]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/file.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / file.c
1 /*
2 * linux/fs/ext4/file.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/file.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * ext4 fs regular file handling primitives
16 *
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * (jj@sunsite.ms.mff.cuni.cz)
19 */
20
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 #ifdef CONFIG_FS_DAX
35 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
36 {
37 struct inode *inode = file_inode(iocb->ki_filp);
38 ssize_t ret;
39
40 inode_lock_shared(inode);
41 /*
42 * Recheck under inode lock - at this point we are sure it cannot
43 * change anymore
44 */
45 if (!IS_DAX(inode)) {
46 inode_unlock_shared(inode);
47 /* Fallback to buffered IO in case we cannot support DAX */
48 return generic_file_read_iter(iocb, to);
49 }
50 ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
51 inode_unlock_shared(inode);
52
53 file_accessed(iocb->ki_filp);
54 return ret;
55 }
56 #endif
57
58 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
59 {
60 if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
61 return -EIO;
62
63 if (!iov_iter_count(to))
64 return 0; /* skip atime */
65
66 #ifdef CONFIG_FS_DAX
67 if (IS_DAX(file_inode(iocb->ki_filp)))
68 return ext4_dax_read_iter(iocb, to);
69 #endif
70 return generic_file_read_iter(iocb, to);
71 }
72
73 /*
74 * Called when an inode is released. Note that this is different
75 * from ext4_file_open: open gets called at every open, but release
76 * gets called only when /all/ the files are closed.
77 */
78 static int ext4_release_file(struct inode *inode, struct file *filp)
79 {
80 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
81 ext4_alloc_da_blocks(inode);
82 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
83 }
84 /* if we are the last writer on the inode, drop the block reservation */
85 if ((filp->f_mode & FMODE_WRITE) &&
86 (atomic_read(&inode->i_writecount) == 1) &&
87 !EXT4_I(inode)->i_reserved_data_blocks)
88 {
89 down_write(&EXT4_I(inode)->i_data_sem);
90 ext4_discard_preallocations(inode);
91 up_write(&EXT4_I(inode)->i_data_sem);
92 }
93 if (is_dx(inode) && filp->private_data)
94 ext4_htree_free_dir_info(filp->private_data);
95
96 return 0;
97 }
98
99 static void ext4_unwritten_wait(struct inode *inode)
100 {
101 wait_queue_head_t *wq = ext4_ioend_wq(inode);
102
103 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
104 }
105
106 /*
107 * This tests whether the IO in question is block-aligned or not.
108 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
109 * are converted to written only after the IO is complete. Until they are
110 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
111 * it needs to zero out portions of the start and/or end block. If 2 AIO
112 * threads are at work on the same unwritten block, they must be synchronized
113 * or one thread will zero the other's data, causing corruption.
114 */
115 static int
116 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
117 {
118 struct super_block *sb = inode->i_sb;
119 int blockmask = sb->s_blocksize - 1;
120
121 if (pos >= i_size_read(inode))
122 return 0;
123
124 if ((pos | iov_iter_alignment(from)) & blockmask)
125 return 1;
126
127 return 0;
128 }
129
130 /* Is IO overwriting allocated and initialized blocks? */
131 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
132 {
133 struct ext4_map_blocks map;
134 unsigned int blkbits = inode->i_blkbits;
135 int err, blklen;
136
137 if (pos + len > i_size_read(inode))
138 return false;
139
140 map.m_lblk = pos >> blkbits;
141 map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
142 blklen = map.m_len;
143
144 err = ext4_map_blocks(NULL, inode, &map, 0);
145 /*
146 * 'err==len' means that all of the blocks have been preallocated,
147 * regardless of whether they have been initialized or not. To exclude
148 * unwritten extents, we need to check m_flags.
149 */
150 return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
151 }
152
153 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
154 {
155 struct inode *inode = file_inode(iocb->ki_filp);
156 ssize_t ret;
157
158 ret = generic_write_checks(iocb, from);
159 if (ret <= 0)
160 return ret;
161 /*
162 * If we have encountered a bitmap-format file, the size limit
163 * is smaller than s_maxbytes, which is for extent-mapped files.
164 */
165 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
166 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
167
168 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
169 return -EFBIG;
170 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
171 }
172 return iov_iter_count(from);
173 }
174
175 #ifdef CONFIG_FS_DAX
176 static ssize_t
177 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
178 {
179 struct inode *inode = file_inode(iocb->ki_filp);
180 ssize_t ret;
181
182 inode_lock(inode);
183 ret = ext4_write_checks(iocb, from);
184 if (ret <= 0)
185 goto out;
186 ret = file_remove_privs(iocb->ki_filp);
187 if (ret)
188 goto out;
189 ret = file_update_time(iocb->ki_filp);
190 if (ret)
191 goto out;
192
193 ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
194 out:
195 inode_unlock(inode);
196 if (ret > 0)
197 ret = generic_write_sync(iocb, ret);
198 return ret;
199 }
200 #endif
201
202 static ssize_t
203 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
204 {
205 struct inode *inode = file_inode(iocb->ki_filp);
206 int o_direct = iocb->ki_flags & IOCB_DIRECT;
207 int unaligned_aio = 0;
208 int overwrite = 0;
209 ssize_t ret;
210
211 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
212 return -EIO;
213
214 #ifdef CONFIG_FS_DAX
215 if (IS_DAX(inode))
216 return ext4_dax_write_iter(iocb, from);
217 #endif
218
219 inode_lock(inode);
220 ret = ext4_write_checks(iocb, from);
221 if (ret <= 0)
222 goto out;
223
224 /*
225 * Unaligned direct AIO must be serialized among each other as zeroing
226 * of partial blocks of two competing unaligned AIOs can result in data
227 * corruption.
228 */
229 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
230 !is_sync_kiocb(iocb) &&
231 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
232 unaligned_aio = 1;
233 ext4_unwritten_wait(inode);
234 }
235
236 iocb->private = &overwrite;
237 /* Check whether we do a DIO overwrite or not */
238 if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
239 ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
240 overwrite = 1;
241
242 ret = __generic_file_write_iter(iocb, from);
243 inode_unlock(inode);
244
245 if (ret > 0)
246 ret = generic_write_sync(iocb, ret);
247
248 return ret;
249
250 out:
251 inode_unlock(inode);
252 return ret;
253 }
254
255 #ifdef CONFIG_FS_DAX
256 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
257 {
258 int result;
259 struct inode *inode = file_inode(vma->vm_file);
260 struct super_block *sb = inode->i_sb;
261 bool write = vmf->flags & FAULT_FLAG_WRITE;
262
263 if (write) {
264 sb_start_pagefault(sb);
265 file_update_time(vma->vm_file);
266 }
267 down_read(&EXT4_I(inode)->i_mmap_sem);
268 result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
269 up_read(&EXT4_I(inode)->i_mmap_sem);
270 if (write)
271 sb_end_pagefault(sb);
272
273 return result;
274 }
275
276 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
277 pmd_t *pmd, unsigned int flags)
278 {
279 int result;
280 struct inode *inode = file_inode(vma->vm_file);
281 struct super_block *sb = inode->i_sb;
282 bool write = flags & FAULT_FLAG_WRITE;
283
284 if (write) {
285 sb_start_pagefault(sb);
286 file_update_time(vma->vm_file);
287 }
288 down_read(&EXT4_I(inode)->i_mmap_sem);
289 result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
290 &ext4_iomap_ops);
291 up_read(&EXT4_I(inode)->i_mmap_sem);
292 if (write)
293 sb_end_pagefault(sb);
294
295 return result;
296 }
297
298 /*
299 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
300 * handler we check for races agaist truncate. Note that since we cycle through
301 * i_mmap_sem, we are sure that also any hole punching that began before we
302 * were called is finished by now and so if it included part of the file we
303 * are working on, our pte will get unmapped and the check for pte_same() in
304 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
305 * desired.
306 */
307 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
308 struct vm_fault *vmf)
309 {
310 struct inode *inode = file_inode(vma->vm_file);
311 struct super_block *sb = inode->i_sb;
312 loff_t size;
313 int ret;
314
315 sb_start_pagefault(sb);
316 file_update_time(vma->vm_file);
317 down_read(&EXT4_I(inode)->i_mmap_sem);
318 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
319 if (vmf->pgoff >= size)
320 ret = VM_FAULT_SIGBUS;
321 else
322 ret = dax_pfn_mkwrite(vma, vmf);
323 up_read(&EXT4_I(inode)->i_mmap_sem);
324 sb_end_pagefault(sb);
325
326 return ret;
327 }
328
329 static const struct vm_operations_struct ext4_dax_vm_ops = {
330 .fault = ext4_dax_fault,
331 .pmd_fault = ext4_dax_pmd_fault,
332 .page_mkwrite = ext4_dax_fault,
333 .pfn_mkwrite = ext4_dax_pfn_mkwrite,
334 };
335 #else
336 #define ext4_dax_vm_ops ext4_file_vm_ops
337 #endif
338
339 static const struct vm_operations_struct ext4_file_vm_ops = {
340 .fault = ext4_filemap_fault,
341 .map_pages = filemap_map_pages,
342 .page_mkwrite = ext4_page_mkwrite,
343 };
344
345 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
346 {
347 struct inode *inode = file->f_mapping->host;
348
349 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
350 return -EIO;
351
352 if (ext4_encrypted_inode(inode)) {
353 int err = fscrypt_get_encryption_info(inode);
354 if (err)
355 return 0;
356 if (!fscrypt_has_encryption_key(inode))
357 return -ENOKEY;
358 }
359 file_accessed(file);
360 if (IS_DAX(file_inode(file))) {
361 vma->vm_ops = &ext4_dax_vm_ops;
362 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
363 } else {
364 vma->vm_ops = &ext4_file_vm_ops;
365 }
366 return 0;
367 }
368
369 static int ext4_file_open(struct inode * inode, struct file * filp)
370 {
371 struct super_block *sb = inode->i_sb;
372 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
373 struct vfsmount *mnt = filp->f_path.mnt;
374 struct dentry *dir;
375 struct path path;
376 char buf[64], *cp;
377 int ret;
378
379 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
380 return -EIO;
381
382 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
383 !(sb->s_flags & MS_RDONLY))) {
384 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
385 /*
386 * Sample where the filesystem has been mounted and
387 * store it in the superblock for sysadmin convenience
388 * when trying to sort through large numbers of block
389 * devices or filesystem images.
390 */
391 memset(buf, 0, sizeof(buf));
392 path.mnt = mnt;
393 path.dentry = mnt->mnt_root;
394 cp = d_path(&path, buf, sizeof(buf));
395 if (!IS_ERR(cp)) {
396 handle_t *handle;
397 int err;
398
399 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
400 if (IS_ERR(handle))
401 return PTR_ERR(handle);
402 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
403 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
404 if (err) {
405 ext4_journal_stop(handle);
406 return err;
407 }
408 strlcpy(sbi->s_es->s_last_mounted, cp,
409 sizeof(sbi->s_es->s_last_mounted));
410 ext4_handle_dirty_super(handle, sb);
411 ext4_journal_stop(handle);
412 }
413 }
414 if (ext4_encrypted_inode(inode)) {
415 ret = fscrypt_get_encryption_info(inode);
416 if (ret)
417 return -EACCES;
418 if (!fscrypt_has_encryption_key(inode))
419 return -ENOKEY;
420 }
421
422 dir = dget_parent(file_dentry(filp));
423 if (ext4_encrypted_inode(d_inode(dir)) &&
424 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
425 ext4_warning(inode->i_sb,
426 "Inconsistent encryption contexts: %lu/%lu",
427 (unsigned long) d_inode(dir)->i_ino,
428 (unsigned long) inode->i_ino);
429 dput(dir);
430 return -EPERM;
431 }
432 dput(dir);
433 /*
434 * Set up the jbd2_inode if we are opening the inode for
435 * writing and the journal is present
436 */
437 if (filp->f_mode & FMODE_WRITE) {
438 ret = ext4_inode_attach_jinode(inode);
439 if (ret < 0)
440 return ret;
441 }
442 return dquot_file_open(inode, filp);
443 }
444
445 /*
446 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
447 * file rather than ext4_ext_walk_space() because we can introduce
448 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
449 * function. When extent status tree has been fully implemented, it will
450 * track all extent status for a file and we can directly use it to
451 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
452 */
453
454 /*
455 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
456 * lookup page cache to check whether or not there has some data between
457 * [startoff, endoff] because, if this range contains an unwritten extent,
458 * we determine this extent as a data or a hole according to whether the
459 * page cache has data or not.
460 */
461 static int ext4_find_unwritten_pgoff(struct inode *inode,
462 int whence,
463 ext4_lblk_t end_blk,
464 loff_t *offset)
465 {
466 struct pagevec pvec;
467 unsigned int blkbits;
468 pgoff_t index;
469 pgoff_t end;
470 loff_t endoff;
471 loff_t startoff;
472 loff_t lastoff;
473 int found = 0;
474
475 blkbits = inode->i_sb->s_blocksize_bits;
476 startoff = *offset;
477 lastoff = startoff;
478 endoff = (loff_t)end_blk << blkbits;
479
480 index = startoff >> PAGE_SHIFT;
481 end = endoff >> PAGE_SHIFT;
482
483 pagevec_init(&pvec, 0);
484 do {
485 int i, num;
486 unsigned long nr_pages;
487
488 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
489 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
490 (pgoff_t)num);
491 if (nr_pages == 0) {
492 if (whence == SEEK_DATA)
493 break;
494
495 BUG_ON(whence != SEEK_HOLE);
496 /*
497 * If this is the first time to go into the loop and
498 * offset is not beyond the end offset, it will be a
499 * hole at this offset
500 */
501 if (lastoff == startoff || lastoff < endoff)
502 found = 1;
503 break;
504 }
505
506 /*
507 * If this is the first time to go into the loop and
508 * offset is smaller than the first page offset, it will be a
509 * hole at this offset.
510 */
511 if (lastoff == startoff && whence == SEEK_HOLE &&
512 lastoff < page_offset(pvec.pages[0])) {
513 found = 1;
514 break;
515 }
516
517 for (i = 0; i < nr_pages; i++) {
518 struct page *page = pvec.pages[i];
519 struct buffer_head *bh, *head;
520
521 /*
522 * If the current offset is not beyond the end of given
523 * range, it will be a hole.
524 */
525 if (lastoff < endoff && whence == SEEK_HOLE &&
526 page->index > end) {
527 found = 1;
528 *offset = lastoff;
529 goto out;
530 }
531
532 lock_page(page);
533
534 if (unlikely(page->mapping != inode->i_mapping)) {
535 unlock_page(page);
536 continue;
537 }
538
539 if (!page_has_buffers(page)) {
540 unlock_page(page);
541 continue;
542 }
543
544 if (page_has_buffers(page)) {
545 lastoff = page_offset(page);
546 bh = head = page_buffers(page);
547 do {
548 if (buffer_uptodate(bh) ||
549 buffer_unwritten(bh)) {
550 if (whence == SEEK_DATA)
551 found = 1;
552 } else {
553 if (whence == SEEK_HOLE)
554 found = 1;
555 }
556 if (found) {
557 *offset = max_t(loff_t,
558 startoff, lastoff);
559 unlock_page(page);
560 goto out;
561 }
562 lastoff += bh->b_size;
563 bh = bh->b_this_page;
564 } while (bh != head);
565 }
566
567 lastoff = page_offset(page) + PAGE_SIZE;
568 unlock_page(page);
569 }
570
571 /*
572 * The no. of pages is less than our desired, that would be a
573 * hole in there.
574 */
575 if (nr_pages < num && whence == SEEK_HOLE) {
576 found = 1;
577 *offset = lastoff;
578 break;
579 }
580
581 index = pvec.pages[i - 1]->index + 1;
582 pagevec_release(&pvec);
583 } while (index <= end);
584
585 out:
586 pagevec_release(&pvec);
587 return found;
588 }
589
590 /*
591 * ext4_seek_data() retrieves the offset for SEEK_DATA.
592 */
593 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
594 {
595 struct inode *inode = file->f_mapping->host;
596 struct extent_status es;
597 ext4_lblk_t start, last, end;
598 loff_t dataoff, isize;
599 int blkbits;
600 int ret;
601
602 inode_lock(inode);
603
604 isize = i_size_read(inode);
605 if (offset >= isize) {
606 inode_unlock(inode);
607 return -ENXIO;
608 }
609
610 blkbits = inode->i_sb->s_blocksize_bits;
611 start = offset >> blkbits;
612 last = start;
613 end = isize >> blkbits;
614 dataoff = offset;
615
616 do {
617 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
618 if (ret <= 0) {
619 /* No extent found -> no data */
620 if (ret == 0)
621 ret = -ENXIO;
622 inode_unlock(inode);
623 return ret;
624 }
625
626 last = es.es_lblk;
627 if (last != start)
628 dataoff = (loff_t)last << blkbits;
629 if (!ext4_es_is_unwritten(&es))
630 break;
631
632 /*
633 * If there is a unwritten extent at this offset,
634 * it will be as a data or a hole according to page
635 * cache that has data or not.
636 */
637 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
638 es.es_lblk + es.es_len, &dataoff))
639 break;
640 last += es.es_len;
641 dataoff = (loff_t)last << blkbits;
642 cond_resched();
643 } while (last <= end);
644
645 inode_unlock(inode);
646
647 if (dataoff > isize)
648 return -ENXIO;
649
650 return vfs_setpos(file, dataoff, maxsize);
651 }
652
653 /*
654 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
655 */
656 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
657 {
658 struct inode *inode = file->f_mapping->host;
659 struct extent_status es;
660 ext4_lblk_t start, last, end;
661 loff_t holeoff, isize;
662 int blkbits;
663 int ret;
664
665 inode_lock(inode);
666
667 isize = i_size_read(inode);
668 if (offset >= isize) {
669 inode_unlock(inode);
670 return -ENXIO;
671 }
672
673 blkbits = inode->i_sb->s_blocksize_bits;
674 start = offset >> blkbits;
675 last = start;
676 end = isize >> blkbits;
677 holeoff = offset;
678
679 do {
680 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
681 if (ret < 0) {
682 inode_unlock(inode);
683 return ret;
684 }
685 /* Found a hole? */
686 if (ret == 0 || es.es_lblk > last) {
687 if (last != start)
688 holeoff = (loff_t)last << blkbits;
689 break;
690 }
691 /*
692 * If there is a unwritten extent at this offset,
693 * it will be as a data or a hole according to page
694 * cache that has data or not.
695 */
696 if (ext4_es_is_unwritten(&es) &&
697 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
698 last + es.es_len, &holeoff))
699 break;
700
701 last += es.es_len;
702 holeoff = (loff_t)last << blkbits;
703 cond_resched();
704 } while (last <= end);
705
706 inode_unlock(inode);
707
708 if (holeoff > isize)
709 holeoff = isize;
710
711 return vfs_setpos(file, holeoff, maxsize);
712 }
713
714 /*
715 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
716 * by calling generic_file_llseek_size() with the appropriate maxbytes
717 * value for each.
718 */
719 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
720 {
721 struct inode *inode = file->f_mapping->host;
722 loff_t maxbytes;
723
724 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
725 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
726 else
727 maxbytes = inode->i_sb->s_maxbytes;
728
729 switch (whence) {
730 case SEEK_SET:
731 case SEEK_CUR:
732 case SEEK_END:
733 return generic_file_llseek_size(file, offset, whence,
734 maxbytes, i_size_read(inode));
735 case SEEK_DATA:
736 return ext4_seek_data(file, offset, maxbytes);
737 case SEEK_HOLE:
738 return ext4_seek_hole(file, offset, maxbytes);
739 }
740
741 return -EINVAL;
742 }
743
744 const struct file_operations ext4_file_operations = {
745 .llseek = ext4_llseek,
746 .read_iter = ext4_file_read_iter,
747 .write_iter = ext4_file_write_iter,
748 .unlocked_ioctl = ext4_ioctl,
749 #ifdef CONFIG_COMPAT
750 .compat_ioctl = ext4_compat_ioctl,
751 #endif
752 .mmap = ext4_file_mmap,
753 .open = ext4_file_open,
754 .release = ext4_release_file,
755 .fsync = ext4_sync_file,
756 .get_unmapped_area = thp_get_unmapped_area,
757 .splice_read = generic_file_splice_read,
758 .splice_write = iter_file_splice_write,
759 .fallocate = ext4_fallocate,
760 };
761
762 const struct inode_operations ext4_file_inode_operations = {
763 .setattr = ext4_setattr,
764 .getattr = ext4_getattr,
765 .listxattr = ext4_listxattr,
766 .get_acl = ext4_get_acl,
767 .set_acl = ext4_set_acl,
768 .fiemap = ext4_fiemap,
769 };
770