]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/file.c
df44c877892a542f89c528a6c8fe0a93a79dceea
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / file.c
1 /*
2 * linux/fs/ext4/file.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/file.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * ext4 fs regular file handling primitives
16 *
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * (jj@sunsite.ms.mff.cuni.cz)
19 */
20
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/path.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include <linux/uio.h>
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 /*
35 * Called when an inode is released. Note that this is different
36 * from ext4_file_open: open gets called at every open, but release
37 * gets called only when /all/ the files are closed.
38 */
39 static int ext4_release_file(struct inode *inode, struct file *filp)
40 {
41 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
42 ext4_alloc_da_blocks(inode);
43 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
44 }
45 /* if we are the last writer on the inode, drop the block reservation */
46 if ((filp->f_mode & FMODE_WRITE) &&
47 (atomic_read(&inode->i_writecount) == 1) &&
48 !EXT4_I(inode)->i_reserved_data_blocks)
49 {
50 down_write(&EXT4_I(inode)->i_data_sem);
51 ext4_discard_preallocations(inode);
52 up_write(&EXT4_I(inode)->i_data_sem);
53 }
54 if (is_dx(inode) && filp->private_data)
55 ext4_htree_free_dir_info(filp->private_data);
56
57 return 0;
58 }
59
60 static void ext4_unwritten_wait(struct inode *inode)
61 {
62 wait_queue_head_t *wq = ext4_ioend_wq(inode);
63
64 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
65 }
66
67 /*
68 * This tests whether the IO in question is block-aligned or not.
69 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
70 * are converted to written only after the IO is complete. Until they are
71 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
72 * it needs to zero out portions of the start and/or end block. If 2 AIO
73 * threads are at work on the same unwritten block, they must be synchronized
74 * or one thread will zero the other's data, causing corruption.
75 */
76 static int
77 ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
78 {
79 struct super_block *sb = inode->i_sb;
80 int blockmask = sb->s_blocksize - 1;
81
82 if (pos >= i_size_read(inode))
83 return 0;
84
85 if ((pos | iov_iter_alignment(from)) & blockmask)
86 return 1;
87
88 return 0;
89 }
90
91 static ssize_t
92 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
93 {
94 struct file *file = iocb->ki_filp;
95 struct inode *inode = file_inode(iocb->ki_filp);
96 struct blk_plug plug;
97 int o_direct = iocb->ki_flags & IOCB_DIRECT;
98 int unaligned_aio = 0;
99 int overwrite = 0;
100 ssize_t ret;
101
102 inode_lock(inode);
103 ret = generic_write_checks(iocb, from);
104 if (ret <= 0)
105 goto out;
106
107 /*
108 * Unaligned direct AIO must be serialized among each other as zeroing
109 * of partial blocks of two competing unaligned AIOs can result in data
110 * corruption.
111 */
112 if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
113 !is_sync_kiocb(iocb) &&
114 ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
115 unaligned_aio = 1;
116 ext4_unwritten_wait(inode);
117 }
118
119 /*
120 * If we have encountered a bitmap-format file, the size limit
121 * is smaller than s_maxbytes, which is for extent-mapped files.
122 */
123 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
124 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
125
126 if (iocb->ki_pos >= sbi->s_bitmap_maxbytes) {
127 ret = -EFBIG;
128 goto out;
129 }
130 iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
131 }
132
133 iocb->private = &overwrite;
134 if (o_direct) {
135 size_t length = iov_iter_count(from);
136 loff_t pos = iocb->ki_pos;
137 blk_start_plug(&plug);
138
139 /* check whether we do a DIO overwrite or not */
140 if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
141 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
142 struct ext4_map_blocks map;
143 unsigned int blkbits = inode->i_blkbits;
144 int err, len;
145
146 map.m_lblk = pos >> blkbits;
147 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
148 - map.m_lblk;
149 len = map.m_len;
150
151 err = ext4_map_blocks(NULL, inode, &map, 0);
152 /*
153 * 'err==len' means that all of blocks has
154 * been preallocated no matter they are
155 * initialized or not. For excluding
156 * unwritten extents, we need to check
157 * m_flags. There are two conditions that
158 * indicate for initialized extents. 1) If we
159 * hit extent cache, EXT4_MAP_MAPPED flag is
160 * returned; 2) If we do a real lookup,
161 * non-flags are returned. So we should check
162 * these two conditions.
163 */
164 if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
165 overwrite = 1;
166 }
167 }
168
169 ret = __generic_file_write_iter(iocb, from);
170 inode_unlock(inode);
171
172 if (ret > 0)
173 ret = generic_write_sync(iocb, ret);
174 if (o_direct)
175 blk_finish_plug(&plug);
176
177 return ret;
178
179 out:
180 inode_unlock(inode);
181 return ret;
182 }
183
184 #ifdef CONFIG_FS_DAX
185 static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
186 {
187 int result;
188 handle_t *handle = NULL;
189 struct inode *inode = file_inode(vma->vm_file);
190 struct super_block *sb = inode->i_sb;
191 bool write = vmf->flags & FAULT_FLAG_WRITE;
192
193 if (write) {
194 sb_start_pagefault(sb);
195 file_update_time(vma->vm_file);
196 down_read(&EXT4_I(inode)->i_mmap_sem);
197 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
198 EXT4_DATA_TRANS_BLOCKS(sb));
199 } else
200 down_read(&EXT4_I(inode)->i_mmap_sem);
201
202 if (IS_ERR(handle))
203 result = VM_FAULT_SIGBUS;
204 else
205 result = __dax_fault(vma, vmf, ext4_dax_get_block);
206
207 if (write) {
208 if (!IS_ERR(handle))
209 ext4_journal_stop(handle);
210 up_read(&EXT4_I(inode)->i_mmap_sem);
211 sb_end_pagefault(sb);
212 } else
213 up_read(&EXT4_I(inode)->i_mmap_sem);
214
215 return result;
216 }
217
218 static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
219 pmd_t *pmd, unsigned int flags)
220 {
221 int result;
222 handle_t *handle = NULL;
223 struct inode *inode = file_inode(vma->vm_file);
224 struct super_block *sb = inode->i_sb;
225 bool write = flags & FAULT_FLAG_WRITE;
226
227 if (write) {
228 sb_start_pagefault(sb);
229 file_update_time(vma->vm_file);
230 down_read(&EXT4_I(inode)->i_mmap_sem);
231 handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
232 ext4_chunk_trans_blocks(inode,
233 PMD_SIZE / PAGE_SIZE));
234 } else
235 down_read(&EXT4_I(inode)->i_mmap_sem);
236
237 if (IS_ERR(handle))
238 result = VM_FAULT_SIGBUS;
239 else
240 result = __dax_pmd_fault(vma, addr, pmd, flags,
241 ext4_dax_get_block);
242
243 if (write) {
244 if (!IS_ERR(handle))
245 ext4_journal_stop(handle);
246 up_read(&EXT4_I(inode)->i_mmap_sem);
247 sb_end_pagefault(sb);
248 } else
249 up_read(&EXT4_I(inode)->i_mmap_sem);
250
251 return result;
252 }
253
254 /*
255 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
256 * handler we check for races agaist truncate. Note that since we cycle through
257 * i_mmap_sem, we are sure that also any hole punching that began before we
258 * were called is finished by now and so if it included part of the file we
259 * are working on, our pte will get unmapped and the check for pte_same() in
260 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
261 * desired.
262 */
263 static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
264 struct vm_fault *vmf)
265 {
266 struct inode *inode = file_inode(vma->vm_file);
267 struct super_block *sb = inode->i_sb;
268 loff_t size;
269 int ret;
270
271 sb_start_pagefault(sb);
272 file_update_time(vma->vm_file);
273 down_read(&EXT4_I(inode)->i_mmap_sem);
274 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
275 if (vmf->pgoff >= size)
276 ret = VM_FAULT_SIGBUS;
277 else
278 ret = dax_pfn_mkwrite(vma, vmf);
279 up_read(&EXT4_I(inode)->i_mmap_sem);
280 sb_end_pagefault(sb);
281
282 return ret;
283 }
284
285 static const struct vm_operations_struct ext4_dax_vm_ops = {
286 .fault = ext4_dax_fault,
287 .pmd_fault = ext4_dax_pmd_fault,
288 .page_mkwrite = ext4_dax_fault,
289 .pfn_mkwrite = ext4_dax_pfn_mkwrite,
290 };
291 #else
292 #define ext4_dax_vm_ops ext4_file_vm_ops
293 #endif
294
295 static const struct vm_operations_struct ext4_file_vm_ops = {
296 .fault = ext4_filemap_fault,
297 .map_pages = filemap_map_pages,
298 .page_mkwrite = ext4_page_mkwrite,
299 };
300
301 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
302 {
303 struct inode *inode = file->f_mapping->host;
304
305 if (ext4_encrypted_inode(inode)) {
306 int err = ext4_get_encryption_info(inode);
307 if (err)
308 return 0;
309 if (ext4_encryption_info(inode) == NULL)
310 return -ENOKEY;
311 }
312 file_accessed(file);
313 if (IS_DAX(file_inode(file))) {
314 vma->vm_ops = &ext4_dax_vm_ops;
315 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
316 } else {
317 vma->vm_ops = &ext4_file_vm_ops;
318 }
319 return 0;
320 }
321
322 static int ext4_file_open(struct inode * inode, struct file * filp)
323 {
324 struct super_block *sb = inode->i_sb;
325 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
326 struct vfsmount *mnt = filp->f_path.mnt;
327 struct dentry *dir;
328 struct path path;
329 char buf[64], *cp;
330 int ret;
331
332 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
333 !(sb->s_flags & MS_RDONLY))) {
334 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
335 /*
336 * Sample where the filesystem has been mounted and
337 * store it in the superblock for sysadmin convenience
338 * when trying to sort through large numbers of block
339 * devices or filesystem images.
340 */
341 memset(buf, 0, sizeof(buf));
342 path.mnt = mnt;
343 path.dentry = mnt->mnt_root;
344 cp = d_path(&path, buf, sizeof(buf));
345 if (!IS_ERR(cp)) {
346 handle_t *handle;
347 int err;
348
349 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
350 if (IS_ERR(handle))
351 return PTR_ERR(handle);
352 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
353 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
354 if (err) {
355 ext4_journal_stop(handle);
356 return err;
357 }
358 strlcpy(sbi->s_es->s_last_mounted, cp,
359 sizeof(sbi->s_es->s_last_mounted));
360 ext4_handle_dirty_super(handle, sb);
361 ext4_journal_stop(handle);
362 }
363 }
364 if (ext4_encrypted_inode(inode)) {
365 ret = ext4_get_encryption_info(inode);
366 if (ret)
367 return -EACCES;
368 if (ext4_encryption_info(inode) == NULL)
369 return -ENOKEY;
370 }
371
372 dir = dget_parent(file_dentry(filp));
373 if (ext4_encrypted_inode(d_inode(dir)) &&
374 !ext4_is_child_context_consistent_with_parent(d_inode(dir), inode)) {
375 ext4_warning(inode->i_sb,
376 "Inconsistent encryption contexts: %lu/%lu",
377 (unsigned long) d_inode(dir)->i_ino,
378 (unsigned long) inode->i_ino);
379 dput(dir);
380 return -EPERM;
381 }
382 dput(dir);
383 /*
384 * Set up the jbd2_inode if we are opening the inode for
385 * writing and the journal is present
386 */
387 if (filp->f_mode & FMODE_WRITE) {
388 ret = ext4_inode_attach_jinode(inode);
389 if (ret < 0)
390 return ret;
391 }
392 return dquot_file_open(inode, filp);
393 }
394
395 /*
396 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
397 * file rather than ext4_ext_walk_space() because we can introduce
398 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
399 * function. When extent status tree has been fully implemented, it will
400 * track all extent status for a file and we can directly use it to
401 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
402 */
403
404 /*
405 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
406 * lookup page cache to check whether or not there has some data between
407 * [startoff, endoff] because, if this range contains an unwritten extent,
408 * we determine this extent as a data or a hole according to whether the
409 * page cache has data or not.
410 */
411 static int ext4_find_unwritten_pgoff(struct inode *inode,
412 int whence,
413 ext4_lblk_t end_blk,
414 loff_t *offset)
415 {
416 struct pagevec pvec;
417 unsigned int blkbits;
418 pgoff_t index;
419 pgoff_t end;
420 loff_t endoff;
421 loff_t startoff;
422 loff_t lastoff;
423 int found = 0;
424
425 blkbits = inode->i_sb->s_blocksize_bits;
426 startoff = *offset;
427 lastoff = startoff;
428 endoff = (loff_t)end_blk << blkbits;
429
430 index = startoff >> PAGE_SHIFT;
431 end = endoff >> PAGE_SHIFT;
432
433 pagevec_init(&pvec, 0);
434 do {
435 int i, num;
436 unsigned long nr_pages;
437
438 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
439 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
440 (pgoff_t)num);
441 if (nr_pages == 0) {
442 if (whence == SEEK_DATA)
443 break;
444
445 BUG_ON(whence != SEEK_HOLE);
446 /*
447 * If this is the first time to go into the loop and
448 * offset is not beyond the end offset, it will be a
449 * hole at this offset
450 */
451 if (lastoff == startoff || lastoff < endoff)
452 found = 1;
453 break;
454 }
455
456 /*
457 * If this is the first time to go into the loop and
458 * offset is smaller than the first page offset, it will be a
459 * hole at this offset.
460 */
461 if (lastoff == startoff && whence == SEEK_HOLE &&
462 lastoff < page_offset(pvec.pages[0])) {
463 found = 1;
464 break;
465 }
466
467 for (i = 0; i < nr_pages; i++) {
468 struct page *page = pvec.pages[i];
469 struct buffer_head *bh, *head;
470
471 /*
472 * If the current offset is not beyond the end of given
473 * range, it will be a hole.
474 */
475 if (lastoff < endoff && whence == SEEK_HOLE &&
476 page->index > end) {
477 found = 1;
478 *offset = lastoff;
479 goto out;
480 }
481
482 lock_page(page);
483
484 if (unlikely(page->mapping != inode->i_mapping)) {
485 unlock_page(page);
486 continue;
487 }
488
489 if (!page_has_buffers(page)) {
490 unlock_page(page);
491 continue;
492 }
493
494 if (page_has_buffers(page)) {
495 lastoff = page_offset(page);
496 bh = head = page_buffers(page);
497 do {
498 if (buffer_uptodate(bh) ||
499 buffer_unwritten(bh)) {
500 if (whence == SEEK_DATA)
501 found = 1;
502 } else {
503 if (whence == SEEK_HOLE)
504 found = 1;
505 }
506 if (found) {
507 *offset = max_t(loff_t,
508 startoff, lastoff);
509 unlock_page(page);
510 goto out;
511 }
512 lastoff += bh->b_size;
513 bh = bh->b_this_page;
514 } while (bh != head);
515 }
516
517 lastoff = page_offset(page) + PAGE_SIZE;
518 unlock_page(page);
519 }
520
521 /*
522 * The no. of pages is less than our desired, that would be a
523 * hole in there.
524 */
525 if (nr_pages < num && whence == SEEK_HOLE) {
526 found = 1;
527 *offset = lastoff;
528 break;
529 }
530
531 index = pvec.pages[i - 1]->index + 1;
532 pagevec_release(&pvec);
533 } while (index <= end);
534
535 out:
536 pagevec_release(&pvec);
537 return found;
538 }
539
540 /*
541 * ext4_seek_data() retrieves the offset for SEEK_DATA.
542 */
543 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
544 {
545 struct inode *inode = file->f_mapping->host;
546 struct extent_status es;
547 ext4_lblk_t start, last, end;
548 loff_t dataoff, isize;
549 int blkbits;
550 int ret;
551
552 inode_lock(inode);
553
554 isize = i_size_read(inode);
555 if (offset >= isize) {
556 inode_unlock(inode);
557 return -ENXIO;
558 }
559
560 blkbits = inode->i_sb->s_blocksize_bits;
561 start = offset >> blkbits;
562 last = start;
563 end = isize >> blkbits;
564 dataoff = offset;
565
566 do {
567 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
568 if (ret <= 0) {
569 /* No extent found -> no data */
570 if (ret == 0)
571 ret = -ENXIO;
572 inode_unlock(inode);
573 return ret;
574 }
575
576 last = es.es_lblk;
577 if (last != start)
578 dataoff = (loff_t)last << blkbits;
579 if (!ext4_es_is_unwritten(&es))
580 break;
581
582 /*
583 * If there is a unwritten extent at this offset,
584 * it will be as a data or a hole according to page
585 * cache that has data or not.
586 */
587 if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
588 es.es_lblk + es.es_len, &dataoff))
589 break;
590 last += es.es_len;
591 dataoff = (loff_t)last << blkbits;
592 cond_resched();
593 } while (last <= end);
594
595 inode_unlock(inode);
596
597 if (dataoff > isize)
598 return -ENXIO;
599
600 return vfs_setpos(file, dataoff, maxsize);
601 }
602
603 /*
604 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
605 */
606 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
607 {
608 struct inode *inode = file->f_mapping->host;
609 struct extent_status es;
610 ext4_lblk_t start, last, end;
611 loff_t holeoff, isize;
612 int blkbits;
613 int ret;
614
615 inode_lock(inode);
616
617 isize = i_size_read(inode);
618 if (offset >= isize) {
619 inode_unlock(inode);
620 return -ENXIO;
621 }
622
623 blkbits = inode->i_sb->s_blocksize_bits;
624 start = offset >> blkbits;
625 last = start;
626 end = isize >> blkbits;
627 holeoff = offset;
628
629 do {
630 ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
631 if (ret < 0) {
632 inode_unlock(inode);
633 return ret;
634 }
635 /* Found a hole? */
636 if (ret == 0 || es.es_lblk > last) {
637 if (last != start)
638 holeoff = (loff_t)last << blkbits;
639 break;
640 }
641 /*
642 * If there is a unwritten extent at this offset,
643 * it will be as a data or a hole according to page
644 * cache that has data or not.
645 */
646 if (ext4_es_is_unwritten(&es) &&
647 ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
648 last + es.es_len, &holeoff))
649 break;
650
651 last += es.es_len;
652 holeoff = (loff_t)last << blkbits;
653 cond_resched();
654 } while (last <= end);
655
656 inode_unlock(inode);
657
658 if (holeoff > isize)
659 holeoff = isize;
660
661 return vfs_setpos(file, holeoff, maxsize);
662 }
663
664 /*
665 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
666 * by calling generic_file_llseek_size() with the appropriate maxbytes
667 * value for each.
668 */
669 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
670 {
671 struct inode *inode = file->f_mapping->host;
672 loff_t maxbytes;
673
674 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
675 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
676 else
677 maxbytes = inode->i_sb->s_maxbytes;
678
679 switch (whence) {
680 case SEEK_SET:
681 case SEEK_CUR:
682 case SEEK_END:
683 return generic_file_llseek_size(file, offset, whence,
684 maxbytes, i_size_read(inode));
685 case SEEK_DATA:
686 return ext4_seek_data(file, offset, maxbytes);
687 case SEEK_HOLE:
688 return ext4_seek_hole(file, offset, maxbytes);
689 }
690
691 return -EINVAL;
692 }
693
694 const struct file_operations ext4_file_operations = {
695 .llseek = ext4_llseek,
696 .read_iter = generic_file_read_iter,
697 .write_iter = ext4_file_write_iter,
698 .unlocked_ioctl = ext4_ioctl,
699 #ifdef CONFIG_COMPAT
700 .compat_ioctl = ext4_compat_ioctl,
701 #endif
702 .mmap = ext4_file_mmap,
703 .open = ext4_file_open,
704 .release = ext4_release_file,
705 .fsync = ext4_sync_file,
706 .splice_read = generic_file_splice_read,
707 .splice_write = iter_file_splice_write,
708 .fallocate = ext4_fallocate,
709 };
710
711 const struct inode_operations ext4_file_inode_operations = {
712 .setattr = ext4_setattr,
713 .getattr = ext4_getattr,
714 .setxattr = generic_setxattr,
715 .getxattr = generic_getxattr,
716 .listxattr = ext4_listxattr,
717 .removexattr = generic_removexattr,
718 .get_acl = ext4_get_acl,
719 .set_acl = ext4_set_acl,
720 .fiemap = ext4_fiemap,
721 };
722