]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ext4/file.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / fs / ext4 / file.c
1 /*
2 * linux/fs/ext4/file.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/file.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * ext4 fs regular file handling primitives
16 *
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * (jj@sunsite.ms.mff.cuni.cz)
19 */
20
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 /*
35 * Called when an inode is released. Note that this is different
36 * from ext4_file_open: open gets called at every open, but release
37 * gets called only when /all/ the files are closed.
38 */
39 static int ext4_release_file(struct inode *inode, struct file *filp)
40 {
41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
42 ext4_alloc_da_blocks(inode);
43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
44 }
45 /* if we are the last writer on the inode, drop the block reservation */
46 if ((filp->f_mode & FMODE_WRITE) &&
47 (atomic_read(&inode->i_writecount) == 1) &&
48 !EXT4_I(inode)->i_reserved_data_blocks)
49 {
50 down_write(&EXT4_I(inode)->i_data_sem);
51 ext4_discard_preallocations(inode);
52 up_write(&EXT4_I(inode)->i_data_sem);
53 }
54 if (is_dx(inode) && filp->private_data)
55 ext4_htree_free_dir_info(filp->private_data);
56
57 return 0;
58 }
59
60 static void ext4_unwritten_wait(struct inode *inode)
61 {
62 wait_queue_head_t *wq = ext4_ioend_wq(inode);
63
64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
65 }
66
67 /*
68 * This tests whether the IO in question is block-aligned or not.
69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
70 * are converted to written only after the IO is complete. Until they are
71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
72 * it needs to zero out portions of the start and/or end block. If 2 AIO
73 * threads are at work on the same unwritten block, they must be synchronized
74 * or one thread will zero the other's data, causing corruption.
75 */
76 static int
77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
78 {
79 struct super_block *sb = inode->i_sb;
80 int blockmask = sb->s_blocksize - 1;
81
82 if (pos >= i_size_read(inode))
83 return 0;
84
85 if ((pos | iov_iter_alignment(from)) & blockmask)
86 return 1;
87
88 return 0;
89 }
90
91 static ssize_t
92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
93 {
94 struct inode *inode = file_inode(iocb->ki_filp);
95 int o_direct = iocb->ki_flags & IOCB_DIRECT;
96 int unaligned_aio = 0;
97 int overwrite = 0;
98 ssize_t ret;
99
100 inode_lock(inode);
101 ret = generic_write_checks(iocb, from);
102 if (ret <= 0)
103 goto out;
104
105 /*
106 * Unaligned direct AIO must be serialized among each other as zeroing
107 * of partial blocks of two competing unaligned AIOs can result in data
108 * corruption.
109 */
110 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
111 !is_sync_kiocb(iocb) &&
112 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
113 unaligned_aio = 1;
114 ext4_unwritten_wait(inode);
115 }
116
117 /*
118 * If we have encountered a bitmap-format file, the size limit
119 * is smaller than s_maxbytes, which is for extent-mapped files.
120 */
121 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
122 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
123
124 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
125 ret = -EFBIG;
126 goto out;
127 }
128 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
129 }
130
131 iocb->private = &overwrite;
132 if (o_direct) {
133 size_t length = iov_iter_count(from);
134 loff_t pos = iocb->ki_pos;
135
136 /* check whether we do a DIO overwrite or not */
137 if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
138 pos + length <= i_size_read(inode)) {
139 struct ext4_map_blocks map;
140 unsigned int blkbits = inode->i_blkbits;
141 int err, len;
142
143 map.m_lblk = pos >> blkbits;
144 map.m_len = EXT4_MAX_BLOCKS(length, pos, blkbits);
145 len = map.m_len;
146
147 err = ext4_map_blocks(NULL, inode, &map, 0);
148 /*
149 * 'err==len' means that all of blocks has
150 * been preallocated no matter they are
151 * initialized or not. For excluding
152 * unwritten extents, we need to check
153 * m_flags. There are two conditions that
154 * indicate for initialized extents. 1) If we
155 * hit extent cache, EXT4_MAP_MAPPED flag is
156 * returned; 2) If we do a real lookup,
157 * non-flags are returned. So we should check
158 * these two conditions.
159 */
160 if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
161 overwrite = 1;
162 }
163 }
164
165 ret = __generic_file_write_iter(iocb, from);
166 inode_unlock(inode);
167
168 if (ret > 0)
169 ret = generic_write_sync(iocb, ret);
170
171 return ret;
172
173 out:
174 inode_unlock(inode);
175 return ret;
176 }
177
178 #ifdef CONFIG_FS_DAX
179 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
180 {
181 int result;
182 handle_t *handle = NULL;
183 struct inode *inode = file_inode(vma->vm_file);
184 struct super_block *sb = inode->i_sb;
185 bool write = vmf->flags & FAULT_FLAG_WRITE;
186
187 if (write) {
188 sb_start_pagefault(sb);
189 file_update_time(vma->vm_file);
190 down_read(&EXT4_I(inode)->i_mmap_sem);
191 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
192 EXT4_DATA_TRANS_BLOCKS(sb));
193 } else
194 down_read(&EXT4_I(inode)->i_mmap_sem);
195
196 if (IS_ERR(handle))
197 result = VM_FAULT_SIGBUS;
198 else
199 result = dax_fault(vma, vmf, ext4_dax_get_block);
200
201 if (write) {
202 if (!IS_ERR(handle))
203 ext4_journal_stop(handle);
204 up_read(&EXT4_I(inode)->i_mmap_sem);
205 sb_end_pagefault(sb);
206 } else
207 up_read(&EXT4_I(inode)->i_mmap_sem);
208
209 return result;
210 }
211
212 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
213 pmd_t *pmd, unsigned int flags)
214 {
215 int result;
216 handle_t *handle = NULL;
217 struct inode *inode = file_inode(vma->vm_file);
218 struct super_block *sb = inode->i_sb;
219 bool write = flags & FAULT_FLAG_WRITE;
220
221 if (write) {
222 sb_start_pagefault(sb);
223 file_update_time(vma->vm_file);
224 down_read(&EXT4_I(inode)->i_mmap_sem);
225 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
226 ext4_chunk_trans_blocks(inode,
227 PMD_SIZE / PAGE_SIZE));
228 } else
229 down_read(&EXT4_I(inode)->i_mmap_sem);
230
231 if (IS_ERR(handle))
232 result = VM_FAULT_SIGBUS;
233 else
234 result = dax_pmd_fault(vma, addr, pmd, flags,
235 ext4_dax_get_block);
236
237 if (write) {
238 if (!IS_ERR(handle))
239 ext4_journal_stop(handle);
240 up_read(&EXT4_I(inode)->i_mmap_sem);
241 sb_end_pagefault(sb);
242 } else
243 up_read(&EXT4_I(inode)->i_mmap_sem);
244
245 return result;
246 }
247
248 /*
249 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
250 * handler we check for races agaist truncate. Note that since we cycle through
251 * i_mmap_sem, we are sure that also any hole punching that began before we
252 * were called is finished by now and so if it included part of the file we
253 * are working on, our pte will get unmapped and the check for pte_same() in
254 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
255 * desired.
256 */
257 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
258 struct vm_fault *vmf)
259 {
260 struct inode *inode = file_inode(vma->vm_file);
261 struct super_block *sb = inode->i_sb;
262 loff_t size;
263 int ret;
264
265 sb_start_pagefault(sb);
266 file_update_time(vma->vm_file);
267 down_read(&EXT4_I(inode)->i_mmap_sem);
268 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
269 if (vmf->pgoff >= size)
270 ret = VM_FAULT_SIGBUS;
271 else
272 ret = dax_pfn_mkwrite(vma, vmf);
273 up_read(&EXT4_I(inode)->i_mmap_sem);
274 sb_end_pagefault(sb);
275
276 return ret;
277 }
278
279 static const struct vm_operations_struct ext4_dax_vm_ops = {
280 .fault = ext4_dax_fault,
281 .pmd_fault = ext4_dax_pmd_fault,
282 .page_mkwrite = ext4_dax_fault,
283 .pfn_mkwrite = ext4_dax_pfn_mkwrite,
284 };
285 #else
286 #define ext4_dax_vm_ops ext4_file_vm_ops
287 #endif
288
289 static const struct vm_operations_struct ext4_file_vm_ops = {
290 .fault = ext4_filemap_fault,
291 .map_pages = filemap_map_pages,
292 .page_mkwrite = ext4_page_mkwrite,
293 };
294
295 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
296 {
297 struct inode *inode = file->f_mapping->host;
298
299 if (ext4_encrypted_inode(inode)) {
300 int err = fscrypt_get_encryption_info(inode);
301 if (err)
302 return 0;
303 if (!fscrypt_has_encryption_key(inode))
304 return -ENOKEY;
305 }
306 file_accessed(file);
307 if (IS_DAX(file_inode(file))) {
308 vma->vm_ops = &ext4_dax_vm_ops;
309 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
310 } else {
311 vma->vm_ops = &ext4_file_vm_ops;
312 }
313 return 0;
314 }
315
316 static int ext4_file_open(struct inode * inode, struct file * filp)
317 {
318 struct super_block *sb = inode->i_sb;
319 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
320 struct vfsmount *mnt = filp->f_path.mnt;
321 struct dentry *dir;
322 struct path path;
323 char buf[64], *cp;
324 int ret;
325
326 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
327 !(sb->s_flags & MS_RDONLY))) {
328 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
329 /*
330 * Sample where the filesystem has been mounted and
331 * store it in the superblock for sysadmin convenience
332 * when trying to sort through large numbers of block
333 * devices or filesystem images.
334 */
335 memset(buf, 0, sizeof(buf));
336 path.mnt = mnt;
337 path.dentry = mnt->mnt_root;
338 cp = d_path(&path, buf, sizeof(buf));
339 if (!IS_ERR(cp)) {
340 handle_t *handle;
341 int err;
342
343 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
344 if (IS_ERR(handle))
345 return PTR_ERR(handle);
346 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
347 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
348 if (err) {
349 ext4_journal_stop(handle);
350 return err;
351 }
352 strlcpy(sbi->s_es->s_last_mounted, cp,
353 sizeof(sbi->s_es->s_last_mounted));
354 ext4_handle_dirty_super(handle, sb);
355 ext4_journal_stop(handle);
356 }
357 }
358 if (ext4_encrypted_inode(inode)) {
359 ret = fscrypt_get_encryption_info(inode);
360 if (ret)
361 return -EACCES;
362 if (!fscrypt_has_encryption_key(inode))
363 return -ENOKEY;
364 }
365
366 dir = dget_parent(file_dentry(filp));
367 if (ext4_encrypted_inode(d_inode(dir)) &&
368 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
369 ext4_warning(inode->i_sb,
370 "Inconsistent encryption contexts: %lu/%lu",
371 (unsigned long) d_inode(dir)->i_ino,
372 (unsigned long) inode->i_ino);
373 dput(dir);
374 return -EPERM;
375 }
376 dput(dir);
377 /*
378 * Set up the jbd2_inode if we are opening the inode for
379 * writing and the journal is present
380 */
381 if (filp->f_mode & FMODE_WRITE) {
382 ret = ext4_inode_attach_jinode(inode);
383 if (ret < 0)
384 return ret;
385 }
386 return dquot_file_open(inode, filp);
387 }
388
389 /*
390 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
391 * file rather than ext4_ext_walk_space() because we can introduce
392 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
393 * function. When extent status tree has been fully implemented, it will
394 * track all extent status for a file and we can directly use it to
395 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
396 */
397
398 /*
399 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
400 * lookup page cache to check whether or not there has some data between
401 * [startoff, endoff] because, if this range contains an unwritten extent,
402 * we determine this extent as a data or a hole according to whether the
403 * page cache has data or not.
404 */
405 static int ext4_find_unwritten_pgoff(struct inode *inode,
406 int whence,
407 ext4_lblk_t end_blk,
408 loff_t *offset)
409 {
410 struct pagevec pvec;
411 unsigned int blkbits;
412 pgoff_t index;
413 pgoff_t end;
414 loff_t endoff;
415 loff_t startoff;
416 loff_t lastoff;
417 int found = 0;
418
419 blkbits = inode->i_sb->s_blocksize_bits;
420 startoff = *offset;
421 lastoff = startoff;
422 endoff = (loff_t)end_blk << blkbits;
423
424 index = startoff >> PAGE_SHIFT;
425 end = endoff >> PAGE_SHIFT;
426
427 pagevec_init(&pvec, 0);
428 do {
429 int i, num;
430 unsigned long nr_pages;
431
432 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
433 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
434 (pgoff_t)num);
435 if (nr_pages == 0) {
436 if (whence == SEEK_DATA)
437 break;
438
439 BUG_ON(whence != SEEK_HOLE);
440 /*
441 * If this is the first time to go into the loop and
442 * offset is not beyond the end offset, it will be a
443 * hole at this offset
444 */
445 if (lastoff == startoff || lastoff < endoff)
446 found = 1;
447 break;
448 }
449
450 /*
451 * If this is the first time to go into the loop and
452 * offset is smaller than the first page offset, it will be a
453 * hole at this offset.
454 */
455 if (lastoff == startoff && whence == SEEK_HOLE &&
456 lastoff < page_offset(pvec.pages[0])) {
457 found = 1;
458 break;
459 }
460
461 for (i = 0; i < nr_pages; i++) {
462 struct page *page = pvec.pages[i];
463 struct buffer_head *bh, *head;
464
465 /*
466 * If the current offset is not beyond the end of given
467 * range, it will be a hole.
468 */
469 if (lastoff < endoff && whence == SEEK_HOLE &&
470 page->index > end) {
471 found = 1;
472 *offset = lastoff;
473 goto out;
474 }
475
476 lock_page(page);
477
478 if (unlikely(page->mapping != inode->i_mapping)) {
479 unlock_page(page);
480 continue;
481 }
482
483 if (!page_has_buffers(page)) {
484 unlock_page(page);
485 continue;
486 }
487
488 if (page_has_buffers(page)) {
489 lastoff = page_offset(page);
490 bh = head = page_buffers(page);
491 do {
492 if (buffer_uptodate(bh) ||
493 buffer_unwritten(bh)) {
494 if (whence == SEEK_DATA)
495 found = 1;
496 } else {
497 if (whence == SEEK_HOLE)
498 found = 1;
499 }
500 if (found) {
501 *offset = max_t(loff_t,
502 startoff, lastoff);
503 unlock_page(page);
504 goto out;
505 }
506 lastoff += bh->b_size;
507 bh = bh->b_this_page;
508 } while (bh != head);
509 }
510
511 lastoff = page_offset(page) + PAGE_SIZE;
512 unlock_page(page);
513 }
514
515 /*
516 * The no. of pages is less than our desired, that would be a
517 * hole in there.
518 */
519 if (nr_pages < num && whence == SEEK_HOLE) {
520 found = 1;
521 *offset = lastoff;
522 break;
523 }
524
525 index = pvec.pages[i - 1]->index + 1;
526 pagevec_release(&pvec);
527 } while (index <= end);
528
529 out:
530 pagevec_release(&pvec);
531 return found;
532 }
533
534 /*
535 * ext4_seek_data() retrieves the offset for SEEK_DATA.
536 */
537 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
538 {
539 struct inode *inode = file->f_mapping->host;
540 struct extent_status es;
541 ext4_lblk_t start, last, end;
542 loff_t dataoff, isize;
543 int blkbits;
544 int ret;
545
546 inode_lock(inode);
547
548 isize = i_size_read(inode);
549 if (offset >= isize) {
550 inode_unlock(inode);
551 return -ENXIO;
552 }
553
554 blkbits = inode->i_sb->s_blocksize_bits;
555 start = offset >> blkbits;
556 last = start;
557 end = isize >> blkbits;
558 dataoff = offset;
559
560 do {
561 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
562 if (ret <= 0) {
563 /* No extent found -> no data */
564 if (ret == 0)
565 ret = -ENXIO;
566 inode_unlock(inode);
567 return ret;
568 }
569
570 last = es.es_lblk;
571 if (last != start)
572 dataoff = (loff_t)last << blkbits;
573 if (!ext4_es_is_unwritten(&es))
574 break;
575
576 /*
577 * If there is a unwritten extent at this offset,
578 * it will be as a data or a hole according to page
579 * cache that has data or not.
580 */
581 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
582 es.es_lblk + es.es_len, &dataoff))
583 break;
584 last += es.es_len;
585 dataoff = (loff_t)last << blkbits;
586 cond_resched();
587 } while (last <= end);
588
589 inode_unlock(inode);
590
591 if (dataoff > isize)
592 return -ENXIO;
593
594 return vfs_setpos(file, dataoff, maxsize);
595 }
596
597 /*
598 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
599 */
600 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
601 {
602 struct inode *inode = file->f_mapping->host;
603 struct extent_status es;
604 ext4_lblk_t start, last, end;
605 loff_t holeoff, isize;
606 int blkbits;
607 int ret;
608
609 inode_lock(inode);
610
611 isize = i_size_read(inode);
612 if (offset >= isize) {
613 inode_unlock(inode);
614 return -ENXIO;
615 }
616
617 blkbits = inode->i_sb->s_blocksize_bits;
618 start = offset >> blkbits;
619 last = start;
620 end = isize >> blkbits;
621 holeoff = offset;
622
623 do {
624 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
625 if (ret < 0) {
626 inode_unlock(inode);
627 return ret;
628 }
629 /* Found a hole? */
630 if (ret == 0 || es.es_lblk > last) {
631 if (last != start)
632 holeoff = (loff_t)last << blkbits;
633 break;
634 }
635 /*
636 * If there is a unwritten extent at this offset,
637 * it will be as a data or a hole according to page
638 * cache that has data or not.
639 */
640 if (ext4_es_is_unwritten(&es) &&
641 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
642 last + es.es_len, &holeoff))
643 break;
644
645 last += es.es_len;
646 holeoff = (loff_t)last << blkbits;
647 cond_resched();
648 } while (last <= end);
649
650 inode_unlock(inode);
651
652 if (holeoff > isize)
653 holeoff = isize;
654
655 return vfs_setpos(file, holeoff, maxsize);
656 }
657
658 /*
659 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
660 * by calling generic_file_llseek_size() with the appropriate maxbytes
661 * value for each.
662 */
663 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
664 {
665 struct inode *inode = file->f_mapping->host;
666 loff_t maxbytes;
667
668 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
669 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
670 else
671 maxbytes = inode->i_sb->s_maxbytes;
672
673 switch (whence) {
674 case SEEK_SET:
675 case SEEK_CUR:
676 case SEEK_END:
677 return generic_file_llseek_size(file, offset, whence,
678 maxbytes, i_size_read(inode));
679 case SEEK_DATA:
680 return ext4_seek_data(file, offset, maxbytes);
681 case SEEK_HOLE:
682 return ext4_seek_hole(file, offset, maxbytes);
683 }
684
685 return -EINVAL;
686 }
687
688 const struct file_operations ext4_file_operations = {
689 .llseek = ext4_llseek,
690 .read_iter = generic_file_read_iter,
691 .write_iter = ext4_file_write_iter,
692 .unlocked_ioctl = ext4_ioctl,
693 #ifdef CONFIG_COMPAT
694 .compat_ioctl = ext4_compat_ioctl,
695 #endif
696 .mmap = ext4_file_mmap,
697 .open = ext4_file_open,
698 .release = ext4_release_file,
699 .fsync = ext4_sync_file,
700 .get_unmapped_area = thp_get_unmapped_area,
701 .splice_read = generic_file_splice_read,
702 .splice_write = iter_file_splice_write,
703 .fallocate = ext4_fallocate,
704 };
705
706 const struct inode_operations ext4_file_inode_operations = {
707 .setattr = ext4_setattr,
708 .getattr = ext4_getattr,
709 .setxattr = generic_setxattr,
710 .getxattr = generic_getxattr,
711 .listxattr = ext4_listxattr,
712 .removexattr = generic_removexattr,
713 .get_acl = ext4_get_acl,
714 .set_acl = ext4_set_acl,
715 .fiemap = ext4_fiemap,
716 };
717