]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/file.c
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / file.c
1 /*
2 * linux/fs/ext4/file.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/file.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * ext4 fs regular file handling primitives
16 *
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * (jj@sunsite.ms.mff.cuni.cz)
19 */
20
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 /*
35 * Called when an inode is released. Note that this is different
36 * from ext4_file_open: open gets called at every open, but release
37 * gets called only when /all/ the files are closed.
38 */
39 static int ext4_release_file(struct inode *inode, struct file *filp)
40 {
41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
42 ext4_alloc_da_blocks(inode);
43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
44 }
45 /* if we are the last writer on the inode, drop the block reservation */
46 if ((filp->f_mode & FMODE_WRITE) &&
47 (atomic_read(&inode->i_writecount) == 1) &&
48 !EXT4_I(inode)->i_reserved_data_blocks)
49 {
50 down_write(&EXT4_I(inode)->i_data_sem);
51 ext4_discard_preallocations(inode);
52 up_write(&EXT4_I(inode)->i_data_sem);
53 }
54 if (is_dx(inode) && filp->private_data)
55 ext4_htree_free_dir_info(filp->private_data);
56
57 return 0;
58 }
59
60 static void ext4_unwritten_wait(struct inode *inode)
61 {
62 wait_queue_head_t *wq = ext4_ioend_wq(inode);
63
64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
65 }
66
67 /*
68 * This tests whether the IO in question is block-aligned or not.
69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
70 * are converted to written only after the IO is complete. Until they are
71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
72 * it needs to zero out portions of the start and/or end block. If 2 AIO
73 * threads are at work on the same unwritten block, they must be synchronized
74 * or one thread will zero the other's data, causing corruption.
75 */
76 static int
77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
78 {
79 struct super_block *sb = inode->i_sb;
80 int blockmask = sb->s_blocksize - 1;
81
82 if (pos >= i_size_read(inode))
83 return 0;
84
85 if ((pos | iov_iter_alignment(from)) & blockmask)
86 return 1;
87
88 return 0;
89 }
90
91 static ssize_t
92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
93 {
94 struct file *file = iocb->ki_filp;
95 struct inode *inode = file_inode(iocb->ki_filp);
96 struct blk_plug plug;
97 int o_direct = iocb->ki_flags & IOCB_DIRECT;
98 int unaligned_aio = 0;
99 int overwrite = 0;
100 ssize_t ret;
101
102 inode_lock(inode);
103 ret = generic_write_checks(iocb, from);
104 if (ret <= 0)
105 goto out;
106
107 /*
108 * Unaligned direct AIO must be serialized among each other as zeroing
109 * of partial blocks of two competing unaligned AIOs can result in data
110 * corruption.
111 */
112 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113 !is_sync_kiocb(iocb) &&
114 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115 unaligned_aio = 1;
116 ext4_unwritten_wait(inode);
117 }
118
119 /*
120 * If we have encountered a bitmap-format file, the size limit
121 * is smaller than s_maxbytes, which is for extent-mapped files.
122 */
123 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
125
126 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127 ret = -EFBIG;
128 goto out;
129 }
130 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
131 }
132
133 iocb->private = &overwrite;
134 if (o_direct) {
135 size_t length = iov_iter_count(from);
136 loff_t pos = iocb->ki_pos;
137 blk_start_plug(&plug);
138
139 /* check whether we do a DIO overwrite or not */
140 if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142 struct ext4_map_blocks map;
143 unsigned int blkbits = inode->i_blkbits;
144 int err, len;
145
146 map.m_lblk = pos >> blkbits;
147 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148 - map.m_lblk;
149 len = map.m_len;
150
151 err = ext4_map_blocks(NULL, inode, &map, 0);
152 /*
153 * 'err==len' means that all of blocks has
154 * been preallocated no matter they are
155 * initialized or not. For excluding
156 * unwritten extents, we need to check
157 * m_flags. There are two conditions that
158 * indicate for initialized extents. 1) If we
159 * hit extent cache, EXT4_MAP_MAPPED flag is
160 * returned; 2) If we do a real lookup,
161 * non-flags are returned. So we should check
162 * these two conditions.
163 */
164 if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165 overwrite = 1;
166 }
167 }
168
169 ret = __generic_file_write_iter(iocb, from);
170 inode_unlock(inode);
171
172 if (ret > 0) {
173 ssize_t err;
174
175 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
176 if (err < 0)
177 ret = err;
178 }
179 if (o_direct)
180 blk_finish_plug(&plug);
181
182 return ret;
183
184 out:
185 inode_unlock(inode);
186 return ret;
187 }
188
189 #ifdef CONFIG_FS_DAX
190 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
191 {
192 int result;
193 handle_t *handle = NULL;
194 struct inode *inode = file_inode(vma->vm_file);
195 struct super_block *sb = inode->i_sb;
196 bool write = vmf->flags & FAULT_FLAG_WRITE;
197
198 if (write) {
199 sb_start_pagefault(sb);
200 file_update_time(vma->vm_file);
201 down_read(&EXT4_I(inode)->i_mmap_sem);
202 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
203 EXT4_DATA_TRANS_BLOCKS(sb));
204 } else
205 down_read(&EXT4_I(inode)->i_mmap_sem);
206
207 if (IS_ERR(handle))
208 result = VM_FAULT_SIGBUS;
209 else
210 result = __dax_fault(vma, vmf, ext4_dax_mmap_get_block, NULL);
211
212 if (write) {
213 if (!IS_ERR(handle))
214 ext4_journal_stop(handle);
215 up_read(&EXT4_I(inode)->i_mmap_sem);
216 sb_end_pagefault(sb);
217 } else
218 up_read(&EXT4_I(inode)->i_mmap_sem);
219
220 return result;
221 }
222
223 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
224 pmd_t *pmd, unsigned int flags)
225 {
226 int result;
227 handle_t *handle = NULL;
228 struct inode *inode = file_inode(vma->vm_file);
229 struct super_block *sb = inode->i_sb;
230 bool write = flags & FAULT_FLAG_WRITE;
231
232 if (write) {
233 sb_start_pagefault(sb);
234 file_update_time(vma->vm_file);
235 down_read(&EXT4_I(inode)->i_mmap_sem);
236 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
237 ext4_chunk_trans_blocks(inode,
238 PMD_SIZE / PAGE_SIZE));
239 } else
240 down_read(&EXT4_I(inode)->i_mmap_sem);
241
242 if (IS_ERR(handle))
243 result = VM_FAULT_SIGBUS;
244 else
245 result = __dax_pmd_fault(vma, addr, pmd, flags,
246 ext4_dax_mmap_get_block, NULL);
247
248 if (write) {
249 if (!IS_ERR(handle))
250 ext4_journal_stop(handle);
251 up_read(&EXT4_I(inode)->i_mmap_sem);
252 sb_end_pagefault(sb);
253 } else
254 up_read(&EXT4_I(inode)->i_mmap_sem);
255
256 return result;
257 }
258
259 /*
260 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
261 * handler we check for races agaist truncate. Note that since we cycle through
262 * i_mmap_sem, we are sure that also any hole punching that began before we
263 * were called is finished by now and so if it included part of the file we
264 * are working on, our pte will get unmapped and the check for pte_same() in
265 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
266 * desired.
267 */
268 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
269 struct vm_fault *vmf)
270 {
271 struct inode *inode = file_inode(vma->vm_file);
272 struct super_block *sb = inode->i_sb;
273 loff_t size;
274 int ret;
275
276 sb_start_pagefault(sb);
277 file_update_time(vma->vm_file);
278 down_read(&EXT4_I(inode)->i_mmap_sem);
279 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
280 if (vmf->pgoff >= size)
281 ret = VM_FAULT_SIGBUS;
282 else
283 ret = dax_pfn_mkwrite(vma, vmf);
284 up_read(&EXT4_I(inode)->i_mmap_sem);
285 sb_end_pagefault(sb);
286
287 return ret;
288 }
289
290 static const struct vm_operations_struct ext4_dax_vm_ops = {
291 .fault = ext4_dax_fault,
292 .pmd_fault = ext4_dax_pmd_fault,
293 .page_mkwrite = ext4_dax_fault,
294 .pfn_mkwrite = ext4_dax_pfn_mkwrite,
295 };
296 #else
297 #define ext4_dax_vm_ops ext4_file_vm_ops
298 #endif
299
300 static const struct vm_operations_struct ext4_file_vm_ops = {
301 .fault = ext4_filemap_fault,
302 .map_pages = filemap_map_pages,
303 .page_mkwrite = ext4_page_mkwrite,
304 };
305
306 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
307 {
308 struct inode *inode = file->f_mapping->host;
309
310 if (ext4_encrypted_inode(inode)) {
311 int err = ext4_get_encryption_info(inode);
312 if (err)
313 return 0;
314 if (ext4_encryption_info(inode) == NULL)
315 return -ENOKEY;
316 }
317 file_accessed(file);
318 if (IS_DAX(file_inode(file))) {
319 vma->vm_ops = &ext4_dax_vm_ops;
320 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
321 } else {
322 vma->vm_ops = &ext4_file_vm_ops;
323 }
324 return 0;
325 }
326
327 static int ext4_file_open(struct inode * inode, struct file * filp)
328 {
329 struct super_block *sb = inode->i_sb;
330 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
331 struct vfsmount *mnt = filp->f_path.mnt;
332 struct inode *dir = filp->f_path.dentry->d_parent->d_inode;
333 struct path path;
334 char buf[64], *cp;
335 int ret;
336
337 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
338 !(sb->s_flags & MS_RDONLY))) {
339 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
340 /*
341 * Sample where the filesystem has been mounted and
342 * store it in the superblock for sysadmin convenience
343 * when trying to sort through large numbers of block
344 * devices or filesystem images.
345 */
346 memset(buf, 0, sizeof(buf));
347 path.mnt = mnt;
348 path.dentry = mnt->mnt_root;
349 cp = d_path(&path, buf, sizeof(buf));
350 if (!IS_ERR(cp)) {
351 handle_t *handle;
352 int err;
353
354 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
355 if (IS_ERR(handle))
356 return PTR_ERR(handle);
357 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
358 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
359 if (err) {
360 ext4_journal_stop(handle);
361 return err;
362 }
363 strlcpy(sbi->s_es->s_last_mounted, cp,
364 sizeof(sbi->s_es->s_last_mounted));
365 ext4_handle_dirty_super(handle, sb);
366 ext4_journal_stop(handle);
367 }
368 }
369 if (ext4_encrypted_inode(inode)) {
370 ret = ext4_get_encryption_info(inode);
371 if (ret)
372 return -EACCES;
373 if (ext4_encryption_info(inode) == NULL)
374 return -ENOKEY;
375 }
376 if (ext4_encrypted_inode(dir) &&
377 !ext4_is_child_context_consistent_with_parent(dir, inode)) {
378 ext4_warning(inode->i_sb,
379 "Inconsistent encryption contexts: %lu/%lu\n",
380 (unsigned long) dir->i_ino,
381 (unsigned long) inode->i_ino);
382 return -EPERM;
383 }
384 /*
385 * Set up the jbd2_inode if we are opening the inode for
386 * writing and the journal is present
387 */
388 if (filp->f_mode & FMODE_WRITE) {
389 ret = ext4_inode_attach_jinode(inode);
390 if (ret < 0)
391 return ret;
392 }
393 return dquot_file_open(inode, filp);
394 }
395
396 /*
397 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
398 * file rather than ext4_ext_walk_space() because we can introduce
399 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
400 * function. When extent status tree has been fully implemented, it will
401 * track all extent status for a file and we can directly use it to
402 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
403 */
404
405 /*
406 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
407 * lookup page cache to check whether or not there has some data between
408 * [startoff, endoff] because, if this range contains an unwritten extent,
409 * we determine this extent as a data or a hole according to whether the
410 * page cache has data or not.
411 */
412 static int ext4_find_unwritten_pgoff(struct inode *inode,
413 int whence,
414 ext4_lblk_t end_blk,
415 loff_t *offset)
416 {
417 struct pagevec pvec;
418 unsigned int blkbits;
419 pgoff_t index;
420 pgoff_t end;
421 loff_t endoff;
422 loff_t startoff;
423 loff_t lastoff;
424 int found = 0;
425
426 blkbits = inode->i_sb->s_blocksize_bits;
427 startoff = *offset;
428 lastoff = startoff;
429 endoff = (loff_t)end_blk << blkbits;
430
431 index = startoff >> PAGE_SHIFT;
432 end = endoff >> PAGE_SHIFT;
433
434 pagevec_init(&pvec, 0);
435 do {
436 int i, num;
437 unsigned long nr_pages;
438
439 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
440 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
441 (pgoff_t)num);
442 if (nr_pages == 0) {
443 if (whence == SEEK_DATA)
444 break;
445
446 BUG_ON(whence != SEEK_HOLE);
447 /*
448 * If this is the first time to go into the loop and
449 * offset is not beyond the end offset, it will be a
450 * hole at this offset
451 */
452 if (lastoff == startoff || lastoff < endoff)
453 found = 1;
454 break;
455 }
456
457 /*
458 * If this is the first time to go into the loop and
459 * offset is smaller than the first page offset, it will be a
460 * hole at this offset.
461 */
462 if (lastoff == startoff && whence == SEEK_HOLE &&
463 lastoff < page_offset(pvec.pages[0])) {
464 found = 1;
465 break;
466 }
467
468 for (i = 0; i < nr_pages; i++) {
469 struct page *page = pvec.pages[i];
470 struct buffer_head *bh, *head;
471
472 /*
473 * If the current offset is not beyond the end of given
474 * range, it will be a hole.
475 */
476 if (lastoff < endoff && whence == SEEK_HOLE &&
477 page->index > end) {
478 found = 1;
479 *offset = lastoff;
480 goto out;
481 }
482
483 lock_page(page);
484
485 if (unlikely(page->mapping != inode->i_mapping)) {
486 unlock_page(page);
487 continue;
488 }
489
490 if (!page_has_buffers(page)) {
491 unlock_page(page);
492 continue;
493 }
494
495 if (page_has_buffers(page)) {
496 lastoff = page_offset(page);
497 bh = head = page_buffers(page);
498 do {
499 if (buffer_uptodate(bh) ||
500 buffer_unwritten(bh)) {
501 if (whence == SEEK_DATA)
502 found = 1;
503 } else {
504 if (whence == SEEK_HOLE)
505 found = 1;
506 }
507 if (found) {
508 *offset = max_t(loff_t,
509 startoff, lastoff);
510 unlock_page(page);
511 goto out;
512 }
513 lastoff += bh->b_size;
514 bh = bh->b_this_page;
515 } while (bh != head);
516 }
517
518 lastoff = page_offset(page) + PAGE_SIZE;
519 unlock_page(page);
520 }
521
522 /*
523 * The no. of pages is less than our desired, that would be a
524 * hole in there.
525 */
526 if (nr_pages < num && whence == SEEK_HOLE) {
527 found = 1;
528 *offset = lastoff;
529 break;
530 }
531
532 index = pvec.pages[i - 1]->index + 1;
533 pagevec_release(&pvec);
534 } while (index <= end);
535
536 out:
537 pagevec_release(&pvec);
538 return found;
539 }
540
541 /*
542 * ext4_seek_data() retrieves the offset for SEEK_DATA.
543 */
544 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
545 {
546 struct inode *inode = file->f_mapping->host;
547 struct extent_status es;
548 ext4_lblk_t start, last, end;
549 loff_t dataoff, isize;
550 int blkbits;
551 int ret;
552
553 inode_lock(inode);
554
555 isize = i_size_read(inode);
556 if (offset >= isize) {
557 inode_unlock(inode);
558 return -ENXIO;
559 }
560
561 blkbits = inode->i_sb->s_blocksize_bits;
562 start = offset >> blkbits;
563 last = start;
564 end = isize >> blkbits;
565 dataoff = offset;
566
567 do {
568 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
569 if (ret <= 0) {
570 /* No extent found -> no data */
571 if (ret == 0)
572 ret = -ENXIO;
573 inode_unlock(inode);
574 return ret;
575 }
576
577 last = es.es_lblk;
578 if (last != start)
579 dataoff = (loff_t)last << blkbits;
580 if (!ext4_es_is_unwritten(&es))
581 break;
582
583 /*
584 * If there is a unwritten extent at this offset,
585 * it will be as a data or a hole according to page
586 * cache that has data or not.
587 */
588 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
589 es.es_lblk + es.es_len, &dataoff))
590 break;
591 last += es.es_len;
592 dataoff = (loff_t)last << blkbits;
593 cond_resched();
594 } while (last <= end);
595
596 inode_unlock(inode);
597
598 if (dataoff > isize)
599 return -ENXIO;
600
601 return vfs_setpos(file, dataoff, maxsize);
602 }
603
604 /*
605 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
606 */
607 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
608 {
609 struct inode *inode = file->f_mapping->host;
610 struct extent_status es;
611 ext4_lblk_t start, last, end;
612 loff_t holeoff, isize;
613 int blkbits;
614 int ret;
615
616 inode_lock(inode);
617
618 isize = i_size_read(inode);
619 if (offset >= isize) {
620 inode_unlock(inode);
621 return -ENXIO;
622 }
623
624 blkbits = inode->i_sb->s_blocksize_bits;
625 start = offset >> blkbits;
626 last = start;
627 end = isize >> blkbits;
628 holeoff = offset;
629
630 do {
631 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
632 if (ret < 0) {
633 inode_unlock(inode);
634 return ret;
635 }
636 /* Found a hole? */
637 if (ret == 0 || es.es_lblk > last) {
638 if (last != start)
639 holeoff = (loff_t)last << blkbits;
640 break;
641 }
642 /*
643 * If there is a unwritten extent at this offset,
644 * it will be as a data or a hole according to page
645 * cache that has data or not.
646 */
647 if (ext4_es_is_unwritten(&es) &&
648 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
649 last + es.es_len, &holeoff))
650 break;
651
652 last += es.es_len;
653 holeoff = (loff_t)last << blkbits;
654 cond_resched();
655 } while (last <= end);
656
657 inode_unlock(inode);
658
659 if (holeoff > isize)
660 holeoff = isize;
661
662 return vfs_setpos(file, holeoff, maxsize);
663 }
664
665 /*
666 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
667 * by calling generic_file_llseek_size() with the appropriate maxbytes
668 * value for each.
669 */
670 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
671 {
672 struct inode *inode = file->f_mapping->host;
673 loff_t maxbytes;
674
675 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
676 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
677 else
678 maxbytes = inode->i_sb->s_maxbytes;
679
680 switch (whence) {
681 case SEEK_SET:
682 case SEEK_CUR:
683 case SEEK_END:
684 return generic_file_llseek_size(file, offset, whence,
685 maxbytes, i_size_read(inode));
686 case SEEK_DATA:
687 return ext4_seek_data(file, offset, maxbytes);
688 case SEEK_HOLE:
689 return ext4_seek_hole(file, offset, maxbytes);
690 }
691
692 return -EINVAL;
693 }
694
695 const struct file_operations ext4_file_operations = {
696 .llseek = ext4_llseek,
697 .read_iter = generic_file_read_iter,
698 .write_iter = ext4_file_write_iter,
699 .unlocked_ioctl = ext4_ioctl,
700 #ifdef CONFIG_COMPAT
701 .compat_ioctl = ext4_compat_ioctl,
702 #endif
703 .mmap = ext4_file_mmap,
704 .open = ext4_file_open,
705 .release = ext4_release_file,
706 .fsync = ext4_sync_file,
707 .splice_read = generic_file_splice_read,
708 .splice_write = iter_file_splice_write,
709 .fallocate = ext4_fallocate,
710 };
711
712 const struct inode_operations ext4_file_inode_operations = {
713 .setattr = ext4_setattr,
714 .getattr = ext4_getattr,
715 .setxattr = generic_setxattr,
716 .getxattr = generic_getxattr,
717 .listxattr = ext4_listxattr,
718 .removexattr = generic_removexattr,
719 .get_acl = ext4_get_acl,
720 .set_acl = ext4_set_acl,
721 .fiemap = ext4_fiemap,
722 };
723