated;
3376 }
3377
3378 /*
3379 * This function is called by ext4_ext_map_blocks() if someone tries to write
3380 * to an unwritten extent. It may result in splitting the unwritten
3381 * extent into multiple extents (up to three - one initialized and two
3382 * unwritten).
3383 * There are three possibilities:
3384 * a> There is no split required: Entire extent should be initialized
3385 * b> Splits in two extents: Write is happening at either end of the extent
3386 * c> Splits in three extents: Somone is writing in middle of the extent
3387 *
3388 * Pre-conditions:
3389 * - The extent pointed to by 'path' is unwritten.
3390 * - The extent pointed to by 'path' contains a superset
3391 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3392 *
3393 * Post-conditions on success:
3394 * - the returned value is the number of blocks beyond map->l_lblk
3395 * that are allocated and initialized.
3396 * It is guaranteed to be >= map->m_len.
3397 */
3398 static int ext4_ext_convert_to_initialized(handle_t *handle,
3399 struct inode *inode,
3400 struct ext4_map_blocks *map,
3401 struct ext4_ext_path **ppath,
3402 int flags)
3403 {
3404 struct ext4_ext_path *path = *ppath;
3405 struct ext4_sb_info *sbi;
3406 struct ext4_extent_header *eh;
3407 struct ext4_map_blocks split_map;
3408 struct ext4_extent zero_ex;
3409 struct ext4_extent *ex, *abut_ex;
3410 ext4_lblk_t ee_block, eof_block;
3411 unsigned int ee_len, depth, map_len = map->m_len;
3412 int allocated = 0, max_zeroout = 0;
3413 int err = 0;
3414 int split_flag = 0;
3415
3416 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3417 "block %llu, max_blocks %u\n", inode->i_ino,
3418 (unsigned long long)map->m_lblk, map_len);
3419
3420 sbi = EXT4_SB(inode->i_sb);
3421 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3422 inode->i_sb->s_blocksize_bits;
3423 if (eof_block < map->m_lblk + map_len)
3424 eof_block = map->m_lblk + map_len;
3425
3426 depth = ext_depth(inode);
3427 eh = path[depth].p_hdr;
3428 ex = path[depth].p_ext;
3429 ee_block = le32_to_cpu(ex->ee_block);
3430 ee_len = ext4_ext_get_actual_len(ex);
3431 zero_ex.ee_len = 0;
3432
3433 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3434
3435 /* Pre-conditions */
3436 BUG_ON(!ext4_ext_is_unwritten(ex));
3437 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3438
3439 /*
3440 * Attempt to transfer newly initialized blocks from the currently
3441 * unwritten extent to its neighbor. This is much cheaper
3442 * than an insertion followed by a merge as those involve costly
3443 * memmove() calls. Transferring to the left is the common case in
3444 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
3445 * followed by append writes.
3446 *
3447 * Limitations of the current logic:
3448 * - L1: we do not deal with writes covering the whole extent.
3449 * This would require removing the extent if the transfer
3450 * is possible.
3451 * - L2: we only attempt to merge with an extent stored in the
3452 * same extent tree node.
3453 */
3454 if ((map->m_lblk == ee_block) &&
3455 /* See if we can merge left */
3456 (map_len < ee_len) && /*L1*/
3457 (ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
3458 ext4_lblk_t prev_lblk;
3459 ext4_fsblk_t prev_pblk, ee_pblk;
3460 unsigned int prev_len;
3461
3462 abut_ex = ex - 1;
3463 prev_lblk = le32_to_cpu(abut_ex->ee_block);
3464 prev_len = ext4_ext_get_actual_len(abut_ex);
3465 prev_pblk = ext4_ext_pblock(abut_ex);
3466 ee_pblk = ext4_ext_pblock(ex);
3467
3468 /*
3469 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3470 * upon those conditions:
3471 * - C1: abut_ex is initialized,
3472 * - C2: abut_ex is logically abutting ex,
3473 * - C3: abut_ex is physically abutting ex,
3474 * - C4: abut_ex can receive the additional blocks without
3475 * overflowing the (initialized) length limit.
3476 */
3477 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3478 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3479 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3480 (prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3481 err = ext4_ext_get_access(handle, inode, path + depth);
3482 if (err)
3483 goto out;
3484
3485 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3486 map, ex, abut_ex);
3487
3488 /* Shift the start of ex by 'map_len' blocks */
3489 ex->ee_block = cpu_to_le32(ee_block + map_len);
3490 ext4_ext_store_pblock(ex, ee_pblk + map_len);
3491 ex->ee_len = cpu_to_le16(ee_len - map_len);
3492 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3493
3494 /* Extend abut_ex by 'map_len' blocks */
3495 abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
3496
3497 /* Result: number of initialized blocks past m_lblk */
3498 allocated = map_len;
3499 }
3500 } else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
3501 (map_len < ee_len) && /*L1*/
3502 ex < EXT_LAST_EXTENT(eh)) { /*L2*/
3503 /* See if we can merge right */
3504 ext4_lblk_t next_lblk;
3505 ext4_fsblk_t next_pblk, ee_pblk;
3506 unsigned int next_len;
3507
3508 abut_ex = ex + 1;
3509 next_lblk = le32_to_cpu(abut_ex->ee_block);
3510 next_len = ext4_ext_get_actual_len(abut_ex);
3511 next_pblk = ext4_ext_pblock(abut_ex);
3512 ee_pblk = ext4_ext_pblock(ex);
3513
3514 /*
3515 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
3516 * upon those conditions:
3517 * - C1: abut_ex is initialized,
3518 * - C2: abut_ex is logically abutting ex,
3519 * - C3: abut_ex is physically abutting ex,
3520 * - C4: abut_ex can receive the additional blocks without
3521 * overflowing the (initialized) length limit.
3522 */
3523 if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
3524 ((map->m_lblk + map_len) == next_lblk) && /*C2*/
3525 ((ee_pblk + ee_len) == next_pblk) && /*C3*/
3526 (next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
3527 err = ext4_ext_get_access(handle, inode, path + depth);
3528 if (err)
3529 goto out;
3530
3531 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3532 map, ex, abut_ex);
3533
3534 /* Shift the start of abut_ex by 'map_len' blocks */
3535 abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
3536 ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
3537 ex->ee_len = cpu_to_le16(ee_len - map_len);
3538 ext4_ext_mark_unwritten(ex); /* Restore the flag */
3539
3540 /* Extend abut_ex by 'map_len' blocks */
3541 abut_ex->ee_len = cpu_to_le16(next_len + map_len);
3542
3543 /* Result: number of initialized blocks past m_lblk */
3544 allocated = map_len;
3545 }
3546 }
3547 if (allocated) {
3548 /* Mark the block containing both extents as dirty */
3549 ext4_ext_dirty(handle, inode, path + depth);
3550
3551 /* Update path to point to the right extent */
3552 path[depth].p_ext = abut_ex;
3553 goto out;
3554 } else
3555 allocated = ee_len - (map->m_lblk - ee_block);
3556
3557 WARN_ON(map->m_lblk < ee_block);
3558 /*
3559 * It is safe to convert extent to initialized via explicit
3560 * zeroout only if extent is fully inside i_size or new_size.
3561 */
3562 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3563
3564 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3565 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3566 (inode->i_sb->s_blocksize_bits - 10);
3567
3568 if (ext4_encrypted_inode(inode))
3569 max_zeroout = 0;
3570
3571 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3572 if (max_zeroout && (ee_len <= max_zeroout)) {
3573 err = ext4_ext_zeroout(inode, ex);
3574 if (err)
3575 goto out;
3576 zero_ex.ee_block = ex->ee_block;
3577 zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
3578 ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
3579
3580 err = ext4_ext_get_access(handle, inode, path + depth);
3581 if (err)
3582 goto out;
3583 ext4_ext_mark_initialized(ex);
3584 ext4_ext_try_to_merge(handle, inode, path, ex);
3585 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3586 goto out;
3587 }
3588
3589 /*
3590 * four cases:
3591 * 1. split the extent into three extents.
3592 * 2. split the extent into two extents, zeroout the first half.
3593 * 3. split the extent into two extents, zeroout the second half.
3594 * 4. split the extent into two extents with out zeroout.
3595 */
3596 split_map.m_lblk = map->m_lblk;
3597 split_map.m_len = map->m_len;
3598
3599 if (max_zeroout && (allocated > map->m_len)) {
3600 if (allocated <= max_zeroout) {
3601 /* case 3 */
3602 zero_ex.ee_block =
3603 cpu_to_le32(map->m_lblk);
3604 zero_ex.ee_len = cpu_to_le16(allocated);
3605 ext4_ext_store_pblock(&zero_ex,
3606 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3607 err = ext4_ext_zeroout(inode, &zero_ex);
3608 if (err)
3609 goto out;
3610 split_map.m_lblk = map->m_lblk;
3611 split_map.m_len = allocated;
3612 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3613 /* case 2 */
3614 if (map->m_lblk != ee_block) {
3615 zero_ex.ee_block = ex->ee_block;
3616 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3617 ee_block);
3618 ext4_ext_store_pblock(&zero_ex,
3619 ext4_ext_pblock(ex));
3620 err = ext4_ext_zeroout(inode, &zero_ex);
3621 if (err)
3622 goto out;
3623 }
3624
3625 split_map.m_lblk = ee_block;
3626 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3627 allocated = map->m_len;
3628 }
3629 }
3630
3631 err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
3632 flags);
3633 if (err > 0)
3634 err = 0;
3635 out:
3636 /* If we have gotten a failure, don't zero out status tree */
3637 if (!err)
3638 err = ext4_zeroout_es(inode, &zero_ex);
3639 return err ? err : allocated;
3640 }
3641
3642 /*
3643 * This function is called by ext4_ext_map_blocks() from
3644 * ext4_get_blocks_dio_write() when DIO to write
3645 * to an unwritten extent.
3646 *
3647 * Writing to an unwritten extent may result in splitting the unwritten
3648 * extent into multiple initialized/unwritten extents (up to three)
3649 * There are three possibilities:
3650 * a> There is no split required: Entire extent should be unwritten
3651 * b> Splits in two extents: Write is happening at either end of the extent
3652 * c> Splits in three extents: Somone is writing in middle of the extent
3653 *
3654 * This works the same way in the case of initialized -> unwritten conversion.
3655 *
3656 * One of more index blocks maybe needed if the extent tree grow after
3657 * the unwritten extent split. To prevent ENOSPC occur at the IO
3658 * complete, we need to split the unwritten extent before DIO submit
3659 * the IO. The unwritten extent called at this time will be split
3660 * into three unwritten extent(at most). After IO complete, the part
3661 * being filled will be convert to initialized by the end_io callback function
3662 * via ext4_convert_unwritten_extents().
3663 *
3664 * Returns the size of unwritten extent to be written on success.
3665 */
3666 static int ext4_split_convert_extents(handle_t *handle,
3667 struct inode *inode,
3668 struct ext4_map_blocks *map,
3669 struct ext4_ext_path **ppath,
3670 int flags)
3671 {
3672 struct ext4_ext_path *path = *ppath;
3673 ext4_lblk_t eof_block;
3674 ext4_lblk_t ee_block;
3675 struct ext4_extent *ex;
3676 unsigned int ee_len;
3677 int split_flag = 0, depth;
3678
3679 ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
3680 __func__, inode->i_ino,
3681 (unsigned long long)map->m_lblk, map->m_len);
3682
3683 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3684 inode->i_sb->s_blocksize_bits;
3685 if (eof_block < map->m_lblk + map->m_len)
3686 eof_block = map->m_lblk + map->m_len;
3687 /*
3688 * It is safe to convert extent to initialized via explicit
3689 * zeroout only if extent is fully insde i_size or new_size.
3690 */
3691 depth = ext_depth(inode);
3692 ex = path[depth].p_ext;
3693 ee_block = le32_to_cpu(ex->ee_block);
3694 ee_len = ext4_ext_get_actual_len(ex);
3695
3696 /* Convert to unwritten */
3697 if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
3698 split_flag |= EXT4_EXT_DATA_VALID1;
3699 /* Convert to initialized */
3700 } else if (flags & EXT4_GET_BLOCKS_CONVERT) {
3701 split_flag |= ee_block + ee_len <= eof_block ?
3702 EXT4_EXT_MAY_ZEROOUT : 0;
3703 split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
3704 }
3705 flags |= EXT4_GET_BLOCKS_PRE_IO;
3706 return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
3707 }
3708
3709 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3710 struct inode *inode,
3711 struct ext4_map_blocks *map,
3712 struct ext4_ext_path **ppath)
3713 {
3714 struct ext4_ext_path *path = *ppath;
3715 struct ext4_extent *ex;
3716 ext4_lblk_t ee_block;
3717 unsigned int ee_len;
3718 int depth;
3719 int err = 0;
3720
3721 depth = ext_depth(inode);
3722 ex = path[depth].p_ext;
3723 ee_block = le32_to_cpu(ex->ee_block);
3724 ee_len = ext4_ext_get_actual_len(ex);
3725
3726 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3727 "block %llu, max_blocks %u\n", inode->i_ino,
3728 (unsigned long long)ee_block, ee_len);
3729
3730 /* If extent is larger than requested it is a clear sign that we still
3731 * have some extent state machine issues left. So extent_split is still
3732 * required.
3733 * TODO: Once all related issues will be fixed this situation should be
3734 * illegal.
3735 */
3736 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3737 #ifdef EXT4_DEBUG
3738 ext4_warning("Inode (%ld) finished: extent logical block %llu,"
3739 " len %u; IO logical block %llu, len %u",
3740 inode->i_ino, (unsigned long long)ee_block, ee_len,
3741 (unsigned long long)map->m_lblk, map->m_len);
3742 #endif
3743 err = ext4_split_convert_extents(handle, inode, map, ppath,
3744 EXT4_GET_BLOCKS_CONVERT);
3745 if (err < 0)
3746 return err;
3747 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3748 if (IS_ERR(path))
3749 return PTR_ERR(path);
3750 depth = ext_depth(inode);
3751 ex = path[depth].p_ext;
3752 }
3753
3754 err = ext4_ext_get_access(handle, inode, path + depth);
3755 if (err)
3756 goto out;
3757 /* first mark the extent as initialized */
3758 ext4_ext_mark_initialized(ex);
3759
3760 /* note: ext4_ext_correct_indexes() isn't needed here because
3761 * borders are not changed
3762 */
3763 ext4_ext_try_to_merge(handle, inode, path, ex);
3764
3765 /* Mark modified extent as dirty */
3766 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3767 out:
3768 ext4_ext_show_leaf(inode, path);
3769 return err;
3770 }
3771
3772 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3773 sector_t block, int count)
3774 {
3775 int i;
3776 for (i = 0; i < count; i++)
3777 unmap_underlying_metadata(bdev, block + i);
3778 }
3779
3780 /*
3781 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3782 */
3783 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3784 ext4_lblk_t lblk,
3785 struct ext4_ext_path *path,
3786 unsigned int len)
3787 {
3788 int i, depth;
3789 struct ext4_extent_header *eh;
3790 struct ext4_extent *last_ex;
3791
3792 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3793 return 0;
3794
3795 depth = ext_depth(inode);
3796 eh = path[depth].p_hdr;
3797
3798 /*
3799 * We're going to remove EOFBLOCKS_FL entirely in future so we
3800 * do not care for this case anymore. Simply remove the flag
3801 * if there are no extents.
3802 */
3803 if (unlikely(!eh->eh_entries))
3804 goto out;
3805 last_ex = EXT_LAST_EXTENT(eh);
3806 /*
3807 * We should clear the EOFBLOCKS_FL flag if we are writing the
3808 * last block in the last extent in the file. We test this by
3809 * first checking to see if the caller to
3810 * ext4_ext_get_blocks() was interested in the last block (or
3811 * a block beyond the last block) in the current extent. If
3812 * this turns out to be false, we can bail out from this
3813 * function immediately.
3814 */
3815 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3816 ext4_ext_get_actual_len(last_ex))
3817 return 0;
3818 /*
3819 * If the caller does appear to be planning to write at or
3820 * beyond the end of the current extent, we then test to see
3821 * if the current extent is the last extent in the file, by
3822 * checking to make sure it was reached via the rightmost node
3823 * at each level of the tree.
3824 */
3825 for (i = depth-1; i >= 0; i--)
3826 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3827 return 0;
3828 out:
3829 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830 return ext4_mark_inode_dirty(handle, inode);
3831 }
3832
3833 /**
3834 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3835 *
3836 * Return 1 if there is a delalloc block in the range, otherwise 0.
3837 */
3838 int ext4_find_delalloc_range(struct inode *inode,
3839 ext4_lblk_t lblk_start,
3840 ext4_lblk_t lblk_end)
3841 {
3842 struct extent_status es;
3843
3844 ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
3845 if (es.es_len == 0)
3846 return 0; /* there is no delay extent in this tree */
3847 else if (es.es_lblk <= lblk_start &&
3848 lblk_start < es.es_lblk + es.es_len)
3849 return 1;
3850 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3851 return 1;
3852 else
3853 return 0;
3854 }
3855
3856 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3857 {
3858 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3859 ext4_lblk_t lblk_start, lblk_end;
3860 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
3861 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3862
3863 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3864 }
3865
3866 /**
3867 * Determines how many complete clusters (out of those specified by the 'map')
3868 * are under delalloc and were reserved quota for.
3869 * This function is called when we are writing out the blocks that were
3870 * originally written with their allocation delayed, but then the space was
3871 * allocated using fallocate() before the delayed allocation could be resolved.
3872 * The cases to look for are:
3873 * ('=' indicated delayed allocated blocks
3874 * '-' indicates non-delayed allocated blocks)
3875 * (a) partial clusters towards beginning and/or end outside of allocated range
3876 * are not delalloc'ed.
3877 * Ex:
3878 * |----c---=|====c====|====c====|===-c----|
3879 * |++++++ allocated ++++++|
3880 * ==> 4 complete clusters in above example
3881 *
3882 * (b) partial cluster (outside of allocated range) towards either end is
3883 * marked for delayed allocation. In this case, we will exclude that
3884 * cluster.
3885 * Ex:
3886 * |----====c========|========c========|
3887 * |++++++ allocated ++++++|
3888 * ==> 1 complete clusters in above example
3889 *
3890 * Ex:
3891 * |================c================|
3892 * |++++++ allocated ++++++|
3893 * ==> 0 complete clusters in above example
3894 *
3895 * The ext4_da_update_reserve_space will be called only if we
3896 * determine here that there were some "entire" clusters that span
3897 * this 'allocated' range.
3898 * In the non-bigalloc case, this function will just end up returning num_blks
3899 * without ever calling ext4_find_delalloc_range.
3900 */
3901 static unsigned int
3902 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3903 unsigned int num_blks)
3904 {
3905 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3906 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3907 ext4_lblk_t lblk_from, lblk_to, c_offset;
3908 unsigned int allocated_clusters = 0;
3909
3910 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3911 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3912
3913 /* max possible clusters for this allocation */
3914 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3915
3916 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3917
3918 /* Check towards left side */
3919 c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
3920 if (c_offset) {
3921 lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
3922 lblk_to = lblk_from + c_offset - 1;
3923
3924 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3925 allocated_clusters--;
3926 }
3927
3928 /* Now check towards right. */
3929 c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
3930 if (allocated_clusters && c_offset) {
3931 lblk_from = lblk_start + num_blks;
3932 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3933
3934 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3935 allocated_clusters--;
3936 }
3937
3938 return allocated_clusters;
3939 }
3940
3941 static int
3942 convert_initialized_extent(handle_t *handle, struct inode *inode,
3943 struct ext4_map_blocks *map,
3944 struct ext4_ext_path **ppath,
3945 unsigned int allocated)
3946 {
3947 struct ext4_ext_path *path = *ppath;
3948 struct ext4_extent *ex;
3949 ext4_lblk_t ee_block;
3950 unsigned int ee_len;
3951 int depth;
3952 int err = 0;
3953
3954 /*
3955 * Make sure that the extent is no bigger than we support with
3956 * unwritten extent
3957 */
3958 if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
3959 map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
3960
3961 depth = ext_depth(inode);
3962 ex = path[depth].p_ext;
3963 ee_block = le32_to_cpu(ex->ee_block);
3964 ee_len = ext4_ext_get_actual_len(ex);
3965
3966 ext_debug("%s: inode %lu, logical"
3967 "block %llu, max_blocks %u\n", __func__, inode->i_ino,
3968 (unsigned long long)ee_block, ee_len);
3969
3970 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3971 err = ext4_split_convert_extents(handle, inode, map, ppath,
3972 EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
3973 if (err < 0)
3974 return err;
3975 path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
3976 if (IS_ERR(path))
3977 return PTR_ERR(path);
3978 depth = ext_depth(inode);
3979 ex = path[depth].p_ext;
3980 if (!ex) {
3981 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
3982 (unsigned long) map->m_lblk);
3983 return -EFSCORRUPTED;
3984 }
3985 }
3986
3987 err = ext4_ext_get_access(handle, inode, path + depth);
3988 if (err)
3989 return err;
3990 /* first mark the extent as unwritten */
3991 ext4_ext_mark_unwritten(ex);
3992
3993 /* note: ext4_ext_correct_indexes() isn't needed here because
3994 * borders are not changed
3995 */
3996 ext4_ext_try_to_merge(handle, inode, path, ex);
3997
3998 /* Mark modified extent as dirty */
3999 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
4000 if (err)
4001 return err;
4002 ext4_ext_show_leaf(inode, path);
4003
4004 ext4_update_inode_fsync_trans(handle, inode, 1);
4005 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
4006 if (err)
4007 return err;
4008 map->m_flags |= EXT4_MAP_UNWRITTEN;
4009 if (allocated > map->m_len)
4010 allocated = map->m_len;
4011 map->m_len = allocated;
4012 return allocated;
4013 }
4014
4015 static int
4016 ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
4017 struct ext4_map_blocks *map,
4018 struct ext4_ext_path **ppath, int flags,
4019 unsigned int allocated, ext4_fsblk_t newblock)
4020 {
4021 struct ext4_ext_path *path = *ppath;
4022 int ret = 0;
4023 int err = 0;
4024
4025 ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
4026 "block %llu, max_blocks %u, flags %x, allocated %u\n",
4027 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
4028 flags, allocated);
4029 ext4_ext_show_leaf(inode, path);
4030
4031 /*
4032 * When writing into unwritten space, we should not fail to
4033 * allocate metadata blocks for the new extent block if needed.
4034 */
4035 flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
4036
4037 trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
4038 allocated, newblock);
4039
4040 /* get_block() before submit the IO, split the extent */
4041 if (flags & EXT4_GET_BLOCKS_PRE_IO) {
4042 ret = ext4_split_convert_extents(handle, inode, map, ppath,
4043 flags | EXT4_GET_BLOCKS_CONVERT);
4044 if (ret <= 0)
4045 goto out;
4046 map->m_flags |= EXT4_MAP_UNWRITTEN;
4047 goto out;
4048 }
4049 /* IO end_io complete, convert the filled extent to written */
4050 if (flags & EXT4_GET_BLOCKS_CONVERT) {
4051 if (flags & EXT4_GET_BLOCKS_ZERO) {
4052 if (allocated > map->m_len)
4053 allocated = map->m_len;
4054 err = ext4_issue_zeroout(inode, map->m_lblk, newblock,
4055 allocated);
4056 if (err < 0)
4057 goto out2;
4058 }
4059 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
4060 ppath);
4061 if (ret >= 0) {
4062 ext4_update_inode_fsync_trans(handle, inode, 1);
4063 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4064 path, map->m_len);
4065 } else
4066 err = ret;
4067 map->m_flags |= EXT4_MAP_MAPPED;
4068 map->m_pblk = newblock;
4069 if (allocated > map->m_len)
4070 allocated = map->m_len;
4071 map->m_len = allocated;
4072 goto out2;
4073 }
4074 /* buffered IO case */
4075 /*
4076 * repeat fallocate creation request
4077 * we already have an unwritten extent
4078 */
4079 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
4080 map->m_flags |= EXT4_MAP_UNWRITTEN;
4081 goto map_out;
4082 }
4083
4084 /* buffered READ or buffered write_begin() lookup */
4085 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4086 /*
4087 * We have blocks reserved already. We
4088 * return allocated blocks so that delalloc
4089 * won't do block reservation for us. But
4090 * the buffer head will be unmapped so that
4091 * a read from the block returns 0s.
4092 */
4093 map->m_flags |= EXT4_MAP_UNWRITTEN;
4094 goto out1;
4095 }
4096
4097 /* buffered write, writepage time, convert*/
4098 ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
4099 if (ret >= 0)
4100 ext4_update_inode_fsync_trans(handle, inode, 1);
4101 out:
4102 if (ret <= 0) {
4103 err = ret;
4104 goto out2;
4105 } else
4106 allocated = ret;
4107 map->m_flags |= EXT4_MAP_NEW;
4108 /*
4109 * if we allocated more blocks than requested
4110 * we need to make sure we unmap the extra block
4111 * allocated. The actual needed block will get
4112 * unmapped later when we find the buffer_head marked
4113 * new.
4114 */
4115 if (allocated > map->m_len) {
4116 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
4117 newblock + map->m_len,
4118 allocated - map->m_len);
4119 allocated = map->m_len;
4120 }
4121 map->m_len = allocated;
4122
4123 /*
4124 * If we have done fallocate with the offset that is already
4125 * delayed allocated, we would have block reservation
4126 * and quota reservation done in the delayed write path.
4127 * But fallocate would have already updated quota and block
4128 * count for this offset. So cancel these reservation
4129 */
4130 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4131 unsigned int reserved_clusters;
4132 reserved_clusters = get_reserved_cluster_alloc(inode,
4133 map->m_lblk, map->m_len);
4134 if (reserved_clusters)
4135 ext4_da_update_reserve_space(inode,
4136 reserved_clusters,
4137 0);
4138 }
4139
4140 map_out:
4141 map->m_flags |= EXT4_MAP_MAPPED;
4142 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
4143 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
4144 map->m_len);
4145 if (err < 0)
4146 goto out2;
4147 }
4148 out1:
4149 if (allocated > map->m_len)
4150 allocated = map->m_len;
4151 ext4_ext_show_leaf(inode, path);
4152 map->m_pblk = newblock;
4153 map->m_len = allocated;
4154 out2:
4155 return err ? err : allocated;
4156 }
4157
4158 /*
4159 * get_implied_cluster_alloc - check to see if the requested
4160 * allocation (in the map structure) overlaps with a cluster already
4161 * allocated in an extent.
4162 * @sb The filesystem superblock structure
4163 * @map The requested lblk->pblk mapping
4164 * @ex The extent structure which might contain an implied
4165 * cluster allocation
4166 *
4167 * This function is called by ext4_ext_map_blocks() after we failed to
4168 * find blocks that were already in the inode's extent tree. Hence,
4169 * we know that the beginning of the requested region cannot overlap
4170 * the extent from the inode's extent tree. There are three cases we
4171 * want to catch. The first is this case:
4172 *
4173 * |--- cluster # N--|
4174 * |--- extent ---| |---- requested region ---|
4175 * |==========|
4176 *
4177 * The second case that we need to test for is this one:
4178 *
4179 * |--------- cluster # N ----------------|
4180 * |--- requested region --| |------- extent ----|
4181 * |=======================|
4182 *
4183 * The third case is when the requested region lies between two extents
4184 * within the same cluster:
4185 * |------------- cluster # N-------------|
4186 * |----- ex -----| |---- ex_right ----|
4187 * |------ requested region ------|
4188 * |================|
4189 *
4190 * In each of the above cases, we need to set the map->m_pblk and
4191 * map->m_len so it corresponds to the return the extent labelled as
4192 * "|====|" from cluster #N, since it is already in use for data in
4193 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
4194 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
4195 * as a new "allocated" block region. Otherwise, we will return 0 and
4196 * ext4_ext_map_blocks() will then allocate one or more new clusters
4197 * by calling ext4_mb_new_blocks().
4198 */
4199 static int get_implied_cluster_alloc(struct super_block *sb,
4200 struct ext4_map_blocks *map,
4201 struct ext4_extent *ex,
4202 struct ext4_ext_path *path)
4203 {
4204 struct ext4_sb_info *sbi = EXT4_SB(sb);
4205 ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4206 ext4_lblk_t ex_cluster_start, ex_cluster_end;
4207 ext4_lblk_t rr_cluster_start;
4208 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4209 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4210 unsigned short ee_len = ext4_ext_get_actual_len(ex);
4211
4212 /* The extent passed in that we are trying to match */
4213 ex_cluster_start = EXT4_B2C(sbi, ee_block);
4214 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
4215
4216 /* The requested region passed into ext4_map_blocks() */
4217 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
4218
4219 if ((rr_cluster_start == ex_cluster_end) ||
4220 (rr_cluster_start == ex_cluster_start)) {
4221 if (rr_cluster_start == ex_cluster_end)
4222 ee_start += ee_len - 1;
4223 map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
4224 map->m_len = min(map->m_len,
4225 (unsigned) sbi->s_cluster_ratio - c_offset);
4226 /*
4227 * Check for and handle this case:
4228 *
4229 * |--------- cluster # N-------------|
4230 * |------- extent ----|
4231 * |--- requested region ---|
4232 * |===========|
4233 */
4234
4235 if (map->m_lblk < ee_block)
4236 map->m_len = min(map->m_len, ee_block - map->m_lblk);
4237
4238 /*
4239 * Check for the case where there is already another allocated
4240 * block to the right of 'ex' but before the end of the cluster.
4241 *
4242 * |------------- cluster # N-------------|
4243 * |----- ex -----| |---- ex_right ----|
4244 * |------ requested region ------|
4245 * |================|
4246 */
4247 if (map->m_lblk > ee_block) {
4248 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
4249 map->m_len = min(map->m_len, next - map->m_lblk);
4250 }
4251
4252 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
4253 return 1;
4254 }
4255
4256 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
4257 return 0;
4258 }
4259
4260
4261 /*
4262 * Block allocation/map/preallocation routine for extents based files
4263 *
4264 *
4265 * Need to be called with
4266 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
4267 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
4268 *
4269 * return > 0, number of of blocks already mapped/allocated
4270 * if create == 0 and these are pre-allocated blocks
4271 * buffer head is unmapped
4272 * otherwise blocks are mapped
4273 *
4274 * return = 0, if plain look up failed (blocks have not been allocated)
4275 * buffer head is unmapped
4276 *
4277 * return < 0, error case.
4278 */
4279 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
4280 struct ext4_map_blocks *map, int flags)
4281 {
4282 struct ext4_ext_path *path = NULL;
4283 struct ext4_extent newex, *ex, *ex2;
4284 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4285 ext4_fsblk_t newblock = 0;
4286 int free_on_err = 0, err = 0, depth, ret;
4287 unsigned int allocated = 0, offset = 0;
4288 unsigned int allocated_clusters = 0;
4289 struct ext4_allocation_request ar;
4290 ext4_lblk_t cluster_offset;
4291 bool map_from_cluster = false;
4292
4293 ext_debug("blocks %u/%u requested for inode %lu\n",
4294 map->m_lblk, map->m_len, inode->i_ino);
4295 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
4296
4297 /* find extent for this block */
4298 path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
4299 if (IS_ERR(path)) {
4300 err = PTR_ERR(path);
4301 path = NULL;
4302 goto out2;
4303 }
4304
4305 depth = ext_depth(inode);
4306
4307 /*
4308 * consistent leaf must not be empty;
4309 * this situation is possible, though, _during_ tree modification;
4310 * this is why assert can't be put in ext4_find_extent()
4311 */
4312 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
4313 EXT4_ERROR_INODE(inode, "bad extent address "
4314 "lblock: %lu, depth: %d pblock %lld",
4315 (unsigned long) map->m_lblk, depth,
4316 path[depth].p_block);
4317 err = -EFSCORRUPTED;
4318 goto out2;
4319 }
4320
4321 ex = path[depth].p_ext;
4322 if (ex) {
4323 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
4324 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
4325 unsigned short ee_len;
4326
4327
4328 /*
4329 * unwritten extents are treated as holes, except that
4330 * we split out initialized portions during a write.
4331 */
4332 ee_len = ext4_ext_get_actual_len(ex);
4333
4334 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
4335
4336 /* if found extent covers block, simply return it */
4337 if (in_range(map->m_lblk, ee_block, ee_len)) {
4338 newblock = map->m_lblk - ee_block + ee_start;
4339 /* number of remaining blocks in the extent */
4340 allocated = ee_len - (map->m_lblk - ee_block);
4341 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
4342 ee_block, ee_len, newblock);
4343
4344 /*
4345 * If the extent is initialized check whether the
4346 * caller wants to convert it to unwritten.
4347 */
4348 if ((!ext4_ext_is_unwritten(ex)) &&
4349 (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
4350 allocated = convert_initialized_extent(
4351 handle, inode, map, &path,
4352 allocated);
4353 goto out2;
4354 } else if (!ext4_ext_is_unwritten(ex))
4355 goto out;
4356
4357 ret = ext4_ext_handle_unwritten_extents(
4358 handle, inode, map, &path, flags,
4359 allocated, newblock);
4360 if (ret < 0)
4361 err = ret;
4362 else
4363 allocated = ret;
4364 goto out2;
4365 }
4366 }
4367
4368 /*
4369 * requested block isn't allocated yet;
4370 * we couldn't try to create block if create flag is zero
4371 */
4372 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
4373 ext4_lblk_t hole_start, hole_len;
4374
4375 hole_start = map->m_lblk;
4376 hole_len = ext4_ext_determine_hole(inode, path, &hole_start);
4377 /*
4378 * put just found gap into cache to speed up
4379 * subsequent requests
4380 */
4381 ext4_ext_put_gap_in_cache(inode, hole_start, hole_len);
4382
4383 /* Update hole_len to reflect hole size after map->m_lblk */
4384 if (hole_start != map->m_lblk)
4385 hole_len -= map->m_lblk - hole_start;
4386 map->m_pblk = 0;
4387 map->m_len = min_t(unsigned int, map->m_len, hole_len);
4388
4389 goto out2;
4390 }
4391
4392 /*
4393 * Okay, we need to do block allocation.
4394 */
4395 newex.ee_block = cpu_to_le32(map->m_lblk);
4396 cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4397
4398 /*
4399 * If we are doing bigalloc, check to see if the extent returned
4400 * by ext4_find_extent() implies a cluster we can use.
4401 */
4402 if (cluster_offset && ex &&
4403 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
4404 ar.len = allocated = map->m_len;
4405 newblock = map->m_pblk;
4406 map_from_cluster = true;
4407 goto got_allocated_blocks;
4408 }
4409
4410 /* find neighbour allocated blocks */
4411 ar.lleft = map->m_lblk;
4412 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
4413 if (err)
4414 goto out2;
4415 ar.lright = map->m_lblk;
4416 ex2 = NULL;
4417 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
4418 if (err)
4419 goto out2;
4420
4421 /* Check if the extent after searching to the right implies a
4422 * cluster we can use. */
4423 if ((sbi->s_cluster_ratio > 1) && ex2 &&
4424 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
4425 ar.len = allocated = map->m_len;
4426 newblock = map->m_pblk;
4427 map_from_cluster = true;
4428 goto got_allocated_blocks;
4429 }
4430
4431 /*
4432 * See if request is beyond maximum number of blocks we can have in
4433 * a single extent. For an initialized extent this limit is
4434 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
4435 * EXT_UNWRITTEN_MAX_LEN.
4436 */
4437 if (map->m_len > EXT_INIT_MAX_LEN &&
4438 !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4439 map->m_len = EXT_INIT_MAX_LEN;
4440 else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
4441 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
4442 map->m_len = EXT_UNWRITTEN_MAX_LEN;
4443
4444 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4445 newex.ee_len = cpu_to_le16(map->m_len);
4446 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4447 if (err)
4448 allocated = ext4_ext_get_actual_len(&newex);
4449 else
4450 allocated = map->m_len;
4451
4452 /* allocate new block */
4453 ar.inode = inode;
4454 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4455 ar.logical = map->m_lblk;
4456 /*
4457 * We calculate the offset from the beginning of the cluster
4458 * for the logical block number, since when we allocate a
4459 * physical cluster, the physical block should start at the
4460 * same offset from the beginning of the cluster. This is
4461 * needed so that future calls to get_implied_cluster_alloc()
4462 * work correctly.
4463 */
4464 offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
4465 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4466 ar.goal -= offset;
4467 ar.logical -= offset;
4468 if (S_ISREG(inode->i_mode))
4469 ar.flags = EXT4_MB_HINT_DATA;
4470 else
4471 /* disable in-core preallocation for non-regular files */
4472 ar.flags = 0;
4473 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4474 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4475 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
4476 ar.flags |= EXT4_MB_DELALLOC_RESERVED;
4477 if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
4478 ar.flags |= EXT4_MB_USE_RESERVED;
4479 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4480 if (!newblock)
4481 goto out2;
4482 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4483 ar.goal, newblock, allocated);
4484 free_on_err = 1;
4485 allocated_clusters = ar.len;
4486 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4487 if (ar.len > allocated)
4488 ar.len = allocated;
4489
4490 got_allocated_blocks:
4491 /* try to insert new extent into found leaf and return */
4492 ext4_ext_store_pblock(&newex, newblock + offset);
4493 newex.ee_len = cpu_to_le16(ar.len);
4494 /* Mark unwritten */
4495 if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
4496 ext4_ext_mark_unwritten(&newex);
4497 map->m_flags |= EXT4_MAP_UNWRITTEN;
4498 }
4499
4500 err = 0;
4501 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4502 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4503 path, ar.len);
4504 if (!err)
4505 err = ext4_ext_insert_extent(handle, inode, &path,
4506 &newex, flags);
4507
4508 if (err && free_on_err) {
4509 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4510 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4511 /* free data blocks we just allocated */
4512 /* not a good idea to call discard here directly,
4513 * but otherwise we'd need to call it every free() */
4514 ext4_discard_preallocations(inode);
4515 ext4_free_blocks(handle, inode, NULL, newblock,
4516 EXT4_C2B(sbi, allocated_clusters), fb_flags);
4517 goto out2;
4518 }
4519
4520 /* previous routine could use block we allocated */
4521 newblock = ext4_ext_pblock(&newex);
4522 allocated = ext4_ext_get_actual_len(&newex);
4523 if (allocated > map->m_len)
4524 allocated = map->m_len;
4525 map->m_flags |= EXT4_MAP_NEW;
4526
4527 /*
4528 * Update reserved blocks/metadata blocks after successful
4529 * block allocation which had been deferred till now.
4530 */
4531 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4532 unsigned int reserved_clusters;
4533 /*
4534 * Check how many clusters we had reserved this allocated range
4535 */
4536 reserved_clusters = get_reserved_cluster_alloc(inode,
4537 map->m_lblk, allocated);
4538 if (!map_from_cluster) {
4539 BUG_ON(allocated_clusters < reserved_clusters);
4540 if (reserved_clusters < allocated_clusters) {
4541 struct ext4_inode_info *ei = EXT4_I(inode);
4542 int reservation = allocated_clusters -
4543 reserved_clusters;
4544 /*
4545 * It seems we claimed few clusters outside of
4546 * the range of this allocation. We should give
4547 * it back to the reservation pool. This can
4548 * happen in the following case:
4549 *
4550 * * Suppose s_cluster_ratio is 4 (i.e., each
4551 * cluster has 4 blocks. Thus, the clusters
4552 * are [0-3],[4-7],[8-11]...
4553 * * First comes delayed allocation write for
4554 * logical blocks 10 & 11. Since there were no
4555 * previous delayed allocated blocks in the
4556 * range [8-11], we would reserve 1 cluster
4557 * for this write.
4558 * * Next comes write for logical blocks 3 to 8.
4559 * In this case, we will reserve 2 clusters
4560 * (for [0-3] and [4-7]; and not for [8-11] as
4561 * that range has a delayed allocated blocks.
4562 * Thus total reserved clusters now becomes 3.
4563 * * Now, during the delayed allocation writeout
4564 * time, we will first write blocks [3-8] and
4565 * allocate 3 clusters for writing these
4566 * blocks. Also, we would claim all these
4567 * three clusters above.
4568 * * Now when we come here to writeout the
4569 * blocks [10-11], we would expect to claim
4570 * the reservation of 1 cluster we had made
4571 * (and we would claim it since there are no
4572 * more delayed allocated blocks in the range
4573 * [8-11]. But our reserved cluster count had
4574 * already gone to 0.
4575 *
4576 * Thus, at the step 4 above when we determine
4577 * that there are still some unwritten delayed
4578 * allocated blocks outside of our current
4579 * block range, we should increment the
4580 * reserved clusters count so that when the
4581 * remaining blocks finally gets written, we
4582 * could claim them.
4583 */
4584 dquot_reserve_block(inode,
4585 EXT4_C2B(sbi, reservation));
4586 spin_lock(&ei->i_block_reservation_lock);
4587 ei->i_reserved_data_blocks += reservation;
4588 spin_unlock(&ei->i_block_reservation_lock);
4589 }
4590 /*
4591 * We will claim quota for all newly allocated blocks.
4592 * We're updating the reserved space *after* the
4593 * correction above so we do not accidentally free
4594 * all the metadata reservation because we might
4595 * actually need it later on.
4596 */
4597 ext4_da_update_reserve_space(inode, allocated_clusters,
4598 1);
4599 }
4600 }
4601
4602 /*
4603 * Cache the extent and update transaction to commit on fdatasync only
4604 * when it is _not_ an unwritten extent.
4605 */
4606 if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
4607 ext4_update_inode_fsync_trans(handle, inode, 1);
4608 else
4609 ext4_update_inode_fsync_trans(handle, inode, 0);
4610 out:
4611 if (allocated > map->m_len)
4612 allocated = map->m_len;
4613 ext4_ext_show_leaf(inode, path);
4614 map->m_flags |= EXT4_MAP_MAPPED;
4615 map->m_pblk = newblock;
4616 map->m_len = allocated;
4617 out2:
4618 ext4_ext_drop_refs(path);
4619 kfree(path);
4620
4621 trace_ext4_ext_map_blocks_exit(inode, flags, map,
4622 err ? err : allocated);
4623 return err ? err : allocated;
4624 }
4625
4626 void ext4_ext_truncate(handle_t *handle, struct inode *inode)
4627 {
4628 struct super_block *sb = inode->i_sb;
4629 ext4_lblk_t last_block;
4630 int err = 0;
4631
4632 /*
4633 * TODO: optimization is possible here.
4634 * Probably we need not scan at all,
4635 * because page truncation is enough.
4636 */
4637
4638 /* we have to know where to truncate from in crash case */
4639 EXT4_I(inode)->i_disksize = inode->i_size;
4640 ext4_mark_inode_dirty(handle, inode);
4641
4642 last_block = (inode->i_size + sb->s_blocksize - 1)
4643 >> EXT4_BLOCK_SIZE_BITS(sb);
4644 retry:
4645 err = ext4_es_remove_extent(inode, last_block,
4646 EXT_MAX_BLOCKS - last_block);
4647 if (err == -ENOMEM) {
4648 cond_resched();
4649 congestion_wait(BLK_RW_ASYNC, HZ/50);
4650 goto retry;
4651 }
4652 if (err) {
4653 ext4_std_error(inode->i_sb, err);
4654 return;
4655 }
4656 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4657 ext4_std_error(inode->i_sb, err);
4658 }
4659
4660 static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
4661 ext4_lblk_t len, loff_t new_size,
4662 int flags, int mode)
4663 {
4664 struct inode *inode = file_inode(file);
4665 handle_t *handle;
4666 int ret = 0;
4667 int ret2 = 0;
4668 int retries = 0;
4669 int depth = 0;
4670 struct ext4_map_blocks map;
4671 unsigned int credits;
4672 loff_t epos;
4673
4674 map.m_lblk = offset;
4675 map.m_len = len;
4676 /*
4677 * Don't normalize the request if it can fit in one extent so
4678 * that it doesn't get unnecessarily split into multiple
4679 * extents.
4680 */
4681 if (len <= EXT_UNWRITTEN_MAX_LEN)
4682 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4683
4684 /*
4685 * credits to insert 1 extent into extent tree
4686 */
4687 credits = ext4_chunk_trans_blocks(inode, len);
4688 /*
4689 * We can only call ext_depth() on extent based inodes
4690 */
4691 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4692 depth = ext_depth(inode);
4693 else
4694 depth = -1;
4695
4696 retry:
4697 while (ret >= 0 && len) {
4698 /*
4699 * Recalculate credits when extent tree depth changes.
4700 */
4701 if (depth >= 0 && depth != ext_depth(inode)) {
4702 credits = ext4_chunk_trans_blocks(inode, len);
4703 depth = ext_depth(inode);
4704 }
4705
4706 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4707 credits);
4708 if (IS_ERR(handle)) {
4709 ret = PTR_ERR(handle);
4710 break;
4711 }
4712 ret = ext4_map_blocks(handle, inode, &map, flags);
4713 if (ret <= 0) {
4714 ext4_debug("inode #%lu: block %u: len %u: "
4715 "ext4_ext_map_blocks returned %d",
4716 inode->i_ino, map.m_lblk,
4717 map.m_len, ret);
4718 ext4_mark_inode_dirty(handle, inode);
4719 ret2 = ext4_journal_stop(handle);
4720 break;
4721 }
4722 map.m_lblk += ret;
4723 map.m_len = len = len - ret;
4724 epos = (loff_t)map.m_lblk << inode->i_blkbits;
4725 inode->i_ctime = ext4_current_time(inode);
4726 if (new_size) {
4727 if (epos > new_size)
4728 epos = new_size;
4729 if (ext4_update_inode_size(inode, epos) & 0x1)
4730 inode->i_mtime = inode->i_ctime;
4731 } else {
4732 if (epos > inode->i_size)
4733 ext4_set_inode_flag(inode,
4734 EXT4_INODE_EOFBLOCKS);
4735 }
4736 ext4_mark_inode_dirty(handle, inode);
4737 ret2 = ext4_journal_stop(handle);
4738 if (ret2)
4739 break;
4740 }
4741 if (ret == -ENOSPC &&
4742 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4743 ret = 0;
4744 goto retry;
4745 }
4746
4747 return ret > 0 ? ret2 : ret;
4748 }
4749
4750 static long ext4_zero_range(struct file *file, loff_t offset,
4751 loff_t len, int mode)
4752 {
4753 struct inode *inode = file_inode(file);
4754 handle_t *handle = NULL;
4755 unsigned int max_blocks;
4756 loff_t new_size = 0;
4757 int ret = 0;
4758 int flags;
4759 int credits;
4760 int partial_begin, partial_end;
4761 loff_t start, end;
4762 ext4_lblk_t lblk;
4763 unsigned int blkbits = inode->i_blkbits;
4764
4765 trace_ext4_zero_range(inode, offset, len, mode);
4766
4767 if (!S_ISREG(inode->i_mode))
4768 return -EINVAL;
4769
4770 /* Call ext4_force_commit to flush all data in case of data=journal. */
4771 if (ext4_should_journal_data(inode)) {
4772 ret = ext4_force_commit(inode->i_sb);
4773 if (ret)
4774 return ret;
4775 }
4776
4777 /*
4778 * Round up offset. This is not fallocate, we neet to zero out
4779 * blocks, so convert interior block aligned part of the range to
4780 * unwritten and possibly manually zero out unaligned parts of the
4781 * range.
4782 */
4783 start = round_up(offset, 1 << blkbits);
4784 end = round_down((offset + len), 1 << blkbits);
4785
4786 if (start < offset || end > offset + len)
4787 return -EINVAL;
4788 partial_begin = offset & ((1 << blkbits) - 1);
4789 partial_end = (offset + len) & ((1 << blkbits) - 1);
4790
4791 lblk = start >> blkbits;
4792 max_blocks = (end >> blkbits);
4793 if (max_blocks < lblk)
4794 max_blocks = 0;
4795 else
4796 max_blocks -= lblk;
4797
4798 inode_lock(inode);
4799
4800 /*
4801 * Indirect files do not support unwritten extnets
4802 */
4803 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4804 ret = -EOPNOTSUPP;
4805 goto out_mutex;
4806 }
4807
4808 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4809 offset + len > i_size_read(inode)) {
4810 new_size = offset + len;
4811 ret = inode_newsize_ok(inode, new_size);
4812 if (ret)
4813 goto out_mutex;
4814 }
4815
4816 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4817 if (mode & FALLOC_FL_KEEP_SIZE)
4818 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4819
4820 /* Wait all existing dio workers, newcomers will block on i_mutex */
4821 ext4_inode_block_unlocked_dio(inode);
4822 inode_dio_wait(inode);
4823
4824 /* Preallocate the range including the unaligned edges */
4825 if (partial_begin || partial_end) {
4826 ret = ext4_alloc_file_blocks(file,
4827 round_down(offset, 1 << blkbits) >> blkbits,
4828 (round_up((offset + len), 1 << blkbits) -
4829 round_down(offset, 1 << blkbits)) >> blkbits,
4830 new_size, flags, mode);
4831 if (ret)
4832 goto out_dio;
4833
4834 }
4835
4836 /* Zero range excluding the unaligned edges */
4837 if (max_blocks > 0) {
4838 flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
4839 EXT4_EX_NOCACHE);
4840
4841 /*
4842 * Prevent page faults from reinstantiating pages we have
4843 * released from page cache.
4844 */
4845 down_write(&EXT4_I(inode)->i_mmap_sem);
4846 ret = ext4_update_disksize_before_punch(inode, offset, len);
4847 if (ret) {
4848 up_write(&EXT4_I(inode)->i_mmap_sem);
4849 goto out_dio;
4850 }
4851 /* Now release the pages and zero block aligned part of pages */
4852 truncate_pagecache_range(inode, start, end - 1);
4853 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4854
4855 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4856 flags, mode);
4857 up_write(&EXT4_I(inode)->i_mmap_sem);
4858 if (ret)
4859 goto out_dio;
4860 }
4861 if (!partial_begin && !partial_end)
4862 goto out_dio;
4863
4864 /*
4865 * In worst case we have to writeout two nonadjacent unwritten
4866 * blocks and update the inode
4867 */
4868 credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
4869 if (ext4_should_journal_data(inode))
4870 credits += 2;
4871 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
4872 if (IS_ERR(handle)) {
4873 ret = PTR_ERR(handle);
4874 ext4_std_error(inode->i_sb, ret);
4875 goto out_dio;
4876 }
4877
4878 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4879 if (new_size) {
4880 ext4_update_inode_size(inode, new_size);
4881 } else {
4882 /*
4883 * Mark that we allocate beyond EOF so the subsequent truncate
4884 * can proceed even if the new size is the same as i_size.
4885 */
4886 if ((offset + len) > i_size_read(inode))
4887 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4888 }
4889 ext4_mark_inode_dirty(handle, inode);
4890
4891 /* Zero out partial block at the edges of the range */
4892 ret = ext4_zero_partial_blocks(handle, inode, offset, len);
4893
4894 if (file->f_flags & O_SYNC)
4895 ext4_handle_sync(handle);
4896
4897 ext4_journal_stop(handle);
4898 out_dio:
4899 ext4_inode_resume_unlocked_dio(inode);
4900 out_mutex:
4901 inode_unlock(inode);
4902 return ret;
4903 }
4904
4905 /*
4906 * preallocate space for a file. This implements ext4's fallocate file
4907 * operation, which gets called from sys_fallocate system call.
4908 * For block-mapped files, posix_fallocate should fall back to the method
4909 * of writing zeroes to the required new blocks (the same behavior which is
4910 * expected for file systems which do not support fallocate() system call).
4911 */
4912 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4913 {
4914 struct inode *inode = file_inode(file);
4915 loff_t new_size = 0;
4916 unsigned int max_blocks;
4917 int ret = 0;
4918 int flags;
4919 ext4_lblk_t lblk;
4920 unsigned int blkbits = inode->i_blkbits;
4921
4922 /*
4923 * Encrypted inodes can't handle collapse range or insert
4924 * range since we would need to re-encrypt blocks with a
4925 * different IV or XTS tweak (which are based on the logical
4926 * block number).
4927 *
4928 * XXX It's not clear why zero range isn't working, but we'll
4929 * leave it disabled for encrypted inodes for now. This is a
4930 * bug we should fix....
4931 */
4932 if (ext4_encrypted_inode(inode) &&
4933 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
4934 FALLOC_FL_ZERO_RANGE)))
4935 return -EOPNOTSUPP;
4936
4937 /* Return error if mode is not supported */
4938 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
4939 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
4940 FALLOC_FL_INSERT_RANGE))
4941 return -EOPNOTSUPP;
4942
4943 if (mode & FALLOC_FL_PUNCH_HOLE)
4944 return ext4_punch_hole(inode, offset, len);
4945
4946 ret = ext4_convert_inline_data(inode);
4947 if (ret)
4948 return ret;
4949
4950 if (mode & FALLOC_FL_COLLAPSE_RANGE)
4951 return ext4_collapse_range(inode, offset, len);
4952
4953 if (mode & FALLOC_FL_INSERT_RANGE)
4954 return ext4_insert_range(inode, offset, len);
4955
4956 if (mode & FALLOC_FL_ZERO_RANGE)
4957 return ext4_zero_range(file, offset, len, mode);
4958
4959 trace_ext4_fallocate_enter(inode, offset, len, mode);
4960 lblk = offset >> blkbits;
4961 /*
4962 * We can't just convert len to max_blocks because
4963 * If blocksize = 4096 offset = 3072 and len = 2048
4964 */
4965 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4966 - lblk;
4967
4968 flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
4969 if (mode & FALLOC_FL_KEEP_SIZE)
4970 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4971
4972 inode_lock(inode);
4973
4974 /*
4975 * We only support preallocation for extent-based files only
4976 */
4977 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4978 ret = -EOPNOTSUPP;
4979 goto out;
4980 }
4981
4982 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4983 offset + len > i_size_read(inode)) {
4984 new_size = offset + len;
4985 ret = inode_newsize_ok(inode, new_size);
4986 if (ret)
4987 goto out;
4988 }
4989
4990 /* Wait all existing dio workers, newcomers will block on i_mutex */
4991 ext4_inode_block_unlocked_dio(inode);
4992 inode_dio_wait(inode);
4993
4994 ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
4995 flags, mode);
4996 ext4_inode_resume_unlocked_dio(inode);
4997 if (ret)
4998 goto out;
4999
5000 if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
5001 ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5002 EXT4_I(inode)->i_sync_tid);
5003 }
5004 out:
5005 inode_unlock(inode);
5006 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
5007 return ret;
5008 }
5009
5010 /*
5011 * This function convert a range of blocks to written extents
5012 * The caller of this function will pass the start offset and the size.
5013 * all unwritten extents within this range will be converted to
5014 * written extents.
5015 *
5016 * This function is called from the direct IO end io call back
5017 * function, to convert the fallocated extents after IO is completed.
5018 * Returns 0 on success.
5019 */
5020 int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
5021 loff_t offset, ssize_t len)
5022 {
5023 unsigned int max_blocks;
5024 int ret = 0;
5025 int ret2 = 0;
5026 struct ext4_map_blocks map;
5027 unsigned int credits, blkbits = inode->i_blkbits;
5028
5029 map.m_lblk = offset >> blkbits;
5030 /*
5031 * We can't just convert len to max_blocks because
5032 * If blocksize = 4096 offset = 3072 and len = 2048
5033 */
5034 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
5035 map.m_lblk);
5036 /*
5037 * This is somewhat ugly but the idea is clear: When transaction is
5038 * reserved, everything goes into it. Otherwise we rather start several
5039 * smaller transactions for conversion of each extent separately.
5040 */
5041 if (handle) {
5042 handle = ext4_journal_start_reserved(handle,
5043 EXT4_HT_EXT_CONVERT);
5044 if (IS_ERR(handle))
5045 return PTR_ERR(handle);
5046 credits = 0;
5047 } else {
5048 /*
5049 * credits to insert 1 extent into extent tree
5050 */
5051 credits = ext4_chunk_trans_blocks(inode, max_blocks);
5052 }
5053 while (ret >= 0 && ret < max_blocks) {
5054 map.m_lblk += ret;
5055 map.m_len = (max_blocks -= ret);
5056 if (credits) {
5057 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
5058 credits);
5059 if (IS_ERR(handle)) {
5060 ret = PTR_ERR(handle);
5061 break;
5062 }
5063 }
5064 ret = ext4_map_blocks(handle, inode, &map,
5065 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
5066 if (ret <= 0)
5067 ext4_warning(inode->i_sb,
5068 "inode #%lu: block %u: len %u: "
5069 "ext4_ext_map_blocks returned %d",
5070 inode->i_ino, map.m_lblk,
5071 map.m_len, ret);
5072 ext4_mark_inode_dirty(handle, inode);
5073 if (credits)
5074 ret2 = ext4_journal_stop(handle);
5075 if (ret <= 0 || ret2)
5076 break;
5077 }
5078 if (!credits)
5079 ret2 = ext4_journal_stop(handle);
5080 return ret > 0 ? ret2 : ret;
5081 }
5082
5083 /*
5084 * If newes is not existing extent (newes->ec_pblk equals zero) find
5085 * delayed extent at start of newes and update newes accordingly and
5086 * return start of the next delayed extent.
5087 *
5088 * If newes is existing extent (newes->ec_pblk is not equal zero)
5089 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
5090 * extent found. Leave newes unmodified.
5091 */
5092 static int ext4_find_delayed_extent(struct inode *inode,
5093 struct extent_status *newes)
5094 {
5095 struct extent_status es;
5096 ext4_lblk_t block, next_del;
5097
5098 if (newes->es_pblk == 0) {
5099 ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
5100 newes->es_lblk + newes->es_len - 1, &es);
5101
5102 /*
5103 * No extent in extent-tree contains block @newes->es_pblk,
5104 * then the block may stay in 1)a hole or 2)delayed-extent.
5105 */
5106 if (es.es_len == 0)
5107 /* A hole found. */
5108 return 0;
5109
5110 if (es.es_lblk > newes->es_lblk) {
5111 /* A hole found. */
5112 newes->es_len = min(es.es_lblk - newes->es_lblk,
5113 newes->es_len);
5114 return 0;
5115 }
5116
5117 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
5118 }
5119
5120 block = newes->es_lblk + newes->es_len;
5121 ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
5122 if (es.es_len == 0)
5123 next_del = EXT_MAX_BLOCKS;
5124 else
5125 next_del = es.es_lblk;
5126
5127 return next_del;
5128 }
5129 /* fiemap flags we can handle specified here */
5130 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
5131
5132 static int ext4_xattr_fiemap(struct inode *inode,
5133 struct fiemap_extent_info *fieinfo)
5134 {
5135 __u64 physical = 0;
5136 __u64 length;
5137 __u32 flags = FIEMAP_EXTENT_LAST;
5138 int blockbits = inode->i_sb->s_blocksize_bits;
5139 int error = 0;
5140
5141 /* in-inode? */
5142 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
5143 struct ext4_iloc iloc;
5144 int offset; /* offset of xattr in inode */
5145
5146 error = ext4_get_inode_loc(inode, &iloc);
5147 if (error)
5148 return error;
5149 physical = (__u64)iloc.bh->b_blocknr << blockbits;
5150 offset = EXT4_GOOD_OLD_INODE_SIZE +
5151 EXT4_I(inode)->i_extra_isize;
5152 physical += offset;
5153 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
5154 flags |= FIEMAP_EXTENT_DATA_INLINE;
5155 brelse(iloc.bh);
5156 } else { /* external block */
5157 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
5158 length = inode->i_sb->s_blocksize;
5159 }
5160
5161 if (physical)
5162 error = fiemap_fill_next_extent(fieinfo, 0, physical,
5163 length, flags);
5164 return (error < 0 ? error : 0);
5165 }
5166
5167 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
5168 __u64 start, __u64 len)
5169 {
5170 ext4_lblk_t start_blk;
5171 int error = 0;
5172
5173 if (ext4_has_inline_data(inode)) {
5174 int has_inline = 1;
5175
5176 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
5177 start, len);
5178
5179 if (has_inline)
5180 return error;
5181 }
5182
5183 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
5184 error = ext4_ext_precache(inode);
5185 if (error)
5186 return error;
5187 }
5188
5189 /* fallback to generic here if not in extents fmt */
5190 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5191 return generic_block_fiemap(inode, fieinfo, start, len,
5192 ext4_get_block);
5193
5194 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
5195 return -EBADR;
5196
5197 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
5198 error = ext4_xattr_fiemap(inode, fieinfo);
5199 } else {
5200 ext4_lblk_t len_blks;
5201 __u64 last_blk;
5202
5203 start_blk = start >> inode->i_sb->s_blocksize_bits;
5204 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
5205 if (last_blk >= EXT_MAX_BLOCKS)
5206 last_blk = EXT_MAX_BLOCKS-1;
5207 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
5208
5209 /*
5210 * Walk the extent tree gathering extent information
5211 * and pushing extents back to the user.
5212 */
5213 error = ext4_fill_fiemap_extents(inode, start_blk,
5214 len_blks, fieinfo);
5215 }
5216 return error;
5217 }
5218
5219 /*
5220 * ext4_access_path:
5221 * Function to access the path buffer for marking it dirty.
5222 * It also checks if there are sufficient credits left in the journal handle
5223 * to update path.
5224 */
5225 static int
5226 ext4_access_path(handle_t *handle, struct inode *inode,
5227 struct ext4_ext_path *path)
5228 {
5229 int credits, err;
5230
5231 if (!ext4_handle_valid(handle))
5232 return 0;
5233
5234 /*
5235 * Check if need to extend journal credits
5236 * 3 for leaf, sb, and inode plus 2 (bmap and group
5237 * descriptor) for each block group; assume two block
5238 * groups
5239 */
5240 if (handle->h_buffer_credits < 7) {
5241 credits = ext4_writepage_trans_blocks(inode);
5242 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
5243 /* EAGAIN is success */
5244 if (err && err != -EAGAIN)
5245 return err;
5246 }
5247
5248 err = ext4_ext_get_access(handle, inode, path);
5249 return err;
5250 }
5251
5252 /*
5253 * ext4_ext_shift_path_extents:
5254 * Shift the extents of a path structure lying between path[depth].p_ext
5255 * and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
5256 * if it is right shift or left shift operation.
5257 */
5258 static int
5259 ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
5260 struct inode *inode, handle_t *handle,
5261 enum SHIFT_DIRECTION SHIFT)
5262 {
5263 int depth, err = 0;
5264 struct ext4_extent *ex_start, *ex_last;
5265 bool update = 0;
5266 depth = path->p_depth;
5267
5268 while (depth >= 0) {
5269 if (depth == path->p_depth) {
5270 ex_start = path[depth].p_ext;
5271 if (!ex_start)
5272 return -EFSCORRUPTED;
5273
5274 ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
5275
5276 err = ext4_access_path(handle, inode, path + depth);
5277 if (err)
5278 goto out;
5279
5280 if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
5281 update = 1;
5282
5283 while (ex_start <= ex_last) {
5284 if (SHIFT == SHIFT_LEFT) {
5285 le32_add_cpu(&ex_start->ee_block,
5286 -shift);
5287 /* Try to merge to the left. */
5288 if ((ex_start >
5289 EXT_FIRST_EXTENT(path[depth].p_hdr))
5290 &&
5291 ext4_ext_try_to_merge_right(inode,
5292 path, ex_start - 1))
5293 ex_last--;
5294 else
5295 ex_start++;
5296 } else {
5297 le32_add_cpu(&ex_last->ee_block, shift);
5298 ext4_ext_try_to_merge_right(inode, path,
5299 ex_last);
5300 ex_last--;
5301 }
5302 }
5303 err = ext4_ext_dirty(handle, inode, path + depth);
5304 if (err)
5305 goto out;
5306
5307 if (--depth < 0 || !update)
5308 break;
5309 }
5310
5311 /* Update index too */
5312 err = ext4_access_path(handle, inode, path + depth);
5313 if (err)
5314 goto out;
5315
5316 if (SHIFT == SHIFT_LEFT)
5317 le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
5318 else
5319 le32_add_cpu(&path[depth].p_idx->ei_block, shift);
5320 err = ext4_ext_dirty(handle, inode, path + depth);
5321 if (err)
5322 goto out;
5323
5324 /* we are done if current index is not a starting index */
5325 if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
5326 break;
5327
5328 depth--;
5329 }
5330
5331 out:
5332 return err;
5333 }
5334
5335 /*
5336 * ext4_ext_shift_extents:
5337 * All the extents which lies in the range from @start to the last allocated
5338 * block for the @inode are shifted either towards left or right (depending
5339 * upon @SHIFT) by @shift blocks.
5340 * On success, 0 is returned, error otherwise.
5341 */
5342 static int
5343 ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
5344 ext4_lblk_t start, ext4_lblk_t shift,
5345 enum SHIFT_DIRECTION SHIFT)
5346 {
5347 struct ext4_ext_path *path;
5348 int ret = 0, depth;
5349 struct ext4_extent *extent;
5350 ext4_lblk_t stop, *iterator, ex_start, ex_end;
5351
5352 /* Let path point to the last extent */
5353 path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
5354 if (IS_ERR(path))
5355 return PTR_ERR(path);
5356
5357 depth = path->p_depth;
5358 extent = path[depth].p_ext;
5359 if (!extent)
5360 goto out;
5361
5362 stop = le32_to_cpu(extent->ee_block) +
5363 ext4_ext_get_actual_len(extent);
5364
5365 /*
5366 * In case of left shift, Don't start shifting extents until we make
5367 * sure the hole is big enough to accommodate the shift.
5368 */
5369 if (SHIFT == SHIFT_LEFT) {
5370 path = ext4_find_extent(inode, start - 1, &path, 0);
5371 if (IS_ERR(path))
5372 return PTR_ERR(path);
5373 depth = path->p_depth;
5374 extent = path[depth].p_ext;
5375 if (extent) {
5376 ex_start = le32_to_cpu(extent->ee_block);
5377 ex_end = le32_to_cpu(extent->ee_block) +
5378 ext4_ext_get_actual_len(extent);
5379 } else {
5380 ex_start = 0;
5381 ex_end = 0;
5382 }
5383
5384 if ((start == ex_start && shift > ex_start) ||
5385 (shift > start - ex_end)) {
5386 ext4_ext_drop_refs(path);
5387 kfree(path);
5388 return -EINVAL;
5389 }
5390 }
5391
5392 /*
5393 * In case of left shift, iterator points to start and it is increased
5394 * till we reach stop. In case of right shift, iterator points to stop
5395 * and it is decreased till we reach start.
5396 */
5397 if (SHIFT == SHIFT_LEFT)
5398 iterator = &start;
5399 else
5400 iterator = &stop;
5401
5402 /* Its safe to start updating extents */
5403 while (start < stop) {
5404 path = ext4_find_extent(inode, *iterator, &path, 0);
5405 if (IS_ERR(path))
5406 return PTR_ERR(path);
5407 depth = path->p_depth;
5408 extent = path[depth].p_ext;
5409 if (!extent) {
5410 EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
5411 (unsigned long) *iterator);
5412 return -EFSCORRUPTED;
5413 }
5414 if (SHIFT == SHIFT_LEFT && *iterator >
5415 le32_to_cpu(extent->ee_block)) {
5416 /* Hole, move to the next extent */
5417 if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
5418 path[depth].p_ext++;
5419 } else {
5420 *iterator = ext4_ext_next_allocated_block(path);
5421 continue;
5422 }
5423 }
5424
5425 if (SHIFT == SHIFT_LEFT) {
5426 extent = EXT_LAST_EXTENT(path[depth].p_hdr);
5427 *iterator = le32_to_cpu(extent->ee_block) +
5428 ext4_ext_get_actual_len(extent);
5429 } else {
5430 extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
5431 *iterator = le32_to_cpu(extent->ee_block) > 0 ?
5432 le32_to_cpu(extent->ee_block) - 1 : 0;
5433 /* Update path extent in case we need to stop */
5434 while (le32_to_cpu(extent->ee_block) < start)
5435 extent++;
5436 path[depth].p_ext = extent;
5437 }
5438 ret = ext4_ext_shift_path_extents(path, shift, inode,
5439 handle, SHIFT);
5440 if (ret)
5441 break;
5442 }
5443 out:
5444 ext4_ext_drop_refs(path);
5445 kfree(path);
5446 return ret;
5447 }
5448
5449 /*
5450 * ext4_collapse_range:
5451 * This implements the fallocate's collapse range functionality for ext4
5452 * Returns: 0 and non-zero on error.
5453 */
5454 int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
5455 {
5456 struct super_block *sb = inode->i_sb;
5457 ext4_lblk_t punch_start, punch_stop;
5458 handle_t *handle;
5459 unsigned int credits;
5460 loff_t new_size, ioffset;
5461 int ret;
5462
5463 /*
5464 * We need to test this early because xfstests assumes that a
5465 * collapse range of (0, 1) will return EOPNOTSUPP if the file
5466 * system does not support collapse range.
5467 */
5468 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5469 return -EOPNOTSUPP;
5470
5471 /* Collapse range works only on fs block size aligned offsets. */
5472 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5473 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5474 return -EINVAL;
5475
5476 if (!S_ISREG(inode->i_mode))
5477 return -EINVAL;
5478
5479 trace_ext4_collapse_range(inode, offset, len);
5480
5481 punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5482 punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
5483
5484 /* Call ext4_force_commit to flush all data in case of data=journal. */
5485 if (ext4_should_journal_data(inode)) {
5486 ret = ext4_force_commit(inode->i_sb);
5487 if (ret)
5488 return ret;
5489 }
5490
5491 inode_lock(inode);
5492 /*
5493 * There is no need to overlap collapse range with EOF, in which case
5494 * it is effectively a truncate operation
5495 */
5496 if (offset + len >= i_size_read(inode)) {
5497 ret = -EINVAL;
5498 goto out_mutex;
5499 }
5500
5501 /* Currently just for extent based files */
5502 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5503 ret = -EOPNOTSUPP;
5504 goto out_mutex;
5505 }
5506
5507 /* Wait for existing dio to complete */
5508 ext4_inode_block_unlocked_dio(inode);
5509 inode_dio_wait(inode);
5510
5511 /*
5512 * Prevent page faults from reinstantiating pages we have released from
5513 * page cache.
5514 */
5515 down_write(&EXT4_I(inode)->i_mmap_sem);
5516 /*
5517 * Need to round down offset to be aligned with page size boundary
5518 * for page size > block size.
5519 */
5520 ioffset = round_down(offset, PAGE_SIZE);
5521 /*
5522 * Write tail of the last page before removed range since it will get
5523 * removed from the page cache below.
5524 */
5525 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset, offset);
5526 if (ret)
5527 goto out_mmap;
5528 /*
5529 * Write data that will be shifted to preserve them when discarding
5530 * page cache below. We are also protected from pages becoming dirty
5531 * by i_mmap_sem.
5532 */
5533 ret = filemap_write_and_wait_range(inode->i_mapping, offset + len,
5534 LLONG_MAX);
5535 if (ret)
5536 goto out_mmap;
5537 truncate_pagecache(inode, ioffset);
5538
5539 credits = ext4_writepage_trans_blocks(inode);
5540 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5541 if (IS_ERR(handle)) {
5542 ret = PTR_ERR(handle);
5543 goto out_mmap;
5544 }
5545
5546 down_write(&EXT4_I(inode)->i_data_sem);
5547 ext4_discard_preallocations(inode);
5548
5549 ret = ext4_es_remove_extent(inode, punch_start,
5550 EXT_MAX_BLOCKS - punch_start);
5551 if (ret) {
5552 up_write(&EXT4_I(inode)->i_data_sem);
5553 goto out_stop;
5554 }
5555
5556 ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
5557 if (ret) {
5558 up_write(&EXT4_I(inode)->i_data_sem);
5559 goto out_stop;
5560 }
5561 ext4_discard_preallocations(inode);
5562
5563 ret = ext4_ext_shift_extents(inode, handle, punch_stop,
5564 punch_stop - punch_start, SHIFT_LEFT);
5565 if (ret) {
5566 up_write(&EXT4_I(inode)->i_data_sem);
5567 goto out_stop;
5568 }
5569
5570 new_size = i_size_read(inode) - len;
5571 i_size_write(inode, new_size);
5572 EXT4_I(inode)->i_disksize = new_size;
5573
5574 up_write(&EXT4_I(inode)->i_data_sem);
5575 if (IS_SYNC(inode))
5576 ext4_handle_sync(handle);
5577 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5578 ext4_mark_inode_dirty(handle, inode);
5579
5580 out_stop:
5581 ext4_journal_stop(handle);
5582 out_mmap:
5583 up_write(&EXT4_I(inode)->i_mmap_sem);
5584 ext4_inode_resume_unlocked_dio(inode);
5585 out_mutex:
5586 inode_unlock(inode);
5587 return ret;
5588 }
5589
5590 /*
5591 * ext4_insert_range:
5592 * This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
5593 * The data blocks starting from @offset to the EOF are shifted by @len
5594 * towards right to create a hole in the @inode. Inode size is increased
5595 * by len bytes.
5596 * Returns 0 on success, error otherwise.
5597 */
5598 int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
5599 {
5600 struct super_block *sb = inode->i_sb;
5601 handle_t *handle;
5602 struct ext4_ext_path *path;
5603 struct ext4_extent *extent;
5604 ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
5605 unsigned int credits, ee_len;
5606 int ret = 0, depth, split_flag = 0;
5607 loff_t ioffset;
5608
5609 /*
5610 * We need to test this early because xfstests assumes that an
5611 * insert range of (0, 1) will return EOPNOTSUPP if the file
5612 * system does not support insert range.
5613 */
5614 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5615 return -EOPNOTSUPP;
5616
5617 /* Insert range works only on fs block size aligned offsets. */
5618 if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
5619 len & (EXT4_CLUSTER_SIZE(sb) - 1))
5620 return -EINVAL;
5621
5622 if (!S_ISREG(inode->i_mode))
5623 return -EOPNOTSUPP;
5624
5625 trace_ext4_insert_range(inode, offset, len);
5626
5627 offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
5628 len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
5629
5630 /* Call ext4_force_commit to flush all data in case of data=journal */
5631 if (ext4_should_journal_data(inode)) {
5632 ret = ext4_force_commit(inode->i_sb);
5633 if (ret)
5634 return ret;
5635 }
5636
5637 inode_lock(inode);
5638 /* Currently just for extent based files */
5639 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5640 ret = -EOPNOTSUPP;
5641 goto out_mutex;
5642 }
5643
5644 /* Check for wrap through zero */
5645 if (inode->i_size + len > inode->i_sb->s_maxbytes) {
5646 ret = -EFBIG;
5647 goto out_mutex;
5648 }
5649
5650 /* Offset should be less than i_size */
5651 if (offset >= i_size_read(inode)) {
5652 ret = -EINVAL;
5653 goto out_mutex;
5654 }
5655
5656 /* Wait for existing dio to complete */
5657 ext4_inode_block_unlocked_dio(inode);
5658 inode_dio_wait(inode);
5659
5660 /*
5661 * Prevent page faults from reinstantiating pages we have released from
5662 * page cache.
5663 */
5664 down_write(&EXT4_I(inode)->i_mmap_sem);
5665 /*
5666 * Need to round down to align start offset to page size boundary
5667 * for page size > block size.
5668 */
5669 ioffset = round_down(offset, PAGE_SIZE);
5670 /* Write out all dirty pages */
5671 ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
5672 LLONG_MAX);
5673 if (ret)
5674 goto out_mmap;
5675 truncate_pagecache(inode, ioffset);
5676
5677 credits = ext4_writepage_trans_blocks(inode);
5678 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
5679 if (IS_ERR(handle)) {
5680 ret = PTR_ERR(handle);
5681 goto out_mmap;
5682 }
5683
5684 /* Expand file to avoid data loss if there is error while shifting */
5685 inode->i_size += len;
5686 EXT4_I(inode)->i_disksize += len;
5687 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
5688 ret = ext4_mark_inode_dirty(handle, inode);
5689 if (ret)
5690 goto out_stop;
5691
5692 down_write(&EXT4_I(inode)->i_data_sem);
5693 ext4_discard_preallocations(inode);
5694
5695 path = ext4_find_extent(inode, offset_lblk, NULL, 0);
5696 if (IS_ERR(path)) {
5697 up_write(&EXT4_I(inode)->i_data_sem);
5698 goto out_stop;
5699 }
5700
5701 depth = ext_depth(inode);
5702 extent = path[depth].p_ext;
5703 if (extent) {
5704 ee_start_lblk = le32_to_cpu(extent->ee_block);
5705 ee_len = ext4_ext_get_actual_len(extent);
5706
5707 /*
5708 * If offset_lblk is not the starting block of extent, split
5709 * the extent @offset_lblk
5710 */
5711 if ((offset_lblk > ee_start_lblk) &&
5712 (offset_lblk < (ee_start_lblk + ee_len))) {
5713 if (ext4_ext_is_unwritten(extent))
5714 split_flag = EXT4_EXT_MARK_UNWRIT1 |
5715 EXT4_EXT_MARK_UNWRIT2;
5716 ret = ext4_split_extent_at(handle, inode, &path,
5717 offset_lblk, split_flag,
5718 EXT4_EX_NOCACHE |
5719 EXT4_GET_BLOCKS_PRE_IO |
5720 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5721 }
5722
5723 ext4_ext_drop_refs(path);
5724 kfree(path);
5725 if (ret < 0) {
5726 up_write(&EXT4_I(inode)->i_data_sem);
5727 goto out_stop;
5728 }
5729 }
5730
5731 ret = ext4_es_remove_extent(inode, offset_lblk,
5732 EXT_MAX_BLOCKS - offset_lblk);
5733 if (ret) {
5734 up_write(&EXT4_I(inode)->i_data_sem);
5735 goto out_stop;
5736 }
5737
5738 /*
5739 * if offset_lblk lies in a hole which is at start of file, use
5740 * ee_start_lblk to shift extents
5741 */
5742 ret = ext4_ext_shift_extents(inode, handle,
5743 ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
5744 len_lblk, SHIFT_RIGHT);
5745
5746 up_write(&EXT4_I(inode)->i_data_sem);
5747 if (IS_SYNC(inode))
5748 ext4_handle_sync(handle);
5749
5750 out_stop:
5751 ext4_journal_stop(handle);
5752 out_mmap:
5753 up_write(&EXT4_I(inode)->i_mmap_sem);
5754 ext4_inode_resume_unlocked_dio(inode);
5755 out_mutex:
5756 inode_unlock(inode);
5757 return ret;
5758 }
5759
5760 /**
5761 * ext4_swap_extents - Swap extents between two inodes
5762 *
5763 * @inode1: First inode
5764 * @inode2: Second inode
5765 * @lblk1: Start block for first inode
5766 * @lblk2: Start block for second inode
5767 * @count: Number of blocks to swap
5768 * @mark_unwritten: Mark second inode's extents as unwritten after swap
5769 * @erp: Pointer to save error value
5770 *
5771 * This helper routine does exactly what is promise "swap extents". All other
5772 * stuff such as page-cache locking consistency, bh mapping consistency or
5773 * extent's data copying must be performed by caller.
5774 * Locking:
5775 * i_mutex is held for both inodes
5776 * i_data_sem is locked for write for both inodes
5777 * Assumptions:
5778 * All pages from requested range are locked for both inodes
5779 */
5780 int
5781 ext4_swap_extents(handle_t *handle, struct inode *inode1,
5782 struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
5783 ext4_lblk_t count, int unwritten, int *erp)
5784 {
5785 struct ext4_ext_path *path1 = NULL;
5786 struct ext4_ext_path *path2 = NULL;
5787 int replaced_count = 0;
5788
5789 BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
5790 BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
5791 BUG_ON(!inode_is_locked(inode1));
5792 BUG_ON(!inode_is_locked(inode2));
5793
5794 *erp = ext4_es_remove_extent(inode1, lblk1, count);
5795 if (unlikely(*erp))
5796 return 0;
5797 *erp = ext4_es_remove_extent(inode2, lblk2, count);
5798 if (unlikely(*erp))
5799 return 0;
5800
5801 while (count) {
5802 struct ext4_extent *ex1, *ex2, tmp_ex;
5803 ext4_lblk_t e1_blk, e2_blk;
5804 int e1_len, e2_len, len;
5805 int split = 0;
5806
5807 path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
5808 if (IS_ERR(path1)) {
5809 *erp = PTR_ERR(path1);
5810 path1 = NULL;
5811 finish:
5812 count = 0;
5813 goto repeat;
5814 }
5815 path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
5816 if (IS_ERR(path2)) {
5817 *erp = PTR_ERR(path2);
5818 path2 = NULL;
5819 goto finish;
5820 }
5821 ex1 = path1[path1->p_depth].p_ext;
5822 ex2 = path2[path2->p_depth].p_ext;
5823 /* Do we have somthing to swap ? */
5824 if (unlikely(!ex2 || !ex1))
5825 goto finish;
5826
5827 e1_blk = le32_to_cpu(ex1->ee_block);
5828 e2_blk = le32_to_cpu(ex2->ee_block);
5829 e1_len = ext4_ext_get_actual_len(ex1);
5830 e2_len = ext4_ext_get_actual_len(ex2);
5831
5832 /* Hole handling */
5833 if (!in_range(lblk1, e1_blk, e1_len) ||
5834 !in_range(lblk2, e2_blk, e2_len)) {
5835 ext4_lblk_t next1, next2;
5836
5837 /* if hole after extent, then go to next extent */
5838 next1 = ext4_ext_next_allocated_block(path1);
5839 next2 = ext4_ext_next_allocated_block(path2);
5840 /* If hole before extent, then shift to that extent */
5841 if (e1_blk > lblk1)
5842 next1 = e1_blk;
5843 if (e2_blk > lblk2)
5844 next2 = e1_blk;
5845 /* Do we have something to swap */
5846 if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
5847 goto finish;
5848 /* Move to the rightest boundary */
5849 len = next1 - lblk1;
5850 if (len < next2 - lblk2)
5851 len = next2 - lblk2;
5852 if (len > count)
5853 len = count;
5854 lblk1 += len;
5855 lblk2 += len;
5856 count -= len;
5857 goto repeat;
5858 }
5859
5860 /* Prepare left boundary */
5861 if (e1_blk < lblk1) {
5862 split = 1;
5863 *erp = ext4_force_split_extent_at(handle, inode1,
5864 &path1, lblk1, 0);
5865 if (unlikely(*erp))
5866 goto finish;
5867 }
5868 if (e2_blk < lblk2) {
5869 split = 1;
5870 *erp = ext4_force_split_extent_at(handle, inode2,
5871 &path2, lblk2, 0);
5872 if (unlikely(*erp))
5873 goto finish;
5874 }
5875 /* ext4_split_extent_at() may result in leaf extent split,
5876 * path must to be revalidated. */
5877 if (split)
5878 goto repeat;
5879
5880 /* Prepare right boundary */
5881 len = count;
5882 if (len > e1_blk + e1_len - lblk1)
5883 len = e1_blk + e1_len - lblk1;
5884 if (len > e2_blk + e2_len - lblk2)
5885 len = e2_blk + e2_len - lblk2;
5886
5887 if (len != e1_len) {
5888 split = 1;
5889 *erp = ext4_force_split_extent_at(handle, inode1,
5890 &path1, lblk1 + len, 0);
5891 if (unlikely(*erp))
5892 goto finish;
5893 }
5894 if (len != e2_len) {
5895 split = 1;
5896 *erp = ext4_force_split_extent_at(handle, inode2,
5897 &path2, lblk2 + len, 0);
5898 if (*erp)
5899 goto finish;
5900 }
5901 /* ext4_split_extent_at() may result in leaf extent split,
5902 * path must to be revalidated. */
5903 if (split)
5904 goto repeat;
5905
5906 BUG_ON(e2_len != e1_len);
5907 *erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
5908 if (unlikely(*erp))
5909 goto finish;
5910 *erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
5911 if (unlikely(*erp))
5912 goto finish;
5913
5914 /* Both extents are fully inside boundaries. Swap it now */
5915 tmp_ex = *ex1;
5916 ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
5917 ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
5918 ex1->ee_len = cpu_to_le16(e2_len);
5919 ex2->ee_len = cpu_to_le16(e1_len);
5920 if (unwritten)
5921 ext4_ext_mark_unwritten(ex2);
5922 if (ext4_ext_is_unwritten(&tmp_ex))
5923 ext4_ext_mark_unwritten(ex1);
5924
5925 ext4_ext_try_to_merge(handle, inode2, path2, ex2);
5926 ext4_ext_try_to_merge(handle, inode1, path1, ex1);
5927 *erp = ext4_ext_dirty(handle, inode2, path2 +
5928 path2->p_depth);
5929 if (unlikely(*erp))
5930 goto finish;
5931 *erp = ext4_ext_dirty(handle, inode1, path1 +
5932 path1->p_depth);
5933 /*
5934 * Looks scarry ah..? second inode already points to new blocks,
5935 * and it was successfully dirtied. But luckily error may happen
5936 * only due to journal error, so full transaction will be
5937 * aborted anyway.
5938 */
5939 if (unlikely(*erp))
5940 goto finish;
5941 lblk1 += len;
5942 lblk2 += len;
5943 replaced_count += len;
5944 count -= len;
5945
5946 repeat:
5947 ext4_ext_drop_refs(path1);
5948 kfree(path1);
5949 ext4_ext_drop_refs(path2);
5950 kfree(path2);
5951 path1 = path2 = NULL;
5952 }
5953 return replaced_count;
5954 }