]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/extents.c
ext4: remove unneeded parameter to ext4_ext_remove_space()
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/jbd2.h>
36 #include <linux/highuid.h>
37 #include <linux/pagemap.h>
38 #include <linux/quotaops.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <linux/falloc.h>
42 #include <asm/uaccess.h>
43 #include <linux/fiemap.h>
44 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 static int ext4_split_extent(handle_t *handle,
50 struct inode *inode,
51 struct ext4_ext_path *path,
52 struct ext4_map_blocks *map,
53 int split_flag,
54 int flags);
55
56 static int ext4_ext_truncate_extend_restart(handle_t *handle,
57 struct inode *inode,
58 int needed)
59 {
60 int err;
61
62 if (!ext4_handle_valid(handle))
63 return 0;
64 if (handle->h_buffer_credits > needed)
65 return 0;
66 err = ext4_journal_extend(handle, needed);
67 if (err <= 0)
68 return err;
69 err = ext4_truncate_restart_trans(handle, inode, needed);
70 if (err == 0)
71 err = -EAGAIN;
72
73 return err;
74 }
75
76 /*
77 * could return:
78 * - EROFS
79 * - ENOMEM
80 */
81 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
82 struct ext4_ext_path *path)
83 {
84 if (path->p_bh) {
85 /* path points to block */
86 return ext4_journal_get_write_access(handle, path->p_bh);
87 }
88 /* path points to leaf/index in inode body */
89 /* we use in-core data, no need to protect them */
90 return 0;
91 }
92
93 /*
94 * could return:
95 * - EROFS
96 * - ENOMEM
97 * - EIO
98 */
99 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
100 struct ext4_ext_path *path)
101 {
102 int err;
103 if (path->p_bh) {
104 /* path points to block */
105 err = ext4_handle_dirty_metadata(handle, inode, path->p_bh);
106 } else {
107 /* path points to leaf/index in inode body */
108 err = ext4_mark_inode_dirty(handle, inode);
109 }
110 return err;
111 }
112
113 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
114 struct ext4_ext_path *path,
115 ext4_lblk_t block)
116 {
117 int depth;
118
119 if (path) {
120 struct ext4_extent *ex;
121 depth = path->p_depth;
122
123 /*
124 * Try to predict block placement assuming that we are
125 * filling in a file which will eventually be
126 * non-sparse --- i.e., in the case of libbfd writing
127 * an ELF object sections out-of-order but in a way
128 * the eventually results in a contiguous object or
129 * executable file, or some database extending a table
130 * space file. However, this is actually somewhat
131 * non-ideal if we are writing a sparse file such as
132 * qemu or KVM writing a raw image file that is going
133 * to stay fairly sparse, since it will end up
134 * fragmenting the file system's free space. Maybe we
135 * should have some hueristics or some way to allow
136 * userspace to pass a hint to file system,
137 * especially if the latter case turns out to be
138 * common.
139 */
140 ex = path[depth].p_ext;
141 if (ex) {
142 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
143 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
144
145 if (block > ext_block)
146 return ext_pblk + (block - ext_block);
147 else
148 return ext_pblk - (ext_block - block);
149 }
150
151 /* it looks like index is empty;
152 * try to find starting block from index itself */
153 if (path[depth].p_bh)
154 return path[depth].p_bh->b_blocknr;
155 }
156
157 /* OK. use inode's group */
158 return ext4_inode_to_goal_block(inode);
159 }
160
161 /*
162 * Allocation for a meta data block
163 */
164 static ext4_fsblk_t
165 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
166 struct ext4_ext_path *path,
167 struct ext4_extent *ex, int *err, unsigned int flags)
168 {
169 ext4_fsblk_t goal, newblock;
170
171 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
172 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
173 NULL, err);
174 return newblock;
175 }
176
177 static inline int ext4_ext_space_block(struct inode *inode, int check)
178 {
179 int size;
180
181 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
182 / sizeof(struct ext4_extent);
183 if (!check) {
184 #ifdef AGGRESSIVE_TEST
185 if (size > 6)
186 size = 6;
187 #endif
188 }
189 return size;
190 }
191
192 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
193 {
194 int size;
195
196 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
197 / sizeof(struct ext4_extent_idx);
198 if (!check) {
199 #ifdef AGGRESSIVE_TEST
200 if (size > 5)
201 size = 5;
202 #endif
203 }
204 return size;
205 }
206
207 static inline int ext4_ext_space_root(struct inode *inode, int check)
208 {
209 int size;
210
211 size = sizeof(EXT4_I(inode)->i_data);
212 size -= sizeof(struct ext4_extent_header);
213 size /= sizeof(struct ext4_extent);
214 if (!check) {
215 #ifdef AGGRESSIVE_TEST
216 if (size > 3)
217 size = 3;
218 #endif
219 }
220 return size;
221 }
222
223 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
224 {
225 int size;
226
227 size = sizeof(EXT4_I(inode)->i_data);
228 size -= sizeof(struct ext4_extent_header);
229 size /= sizeof(struct ext4_extent_idx);
230 if (!check) {
231 #ifdef AGGRESSIVE_TEST
232 if (size > 4)
233 size = 4;
234 #endif
235 }
236 return size;
237 }
238
239 /*
240 * Calculate the number of metadata blocks needed
241 * to allocate @blocks
242 * Worse case is one block per extent
243 */
244 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
245 {
246 struct ext4_inode_info *ei = EXT4_I(inode);
247 int idxs, num = 0;
248
249 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
250 / sizeof(struct ext4_extent_idx));
251
252 /*
253 * If the new delayed allocation block is contiguous with the
254 * previous da block, it can share index blocks with the
255 * previous block, so we only need to allocate a new index
256 * block every idxs leaf blocks. At ldxs**2 blocks, we need
257 * an additional index block, and at ldxs**3 blocks, yet
258 * another index blocks.
259 */
260 if (ei->i_da_metadata_calc_len &&
261 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
262 if ((ei->i_da_metadata_calc_len % idxs) == 0)
263 num++;
264 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
265 num++;
266 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
267 num++;
268 ei->i_da_metadata_calc_len = 0;
269 } else
270 ei->i_da_metadata_calc_len++;
271 ei->i_da_metadata_calc_last_lblock++;
272 return num;
273 }
274
275 /*
276 * In the worst case we need a new set of index blocks at
277 * every level of the inode's extent tree.
278 */
279 ei->i_da_metadata_calc_len = 1;
280 ei->i_da_metadata_calc_last_lblock = lblock;
281 return ext_depth(inode) + 1;
282 }
283
284 static int
285 ext4_ext_max_entries(struct inode *inode, int depth)
286 {
287 int max;
288
289 if (depth == ext_depth(inode)) {
290 if (depth == 0)
291 max = ext4_ext_space_root(inode, 1);
292 else
293 max = ext4_ext_space_root_idx(inode, 1);
294 } else {
295 if (depth == 0)
296 max = ext4_ext_space_block(inode, 1);
297 else
298 max = ext4_ext_space_block_idx(inode, 1);
299 }
300
301 return max;
302 }
303
304 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
305 {
306 ext4_fsblk_t block = ext4_ext_pblock(ext);
307 int len = ext4_ext_get_actual_len(ext);
308
309 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
310 }
311
312 static int ext4_valid_extent_idx(struct inode *inode,
313 struct ext4_extent_idx *ext_idx)
314 {
315 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
316
317 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
318 }
319
320 static int ext4_valid_extent_entries(struct inode *inode,
321 struct ext4_extent_header *eh,
322 int depth)
323 {
324 struct ext4_extent *ext;
325 struct ext4_extent_idx *ext_idx;
326 unsigned short entries;
327 if (eh->eh_entries == 0)
328 return 1;
329
330 entries = le16_to_cpu(eh->eh_entries);
331
332 if (depth == 0) {
333 /* leaf entries */
334 ext = EXT_FIRST_EXTENT(eh);
335 while (entries) {
336 if (!ext4_valid_extent(inode, ext))
337 return 0;
338 ext++;
339 entries--;
340 }
341 } else {
342 ext_idx = EXT_FIRST_INDEX(eh);
343 while (entries) {
344 if (!ext4_valid_extent_idx(inode, ext_idx))
345 return 0;
346 ext_idx++;
347 entries--;
348 }
349 }
350 return 1;
351 }
352
353 static int __ext4_ext_check(const char *function, unsigned int line,
354 struct inode *inode, struct ext4_extent_header *eh,
355 int depth)
356 {
357 const char *error_msg;
358 int max = 0;
359
360 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
361 error_msg = "invalid magic";
362 goto corrupted;
363 }
364 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
365 error_msg = "unexpected eh_depth";
366 goto corrupted;
367 }
368 if (unlikely(eh->eh_max == 0)) {
369 error_msg = "invalid eh_max";
370 goto corrupted;
371 }
372 max = ext4_ext_max_entries(inode, depth);
373 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
374 error_msg = "too large eh_max";
375 goto corrupted;
376 }
377 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
378 error_msg = "invalid eh_entries";
379 goto corrupted;
380 }
381 if (!ext4_valid_extent_entries(inode, eh, depth)) {
382 error_msg = "invalid extent entries";
383 goto corrupted;
384 }
385 return 0;
386
387 corrupted:
388 ext4_error_inode(inode, function, line, 0,
389 "bad header/extent: %s - magic %x, "
390 "entries %u, max %u(%u), depth %u(%u)",
391 error_msg, le16_to_cpu(eh->eh_magic),
392 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
393 max, le16_to_cpu(eh->eh_depth), depth);
394
395 return -EIO;
396 }
397
398 #define ext4_ext_check(inode, eh, depth) \
399 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
400
401 int ext4_ext_check_inode(struct inode *inode)
402 {
403 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
404 }
405
406 #ifdef EXT_DEBUG
407 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
408 {
409 int k, l = path->p_depth;
410
411 ext_debug("path:");
412 for (k = 0; k <= l; k++, path++) {
413 if (path->p_idx) {
414 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
415 ext4_idx_pblock(path->p_idx));
416 } else if (path->p_ext) {
417 ext_debug(" %d:[%d]%d:%llu ",
418 le32_to_cpu(path->p_ext->ee_block),
419 ext4_ext_is_uninitialized(path->p_ext),
420 ext4_ext_get_actual_len(path->p_ext),
421 ext4_ext_pblock(path->p_ext));
422 } else
423 ext_debug(" []");
424 }
425 ext_debug("\n");
426 }
427
428 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
429 {
430 int depth = ext_depth(inode);
431 struct ext4_extent_header *eh;
432 struct ext4_extent *ex;
433 int i;
434
435 if (!path)
436 return;
437
438 eh = path[depth].p_hdr;
439 ex = EXT_FIRST_EXTENT(eh);
440
441 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
442
443 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
444 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
445 ext4_ext_is_uninitialized(ex),
446 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
447 }
448 ext_debug("\n");
449 }
450
451 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
452 ext4_fsblk_t newblock, int level)
453 {
454 int depth = ext_depth(inode);
455 struct ext4_extent *ex;
456
457 if (depth != level) {
458 struct ext4_extent_idx *idx;
459 idx = path[level].p_idx;
460 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
461 ext_debug("%d: move %d:%llu in new index %llu\n", level,
462 le32_to_cpu(idx->ei_block),
463 ext4_idx_pblock(idx),
464 newblock);
465 idx++;
466 }
467
468 return;
469 }
470
471 ex = path[depth].p_ext;
472 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
473 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
474 le32_to_cpu(ex->ee_block),
475 ext4_ext_pblock(ex),
476 ext4_ext_is_uninitialized(ex),
477 ext4_ext_get_actual_len(ex),
478 newblock);
479 ex++;
480 }
481 }
482
483 #else
484 #define ext4_ext_show_path(inode, path)
485 #define ext4_ext_show_leaf(inode, path)
486 #define ext4_ext_show_move(inode, path, newblock, level)
487 #endif
488
489 void ext4_ext_drop_refs(struct ext4_ext_path *path)
490 {
491 int depth = path->p_depth;
492 int i;
493
494 for (i = 0; i <= depth; i++, path++)
495 if (path->p_bh) {
496 brelse(path->p_bh);
497 path->p_bh = NULL;
498 }
499 }
500
501 /*
502 * ext4_ext_binsearch_idx:
503 * binary search for the closest index of the given block
504 * the header must be checked before calling this
505 */
506 static void
507 ext4_ext_binsearch_idx(struct inode *inode,
508 struct ext4_ext_path *path, ext4_lblk_t block)
509 {
510 struct ext4_extent_header *eh = path->p_hdr;
511 struct ext4_extent_idx *r, *l, *m;
512
513
514 ext_debug("binsearch for %u(idx): ", block);
515
516 l = EXT_FIRST_INDEX(eh) + 1;
517 r = EXT_LAST_INDEX(eh);
518 while (l <= r) {
519 m = l + (r - l) / 2;
520 if (block < le32_to_cpu(m->ei_block))
521 r = m - 1;
522 else
523 l = m + 1;
524 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
525 m, le32_to_cpu(m->ei_block),
526 r, le32_to_cpu(r->ei_block));
527 }
528
529 path->p_idx = l - 1;
530 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
531 ext4_idx_pblock(path->p_idx));
532
533 #ifdef CHECK_BINSEARCH
534 {
535 struct ext4_extent_idx *chix, *ix;
536 int k;
537
538 chix = ix = EXT_FIRST_INDEX(eh);
539 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
540 if (k != 0 &&
541 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
542 printk(KERN_DEBUG "k=%d, ix=0x%p, "
543 "first=0x%p\n", k,
544 ix, EXT_FIRST_INDEX(eh));
545 printk(KERN_DEBUG "%u <= %u\n",
546 le32_to_cpu(ix->ei_block),
547 le32_to_cpu(ix[-1].ei_block));
548 }
549 BUG_ON(k && le32_to_cpu(ix->ei_block)
550 <= le32_to_cpu(ix[-1].ei_block));
551 if (block < le32_to_cpu(ix->ei_block))
552 break;
553 chix = ix;
554 }
555 BUG_ON(chix != path->p_idx);
556 }
557 #endif
558
559 }
560
561 /*
562 * ext4_ext_binsearch:
563 * binary search for closest extent of the given block
564 * the header must be checked before calling this
565 */
566 static void
567 ext4_ext_binsearch(struct inode *inode,
568 struct ext4_ext_path *path, ext4_lblk_t block)
569 {
570 struct ext4_extent_header *eh = path->p_hdr;
571 struct ext4_extent *r, *l, *m;
572
573 if (eh->eh_entries == 0) {
574 /*
575 * this leaf is empty:
576 * we get such a leaf in split/add case
577 */
578 return;
579 }
580
581 ext_debug("binsearch for %u: ", block);
582
583 l = EXT_FIRST_EXTENT(eh) + 1;
584 r = EXT_LAST_EXTENT(eh);
585
586 while (l <= r) {
587 m = l + (r - l) / 2;
588 if (block < le32_to_cpu(m->ee_block))
589 r = m - 1;
590 else
591 l = m + 1;
592 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
593 m, le32_to_cpu(m->ee_block),
594 r, le32_to_cpu(r->ee_block));
595 }
596
597 path->p_ext = l - 1;
598 ext_debug(" -> %d:%llu:[%d]%d ",
599 le32_to_cpu(path->p_ext->ee_block),
600 ext4_ext_pblock(path->p_ext),
601 ext4_ext_is_uninitialized(path->p_ext),
602 ext4_ext_get_actual_len(path->p_ext));
603
604 #ifdef CHECK_BINSEARCH
605 {
606 struct ext4_extent *chex, *ex;
607 int k;
608
609 chex = ex = EXT_FIRST_EXTENT(eh);
610 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
611 BUG_ON(k && le32_to_cpu(ex->ee_block)
612 <= le32_to_cpu(ex[-1].ee_block));
613 if (block < le32_to_cpu(ex->ee_block))
614 break;
615 chex = ex;
616 }
617 BUG_ON(chex != path->p_ext);
618 }
619 #endif
620
621 }
622
623 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
624 {
625 struct ext4_extent_header *eh;
626
627 eh = ext_inode_hdr(inode);
628 eh->eh_depth = 0;
629 eh->eh_entries = 0;
630 eh->eh_magic = EXT4_EXT_MAGIC;
631 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
632 ext4_mark_inode_dirty(handle, inode);
633 ext4_ext_invalidate_cache(inode);
634 return 0;
635 }
636
637 struct ext4_ext_path *
638 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
639 struct ext4_ext_path *path)
640 {
641 struct ext4_extent_header *eh;
642 struct buffer_head *bh;
643 short int depth, i, ppos = 0, alloc = 0;
644
645 eh = ext_inode_hdr(inode);
646 depth = ext_depth(inode);
647
648 /* account possible depth increase */
649 if (!path) {
650 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
651 GFP_NOFS);
652 if (!path)
653 return ERR_PTR(-ENOMEM);
654 alloc = 1;
655 }
656 path[0].p_hdr = eh;
657 path[0].p_bh = NULL;
658
659 i = depth;
660 /* walk through the tree */
661 while (i) {
662 int need_to_validate = 0;
663
664 ext_debug("depth %d: num %d, max %d\n",
665 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
666
667 ext4_ext_binsearch_idx(inode, path + ppos, block);
668 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
669 path[ppos].p_depth = i;
670 path[ppos].p_ext = NULL;
671
672 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
673 if (unlikely(!bh))
674 goto err;
675 if (!bh_uptodate_or_lock(bh)) {
676 trace_ext4_ext_load_extent(inode, block,
677 path[ppos].p_block);
678 if (bh_submit_read(bh) < 0) {
679 put_bh(bh);
680 goto err;
681 }
682 /* validate the extent entries */
683 need_to_validate = 1;
684 }
685 eh = ext_block_hdr(bh);
686 ppos++;
687 if (unlikely(ppos > depth)) {
688 put_bh(bh);
689 EXT4_ERROR_INODE(inode,
690 "ppos %d > depth %d", ppos, depth);
691 goto err;
692 }
693 path[ppos].p_bh = bh;
694 path[ppos].p_hdr = eh;
695 i--;
696
697 if (need_to_validate && ext4_ext_check(inode, eh, i))
698 goto err;
699 }
700
701 path[ppos].p_depth = i;
702 path[ppos].p_ext = NULL;
703 path[ppos].p_idx = NULL;
704
705 /* find extent */
706 ext4_ext_binsearch(inode, path + ppos, block);
707 /* if not an empty leaf */
708 if (path[ppos].p_ext)
709 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
710
711 ext4_ext_show_path(inode, path);
712
713 return path;
714
715 err:
716 ext4_ext_drop_refs(path);
717 if (alloc)
718 kfree(path);
719 return ERR_PTR(-EIO);
720 }
721
722 /*
723 * ext4_ext_insert_index:
724 * insert new index [@logical;@ptr] into the block at @curp;
725 * check where to insert: before @curp or after @curp
726 */
727 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
728 struct ext4_ext_path *curp,
729 int logical, ext4_fsblk_t ptr)
730 {
731 struct ext4_extent_idx *ix;
732 int len, err;
733
734 err = ext4_ext_get_access(handle, inode, curp);
735 if (err)
736 return err;
737
738 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
739 EXT4_ERROR_INODE(inode,
740 "logical %d == ei_block %d!",
741 logical, le32_to_cpu(curp->p_idx->ei_block));
742 return -EIO;
743 }
744 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
745 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
746 /* insert after */
747 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
748 len = (len - 1) * sizeof(struct ext4_extent_idx);
749 len = len < 0 ? 0 : len;
750 ext_debug("insert new index %d after: %llu. "
751 "move %d from 0x%p to 0x%p\n",
752 logical, ptr, len,
753 (curp->p_idx + 1), (curp->p_idx + 2));
754 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
755 }
756 ix = curp->p_idx + 1;
757 } else {
758 /* insert before */
759 len = len * sizeof(struct ext4_extent_idx);
760 len = len < 0 ? 0 : len;
761 ext_debug("insert new index %d before: %llu. "
762 "move %d from 0x%p to 0x%p\n",
763 logical, ptr, len,
764 curp->p_idx, (curp->p_idx + 1));
765 memmove(curp->p_idx + 1, curp->p_idx, len);
766 ix = curp->p_idx;
767 }
768
769 ix->ei_block = cpu_to_le32(logical);
770 ext4_idx_store_pblock(ix, ptr);
771 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
772
773 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
774 > le16_to_cpu(curp->p_hdr->eh_max))) {
775 EXT4_ERROR_INODE(inode,
776 "eh_entries %d > eh_max %d!",
777 le16_to_cpu(curp->p_hdr->eh_entries),
778 le16_to_cpu(curp->p_hdr->eh_max));
779 return -EIO;
780 }
781 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
782 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
783 return -EIO;
784 }
785
786 err = ext4_ext_dirty(handle, inode, curp);
787 ext4_std_error(inode->i_sb, err);
788
789 return err;
790 }
791
792 /*
793 * ext4_ext_split:
794 * inserts new subtree into the path, using free index entry
795 * at depth @at:
796 * - allocates all needed blocks (new leaf and all intermediate index blocks)
797 * - makes decision where to split
798 * - moves remaining extents and index entries (right to the split point)
799 * into the newly allocated blocks
800 * - initializes subtree
801 */
802 static int ext4_ext_split(handle_t *handle, struct inode *inode,
803 unsigned int flags,
804 struct ext4_ext_path *path,
805 struct ext4_extent *newext, int at)
806 {
807 struct buffer_head *bh = NULL;
808 int depth = ext_depth(inode);
809 struct ext4_extent_header *neh;
810 struct ext4_extent_idx *fidx;
811 int i = at, k, m, a;
812 ext4_fsblk_t newblock, oldblock;
813 __le32 border;
814 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
815 int err = 0;
816
817 /* make decision: where to split? */
818 /* FIXME: now decision is simplest: at current extent */
819
820 /* if current leaf will be split, then we should use
821 * border from split point */
822 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
823 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
824 return -EIO;
825 }
826 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
827 border = path[depth].p_ext[1].ee_block;
828 ext_debug("leaf will be split."
829 " next leaf starts at %d\n",
830 le32_to_cpu(border));
831 } else {
832 border = newext->ee_block;
833 ext_debug("leaf will be added."
834 " next leaf starts at %d\n",
835 le32_to_cpu(border));
836 }
837
838 /*
839 * If error occurs, then we break processing
840 * and mark filesystem read-only. index won't
841 * be inserted and tree will be in consistent
842 * state. Next mount will repair buffers too.
843 */
844
845 /*
846 * Get array to track all allocated blocks.
847 * We need this to handle errors and free blocks
848 * upon them.
849 */
850 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
851 if (!ablocks)
852 return -ENOMEM;
853
854 /* allocate all needed blocks */
855 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
856 for (a = 0; a < depth - at; a++) {
857 newblock = ext4_ext_new_meta_block(handle, inode, path,
858 newext, &err, flags);
859 if (newblock == 0)
860 goto cleanup;
861 ablocks[a] = newblock;
862 }
863
864 /* initialize new leaf */
865 newblock = ablocks[--a];
866 if (unlikely(newblock == 0)) {
867 EXT4_ERROR_INODE(inode, "newblock == 0!");
868 err = -EIO;
869 goto cleanup;
870 }
871 bh = sb_getblk(inode->i_sb, newblock);
872 if (!bh) {
873 err = -EIO;
874 goto cleanup;
875 }
876 lock_buffer(bh);
877
878 err = ext4_journal_get_create_access(handle, bh);
879 if (err)
880 goto cleanup;
881
882 neh = ext_block_hdr(bh);
883 neh->eh_entries = 0;
884 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
885 neh->eh_magic = EXT4_EXT_MAGIC;
886 neh->eh_depth = 0;
887
888 /* move remainder of path[depth] to the new leaf */
889 if (unlikely(path[depth].p_hdr->eh_entries !=
890 path[depth].p_hdr->eh_max)) {
891 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
892 path[depth].p_hdr->eh_entries,
893 path[depth].p_hdr->eh_max);
894 err = -EIO;
895 goto cleanup;
896 }
897 /* start copy from next extent */
898 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
899 ext4_ext_show_move(inode, path, newblock, depth);
900 if (m) {
901 struct ext4_extent *ex;
902 ex = EXT_FIRST_EXTENT(neh);
903 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
904 le16_add_cpu(&neh->eh_entries, m);
905 }
906
907 set_buffer_uptodate(bh);
908 unlock_buffer(bh);
909
910 err = ext4_handle_dirty_metadata(handle, inode, bh);
911 if (err)
912 goto cleanup;
913 brelse(bh);
914 bh = NULL;
915
916 /* correct old leaf */
917 if (m) {
918 err = ext4_ext_get_access(handle, inode, path + depth);
919 if (err)
920 goto cleanup;
921 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
922 err = ext4_ext_dirty(handle, inode, path + depth);
923 if (err)
924 goto cleanup;
925
926 }
927
928 /* create intermediate indexes */
929 k = depth - at - 1;
930 if (unlikely(k < 0)) {
931 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
932 err = -EIO;
933 goto cleanup;
934 }
935 if (k)
936 ext_debug("create %d intermediate indices\n", k);
937 /* insert new index into current index block */
938 /* current depth stored in i var */
939 i = depth - 1;
940 while (k--) {
941 oldblock = newblock;
942 newblock = ablocks[--a];
943 bh = sb_getblk(inode->i_sb, newblock);
944 if (!bh) {
945 err = -EIO;
946 goto cleanup;
947 }
948 lock_buffer(bh);
949
950 err = ext4_journal_get_create_access(handle, bh);
951 if (err)
952 goto cleanup;
953
954 neh = ext_block_hdr(bh);
955 neh->eh_entries = cpu_to_le16(1);
956 neh->eh_magic = EXT4_EXT_MAGIC;
957 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
958 neh->eh_depth = cpu_to_le16(depth - i);
959 fidx = EXT_FIRST_INDEX(neh);
960 fidx->ei_block = border;
961 ext4_idx_store_pblock(fidx, oldblock);
962
963 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
964 i, newblock, le32_to_cpu(border), oldblock);
965
966 /* move remainder of path[i] to the new index block */
967 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
968 EXT_LAST_INDEX(path[i].p_hdr))) {
969 EXT4_ERROR_INODE(inode,
970 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
971 le32_to_cpu(path[i].p_ext->ee_block));
972 err = -EIO;
973 goto cleanup;
974 }
975 /* start copy indexes */
976 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
977 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
978 EXT_MAX_INDEX(path[i].p_hdr));
979 ext4_ext_show_move(inode, path, newblock, i);
980 if (m) {
981 memmove(++fidx, path[i].p_idx,
982 sizeof(struct ext4_extent_idx) * m);
983 le16_add_cpu(&neh->eh_entries, m);
984 }
985 set_buffer_uptodate(bh);
986 unlock_buffer(bh);
987
988 err = ext4_handle_dirty_metadata(handle, inode, bh);
989 if (err)
990 goto cleanup;
991 brelse(bh);
992 bh = NULL;
993
994 /* correct old index */
995 if (m) {
996 err = ext4_ext_get_access(handle, inode, path + i);
997 if (err)
998 goto cleanup;
999 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1000 err = ext4_ext_dirty(handle, inode, path + i);
1001 if (err)
1002 goto cleanup;
1003 }
1004
1005 i--;
1006 }
1007
1008 /* insert new index */
1009 err = ext4_ext_insert_index(handle, inode, path + at,
1010 le32_to_cpu(border), newblock);
1011
1012 cleanup:
1013 if (bh) {
1014 if (buffer_locked(bh))
1015 unlock_buffer(bh);
1016 brelse(bh);
1017 }
1018
1019 if (err) {
1020 /* free all allocated blocks in error case */
1021 for (i = 0; i < depth; i++) {
1022 if (!ablocks[i])
1023 continue;
1024 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1025 EXT4_FREE_BLOCKS_METADATA);
1026 }
1027 }
1028 kfree(ablocks);
1029
1030 return err;
1031 }
1032
1033 /*
1034 * ext4_ext_grow_indepth:
1035 * implements tree growing procedure:
1036 * - allocates new block
1037 * - moves top-level data (index block or leaf) into the new block
1038 * - initializes new top-level, creating index that points to the
1039 * just created block
1040 */
1041 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1042 unsigned int flags,
1043 struct ext4_ext_path *path,
1044 struct ext4_extent *newext)
1045 {
1046 struct ext4_ext_path *curp = path;
1047 struct ext4_extent_header *neh;
1048 struct buffer_head *bh;
1049 ext4_fsblk_t newblock;
1050 int err = 0;
1051
1052 newblock = ext4_ext_new_meta_block(handle, inode, path,
1053 newext, &err, flags);
1054 if (newblock == 0)
1055 return err;
1056
1057 bh = sb_getblk(inode->i_sb, newblock);
1058 if (!bh) {
1059 err = -EIO;
1060 ext4_std_error(inode->i_sb, err);
1061 return err;
1062 }
1063 lock_buffer(bh);
1064
1065 err = ext4_journal_get_create_access(handle, bh);
1066 if (err) {
1067 unlock_buffer(bh);
1068 goto out;
1069 }
1070
1071 /* move top-level index/leaf into new block */
1072 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
1073
1074 /* set size of new block */
1075 neh = ext_block_hdr(bh);
1076 /* old root could have indexes or leaves
1077 * so calculate e_max right way */
1078 if (ext_depth(inode))
1079 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1080 else
1081 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1082 neh->eh_magic = EXT4_EXT_MAGIC;
1083 set_buffer_uptodate(bh);
1084 unlock_buffer(bh);
1085
1086 err = ext4_handle_dirty_metadata(handle, inode, bh);
1087 if (err)
1088 goto out;
1089
1090 /* create index in new top-level index: num,max,pointer */
1091 err = ext4_ext_get_access(handle, inode, curp);
1092 if (err)
1093 goto out;
1094
1095 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
1096 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1097 curp->p_hdr->eh_entries = cpu_to_le16(1);
1098 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
1099
1100 if (path[0].p_hdr->eh_depth)
1101 curp->p_idx->ei_block =
1102 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
1103 else
1104 curp->p_idx->ei_block =
1105 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
1106 ext4_idx_store_pblock(curp->p_idx, newblock);
1107
1108 neh = ext_inode_hdr(inode);
1109 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1110 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1111 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1112 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1113
1114 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
1115 err = ext4_ext_dirty(handle, inode, curp);
1116 out:
1117 brelse(bh);
1118
1119 return err;
1120 }
1121
1122 /*
1123 * ext4_ext_create_new_leaf:
1124 * finds empty index and adds new leaf.
1125 * if no free index is found, then it requests in-depth growing.
1126 */
1127 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1128 unsigned int flags,
1129 struct ext4_ext_path *path,
1130 struct ext4_extent *newext)
1131 {
1132 struct ext4_ext_path *curp;
1133 int depth, i, err = 0;
1134
1135 repeat:
1136 i = depth = ext_depth(inode);
1137
1138 /* walk up to the tree and look for free index entry */
1139 curp = path + depth;
1140 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1141 i--;
1142 curp--;
1143 }
1144
1145 /* we use already allocated block for index block,
1146 * so subsequent data blocks should be contiguous */
1147 if (EXT_HAS_FREE_INDEX(curp)) {
1148 /* if we found index with free entry, then use that
1149 * entry: create all needed subtree and add new leaf */
1150 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1151 if (err)
1152 goto out;
1153
1154 /* refill path */
1155 ext4_ext_drop_refs(path);
1156 path = ext4_ext_find_extent(inode,
1157 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1158 path);
1159 if (IS_ERR(path))
1160 err = PTR_ERR(path);
1161 } else {
1162 /* tree is full, time to grow in depth */
1163 err = ext4_ext_grow_indepth(handle, inode, flags,
1164 path, newext);
1165 if (err)
1166 goto out;
1167
1168 /* refill path */
1169 ext4_ext_drop_refs(path);
1170 path = ext4_ext_find_extent(inode,
1171 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1172 path);
1173 if (IS_ERR(path)) {
1174 err = PTR_ERR(path);
1175 goto out;
1176 }
1177
1178 /*
1179 * only first (depth 0 -> 1) produces free space;
1180 * in all other cases we have to split the grown tree
1181 */
1182 depth = ext_depth(inode);
1183 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1184 /* now we need to split */
1185 goto repeat;
1186 }
1187 }
1188
1189 out:
1190 return err;
1191 }
1192
1193 /*
1194 * search the closest allocated block to the left for *logical
1195 * and returns it at @logical + it's physical address at @phys
1196 * if *logical is the smallest allocated block, the function
1197 * returns 0 at @phys
1198 * return value contains 0 (success) or error code
1199 */
1200 static int ext4_ext_search_left(struct inode *inode,
1201 struct ext4_ext_path *path,
1202 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1203 {
1204 struct ext4_extent_idx *ix;
1205 struct ext4_extent *ex;
1206 int depth, ee_len;
1207
1208 if (unlikely(path == NULL)) {
1209 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1210 return -EIO;
1211 }
1212 depth = path->p_depth;
1213 *phys = 0;
1214
1215 if (depth == 0 && path->p_ext == NULL)
1216 return 0;
1217
1218 /* usually extent in the path covers blocks smaller
1219 * then *logical, but it can be that extent is the
1220 * first one in the file */
1221
1222 ex = path[depth].p_ext;
1223 ee_len = ext4_ext_get_actual_len(ex);
1224 if (*logical < le32_to_cpu(ex->ee_block)) {
1225 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1226 EXT4_ERROR_INODE(inode,
1227 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1228 *logical, le32_to_cpu(ex->ee_block));
1229 return -EIO;
1230 }
1231 while (--depth >= 0) {
1232 ix = path[depth].p_idx;
1233 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1234 EXT4_ERROR_INODE(inode,
1235 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1236 ix != NULL ? ix->ei_block : 0,
1237 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1238 EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block : 0,
1239 depth);
1240 return -EIO;
1241 }
1242 }
1243 return 0;
1244 }
1245
1246 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1247 EXT4_ERROR_INODE(inode,
1248 "logical %d < ee_block %d + ee_len %d!",
1249 *logical, le32_to_cpu(ex->ee_block), ee_len);
1250 return -EIO;
1251 }
1252
1253 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1254 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1255 return 0;
1256 }
1257
1258 /*
1259 * search the closest allocated block to the right for *logical
1260 * and returns it at @logical + it's physical address at @phys
1261 * if *logical is the smallest allocated block, the function
1262 * returns 0 at @phys
1263 * return value contains 0 (success) or error code
1264 */
1265 static int ext4_ext_search_right(struct inode *inode,
1266 struct ext4_ext_path *path,
1267 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1268 {
1269 struct buffer_head *bh = NULL;
1270 struct ext4_extent_header *eh;
1271 struct ext4_extent_idx *ix;
1272 struct ext4_extent *ex;
1273 ext4_fsblk_t block;
1274 int depth; /* Note, NOT eh_depth; depth from top of tree */
1275 int ee_len;
1276
1277 if (unlikely(path == NULL)) {
1278 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1279 return -EIO;
1280 }
1281 depth = path->p_depth;
1282 *phys = 0;
1283
1284 if (depth == 0 && path->p_ext == NULL)
1285 return 0;
1286
1287 /* usually extent in the path covers blocks smaller
1288 * then *logical, but it can be that extent is the
1289 * first one in the file */
1290
1291 ex = path[depth].p_ext;
1292 ee_len = ext4_ext_get_actual_len(ex);
1293 if (*logical < le32_to_cpu(ex->ee_block)) {
1294 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1295 EXT4_ERROR_INODE(inode,
1296 "first_extent(path[%d].p_hdr) != ex",
1297 depth);
1298 return -EIO;
1299 }
1300 while (--depth >= 0) {
1301 ix = path[depth].p_idx;
1302 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1303 EXT4_ERROR_INODE(inode,
1304 "ix != EXT_FIRST_INDEX *logical %d!",
1305 *logical);
1306 return -EIO;
1307 }
1308 }
1309 *logical = le32_to_cpu(ex->ee_block);
1310 *phys = ext4_ext_pblock(ex);
1311 return 0;
1312 }
1313
1314 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1315 EXT4_ERROR_INODE(inode,
1316 "logical %d < ee_block %d + ee_len %d!",
1317 *logical, le32_to_cpu(ex->ee_block), ee_len);
1318 return -EIO;
1319 }
1320
1321 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1322 /* next allocated block in this leaf */
1323 ex++;
1324 *logical = le32_to_cpu(ex->ee_block);
1325 *phys = ext4_ext_pblock(ex);
1326 return 0;
1327 }
1328
1329 /* go up and search for index to the right */
1330 while (--depth >= 0) {
1331 ix = path[depth].p_idx;
1332 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1333 goto got_index;
1334 }
1335
1336 /* we've gone up to the root and found no index to the right */
1337 return 0;
1338
1339 got_index:
1340 /* we've found index to the right, let's
1341 * follow it and find the closest allocated
1342 * block to the right */
1343 ix++;
1344 block = ext4_idx_pblock(ix);
1345 while (++depth < path->p_depth) {
1346 bh = sb_bread(inode->i_sb, block);
1347 if (bh == NULL)
1348 return -EIO;
1349 eh = ext_block_hdr(bh);
1350 /* subtract from p_depth to get proper eh_depth */
1351 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1352 put_bh(bh);
1353 return -EIO;
1354 }
1355 ix = EXT_FIRST_INDEX(eh);
1356 block = ext4_idx_pblock(ix);
1357 put_bh(bh);
1358 }
1359
1360 bh = sb_bread(inode->i_sb, block);
1361 if (bh == NULL)
1362 return -EIO;
1363 eh = ext_block_hdr(bh);
1364 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1365 put_bh(bh);
1366 return -EIO;
1367 }
1368 ex = EXT_FIRST_EXTENT(eh);
1369 *logical = le32_to_cpu(ex->ee_block);
1370 *phys = ext4_ext_pblock(ex);
1371 put_bh(bh);
1372 return 0;
1373 }
1374
1375 /*
1376 * ext4_ext_next_allocated_block:
1377 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1378 * NOTE: it considers block number from index entry as
1379 * allocated block. Thus, index entries have to be consistent
1380 * with leaves.
1381 */
1382 static ext4_lblk_t
1383 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1384 {
1385 int depth;
1386
1387 BUG_ON(path == NULL);
1388 depth = path->p_depth;
1389
1390 if (depth == 0 && path->p_ext == NULL)
1391 return EXT_MAX_BLOCKS;
1392
1393 while (depth >= 0) {
1394 if (depth == path->p_depth) {
1395 /* leaf */
1396 if (path[depth].p_ext !=
1397 EXT_LAST_EXTENT(path[depth].p_hdr))
1398 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1399 } else {
1400 /* index */
1401 if (path[depth].p_idx !=
1402 EXT_LAST_INDEX(path[depth].p_hdr))
1403 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1404 }
1405 depth--;
1406 }
1407
1408 return EXT_MAX_BLOCKS;
1409 }
1410
1411 /*
1412 * ext4_ext_next_leaf_block:
1413 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1414 */
1415 static ext4_lblk_t ext4_ext_next_leaf_block(struct inode *inode,
1416 struct ext4_ext_path *path)
1417 {
1418 int depth;
1419
1420 BUG_ON(path == NULL);
1421 depth = path->p_depth;
1422
1423 /* zero-tree has no leaf blocks at all */
1424 if (depth == 0)
1425 return EXT_MAX_BLOCKS;
1426
1427 /* go to index block */
1428 depth--;
1429
1430 while (depth >= 0) {
1431 if (path[depth].p_idx !=
1432 EXT_LAST_INDEX(path[depth].p_hdr))
1433 return (ext4_lblk_t)
1434 le32_to_cpu(path[depth].p_idx[1].ei_block);
1435 depth--;
1436 }
1437
1438 return EXT_MAX_BLOCKS;
1439 }
1440
1441 /*
1442 * ext4_ext_correct_indexes:
1443 * if leaf gets modified and modified extent is first in the leaf,
1444 * then we have to correct all indexes above.
1445 * TODO: do we need to correct tree in all cases?
1446 */
1447 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1448 struct ext4_ext_path *path)
1449 {
1450 struct ext4_extent_header *eh;
1451 int depth = ext_depth(inode);
1452 struct ext4_extent *ex;
1453 __le32 border;
1454 int k, err = 0;
1455
1456 eh = path[depth].p_hdr;
1457 ex = path[depth].p_ext;
1458
1459 if (unlikely(ex == NULL || eh == NULL)) {
1460 EXT4_ERROR_INODE(inode,
1461 "ex %p == NULL or eh %p == NULL", ex, eh);
1462 return -EIO;
1463 }
1464
1465 if (depth == 0) {
1466 /* there is no tree at all */
1467 return 0;
1468 }
1469
1470 if (ex != EXT_FIRST_EXTENT(eh)) {
1471 /* we correct tree if first leaf got modified only */
1472 return 0;
1473 }
1474
1475 /*
1476 * TODO: we need correction if border is smaller than current one
1477 */
1478 k = depth - 1;
1479 border = path[depth].p_ext->ee_block;
1480 err = ext4_ext_get_access(handle, inode, path + k);
1481 if (err)
1482 return err;
1483 path[k].p_idx->ei_block = border;
1484 err = ext4_ext_dirty(handle, inode, path + k);
1485 if (err)
1486 return err;
1487
1488 while (k--) {
1489 /* change all left-side indexes */
1490 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1491 break;
1492 err = ext4_ext_get_access(handle, inode, path + k);
1493 if (err)
1494 break;
1495 path[k].p_idx->ei_block = border;
1496 err = ext4_ext_dirty(handle, inode, path + k);
1497 if (err)
1498 break;
1499 }
1500
1501 return err;
1502 }
1503
1504 int
1505 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1506 struct ext4_extent *ex2)
1507 {
1508 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1509
1510 /*
1511 * Make sure that either both extents are uninitialized, or
1512 * both are _not_.
1513 */
1514 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1515 return 0;
1516
1517 if (ext4_ext_is_uninitialized(ex1))
1518 max_len = EXT_UNINIT_MAX_LEN;
1519 else
1520 max_len = EXT_INIT_MAX_LEN;
1521
1522 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1523 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1524
1525 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1526 le32_to_cpu(ex2->ee_block))
1527 return 0;
1528
1529 /*
1530 * To allow future support for preallocated extents to be added
1531 * as an RO_COMPAT feature, refuse to merge to extents if
1532 * this can result in the top bit of ee_len being set.
1533 */
1534 if (ext1_ee_len + ext2_ee_len > max_len)
1535 return 0;
1536 #ifdef AGGRESSIVE_TEST
1537 if (ext1_ee_len >= 4)
1538 return 0;
1539 #endif
1540
1541 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1542 return 1;
1543 return 0;
1544 }
1545
1546 /*
1547 * This function tries to merge the "ex" extent to the next extent in the tree.
1548 * It always tries to merge towards right. If you want to merge towards
1549 * left, pass "ex - 1" as argument instead of "ex".
1550 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1551 * 1 if they got merged.
1552 */
1553 static int ext4_ext_try_to_merge_right(struct inode *inode,
1554 struct ext4_ext_path *path,
1555 struct ext4_extent *ex)
1556 {
1557 struct ext4_extent_header *eh;
1558 unsigned int depth, len;
1559 int merge_done = 0;
1560 int uninitialized = 0;
1561
1562 depth = ext_depth(inode);
1563 BUG_ON(path[depth].p_hdr == NULL);
1564 eh = path[depth].p_hdr;
1565
1566 while (ex < EXT_LAST_EXTENT(eh)) {
1567 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1568 break;
1569 /* merge with next extent! */
1570 if (ext4_ext_is_uninitialized(ex))
1571 uninitialized = 1;
1572 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1573 + ext4_ext_get_actual_len(ex + 1));
1574 if (uninitialized)
1575 ext4_ext_mark_uninitialized(ex);
1576
1577 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1578 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1579 * sizeof(struct ext4_extent);
1580 memmove(ex + 1, ex + 2, len);
1581 }
1582 le16_add_cpu(&eh->eh_entries, -1);
1583 merge_done = 1;
1584 WARN_ON(eh->eh_entries == 0);
1585 if (!eh->eh_entries)
1586 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1587 }
1588
1589 return merge_done;
1590 }
1591
1592 /*
1593 * This function tries to merge the @ex extent to neighbours in the tree.
1594 * return 1 if merge left else 0.
1595 */
1596 static int ext4_ext_try_to_merge(struct inode *inode,
1597 struct ext4_ext_path *path,
1598 struct ext4_extent *ex) {
1599 struct ext4_extent_header *eh;
1600 unsigned int depth;
1601 int merge_done = 0;
1602 int ret = 0;
1603
1604 depth = ext_depth(inode);
1605 BUG_ON(path[depth].p_hdr == NULL);
1606 eh = path[depth].p_hdr;
1607
1608 if (ex > EXT_FIRST_EXTENT(eh))
1609 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1610
1611 if (!merge_done)
1612 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1613
1614 return ret;
1615 }
1616
1617 /*
1618 * check if a portion of the "newext" extent overlaps with an
1619 * existing extent.
1620 *
1621 * If there is an overlap discovered, it updates the length of the newext
1622 * such that there will be no overlap, and then returns 1.
1623 * If there is no overlap found, it returns 0.
1624 */
1625 static unsigned int ext4_ext_check_overlap(struct inode *inode,
1626 struct ext4_extent *newext,
1627 struct ext4_ext_path *path)
1628 {
1629 ext4_lblk_t b1, b2;
1630 unsigned int depth, len1;
1631 unsigned int ret = 0;
1632
1633 b1 = le32_to_cpu(newext->ee_block);
1634 len1 = ext4_ext_get_actual_len(newext);
1635 depth = ext_depth(inode);
1636 if (!path[depth].p_ext)
1637 goto out;
1638 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1639
1640 /*
1641 * get the next allocated block if the extent in the path
1642 * is before the requested block(s)
1643 */
1644 if (b2 < b1) {
1645 b2 = ext4_ext_next_allocated_block(path);
1646 if (b2 == EXT_MAX_BLOCKS)
1647 goto out;
1648 }
1649
1650 /* check for wrap through zero on extent logical start block*/
1651 if (b1 + len1 < b1) {
1652 len1 = EXT_MAX_BLOCKS - b1;
1653 newext->ee_len = cpu_to_le16(len1);
1654 ret = 1;
1655 }
1656
1657 /* check for overlap */
1658 if (b1 + len1 > b2) {
1659 newext->ee_len = cpu_to_le16(b2 - b1);
1660 ret = 1;
1661 }
1662 out:
1663 return ret;
1664 }
1665
1666 /*
1667 * ext4_ext_insert_extent:
1668 * tries to merge requsted extent into the existing extent or
1669 * inserts requested extent as new one into the tree,
1670 * creating new leaf in the no-space case.
1671 */
1672 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1673 struct ext4_ext_path *path,
1674 struct ext4_extent *newext, int flag)
1675 {
1676 struct ext4_extent_header *eh;
1677 struct ext4_extent *ex, *fex;
1678 struct ext4_extent *nearex; /* nearest extent */
1679 struct ext4_ext_path *npath = NULL;
1680 int depth, len, err;
1681 ext4_lblk_t next;
1682 unsigned uninitialized = 0;
1683 int flags = 0;
1684
1685 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1686 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1687 return -EIO;
1688 }
1689 depth = ext_depth(inode);
1690 ex = path[depth].p_ext;
1691 if (unlikely(path[depth].p_hdr == NULL)) {
1692 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1693 return -EIO;
1694 }
1695
1696 /* try to insert block into found extent and return */
1697 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1698 && ext4_can_extents_be_merged(inode, ex, newext)) {
1699 ext_debug("append [%d]%d block to %d:[%d]%d (from %llu)\n",
1700 ext4_ext_is_uninitialized(newext),
1701 ext4_ext_get_actual_len(newext),
1702 le32_to_cpu(ex->ee_block),
1703 ext4_ext_is_uninitialized(ex),
1704 ext4_ext_get_actual_len(ex),
1705 ext4_ext_pblock(ex));
1706 err = ext4_ext_get_access(handle, inode, path + depth);
1707 if (err)
1708 return err;
1709
1710 /*
1711 * ext4_can_extents_be_merged should have checked that either
1712 * both extents are uninitialized, or both aren't. Thus we
1713 * need to check only one of them here.
1714 */
1715 if (ext4_ext_is_uninitialized(ex))
1716 uninitialized = 1;
1717 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1718 + ext4_ext_get_actual_len(newext));
1719 if (uninitialized)
1720 ext4_ext_mark_uninitialized(ex);
1721 eh = path[depth].p_hdr;
1722 nearex = ex;
1723 goto merge;
1724 }
1725
1726 depth = ext_depth(inode);
1727 eh = path[depth].p_hdr;
1728 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1729 goto has_space;
1730
1731 /* probably next leaf has space for us? */
1732 fex = EXT_LAST_EXTENT(eh);
1733 next = EXT_MAX_BLOCKS;
1734 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1735 next = ext4_ext_next_leaf_block(inode, path);
1736 if (next != EXT_MAX_BLOCKS) {
1737 ext_debug("next leaf block - %d\n", next);
1738 BUG_ON(npath != NULL);
1739 npath = ext4_ext_find_extent(inode, next, NULL);
1740 if (IS_ERR(npath))
1741 return PTR_ERR(npath);
1742 BUG_ON(npath->p_depth != path->p_depth);
1743 eh = npath[depth].p_hdr;
1744 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1745 ext_debug("next leaf isn't full(%d)\n",
1746 le16_to_cpu(eh->eh_entries));
1747 path = npath;
1748 goto has_space;
1749 }
1750 ext_debug("next leaf has no free space(%d,%d)\n",
1751 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1752 }
1753
1754 /*
1755 * There is no free space in the found leaf.
1756 * We're gonna add a new leaf in the tree.
1757 */
1758 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1759 flags = EXT4_MB_USE_ROOT_BLOCKS;
1760 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1761 if (err)
1762 goto cleanup;
1763 depth = ext_depth(inode);
1764 eh = path[depth].p_hdr;
1765
1766 has_space:
1767 nearex = path[depth].p_ext;
1768
1769 err = ext4_ext_get_access(handle, inode, path + depth);
1770 if (err)
1771 goto cleanup;
1772
1773 if (!nearex) {
1774 /* there is no extent in this leaf, create first one */
1775 ext_debug("first extent in the leaf: %d:%llu:[%d]%d\n",
1776 le32_to_cpu(newext->ee_block),
1777 ext4_ext_pblock(newext),
1778 ext4_ext_is_uninitialized(newext),
1779 ext4_ext_get_actual_len(newext));
1780 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1781 } else if (le32_to_cpu(newext->ee_block)
1782 > le32_to_cpu(nearex->ee_block)) {
1783 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1784 if (nearex != EXT_LAST_EXTENT(eh)) {
1785 len = EXT_MAX_EXTENT(eh) - nearex;
1786 len = (len - 1) * sizeof(struct ext4_extent);
1787 len = len < 0 ? 0 : len;
1788 ext_debug("insert %d:%llu:[%d]%d after: nearest 0x%p, "
1789 "move %d from 0x%p to 0x%p\n",
1790 le32_to_cpu(newext->ee_block),
1791 ext4_ext_pblock(newext),
1792 ext4_ext_is_uninitialized(newext),
1793 ext4_ext_get_actual_len(newext),
1794 nearex, len, nearex + 1, nearex + 2);
1795 memmove(nearex + 2, nearex + 1, len);
1796 }
1797 path[depth].p_ext = nearex + 1;
1798 } else {
1799 BUG_ON(newext->ee_block == nearex->ee_block);
1800 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1801 len = len < 0 ? 0 : len;
1802 ext_debug("insert %d:%llu:[%d]%d before: nearest 0x%p, "
1803 "move %d from 0x%p to 0x%p\n",
1804 le32_to_cpu(newext->ee_block),
1805 ext4_ext_pblock(newext),
1806 ext4_ext_is_uninitialized(newext),
1807 ext4_ext_get_actual_len(newext),
1808 nearex, len, nearex + 1, nearex + 2);
1809 memmove(nearex + 1, nearex, len);
1810 path[depth].p_ext = nearex;
1811 }
1812
1813 le16_add_cpu(&eh->eh_entries, 1);
1814 nearex = path[depth].p_ext;
1815 nearex->ee_block = newext->ee_block;
1816 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1817 nearex->ee_len = newext->ee_len;
1818
1819 merge:
1820 /* try to merge extents to the right */
1821 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1822 ext4_ext_try_to_merge(inode, path, nearex);
1823
1824 /* try to merge extents to the left */
1825
1826 /* time to correct all indexes above */
1827 err = ext4_ext_correct_indexes(handle, inode, path);
1828 if (err)
1829 goto cleanup;
1830
1831 err = ext4_ext_dirty(handle, inode, path + depth);
1832
1833 cleanup:
1834 if (npath) {
1835 ext4_ext_drop_refs(npath);
1836 kfree(npath);
1837 }
1838 ext4_ext_invalidate_cache(inode);
1839 return err;
1840 }
1841
1842 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1843 ext4_lblk_t num, ext_prepare_callback func,
1844 void *cbdata)
1845 {
1846 struct ext4_ext_path *path = NULL;
1847 struct ext4_ext_cache cbex;
1848 struct ext4_extent *ex;
1849 ext4_lblk_t next, start = 0, end = 0;
1850 ext4_lblk_t last = block + num;
1851 int depth, exists, err = 0;
1852
1853 BUG_ON(func == NULL);
1854 BUG_ON(inode == NULL);
1855
1856 while (block < last && block != EXT_MAX_BLOCKS) {
1857 num = last - block;
1858 /* find extent for this block */
1859 down_read(&EXT4_I(inode)->i_data_sem);
1860 path = ext4_ext_find_extent(inode, block, path);
1861 up_read(&EXT4_I(inode)->i_data_sem);
1862 if (IS_ERR(path)) {
1863 err = PTR_ERR(path);
1864 path = NULL;
1865 break;
1866 }
1867
1868 depth = ext_depth(inode);
1869 if (unlikely(path[depth].p_hdr == NULL)) {
1870 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1871 err = -EIO;
1872 break;
1873 }
1874 ex = path[depth].p_ext;
1875 next = ext4_ext_next_allocated_block(path);
1876
1877 exists = 0;
1878 if (!ex) {
1879 /* there is no extent yet, so try to allocate
1880 * all requested space */
1881 start = block;
1882 end = block + num;
1883 } else if (le32_to_cpu(ex->ee_block) > block) {
1884 /* need to allocate space before found extent */
1885 start = block;
1886 end = le32_to_cpu(ex->ee_block);
1887 if (block + num < end)
1888 end = block + num;
1889 } else if (block >= le32_to_cpu(ex->ee_block)
1890 + ext4_ext_get_actual_len(ex)) {
1891 /* need to allocate space after found extent */
1892 start = block;
1893 end = block + num;
1894 if (end >= next)
1895 end = next;
1896 } else if (block >= le32_to_cpu(ex->ee_block)) {
1897 /*
1898 * some part of requested space is covered
1899 * by found extent
1900 */
1901 start = block;
1902 end = le32_to_cpu(ex->ee_block)
1903 + ext4_ext_get_actual_len(ex);
1904 if (block + num < end)
1905 end = block + num;
1906 exists = 1;
1907 } else {
1908 BUG();
1909 }
1910 BUG_ON(end <= start);
1911
1912 if (!exists) {
1913 cbex.ec_block = start;
1914 cbex.ec_len = end - start;
1915 cbex.ec_start = 0;
1916 } else {
1917 cbex.ec_block = le32_to_cpu(ex->ee_block);
1918 cbex.ec_len = ext4_ext_get_actual_len(ex);
1919 cbex.ec_start = ext4_ext_pblock(ex);
1920 }
1921
1922 if (unlikely(cbex.ec_len == 0)) {
1923 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1924 err = -EIO;
1925 break;
1926 }
1927 err = func(inode, next, &cbex, ex, cbdata);
1928 ext4_ext_drop_refs(path);
1929
1930 if (err < 0)
1931 break;
1932
1933 if (err == EXT_REPEAT)
1934 continue;
1935 else if (err == EXT_BREAK) {
1936 err = 0;
1937 break;
1938 }
1939
1940 if (ext_depth(inode) != depth) {
1941 /* depth was changed. we have to realloc path */
1942 kfree(path);
1943 path = NULL;
1944 }
1945
1946 block = cbex.ec_block + cbex.ec_len;
1947 }
1948
1949 if (path) {
1950 ext4_ext_drop_refs(path);
1951 kfree(path);
1952 }
1953
1954 return err;
1955 }
1956
1957 static void
1958 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1959 __u32 len, ext4_fsblk_t start)
1960 {
1961 struct ext4_ext_cache *cex;
1962 BUG_ON(len == 0);
1963 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1964 cex = &EXT4_I(inode)->i_cached_extent;
1965 cex->ec_block = block;
1966 cex->ec_len = len;
1967 cex->ec_start = start;
1968 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1969 }
1970
1971 /*
1972 * ext4_ext_put_gap_in_cache:
1973 * calculate boundaries of the gap that the requested block fits into
1974 * and cache this gap
1975 */
1976 static void
1977 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1978 ext4_lblk_t block)
1979 {
1980 int depth = ext_depth(inode);
1981 unsigned long len;
1982 ext4_lblk_t lblock;
1983 struct ext4_extent *ex;
1984
1985 ex = path[depth].p_ext;
1986 if (ex == NULL) {
1987 /* there is no extent yet, so gap is [0;-] */
1988 lblock = 0;
1989 len = EXT_MAX_BLOCKS;
1990 ext_debug("cache gap(whole file):");
1991 } else if (block < le32_to_cpu(ex->ee_block)) {
1992 lblock = block;
1993 len = le32_to_cpu(ex->ee_block) - block;
1994 ext_debug("cache gap(before): %u [%u:%u]",
1995 block,
1996 le32_to_cpu(ex->ee_block),
1997 ext4_ext_get_actual_len(ex));
1998 } else if (block >= le32_to_cpu(ex->ee_block)
1999 + ext4_ext_get_actual_len(ex)) {
2000 ext4_lblk_t next;
2001 lblock = le32_to_cpu(ex->ee_block)
2002 + ext4_ext_get_actual_len(ex);
2003
2004 next = ext4_ext_next_allocated_block(path);
2005 ext_debug("cache gap(after): [%u:%u] %u",
2006 le32_to_cpu(ex->ee_block),
2007 ext4_ext_get_actual_len(ex),
2008 block);
2009 BUG_ON(next == lblock);
2010 len = next - lblock;
2011 } else {
2012 lblock = len = 0;
2013 BUG();
2014 }
2015
2016 ext_debug(" -> %u:%lu\n", lblock, len);
2017 ext4_ext_put_in_cache(inode, lblock, len, 0);
2018 }
2019
2020 /*
2021 * ext4_ext_in_cache()
2022 * Checks to see if the given block is in the cache.
2023 * If it is, the cached extent is stored in the given
2024 * cache extent pointer. If the cached extent is a hole,
2025 * this routine should be used instead of
2026 * ext4_ext_in_cache if the calling function needs to
2027 * know the size of the hole.
2028 *
2029 * @inode: The files inode
2030 * @block: The block to look for in the cache
2031 * @ex: Pointer where the cached extent will be stored
2032 * if it contains block
2033 *
2034 * Return 0 if cache is invalid; 1 if the cache is valid
2035 */
2036 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2037 struct ext4_ext_cache *ex){
2038 struct ext4_ext_cache *cex;
2039 struct ext4_sb_info *sbi;
2040 int ret = 0;
2041
2042 /*
2043 * We borrow i_block_reservation_lock to protect i_cached_extent
2044 */
2045 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2046 cex = &EXT4_I(inode)->i_cached_extent;
2047 sbi = EXT4_SB(inode->i_sb);
2048
2049 /* has cache valid data? */
2050 if (cex->ec_len == 0)
2051 goto errout;
2052
2053 if (in_range(block, cex->ec_block, cex->ec_len)) {
2054 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2055 ext_debug("%u cached by %u:%u:%llu\n",
2056 block,
2057 cex->ec_block, cex->ec_len, cex->ec_start);
2058 ret = 1;
2059 }
2060 errout:
2061 if (!ret)
2062 sbi->extent_cache_misses++;
2063 else
2064 sbi->extent_cache_hits++;
2065 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2066 return ret;
2067 }
2068
2069 /*
2070 * ext4_ext_in_cache()
2071 * Checks to see if the given block is in the cache.
2072 * If it is, the cached extent is stored in the given
2073 * extent pointer.
2074 *
2075 * @inode: The files inode
2076 * @block: The block to look for in the cache
2077 * @ex: Pointer where the cached extent will be stored
2078 * if it contains block
2079 *
2080 * Return 0 if cache is invalid; 1 if the cache is valid
2081 */
2082 static int
2083 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2084 struct ext4_extent *ex)
2085 {
2086 struct ext4_ext_cache cex;
2087 int ret = 0;
2088
2089 if (ext4_ext_check_cache(inode, block, &cex)) {
2090 ex->ee_block = cpu_to_le32(cex.ec_block);
2091 ext4_ext_store_pblock(ex, cex.ec_start);
2092 ex->ee_len = cpu_to_le16(cex.ec_len);
2093 ret = 1;
2094 }
2095
2096 return ret;
2097 }
2098
2099
2100 /*
2101 * ext4_ext_rm_idx:
2102 * removes index from the index block.
2103 * It's used in truncate case only, thus all requests are for
2104 * last index in the block only.
2105 */
2106 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2107 struct ext4_ext_path *path)
2108 {
2109 int err;
2110 ext4_fsblk_t leaf;
2111
2112 /* free index block */
2113 path--;
2114 leaf = ext4_idx_pblock(path->p_idx);
2115 if (unlikely(path->p_hdr->eh_entries == 0)) {
2116 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2117 return -EIO;
2118 }
2119 err = ext4_ext_get_access(handle, inode, path);
2120 if (err)
2121 return err;
2122 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2123 err = ext4_ext_dirty(handle, inode, path);
2124 if (err)
2125 return err;
2126 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2127 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2128 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2129 return err;
2130 }
2131
2132 /*
2133 * ext4_ext_calc_credits_for_single_extent:
2134 * This routine returns max. credits that needed to insert an extent
2135 * to the extent tree.
2136 * When pass the actual path, the caller should calculate credits
2137 * under i_data_sem.
2138 */
2139 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2140 struct ext4_ext_path *path)
2141 {
2142 if (path) {
2143 int depth = ext_depth(inode);
2144 int ret = 0;
2145
2146 /* probably there is space in leaf? */
2147 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2148 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2149
2150 /*
2151 * There are some space in the leaf tree, no
2152 * need to account for leaf block credit
2153 *
2154 * bitmaps and block group descriptor blocks
2155 * and other metadat blocks still need to be
2156 * accounted.
2157 */
2158 /* 1 bitmap, 1 block group descriptor */
2159 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2160 return ret;
2161 }
2162 }
2163
2164 return ext4_chunk_trans_blocks(inode, nrblocks);
2165 }
2166
2167 /*
2168 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2169 *
2170 * if nrblocks are fit in a single extent (chunk flag is 1), then
2171 * in the worse case, each tree level index/leaf need to be changed
2172 * if the tree split due to insert a new extent, then the old tree
2173 * index/leaf need to be updated too
2174 *
2175 * If the nrblocks are discontiguous, they could cause
2176 * the whole tree split more than once, but this is really rare.
2177 */
2178 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2179 {
2180 int index;
2181 int depth = ext_depth(inode);
2182
2183 if (chunk)
2184 index = depth * 2;
2185 else
2186 index = depth * 3;
2187
2188 return index;
2189 }
2190
2191 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2192 struct ext4_extent *ex,
2193 ext4_lblk_t from, ext4_lblk_t to)
2194 {
2195 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2196 int flags = EXT4_FREE_BLOCKS_FORGET;
2197
2198 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2199 flags |= EXT4_FREE_BLOCKS_METADATA;
2200 #ifdef EXTENTS_STATS
2201 {
2202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2203 spin_lock(&sbi->s_ext_stats_lock);
2204 sbi->s_ext_blocks += ee_len;
2205 sbi->s_ext_extents++;
2206 if (ee_len < sbi->s_ext_min)
2207 sbi->s_ext_min = ee_len;
2208 if (ee_len > sbi->s_ext_max)
2209 sbi->s_ext_max = ee_len;
2210 if (ext_depth(inode) > sbi->s_depth_max)
2211 sbi->s_depth_max = ext_depth(inode);
2212 spin_unlock(&sbi->s_ext_stats_lock);
2213 }
2214 #endif
2215 if (from >= le32_to_cpu(ex->ee_block)
2216 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2217 /* tail removal */
2218 ext4_lblk_t num;
2219 ext4_fsblk_t start;
2220
2221 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2222 start = ext4_ext_pblock(ex) + ee_len - num;
2223 ext_debug("free last %u blocks starting %llu\n", num, start);
2224 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2225 } else if (from == le32_to_cpu(ex->ee_block)
2226 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2227 /* head removal */
2228 ext4_lblk_t num;
2229 ext4_fsblk_t start;
2230
2231 num = to - from;
2232 start = ext4_ext_pblock(ex);
2233
2234 ext_debug("free first %u blocks starting %llu\n", num, start);
2235 ext4_free_blocks(handle, inode, 0, start, num, flags);
2236
2237 } else {
2238 printk(KERN_INFO "strange request: removal(2) "
2239 "%u-%u from %u:%u\n",
2240 from, to, le32_to_cpu(ex->ee_block), ee_len);
2241 }
2242 return 0;
2243 }
2244
2245
2246 /*
2247 * ext4_ext_rm_leaf() Removes the extents associated with the
2248 * blocks appearing between "start" and "end", and splits the extents
2249 * if "start" and "end" appear in the same extent
2250 *
2251 * @handle: The journal handle
2252 * @inode: The files inode
2253 * @path: The path to the leaf
2254 * @start: The first block to remove
2255 * @end: The last block to remove
2256 */
2257 static int
2258 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2259 struct ext4_ext_path *path, ext4_lblk_t start,
2260 ext4_lblk_t end)
2261 {
2262 int err = 0, correct_index = 0;
2263 int depth = ext_depth(inode), credits;
2264 struct ext4_extent_header *eh;
2265 ext4_lblk_t a, b, block;
2266 unsigned num;
2267 ext4_lblk_t ex_ee_block;
2268 unsigned short ex_ee_len;
2269 unsigned uninitialized = 0;
2270 struct ext4_extent *ex;
2271 struct ext4_map_blocks map;
2272
2273 /* the header must be checked already in ext4_ext_remove_space() */
2274 ext_debug("truncate since %u in leaf\n", start);
2275 if (!path[depth].p_hdr)
2276 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2277 eh = path[depth].p_hdr;
2278 if (unlikely(path[depth].p_hdr == NULL)) {
2279 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2280 return -EIO;
2281 }
2282 /* find where to start removing */
2283 ex = EXT_LAST_EXTENT(eh);
2284
2285 ex_ee_block = le32_to_cpu(ex->ee_block);
2286 ex_ee_len = ext4_ext_get_actual_len(ex);
2287
2288 while (ex >= EXT_FIRST_EXTENT(eh) &&
2289 ex_ee_block + ex_ee_len > start) {
2290
2291 if (ext4_ext_is_uninitialized(ex))
2292 uninitialized = 1;
2293 else
2294 uninitialized = 0;
2295
2296 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2297 uninitialized, ex_ee_len);
2298 path[depth].p_ext = ex;
2299
2300 a = ex_ee_block > start ? ex_ee_block : start;
2301 b = ex_ee_block+ex_ee_len - 1 < end ?
2302 ex_ee_block+ex_ee_len - 1 : end;
2303
2304 ext_debug(" border %u:%u\n", a, b);
2305
2306 /* If this extent is beyond the end of the hole, skip it */
2307 if (end <= ex_ee_block) {
2308 ex--;
2309 ex_ee_block = le32_to_cpu(ex->ee_block);
2310 ex_ee_len = ext4_ext_get_actual_len(ex);
2311 continue;
2312 } else if (a != ex_ee_block &&
2313 b != ex_ee_block + ex_ee_len - 1) {
2314 /*
2315 * If this is a truncate, then this condition should
2316 * never happen because at least one of the end points
2317 * needs to be on the edge of the extent.
2318 */
2319 if (end == EXT_MAX_BLOCKS - 1) {
2320 ext_debug(" bad truncate %u:%u\n",
2321 start, end);
2322 block = 0;
2323 num = 0;
2324 err = -EIO;
2325 goto out;
2326 }
2327 /*
2328 * else this is a hole punch, so the extent needs to
2329 * be split since neither edge of the hole is on the
2330 * extent edge
2331 */
2332 else{
2333 map.m_pblk = ext4_ext_pblock(ex);
2334 map.m_lblk = ex_ee_block;
2335 map.m_len = b - ex_ee_block;
2336
2337 err = ext4_split_extent(handle,
2338 inode, path, &map, 0,
2339 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
2340 EXT4_GET_BLOCKS_PRE_IO);
2341
2342 if (err < 0)
2343 goto out;
2344
2345 ex_ee_len = ext4_ext_get_actual_len(ex);
2346
2347 b = ex_ee_block+ex_ee_len - 1 < end ?
2348 ex_ee_block+ex_ee_len - 1 : end;
2349
2350 /* Then remove tail of this extent */
2351 block = ex_ee_block;
2352 num = a - block;
2353 }
2354 } else if (a != ex_ee_block) {
2355 /* remove tail of the extent */
2356 block = ex_ee_block;
2357 num = a - block;
2358 } else if (b != ex_ee_block + ex_ee_len - 1) {
2359 /* remove head of the extent */
2360 block = b;
2361 num = ex_ee_block + ex_ee_len - b;
2362
2363 /*
2364 * If this is a truncate, this condition
2365 * should never happen
2366 */
2367 if (end == EXT_MAX_BLOCKS - 1) {
2368 ext_debug(" bad truncate %u:%u\n",
2369 start, end);
2370 err = -EIO;
2371 goto out;
2372 }
2373 } else {
2374 /* remove whole extent: excellent! */
2375 block = ex_ee_block;
2376 num = 0;
2377 if (a != ex_ee_block) {
2378 ext_debug(" bad truncate %u:%u\n",
2379 start, end);
2380 err = -EIO;
2381 goto out;
2382 }
2383
2384 if (b != ex_ee_block + ex_ee_len - 1) {
2385 ext_debug(" bad truncate %u:%u\n",
2386 start, end);
2387 err = -EIO;
2388 goto out;
2389 }
2390 }
2391
2392 /*
2393 * 3 for leaf, sb, and inode plus 2 (bmap and group
2394 * descriptor) for each block group; assume two block
2395 * groups plus ex_ee_len/blocks_per_block_group for
2396 * the worst case
2397 */
2398 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2399 if (ex == EXT_FIRST_EXTENT(eh)) {
2400 correct_index = 1;
2401 credits += (ext_depth(inode)) + 1;
2402 }
2403 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2404
2405 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2406 if (err)
2407 goto out;
2408
2409 err = ext4_ext_get_access(handle, inode, path + depth);
2410 if (err)
2411 goto out;
2412
2413 err = ext4_remove_blocks(handle, inode, ex, a, b);
2414 if (err)
2415 goto out;
2416
2417 if (num == 0) {
2418 /* this extent is removed; mark slot entirely unused */
2419 ext4_ext_store_pblock(ex, 0);
2420 } else if (block != ex_ee_block) {
2421 /*
2422 * If this was a head removal, then we need to update
2423 * the physical block since it is now at a different
2424 * location
2425 */
2426 ext4_ext_store_pblock(ex, ext4_ext_pblock(ex) + (b-a));
2427 }
2428
2429 ex->ee_block = cpu_to_le32(block);
2430 ex->ee_len = cpu_to_le16(num);
2431 /*
2432 * Do not mark uninitialized if all the blocks in the
2433 * extent have been removed.
2434 */
2435 if (uninitialized && num)
2436 ext4_ext_mark_uninitialized(ex);
2437
2438 err = ext4_ext_dirty(handle, inode, path + depth);
2439 if (err)
2440 goto out;
2441
2442 /*
2443 * If the extent was completely released,
2444 * we need to remove it from the leaf
2445 */
2446 if (num == 0) {
2447 if (end != EXT_MAX_BLOCKS - 1) {
2448 /*
2449 * For hole punching, we need to scoot all the
2450 * extents up when an extent is removed so that
2451 * we dont have blank extents in the middle
2452 */
2453 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2454 sizeof(struct ext4_extent));
2455
2456 /* Now get rid of the one at the end */
2457 memset(EXT_LAST_EXTENT(eh), 0,
2458 sizeof(struct ext4_extent));
2459 }
2460 le16_add_cpu(&eh->eh_entries, -1);
2461 }
2462
2463 ext_debug("new extent: %u:%u:%llu\n", block, num,
2464 ext4_ext_pblock(ex));
2465 ex--;
2466 ex_ee_block = le32_to_cpu(ex->ee_block);
2467 ex_ee_len = ext4_ext_get_actual_len(ex);
2468 }
2469
2470 if (correct_index && eh->eh_entries)
2471 err = ext4_ext_correct_indexes(handle, inode, path);
2472
2473 /* if this leaf is free, then we should
2474 * remove it from index block above */
2475 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2476 err = ext4_ext_rm_idx(handle, inode, path + depth);
2477
2478 out:
2479 return err;
2480 }
2481
2482 /*
2483 * ext4_ext_more_to_rm:
2484 * returns 1 if current index has to be freed (even partial)
2485 */
2486 static int
2487 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2488 {
2489 BUG_ON(path->p_idx == NULL);
2490
2491 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2492 return 0;
2493
2494 /*
2495 * if truncate on deeper level happened, it wasn't partial,
2496 * so we have to consider current index for truncation
2497 */
2498 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2499 return 0;
2500 return 1;
2501 }
2502
2503 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2504 {
2505 struct super_block *sb = inode->i_sb;
2506 int depth = ext_depth(inode);
2507 struct ext4_ext_path *path;
2508 handle_t *handle;
2509 int i, err;
2510
2511 ext_debug("truncate since %u\n", start);
2512
2513 /* probably first extent we're gonna free will be last in block */
2514 handle = ext4_journal_start(inode, depth + 1);
2515 if (IS_ERR(handle))
2516 return PTR_ERR(handle);
2517
2518 again:
2519 ext4_ext_invalidate_cache(inode);
2520
2521 /*
2522 * We start scanning from right side, freeing all the blocks
2523 * after i_size and walking into the tree depth-wise.
2524 */
2525 depth = ext_depth(inode);
2526 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2527 if (path == NULL) {
2528 ext4_journal_stop(handle);
2529 return -ENOMEM;
2530 }
2531 path[0].p_depth = depth;
2532 path[0].p_hdr = ext_inode_hdr(inode);
2533 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2534 err = -EIO;
2535 goto out;
2536 }
2537 i = err = 0;
2538
2539 while (i >= 0 && err == 0) {
2540 if (i == depth) {
2541 /* this is leaf block */
2542 err = ext4_ext_rm_leaf(handle, inode, path,
2543 start, EXT_MAX_BLOCKS - 1);
2544 /* root level has p_bh == NULL, brelse() eats this */
2545 brelse(path[i].p_bh);
2546 path[i].p_bh = NULL;
2547 i--;
2548 continue;
2549 }
2550
2551 /* this is index block */
2552 if (!path[i].p_hdr) {
2553 ext_debug("initialize header\n");
2554 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2555 }
2556
2557 if (!path[i].p_idx) {
2558 /* this level hasn't been touched yet */
2559 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2560 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2561 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2562 path[i].p_hdr,
2563 le16_to_cpu(path[i].p_hdr->eh_entries));
2564 } else {
2565 /* we were already here, see at next index */
2566 path[i].p_idx--;
2567 }
2568
2569 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2570 i, EXT_FIRST_INDEX(path[i].p_hdr),
2571 path[i].p_idx);
2572 if (ext4_ext_more_to_rm(path + i)) {
2573 struct buffer_head *bh;
2574 /* go to the next level */
2575 ext_debug("move to level %d (block %llu)\n",
2576 i + 1, ext4_idx_pblock(path[i].p_idx));
2577 memset(path + i + 1, 0, sizeof(*path));
2578 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2579 if (!bh) {
2580 /* should we reset i_size? */
2581 err = -EIO;
2582 break;
2583 }
2584 if (WARN_ON(i + 1 > depth)) {
2585 err = -EIO;
2586 break;
2587 }
2588 if (ext4_ext_check(inode, ext_block_hdr(bh),
2589 depth - i - 1)) {
2590 err = -EIO;
2591 break;
2592 }
2593 path[i + 1].p_bh = bh;
2594
2595 /* save actual number of indexes since this
2596 * number is changed at the next iteration */
2597 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2598 i++;
2599 } else {
2600 /* we finished processing this index, go up */
2601 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2602 /* index is empty, remove it;
2603 * handle must be already prepared by the
2604 * truncatei_leaf() */
2605 err = ext4_ext_rm_idx(handle, inode, path + i);
2606 }
2607 /* root level has p_bh == NULL, brelse() eats this */
2608 brelse(path[i].p_bh);
2609 path[i].p_bh = NULL;
2610 i--;
2611 ext_debug("return to level %d\n", i);
2612 }
2613 }
2614
2615 /* TODO: flexible tree reduction should be here */
2616 if (path->p_hdr->eh_entries == 0) {
2617 /*
2618 * truncate to zero freed all the tree,
2619 * so we need to correct eh_depth
2620 */
2621 err = ext4_ext_get_access(handle, inode, path);
2622 if (err == 0) {
2623 ext_inode_hdr(inode)->eh_depth = 0;
2624 ext_inode_hdr(inode)->eh_max =
2625 cpu_to_le16(ext4_ext_space_root(inode, 0));
2626 err = ext4_ext_dirty(handle, inode, path);
2627 }
2628 }
2629 out:
2630 ext4_ext_drop_refs(path);
2631 kfree(path);
2632 if (err == -EAGAIN)
2633 goto again;
2634 ext4_journal_stop(handle);
2635
2636 return err;
2637 }
2638
2639 /*
2640 * called at mount time
2641 */
2642 void ext4_ext_init(struct super_block *sb)
2643 {
2644 /*
2645 * possible initialization would be here
2646 */
2647
2648 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2649 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2650 printk(KERN_INFO "EXT4-fs: file extents enabled");
2651 #ifdef AGGRESSIVE_TEST
2652 printk(", aggressive tests");
2653 #endif
2654 #ifdef CHECK_BINSEARCH
2655 printk(", check binsearch");
2656 #endif
2657 #ifdef EXTENTS_STATS
2658 printk(", stats");
2659 #endif
2660 printk("\n");
2661 #endif
2662 #ifdef EXTENTS_STATS
2663 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2664 EXT4_SB(sb)->s_ext_min = 1 << 30;
2665 EXT4_SB(sb)->s_ext_max = 0;
2666 #endif
2667 }
2668 }
2669
2670 /*
2671 * called at umount time
2672 */
2673 void ext4_ext_release(struct super_block *sb)
2674 {
2675 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2676 return;
2677
2678 #ifdef EXTENTS_STATS
2679 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2680 struct ext4_sb_info *sbi = EXT4_SB(sb);
2681 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2682 sbi->s_ext_blocks, sbi->s_ext_extents,
2683 sbi->s_ext_blocks / sbi->s_ext_extents);
2684 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2685 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2686 }
2687 #endif
2688 }
2689
2690 /* FIXME!! we need to try to merge to left or right after zero-out */
2691 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2692 {
2693 ext4_fsblk_t ee_pblock;
2694 unsigned int ee_len;
2695 int ret;
2696
2697 ee_len = ext4_ext_get_actual_len(ex);
2698 ee_pblock = ext4_ext_pblock(ex);
2699
2700 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2701 if (ret > 0)
2702 ret = 0;
2703
2704 return ret;
2705 }
2706
2707 /*
2708 * used by extent splitting.
2709 */
2710 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2711 due to ENOSPC */
2712 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2713 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2714
2715 /*
2716 * ext4_split_extent_at() splits an extent at given block.
2717 *
2718 * @handle: the journal handle
2719 * @inode: the file inode
2720 * @path: the path to the extent
2721 * @split: the logical block where the extent is splitted.
2722 * @split_flags: indicates if the extent could be zeroout if split fails, and
2723 * the states(init or uninit) of new extents.
2724 * @flags: flags used to insert new extent to extent tree.
2725 *
2726 *
2727 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2728 * of which are deterimined by split_flag.
2729 *
2730 * There are two cases:
2731 * a> the extent are splitted into two extent.
2732 * b> split is not needed, and just mark the extent.
2733 *
2734 * return 0 on success.
2735 */
2736 static int ext4_split_extent_at(handle_t *handle,
2737 struct inode *inode,
2738 struct ext4_ext_path *path,
2739 ext4_lblk_t split,
2740 int split_flag,
2741 int flags)
2742 {
2743 ext4_fsblk_t newblock;
2744 ext4_lblk_t ee_block;
2745 struct ext4_extent *ex, newex, orig_ex;
2746 struct ext4_extent *ex2 = NULL;
2747 unsigned int ee_len, depth;
2748 int err = 0;
2749
2750 ext_debug("ext4_split_extents_at: inode %lu, logical"
2751 "block %llu\n", inode->i_ino, (unsigned long long)split);
2752
2753 ext4_ext_show_leaf(inode, path);
2754
2755 depth = ext_depth(inode);
2756 ex = path[depth].p_ext;
2757 ee_block = le32_to_cpu(ex->ee_block);
2758 ee_len = ext4_ext_get_actual_len(ex);
2759 newblock = split - ee_block + ext4_ext_pblock(ex);
2760
2761 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2762
2763 err = ext4_ext_get_access(handle, inode, path + depth);
2764 if (err)
2765 goto out;
2766
2767 if (split == ee_block) {
2768 /*
2769 * case b: block @split is the block that the extent begins with
2770 * then we just change the state of the extent, and splitting
2771 * is not needed.
2772 */
2773 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2774 ext4_ext_mark_uninitialized(ex);
2775 else
2776 ext4_ext_mark_initialized(ex);
2777
2778 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2779 ext4_ext_try_to_merge(inode, path, ex);
2780
2781 err = ext4_ext_dirty(handle, inode, path + depth);
2782 goto out;
2783 }
2784
2785 /* case a */
2786 memcpy(&orig_ex, ex, sizeof(orig_ex));
2787 ex->ee_len = cpu_to_le16(split - ee_block);
2788 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2789 ext4_ext_mark_uninitialized(ex);
2790
2791 /*
2792 * path may lead to new leaf, not to original leaf any more
2793 * after ext4_ext_insert_extent() returns,
2794 */
2795 err = ext4_ext_dirty(handle, inode, path + depth);
2796 if (err)
2797 goto fix_extent_len;
2798
2799 ex2 = &newex;
2800 ex2->ee_block = cpu_to_le32(split);
2801 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2802 ext4_ext_store_pblock(ex2, newblock);
2803 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2804 ext4_ext_mark_uninitialized(ex2);
2805
2806 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2807 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2808 err = ext4_ext_zeroout(inode, &orig_ex);
2809 if (err)
2810 goto fix_extent_len;
2811 /* update the extent length and mark as initialized */
2812 ex->ee_len = cpu_to_le32(ee_len);
2813 ext4_ext_try_to_merge(inode, path, ex);
2814 err = ext4_ext_dirty(handle, inode, path + depth);
2815 goto out;
2816 } else if (err)
2817 goto fix_extent_len;
2818
2819 out:
2820 ext4_ext_show_leaf(inode, path);
2821 return err;
2822
2823 fix_extent_len:
2824 ex->ee_len = orig_ex.ee_len;
2825 ext4_ext_dirty(handle, inode, path + depth);
2826 return err;
2827 }
2828
2829 /*
2830 * ext4_split_extents() splits an extent and mark extent which is covered
2831 * by @map as split_flags indicates
2832 *
2833 * It may result in splitting the extent into multiple extents (upto three)
2834 * There are three possibilities:
2835 * a> There is no split required
2836 * b> Splits in two extents: Split is happening at either end of the extent
2837 * c> Splits in three extents: Somone is splitting in middle of the extent
2838 *
2839 */
2840 static int ext4_split_extent(handle_t *handle,
2841 struct inode *inode,
2842 struct ext4_ext_path *path,
2843 struct ext4_map_blocks *map,
2844 int split_flag,
2845 int flags)
2846 {
2847 ext4_lblk_t ee_block;
2848 struct ext4_extent *ex;
2849 unsigned int ee_len, depth;
2850 int err = 0;
2851 int uninitialized;
2852 int split_flag1, flags1;
2853
2854 depth = ext_depth(inode);
2855 ex = path[depth].p_ext;
2856 ee_block = le32_to_cpu(ex->ee_block);
2857 ee_len = ext4_ext_get_actual_len(ex);
2858 uninitialized = ext4_ext_is_uninitialized(ex);
2859
2860 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2861 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2862 EXT4_EXT_MAY_ZEROOUT : 0;
2863 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2864 if (uninitialized)
2865 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2866 EXT4_EXT_MARK_UNINIT2;
2867 err = ext4_split_extent_at(handle, inode, path,
2868 map->m_lblk + map->m_len, split_flag1, flags1);
2869 if (err)
2870 goto out;
2871 }
2872
2873 ext4_ext_drop_refs(path);
2874 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2875 if (IS_ERR(path))
2876 return PTR_ERR(path);
2877
2878 if (map->m_lblk >= ee_block) {
2879 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2880 EXT4_EXT_MAY_ZEROOUT : 0;
2881 if (uninitialized)
2882 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2883 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2884 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2885 err = ext4_split_extent_at(handle, inode, path,
2886 map->m_lblk, split_flag1, flags);
2887 if (err)
2888 goto out;
2889 }
2890
2891 ext4_ext_show_leaf(inode, path);
2892 out:
2893 return err ? err : map->m_len;
2894 }
2895
2896 #define EXT4_EXT_ZERO_LEN 7
2897 /*
2898 * This function is called by ext4_ext_map_blocks() if someone tries to write
2899 * to an uninitialized extent. It may result in splitting the uninitialized
2900 * extent into multiple extents (up to three - one initialized and two
2901 * uninitialized).
2902 * There are three possibilities:
2903 * a> There is no split required: Entire extent should be initialized
2904 * b> Splits in two extents: Write is happening at either end of the extent
2905 * c> Splits in three extents: Somone is writing in middle of the extent
2906 */
2907 static int ext4_ext_convert_to_initialized(handle_t *handle,
2908 struct inode *inode,
2909 struct ext4_map_blocks *map,
2910 struct ext4_ext_path *path)
2911 {
2912 struct ext4_map_blocks split_map;
2913 struct ext4_extent zero_ex;
2914 struct ext4_extent *ex;
2915 ext4_lblk_t ee_block, eof_block;
2916 unsigned int allocated, ee_len, depth;
2917 int err = 0;
2918 int split_flag = 0;
2919
2920 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2921 "block %llu, max_blocks %u\n", inode->i_ino,
2922 (unsigned long long)map->m_lblk, map->m_len);
2923
2924 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2925 inode->i_sb->s_blocksize_bits;
2926 if (eof_block < map->m_lblk + map->m_len)
2927 eof_block = map->m_lblk + map->m_len;
2928
2929 depth = ext_depth(inode);
2930 ex = path[depth].p_ext;
2931 ee_block = le32_to_cpu(ex->ee_block);
2932 ee_len = ext4_ext_get_actual_len(ex);
2933 allocated = ee_len - (map->m_lblk - ee_block);
2934
2935 WARN_ON(map->m_lblk < ee_block);
2936 /*
2937 * It is safe to convert extent to initialized via explicit
2938 * zeroout only if extent is fully insde i_size or new_size.
2939 */
2940 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
2941
2942 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
2943 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
2944 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2945 err = ext4_ext_zeroout(inode, ex);
2946 if (err)
2947 goto out;
2948
2949 err = ext4_ext_get_access(handle, inode, path + depth);
2950 if (err)
2951 goto out;
2952 ext4_ext_mark_initialized(ex);
2953 ext4_ext_try_to_merge(inode, path, ex);
2954 err = ext4_ext_dirty(handle, inode, path + depth);
2955 goto out;
2956 }
2957
2958 /*
2959 * four cases:
2960 * 1. split the extent into three extents.
2961 * 2. split the extent into two extents, zeroout the first half.
2962 * 3. split the extent into two extents, zeroout the second half.
2963 * 4. split the extent into two extents with out zeroout.
2964 */
2965 split_map.m_lblk = map->m_lblk;
2966 split_map.m_len = map->m_len;
2967
2968 if (allocated > map->m_len) {
2969 if (allocated <= EXT4_EXT_ZERO_LEN &&
2970 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2971 /* case 3 */
2972 zero_ex.ee_block =
2973 cpu_to_le32(map->m_lblk);
2974 zero_ex.ee_len = cpu_to_le16(allocated);
2975 ext4_ext_store_pblock(&zero_ex,
2976 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
2977 err = ext4_ext_zeroout(inode, &zero_ex);
2978 if (err)
2979 goto out;
2980 split_map.m_lblk = map->m_lblk;
2981 split_map.m_len = allocated;
2982 } else if ((map->m_lblk - ee_block + map->m_len <
2983 EXT4_EXT_ZERO_LEN) &&
2984 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2985 /* case 2 */
2986 if (map->m_lblk != ee_block) {
2987 zero_ex.ee_block = ex->ee_block;
2988 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
2989 ee_block);
2990 ext4_ext_store_pblock(&zero_ex,
2991 ext4_ext_pblock(ex));
2992 err = ext4_ext_zeroout(inode, &zero_ex);
2993 if (err)
2994 goto out;
2995 }
2996
2997 split_map.m_lblk = ee_block;
2998 split_map.m_len = map->m_lblk - ee_block + map->m_len;
2999 allocated = map->m_len;
3000 }
3001 }
3002
3003 allocated = ext4_split_extent(handle, inode, path,
3004 &split_map, split_flag, 0);
3005 if (allocated < 0)
3006 err = allocated;
3007
3008 out:
3009 return err ? err : allocated;
3010 }
3011
3012 /*
3013 * This function is called by ext4_ext_map_blocks() from
3014 * ext4_get_blocks_dio_write() when DIO to write
3015 * to an uninitialized extent.
3016 *
3017 * Writing to an uninitialized extent may result in splitting the uninitialized
3018 * extent into multiple /initialized uninitialized extents (up to three)
3019 * There are three possibilities:
3020 * a> There is no split required: Entire extent should be uninitialized
3021 * b> Splits in two extents: Write is happening at either end of the extent
3022 * c> Splits in three extents: Somone is writing in middle of the extent
3023 *
3024 * One of more index blocks maybe needed if the extent tree grow after
3025 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3026 * complete, we need to split the uninitialized extent before DIO submit
3027 * the IO. The uninitialized extent called at this time will be split
3028 * into three uninitialized extent(at most). After IO complete, the part
3029 * being filled will be convert to initialized by the end_io callback function
3030 * via ext4_convert_unwritten_extents().
3031 *
3032 * Returns the size of uninitialized extent to be written on success.
3033 */
3034 static int ext4_split_unwritten_extents(handle_t *handle,
3035 struct inode *inode,
3036 struct ext4_map_blocks *map,
3037 struct ext4_ext_path *path,
3038 int flags)
3039 {
3040 ext4_lblk_t eof_block;
3041 ext4_lblk_t ee_block;
3042 struct ext4_extent *ex;
3043 unsigned int ee_len;
3044 int split_flag = 0, depth;
3045
3046 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3047 "block %llu, max_blocks %u\n", inode->i_ino,
3048 (unsigned long long)map->m_lblk, map->m_len);
3049
3050 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3051 inode->i_sb->s_blocksize_bits;
3052 if (eof_block < map->m_lblk + map->m_len)
3053 eof_block = map->m_lblk + map->m_len;
3054 /*
3055 * It is safe to convert extent to initialized via explicit
3056 * zeroout only if extent is fully insde i_size or new_size.
3057 */
3058 depth = ext_depth(inode);
3059 ex = path[depth].p_ext;
3060 ee_block = le32_to_cpu(ex->ee_block);
3061 ee_len = ext4_ext_get_actual_len(ex);
3062
3063 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3064 split_flag |= EXT4_EXT_MARK_UNINIT2;
3065
3066 flags |= EXT4_GET_BLOCKS_PRE_IO;
3067 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3068 }
3069
3070 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3071 struct inode *inode,
3072 struct ext4_ext_path *path)
3073 {
3074 struct ext4_extent *ex;
3075 int depth;
3076 int err = 0;
3077
3078 depth = ext_depth(inode);
3079 ex = path[depth].p_ext;
3080
3081 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3082 "block %llu, max_blocks %u\n", inode->i_ino,
3083 (unsigned long long)le32_to_cpu(ex->ee_block),
3084 ext4_ext_get_actual_len(ex));
3085
3086 err = ext4_ext_get_access(handle, inode, path + depth);
3087 if (err)
3088 goto out;
3089 /* first mark the extent as initialized */
3090 ext4_ext_mark_initialized(ex);
3091
3092 /* note: ext4_ext_correct_indexes() isn't needed here because
3093 * borders are not changed
3094 */
3095 ext4_ext_try_to_merge(inode, path, ex);
3096
3097 /* Mark modified extent as dirty */
3098 err = ext4_ext_dirty(handle, inode, path + depth);
3099 out:
3100 ext4_ext_show_leaf(inode, path);
3101 return err;
3102 }
3103
3104 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3105 sector_t block, int count)
3106 {
3107 int i;
3108 for (i = 0; i < count; i++)
3109 unmap_underlying_metadata(bdev, block + i);
3110 }
3111
3112 /*
3113 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3114 */
3115 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3116 ext4_lblk_t lblk,
3117 struct ext4_ext_path *path,
3118 unsigned int len)
3119 {
3120 int i, depth;
3121 struct ext4_extent_header *eh;
3122 struct ext4_extent *last_ex;
3123
3124 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3125 return 0;
3126
3127 depth = ext_depth(inode);
3128 eh = path[depth].p_hdr;
3129
3130 if (unlikely(!eh->eh_entries)) {
3131 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3132 "EOFBLOCKS_FL set");
3133 return -EIO;
3134 }
3135 last_ex = EXT_LAST_EXTENT(eh);
3136 /*
3137 * We should clear the EOFBLOCKS_FL flag if we are writing the
3138 * last block in the last extent in the file. We test this by
3139 * first checking to see if the caller to
3140 * ext4_ext_get_blocks() was interested in the last block (or
3141 * a block beyond the last block) in the current extent. If
3142 * this turns out to be false, we can bail out from this
3143 * function immediately.
3144 */
3145 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3146 ext4_ext_get_actual_len(last_ex))
3147 return 0;
3148 /*
3149 * If the caller does appear to be planning to write at or
3150 * beyond the end of the current extent, we then test to see
3151 * if the current extent is the last extent in the file, by
3152 * checking to make sure it was reached via the rightmost node
3153 * at each level of the tree.
3154 */
3155 for (i = depth-1; i >= 0; i--)
3156 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3157 return 0;
3158 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3159 return ext4_mark_inode_dirty(handle, inode);
3160 }
3161
3162 static int
3163 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3164 struct ext4_map_blocks *map,
3165 struct ext4_ext_path *path, int flags,
3166 unsigned int allocated, ext4_fsblk_t newblock)
3167 {
3168 int ret = 0;
3169 int err = 0;
3170 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3171
3172 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3173 "block %llu, max_blocks %u, flags %d, allocated %u",
3174 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3175 flags, allocated);
3176 ext4_ext_show_leaf(inode, path);
3177
3178 /* get_block() before submit the IO, split the extent */
3179 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3180 ret = ext4_split_unwritten_extents(handle, inode, map,
3181 path, flags);
3182 /*
3183 * Flag the inode(non aio case) or end_io struct (aio case)
3184 * that this IO needs to conversion to written when IO is
3185 * completed
3186 */
3187 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3188 io->flag = EXT4_IO_END_UNWRITTEN;
3189 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3190 } else
3191 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3192 if (ext4_should_dioread_nolock(inode))
3193 map->m_flags |= EXT4_MAP_UNINIT;
3194 goto out;
3195 }
3196 /* IO end_io complete, convert the filled extent to written */
3197 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3198 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3199 path);
3200 if (ret >= 0) {
3201 ext4_update_inode_fsync_trans(handle, inode, 1);
3202 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3203 path, map->m_len);
3204 } else
3205 err = ret;
3206 goto out2;
3207 }
3208 /* buffered IO case */
3209 /*
3210 * repeat fallocate creation request
3211 * we already have an unwritten extent
3212 */
3213 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3214 goto map_out;
3215
3216 /* buffered READ or buffered write_begin() lookup */
3217 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3218 /*
3219 * We have blocks reserved already. We
3220 * return allocated blocks so that delalloc
3221 * won't do block reservation for us. But
3222 * the buffer head will be unmapped so that
3223 * a read from the block returns 0s.
3224 */
3225 map->m_flags |= EXT4_MAP_UNWRITTEN;
3226 goto out1;
3227 }
3228
3229 /* buffered write, writepage time, convert*/
3230 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3231 if (ret >= 0) {
3232 ext4_update_inode_fsync_trans(handle, inode, 1);
3233 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3234 map->m_len);
3235 if (err < 0)
3236 goto out2;
3237 }
3238
3239 out:
3240 if (ret <= 0) {
3241 err = ret;
3242 goto out2;
3243 } else
3244 allocated = ret;
3245 map->m_flags |= EXT4_MAP_NEW;
3246 /*
3247 * if we allocated more blocks than requested
3248 * we need to make sure we unmap the extra block
3249 * allocated. The actual needed block will get
3250 * unmapped later when we find the buffer_head marked
3251 * new.
3252 */
3253 if (allocated > map->m_len) {
3254 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3255 newblock + map->m_len,
3256 allocated - map->m_len);
3257 allocated = map->m_len;
3258 }
3259
3260 /*
3261 * If we have done fallocate with the offset that is already
3262 * delayed allocated, we would have block reservation
3263 * and quota reservation done in the delayed write path.
3264 * But fallocate would have already updated quota and block
3265 * count for this offset. So cancel these reservation
3266 */
3267 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3268 ext4_da_update_reserve_space(inode, allocated, 0);
3269
3270 map_out:
3271 map->m_flags |= EXT4_MAP_MAPPED;
3272 out1:
3273 if (allocated > map->m_len)
3274 allocated = map->m_len;
3275 ext4_ext_show_leaf(inode, path);
3276 map->m_pblk = newblock;
3277 map->m_len = allocated;
3278 out2:
3279 if (path) {
3280 ext4_ext_drop_refs(path);
3281 kfree(path);
3282 }
3283 return err ? err : allocated;
3284 }
3285
3286 /*
3287 * Block allocation/map/preallocation routine for extents based files
3288 *
3289 *
3290 * Need to be called with
3291 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3292 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3293 *
3294 * return > 0, number of of blocks already mapped/allocated
3295 * if create == 0 and these are pre-allocated blocks
3296 * buffer head is unmapped
3297 * otherwise blocks are mapped
3298 *
3299 * return = 0, if plain look up failed (blocks have not been allocated)
3300 * buffer head is unmapped
3301 *
3302 * return < 0, error case.
3303 */
3304 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3305 struct ext4_map_blocks *map, int flags)
3306 {
3307 struct ext4_ext_path *path = NULL;
3308 struct ext4_extent newex, *ex;
3309 ext4_fsblk_t newblock = 0;
3310 int err = 0, depth, ret;
3311 unsigned int allocated = 0;
3312 unsigned int punched_out = 0;
3313 unsigned int result = 0;
3314 struct ext4_allocation_request ar;
3315 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3316 struct ext4_map_blocks punch_map;
3317
3318 ext_debug("blocks %u/%u requested for inode %lu\n",
3319 map->m_lblk, map->m_len, inode->i_ino);
3320 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3321
3322 /* check in cache */
3323 if (ext4_ext_in_cache(inode, map->m_lblk, &newex) &&
3324 ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0)) {
3325 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3326 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3327 /*
3328 * block isn't allocated yet and
3329 * user doesn't want to allocate it
3330 */
3331 goto out2;
3332 }
3333 /* we should allocate requested block */
3334 } else {
3335 /* block is already allocated */
3336 newblock = map->m_lblk
3337 - le32_to_cpu(newex.ee_block)
3338 + ext4_ext_pblock(&newex);
3339 /* number of remaining blocks in the extent */
3340 allocated = ext4_ext_get_actual_len(&newex) -
3341 (map->m_lblk - le32_to_cpu(newex.ee_block));
3342 goto out;
3343 }
3344 }
3345
3346 /* find extent for this block */
3347 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3348 if (IS_ERR(path)) {
3349 err = PTR_ERR(path);
3350 path = NULL;
3351 goto out2;
3352 }
3353
3354 depth = ext_depth(inode);
3355
3356 /*
3357 * consistent leaf must not be empty;
3358 * this situation is possible, though, _during_ tree modification;
3359 * this is why assert can't be put in ext4_ext_find_extent()
3360 */
3361 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3362 EXT4_ERROR_INODE(inode, "bad extent address "
3363 "lblock: %lu, depth: %d pblock %lld",
3364 (unsigned long) map->m_lblk, depth,
3365 path[depth].p_block);
3366 err = -EIO;
3367 goto out2;
3368 }
3369
3370 ex = path[depth].p_ext;
3371 if (ex) {
3372 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3373 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3374 unsigned short ee_len;
3375
3376 /*
3377 * Uninitialized extents are treated as holes, except that
3378 * we split out initialized portions during a write.
3379 */
3380 ee_len = ext4_ext_get_actual_len(ex);
3381 /* if found extent covers block, simply return it */
3382 if (in_range(map->m_lblk, ee_block, ee_len)) {
3383 newblock = map->m_lblk - ee_block + ee_start;
3384 /* number of remaining blocks in the extent */
3385 allocated = ee_len - (map->m_lblk - ee_block);
3386 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3387 ee_block, ee_len, newblock);
3388
3389 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3390 /*
3391 * Do not put uninitialized extent
3392 * in the cache
3393 */
3394 if (!ext4_ext_is_uninitialized(ex)) {
3395 ext4_ext_put_in_cache(inode, ee_block,
3396 ee_len, ee_start);
3397 goto out;
3398 }
3399 ret = ext4_ext_handle_uninitialized_extents(
3400 handle, inode, map, path, flags,
3401 allocated, newblock);
3402 return ret;
3403 }
3404
3405 /*
3406 * Punch out the map length, but only to the
3407 * end of the extent
3408 */
3409 punched_out = allocated < map->m_len ?
3410 allocated : map->m_len;
3411
3412 /*
3413 * Sense extents need to be converted to
3414 * uninitialized, they must fit in an
3415 * uninitialized extent
3416 */
3417 if (punched_out > EXT_UNINIT_MAX_LEN)
3418 punched_out = EXT_UNINIT_MAX_LEN;
3419
3420 punch_map.m_lblk = map->m_lblk;
3421 punch_map.m_pblk = newblock;
3422 punch_map.m_len = punched_out;
3423 punch_map.m_flags = 0;
3424
3425 /* Check to see if the extent needs to be split */
3426 if (punch_map.m_len != ee_len ||
3427 punch_map.m_lblk != ee_block) {
3428
3429 ret = ext4_split_extent(handle, inode,
3430 path, &punch_map, 0,
3431 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3432 EXT4_GET_BLOCKS_PRE_IO);
3433
3434 if (ret < 0) {
3435 err = ret;
3436 goto out2;
3437 }
3438 /*
3439 * find extent for the block at
3440 * the start of the hole
3441 */
3442 ext4_ext_drop_refs(path);
3443 kfree(path);
3444
3445 path = ext4_ext_find_extent(inode,
3446 map->m_lblk, NULL);
3447 if (IS_ERR(path)) {
3448 err = PTR_ERR(path);
3449 path = NULL;
3450 goto out2;
3451 }
3452
3453 depth = ext_depth(inode);
3454 ex = path[depth].p_ext;
3455 ee_len = ext4_ext_get_actual_len(ex);
3456 ee_block = le32_to_cpu(ex->ee_block);
3457 ee_start = ext4_ext_pblock(ex);
3458
3459 }
3460
3461 ext4_ext_mark_uninitialized(ex);
3462
3463 ext4_ext_invalidate_cache(inode);
3464
3465 err = ext4_ext_rm_leaf(handle, inode, path,
3466 map->m_lblk, map->m_lblk + punched_out);
3467
3468 if (!err && path->p_hdr->eh_entries == 0) {
3469 /*
3470 * Punch hole freed all of this sub tree,
3471 * so we need to correct eh_depth
3472 */
3473 err = ext4_ext_get_access(handle, inode, path);
3474 if (err == 0) {
3475 ext_inode_hdr(inode)->eh_depth = 0;
3476 ext_inode_hdr(inode)->eh_max =
3477 cpu_to_le16(ext4_ext_space_root(
3478 inode, 0));
3479
3480 err = ext4_ext_dirty(
3481 handle, inode, path);
3482 }
3483 }
3484
3485 goto out2;
3486 }
3487 }
3488
3489 /*
3490 * requested block isn't allocated yet;
3491 * we couldn't try to create block if create flag is zero
3492 */
3493 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3494 /*
3495 * put just found gap into cache to speed up
3496 * subsequent requests
3497 */
3498 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3499 goto out2;
3500 }
3501 /*
3502 * Okay, we need to do block allocation.
3503 */
3504
3505 /* find neighbour allocated blocks */
3506 ar.lleft = map->m_lblk;
3507 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3508 if (err)
3509 goto out2;
3510 ar.lright = map->m_lblk;
3511 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright);
3512 if (err)
3513 goto out2;
3514
3515 /*
3516 * See if request is beyond maximum number of blocks we can have in
3517 * a single extent. For an initialized extent this limit is
3518 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3519 * EXT_UNINIT_MAX_LEN.
3520 */
3521 if (map->m_len > EXT_INIT_MAX_LEN &&
3522 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3523 map->m_len = EXT_INIT_MAX_LEN;
3524 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3525 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3526 map->m_len = EXT_UNINIT_MAX_LEN;
3527
3528 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3529 newex.ee_block = cpu_to_le32(map->m_lblk);
3530 newex.ee_len = cpu_to_le16(map->m_len);
3531 err = ext4_ext_check_overlap(inode, &newex, path);
3532 if (err)
3533 allocated = ext4_ext_get_actual_len(&newex);
3534 else
3535 allocated = map->m_len;
3536
3537 /* allocate new block */
3538 ar.inode = inode;
3539 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3540 ar.logical = map->m_lblk;
3541 ar.len = allocated;
3542 if (S_ISREG(inode->i_mode))
3543 ar.flags = EXT4_MB_HINT_DATA;
3544 else
3545 /* disable in-core preallocation for non-regular files */
3546 ar.flags = 0;
3547 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
3548 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
3549 newblock = ext4_mb_new_blocks(handle, &ar, &err);
3550 if (!newblock)
3551 goto out2;
3552 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
3553 ar.goal, newblock, allocated);
3554
3555 /* try to insert new extent into found leaf and return */
3556 ext4_ext_store_pblock(&newex, newblock);
3557 newex.ee_len = cpu_to_le16(ar.len);
3558 /* Mark uninitialized */
3559 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
3560 ext4_ext_mark_uninitialized(&newex);
3561 /*
3562 * io_end structure was created for every IO write to an
3563 * uninitialized extent. To avoid unnecessary conversion,
3564 * here we flag the IO that really needs the conversion.
3565 * For non asycn direct IO case, flag the inode state
3566 * that we need to perform conversion when IO is done.
3567 */
3568 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3569 if (io && !(io->flag & EXT4_IO_END_UNWRITTEN)) {
3570 io->flag = EXT4_IO_END_UNWRITTEN;
3571 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
3572 } else
3573 ext4_set_inode_state(inode,
3574 EXT4_STATE_DIO_UNWRITTEN);
3575 }
3576 if (ext4_should_dioread_nolock(inode))
3577 map->m_flags |= EXT4_MAP_UNINIT;
3578 }
3579
3580 err = check_eofblocks_fl(handle, inode, map->m_lblk, path, ar.len);
3581 if (!err)
3582 err = ext4_ext_insert_extent(handle, inode, path,
3583 &newex, flags);
3584 if (err) {
3585 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
3586 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
3587 /* free data blocks we just allocated */
3588 /* not a good idea to call discard here directly,
3589 * but otherwise we'd need to call it every free() */
3590 ext4_discard_preallocations(inode);
3591 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
3592 ext4_ext_get_actual_len(&newex), fb_flags);
3593 goto out2;
3594 }
3595
3596 /* previous routine could use block we allocated */
3597 newblock = ext4_ext_pblock(&newex);
3598 allocated = ext4_ext_get_actual_len(&newex);
3599 if (allocated > map->m_len)
3600 allocated = map->m_len;
3601 map->m_flags |= EXT4_MAP_NEW;
3602
3603 /*
3604 * Update reserved blocks/metadata blocks after successful
3605 * block allocation which had been deferred till now.
3606 */
3607 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
3608 ext4_da_update_reserve_space(inode, allocated, 1);
3609
3610 /*
3611 * Cache the extent and update transaction to commit on fdatasync only
3612 * when it is _not_ an uninitialized extent.
3613 */
3614 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
3615 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
3616 ext4_update_inode_fsync_trans(handle, inode, 1);
3617 } else
3618 ext4_update_inode_fsync_trans(handle, inode, 0);
3619 out:
3620 if (allocated > map->m_len)
3621 allocated = map->m_len;
3622 ext4_ext_show_leaf(inode, path);
3623 map->m_flags |= EXT4_MAP_MAPPED;
3624 map->m_pblk = newblock;
3625 map->m_len = allocated;
3626 out2:
3627 if (path) {
3628 ext4_ext_drop_refs(path);
3629 kfree(path);
3630 }
3631 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
3632 newblock, map->m_len, err ? err : allocated);
3633
3634 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
3635 punched_out : allocated;
3636
3637 return err ? err : result;
3638 }
3639
3640 void ext4_ext_truncate(struct inode *inode)
3641 {
3642 struct address_space *mapping = inode->i_mapping;
3643 struct super_block *sb = inode->i_sb;
3644 ext4_lblk_t last_block;
3645 handle_t *handle;
3646 int err = 0;
3647
3648 /*
3649 * finish any pending end_io work so we won't run the risk of
3650 * converting any truncated blocks to initialized later
3651 */
3652 ext4_flush_completed_IO(inode);
3653
3654 /*
3655 * probably first extent we're gonna free will be last in block
3656 */
3657 err = ext4_writepage_trans_blocks(inode);
3658 handle = ext4_journal_start(inode, err);
3659 if (IS_ERR(handle))
3660 return;
3661
3662 if (inode->i_size & (sb->s_blocksize - 1))
3663 ext4_block_truncate_page(handle, mapping, inode->i_size);
3664
3665 if (ext4_orphan_add(handle, inode))
3666 goto out_stop;
3667
3668 down_write(&EXT4_I(inode)->i_data_sem);
3669 ext4_ext_invalidate_cache(inode);
3670
3671 ext4_discard_preallocations(inode);
3672
3673 /*
3674 * TODO: optimization is possible here.
3675 * Probably we need not scan at all,
3676 * because page truncation is enough.
3677 */
3678
3679 /* we have to know where to truncate from in crash case */
3680 EXT4_I(inode)->i_disksize = inode->i_size;
3681 ext4_mark_inode_dirty(handle, inode);
3682
3683 last_block = (inode->i_size + sb->s_blocksize - 1)
3684 >> EXT4_BLOCK_SIZE_BITS(sb);
3685 err = ext4_ext_remove_space(inode, last_block);
3686
3687 /* In a multi-transaction truncate, we only make the final
3688 * transaction synchronous.
3689 */
3690 if (IS_SYNC(inode))
3691 ext4_handle_sync(handle);
3692
3693 up_write(&EXT4_I(inode)->i_data_sem);
3694
3695 out_stop:
3696 /*
3697 * If this was a simple ftruncate() and the file will remain alive,
3698 * then we need to clear up the orphan record which we created above.
3699 * However, if this was a real unlink then we were called by
3700 * ext4_delete_inode(), and we allow that function to clean up the
3701 * orphan info for us.
3702 */
3703 if (inode->i_nlink)
3704 ext4_orphan_del(handle, inode);
3705
3706 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3707 ext4_mark_inode_dirty(handle, inode);
3708 ext4_journal_stop(handle);
3709 }
3710
3711 static void ext4_falloc_update_inode(struct inode *inode,
3712 int mode, loff_t new_size, int update_ctime)
3713 {
3714 struct timespec now;
3715
3716 if (update_ctime) {
3717 now = current_fs_time(inode->i_sb);
3718 if (!timespec_equal(&inode->i_ctime, &now))
3719 inode->i_ctime = now;
3720 }
3721 /*
3722 * Update only when preallocation was requested beyond
3723 * the file size.
3724 */
3725 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3726 if (new_size > i_size_read(inode))
3727 i_size_write(inode, new_size);
3728 if (new_size > EXT4_I(inode)->i_disksize)
3729 ext4_update_i_disksize(inode, new_size);
3730 } else {
3731 /*
3732 * Mark that we allocate beyond EOF so the subsequent truncate
3733 * can proceed even if the new size is the same as i_size.
3734 */
3735 if (new_size > i_size_read(inode))
3736 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3737 }
3738
3739 }
3740
3741 /*
3742 * preallocate space for a file. This implements ext4's fallocate file
3743 * operation, which gets called from sys_fallocate system call.
3744 * For block-mapped files, posix_fallocate should fall back to the method
3745 * of writing zeroes to the required new blocks (the same behavior which is
3746 * expected for file systems which do not support fallocate() system call).
3747 */
3748 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
3749 {
3750 struct inode *inode = file->f_path.dentry->d_inode;
3751 handle_t *handle;
3752 loff_t new_size;
3753 unsigned int max_blocks;
3754 int ret = 0;
3755 int ret2 = 0;
3756 int retries = 0;
3757 struct ext4_map_blocks map;
3758 unsigned int credits, blkbits = inode->i_blkbits;
3759
3760 /*
3761 * currently supporting (pre)allocate mode for extent-based
3762 * files _only_
3763 */
3764 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
3765 return -EOPNOTSUPP;
3766
3767 /* Return error if mode is not supported */
3768 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3769 return -EOPNOTSUPP;
3770
3771 if (mode & FALLOC_FL_PUNCH_HOLE)
3772 return ext4_punch_hole(file, offset, len);
3773
3774 trace_ext4_fallocate_enter(inode, offset, len, mode);
3775 map.m_lblk = offset >> blkbits;
3776 /*
3777 * We can't just convert len to max_blocks because
3778 * If blocksize = 4096 offset = 3072 and len = 2048
3779 */
3780 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
3781 - map.m_lblk;
3782 /*
3783 * credits to insert 1 extent into extent tree
3784 */
3785 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3786 mutex_lock(&inode->i_mutex);
3787 ret = inode_newsize_ok(inode, (len + offset));
3788 if (ret) {
3789 mutex_unlock(&inode->i_mutex);
3790 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
3791 return ret;
3792 }
3793 retry:
3794 while (ret >= 0 && ret < max_blocks) {
3795 map.m_lblk = map.m_lblk + ret;
3796 map.m_len = max_blocks = max_blocks - ret;
3797 handle = ext4_journal_start(inode, credits);
3798 if (IS_ERR(handle)) {
3799 ret = PTR_ERR(handle);
3800 break;
3801 }
3802 ret = ext4_map_blocks(handle, inode, &map,
3803 EXT4_GET_BLOCKS_CREATE_UNINIT_EXT |
3804 EXT4_GET_BLOCKS_NO_NORMALIZE);
3805 if (ret <= 0) {
3806 #ifdef EXT4FS_DEBUG
3807 WARN_ON(ret <= 0);
3808 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3809 "returned error inode#%lu, block=%u, "
3810 "max_blocks=%u", __func__,
3811 inode->i_ino, map.m_lblk, max_blocks);
3812 #endif
3813 ext4_mark_inode_dirty(handle, inode);
3814 ret2 = ext4_journal_stop(handle);
3815 break;
3816 }
3817 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
3818 blkbits) >> blkbits))
3819 new_size = offset + len;
3820 else
3821 new_size = (map.m_lblk + ret) << blkbits;
3822
3823 ext4_falloc_update_inode(inode, mode, new_size,
3824 (map.m_flags & EXT4_MAP_NEW));
3825 ext4_mark_inode_dirty(handle, inode);
3826 ret2 = ext4_journal_stop(handle);
3827 if (ret2)
3828 break;
3829 }
3830 if (ret == -ENOSPC &&
3831 ext4_should_retry_alloc(inode->i_sb, &retries)) {
3832 ret = 0;
3833 goto retry;
3834 }
3835 mutex_unlock(&inode->i_mutex);
3836 trace_ext4_fallocate_exit(inode, offset, max_blocks,
3837 ret > 0 ? ret2 : ret);
3838 return ret > 0 ? ret2 : ret;
3839 }
3840
3841 /*
3842 * This function convert a range of blocks to written extents
3843 * The caller of this function will pass the start offset and the size.
3844 * all unwritten extents within this range will be converted to
3845 * written extents.
3846 *
3847 * This function is called from the direct IO end io call back
3848 * function, to convert the fallocated extents after IO is completed.
3849 * Returns 0 on success.
3850 */
3851 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
3852 ssize_t len)
3853 {
3854 handle_t *handle;
3855 unsigned int max_blocks;
3856 int ret = 0;
3857 int ret2 = 0;
3858 struct ext4_map_blocks map;
3859 unsigned int credits, blkbits = inode->i_blkbits;
3860
3861 map.m_lblk = offset >> blkbits;
3862 /*
3863 * We can't just convert len to max_blocks because
3864 * If blocksize = 4096 offset = 3072 and len = 2048
3865 */
3866 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
3867 map.m_lblk);
3868 /*
3869 * credits to insert 1 extent into extent tree
3870 */
3871 credits = ext4_chunk_trans_blocks(inode, max_blocks);
3872 while (ret >= 0 && ret < max_blocks) {
3873 map.m_lblk += ret;
3874 map.m_len = (max_blocks -= ret);
3875 handle = ext4_journal_start(inode, credits);
3876 if (IS_ERR(handle)) {
3877 ret = PTR_ERR(handle);
3878 break;
3879 }
3880 ret = ext4_map_blocks(handle, inode, &map,
3881 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
3882 if (ret <= 0) {
3883 WARN_ON(ret <= 0);
3884 printk(KERN_ERR "%s: ext4_ext_map_blocks "
3885 "returned error inode#%lu, block=%u, "
3886 "max_blocks=%u", __func__,
3887 inode->i_ino, map.m_lblk, map.m_len);
3888 }
3889 ext4_mark_inode_dirty(handle, inode);
3890 ret2 = ext4_journal_stop(handle);
3891 if (ret <= 0 || ret2 )
3892 break;
3893 }
3894 return ret > 0 ? ret2 : ret;
3895 }
3896
3897 /*
3898 * Callback function called for each extent to gather FIEMAP information.
3899 */
3900 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
3901 struct ext4_ext_cache *newex, struct ext4_extent *ex,
3902 void *data)
3903 {
3904 __u64 logical;
3905 __u64 physical;
3906 __u64 length;
3907 __u32 flags = 0;
3908 int ret = 0;
3909 struct fiemap_extent_info *fieinfo = data;
3910 unsigned char blksize_bits;
3911
3912 blksize_bits = inode->i_sb->s_blocksize_bits;
3913 logical = (__u64)newex->ec_block << blksize_bits;
3914
3915 if (newex->ec_start == 0) {
3916 /*
3917 * No extent in extent-tree contains block @newex->ec_start,
3918 * then the block may stay in 1)a hole or 2)delayed-extent.
3919 *
3920 * Holes or delayed-extents are processed as follows.
3921 * 1. lookup dirty pages with specified range in pagecache.
3922 * If no page is got, then there is no delayed-extent and
3923 * return with EXT_CONTINUE.
3924 * 2. find the 1st mapped buffer,
3925 * 3. check if the mapped buffer is both in the request range
3926 * and a delayed buffer. If not, there is no delayed-extent,
3927 * then return.
3928 * 4. a delayed-extent is found, the extent will be collected.
3929 */
3930 ext4_lblk_t end = 0;
3931 pgoff_t last_offset;
3932 pgoff_t offset;
3933 pgoff_t index;
3934 pgoff_t start_index = 0;
3935 struct page **pages = NULL;
3936 struct buffer_head *bh = NULL;
3937 struct buffer_head *head = NULL;
3938 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
3939
3940 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
3941 if (pages == NULL)
3942 return -ENOMEM;
3943
3944 offset = logical >> PAGE_SHIFT;
3945 repeat:
3946 last_offset = offset;
3947 head = NULL;
3948 ret = find_get_pages_tag(inode->i_mapping, &offset,
3949 PAGECACHE_TAG_DIRTY, nr_pages, pages);
3950
3951 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
3952 /* First time, try to find a mapped buffer. */
3953 if (ret == 0) {
3954 out:
3955 for (index = 0; index < ret; index++)
3956 page_cache_release(pages[index]);
3957 /* just a hole. */
3958 kfree(pages);
3959 return EXT_CONTINUE;
3960 }
3961 index = 0;
3962
3963 next_page:
3964 /* Try to find the 1st mapped buffer. */
3965 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
3966 blksize_bits;
3967 if (!page_has_buffers(pages[index]))
3968 goto out;
3969 head = page_buffers(pages[index]);
3970 if (!head)
3971 goto out;
3972
3973 index++;
3974 bh = head;
3975 do {
3976 if (end >= newex->ec_block +
3977 newex->ec_len)
3978 /* The buffer is out of
3979 * the request range.
3980 */
3981 goto out;
3982
3983 if (buffer_mapped(bh) &&
3984 end >= newex->ec_block) {
3985 start_index = index - 1;
3986 /* get the 1st mapped buffer. */
3987 goto found_mapped_buffer;
3988 }
3989
3990 bh = bh->b_this_page;
3991 end++;
3992 } while (bh != head);
3993
3994 /* No mapped buffer in the range found in this page,
3995 * We need to look up next page.
3996 */
3997 if (index >= ret) {
3998 /* There is no page left, but we need to limit
3999 * newex->ec_len.
4000 */
4001 newex->ec_len = end - newex->ec_block;
4002 goto out;
4003 }
4004 goto next_page;
4005 } else {
4006 /*Find contiguous delayed buffers. */
4007 if (ret > 0 && pages[0]->index == last_offset)
4008 head = page_buffers(pages[0]);
4009 bh = head;
4010 index = 1;
4011 start_index = 0;
4012 }
4013
4014 found_mapped_buffer:
4015 if (bh != NULL && buffer_delay(bh)) {
4016 /* 1st or contiguous delayed buffer found. */
4017 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4018 /*
4019 * 1st delayed buffer found, record
4020 * the start of extent.
4021 */
4022 flags |= FIEMAP_EXTENT_DELALLOC;
4023 newex->ec_block = end;
4024 logical = (__u64)end << blksize_bits;
4025 }
4026 /* Find contiguous delayed buffers. */
4027 do {
4028 if (!buffer_delay(bh))
4029 goto found_delayed_extent;
4030 bh = bh->b_this_page;
4031 end++;
4032 } while (bh != head);
4033
4034 for (; index < ret; index++) {
4035 if (!page_has_buffers(pages[index])) {
4036 bh = NULL;
4037 break;
4038 }
4039 head = page_buffers(pages[index]);
4040 if (!head) {
4041 bh = NULL;
4042 break;
4043 }
4044
4045 if (pages[index]->index !=
4046 pages[start_index]->index + index
4047 - start_index) {
4048 /* Blocks are not contiguous. */
4049 bh = NULL;
4050 break;
4051 }
4052 bh = head;
4053 do {
4054 if (!buffer_delay(bh))
4055 /* Delayed-extent ends. */
4056 goto found_delayed_extent;
4057 bh = bh->b_this_page;
4058 end++;
4059 } while (bh != head);
4060 }
4061 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4062 /* a hole found. */
4063 goto out;
4064
4065 found_delayed_extent:
4066 newex->ec_len = min(end - newex->ec_block,
4067 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4068 if (ret == nr_pages && bh != NULL &&
4069 newex->ec_len < EXT_INIT_MAX_LEN &&
4070 buffer_delay(bh)) {
4071 /* Have not collected an extent and continue. */
4072 for (index = 0; index < ret; index++)
4073 page_cache_release(pages[index]);
4074 goto repeat;
4075 }
4076
4077 for (index = 0; index < ret; index++)
4078 page_cache_release(pages[index]);
4079 kfree(pages);
4080 }
4081
4082 physical = (__u64)newex->ec_start << blksize_bits;
4083 length = (__u64)newex->ec_len << blksize_bits;
4084
4085 if (ex && ext4_ext_is_uninitialized(ex))
4086 flags |= FIEMAP_EXTENT_UNWRITTEN;
4087
4088 if (next == EXT_MAX_BLOCKS)
4089 flags |= FIEMAP_EXTENT_LAST;
4090
4091 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4092 length, flags);
4093 if (ret < 0)
4094 return ret;
4095 if (ret == 1)
4096 return EXT_BREAK;
4097 return EXT_CONTINUE;
4098 }
4099
4100 /* fiemap flags we can handle specified here */
4101 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4102
4103 static int ext4_xattr_fiemap(struct inode *inode,
4104 struct fiemap_extent_info *fieinfo)
4105 {
4106 __u64 physical = 0;
4107 __u64 length;
4108 __u32 flags = FIEMAP_EXTENT_LAST;
4109 int blockbits = inode->i_sb->s_blocksize_bits;
4110 int error = 0;
4111
4112 /* in-inode? */
4113 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4114 struct ext4_iloc iloc;
4115 int offset; /* offset of xattr in inode */
4116
4117 error = ext4_get_inode_loc(inode, &iloc);
4118 if (error)
4119 return error;
4120 physical = iloc.bh->b_blocknr << blockbits;
4121 offset = EXT4_GOOD_OLD_INODE_SIZE +
4122 EXT4_I(inode)->i_extra_isize;
4123 physical += offset;
4124 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4125 flags |= FIEMAP_EXTENT_DATA_INLINE;
4126 brelse(iloc.bh);
4127 } else { /* external block */
4128 physical = EXT4_I(inode)->i_file_acl << blockbits;
4129 length = inode->i_sb->s_blocksize;
4130 }
4131
4132 if (physical)
4133 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4134 length, flags);
4135 return (error < 0 ? error : 0);
4136 }
4137
4138 /*
4139 * ext4_ext_punch_hole
4140 *
4141 * Punches a hole of "length" bytes in a file starting
4142 * at byte "offset"
4143 *
4144 * @inode: The inode of the file to punch a hole in
4145 * @offset: The starting byte offset of the hole
4146 * @length: The length of the hole
4147 *
4148 * Returns the number of blocks removed or negative on err
4149 */
4150 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4151 {
4152 struct inode *inode = file->f_path.dentry->d_inode;
4153 struct super_block *sb = inode->i_sb;
4154 struct ext4_ext_cache cache_ex;
4155 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4156 struct address_space *mapping = inode->i_mapping;
4157 struct ext4_map_blocks map;
4158 handle_t *handle;
4159 loff_t first_block_offset, last_block_offset, block_len;
4160 loff_t first_page, last_page, first_page_offset, last_page_offset;
4161 int ret, credits, blocks_released, err = 0;
4162
4163 first_block = (offset + sb->s_blocksize - 1) >>
4164 EXT4_BLOCK_SIZE_BITS(sb);
4165 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4166
4167 first_block_offset = first_block << EXT4_BLOCK_SIZE_BITS(sb);
4168 last_block_offset = last_block << EXT4_BLOCK_SIZE_BITS(sb);
4169
4170 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4171 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4172
4173 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4174 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4175
4176 /*
4177 * Write out all dirty pages to avoid race conditions
4178 * Then release them.
4179 */
4180 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4181 err = filemap_write_and_wait_range(mapping,
4182 first_page_offset == 0 ? 0 : first_page_offset-1,
4183 last_page_offset);
4184
4185 if (err)
4186 return err;
4187 }
4188
4189 /* Now release the pages */
4190 if (last_page_offset > first_page_offset) {
4191 truncate_inode_pages_range(mapping, first_page_offset,
4192 last_page_offset-1);
4193 }
4194
4195 /* finish any pending end_io work */
4196 ext4_flush_completed_IO(inode);
4197
4198 credits = ext4_writepage_trans_blocks(inode);
4199 handle = ext4_journal_start(inode, credits);
4200 if (IS_ERR(handle))
4201 return PTR_ERR(handle);
4202
4203 err = ext4_orphan_add(handle, inode);
4204 if (err)
4205 goto out;
4206
4207 /*
4208 * Now we need to zero out the un block aligned data.
4209 * If the file is smaller than a block, just
4210 * zero out the middle
4211 */
4212 if (first_block > last_block)
4213 ext4_block_zero_page_range(handle, mapping, offset, length);
4214 else {
4215 /* zero out the head of the hole before the first block */
4216 block_len = first_block_offset - offset;
4217 if (block_len > 0)
4218 ext4_block_zero_page_range(handle, mapping,
4219 offset, block_len);
4220
4221 /* zero out the tail of the hole after the last block */
4222 block_len = offset + length - last_block_offset;
4223 if (block_len > 0) {
4224 ext4_block_zero_page_range(handle, mapping,
4225 last_block_offset, block_len);
4226 }
4227 }
4228
4229 /* If there are no blocks to remove, return now */
4230 if (first_block >= last_block)
4231 goto out;
4232
4233 down_write(&EXT4_I(inode)->i_data_sem);
4234 ext4_ext_invalidate_cache(inode);
4235 ext4_discard_preallocations(inode);
4236
4237 /*
4238 * Loop over all the blocks and identify blocks
4239 * that need to be punched out
4240 */
4241 iblock = first_block;
4242 blocks_released = 0;
4243 while (iblock < last_block) {
4244 max_blocks = last_block - iblock;
4245 num_blocks = 1;
4246 memset(&map, 0, sizeof(map));
4247 map.m_lblk = iblock;
4248 map.m_len = max_blocks;
4249 ret = ext4_ext_map_blocks(handle, inode, &map,
4250 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4251
4252 if (ret > 0) {
4253 blocks_released += ret;
4254 num_blocks = ret;
4255 } else if (ret == 0) {
4256 /*
4257 * If map blocks could not find the block,
4258 * then it is in a hole. If the hole was
4259 * not already cached, then map blocks should
4260 * put it in the cache. So we can get the hole
4261 * out of the cache
4262 */
4263 memset(&cache_ex, 0, sizeof(cache_ex));
4264 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4265 !cache_ex.ec_start) {
4266
4267 /* The hole is cached */
4268 num_blocks = cache_ex.ec_block +
4269 cache_ex.ec_len - iblock;
4270
4271 } else {
4272 /* The block could not be identified */
4273 err = -EIO;
4274 break;
4275 }
4276 } else {
4277 /* Map blocks error */
4278 err = ret;
4279 break;
4280 }
4281
4282 if (num_blocks == 0) {
4283 /* This condition should never happen */
4284 ext_debug("Block lookup failed");
4285 err = -EIO;
4286 break;
4287 }
4288
4289 iblock += num_blocks;
4290 }
4291
4292 if (blocks_released > 0) {
4293 ext4_ext_invalidate_cache(inode);
4294 ext4_discard_preallocations(inode);
4295 }
4296
4297 if (IS_SYNC(inode))
4298 ext4_handle_sync(handle);
4299
4300 up_write(&EXT4_I(inode)->i_data_sem);
4301
4302 out:
4303 ext4_orphan_del(handle, inode);
4304 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4305 ext4_mark_inode_dirty(handle, inode);
4306 ext4_journal_stop(handle);
4307 return err;
4308 }
4309 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4310 __u64 start, __u64 len)
4311 {
4312 ext4_lblk_t start_blk;
4313 int error = 0;
4314
4315 /* fallback to generic here if not in extents fmt */
4316 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4317 return generic_block_fiemap(inode, fieinfo, start, len,
4318 ext4_get_block);
4319
4320 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4321 return -EBADR;
4322
4323 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4324 error = ext4_xattr_fiemap(inode, fieinfo);
4325 } else {
4326 ext4_lblk_t len_blks;
4327 __u64 last_blk;
4328
4329 start_blk = start >> inode->i_sb->s_blocksize_bits;
4330 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4331 if (last_blk >= EXT_MAX_BLOCKS)
4332 last_blk = EXT_MAX_BLOCKS-1;
4333 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4334
4335 /*
4336 * Walk the extent tree gathering extent information.
4337 * ext4_ext_fiemap_cb will push extents back to user.
4338 */
4339 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4340 ext4_ext_fiemap_cb, fieinfo);
4341 }
4342
4343 return error;
4344 }