]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/extents.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44
45 #include <trace/events/ext4.h>
46
47 static int ext4_split_extent(handle_t *handle,
48 struct inode *inode,
49 struct ext4_ext_path *path,
50 struct ext4_map_blocks *map,
51 int split_flag,
52 int flags);
53
54 static int ext4_ext_truncate_extend_restart(handle_t *handle,
55 struct inode *inode,
56 int needed)
57 {
58 int err;
59
60 if (!ext4_handle_valid(handle))
61 return 0;
62 if (handle->h_buffer_credits > needed)
63 return 0;
64 err = ext4_journal_extend(handle, needed);
65 if (err <= 0)
66 return err;
67 err = ext4_truncate_restart_trans(handle, inode, needed);
68 if (err == 0)
69 err = -EAGAIN;
70
71 return err;
72 }
73
74 /*
75 * could return:
76 * - EROFS
77 * - ENOMEM
78 */
79 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
80 struct ext4_ext_path *path)
81 {
82 if (path->p_bh) {
83 /* path points to block */
84 return ext4_journal_get_write_access(handle, path->p_bh);
85 }
86 /* path points to leaf/index in inode body */
87 /* we use in-core data, no need to protect them */
88 return 0;
89 }
90
91 /*
92 * could return:
93 * - EROFS
94 * - ENOMEM
95 * - EIO
96 */
97 #define ext4_ext_dirty(handle, inode, path) \
98 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
99 static int __ext4_ext_dirty(const char *where, unsigned int line,
100 handle_t *handle, struct inode *inode,
101 struct ext4_ext_path *path)
102 {
103 int err;
104 if (path->p_bh) {
105 /* path points to block */
106 err = __ext4_handle_dirty_metadata(where, line, handle,
107 inode, path->p_bh);
108 } else {
109 /* path points to leaf/index in inode body */
110 err = ext4_mark_inode_dirty(handle, inode);
111 }
112 return err;
113 }
114
115 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
116 struct ext4_ext_path *path,
117 ext4_lblk_t block)
118 {
119 if (path) {
120 int depth = path->p_depth;
121 struct ext4_extent *ex;
122
123 /*
124 * Try to predict block placement assuming that we are
125 * filling in a file which will eventually be
126 * non-sparse --- i.e., in the case of libbfd writing
127 * an ELF object sections out-of-order but in a way
128 * the eventually results in a contiguous object or
129 * executable file, or some database extending a table
130 * space file. However, this is actually somewhat
131 * non-ideal if we are writing a sparse file such as
132 * qemu or KVM writing a raw image file that is going
133 * to stay fairly sparse, since it will end up
134 * fragmenting the file system's free space. Maybe we
135 * should have some hueristics or some way to allow
136 * userspace to pass a hint to file system,
137 * especially if the latter case turns out to be
138 * common.
139 */
140 ex = path[depth].p_ext;
141 if (ex) {
142 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
143 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
144
145 if (block > ext_block)
146 return ext_pblk + (block - ext_block);
147 else
148 return ext_pblk - (ext_block - block);
149 }
150
151 /* it looks like index is empty;
152 * try to find starting block from index itself */
153 if (path[depth].p_bh)
154 return path[depth].p_bh->b_blocknr;
155 }
156
157 /* OK. use inode's group */
158 return ext4_inode_to_goal_block(inode);
159 }
160
161 /*
162 * Allocation for a meta data block
163 */
164 static ext4_fsblk_t
165 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
166 struct ext4_ext_path *path,
167 struct ext4_extent *ex, int *err, unsigned int flags)
168 {
169 ext4_fsblk_t goal, newblock;
170
171 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
172 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
173 NULL, err);
174 return newblock;
175 }
176
177 static inline int ext4_ext_space_block(struct inode *inode, int check)
178 {
179 int size;
180
181 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
182 / sizeof(struct ext4_extent);
183 #ifdef AGGRESSIVE_TEST
184 if (!check && size > 6)
185 size = 6;
186 #endif
187 return size;
188 }
189
190 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
191 {
192 int size;
193
194 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
195 / sizeof(struct ext4_extent_idx);
196 #ifdef AGGRESSIVE_TEST
197 if (!check && size > 5)
198 size = 5;
199 #endif
200 return size;
201 }
202
203 static inline int ext4_ext_space_root(struct inode *inode, int check)
204 {
205 int size;
206
207 size = sizeof(EXT4_I(inode)->i_data);
208 size -= sizeof(struct ext4_extent_header);
209 size /= sizeof(struct ext4_extent);
210 #ifdef AGGRESSIVE_TEST
211 if (!check && size > 3)
212 size = 3;
213 #endif
214 return size;
215 }
216
217 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
218 {
219 int size;
220
221 size = sizeof(EXT4_I(inode)->i_data);
222 size -= sizeof(struct ext4_extent_header);
223 size /= sizeof(struct ext4_extent_idx);
224 #ifdef AGGRESSIVE_TEST
225 if (!check && size > 4)
226 size = 4;
227 #endif
228 return size;
229 }
230
231 /*
232 * Calculate the number of metadata blocks needed
233 * to allocate @blocks
234 * Worse case is one block per extent
235 */
236 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
237 {
238 struct ext4_inode_info *ei = EXT4_I(inode);
239 int idxs;
240
241 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 / sizeof(struct ext4_extent_idx));
243
244 /*
245 * If the new delayed allocation block is contiguous with the
246 * previous da block, it can share index blocks with the
247 * previous block, so we only need to allocate a new index
248 * block every idxs leaf blocks. At ldxs**2 blocks, we need
249 * an additional index block, and at ldxs**3 blocks, yet
250 * another index blocks.
251 */
252 if (ei->i_da_metadata_calc_len &&
253 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
254 int num = 0;
255
256 if ((ei->i_da_metadata_calc_len % idxs) == 0)
257 num++;
258 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
259 num++;
260 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
261 num++;
262 ei->i_da_metadata_calc_len = 0;
263 } else
264 ei->i_da_metadata_calc_len++;
265 ei->i_da_metadata_calc_last_lblock++;
266 return num;
267 }
268
269 /*
270 * In the worst case we need a new set of index blocks at
271 * every level of the inode's extent tree.
272 */
273 ei->i_da_metadata_calc_len = 1;
274 ei->i_da_metadata_calc_last_lblock = lblock;
275 return ext_depth(inode) + 1;
276 }
277
278 static int
279 ext4_ext_max_entries(struct inode *inode, int depth)
280 {
281 int max;
282
283 if (depth == ext_depth(inode)) {
284 if (depth == 0)
285 max = ext4_ext_space_root(inode, 1);
286 else
287 max = ext4_ext_space_root_idx(inode, 1);
288 } else {
289 if (depth == 0)
290 max = ext4_ext_space_block(inode, 1);
291 else
292 max = ext4_ext_space_block_idx(inode, 1);
293 }
294
295 return max;
296 }
297
298 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
299 {
300 ext4_fsblk_t block = ext4_ext_pblock(ext);
301 int len = ext4_ext_get_actual_len(ext);
302
303 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
304 }
305
306 static int ext4_valid_extent_idx(struct inode *inode,
307 struct ext4_extent_idx *ext_idx)
308 {
309 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
310
311 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
312 }
313
314 static int ext4_valid_extent_entries(struct inode *inode,
315 struct ext4_extent_header *eh,
316 int depth)
317 {
318 unsigned short entries;
319 if (eh->eh_entries == 0)
320 return 1;
321
322 entries = le16_to_cpu(eh->eh_entries);
323
324 if (depth == 0) {
325 /* leaf entries */
326 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
327 while (entries) {
328 if (!ext4_valid_extent(inode, ext))
329 return 0;
330 ext++;
331 entries--;
332 }
333 } else {
334 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
335 while (entries) {
336 if (!ext4_valid_extent_idx(inode, ext_idx))
337 return 0;
338 ext_idx++;
339 entries--;
340 }
341 }
342 return 1;
343 }
344
345 static int __ext4_ext_check(const char *function, unsigned int line,
346 struct inode *inode, struct ext4_extent_header *eh,
347 int depth)
348 {
349 const char *error_msg;
350 int max = 0;
351
352 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
353 error_msg = "invalid magic";
354 goto corrupted;
355 }
356 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
357 error_msg = "unexpected eh_depth";
358 goto corrupted;
359 }
360 if (unlikely(eh->eh_max == 0)) {
361 error_msg = "invalid eh_max";
362 goto corrupted;
363 }
364 max = ext4_ext_max_entries(inode, depth);
365 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
366 error_msg = "too large eh_max";
367 goto corrupted;
368 }
369 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
370 error_msg = "invalid eh_entries";
371 goto corrupted;
372 }
373 if (!ext4_valid_extent_entries(inode, eh, depth)) {
374 error_msg = "invalid extent entries";
375 goto corrupted;
376 }
377 return 0;
378
379 corrupted:
380 ext4_error_inode(inode, function, line, 0,
381 "bad header/extent: %s - magic %x, "
382 "entries %u, max %u(%u), depth %u(%u)",
383 error_msg, le16_to_cpu(eh->eh_magic),
384 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
385 max, le16_to_cpu(eh->eh_depth), depth);
386
387 return -EIO;
388 }
389
390 #define ext4_ext_check(inode, eh, depth) \
391 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
392
393 int ext4_ext_check_inode(struct inode *inode)
394 {
395 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
396 }
397
398 #ifdef EXT_DEBUG
399 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
400 {
401 int k, l = path->p_depth;
402
403 ext_debug("path:");
404 for (k = 0; k <= l; k++, path++) {
405 if (path->p_idx) {
406 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
407 ext4_idx_pblock(path->p_idx));
408 } else if (path->p_ext) {
409 ext_debug(" %d:[%d]%d:%llu ",
410 le32_to_cpu(path->p_ext->ee_block),
411 ext4_ext_is_uninitialized(path->p_ext),
412 ext4_ext_get_actual_len(path->p_ext),
413 ext4_ext_pblock(path->p_ext));
414 } else
415 ext_debug(" []");
416 }
417 ext_debug("\n");
418 }
419
420 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
421 {
422 int depth = ext_depth(inode);
423 struct ext4_extent_header *eh;
424 struct ext4_extent *ex;
425 int i;
426
427 if (!path)
428 return;
429
430 eh = path[depth].p_hdr;
431 ex = EXT_FIRST_EXTENT(eh);
432
433 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
434
435 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
436 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
437 ext4_ext_is_uninitialized(ex),
438 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
439 }
440 ext_debug("\n");
441 }
442
443 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
444 ext4_fsblk_t newblock, int level)
445 {
446 int depth = ext_depth(inode);
447 struct ext4_extent *ex;
448
449 if (depth != level) {
450 struct ext4_extent_idx *idx;
451 idx = path[level].p_idx;
452 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
453 ext_debug("%d: move %d:%llu in new index %llu\n", level,
454 le32_to_cpu(idx->ei_block),
455 ext4_idx_pblock(idx),
456 newblock);
457 idx++;
458 }
459
460 return;
461 }
462
463 ex = path[depth].p_ext;
464 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
465 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
466 le32_to_cpu(ex->ee_block),
467 ext4_ext_pblock(ex),
468 ext4_ext_is_uninitialized(ex),
469 ext4_ext_get_actual_len(ex),
470 newblock);
471 ex++;
472 }
473 }
474
475 #else
476 #define ext4_ext_show_path(inode, path)
477 #define ext4_ext_show_leaf(inode, path)
478 #define ext4_ext_show_move(inode, path, newblock, level)
479 #endif
480
481 void ext4_ext_drop_refs(struct ext4_ext_path *path)
482 {
483 int depth = path->p_depth;
484 int i;
485
486 for (i = 0; i <= depth; i++, path++)
487 if (path->p_bh) {
488 brelse(path->p_bh);
489 path->p_bh = NULL;
490 }
491 }
492
493 /*
494 * ext4_ext_binsearch_idx:
495 * binary search for the closest index of the given block
496 * the header must be checked before calling this
497 */
498 static void
499 ext4_ext_binsearch_idx(struct inode *inode,
500 struct ext4_ext_path *path, ext4_lblk_t block)
501 {
502 struct ext4_extent_header *eh = path->p_hdr;
503 struct ext4_extent_idx *r, *l, *m;
504
505
506 ext_debug("binsearch for %u(idx): ", block);
507
508 l = EXT_FIRST_INDEX(eh) + 1;
509 r = EXT_LAST_INDEX(eh);
510 while (l <= r) {
511 m = l + (r - l) / 2;
512 if (block < le32_to_cpu(m->ei_block))
513 r = m - 1;
514 else
515 l = m + 1;
516 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
517 m, le32_to_cpu(m->ei_block),
518 r, le32_to_cpu(r->ei_block));
519 }
520
521 path->p_idx = l - 1;
522 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
523 ext4_idx_pblock(path->p_idx));
524
525 #ifdef CHECK_BINSEARCH
526 {
527 struct ext4_extent_idx *chix, *ix;
528 int k;
529
530 chix = ix = EXT_FIRST_INDEX(eh);
531 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
532 if (k != 0 &&
533 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
534 printk(KERN_DEBUG "k=%d, ix=0x%p, "
535 "first=0x%p\n", k,
536 ix, EXT_FIRST_INDEX(eh));
537 printk(KERN_DEBUG "%u <= %u\n",
538 le32_to_cpu(ix->ei_block),
539 le32_to_cpu(ix[-1].ei_block));
540 }
541 BUG_ON(k && le32_to_cpu(ix->ei_block)
542 <= le32_to_cpu(ix[-1].ei_block));
543 if (block < le32_to_cpu(ix->ei_block))
544 break;
545 chix = ix;
546 }
547 BUG_ON(chix != path->p_idx);
548 }
549 #endif
550
551 }
552
553 /*
554 * ext4_ext_binsearch:
555 * binary search for closest extent of the given block
556 * the header must be checked before calling this
557 */
558 static void
559 ext4_ext_binsearch(struct inode *inode,
560 struct ext4_ext_path *path, ext4_lblk_t block)
561 {
562 struct ext4_extent_header *eh = path->p_hdr;
563 struct ext4_extent *r, *l, *m;
564
565 if (eh->eh_entries == 0) {
566 /*
567 * this leaf is empty:
568 * we get such a leaf in split/add case
569 */
570 return;
571 }
572
573 ext_debug("binsearch for %u: ", block);
574
575 l = EXT_FIRST_EXTENT(eh) + 1;
576 r = EXT_LAST_EXTENT(eh);
577
578 while (l <= r) {
579 m = l + (r - l) / 2;
580 if (block < le32_to_cpu(m->ee_block))
581 r = m - 1;
582 else
583 l = m + 1;
584 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
585 m, le32_to_cpu(m->ee_block),
586 r, le32_to_cpu(r->ee_block));
587 }
588
589 path->p_ext = l - 1;
590 ext_debug(" -> %d:%llu:[%d]%d ",
591 le32_to_cpu(path->p_ext->ee_block),
592 ext4_ext_pblock(path->p_ext),
593 ext4_ext_is_uninitialized(path->p_ext),
594 ext4_ext_get_actual_len(path->p_ext));
595
596 #ifdef CHECK_BINSEARCH
597 {
598 struct ext4_extent *chex, *ex;
599 int k;
600
601 chex = ex = EXT_FIRST_EXTENT(eh);
602 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
603 BUG_ON(k && le32_to_cpu(ex->ee_block)
604 <= le32_to_cpu(ex[-1].ee_block));
605 if (block < le32_to_cpu(ex->ee_block))
606 break;
607 chex = ex;
608 }
609 BUG_ON(chex != path->p_ext);
610 }
611 #endif
612
613 }
614
615 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
616 {
617 struct ext4_extent_header *eh;
618
619 eh = ext_inode_hdr(inode);
620 eh->eh_depth = 0;
621 eh->eh_entries = 0;
622 eh->eh_magic = EXT4_EXT_MAGIC;
623 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
624 ext4_mark_inode_dirty(handle, inode);
625 ext4_ext_invalidate_cache(inode);
626 return 0;
627 }
628
629 struct ext4_ext_path *
630 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
631 struct ext4_ext_path *path)
632 {
633 struct ext4_extent_header *eh;
634 struct buffer_head *bh;
635 short int depth, i, ppos = 0, alloc = 0;
636
637 eh = ext_inode_hdr(inode);
638 depth = ext_depth(inode);
639
640 /* account possible depth increase */
641 if (!path) {
642 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
643 GFP_NOFS);
644 if (!path)
645 return ERR_PTR(-ENOMEM);
646 alloc = 1;
647 }
648 path[0].p_hdr = eh;
649 path[0].p_bh = NULL;
650
651 i = depth;
652 /* walk through the tree */
653 while (i) {
654 int need_to_validate = 0;
655
656 ext_debug("depth %d: num %d, max %d\n",
657 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
658
659 ext4_ext_binsearch_idx(inode, path + ppos, block);
660 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
661 path[ppos].p_depth = i;
662 path[ppos].p_ext = NULL;
663
664 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
665 if (unlikely(!bh))
666 goto err;
667 if (!bh_uptodate_or_lock(bh)) {
668 trace_ext4_ext_load_extent(inode, block,
669 path[ppos].p_block);
670 if (bh_submit_read(bh) < 0) {
671 put_bh(bh);
672 goto err;
673 }
674 /* validate the extent entries */
675 need_to_validate = 1;
676 }
677 eh = ext_block_hdr(bh);
678 ppos++;
679 if (unlikely(ppos > depth)) {
680 put_bh(bh);
681 EXT4_ERROR_INODE(inode,
682 "ppos %d > depth %d", ppos, depth);
683 goto err;
684 }
685 path[ppos].p_bh = bh;
686 path[ppos].p_hdr = eh;
687 i--;
688
689 if (need_to_validate && ext4_ext_check(inode, eh, i))
690 goto err;
691 }
692
693 path[ppos].p_depth = i;
694 path[ppos].p_ext = NULL;
695 path[ppos].p_idx = NULL;
696
697 /* find extent */
698 ext4_ext_binsearch(inode, path + ppos, block);
699 /* if not an empty leaf */
700 if (path[ppos].p_ext)
701 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
702
703 ext4_ext_show_path(inode, path);
704
705 return path;
706
707 err:
708 ext4_ext_drop_refs(path);
709 if (alloc)
710 kfree(path);
711 return ERR_PTR(-EIO);
712 }
713
714 /*
715 * ext4_ext_insert_index:
716 * insert new index [@logical;@ptr] into the block at @curp;
717 * check where to insert: before @curp or after @curp
718 */
719 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
720 struct ext4_ext_path *curp,
721 int logical, ext4_fsblk_t ptr)
722 {
723 struct ext4_extent_idx *ix;
724 int len, err;
725
726 err = ext4_ext_get_access(handle, inode, curp);
727 if (err)
728 return err;
729
730 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
731 EXT4_ERROR_INODE(inode,
732 "logical %d == ei_block %d!",
733 logical, le32_to_cpu(curp->p_idx->ei_block));
734 return -EIO;
735 }
736
737 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
738 >= le16_to_cpu(curp->p_hdr->eh_max))) {
739 EXT4_ERROR_INODE(inode,
740 "eh_entries %d >= eh_max %d!",
741 le16_to_cpu(curp->p_hdr->eh_entries),
742 le16_to_cpu(curp->p_hdr->eh_max));
743 return -EIO;
744 }
745
746 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
747 /* insert after */
748 ext_debug("insert new index %d after: %llu\n", logical, ptr);
749 ix = curp->p_idx + 1;
750 } else {
751 /* insert before */
752 ext_debug("insert new index %d before: %llu\n", logical, ptr);
753 ix = curp->p_idx;
754 }
755
756 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
757 BUG_ON(len < 0);
758 if (len > 0) {
759 ext_debug("insert new index %d: "
760 "move %d indices from 0x%p to 0x%p\n",
761 logical, len, ix, ix + 1);
762 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
763 }
764
765 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
766 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
767 return -EIO;
768 }
769
770 ix->ei_block = cpu_to_le32(logical);
771 ext4_idx_store_pblock(ix, ptr);
772 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
773
774 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
775 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
776 return -EIO;
777 }
778
779 err = ext4_ext_dirty(handle, inode, curp);
780 ext4_std_error(inode->i_sb, err);
781
782 return err;
783 }
784
785 /*
786 * ext4_ext_split:
787 * inserts new subtree into the path, using free index entry
788 * at depth @at:
789 * - allocates all needed blocks (new leaf and all intermediate index blocks)
790 * - makes decision where to split
791 * - moves remaining extents and index entries (right to the split point)
792 * into the newly allocated blocks
793 * - initializes subtree
794 */
795 static int ext4_ext_split(handle_t *handle, struct inode *inode,
796 unsigned int flags,
797 struct ext4_ext_path *path,
798 struct ext4_extent *newext, int at)
799 {
800 struct buffer_head *bh = NULL;
801 int depth = ext_depth(inode);
802 struct ext4_extent_header *neh;
803 struct ext4_extent_idx *fidx;
804 int i = at, k, m, a;
805 ext4_fsblk_t newblock, oldblock;
806 __le32 border;
807 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
808 int err = 0;
809
810 /* make decision: where to split? */
811 /* FIXME: now decision is simplest: at current extent */
812
813 /* if current leaf will be split, then we should use
814 * border from split point */
815 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
816 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
817 return -EIO;
818 }
819 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
820 border = path[depth].p_ext[1].ee_block;
821 ext_debug("leaf will be split."
822 " next leaf starts at %d\n",
823 le32_to_cpu(border));
824 } else {
825 border = newext->ee_block;
826 ext_debug("leaf will be added."
827 " next leaf starts at %d\n",
828 le32_to_cpu(border));
829 }
830
831 /*
832 * If error occurs, then we break processing
833 * and mark filesystem read-only. index won't
834 * be inserted and tree will be in consistent
835 * state. Next mount will repair buffers too.
836 */
837
838 /*
839 * Get array to track all allocated blocks.
840 * We need this to handle errors and free blocks
841 * upon them.
842 */
843 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
844 if (!ablocks)
845 return -ENOMEM;
846
847 /* allocate all needed blocks */
848 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
849 for (a = 0; a < depth - at; a++) {
850 newblock = ext4_ext_new_meta_block(handle, inode, path,
851 newext, &err, flags);
852 if (newblock == 0)
853 goto cleanup;
854 ablocks[a] = newblock;
855 }
856
857 /* initialize new leaf */
858 newblock = ablocks[--a];
859 if (unlikely(newblock == 0)) {
860 EXT4_ERROR_INODE(inode, "newblock == 0!");
861 err = -EIO;
862 goto cleanup;
863 }
864 bh = sb_getblk(inode->i_sb, newblock);
865 if (!bh) {
866 err = -EIO;
867 goto cleanup;
868 }
869 lock_buffer(bh);
870
871 err = ext4_journal_get_create_access(handle, bh);
872 if (err)
873 goto cleanup;
874
875 neh = ext_block_hdr(bh);
876 neh->eh_entries = 0;
877 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
878 neh->eh_magic = EXT4_EXT_MAGIC;
879 neh->eh_depth = 0;
880
881 /* move remainder of path[depth] to the new leaf */
882 if (unlikely(path[depth].p_hdr->eh_entries !=
883 path[depth].p_hdr->eh_max)) {
884 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
885 path[depth].p_hdr->eh_entries,
886 path[depth].p_hdr->eh_max);
887 err = -EIO;
888 goto cleanup;
889 }
890 /* start copy from next extent */
891 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
892 ext4_ext_show_move(inode, path, newblock, depth);
893 if (m) {
894 struct ext4_extent *ex;
895 ex = EXT_FIRST_EXTENT(neh);
896 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
897 le16_add_cpu(&neh->eh_entries, m);
898 }
899
900 set_buffer_uptodate(bh);
901 unlock_buffer(bh);
902
903 err = ext4_handle_dirty_metadata(handle, inode, bh);
904 if (err)
905 goto cleanup;
906 brelse(bh);
907 bh = NULL;
908
909 /* correct old leaf */
910 if (m) {
911 err = ext4_ext_get_access(handle, inode, path + depth);
912 if (err)
913 goto cleanup;
914 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
915 err = ext4_ext_dirty(handle, inode, path + depth);
916 if (err)
917 goto cleanup;
918
919 }
920
921 /* create intermediate indexes */
922 k = depth - at - 1;
923 if (unlikely(k < 0)) {
924 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
925 err = -EIO;
926 goto cleanup;
927 }
928 if (k)
929 ext_debug("create %d intermediate indices\n", k);
930 /* insert new index into current index block */
931 /* current depth stored in i var */
932 i = depth - 1;
933 while (k--) {
934 oldblock = newblock;
935 newblock = ablocks[--a];
936 bh = sb_getblk(inode->i_sb, newblock);
937 if (!bh) {
938 err = -EIO;
939 goto cleanup;
940 }
941 lock_buffer(bh);
942
943 err = ext4_journal_get_create_access(handle, bh);
944 if (err)
945 goto cleanup;
946
947 neh = ext_block_hdr(bh);
948 neh->eh_entries = cpu_to_le16(1);
949 neh->eh_magic = EXT4_EXT_MAGIC;
950 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
951 neh->eh_depth = cpu_to_le16(depth - i);
952 fidx = EXT_FIRST_INDEX(neh);
953 fidx->ei_block = border;
954 ext4_idx_store_pblock(fidx, oldblock);
955
956 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
957 i, newblock, le32_to_cpu(border), oldblock);
958
959 /* move remainder of path[i] to the new index block */
960 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
961 EXT_LAST_INDEX(path[i].p_hdr))) {
962 EXT4_ERROR_INODE(inode,
963 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
964 le32_to_cpu(path[i].p_ext->ee_block));
965 err = -EIO;
966 goto cleanup;
967 }
968 /* start copy indexes */
969 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
970 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
971 EXT_MAX_INDEX(path[i].p_hdr));
972 ext4_ext_show_move(inode, path, newblock, i);
973 if (m) {
974 memmove(++fidx, path[i].p_idx,
975 sizeof(struct ext4_extent_idx) * m);
976 le16_add_cpu(&neh->eh_entries, m);
977 }
978 set_buffer_uptodate(bh);
979 unlock_buffer(bh);
980
981 err = ext4_handle_dirty_metadata(handle, inode, bh);
982 if (err)
983 goto cleanup;
984 brelse(bh);
985 bh = NULL;
986
987 /* correct old index */
988 if (m) {
989 err = ext4_ext_get_access(handle, inode, path + i);
990 if (err)
991 goto cleanup;
992 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
993 err = ext4_ext_dirty(handle, inode, path + i);
994 if (err)
995 goto cleanup;
996 }
997
998 i--;
999 }
1000
1001 /* insert new index */
1002 err = ext4_ext_insert_index(handle, inode, path + at,
1003 le32_to_cpu(border), newblock);
1004
1005 cleanup:
1006 if (bh) {
1007 if (buffer_locked(bh))
1008 unlock_buffer(bh);
1009 brelse(bh);
1010 }
1011
1012 if (err) {
1013 /* free all allocated blocks in error case */
1014 for (i = 0; i < depth; i++) {
1015 if (!ablocks[i])
1016 continue;
1017 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1018 EXT4_FREE_BLOCKS_METADATA);
1019 }
1020 }
1021 kfree(ablocks);
1022
1023 return err;
1024 }
1025
1026 /*
1027 * ext4_ext_grow_indepth:
1028 * implements tree growing procedure:
1029 * - allocates new block
1030 * - moves top-level data (index block or leaf) into the new block
1031 * - initializes new top-level, creating index that points to the
1032 * just created block
1033 */
1034 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1035 unsigned int flags,
1036 struct ext4_extent *newext)
1037 {
1038 struct ext4_extent_header *neh;
1039 struct buffer_head *bh;
1040 ext4_fsblk_t newblock;
1041 int err = 0;
1042
1043 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1044 newext, &err, flags);
1045 if (newblock == 0)
1046 return err;
1047
1048 bh = sb_getblk(inode->i_sb, newblock);
1049 if (!bh) {
1050 err = -EIO;
1051 ext4_std_error(inode->i_sb, err);
1052 return err;
1053 }
1054 lock_buffer(bh);
1055
1056 err = ext4_journal_get_create_access(handle, bh);
1057 if (err) {
1058 unlock_buffer(bh);
1059 goto out;
1060 }
1061
1062 /* move top-level index/leaf into new block */
1063 memmove(bh->b_data, EXT4_I(inode)->i_data,
1064 sizeof(EXT4_I(inode)->i_data));
1065
1066 /* set size of new block */
1067 neh = ext_block_hdr(bh);
1068 /* old root could have indexes or leaves
1069 * so calculate e_max right way */
1070 if (ext_depth(inode))
1071 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1072 else
1073 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1074 neh->eh_magic = EXT4_EXT_MAGIC;
1075 set_buffer_uptodate(bh);
1076 unlock_buffer(bh);
1077
1078 err = ext4_handle_dirty_metadata(handle, inode, bh);
1079 if (err)
1080 goto out;
1081
1082 /* Update top-level index: num,max,pointer */
1083 neh = ext_inode_hdr(inode);
1084 neh->eh_entries = cpu_to_le16(1);
1085 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1086 if (neh->eh_depth == 0) {
1087 /* Root extent block becomes index block */
1088 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1089 EXT_FIRST_INDEX(neh)->ei_block =
1090 EXT_FIRST_EXTENT(neh)->ee_block;
1091 }
1092 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1093 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1094 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1095 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1096
1097 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1098 ext4_mark_inode_dirty(handle, inode);
1099 out:
1100 brelse(bh);
1101
1102 return err;
1103 }
1104
1105 /*
1106 * ext4_ext_create_new_leaf:
1107 * finds empty index and adds new leaf.
1108 * if no free index is found, then it requests in-depth growing.
1109 */
1110 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1111 unsigned int flags,
1112 struct ext4_ext_path *path,
1113 struct ext4_extent *newext)
1114 {
1115 struct ext4_ext_path *curp;
1116 int depth, i, err = 0;
1117
1118 repeat:
1119 i = depth = ext_depth(inode);
1120
1121 /* walk up to the tree and look for free index entry */
1122 curp = path + depth;
1123 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1124 i--;
1125 curp--;
1126 }
1127
1128 /* we use already allocated block for index block,
1129 * so subsequent data blocks should be contiguous */
1130 if (EXT_HAS_FREE_INDEX(curp)) {
1131 /* if we found index with free entry, then use that
1132 * entry: create all needed subtree and add new leaf */
1133 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1134 if (err)
1135 goto out;
1136
1137 /* refill path */
1138 ext4_ext_drop_refs(path);
1139 path = ext4_ext_find_extent(inode,
1140 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1141 path);
1142 if (IS_ERR(path))
1143 err = PTR_ERR(path);
1144 } else {
1145 /* tree is full, time to grow in depth */
1146 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1147 if (err)
1148 goto out;
1149
1150 /* refill path */
1151 ext4_ext_drop_refs(path);
1152 path = ext4_ext_find_extent(inode,
1153 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1154 path);
1155 if (IS_ERR(path)) {
1156 err = PTR_ERR(path);
1157 goto out;
1158 }
1159
1160 /*
1161 * only first (depth 0 -> 1) produces free space;
1162 * in all other cases we have to split the grown tree
1163 */
1164 depth = ext_depth(inode);
1165 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1166 /* now we need to split */
1167 goto repeat;
1168 }
1169 }
1170
1171 out:
1172 return err;
1173 }
1174
1175 /*
1176 * search the closest allocated block to the left for *logical
1177 * and returns it at @logical + it's physical address at @phys
1178 * if *logical is the smallest allocated block, the function
1179 * returns 0 at @phys
1180 * return value contains 0 (success) or error code
1181 */
1182 static int ext4_ext_search_left(struct inode *inode,
1183 struct ext4_ext_path *path,
1184 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1185 {
1186 struct ext4_extent_idx *ix;
1187 struct ext4_extent *ex;
1188 int depth, ee_len;
1189
1190 if (unlikely(path == NULL)) {
1191 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1192 return -EIO;
1193 }
1194 depth = path->p_depth;
1195 *phys = 0;
1196
1197 if (depth == 0 && path->p_ext == NULL)
1198 return 0;
1199
1200 /* usually extent in the path covers blocks smaller
1201 * then *logical, but it can be that extent is the
1202 * first one in the file */
1203
1204 ex = path[depth].p_ext;
1205 ee_len = ext4_ext_get_actual_len(ex);
1206 if (*logical < le32_to_cpu(ex->ee_block)) {
1207 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1208 EXT4_ERROR_INODE(inode,
1209 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1210 *logical, le32_to_cpu(ex->ee_block));
1211 return -EIO;
1212 }
1213 while (--depth >= 0) {
1214 ix = path[depth].p_idx;
1215 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1216 EXT4_ERROR_INODE(inode,
1217 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1218 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1219 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1220 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1221 depth);
1222 return -EIO;
1223 }
1224 }
1225 return 0;
1226 }
1227
1228 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1229 EXT4_ERROR_INODE(inode,
1230 "logical %d < ee_block %d + ee_len %d!",
1231 *logical, le32_to_cpu(ex->ee_block), ee_len);
1232 return -EIO;
1233 }
1234
1235 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1236 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1237 return 0;
1238 }
1239
1240 /*
1241 * search the closest allocated block to the right for *logical
1242 * and returns it at @logical + it's physical address at @phys
1243 * if *logical is the largest allocated block, the function
1244 * returns 0 at @phys
1245 * return value contains 0 (success) or error code
1246 */
1247 static int ext4_ext_search_right(struct inode *inode,
1248 struct ext4_ext_path *path,
1249 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1250 struct ext4_extent **ret_ex)
1251 {
1252 struct buffer_head *bh = NULL;
1253 struct ext4_extent_header *eh;
1254 struct ext4_extent_idx *ix;
1255 struct ext4_extent *ex;
1256 ext4_fsblk_t block;
1257 int depth; /* Note, NOT eh_depth; depth from top of tree */
1258 int ee_len;
1259
1260 if (unlikely(path == NULL)) {
1261 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1262 return -EIO;
1263 }
1264 depth = path->p_depth;
1265 *phys = 0;
1266
1267 if (depth == 0 && path->p_ext == NULL)
1268 return 0;
1269
1270 /* usually extent in the path covers blocks smaller
1271 * then *logical, but it can be that extent is the
1272 * first one in the file */
1273
1274 ex = path[depth].p_ext;
1275 ee_len = ext4_ext_get_actual_len(ex);
1276 if (*logical < le32_to_cpu(ex->ee_block)) {
1277 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1278 EXT4_ERROR_INODE(inode,
1279 "first_extent(path[%d].p_hdr) != ex",
1280 depth);
1281 return -EIO;
1282 }
1283 while (--depth >= 0) {
1284 ix = path[depth].p_idx;
1285 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1286 EXT4_ERROR_INODE(inode,
1287 "ix != EXT_FIRST_INDEX *logical %d!",
1288 *logical);
1289 return -EIO;
1290 }
1291 }
1292 goto found_extent;
1293 }
1294
1295 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1296 EXT4_ERROR_INODE(inode,
1297 "logical %d < ee_block %d + ee_len %d!",
1298 *logical, le32_to_cpu(ex->ee_block), ee_len);
1299 return -EIO;
1300 }
1301
1302 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1303 /* next allocated block in this leaf */
1304 ex++;
1305 goto found_extent;
1306 }
1307
1308 /* go up and search for index to the right */
1309 while (--depth >= 0) {
1310 ix = path[depth].p_idx;
1311 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1312 goto got_index;
1313 }
1314
1315 /* we've gone up to the root and found no index to the right */
1316 return 0;
1317
1318 got_index:
1319 /* we've found index to the right, let's
1320 * follow it and find the closest allocated
1321 * block to the right */
1322 ix++;
1323 block = ext4_idx_pblock(ix);
1324 while (++depth < path->p_depth) {
1325 bh = sb_bread(inode->i_sb, block);
1326 if (bh == NULL)
1327 return -EIO;
1328 eh = ext_block_hdr(bh);
1329 /* subtract from p_depth to get proper eh_depth */
1330 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1331 put_bh(bh);
1332 return -EIO;
1333 }
1334 ix = EXT_FIRST_INDEX(eh);
1335 block = ext4_idx_pblock(ix);
1336 put_bh(bh);
1337 }
1338
1339 bh = sb_bread(inode->i_sb, block);
1340 if (bh == NULL)
1341 return -EIO;
1342 eh = ext_block_hdr(bh);
1343 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1344 put_bh(bh);
1345 return -EIO;
1346 }
1347 ex = EXT_FIRST_EXTENT(eh);
1348 found_extent:
1349 *logical = le32_to_cpu(ex->ee_block);
1350 *phys = ext4_ext_pblock(ex);
1351 *ret_ex = ex;
1352 if (bh)
1353 put_bh(bh);
1354 return 0;
1355 }
1356
1357 /*
1358 * ext4_ext_next_allocated_block:
1359 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1360 * NOTE: it considers block number from index entry as
1361 * allocated block. Thus, index entries have to be consistent
1362 * with leaves.
1363 */
1364 static ext4_lblk_t
1365 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1366 {
1367 int depth;
1368
1369 BUG_ON(path == NULL);
1370 depth = path->p_depth;
1371
1372 if (depth == 0 && path->p_ext == NULL)
1373 return EXT_MAX_BLOCKS;
1374
1375 while (depth >= 0) {
1376 if (depth == path->p_depth) {
1377 /* leaf */
1378 if (path[depth].p_ext &&
1379 path[depth].p_ext !=
1380 EXT_LAST_EXTENT(path[depth].p_hdr))
1381 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1382 } else {
1383 /* index */
1384 if (path[depth].p_idx !=
1385 EXT_LAST_INDEX(path[depth].p_hdr))
1386 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1387 }
1388 depth--;
1389 }
1390
1391 return EXT_MAX_BLOCKS;
1392 }
1393
1394 /*
1395 * ext4_ext_next_leaf_block:
1396 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1397 */
1398 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1399 {
1400 int depth;
1401
1402 BUG_ON(path == NULL);
1403 depth = path->p_depth;
1404
1405 /* zero-tree has no leaf blocks at all */
1406 if (depth == 0)
1407 return EXT_MAX_BLOCKS;
1408
1409 /* go to index block */
1410 depth--;
1411
1412 while (depth >= 0) {
1413 if (path[depth].p_idx !=
1414 EXT_LAST_INDEX(path[depth].p_hdr))
1415 return (ext4_lblk_t)
1416 le32_to_cpu(path[depth].p_idx[1].ei_block);
1417 depth--;
1418 }
1419
1420 return EXT_MAX_BLOCKS;
1421 }
1422
1423 /*
1424 * ext4_ext_correct_indexes:
1425 * if leaf gets modified and modified extent is first in the leaf,
1426 * then we have to correct all indexes above.
1427 * TODO: do we need to correct tree in all cases?
1428 */
1429 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1430 struct ext4_ext_path *path)
1431 {
1432 struct ext4_extent_header *eh;
1433 int depth = ext_depth(inode);
1434 struct ext4_extent *ex;
1435 __le32 border;
1436 int k, err = 0;
1437
1438 eh = path[depth].p_hdr;
1439 ex = path[depth].p_ext;
1440
1441 if (unlikely(ex == NULL || eh == NULL)) {
1442 EXT4_ERROR_INODE(inode,
1443 "ex %p == NULL or eh %p == NULL", ex, eh);
1444 return -EIO;
1445 }
1446
1447 if (depth == 0) {
1448 /* there is no tree at all */
1449 return 0;
1450 }
1451
1452 if (ex != EXT_FIRST_EXTENT(eh)) {
1453 /* we correct tree if first leaf got modified only */
1454 return 0;
1455 }
1456
1457 /*
1458 * TODO: we need correction if border is smaller than current one
1459 */
1460 k = depth - 1;
1461 border = path[depth].p_ext->ee_block;
1462 err = ext4_ext_get_access(handle, inode, path + k);
1463 if (err)
1464 return err;
1465 path[k].p_idx->ei_block = border;
1466 err = ext4_ext_dirty(handle, inode, path + k);
1467 if (err)
1468 return err;
1469
1470 while (k--) {
1471 /* change all left-side indexes */
1472 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1473 break;
1474 err = ext4_ext_get_access(handle, inode, path + k);
1475 if (err)
1476 break;
1477 path[k].p_idx->ei_block = border;
1478 err = ext4_ext_dirty(handle, inode, path + k);
1479 if (err)
1480 break;
1481 }
1482
1483 return err;
1484 }
1485
1486 int
1487 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1488 struct ext4_extent *ex2)
1489 {
1490 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1491
1492 /*
1493 * Make sure that either both extents are uninitialized, or
1494 * both are _not_.
1495 */
1496 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1497 return 0;
1498
1499 if (ext4_ext_is_uninitialized(ex1))
1500 max_len = EXT_UNINIT_MAX_LEN;
1501 else
1502 max_len = EXT_INIT_MAX_LEN;
1503
1504 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1505 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1506
1507 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1508 le32_to_cpu(ex2->ee_block))
1509 return 0;
1510
1511 /*
1512 * To allow future support for preallocated extents to be added
1513 * as an RO_COMPAT feature, refuse to merge to extents if
1514 * this can result in the top bit of ee_len being set.
1515 */
1516 if (ext1_ee_len + ext2_ee_len > max_len)
1517 return 0;
1518 #ifdef AGGRESSIVE_TEST
1519 if (ext1_ee_len >= 4)
1520 return 0;
1521 #endif
1522
1523 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1524 return 1;
1525 return 0;
1526 }
1527
1528 /*
1529 * This function tries to merge the "ex" extent to the next extent in the tree.
1530 * It always tries to merge towards right. If you want to merge towards
1531 * left, pass "ex - 1" as argument instead of "ex".
1532 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1533 * 1 if they got merged.
1534 */
1535 static int ext4_ext_try_to_merge_right(struct inode *inode,
1536 struct ext4_ext_path *path,
1537 struct ext4_extent *ex)
1538 {
1539 struct ext4_extent_header *eh;
1540 unsigned int depth, len;
1541 int merge_done = 0;
1542 int uninitialized = 0;
1543
1544 depth = ext_depth(inode);
1545 BUG_ON(path[depth].p_hdr == NULL);
1546 eh = path[depth].p_hdr;
1547
1548 while (ex < EXT_LAST_EXTENT(eh)) {
1549 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1550 break;
1551 /* merge with next extent! */
1552 if (ext4_ext_is_uninitialized(ex))
1553 uninitialized = 1;
1554 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1555 + ext4_ext_get_actual_len(ex + 1));
1556 if (uninitialized)
1557 ext4_ext_mark_uninitialized(ex);
1558
1559 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1560 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1561 * sizeof(struct ext4_extent);
1562 memmove(ex + 1, ex + 2, len);
1563 }
1564 le16_add_cpu(&eh->eh_entries, -1);
1565 merge_done = 1;
1566 WARN_ON(eh->eh_entries == 0);
1567 if (!eh->eh_entries)
1568 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1569 }
1570
1571 return merge_done;
1572 }
1573
1574 /*
1575 * This function tries to merge the @ex extent to neighbours in the tree.
1576 * return 1 if merge left else 0.
1577 */
1578 static int ext4_ext_try_to_merge(struct inode *inode,
1579 struct ext4_ext_path *path,
1580 struct ext4_extent *ex) {
1581 struct ext4_extent_header *eh;
1582 unsigned int depth;
1583 int merge_done = 0;
1584 int ret = 0;
1585
1586 depth = ext_depth(inode);
1587 BUG_ON(path[depth].p_hdr == NULL);
1588 eh = path[depth].p_hdr;
1589
1590 if (ex > EXT_FIRST_EXTENT(eh))
1591 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1592
1593 if (!merge_done)
1594 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1595
1596 return ret;
1597 }
1598
1599 /*
1600 * check if a portion of the "newext" extent overlaps with an
1601 * existing extent.
1602 *
1603 * If there is an overlap discovered, it updates the length of the newext
1604 * such that there will be no overlap, and then returns 1.
1605 * If there is no overlap found, it returns 0.
1606 */
1607 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1608 struct inode *inode,
1609 struct ext4_extent *newext,
1610 struct ext4_ext_path *path)
1611 {
1612 ext4_lblk_t b1, b2;
1613 unsigned int depth, len1;
1614 unsigned int ret = 0;
1615
1616 b1 = le32_to_cpu(newext->ee_block);
1617 len1 = ext4_ext_get_actual_len(newext);
1618 depth = ext_depth(inode);
1619 if (!path[depth].p_ext)
1620 goto out;
1621 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1622 b2 &= ~(sbi->s_cluster_ratio - 1);
1623
1624 /*
1625 * get the next allocated block if the extent in the path
1626 * is before the requested block(s)
1627 */
1628 if (b2 < b1) {
1629 b2 = ext4_ext_next_allocated_block(path);
1630 if (b2 == EXT_MAX_BLOCKS)
1631 goto out;
1632 b2 &= ~(sbi->s_cluster_ratio - 1);
1633 }
1634
1635 /* check for wrap through zero on extent logical start block*/
1636 if (b1 + len1 < b1) {
1637 len1 = EXT_MAX_BLOCKS - b1;
1638 newext->ee_len = cpu_to_le16(len1);
1639 ret = 1;
1640 }
1641
1642 /* check for overlap */
1643 if (b1 + len1 > b2) {
1644 newext->ee_len = cpu_to_le16(b2 - b1);
1645 ret = 1;
1646 }
1647 out:
1648 return ret;
1649 }
1650
1651 /*
1652 * ext4_ext_insert_extent:
1653 * tries to merge requsted extent into the existing extent or
1654 * inserts requested extent as new one into the tree,
1655 * creating new leaf in the no-space case.
1656 */
1657 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1658 struct ext4_ext_path *path,
1659 struct ext4_extent *newext, int flag)
1660 {
1661 struct ext4_extent_header *eh;
1662 struct ext4_extent *ex, *fex;
1663 struct ext4_extent *nearex; /* nearest extent */
1664 struct ext4_ext_path *npath = NULL;
1665 int depth, len, err;
1666 ext4_lblk_t next;
1667 unsigned uninitialized = 0;
1668 int flags = 0;
1669
1670 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1671 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1672 return -EIO;
1673 }
1674 depth = ext_depth(inode);
1675 ex = path[depth].p_ext;
1676 if (unlikely(path[depth].p_hdr == NULL)) {
1677 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1678 return -EIO;
1679 }
1680
1681 /* try to insert block into found extent and return */
1682 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1683 && ext4_can_extents_be_merged(inode, ex, newext)) {
1684 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1685 ext4_ext_is_uninitialized(newext),
1686 ext4_ext_get_actual_len(newext),
1687 le32_to_cpu(ex->ee_block),
1688 ext4_ext_is_uninitialized(ex),
1689 ext4_ext_get_actual_len(ex),
1690 ext4_ext_pblock(ex));
1691 err = ext4_ext_get_access(handle, inode, path + depth);
1692 if (err)
1693 return err;
1694
1695 /*
1696 * ext4_can_extents_be_merged should have checked that either
1697 * both extents are uninitialized, or both aren't. Thus we
1698 * need to check only one of them here.
1699 */
1700 if (ext4_ext_is_uninitialized(ex))
1701 uninitialized = 1;
1702 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1703 + ext4_ext_get_actual_len(newext));
1704 if (uninitialized)
1705 ext4_ext_mark_uninitialized(ex);
1706 eh = path[depth].p_hdr;
1707 nearex = ex;
1708 goto merge;
1709 }
1710
1711 depth = ext_depth(inode);
1712 eh = path[depth].p_hdr;
1713 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1714 goto has_space;
1715
1716 /* probably next leaf has space for us? */
1717 fex = EXT_LAST_EXTENT(eh);
1718 next = EXT_MAX_BLOCKS;
1719 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1720 next = ext4_ext_next_leaf_block(path);
1721 if (next != EXT_MAX_BLOCKS) {
1722 ext_debug("next leaf block - %u\n", next);
1723 BUG_ON(npath != NULL);
1724 npath = ext4_ext_find_extent(inode, next, NULL);
1725 if (IS_ERR(npath))
1726 return PTR_ERR(npath);
1727 BUG_ON(npath->p_depth != path->p_depth);
1728 eh = npath[depth].p_hdr;
1729 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1730 ext_debug("next leaf isn't full(%d)\n",
1731 le16_to_cpu(eh->eh_entries));
1732 path = npath;
1733 goto has_space;
1734 }
1735 ext_debug("next leaf has no free space(%d,%d)\n",
1736 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1737 }
1738
1739 /*
1740 * There is no free space in the found leaf.
1741 * We're gonna add a new leaf in the tree.
1742 */
1743 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1744 flags = EXT4_MB_USE_ROOT_BLOCKS;
1745 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1746 if (err)
1747 goto cleanup;
1748 depth = ext_depth(inode);
1749 eh = path[depth].p_hdr;
1750
1751 has_space:
1752 nearex = path[depth].p_ext;
1753
1754 err = ext4_ext_get_access(handle, inode, path + depth);
1755 if (err)
1756 goto cleanup;
1757
1758 if (!nearex) {
1759 /* there is no extent in this leaf, create first one */
1760 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1761 le32_to_cpu(newext->ee_block),
1762 ext4_ext_pblock(newext),
1763 ext4_ext_is_uninitialized(newext),
1764 ext4_ext_get_actual_len(newext));
1765 nearex = EXT_FIRST_EXTENT(eh);
1766 } else {
1767 if (le32_to_cpu(newext->ee_block)
1768 > le32_to_cpu(nearex->ee_block)) {
1769 /* Insert after */
1770 ext_debug("insert %u:%llu:[%d]%d before: "
1771 "nearest %p\n",
1772 le32_to_cpu(newext->ee_block),
1773 ext4_ext_pblock(newext),
1774 ext4_ext_is_uninitialized(newext),
1775 ext4_ext_get_actual_len(newext),
1776 nearex);
1777 nearex++;
1778 } else {
1779 /* Insert before */
1780 BUG_ON(newext->ee_block == nearex->ee_block);
1781 ext_debug("insert %u:%llu:[%d]%d after: "
1782 "nearest %p\n",
1783 le32_to_cpu(newext->ee_block),
1784 ext4_ext_pblock(newext),
1785 ext4_ext_is_uninitialized(newext),
1786 ext4_ext_get_actual_len(newext),
1787 nearex);
1788 }
1789 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1790 if (len > 0) {
1791 ext_debug("insert %u:%llu:[%d]%d: "
1792 "move %d extents from 0x%p to 0x%p\n",
1793 le32_to_cpu(newext->ee_block),
1794 ext4_ext_pblock(newext),
1795 ext4_ext_is_uninitialized(newext),
1796 ext4_ext_get_actual_len(newext),
1797 len, nearex, nearex + 1);
1798 memmove(nearex + 1, nearex,
1799 len * sizeof(struct ext4_extent));
1800 }
1801 }
1802
1803 le16_add_cpu(&eh->eh_entries, 1);
1804 path[depth].p_ext = nearex;
1805 nearex->ee_block = newext->ee_block;
1806 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1807 nearex->ee_len = newext->ee_len;
1808
1809 merge:
1810 /* try to merge extents to the right */
1811 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1812 ext4_ext_try_to_merge(inode, path, nearex);
1813
1814 /* try to merge extents to the left */
1815
1816 /* time to correct all indexes above */
1817 err = ext4_ext_correct_indexes(handle, inode, path);
1818 if (err)
1819 goto cleanup;
1820
1821 err = ext4_ext_dirty(handle, inode, path + depth);
1822
1823 cleanup:
1824 if (npath) {
1825 ext4_ext_drop_refs(npath);
1826 kfree(npath);
1827 }
1828 ext4_ext_invalidate_cache(inode);
1829 return err;
1830 }
1831
1832 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1833 ext4_lblk_t num, ext_prepare_callback func,
1834 void *cbdata)
1835 {
1836 struct ext4_ext_path *path = NULL;
1837 struct ext4_ext_cache cbex;
1838 struct ext4_extent *ex;
1839 ext4_lblk_t next, start = 0, end = 0;
1840 ext4_lblk_t last = block + num;
1841 int depth, exists, err = 0;
1842
1843 BUG_ON(func == NULL);
1844 BUG_ON(inode == NULL);
1845
1846 while (block < last && block != EXT_MAX_BLOCKS) {
1847 num = last - block;
1848 /* find extent for this block */
1849 down_read(&EXT4_I(inode)->i_data_sem);
1850 path = ext4_ext_find_extent(inode, block, path);
1851 up_read(&EXT4_I(inode)->i_data_sem);
1852 if (IS_ERR(path)) {
1853 err = PTR_ERR(path);
1854 path = NULL;
1855 break;
1856 }
1857
1858 depth = ext_depth(inode);
1859 if (unlikely(path[depth].p_hdr == NULL)) {
1860 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1861 err = -EIO;
1862 break;
1863 }
1864 ex = path[depth].p_ext;
1865 next = ext4_ext_next_allocated_block(path);
1866
1867 exists = 0;
1868 if (!ex) {
1869 /* there is no extent yet, so try to allocate
1870 * all requested space */
1871 start = block;
1872 end = block + num;
1873 } else if (le32_to_cpu(ex->ee_block) > block) {
1874 /* need to allocate space before found extent */
1875 start = block;
1876 end = le32_to_cpu(ex->ee_block);
1877 if (block + num < end)
1878 end = block + num;
1879 } else if (block >= le32_to_cpu(ex->ee_block)
1880 + ext4_ext_get_actual_len(ex)) {
1881 /* need to allocate space after found extent */
1882 start = block;
1883 end = block + num;
1884 if (end >= next)
1885 end = next;
1886 } else if (block >= le32_to_cpu(ex->ee_block)) {
1887 /*
1888 * some part of requested space is covered
1889 * by found extent
1890 */
1891 start = block;
1892 end = le32_to_cpu(ex->ee_block)
1893 + ext4_ext_get_actual_len(ex);
1894 if (block + num < end)
1895 end = block + num;
1896 exists = 1;
1897 } else {
1898 BUG();
1899 }
1900 BUG_ON(end <= start);
1901
1902 if (!exists) {
1903 cbex.ec_block = start;
1904 cbex.ec_len = end - start;
1905 cbex.ec_start = 0;
1906 } else {
1907 cbex.ec_block = le32_to_cpu(ex->ee_block);
1908 cbex.ec_len = ext4_ext_get_actual_len(ex);
1909 cbex.ec_start = ext4_ext_pblock(ex);
1910 }
1911
1912 if (unlikely(cbex.ec_len == 0)) {
1913 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1914 err = -EIO;
1915 break;
1916 }
1917 err = func(inode, next, &cbex, ex, cbdata);
1918 ext4_ext_drop_refs(path);
1919
1920 if (err < 0)
1921 break;
1922
1923 if (err == EXT_REPEAT)
1924 continue;
1925 else if (err == EXT_BREAK) {
1926 err = 0;
1927 break;
1928 }
1929
1930 if (ext_depth(inode) != depth) {
1931 /* depth was changed. we have to realloc path */
1932 kfree(path);
1933 path = NULL;
1934 }
1935
1936 block = cbex.ec_block + cbex.ec_len;
1937 }
1938
1939 if (path) {
1940 ext4_ext_drop_refs(path);
1941 kfree(path);
1942 }
1943
1944 return err;
1945 }
1946
1947 static void
1948 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1949 __u32 len, ext4_fsblk_t start)
1950 {
1951 struct ext4_ext_cache *cex;
1952 BUG_ON(len == 0);
1953 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1954 trace_ext4_ext_put_in_cache(inode, block, len, start);
1955 cex = &EXT4_I(inode)->i_cached_extent;
1956 cex->ec_block = block;
1957 cex->ec_len = len;
1958 cex->ec_start = start;
1959 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1960 }
1961
1962 /*
1963 * ext4_ext_put_gap_in_cache:
1964 * calculate boundaries of the gap that the requested block fits into
1965 * and cache this gap
1966 */
1967 static void
1968 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1969 ext4_lblk_t block)
1970 {
1971 int depth = ext_depth(inode);
1972 unsigned long len;
1973 ext4_lblk_t lblock;
1974 struct ext4_extent *ex;
1975
1976 ex = path[depth].p_ext;
1977 if (ex == NULL) {
1978 /* there is no extent yet, so gap is [0;-] */
1979 lblock = 0;
1980 len = EXT_MAX_BLOCKS;
1981 ext_debug("cache gap(whole file):");
1982 } else if (block < le32_to_cpu(ex->ee_block)) {
1983 lblock = block;
1984 len = le32_to_cpu(ex->ee_block) - block;
1985 ext_debug("cache gap(before): %u [%u:%u]",
1986 block,
1987 le32_to_cpu(ex->ee_block),
1988 ext4_ext_get_actual_len(ex));
1989 } else if (block >= le32_to_cpu(ex->ee_block)
1990 + ext4_ext_get_actual_len(ex)) {
1991 ext4_lblk_t next;
1992 lblock = le32_to_cpu(ex->ee_block)
1993 + ext4_ext_get_actual_len(ex);
1994
1995 next = ext4_ext_next_allocated_block(path);
1996 ext_debug("cache gap(after): [%u:%u] %u",
1997 le32_to_cpu(ex->ee_block),
1998 ext4_ext_get_actual_len(ex),
1999 block);
2000 BUG_ON(next == lblock);
2001 len = next - lblock;
2002 } else {
2003 lblock = len = 0;
2004 BUG();
2005 }
2006
2007 ext_debug(" -> %u:%lu\n", lblock, len);
2008 ext4_ext_put_in_cache(inode, lblock, len, 0);
2009 }
2010
2011 /*
2012 * ext4_ext_check_cache()
2013 * Checks to see if the given block is in the cache.
2014 * If it is, the cached extent is stored in the given
2015 * cache extent pointer. If the cached extent is a hole,
2016 * this routine should be used instead of
2017 * ext4_ext_in_cache if the calling function needs to
2018 * know the size of the hole.
2019 *
2020 * @inode: The files inode
2021 * @block: The block to look for in the cache
2022 * @ex: Pointer where the cached extent will be stored
2023 * if it contains block
2024 *
2025 * Return 0 if cache is invalid; 1 if the cache is valid
2026 */
2027 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2028 struct ext4_ext_cache *ex){
2029 struct ext4_ext_cache *cex;
2030 struct ext4_sb_info *sbi;
2031 int ret = 0;
2032
2033 /*
2034 * We borrow i_block_reservation_lock to protect i_cached_extent
2035 */
2036 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2037 cex = &EXT4_I(inode)->i_cached_extent;
2038 sbi = EXT4_SB(inode->i_sb);
2039
2040 /* has cache valid data? */
2041 if (cex->ec_len == 0)
2042 goto errout;
2043
2044 if (in_range(block, cex->ec_block, cex->ec_len)) {
2045 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2046 ext_debug("%u cached by %u:%u:%llu\n",
2047 block,
2048 cex->ec_block, cex->ec_len, cex->ec_start);
2049 ret = 1;
2050 }
2051 errout:
2052 if (!ret)
2053 sbi->extent_cache_misses++;
2054 else
2055 sbi->extent_cache_hits++;
2056 trace_ext4_ext_in_cache(inode, block, ret);
2057 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2058 return ret;
2059 }
2060
2061 /*
2062 * ext4_ext_in_cache()
2063 * Checks to see if the given block is in the cache.
2064 * If it is, the cached extent is stored in the given
2065 * extent pointer.
2066 *
2067 * @inode: The files inode
2068 * @block: The block to look for in the cache
2069 * @ex: Pointer where the cached extent will be stored
2070 * if it contains block
2071 *
2072 * Return 0 if cache is invalid; 1 if the cache is valid
2073 */
2074 static int
2075 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2076 struct ext4_extent *ex)
2077 {
2078 struct ext4_ext_cache cex;
2079 int ret = 0;
2080
2081 if (ext4_ext_check_cache(inode, block, &cex)) {
2082 ex->ee_block = cpu_to_le32(cex.ec_block);
2083 ext4_ext_store_pblock(ex, cex.ec_start);
2084 ex->ee_len = cpu_to_le16(cex.ec_len);
2085 ret = 1;
2086 }
2087
2088 return ret;
2089 }
2090
2091
2092 /*
2093 * ext4_ext_rm_idx:
2094 * removes index from the index block.
2095 */
2096 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2097 struct ext4_ext_path *path)
2098 {
2099 int err;
2100 ext4_fsblk_t leaf;
2101
2102 /* free index block */
2103 path--;
2104 leaf = ext4_idx_pblock(path->p_idx);
2105 if (unlikely(path->p_hdr->eh_entries == 0)) {
2106 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2107 return -EIO;
2108 }
2109 err = ext4_ext_get_access(handle, inode, path);
2110 if (err)
2111 return err;
2112
2113 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2114 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2115 len *= sizeof(struct ext4_extent_idx);
2116 memmove(path->p_idx, path->p_idx + 1, len);
2117 }
2118
2119 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2120 err = ext4_ext_dirty(handle, inode, path);
2121 if (err)
2122 return err;
2123 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2124 trace_ext4_ext_rm_idx(inode, leaf);
2125
2126 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2127 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2128 return err;
2129 }
2130
2131 /*
2132 * ext4_ext_calc_credits_for_single_extent:
2133 * This routine returns max. credits that needed to insert an extent
2134 * to the extent tree.
2135 * When pass the actual path, the caller should calculate credits
2136 * under i_data_sem.
2137 */
2138 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2139 struct ext4_ext_path *path)
2140 {
2141 if (path) {
2142 int depth = ext_depth(inode);
2143 int ret = 0;
2144
2145 /* probably there is space in leaf? */
2146 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2147 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2148
2149 /*
2150 * There are some space in the leaf tree, no
2151 * need to account for leaf block credit
2152 *
2153 * bitmaps and block group descriptor blocks
2154 * and other metadata blocks still need to be
2155 * accounted.
2156 */
2157 /* 1 bitmap, 1 block group descriptor */
2158 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2159 return ret;
2160 }
2161 }
2162
2163 return ext4_chunk_trans_blocks(inode, nrblocks);
2164 }
2165
2166 /*
2167 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2168 *
2169 * if nrblocks are fit in a single extent (chunk flag is 1), then
2170 * in the worse case, each tree level index/leaf need to be changed
2171 * if the tree split due to insert a new extent, then the old tree
2172 * index/leaf need to be updated too
2173 *
2174 * If the nrblocks are discontiguous, they could cause
2175 * the whole tree split more than once, but this is really rare.
2176 */
2177 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2178 {
2179 int index;
2180 int depth = ext_depth(inode);
2181
2182 if (chunk)
2183 index = depth * 2;
2184 else
2185 index = depth * 3;
2186
2187 return index;
2188 }
2189
2190 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2191 struct ext4_extent *ex,
2192 ext4_fsblk_t *partial_cluster,
2193 ext4_lblk_t from, ext4_lblk_t to)
2194 {
2195 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2196 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2197 ext4_fsblk_t pblk;
2198 int flags = EXT4_FREE_BLOCKS_FORGET;
2199
2200 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2201 flags |= EXT4_FREE_BLOCKS_METADATA;
2202 /*
2203 * For bigalloc file systems, we never free a partial cluster
2204 * at the beginning of the extent. Instead, we make a note
2205 * that we tried freeing the cluster, and check to see if we
2206 * need to free it on a subsequent call to ext4_remove_blocks,
2207 * or at the end of the ext4_truncate() operation.
2208 */
2209 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2210
2211 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2212 /*
2213 * If we have a partial cluster, and it's different from the
2214 * cluster of the last block, we need to explicitly free the
2215 * partial cluster here.
2216 */
2217 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2218 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2219 ext4_free_blocks(handle, inode, NULL,
2220 EXT4_C2B(sbi, *partial_cluster),
2221 sbi->s_cluster_ratio, flags);
2222 *partial_cluster = 0;
2223 }
2224
2225 #ifdef EXTENTS_STATS
2226 {
2227 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2228 spin_lock(&sbi->s_ext_stats_lock);
2229 sbi->s_ext_blocks += ee_len;
2230 sbi->s_ext_extents++;
2231 if (ee_len < sbi->s_ext_min)
2232 sbi->s_ext_min = ee_len;
2233 if (ee_len > sbi->s_ext_max)
2234 sbi->s_ext_max = ee_len;
2235 if (ext_depth(inode) > sbi->s_depth_max)
2236 sbi->s_depth_max = ext_depth(inode);
2237 spin_unlock(&sbi->s_ext_stats_lock);
2238 }
2239 #endif
2240 if (from >= le32_to_cpu(ex->ee_block)
2241 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2242 /* tail removal */
2243 ext4_lblk_t num;
2244
2245 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2246 pblk = ext4_ext_pblock(ex) + ee_len - num;
2247 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2248 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2249 /*
2250 * If the block range to be freed didn't start at the
2251 * beginning of a cluster, and we removed the entire
2252 * extent, save the partial cluster here, since we
2253 * might need to delete if we determine that the
2254 * truncate operation has removed all of the blocks in
2255 * the cluster.
2256 */
2257 if (pblk & (sbi->s_cluster_ratio - 1) &&
2258 (ee_len == num))
2259 *partial_cluster = EXT4_B2C(sbi, pblk);
2260 else
2261 *partial_cluster = 0;
2262 } else if (from == le32_to_cpu(ex->ee_block)
2263 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2264 /* head removal */
2265 ext4_lblk_t num;
2266 ext4_fsblk_t start;
2267
2268 num = to - from;
2269 start = ext4_ext_pblock(ex);
2270
2271 ext_debug("free first %u blocks starting %llu\n", num, start);
2272 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2273
2274 } else {
2275 printk(KERN_INFO "strange request: removal(2) "
2276 "%u-%u from %u:%u\n",
2277 from, to, le32_to_cpu(ex->ee_block), ee_len);
2278 }
2279 return 0;
2280 }
2281
2282
2283 /*
2284 * ext4_ext_rm_leaf() Removes the extents associated with the
2285 * blocks appearing between "start" and "end", and splits the extents
2286 * if "start" and "end" appear in the same extent
2287 *
2288 * @handle: The journal handle
2289 * @inode: The files inode
2290 * @path: The path to the leaf
2291 * @start: The first block to remove
2292 * @end: The last block to remove
2293 */
2294 static int
2295 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2296 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2297 ext4_lblk_t start, ext4_lblk_t end)
2298 {
2299 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2300 int err = 0, correct_index = 0;
2301 int depth = ext_depth(inode), credits;
2302 struct ext4_extent_header *eh;
2303 ext4_lblk_t a, b;
2304 unsigned num;
2305 ext4_lblk_t ex_ee_block;
2306 unsigned short ex_ee_len;
2307 unsigned uninitialized = 0;
2308 struct ext4_extent *ex;
2309
2310 /* the header must be checked already in ext4_ext_remove_space() */
2311 ext_debug("truncate since %u in leaf\n", start);
2312 if (!path[depth].p_hdr)
2313 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2314 eh = path[depth].p_hdr;
2315 if (unlikely(path[depth].p_hdr == NULL)) {
2316 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2317 return -EIO;
2318 }
2319 /* find where to start removing */
2320 ex = EXT_LAST_EXTENT(eh);
2321
2322 ex_ee_block = le32_to_cpu(ex->ee_block);
2323 ex_ee_len = ext4_ext_get_actual_len(ex);
2324
2325 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2326
2327 while (ex >= EXT_FIRST_EXTENT(eh) &&
2328 ex_ee_block + ex_ee_len > start) {
2329
2330 if (ext4_ext_is_uninitialized(ex))
2331 uninitialized = 1;
2332 else
2333 uninitialized = 0;
2334
2335 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2336 uninitialized, ex_ee_len);
2337 path[depth].p_ext = ex;
2338
2339 a = ex_ee_block > start ? ex_ee_block : start;
2340 b = ex_ee_block+ex_ee_len - 1 < end ?
2341 ex_ee_block+ex_ee_len - 1 : end;
2342
2343 ext_debug(" border %u:%u\n", a, b);
2344
2345 /* If this extent is beyond the end of the hole, skip it */
2346 if (end <= ex_ee_block) {
2347 ex--;
2348 ex_ee_block = le32_to_cpu(ex->ee_block);
2349 ex_ee_len = ext4_ext_get_actual_len(ex);
2350 continue;
2351 } else if (b != ex_ee_block + ex_ee_len - 1) {
2352 EXT4_ERROR_INODE(inode," bad truncate %u:%u\n",
2353 start, end);
2354 err = -EIO;
2355 goto out;
2356 } else if (a != ex_ee_block) {
2357 /* remove tail of the extent */
2358 num = a - ex_ee_block;
2359 } else {
2360 /* remove whole extent: excellent! */
2361 num = 0;
2362 }
2363 /*
2364 * 3 for leaf, sb, and inode plus 2 (bmap and group
2365 * descriptor) for each block group; assume two block
2366 * groups plus ex_ee_len/blocks_per_block_group for
2367 * the worst case
2368 */
2369 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2370 if (ex == EXT_FIRST_EXTENT(eh)) {
2371 correct_index = 1;
2372 credits += (ext_depth(inode)) + 1;
2373 }
2374 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2375
2376 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2377 if (err)
2378 goto out;
2379
2380 err = ext4_ext_get_access(handle, inode, path + depth);
2381 if (err)
2382 goto out;
2383
2384 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2385 a, b);
2386 if (err)
2387 goto out;
2388
2389 if (num == 0)
2390 /* this extent is removed; mark slot entirely unused */
2391 ext4_ext_store_pblock(ex, 0);
2392
2393 ex->ee_len = cpu_to_le16(num);
2394 /*
2395 * Do not mark uninitialized if all the blocks in the
2396 * extent have been removed.
2397 */
2398 if (uninitialized && num)
2399 ext4_ext_mark_uninitialized(ex);
2400 /*
2401 * If the extent was completely released,
2402 * we need to remove it from the leaf
2403 */
2404 if (num == 0) {
2405 if (end != EXT_MAX_BLOCKS - 1) {
2406 /*
2407 * For hole punching, we need to scoot all the
2408 * extents up when an extent is removed so that
2409 * we dont have blank extents in the middle
2410 */
2411 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2412 sizeof(struct ext4_extent));
2413
2414 /* Now get rid of the one at the end */
2415 memset(EXT_LAST_EXTENT(eh), 0,
2416 sizeof(struct ext4_extent));
2417 }
2418 le16_add_cpu(&eh->eh_entries, -1);
2419 } else
2420 *partial_cluster = 0;
2421
2422 err = ext4_ext_dirty(handle, inode, path + depth);
2423 if (err)
2424 goto out;
2425
2426 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2427 ext4_ext_pblock(ex));
2428 ex--;
2429 ex_ee_block = le32_to_cpu(ex->ee_block);
2430 ex_ee_len = ext4_ext_get_actual_len(ex);
2431 }
2432
2433 if (correct_index && eh->eh_entries)
2434 err = ext4_ext_correct_indexes(handle, inode, path);
2435
2436 /*
2437 * If there is still a entry in the leaf node, check to see if
2438 * it references the partial cluster. This is the only place
2439 * where it could; if it doesn't, we can free the cluster.
2440 */
2441 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2442 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2443 *partial_cluster)) {
2444 int flags = EXT4_FREE_BLOCKS_FORGET;
2445
2446 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2447 flags |= EXT4_FREE_BLOCKS_METADATA;
2448
2449 ext4_free_blocks(handle, inode, NULL,
2450 EXT4_C2B(sbi, *partial_cluster),
2451 sbi->s_cluster_ratio, flags);
2452 *partial_cluster = 0;
2453 }
2454
2455 /* if this leaf is free, then we should
2456 * remove it from index block above */
2457 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2458 err = ext4_ext_rm_idx(handle, inode, path + depth);
2459
2460 out:
2461 return err;
2462 }
2463
2464 /*
2465 * ext4_ext_more_to_rm:
2466 * returns 1 if current index has to be freed (even partial)
2467 */
2468 static int
2469 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2470 {
2471 BUG_ON(path->p_idx == NULL);
2472
2473 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2474 return 0;
2475
2476 /*
2477 * if truncate on deeper level happened, it wasn't partial,
2478 * so we have to consider current index for truncation
2479 */
2480 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2481 return 0;
2482 return 1;
2483 }
2484
2485 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2486 {
2487 struct super_block *sb = inode->i_sb;
2488 int depth = ext_depth(inode);
2489 struct ext4_ext_path *path;
2490 ext4_fsblk_t partial_cluster = 0;
2491 handle_t *handle;
2492 int i, err;
2493
2494 ext_debug("truncate since %u\n", start);
2495
2496 /* probably first extent we're gonna free will be last in block */
2497 handle = ext4_journal_start(inode, depth + 1);
2498 if (IS_ERR(handle))
2499 return PTR_ERR(handle);
2500
2501 again:
2502 ext4_ext_invalidate_cache(inode);
2503
2504 trace_ext4_ext_remove_space(inode, start, depth);
2505
2506 /*
2507 * We start scanning from right side, freeing all the blocks
2508 * after i_size and walking into the tree depth-wise.
2509 */
2510 depth = ext_depth(inode);
2511 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2512 if (path == NULL) {
2513 ext4_journal_stop(handle);
2514 return -ENOMEM;
2515 }
2516 path[0].p_depth = depth;
2517 path[0].p_hdr = ext_inode_hdr(inode);
2518 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2519 err = -EIO;
2520 goto out;
2521 }
2522 i = err = 0;
2523
2524 while (i >= 0 && err == 0) {
2525 if (i == depth) {
2526 /* this is leaf block */
2527 err = ext4_ext_rm_leaf(handle, inode, path,
2528 &partial_cluster, start,
2529 EXT_MAX_BLOCKS - 1);
2530 /* root level has p_bh == NULL, brelse() eats this */
2531 brelse(path[i].p_bh);
2532 path[i].p_bh = NULL;
2533 i--;
2534 continue;
2535 }
2536
2537 /* this is index block */
2538 if (!path[i].p_hdr) {
2539 ext_debug("initialize header\n");
2540 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2541 }
2542
2543 if (!path[i].p_idx) {
2544 /* this level hasn't been touched yet */
2545 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2546 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2547 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2548 path[i].p_hdr,
2549 le16_to_cpu(path[i].p_hdr->eh_entries));
2550 } else {
2551 /* we were already here, see at next index */
2552 path[i].p_idx--;
2553 }
2554
2555 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2556 i, EXT_FIRST_INDEX(path[i].p_hdr),
2557 path[i].p_idx);
2558 if (ext4_ext_more_to_rm(path + i)) {
2559 struct buffer_head *bh;
2560 /* go to the next level */
2561 ext_debug("move to level %d (block %llu)\n",
2562 i + 1, ext4_idx_pblock(path[i].p_idx));
2563 memset(path + i + 1, 0, sizeof(*path));
2564 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2565 if (!bh) {
2566 /* should we reset i_size? */
2567 err = -EIO;
2568 break;
2569 }
2570 if (WARN_ON(i + 1 > depth)) {
2571 err = -EIO;
2572 break;
2573 }
2574 if (ext4_ext_check(inode, ext_block_hdr(bh),
2575 depth - i - 1)) {
2576 err = -EIO;
2577 break;
2578 }
2579 path[i + 1].p_bh = bh;
2580
2581 /* save actual number of indexes since this
2582 * number is changed at the next iteration */
2583 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2584 i++;
2585 } else {
2586 /* we finished processing this index, go up */
2587 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2588 /* index is empty, remove it;
2589 * handle must be already prepared by the
2590 * truncatei_leaf() */
2591 err = ext4_ext_rm_idx(handle, inode, path + i);
2592 }
2593 /* root level has p_bh == NULL, brelse() eats this */
2594 brelse(path[i].p_bh);
2595 path[i].p_bh = NULL;
2596 i--;
2597 ext_debug("return to level %d\n", i);
2598 }
2599 }
2600
2601 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2602 path->p_hdr->eh_entries);
2603
2604 /* If we still have something in the partial cluster and we have removed
2605 * even the first extent, then we should free the blocks in the partial
2606 * cluster as well. */
2607 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2608 int flags = EXT4_FREE_BLOCKS_FORGET;
2609
2610 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2611 flags |= EXT4_FREE_BLOCKS_METADATA;
2612
2613 ext4_free_blocks(handle, inode, NULL,
2614 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2615 EXT4_SB(sb)->s_cluster_ratio, flags);
2616 partial_cluster = 0;
2617 }
2618
2619 /* TODO: flexible tree reduction should be here */
2620 if (path->p_hdr->eh_entries == 0) {
2621 /*
2622 * truncate to zero freed all the tree,
2623 * so we need to correct eh_depth
2624 */
2625 err = ext4_ext_get_access(handle, inode, path);
2626 if (err == 0) {
2627 ext_inode_hdr(inode)->eh_depth = 0;
2628 ext_inode_hdr(inode)->eh_max =
2629 cpu_to_le16(ext4_ext_space_root(inode, 0));
2630 err = ext4_ext_dirty(handle, inode, path);
2631 }
2632 }
2633 out:
2634 ext4_ext_drop_refs(path);
2635 kfree(path);
2636 if (err == -EAGAIN)
2637 goto again;
2638 ext4_journal_stop(handle);
2639
2640 return err;
2641 }
2642
2643 /*
2644 * called at mount time
2645 */
2646 void ext4_ext_init(struct super_block *sb)
2647 {
2648 /*
2649 * possible initialization would be here
2650 */
2651
2652 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2653 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2654 printk(KERN_INFO "EXT4-fs: file extents enabled");
2655 #ifdef AGGRESSIVE_TEST
2656 printk(", aggressive tests");
2657 #endif
2658 #ifdef CHECK_BINSEARCH
2659 printk(", check binsearch");
2660 #endif
2661 #ifdef EXTENTS_STATS
2662 printk(", stats");
2663 #endif
2664 printk("\n");
2665 #endif
2666 #ifdef EXTENTS_STATS
2667 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2668 EXT4_SB(sb)->s_ext_min = 1 << 30;
2669 EXT4_SB(sb)->s_ext_max = 0;
2670 #endif
2671 }
2672 }
2673
2674 /*
2675 * called at umount time
2676 */
2677 void ext4_ext_release(struct super_block *sb)
2678 {
2679 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2680 return;
2681
2682 #ifdef EXTENTS_STATS
2683 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2684 struct ext4_sb_info *sbi = EXT4_SB(sb);
2685 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2686 sbi->s_ext_blocks, sbi->s_ext_extents,
2687 sbi->s_ext_blocks / sbi->s_ext_extents);
2688 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2689 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2690 }
2691 #endif
2692 }
2693
2694 /* FIXME!! we need to try to merge to left or right after zero-out */
2695 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2696 {
2697 ext4_fsblk_t ee_pblock;
2698 unsigned int ee_len;
2699 int ret;
2700
2701 ee_len = ext4_ext_get_actual_len(ex);
2702 ee_pblock = ext4_ext_pblock(ex);
2703
2704 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2705 if (ret > 0)
2706 ret = 0;
2707
2708 return ret;
2709 }
2710
2711 /*
2712 * used by extent splitting.
2713 */
2714 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2715 due to ENOSPC */
2716 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2717 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2718
2719 /*
2720 * ext4_split_extent_at() splits an extent at given block.
2721 *
2722 * @handle: the journal handle
2723 * @inode: the file inode
2724 * @path: the path to the extent
2725 * @split: the logical block where the extent is splitted.
2726 * @split_flags: indicates if the extent could be zeroout if split fails, and
2727 * the states(init or uninit) of new extents.
2728 * @flags: flags used to insert new extent to extent tree.
2729 *
2730 *
2731 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2732 * of which are deterimined by split_flag.
2733 *
2734 * There are two cases:
2735 * a> the extent are splitted into two extent.
2736 * b> split is not needed, and just mark the extent.
2737 *
2738 * return 0 on success.
2739 */
2740 static int ext4_split_extent_at(handle_t *handle,
2741 struct inode *inode,
2742 struct ext4_ext_path *path,
2743 ext4_lblk_t split,
2744 int split_flag,
2745 int flags)
2746 {
2747 ext4_fsblk_t newblock;
2748 ext4_lblk_t ee_block;
2749 struct ext4_extent *ex, newex, orig_ex;
2750 struct ext4_extent *ex2 = NULL;
2751 unsigned int ee_len, depth;
2752 int err = 0;
2753
2754 ext_debug("ext4_split_extents_at: inode %lu, logical"
2755 "block %llu\n", inode->i_ino, (unsigned long long)split);
2756
2757 ext4_ext_show_leaf(inode, path);
2758
2759 depth = ext_depth(inode);
2760 ex = path[depth].p_ext;
2761 ee_block = le32_to_cpu(ex->ee_block);
2762 ee_len = ext4_ext_get_actual_len(ex);
2763 newblock = split - ee_block + ext4_ext_pblock(ex);
2764
2765 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2766
2767 err = ext4_ext_get_access(handle, inode, path + depth);
2768 if (err)
2769 goto out;
2770
2771 if (split == ee_block) {
2772 /*
2773 * case b: block @split is the block that the extent begins with
2774 * then we just change the state of the extent, and splitting
2775 * is not needed.
2776 */
2777 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2778 ext4_ext_mark_uninitialized(ex);
2779 else
2780 ext4_ext_mark_initialized(ex);
2781
2782 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2783 ext4_ext_try_to_merge(inode, path, ex);
2784
2785 err = ext4_ext_dirty(handle, inode, path + depth);
2786 goto out;
2787 }
2788
2789 /* case a */
2790 memcpy(&orig_ex, ex, sizeof(orig_ex));
2791 ex->ee_len = cpu_to_le16(split - ee_block);
2792 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2793 ext4_ext_mark_uninitialized(ex);
2794
2795 /*
2796 * path may lead to new leaf, not to original leaf any more
2797 * after ext4_ext_insert_extent() returns,
2798 */
2799 err = ext4_ext_dirty(handle, inode, path + depth);
2800 if (err)
2801 goto fix_extent_len;
2802
2803 ex2 = &newex;
2804 ex2->ee_block = cpu_to_le32(split);
2805 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2806 ext4_ext_store_pblock(ex2, newblock);
2807 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2808 ext4_ext_mark_uninitialized(ex2);
2809
2810 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2811 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2812 err = ext4_ext_zeroout(inode, &orig_ex);
2813 if (err)
2814 goto fix_extent_len;
2815 /* update the extent length and mark as initialized */
2816 ex->ee_len = cpu_to_le32(ee_len);
2817 ext4_ext_try_to_merge(inode, path, ex);
2818 err = ext4_ext_dirty(handle, inode, path + depth);
2819 goto out;
2820 } else if (err)
2821 goto fix_extent_len;
2822
2823 out:
2824 ext4_ext_show_leaf(inode, path);
2825 return err;
2826
2827 fix_extent_len:
2828 ex->ee_len = orig_ex.ee_len;
2829 ext4_ext_dirty(handle, inode, path + depth);
2830 return err;
2831 }
2832
2833 /*
2834 * ext4_split_extents() splits an extent and mark extent which is covered
2835 * by @map as split_flags indicates
2836 *
2837 * It may result in splitting the extent into multiple extents (upto three)
2838 * There are three possibilities:
2839 * a> There is no split required
2840 * b> Splits in two extents: Split is happening at either end of the extent
2841 * c> Splits in three extents: Somone is splitting in middle of the extent
2842 *
2843 */
2844 static int ext4_split_extent(handle_t *handle,
2845 struct inode *inode,
2846 struct ext4_ext_path *path,
2847 struct ext4_map_blocks *map,
2848 int split_flag,
2849 int flags)
2850 {
2851 ext4_lblk_t ee_block;
2852 struct ext4_extent *ex;
2853 unsigned int ee_len, depth;
2854 int err = 0;
2855 int uninitialized;
2856 int split_flag1, flags1;
2857
2858 depth = ext_depth(inode);
2859 ex = path[depth].p_ext;
2860 ee_block = le32_to_cpu(ex->ee_block);
2861 ee_len = ext4_ext_get_actual_len(ex);
2862 uninitialized = ext4_ext_is_uninitialized(ex);
2863
2864 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2865 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2866 EXT4_EXT_MAY_ZEROOUT : 0;
2867 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2868 if (uninitialized)
2869 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2870 EXT4_EXT_MARK_UNINIT2;
2871 err = ext4_split_extent_at(handle, inode, path,
2872 map->m_lblk + map->m_len, split_flag1, flags1);
2873 if (err)
2874 goto out;
2875 }
2876
2877 ext4_ext_drop_refs(path);
2878 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2879 if (IS_ERR(path))
2880 return PTR_ERR(path);
2881
2882 if (map->m_lblk >= ee_block) {
2883 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2884 EXT4_EXT_MAY_ZEROOUT : 0;
2885 if (uninitialized)
2886 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2887 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2888 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2889 err = ext4_split_extent_at(handle, inode, path,
2890 map->m_lblk, split_flag1, flags);
2891 if (err)
2892 goto out;
2893 }
2894
2895 ext4_ext_show_leaf(inode, path);
2896 out:
2897 return err ? err : map->m_len;
2898 }
2899
2900 #define EXT4_EXT_ZERO_LEN 7
2901 /*
2902 * This function is called by ext4_ext_map_blocks() if someone tries to write
2903 * to an uninitialized extent. It may result in splitting the uninitialized
2904 * extent into multiple extents (up to three - one initialized and two
2905 * uninitialized).
2906 * There are three possibilities:
2907 * a> There is no split required: Entire extent should be initialized
2908 * b> Splits in two extents: Write is happening at either end of the extent
2909 * c> Splits in three extents: Somone is writing in middle of the extent
2910 *
2911 * Pre-conditions:
2912 * - The extent pointed to by 'path' is uninitialized.
2913 * - The extent pointed to by 'path' contains a superset
2914 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2915 *
2916 * Post-conditions on success:
2917 * - the returned value is the number of blocks beyond map->l_lblk
2918 * that are allocated and initialized.
2919 * It is guaranteed to be >= map->m_len.
2920 */
2921 static int ext4_ext_convert_to_initialized(handle_t *handle,
2922 struct inode *inode,
2923 struct ext4_map_blocks *map,
2924 struct ext4_ext_path *path)
2925 {
2926 struct ext4_extent_header *eh;
2927 struct ext4_map_blocks split_map;
2928 struct ext4_extent zero_ex;
2929 struct ext4_extent *ex;
2930 ext4_lblk_t ee_block, eof_block;
2931 unsigned int ee_len, depth;
2932 int allocated;
2933 int err = 0;
2934 int split_flag = 0;
2935
2936 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2937 "block %llu, max_blocks %u\n", inode->i_ino,
2938 (unsigned long long)map->m_lblk, map->m_len);
2939
2940 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2941 inode->i_sb->s_blocksize_bits;
2942 if (eof_block < map->m_lblk + map->m_len)
2943 eof_block = map->m_lblk + map->m_len;
2944
2945 depth = ext_depth(inode);
2946 eh = path[depth].p_hdr;
2947 ex = path[depth].p_ext;
2948 ee_block = le32_to_cpu(ex->ee_block);
2949 ee_len = ext4_ext_get_actual_len(ex);
2950 allocated = ee_len - (map->m_lblk - ee_block);
2951
2952 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
2953
2954 /* Pre-conditions */
2955 BUG_ON(!ext4_ext_is_uninitialized(ex));
2956 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
2957
2958 /*
2959 * Attempt to transfer newly initialized blocks from the currently
2960 * uninitialized extent to its left neighbor. This is much cheaper
2961 * than an insertion followed by a merge as those involve costly
2962 * memmove() calls. This is the common case in steady state for
2963 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2964 * writes.
2965 *
2966 * Limitations of the current logic:
2967 * - L1: we only deal with writes at the start of the extent.
2968 * The approach could be extended to writes at the end
2969 * of the extent but this scenario was deemed less common.
2970 * - L2: we do not deal with writes covering the whole extent.
2971 * This would require removing the extent if the transfer
2972 * is possible.
2973 * - L3: we only attempt to merge with an extent stored in the
2974 * same extent tree node.
2975 */
2976 if ((map->m_lblk == ee_block) && /*L1*/
2977 (map->m_len < ee_len) && /*L2*/
2978 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
2979 struct ext4_extent *prev_ex;
2980 ext4_lblk_t prev_lblk;
2981 ext4_fsblk_t prev_pblk, ee_pblk;
2982 unsigned int prev_len, write_len;
2983
2984 prev_ex = ex - 1;
2985 prev_lblk = le32_to_cpu(prev_ex->ee_block);
2986 prev_len = ext4_ext_get_actual_len(prev_ex);
2987 prev_pblk = ext4_ext_pblock(prev_ex);
2988 ee_pblk = ext4_ext_pblock(ex);
2989 write_len = map->m_len;
2990
2991 /*
2992 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2993 * upon those conditions:
2994 * - C1: prev_ex is initialized,
2995 * - C2: prev_ex is logically abutting ex,
2996 * - C3: prev_ex is physically abutting ex,
2997 * - C4: prev_ex can receive the additional blocks without
2998 * overflowing the (initialized) length limit.
2999 */
3000 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3001 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3002 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3003 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3004 err = ext4_ext_get_access(handle, inode, path + depth);
3005 if (err)
3006 goto out;
3007
3008 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3009 map, ex, prev_ex);
3010
3011 /* Shift the start of ex by 'write_len' blocks */
3012 ex->ee_block = cpu_to_le32(ee_block + write_len);
3013 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3014 ex->ee_len = cpu_to_le16(ee_len - write_len);
3015 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3016
3017 /* Extend prev_ex by 'write_len' blocks */
3018 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3019
3020 /* Mark the block containing both extents as dirty */
3021 ext4_ext_dirty(handle, inode, path + depth);
3022
3023 /* Update path to point to the right extent */
3024 path[depth].p_ext = prev_ex;
3025
3026 /* Result: number of initialized blocks past m_lblk */
3027 allocated = write_len;
3028 goto out;
3029 }
3030 }
3031
3032 WARN_ON(map->m_lblk < ee_block);
3033 /*
3034 * It is safe to convert extent to initialized via explicit
3035 * zeroout only if extent is fully insde i_size or new_size.
3036 */
3037 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3038
3039 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3040 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3041 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3042 err = ext4_ext_zeroout(inode, ex);
3043 if (err)
3044 goto out;
3045
3046 err = ext4_ext_get_access(handle, inode, path + depth);
3047 if (err)
3048 goto out;
3049 ext4_ext_mark_initialized(ex);
3050 ext4_ext_try_to_merge(inode, path, ex);
3051 err = ext4_ext_dirty(handle, inode, path + depth);
3052 goto out;
3053 }
3054
3055 /*
3056 * four cases:
3057 * 1. split the extent into three extents.
3058 * 2. split the extent into two extents, zeroout the first half.
3059 * 3. split the extent into two extents, zeroout the second half.
3060 * 4. split the extent into two extents with out zeroout.
3061 */
3062 split_map.m_lblk = map->m_lblk;
3063 split_map.m_len = map->m_len;
3064
3065 if (allocated > map->m_len) {
3066 if (allocated <= EXT4_EXT_ZERO_LEN &&
3067 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3068 /* case 3 */
3069 zero_ex.ee_block =
3070 cpu_to_le32(map->m_lblk);
3071 zero_ex.ee_len = cpu_to_le16(allocated);
3072 ext4_ext_store_pblock(&zero_ex,
3073 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3074 err = ext4_ext_zeroout(inode, &zero_ex);
3075 if (err)
3076 goto out;
3077 split_map.m_lblk = map->m_lblk;
3078 split_map.m_len = allocated;
3079 } else if ((map->m_lblk - ee_block + map->m_len <
3080 EXT4_EXT_ZERO_LEN) &&
3081 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3082 /* case 2 */
3083 if (map->m_lblk != ee_block) {
3084 zero_ex.ee_block = ex->ee_block;
3085 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3086 ee_block);
3087 ext4_ext_store_pblock(&zero_ex,
3088 ext4_ext_pblock(ex));
3089 err = ext4_ext_zeroout(inode, &zero_ex);
3090 if (err)
3091 goto out;
3092 }
3093
3094 split_map.m_lblk = ee_block;
3095 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3096 allocated = map->m_len;
3097 }
3098 }
3099
3100 allocated = ext4_split_extent(handle, inode, path,
3101 &split_map, split_flag, 0);
3102 if (allocated < 0)
3103 err = allocated;
3104
3105 out:
3106 return err ? err : allocated;
3107 }
3108
3109 /*
3110 * This function is called by ext4_ext_map_blocks() from
3111 * ext4_get_blocks_dio_write() when DIO to write
3112 * to an uninitialized extent.
3113 *
3114 * Writing to an uninitialized extent may result in splitting the uninitialized
3115 * extent into multiple /initialized uninitialized extents (up to three)
3116 * There are three possibilities:
3117 * a> There is no split required: Entire extent should be uninitialized
3118 * b> Splits in two extents: Write is happening at either end of the extent
3119 * c> Splits in three extents: Somone is writing in middle of the extent
3120 *
3121 * One of more index blocks maybe needed if the extent tree grow after
3122 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3123 * complete, we need to split the uninitialized extent before DIO submit
3124 * the IO. The uninitialized extent called at this time will be split
3125 * into three uninitialized extent(at most). After IO complete, the part
3126 * being filled will be convert to initialized by the end_io callback function
3127 * via ext4_convert_unwritten_extents().
3128 *
3129 * Returns the size of uninitialized extent to be written on success.
3130 */
3131 static int ext4_split_unwritten_extents(handle_t *handle,
3132 struct inode *inode,
3133 struct ext4_map_blocks *map,
3134 struct ext4_ext_path *path,
3135 int flags)
3136 {
3137 ext4_lblk_t eof_block;
3138 ext4_lblk_t ee_block;
3139 struct ext4_extent *ex;
3140 unsigned int ee_len;
3141 int split_flag = 0, depth;
3142
3143 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3144 "block %llu, max_blocks %u\n", inode->i_ino,
3145 (unsigned long long)map->m_lblk, map->m_len);
3146
3147 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3148 inode->i_sb->s_blocksize_bits;
3149 if (eof_block < map->m_lblk + map->m_len)
3150 eof_block = map->m_lblk + map->m_len;
3151 /*
3152 * It is safe to convert extent to initialized via explicit
3153 * zeroout only if extent is fully insde i_size or new_size.
3154 */
3155 depth = ext_depth(inode);
3156 ex = path[depth].p_ext;
3157 ee_block = le32_to_cpu(ex->ee_block);
3158 ee_len = ext4_ext_get_actual_len(ex);
3159
3160 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3161 split_flag |= EXT4_EXT_MARK_UNINIT2;
3162
3163 flags |= EXT4_GET_BLOCKS_PRE_IO;
3164 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3165 }
3166
3167 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3168 struct inode *inode,
3169 struct ext4_ext_path *path)
3170 {
3171 struct ext4_extent *ex;
3172 int depth;
3173 int err = 0;
3174
3175 depth = ext_depth(inode);
3176 ex = path[depth].p_ext;
3177
3178 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3179 "block %llu, max_blocks %u\n", inode->i_ino,
3180 (unsigned long long)le32_to_cpu(ex->ee_block),
3181 ext4_ext_get_actual_len(ex));
3182
3183 err = ext4_ext_get_access(handle, inode, path + depth);
3184 if (err)
3185 goto out;
3186 /* first mark the extent as initialized */
3187 ext4_ext_mark_initialized(ex);
3188
3189 /* note: ext4_ext_correct_indexes() isn't needed here because
3190 * borders are not changed
3191 */
3192 ext4_ext_try_to_merge(inode, path, ex);
3193
3194 /* Mark modified extent as dirty */
3195 err = ext4_ext_dirty(handle, inode, path + depth);
3196 out:
3197 ext4_ext_show_leaf(inode, path);
3198 return err;
3199 }
3200
3201 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3202 sector_t block, int count)
3203 {
3204 int i;
3205 for (i = 0; i < count; i++)
3206 unmap_underlying_metadata(bdev, block + i);
3207 }
3208
3209 /*
3210 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3211 */
3212 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3213 ext4_lblk_t lblk,
3214 struct ext4_ext_path *path,
3215 unsigned int len)
3216 {
3217 int i, depth;
3218 struct ext4_extent_header *eh;
3219 struct ext4_extent *last_ex;
3220
3221 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3222 return 0;
3223
3224 depth = ext_depth(inode);
3225 eh = path[depth].p_hdr;
3226
3227 if (unlikely(!eh->eh_entries)) {
3228 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3229 "EOFBLOCKS_FL set");
3230 return -EIO;
3231 }
3232 last_ex = EXT_LAST_EXTENT(eh);
3233 /*
3234 * We should clear the EOFBLOCKS_FL flag if we are writing the
3235 * last block in the last extent in the file. We test this by
3236 * first checking to see if the caller to
3237 * ext4_ext_get_blocks() was interested in the last block (or
3238 * a block beyond the last block) in the current extent. If
3239 * this turns out to be false, we can bail out from this
3240 * function immediately.
3241 */
3242 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3243 ext4_ext_get_actual_len(last_ex))
3244 return 0;
3245 /*
3246 * If the caller does appear to be planning to write at or
3247 * beyond the end of the current extent, we then test to see
3248 * if the current extent is the last extent in the file, by
3249 * checking to make sure it was reached via the rightmost node
3250 * at each level of the tree.
3251 */
3252 for (i = depth-1; i >= 0; i--)
3253 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3254 return 0;
3255 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3256 return ext4_mark_inode_dirty(handle, inode);
3257 }
3258
3259 /**
3260 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3261 *
3262 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3263 * whether there are any buffers marked for delayed allocation. It returns '1'
3264 * on the first delalloc'ed buffer head found. If no buffer head in the given
3265 * range is marked for delalloc, it returns 0.
3266 * lblk_start should always be <= lblk_end.
3267 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3268 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3269 * block sooner). This is useful when blocks are truncated sequentially from
3270 * lblk_start towards lblk_end.
3271 */
3272 static int ext4_find_delalloc_range(struct inode *inode,
3273 ext4_lblk_t lblk_start,
3274 ext4_lblk_t lblk_end,
3275 int search_hint_reverse)
3276 {
3277 struct address_space *mapping = inode->i_mapping;
3278 struct buffer_head *head, *bh = NULL;
3279 struct page *page;
3280 ext4_lblk_t i, pg_lblk;
3281 pgoff_t index;
3282
3283 /* reverse search wont work if fs block size is less than page size */
3284 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3285 search_hint_reverse = 0;
3286
3287 if (search_hint_reverse)
3288 i = lblk_end;
3289 else
3290 i = lblk_start;
3291
3292 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3293
3294 while ((i >= lblk_start) && (i <= lblk_end)) {
3295 page = find_get_page(mapping, index);
3296 if (!page)
3297 goto nextpage;
3298
3299 if (!page_has_buffers(page))
3300 goto nextpage;
3301
3302 head = page_buffers(page);
3303 if (!head)
3304 goto nextpage;
3305
3306 bh = head;
3307 pg_lblk = index << (PAGE_CACHE_SHIFT -
3308 inode->i_blkbits);
3309 do {
3310 if (unlikely(pg_lblk < lblk_start)) {
3311 /*
3312 * This is possible when fs block size is less
3313 * than page size and our cluster starts/ends in
3314 * middle of the page. So we need to skip the
3315 * initial few blocks till we reach the 'lblk'
3316 */
3317 pg_lblk++;
3318 continue;
3319 }
3320
3321 /* Check if the buffer is delayed allocated and that it
3322 * is not yet mapped. (when da-buffers are mapped during
3323 * their writeout, their da_mapped bit is set.)
3324 */
3325 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3326 page_cache_release(page);
3327 trace_ext4_find_delalloc_range(inode,
3328 lblk_start, lblk_end,
3329 search_hint_reverse,
3330 1, i);
3331 return 1;
3332 }
3333 if (search_hint_reverse)
3334 i--;
3335 else
3336 i++;
3337 } while ((i >= lblk_start) && (i <= lblk_end) &&
3338 ((bh = bh->b_this_page) != head));
3339 nextpage:
3340 if (page)
3341 page_cache_release(page);
3342 /*
3343 * Move to next page. 'i' will be the first lblk in the next
3344 * page.
3345 */
3346 if (search_hint_reverse)
3347 index--;
3348 else
3349 index++;
3350 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3351 }
3352
3353 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3354 search_hint_reverse, 0, 0);
3355 return 0;
3356 }
3357
3358 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3359 int search_hint_reverse)
3360 {
3361 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3362 ext4_lblk_t lblk_start, lblk_end;
3363 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3364 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3365
3366 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3367 search_hint_reverse);
3368 }
3369
3370 /**
3371 * Determines how many complete clusters (out of those specified by the 'map')
3372 * are under delalloc and were reserved quota for.
3373 * This function is called when we are writing out the blocks that were
3374 * originally written with their allocation delayed, but then the space was
3375 * allocated using fallocate() before the delayed allocation could be resolved.
3376 * The cases to look for are:
3377 * ('=' indicated delayed allocated blocks
3378 * '-' indicates non-delayed allocated blocks)
3379 * (a) partial clusters towards beginning and/or end outside of allocated range
3380 * are not delalloc'ed.
3381 * Ex:
3382 * |----c---=|====c====|====c====|===-c----|
3383 * |++++++ allocated ++++++|
3384 * ==> 4 complete clusters in above example
3385 *
3386 * (b) partial cluster (outside of allocated range) towards either end is
3387 * marked for delayed allocation. In this case, we will exclude that
3388 * cluster.
3389 * Ex:
3390 * |----====c========|========c========|
3391 * |++++++ allocated ++++++|
3392 * ==> 1 complete clusters in above example
3393 *
3394 * Ex:
3395 * |================c================|
3396 * |++++++ allocated ++++++|
3397 * ==> 0 complete clusters in above example
3398 *
3399 * The ext4_da_update_reserve_space will be called only if we
3400 * determine here that there were some "entire" clusters that span
3401 * this 'allocated' range.
3402 * In the non-bigalloc case, this function will just end up returning num_blks
3403 * without ever calling ext4_find_delalloc_range.
3404 */
3405 static unsigned int
3406 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3407 unsigned int num_blks)
3408 {
3409 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3410 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3411 ext4_lblk_t lblk_from, lblk_to, c_offset;
3412 unsigned int allocated_clusters = 0;
3413
3414 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3415 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3416
3417 /* max possible clusters for this allocation */
3418 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3419
3420 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3421
3422 /* Check towards left side */
3423 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3424 if (c_offset) {
3425 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3426 lblk_to = lblk_from + c_offset - 1;
3427
3428 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3429 allocated_clusters--;
3430 }
3431
3432 /* Now check towards right. */
3433 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3434 if (allocated_clusters && c_offset) {
3435 lblk_from = lblk_start + num_blks;
3436 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3437
3438 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3439 allocated_clusters--;
3440 }
3441
3442 return allocated_clusters;
3443 }
3444
3445 static int
3446 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3447 struct ext4_map_blocks *map,
3448 struct ext4_ext_path *path, int flags,
3449 unsigned int allocated, ext4_fsblk_t newblock)
3450 {
3451 int ret = 0;
3452 int err = 0;
3453 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3454
3455 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical"
3456 "block %llu, max_blocks %u, flags %d, allocated %u",
3457 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3458 flags, allocated);
3459 ext4_ext_show_leaf(inode, path);
3460
3461 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3462 newblock);
3463
3464 /* get_block() before submit the IO, split the extent */
3465 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3466 ret = ext4_split_unwritten_extents(handle, inode, map,
3467 path, flags);
3468 /*
3469 * Flag the inode(non aio case) or end_io struct (aio case)
3470 * that this IO needs to conversion to written when IO is
3471 * completed
3472 */
3473 if (io)
3474 ext4_set_io_unwritten_flag(inode, io);
3475 else
3476 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3477 if (ext4_should_dioread_nolock(inode))
3478 map->m_flags |= EXT4_MAP_UNINIT;
3479 goto out;
3480 }
3481 /* IO end_io complete, convert the filled extent to written */
3482 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3483 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3484 path);
3485 if (ret >= 0) {
3486 ext4_update_inode_fsync_trans(handle, inode, 1);
3487 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3488 path, map->m_len);
3489 } else
3490 err = ret;
3491 goto out2;
3492 }
3493 /* buffered IO case */
3494 /*
3495 * repeat fallocate creation request
3496 * we already have an unwritten extent
3497 */
3498 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3499 goto map_out;
3500
3501 /* buffered READ or buffered write_begin() lookup */
3502 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3503 /*
3504 * We have blocks reserved already. We
3505 * return allocated blocks so that delalloc
3506 * won't do block reservation for us. But
3507 * the buffer head will be unmapped so that
3508 * a read from the block returns 0s.
3509 */
3510 map->m_flags |= EXT4_MAP_UNWRITTEN;
3511 goto out1;
3512 }
3513
3514 /* buffered write, writepage time, convert*/
3515 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3516 if (ret >= 0)
3517 ext4_update_inode_fsync_trans(handle, inode, 1);
3518 out:
3519 if (ret <= 0) {
3520 err = ret;
3521 goto out2;
3522 } else
3523 allocated = ret;
3524 map->m_flags |= EXT4_MAP_NEW;
3525 /*
3526 * if we allocated more blocks than requested
3527 * we need to make sure we unmap the extra block
3528 * allocated. The actual needed block will get
3529 * unmapped later when we find the buffer_head marked
3530 * new.
3531 */
3532 if (allocated > map->m_len) {
3533 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3534 newblock + map->m_len,
3535 allocated - map->m_len);
3536 allocated = map->m_len;
3537 }
3538
3539 /*
3540 * If we have done fallocate with the offset that is already
3541 * delayed allocated, we would have block reservation
3542 * and quota reservation done in the delayed write path.
3543 * But fallocate would have already updated quota and block
3544 * count for this offset. So cancel these reservation
3545 */
3546 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3547 unsigned int reserved_clusters;
3548 reserved_clusters = get_reserved_cluster_alloc(inode,
3549 map->m_lblk, map->m_len);
3550 if (reserved_clusters)
3551 ext4_da_update_reserve_space(inode,
3552 reserved_clusters,
3553 0);
3554 }
3555
3556 map_out:
3557 map->m_flags |= EXT4_MAP_MAPPED;
3558 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3559 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3560 map->m_len);
3561 if (err < 0)
3562 goto out2;
3563 }
3564 out1:
3565 if (allocated > map->m_len)
3566 allocated = map->m_len;
3567 ext4_ext_show_leaf(inode, path);
3568 map->m_pblk = newblock;
3569 map->m_len = allocated;
3570 out2:
3571 if (path) {
3572 ext4_ext_drop_refs(path);
3573 kfree(path);
3574 }
3575 return err ? err : allocated;
3576 }
3577
3578 /*
3579 * get_implied_cluster_alloc - check to see if the requested
3580 * allocation (in the map structure) overlaps with a cluster already
3581 * allocated in an extent.
3582 * @sb The filesystem superblock structure
3583 * @map The requested lblk->pblk mapping
3584 * @ex The extent structure which might contain an implied
3585 * cluster allocation
3586 *
3587 * This function is called by ext4_ext_map_blocks() after we failed to
3588 * find blocks that were already in the inode's extent tree. Hence,
3589 * we know that the beginning of the requested region cannot overlap
3590 * the extent from the inode's extent tree. There are three cases we
3591 * want to catch. The first is this case:
3592 *
3593 * |--- cluster # N--|
3594 * |--- extent ---| |---- requested region ---|
3595 * |==========|
3596 *
3597 * The second case that we need to test for is this one:
3598 *
3599 * |--------- cluster # N ----------------|
3600 * |--- requested region --| |------- extent ----|
3601 * |=======================|
3602 *
3603 * The third case is when the requested region lies between two extents
3604 * within the same cluster:
3605 * |------------- cluster # N-------------|
3606 * |----- ex -----| |---- ex_right ----|
3607 * |------ requested region ------|
3608 * |================|
3609 *
3610 * In each of the above cases, we need to set the map->m_pblk and
3611 * map->m_len so it corresponds to the return the extent labelled as
3612 * "|====|" from cluster #N, since it is already in use for data in
3613 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3614 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3615 * as a new "allocated" block region. Otherwise, we will return 0 and
3616 * ext4_ext_map_blocks() will then allocate one or more new clusters
3617 * by calling ext4_mb_new_blocks().
3618 */
3619 static int get_implied_cluster_alloc(struct super_block *sb,
3620 struct ext4_map_blocks *map,
3621 struct ext4_extent *ex,
3622 struct ext4_ext_path *path)
3623 {
3624 struct ext4_sb_info *sbi = EXT4_SB(sb);
3625 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3626 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3627 ext4_lblk_t rr_cluster_start, rr_cluster_end;
3628 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3629 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3630 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3631
3632 /* The extent passed in that we are trying to match */
3633 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3634 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3635
3636 /* The requested region passed into ext4_map_blocks() */
3637 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3638 rr_cluster_end = EXT4_B2C(sbi, map->m_lblk + map->m_len - 1);
3639
3640 if ((rr_cluster_start == ex_cluster_end) ||
3641 (rr_cluster_start == ex_cluster_start)) {
3642 if (rr_cluster_start == ex_cluster_end)
3643 ee_start += ee_len - 1;
3644 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3645 c_offset;
3646 map->m_len = min(map->m_len,
3647 (unsigned) sbi->s_cluster_ratio - c_offset);
3648 /*
3649 * Check for and handle this case:
3650 *
3651 * |--------- cluster # N-------------|
3652 * |------- extent ----|
3653 * |--- requested region ---|
3654 * |===========|
3655 */
3656
3657 if (map->m_lblk < ee_block)
3658 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3659
3660 /*
3661 * Check for the case where there is already another allocated
3662 * block to the right of 'ex' but before the end of the cluster.
3663 *
3664 * |------------- cluster # N-------------|
3665 * |----- ex -----| |---- ex_right ----|
3666 * |------ requested region ------|
3667 * |================|
3668 */
3669 if (map->m_lblk > ee_block) {
3670 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3671 map->m_len = min(map->m_len, next - map->m_lblk);
3672 }
3673
3674 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3675 return 1;
3676 }
3677
3678 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3679 return 0;
3680 }
3681
3682
3683 /*
3684 * Block allocation/map/preallocation routine for extents based files
3685 *
3686 *
3687 * Need to be called with
3688 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3689 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3690 *
3691 * return > 0, number of of blocks already mapped/allocated
3692 * if create == 0 and these are pre-allocated blocks
3693 * buffer head is unmapped
3694 * otherwise blocks are mapped
3695 *
3696 * return = 0, if plain look up failed (blocks have not been allocated)
3697 * buffer head is unmapped
3698 *
3699 * return < 0, error case.
3700 */
3701 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3702 struct ext4_map_blocks *map, int flags)
3703 {
3704 struct ext4_ext_path *path = NULL;
3705 struct ext4_extent newex, *ex, *ex2;
3706 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3707 ext4_fsblk_t newblock = 0;
3708 int free_on_err = 0, err = 0, depth, ret;
3709 unsigned int allocated = 0, offset = 0;
3710 unsigned int allocated_clusters = 0;
3711 unsigned int punched_out = 0;
3712 unsigned int result = 0;
3713 struct ext4_allocation_request ar;
3714 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3715 ext4_lblk_t cluster_offset;
3716
3717 ext_debug("blocks %u/%u requested for inode %lu\n",
3718 map->m_lblk, map->m_len, inode->i_ino);
3719 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3720
3721 /* check in cache */
3722 if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3723 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3724 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3725 if ((sbi->s_cluster_ratio > 1) &&
3726 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3727 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3728
3729 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3730 /*
3731 * block isn't allocated yet and
3732 * user doesn't want to allocate it
3733 */
3734 goto out2;
3735 }
3736 /* we should allocate requested block */
3737 } else {
3738 /* block is already allocated */
3739 if (sbi->s_cluster_ratio > 1)
3740 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3741 newblock = map->m_lblk
3742 - le32_to_cpu(newex.ee_block)
3743 + ext4_ext_pblock(&newex);
3744 /* number of remaining blocks in the extent */
3745 allocated = ext4_ext_get_actual_len(&newex) -
3746 (map->m_lblk - le32_to_cpu(newex.ee_block));
3747 goto out;
3748 }
3749 }
3750
3751 /* find extent for this block */
3752 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3753 if (IS_ERR(path)) {
3754 err = PTR_ERR(path);
3755 path = NULL;
3756 goto out2;
3757 }
3758
3759 depth = ext_depth(inode);
3760
3761 /*
3762 * consistent leaf must not be empty;
3763 * this situation is possible, though, _during_ tree modification;
3764 * this is why assert can't be put in ext4_ext_find_extent()
3765 */
3766 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3767 EXT4_ERROR_INODE(inode, "bad extent address "
3768 "lblock: %lu, depth: %d pblock %lld",
3769 (unsigned long) map->m_lblk, depth,
3770 path[depth].p_block);
3771 err = -EIO;
3772 goto out2;
3773 }
3774
3775 ex = path[depth].p_ext;
3776 if (ex) {
3777 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3778 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3779 unsigned short ee_len;
3780
3781 /*
3782 * Uninitialized extents are treated as holes, except that
3783 * we split out initialized portions during a write.
3784 */
3785 ee_len = ext4_ext_get_actual_len(ex);
3786
3787 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3788
3789 /* if found extent covers block, simply return it */
3790 if (in_range(map->m_lblk, ee_block, ee_len)) {
3791 struct ext4_map_blocks punch_map;
3792 ext4_fsblk_t partial_cluster = 0;
3793
3794 newblock = map->m_lblk - ee_block + ee_start;
3795 /* number of remaining blocks in the extent */
3796 allocated = ee_len - (map->m_lblk - ee_block);
3797 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3798 ee_block, ee_len, newblock);
3799
3800 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3801 /*
3802 * Do not put uninitialized extent
3803 * in the cache
3804 */
3805 if (!ext4_ext_is_uninitialized(ex)) {
3806 ext4_ext_put_in_cache(inode, ee_block,
3807 ee_len, ee_start);
3808 goto out;
3809 }
3810 ret = ext4_ext_handle_uninitialized_extents(
3811 handle, inode, map, path, flags,
3812 allocated, newblock);
3813 return ret;
3814 }
3815
3816 /*
3817 * Punch out the map length, but only to the
3818 * end of the extent
3819 */
3820 punched_out = allocated < map->m_len ?
3821 allocated : map->m_len;
3822
3823 /*
3824 * Sense extents need to be converted to
3825 * uninitialized, they must fit in an
3826 * uninitialized extent
3827 */
3828 if (punched_out > EXT_UNINIT_MAX_LEN)
3829 punched_out = EXT_UNINIT_MAX_LEN;
3830
3831 punch_map.m_lblk = map->m_lblk;
3832 punch_map.m_pblk = newblock;
3833 punch_map.m_len = punched_out;
3834 punch_map.m_flags = 0;
3835
3836 /* Check to see if the extent needs to be split */
3837 if (punch_map.m_len != ee_len ||
3838 punch_map.m_lblk != ee_block) {
3839
3840 ret = ext4_split_extent(handle, inode,
3841 path, &punch_map, 0,
3842 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3843 EXT4_GET_BLOCKS_PRE_IO);
3844
3845 if (ret < 0) {
3846 err = ret;
3847 goto out2;
3848 }
3849 /*
3850 * find extent for the block at
3851 * the start of the hole
3852 */
3853 ext4_ext_drop_refs(path);
3854 kfree(path);
3855
3856 path = ext4_ext_find_extent(inode,
3857 map->m_lblk, NULL);
3858 if (IS_ERR(path)) {
3859 err = PTR_ERR(path);
3860 path = NULL;
3861 goto out2;
3862 }
3863
3864 depth = ext_depth(inode);
3865 ex = path[depth].p_ext;
3866 ee_len = ext4_ext_get_actual_len(ex);
3867 ee_block = le32_to_cpu(ex->ee_block);
3868 ee_start = ext4_ext_pblock(ex);
3869
3870 }
3871
3872 ext4_ext_mark_uninitialized(ex);
3873
3874 ext4_ext_invalidate_cache(inode);
3875
3876 err = ext4_ext_rm_leaf(handle, inode, path,
3877 &partial_cluster, map->m_lblk,
3878 map->m_lblk + punched_out);
3879
3880 if (!err && path->p_hdr->eh_entries == 0) {
3881 /*
3882 * Punch hole freed all of this sub tree,
3883 * so we need to correct eh_depth
3884 */
3885 err = ext4_ext_get_access(handle, inode, path);
3886 if (err == 0) {
3887 ext_inode_hdr(inode)->eh_depth = 0;
3888 ext_inode_hdr(inode)->eh_max =
3889 cpu_to_le16(ext4_ext_space_root(
3890 inode, 0));
3891
3892 err = ext4_ext_dirty(
3893 handle, inode, path);
3894 }
3895 }
3896
3897 goto out2;
3898 }
3899 }
3900
3901 if ((sbi->s_cluster_ratio > 1) &&
3902 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3903 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3904
3905 /*
3906 * requested block isn't allocated yet;
3907 * we couldn't try to create block if create flag is zero
3908 */
3909 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3910 /*
3911 * put just found gap into cache to speed up
3912 * subsequent requests
3913 */
3914 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3915 goto out2;
3916 }
3917
3918 /*
3919 * Okay, we need to do block allocation.
3920 */
3921 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3922 newex.ee_block = cpu_to_le32(map->m_lblk);
3923 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3924
3925 /*
3926 * If we are doing bigalloc, check to see if the extent returned
3927 * by ext4_ext_find_extent() implies a cluster we can use.
3928 */
3929 if (cluster_offset && ex &&
3930 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3931 ar.len = allocated = map->m_len;
3932 newblock = map->m_pblk;
3933 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3934 goto got_allocated_blocks;
3935 }
3936
3937 /* find neighbour allocated blocks */
3938 ar.lleft = map->m_lblk;
3939 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3940 if (err)
3941 goto out2;
3942 ar.lright = map->m_lblk;
3943 ex2 = NULL;
3944 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3945 if (err)
3946 goto out2;
3947
3948 /* Check if the extent after searching to the right implies a
3949 * cluster we can use. */
3950 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3951 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3952 ar.len = allocated = map->m_len;
3953 newblock = map->m_pblk;
3954 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3955 goto got_allocated_blocks;
3956 }
3957
3958 /*
3959 * See if request is beyond maximum number of blocks we can have in
3960 * a single extent. For an initialized extent this limit is
3961 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3962 * EXT_UNINIT_MAX_LEN.
3963 */
3964 if (map->m_len > EXT_INIT_MAX_LEN &&
3965 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3966 map->m_len = EXT_INIT_MAX_LEN;
3967 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3968 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3969 map->m_len = EXT_UNINIT_MAX_LEN;
3970
3971 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3972 newex.ee_len = cpu_to_le16(map->m_len);
3973 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3974 if (err)
3975 allocated = ext4_ext_get_actual_len(&newex);
3976 else
3977 allocated = map->m_len;
3978
3979 /* allocate new block */
3980 ar.inode = inode;
3981 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3982 ar.logical = map->m_lblk;
3983 /*
3984 * We calculate the offset from the beginning of the cluster
3985 * for the logical block number, since when we allocate a
3986 * physical cluster, the physical block should start at the
3987 * same offset from the beginning of the cluster. This is
3988 * needed so that future calls to get_implied_cluster_alloc()
3989 * work correctly.
3990 */
3991 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3992 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3993 ar.goal -= offset;
3994 ar.logical -= offset;
3995 if (S_ISREG(inode->i_mode))
3996 ar.flags = EXT4_MB_HINT_DATA;
3997 else
3998 /* disable in-core preallocation for non-regular files */
3999 ar.flags = 0;
4000 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4001 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4002 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4003 if (!newblock)
4004 goto out2;
4005 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4006 ar.goal, newblock, allocated);
4007 free_on_err = 1;
4008 allocated_clusters = ar.len;
4009 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4010 if (ar.len > allocated)
4011 ar.len = allocated;
4012
4013 got_allocated_blocks:
4014 /* try to insert new extent into found leaf and return */
4015 ext4_ext_store_pblock(&newex, newblock + offset);
4016 newex.ee_len = cpu_to_le16(ar.len);
4017 /* Mark uninitialized */
4018 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4019 ext4_ext_mark_uninitialized(&newex);
4020 /*
4021 * io_end structure was created for every IO write to an
4022 * uninitialized extent. To avoid unnecessary conversion,
4023 * here we flag the IO that really needs the conversion.
4024 * For non asycn direct IO case, flag the inode state
4025 * that we need to perform conversion when IO is done.
4026 */
4027 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4028 if (io)
4029 ext4_set_io_unwritten_flag(inode, io);
4030 else
4031 ext4_set_inode_state(inode,
4032 EXT4_STATE_DIO_UNWRITTEN);
4033 }
4034 if (ext4_should_dioread_nolock(inode))
4035 map->m_flags |= EXT4_MAP_UNINIT;
4036 }
4037
4038 err = 0;
4039 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4040 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4041 path, ar.len);
4042 if (!err)
4043 err = ext4_ext_insert_extent(handle, inode, path,
4044 &newex, flags);
4045 if (err && free_on_err) {
4046 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4047 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4048 /* free data blocks we just allocated */
4049 /* not a good idea to call discard here directly,
4050 * but otherwise we'd need to call it every free() */
4051 ext4_discard_preallocations(inode);
4052 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4053 ext4_ext_get_actual_len(&newex), fb_flags);
4054 goto out2;
4055 }
4056
4057 /* previous routine could use block we allocated */
4058 newblock = ext4_ext_pblock(&newex);
4059 allocated = ext4_ext_get_actual_len(&newex);
4060 if (allocated > map->m_len)
4061 allocated = map->m_len;
4062 map->m_flags |= EXT4_MAP_NEW;
4063
4064 /*
4065 * Update reserved blocks/metadata blocks after successful
4066 * block allocation which had been deferred till now.
4067 */
4068 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4069 unsigned int reserved_clusters;
4070 /*
4071 * Check how many clusters we had reserved this allocated range
4072 */
4073 reserved_clusters = get_reserved_cluster_alloc(inode,
4074 map->m_lblk, allocated);
4075 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4076 if (reserved_clusters) {
4077 /*
4078 * We have clusters reserved for this range.
4079 * But since we are not doing actual allocation
4080 * and are simply using blocks from previously
4081 * allocated cluster, we should release the
4082 * reservation and not claim quota.
4083 */
4084 ext4_da_update_reserve_space(inode,
4085 reserved_clusters, 0);
4086 }
4087 } else {
4088 BUG_ON(allocated_clusters < reserved_clusters);
4089 /* We will claim quota for all newly allocated blocks.*/
4090 ext4_da_update_reserve_space(inode, allocated_clusters,
4091 1);
4092 if (reserved_clusters < allocated_clusters) {
4093 struct ext4_inode_info *ei = EXT4_I(inode);
4094 int reservation = allocated_clusters -
4095 reserved_clusters;
4096 /*
4097 * It seems we claimed few clusters outside of
4098 * the range of this allocation. We should give
4099 * it back to the reservation pool. This can
4100 * happen in the following case:
4101 *
4102 * * Suppose s_cluster_ratio is 4 (i.e., each
4103 * cluster has 4 blocks. Thus, the clusters
4104 * are [0-3],[4-7],[8-11]...
4105 * * First comes delayed allocation write for
4106 * logical blocks 10 & 11. Since there were no
4107 * previous delayed allocated blocks in the
4108 * range [8-11], we would reserve 1 cluster
4109 * for this write.
4110 * * Next comes write for logical blocks 3 to 8.
4111 * In this case, we will reserve 2 clusters
4112 * (for [0-3] and [4-7]; and not for [8-11] as
4113 * that range has a delayed allocated blocks.
4114 * Thus total reserved clusters now becomes 3.
4115 * * Now, during the delayed allocation writeout
4116 * time, we will first write blocks [3-8] and
4117 * allocate 3 clusters for writing these
4118 * blocks. Also, we would claim all these
4119 * three clusters above.
4120 * * Now when we come here to writeout the
4121 * blocks [10-11], we would expect to claim
4122 * the reservation of 1 cluster we had made
4123 * (and we would claim it since there are no
4124 * more delayed allocated blocks in the range
4125 * [8-11]. But our reserved cluster count had
4126 * already gone to 0.
4127 *
4128 * Thus, at the step 4 above when we determine
4129 * that there are still some unwritten delayed
4130 * allocated blocks outside of our current
4131 * block range, we should increment the
4132 * reserved clusters count so that when the
4133 * remaining blocks finally gets written, we
4134 * could claim them.
4135 */
4136 dquot_reserve_block(inode,
4137 EXT4_C2B(sbi, reservation));
4138 spin_lock(&ei->i_block_reservation_lock);
4139 ei->i_reserved_data_blocks += reservation;
4140 spin_unlock(&ei->i_block_reservation_lock);
4141 }
4142 }
4143 }
4144
4145 /*
4146 * Cache the extent and update transaction to commit on fdatasync only
4147 * when it is _not_ an uninitialized extent.
4148 */
4149 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4150 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4151 ext4_update_inode_fsync_trans(handle, inode, 1);
4152 } else
4153 ext4_update_inode_fsync_trans(handle, inode, 0);
4154 out:
4155 if (allocated > map->m_len)
4156 allocated = map->m_len;
4157 ext4_ext_show_leaf(inode, path);
4158 map->m_flags |= EXT4_MAP_MAPPED;
4159 map->m_pblk = newblock;
4160 map->m_len = allocated;
4161 out2:
4162 if (path) {
4163 ext4_ext_drop_refs(path);
4164 kfree(path);
4165 }
4166 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4167 punched_out : allocated;
4168
4169 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4170 newblock, map->m_len, err ? err : result);
4171
4172 return err ? err : result;
4173 }
4174
4175 void ext4_ext_truncate(struct inode *inode)
4176 {
4177 struct address_space *mapping = inode->i_mapping;
4178 struct super_block *sb = inode->i_sb;
4179 ext4_lblk_t last_block;
4180 handle_t *handle;
4181 loff_t page_len;
4182 int err = 0;
4183
4184 /*
4185 * finish any pending end_io work so we won't run the risk of
4186 * converting any truncated blocks to initialized later
4187 */
4188 ext4_flush_completed_IO(inode);
4189
4190 /*
4191 * probably first extent we're gonna free will be last in block
4192 */
4193 err = ext4_writepage_trans_blocks(inode);
4194 handle = ext4_journal_start(inode, err);
4195 if (IS_ERR(handle))
4196 return;
4197
4198 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4199 page_len = PAGE_CACHE_SIZE -
4200 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4201
4202 err = ext4_discard_partial_page_buffers(handle,
4203 mapping, inode->i_size, page_len, 0);
4204
4205 if (err)
4206 goto out_stop;
4207 }
4208
4209 if (ext4_orphan_add(handle, inode))
4210 goto out_stop;
4211
4212 down_write(&EXT4_I(inode)->i_data_sem);
4213 ext4_ext_invalidate_cache(inode);
4214
4215 ext4_discard_preallocations(inode);
4216
4217 /*
4218 * TODO: optimization is possible here.
4219 * Probably we need not scan at all,
4220 * because page truncation is enough.
4221 */
4222
4223 /* we have to know where to truncate from in crash case */
4224 EXT4_I(inode)->i_disksize = inode->i_size;
4225 ext4_mark_inode_dirty(handle, inode);
4226
4227 last_block = (inode->i_size + sb->s_blocksize - 1)
4228 >> EXT4_BLOCK_SIZE_BITS(sb);
4229 err = ext4_ext_remove_space(inode, last_block);
4230
4231 /* In a multi-transaction truncate, we only make the final
4232 * transaction synchronous.
4233 */
4234 if (IS_SYNC(inode))
4235 ext4_handle_sync(handle);
4236
4237 up_write(&EXT4_I(inode)->i_data_sem);
4238
4239 out_stop:
4240 /*
4241 * If this was a simple ftruncate() and the file will remain alive,
4242 * then we need to clear up the orphan record which we created above.
4243 * However, if this was a real unlink then we were called by
4244 * ext4_delete_inode(), and we allow that function to clean up the
4245 * orphan info for us.
4246 */
4247 if (inode->i_nlink)
4248 ext4_orphan_del(handle, inode);
4249
4250 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4251 ext4_mark_inode_dirty(handle, inode);
4252 ext4_journal_stop(handle);
4253 }
4254
4255 static void ext4_falloc_update_inode(struct inode *inode,
4256 int mode, loff_t new_size, int update_ctime)
4257 {
4258 struct timespec now;
4259
4260 if (update_ctime) {
4261 now = current_fs_time(inode->i_sb);
4262 if (!timespec_equal(&inode->i_ctime, &now))
4263 inode->i_ctime = now;
4264 }
4265 /*
4266 * Update only when preallocation was requested beyond
4267 * the file size.
4268 */
4269 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4270 if (new_size > i_size_read(inode))
4271 i_size_write(inode, new_size);
4272 if (new_size > EXT4_I(inode)->i_disksize)
4273 ext4_update_i_disksize(inode, new_size);
4274 } else {
4275 /*
4276 * Mark that we allocate beyond EOF so the subsequent truncate
4277 * can proceed even if the new size is the same as i_size.
4278 */
4279 if (new_size > i_size_read(inode))
4280 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4281 }
4282
4283 }
4284
4285 /*
4286 * preallocate space for a file. This implements ext4's fallocate file
4287 * operation, which gets called from sys_fallocate system call.
4288 * For block-mapped files, posix_fallocate should fall back to the method
4289 * of writing zeroes to the required new blocks (the same behavior which is
4290 * expected for file systems which do not support fallocate() system call).
4291 */
4292 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4293 {
4294 struct inode *inode = file->f_path.dentry->d_inode;
4295 handle_t *handle;
4296 loff_t new_size;
4297 unsigned int max_blocks;
4298 int ret = 0;
4299 int ret2 = 0;
4300 int retries = 0;
4301 int flags;
4302 struct ext4_map_blocks map;
4303 unsigned int credits, blkbits = inode->i_blkbits;
4304
4305 /*
4306 * currently supporting (pre)allocate mode for extent-based
4307 * files _only_
4308 */
4309 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4310 return -EOPNOTSUPP;
4311
4312 /* Return error if mode is not supported */
4313 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4314 return -EOPNOTSUPP;
4315
4316 if (mode & FALLOC_FL_PUNCH_HOLE)
4317 return ext4_punch_hole(file, offset, len);
4318
4319 trace_ext4_fallocate_enter(inode, offset, len, mode);
4320 map.m_lblk = offset >> blkbits;
4321 /*
4322 * We can't just convert len to max_blocks because
4323 * If blocksize = 4096 offset = 3072 and len = 2048
4324 */
4325 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4326 - map.m_lblk;
4327 /*
4328 * credits to insert 1 extent into extent tree
4329 */
4330 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4331 mutex_lock(&inode->i_mutex);
4332 ret = inode_newsize_ok(inode, (len + offset));
4333 if (ret) {
4334 mutex_unlock(&inode->i_mutex);
4335 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4336 return ret;
4337 }
4338 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4339 if (mode & FALLOC_FL_KEEP_SIZE)
4340 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4341 /*
4342 * Don't normalize the request if it can fit in one extent so
4343 * that it doesn't get unnecessarily split into multiple
4344 * extents.
4345 */
4346 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4347 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4348 retry:
4349 while (ret >= 0 && ret < max_blocks) {
4350 map.m_lblk = map.m_lblk + ret;
4351 map.m_len = max_blocks = max_blocks - ret;
4352 handle = ext4_journal_start(inode, credits);
4353 if (IS_ERR(handle)) {
4354 ret = PTR_ERR(handle);
4355 break;
4356 }
4357 ret = ext4_map_blocks(handle, inode, &map, flags);
4358 if (ret <= 0) {
4359 #ifdef EXT4FS_DEBUG
4360 WARN_ON(ret <= 0);
4361 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4362 "returned error inode#%lu, block=%u, "
4363 "max_blocks=%u", __func__,
4364 inode->i_ino, map.m_lblk, max_blocks);
4365 #endif
4366 ext4_mark_inode_dirty(handle, inode);
4367 ret2 = ext4_journal_stop(handle);
4368 break;
4369 }
4370 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4371 blkbits) >> blkbits))
4372 new_size = offset + len;
4373 else
4374 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4375
4376 ext4_falloc_update_inode(inode, mode, new_size,
4377 (map.m_flags & EXT4_MAP_NEW));
4378 ext4_mark_inode_dirty(handle, inode);
4379 ret2 = ext4_journal_stop(handle);
4380 if (ret2)
4381 break;
4382 }
4383 if (ret == -ENOSPC &&
4384 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4385 ret = 0;
4386 goto retry;
4387 }
4388 mutex_unlock(&inode->i_mutex);
4389 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4390 ret > 0 ? ret2 : ret);
4391 return ret > 0 ? ret2 : ret;
4392 }
4393
4394 /*
4395 * This function convert a range of blocks to written extents
4396 * The caller of this function will pass the start offset and the size.
4397 * all unwritten extents within this range will be converted to
4398 * written extents.
4399 *
4400 * This function is called from the direct IO end io call back
4401 * function, to convert the fallocated extents after IO is completed.
4402 * Returns 0 on success.
4403 */
4404 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4405 ssize_t len)
4406 {
4407 handle_t *handle;
4408 unsigned int max_blocks;
4409 int ret = 0;
4410 int ret2 = 0;
4411 struct ext4_map_blocks map;
4412 unsigned int credits, blkbits = inode->i_blkbits;
4413
4414 map.m_lblk = offset >> blkbits;
4415 /*
4416 * We can't just convert len to max_blocks because
4417 * If blocksize = 4096 offset = 3072 and len = 2048
4418 */
4419 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4420 map.m_lblk);
4421 /*
4422 * credits to insert 1 extent into extent tree
4423 */
4424 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4425 while (ret >= 0 && ret < max_blocks) {
4426 map.m_lblk += ret;
4427 map.m_len = (max_blocks -= ret);
4428 handle = ext4_journal_start(inode, credits);
4429 if (IS_ERR(handle)) {
4430 ret = PTR_ERR(handle);
4431 break;
4432 }
4433 ret = ext4_map_blocks(handle, inode, &map,
4434 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4435 if (ret <= 0) {
4436 WARN_ON(ret <= 0);
4437 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4438 "returned error inode#%lu, block=%u, "
4439 "max_blocks=%u", __func__,
4440 inode->i_ino, map.m_lblk, map.m_len);
4441 }
4442 ext4_mark_inode_dirty(handle, inode);
4443 ret2 = ext4_journal_stop(handle);
4444 if (ret <= 0 || ret2 )
4445 break;
4446 }
4447 return ret > 0 ? ret2 : ret;
4448 }
4449
4450 /*
4451 * Callback function called for each extent to gather FIEMAP information.
4452 */
4453 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4454 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4455 void *data)
4456 {
4457 __u64 logical;
4458 __u64 physical;
4459 __u64 length;
4460 __u32 flags = 0;
4461 int ret = 0;
4462 struct fiemap_extent_info *fieinfo = data;
4463 unsigned char blksize_bits;
4464
4465 blksize_bits = inode->i_sb->s_blocksize_bits;
4466 logical = (__u64)newex->ec_block << blksize_bits;
4467
4468 if (newex->ec_start == 0) {
4469 /*
4470 * No extent in extent-tree contains block @newex->ec_start,
4471 * then the block may stay in 1)a hole or 2)delayed-extent.
4472 *
4473 * Holes or delayed-extents are processed as follows.
4474 * 1. lookup dirty pages with specified range in pagecache.
4475 * If no page is got, then there is no delayed-extent and
4476 * return with EXT_CONTINUE.
4477 * 2. find the 1st mapped buffer,
4478 * 3. check if the mapped buffer is both in the request range
4479 * and a delayed buffer. If not, there is no delayed-extent,
4480 * then return.
4481 * 4. a delayed-extent is found, the extent will be collected.
4482 */
4483 ext4_lblk_t end = 0;
4484 pgoff_t last_offset;
4485 pgoff_t offset;
4486 pgoff_t index;
4487 pgoff_t start_index = 0;
4488 struct page **pages = NULL;
4489 struct buffer_head *bh = NULL;
4490 struct buffer_head *head = NULL;
4491 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4492
4493 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4494 if (pages == NULL)
4495 return -ENOMEM;
4496
4497 offset = logical >> PAGE_SHIFT;
4498 repeat:
4499 last_offset = offset;
4500 head = NULL;
4501 ret = find_get_pages_tag(inode->i_mapping, &offset,
4502 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4503
4504 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4505 /* First time, try to find a mapped buffer. */
4506 if (ret == 0) {
4507 out:
4508 for (index = 0; index < ret; index++)
4509 page_cache_release(pages[index]);
4510 /* just a hole. */
4511 kfree(pages);
4512 return EXT_CONTINUE;
4513 }
4514 index = 0;
4515
4516 next_page:
4517 /* Try to find the 1st mapped buffer. */
4518 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4519 blksize_bits;
4520 if (!page_has_buffers(pages[index]))
4521 goto out;
4522 head = page_buffers(pages[index]);
4523 if (!head)
4524 goto out;
4525
4526 index++;
4527 bh = head;
4528 do {
4529 if (end >= newex->ec_block +
4530 newex->ec_len)
4531 /* The buffer is out of
4532 * the request range.
4533 */
4534 goto out;
4535
4536 if (buffer_mapped(bh) &&
4537 end >= newex->ec_block) {
4538 start_index = index - 1;
4539 /* get the 1st mapped buffer. */
4540 goto found_mapped_buffer;
4541 }
4542
4543 bh = bh->b_this_page;
4544 end++;
4545 } while (bh != head);
4546
4547 /* No mapped buffer in the range found in this page,
4548 * We need to look up next page.
4549 */
4550 if (index >= ret) {
4551 /* There is no page left, but we need to limit
4552 * newex->ec_len.
4553 */
4554 newex->ec_len = end - newex->ec_block;
4555 goto out;
4556 }
4557 goto next_page;
4558 } else {
4559 /*Find contiguous delayed buffers. */
4560 if (ret > 0 && pages[0]->index == last_offset)
4561 head = page_buffers(pages[0]);
4562 bh = head;
4563 index = 1;
4564 start_index = 0;
4565 }
4566
4567 found_mapped_buffer:
4568 if (bh != NULL && buffer_delay(bh)) {
4569 /* 1st or contiguous delayed buffer found. */
4570 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4571 /*
4572 * 1st delayed buffer found, record
4573 * the start of extent.
4574 */
4575 flags |= FIEMAP_EXTENT_DELALLOC;
4576 newex->ec_block = end;
4577 logical = (__u64)end << blksize_bits;
4578 }
4579 /* Find contiguous delayed buffers. */
4580 do {
4581 if (!buffer_delay(bh))
4582 goto found_delayed_extent;
4583 bh = bh->b_this_page;
4584 end++;
4585 } while (bh != head);
4586
4587 for (; index < ret; index++) {
4588 if (!page_has_buffers(pages[index])) {
4589 bh = NULL;
4590 break;
4591 }
4592 head = page_buffers(pages[index]);
4593 if (!head) {
4594 bh = NULL;
4595 break;
4596 }
4597
4598 if (pages[index]->index !=
4599 pages[start_index]->index + index
4600 - start_index) {
4601 /* Blocks are not contiguous. */
4602 bh = NULL;
4603 break;
4604 }
4605 bh = head;
4606 do {
4607 if (!buffer_delay(bh))
4608 /* Delayed-extent ends. */
4609 goto found_delayed_extent;
4610 bh = bh->b_this_page;
4611 end++;
4612 } while (bh != head);
4613 }
4614 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4615 /* a hole found. */
4616 goto out;
4617
4618 found_delayed_extent:
4619 newex->ec_len = min(end - newex->ec_block,
4620 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4621 if (ret == nr_pages && bh != NULL &&
4622 newex->ec_len < EXT_INIT_MAX_LEN &&
4623 buffer_delay(bh)) {
4624 /* Have not collected an extent and continue. */
4625 for (index = 0; index < ret; index++)
4626 page_cache_release(pages[index]);
4627 goto repeat;
4628 }
4629
4630 for (index = 0; index < ret; index++)
4631 page_cache_release(pages[index]);
4632 kfree(pages);
4633 }
4634
4635 physical = (__u64)newex->ec_start << blksize_bits;
4636 length = (__u64)newex->ec_len << blksize_bits;
4637
4638 if (ex && ext4_ext_is_uninitialized(ex))
4639 flags |= FIEMAP_EXTENT_UNWRITTEN;
4640
4641 if (next == EXT_MAX_BLOCKS)
4642 flags |= FIEMAP_EXTENT_LAST;
4643
4644 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4645 length, flags);
4646 if (ret < 0)
4647 return ret;
4648 if (ret == 1)
4649 return EXT_BREAK;
4650 return EXT_CONTINUE;
4651 }
4652 /* fiemap flags we can handle specified here */
4653 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4654
4655 static int ext4_xattr_fiemap(struct inode *inode,
4656 struct fiemap_extent_info *fieinfo)
4657 {
4658 __u64 physical = 0;
4659 __u64 length;
4660 __u32 flags = FIEMAP_EXTENT_LAST;
4661 int blockbits = inode->i_sb->s_blocksize_bits;
4662 int error = 0;
4663
4664 /* in-inode? */
4665 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4666 struct ext4_iloc iloc;
4667 int offset; /* offset of xattr in inode */
4668
4669 error = ext4_get_inode_loc(inode, &iloc);
4670 if (error)
4671 return error;
4672 physical = iloc.bh->b_blocknr << blockbits;
4673 offset = EXT4_GOOD_OLD_INODE_SIZE +
4674 EXT4_I(inode)->i_extra_isize;
4675 physical += offset;
4676 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4677 flags |= FIEMAP_EXTENT_DATA_INLINE;
4678 brelse(iloc.bh);
4679 } else { /* external block */
4680 physical = EXT4_I(inode)->i_file_acl << blockbits;
4681 length = inode->i_sb->s_blocksize;
4682 }
4683
4684 if (physical)
4685 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4686 length, flags);
4687 return (error < 0 ? error : 0);
4688 }
4689
4690 /*
4691 * ext4_ext_punch_hole
4692 *
4693 * Punches a hole of "length" bytes in a file starting
4694 * at byte "offset"
4695 *
4696 * @inode: The inode of the file to punch a hole in
4697 * @offset: The starting byte offset of the hole
4698 * @length: The length of the hole
4699 *
4700 * Returns the number of blocks removed or negative on err
4701 */
4702 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4703 {
4704 struct inode *inode = file->f_path.dentry->d_inode;
4705 struct super_block *sb = inode->i_sb;
4706 struct ext4_ext_cache cache_ex;
4707 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4708 struct address_space *mapping = inode->i_mapping;
4709 struct ext4_map_blocks map;
4710 handle_t *handle;
4711 loff_t first_page, last_page, page_len;
4712 loff_t first_page_offset, last_page_offset;
4713 int ret, credits, blocks_released, err = 0;
4714
4715 /* No need to punch hole beyond i_size */
4716 if (offset >= inode->i_size)
4717 return 0;
4718
4719 /*
4720 * If the hole extends beyond i_size, set the hole
4721 * to end after the page that contains i_size
4722 */
4723 if (offset + length > inode->i_size) {
4724 length = inode->i_size +
4725 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4726 offset;
4727 }
4728
4729 first_block = (offset + sb->s_blocksize - 1) >>
4730 EXT4_BLOCK_SIZE_BITS(sb);
4731 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4732
4733 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4734 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4735
4736 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4737 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4738
4739 /*
4740 * Write out all dirty pages to avoid race conditions
4741 * Then release them.
4742 */
4743 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4744 err = filemap_write_and_wait_range(mapping,
4745 offset, offset + length - 1);
4746
4747 if (err)
4748 return err;
4749 }
4750
4751 /* Now release the pages */
4752 if (last_page_offset > first_page_offset) {
4753 truncate_inode_pages_range(mapping, first_page_offset,
4754 last_page_offset-1);
4755 }
4756
4757 /* finish any pending end_io work */
4758 ext4_flush_completed_IO(inode);
4759
4760 credits = ext4_writepage_trans_blocks(inode);
4761 handle = ext4_journal_start(inode, credits);
4762 if (IS_ERR(handle))
4763 return PTR_ERR(handle);
4764
4765 err = ext4_orphan_add(handle, inode);
4766 if (err)
4767 goto out;
4768
4769 /*
4770 * Now we need to zero out the non-page-aligned data in the
4771 * pages at the start and tail of the hole, and unmap the buffer
4772 * heads for the block aligned regions of the page that were
4773 * completely zeroed.
4774 */
4775 if (first_page > last_page) {
4776 /*
4777 * If the file space being truncated is contained within a page
4778 * just zero out and unmap the middle of that page
4779 */
4780 err = ext4_discard_partial_page_buffers(handle,
4781 mapping, offset, length, 0);
4782
4783 if (err)
4784 goto out;
4785 } else {
4786 /*
4787 * zero out and unmap the partial page that contains
4788 * the start of the hole
4789 */
4790 page_len = first_page_offset - offset;
4791 if (page_len > 0) {
4792 err = ext4_discard_partial_page_buffers(handle, mapping,
4793 offset, page_len, 0);
4794 if (err)
4795 goto out;
4796 }
4797
4798 /*
4799 * zero out and unmap the partial page that contains
4800 * the end of the hole
4801 */
4802 page_len = offset + length - last_page_offset;
4803 if (page_len > 0) {
4804 err = ext4_discard_partial_page_buffers(handle, mapping,
4805 last_page_offset, page_len, 0);
4806 if (err)
4807 goto out;
4808 }
4809 }
4810
4811
4812 /*
4813 * If i_size is contained in the last page, we need to
4814 * unmap and zero the partial page after i_size
4815 */
4816 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4817 inode->i_size % PAGE_CACHE_SIZE != 0) {
4818
4819 page_len = PAGE_CACHE_SIZE -
4820 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4821
4822 if (page_len > 0) {
4823 err = ext4_discard_partial_page_buffers(handle,
4824 mapping, inode->i_size, page_len, 0);
4825
4826 if (err)
4827 goto out;
4828 }
4829 }
4830
4831 /* If there are no blocks to remove, return now */
4832 if (first_block >= last_block)
4833 goto out;
4834
4835 down_write(&EXT4_I(inode)->i_data_sem);
4836 ext4_ext_invalidate_cache(inode);
4837 ext4_discard_preallocations(inode);
4838
4839 /*
4840 * Loop over all the blocks and identify blocks
4841 * that need to be punched out
4842 */
4843 iblock = first_block;
4844 blocks_released = 0;
4845 while (iblock < last_block) {
4846 max_blocks = last_block - iblock;
4847 num_blocks = 1;
4848 memset(&map, 0, sizeof(map));
4849 map.m_lblk = iblock;
4850 map.m_len = max_blocks;
4851 ret = ext4_ext_map_blocks(handle, inode, &map,
4852 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4853
4854 if (ret > 0) {
4855 blocks_released += ret;
4856 num_blocks = ret;
4857 } else if (ret == 0) {
4858 /*
4859 * If map blocks could not find the block,
4860 * then it is in a hole. If the hole was
4861 * not already cached, then map blocks should
4862 * put it in the cache. So we can get the hole
4863 * out of the cache
4864 */
4865 memset(&cache_ex, 0, sizeof(cache_ex));
4866 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4867 !cache_ex.ec_start) {
4868
4869 /* The hole is cached */
4870 num_blocks = cache_ex.ec_block +
4871 cache_ex.ec_len - iblock;
4872
4873 } else {
4874 /* The block could not be identified */
4875 err = -EIO;
4876 break;
4877 }
4878 } else {
4879 /* Map blocks error */
4880 err = ret;
4881 break;
4882 }
4883
4884 if (num_blocks == 0) {
4885 /* This condition should never happen */
4886 ext_debug("Block lookup failed");
4887 err = -EIO;
4888 break;
4889 }
4890
4891 iblock += num_blocks;
4892 }
4893
4894 if (blocks_released > 0) {
4895 ext4_ext_invalidate_cache(inode);
4896 ext4_discard_preallocations(inode);
4897 }
4898
4899 if (IS_SYNC(inode))
4900 ext4_handle_sync(handle);
4901
4902 up_write(&EXT4_I(inode)->i_data_sem);
4903
4904 out:
4905 ext4_orphan_del(handle, inode);
4906 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4907 ext4_mark_inode_dirty(handle, inode);
4908 ext4_journal_stop(handle);
4909 return err;
4910 }
4911 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4912 __u64 start, __u64 len)
4913 {
4914 ext4_lblk_t start_blk;
4915 int error = 0;
4916
4917 /* fallback to generic here if not in extents fmt */
4918 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4919 return generic_block_fiemap(inode, fieinfo, start, len,
4920 ext4_get_block);
4921
4922 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4923 return -EBADR;
4924
4925 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4926 error = ext4_xattr_fiemap(inode, fieinfo);
4927 } else {
4928 ext4_lblk_t len_blks;
4929 __u64 last_blk;
4930
4931 start_blk = start >> inode->i_sb->s_blocksize_bits;
4932 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4933 if (last_blk >= EXT_MAX_BLOCKS)
4934 last_blk = EXT_MAX_BLOCKS-1;
4935 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4936
4937 /*
4938 * Walk the extent tree gathering extent information.
4939 * ext4_ext_fiemap_cb will push extents back to user.
4940 */
4941 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4942 ext4_ext_fiemap_cb, fieinfo);
4943 }
4944
4945 return error;
4946 }