1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/file.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * ext4 fs regular file handling primitives
18 * 64-bit file support on 64-bit platforms by Jakub Jelinek
19 * (jj@sunsite.ms.mff.cuni.cz)
22 #include <linux/time.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
34 #include "ext4_jbd2.h"
39 static bool ext4_dio_supported(struct inode
*inode
)
41 if (IS_ENABLED(CONFIG_FS_ENCRYPTION
) && IS_ENCRYPTED(inode
))
43 if (fsverity_active(inode
))
45 if (ext4_should_journal_data(inode
))
47 if (ext4_has_inline_data(inode
))
52 static ssize_t
ext4_dio_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
55 struct inode
*inode
= file_inode(iocb
->ki_filp
);
57 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
58 if (!inode_trylock_shared(inode
))
61 inode_lock_shared(inode
);
64 if (!ext4_dio_supported(inode
)) {
65 inode_unlock_shared(inode
);
67 * Fallback to buffered I/O if the operation being performed on
68 * the inode is not supported by direct I/O. The IOCB_DIRECT
69 * flag needs to be cleared here in order to ensure that the
70 * direct I/O path within generic_file_read_iter() is not
73 iocb
->ki_flags
&= ~IOCB_DIRECT
;
74 return generic_file_read_iter(iocb
, to
);
77 ret
= iomap_dio_rw(iocb
, to
, &ext4_iomap_ops
, NULL
, 0);
78 inode_unlock_shared(inode
);
80 file_accessed(iocb
->ki_filp
);
85 static ssize_t
ext4_dax_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
87 struct inode
*inode
= file_inode(iocb
->ki_filp
);
90 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
91 if (!inode_trylock_shared(inode
))
94 inode_lock_shared(inode
);
97 * Recheck under inode lock - at this point we are sure it cannot
100 if (!IS_DAX(inode
)) {
101 inode_unlock_shared(inode
);
102 /* Fallback to buffered IO in case we cannot support DAX */
103 return generic_file_read_iter(iocb
, to
);
105 ret
= dax_iomap_rw(iocb
, to
, &ext4_iomap_ops
);
106 inode_unlock_shared(inode
);
108 file_accessed(iocb
->ki_filp
);
113 static ssize_t
ext4_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
115 struct inode
*inode
= file_inode(iocb
->ki_filp
);
117 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
120 if (!iov_iter_count(to
))
121 return 0; /* skip atime */
125 return ext4_dax_read_iter(iocb
, to
);
127 if (iocb
->ki_flags
& IOCB_DIRECT
)
128 return ext4_dio_read_iter(iocb
, to
);
130 return generic_file_read_iter(iocb
, to
);
134 * Called when an inode is released. Note that this is different
135 * from ext4_file_open: open gets called at every open, but release
136 * gets called only when /all/ the files are closed.
138 static int ext4_release_file(struct inode
*inode
, struct file
*filp
)
140 if (ext4_test_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
)) {
141 ext4_alloc_da_blocks(inode
);
142 ext4_clear_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
144 /* if we are the last writer on the inode, drop the block reservation */
145 if ((filp
->f_mode
& FMODE_WRITE
) &&
146 (atomic_read(&inode
->i_writecount
) == 1) &&
147 !EXT4_I(inode
)->i_reserved_data_blocks
) {
148 down_write(&EXT4_I(inode
)->i_data_sem
);
149 ext4_discard_preallocations(inode
, 0);
150 up_write(&EXT4_I(inode
)->i_data_sem
);
152 if (is_dx(inode
) && filp
->private_data
)
153 ext4_htree_free_dir_info(filp
->private_data
);
159 * This tests whether the IO in question is block-aligned or not.
160 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
161 * are converted to written only after the IO is complete. Until they are
162 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
163 * it needs to zero out portions of the start and/or end block. If 2 AIO
164 * threads are at work on the same unwritten block, they must be synchronized
165 * or one thread will zero the other's data, causing corruption.
168 ext4_unaligned_io(struct inode
*inode
, struct iov_iter
*from
, loff_t pos
)
170 struct super_block
*sb
= inode
->i_sb
;
171 unsigned long blockmask
= sb
->s_blocksize
- 1;
173 if ((pos
| iov_iter_alignment(from
)) & blockmask
)
180 ext4_extending_io(struct inode
*inode
, loff_t offset
, size_t len
)
182 if (offset
+ len
> i_size_read(inode
) ||
183 offset
+ len
> EXT4_I(inode
)->i_disksize
)
188 /* Is IO overwriting allocated and initialized blocks? */
189 static bool ext4_overwrite_io(struct inode
*inode
, loff_t pos
, loff_t len
)
191 struct ext4_map_blocks map
;
192 unsigned int blkbits
= inode
->i_blkbits
;
195 if (pos
+ len
> i_size_read(inode
))
198 map
.m_lblk
= pos
>> blkbits
;
199 map
.m_len
= EXT4_MAX_BLOCKS(len
, pos
, blkbits
);
202 err
= ext4_map_blocks(NULL
, inode
, &map
, 0);
204 * 'err==len' means that all of the blocks have been preallocated,
205 * regardless of whether they have been initialized or not. To exclude
206 * unwritten extents, we need to check m_flags.
208 return err
== blklen
&& (map
.m_flags
& EXT4_MAP_MAPPED
);
211 static ssize_t
ext4_generic_write_checks(struct kiocb
*iocb
,
212 struct iov_iter
*from
)
214 struct inode
*inode
= file_inode(iocb
->ki_filp
);
217 if (unlikely(IS_IMMUTABLE(inode
)))
220 ret
= generic_write_checks(iocb
, from
);
225 * If we have encountered a bitmap-format file, the size limit
226 * is smaller than s_maxbytes, which is for extent-mapped files.
228 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
229 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
231 if (iocb
->ki_pos
>= sbi
->s_bitmap_maxbytes
)
233 iov_iter_truncate(from
, sbi
->s_bitmap_maxbytes
- iocb
->ki_pos
);
236 return iov_iter_count(from
);
239 static ssize_t
ext4_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
)
243 count
= ext4_generic_write_checks(iocb
, from
);
247 ret
= file_modified(iocb
->ki_filp
);
253 static ssize_t
ext4_buffered_write_iter(struct kiocb
*iocb
,
254 struct iov_iter
*from
)
257 struct inode
*inode
= file_inode(iocb
->ki_filp
);
259 if (iocb
->ki_flags
& IOCB_NOWAIT
)
262 ext4_fc_start_update(inode
);
264 ret
= ext4_write_checks(iocb
, from
);
268 current
->backing_dev_info
= inode_to_bdi(inode
);
269 ret
= generic_perform_write(iocb
->ki_filp
, from
, iocb
->ki_pos
);
270 current
->backing_dev_info
= NULL
;
274 ext4_fc_stop_update(inode
);
275 if (likely(ret
> 0)) {
277 ret
= generic_write_sync(iocb
, ret
);
283 static ssize_t
ext4_handle_inode_extension(struct inode
*inode
, loff_t offset
,
284 ssize_t written
, size_t count
)
287 bool truncate
= false;
288 u8 blkbits
= inode
->i_blkbits
;
289 ext4_lblk_t written_blk
, end_blk
;
293 * Note that EXT4_I(inode)->i_disksize can get extended up to
294 * inode->i_size while the I/O was running due to writeback of delalloc
295 * blocks. But, the code in ext4_iomap_alloc() is careful to use
296 * zeroed/unwritten extents if this is possible; thus we won't leave
297 * uninitialized blocks in a file even if we didn't succeed in writing
298 * as much as we intended.
300 WARN_ON_ONCE(i_size_read(inode
) < EXT4_I(inode
)->i_disksize
);
301 if (offset
+ count
<= EXT4_I(inode
)->i_disksize
) {
303 * We need to ensure that the inode is removed from the orphan
304 * list if it has been added prematurely, due to writeback of
307 if (!list_empty(&EXT4_I(inode
)->i_orphan
) && inode
->i_nlink
) {
308 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
310 if (IS_ERR(handle
)) {
311 ext4_orphan_del(NULL
, inode
);
312 return PTR_ERR(handle
);
315 ext4_orphan_del(handle
, inode
);
316 ext4_journal_stop(handle
);
325 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
326 if (IS_ERR(handle
)) {
327 written
= PTR_ERR(handle
);
331 if (ext4_update_inode_size(inode
, offset
+ written
)) {
332 ret
= ext4_mark_inode_dirty(handle
, inode
);
335 ext4_journal_stop(handle
);
341 * We may need to truncate allocated but not written blocks beyond EOF.
343 written_blk
= ALIGN(offset
+ written
, 1 << blkbits
);
344 end_blk
= ALIGN(offset
+ count
, 1 << blkbits
);
345 if (written_blk
< end_blk
&& ext4_can_truncate(inode
))
349 * Remove the inode from the orphan list if it has been extended and
350 * everything went OK.
352 if (!truncate
&& inode
->i_nlink
)
353 ext4_orphan_del(handle
, inode
);
354 ext4_journal_stop(handle
);
358 ext4_truncate_failed_write(inode
);
360 * If the truncate operation failed early, then the inode may
361 * still be on the orphan list. In that case, we need to try
362 * remove the inode from the in-memory linked list.
365 ext4_orphan_del(NULL
, inode
);
371 static int ext4_dio_write_end_io(struct kiocb
*iocb
, ssize_t size
,
372 int error
, unsigned int flags
)
374 loff_t pos
= iocb
->ki_pos
;
375 struct inode
*inode
= file_inode(iocb
->ki_filp
);
380 if (size
&& flags
& IOMAP_DIO_UNWRITTEN
) {
381 error
= ext4_convert_unwritten_extents(NULL
, inode
, pos
, size
);
386 * If we are extending the file, we have to update i_size here before
387 * page cache gets invalidated in iomap_dio_rw(). Otherwise racing
388 * buffered reads could zero out too much from page cache pages. Update
389 * of on-disk size will happen later in ext4_dio_write_iter() where
390 * we have enough information to also perform orphan list handling etc.
391 * Note that we perform all extending writes synchronously under
392 * i_rwsem held exclusively so i_size update is safe here in that case.
393 * If the write was not extending, we cannot see pos > i_size here
394 * because operations reducing i_size like truncate wait for all
395 * outstanding DIO before updating i_size.
398 if (pos
> i_size_read(inode
))
399 i_size_write(inode
, pos
);
404 static const struct iomap_dio_ops ext4_dio_write_ops
= {
405 .end_io
= ext4_dio_write_end_io
,
409 * The intention here is to start with shared lock acquired then see if any
410 * condition requires an exclusive inode lock. If yes, then we restart the
411 * whole operation by releasing the shared lock and acquiring exclusive lock.
413 * - For unaligned_io we never take shared lock as it may cause data corruption
414 * when two unaligned IO tries to modify the same block e.g. while zeroing.
416 * - For extending writes case we don't take the shared lock, since it requires
417 * updating inode i_disksize and/or orphan handling with exclusive lock.
419 * - shared locking will only be true mostly with overwrites. Otherwise we will
420 * switch to exclusive i_rwsem lock.
422 static ssize_t
ext4_dio_write_checks(struct kiocb
*iocb
, struct iov_iter
*from
,
423 bool *ilock_shared
, bool *extend
)
425 struct file
*file
= iocb
->ki_filp
;
426 struct inode
*inode
= file_inode(file
);
432 ret
= ext4_generic_write_checks(iocb
, from
);
436 offset
= iocb
->ki_pos
;
438 if (ext4_extending_io(inode
, offset
, count
))
441 * Determine whether the IO operation will overwrite allocated
442 * and initialized blocks.
443 * We need exclusive i_rwsem for changing security info
444 * in file_modified().
446 if (*ilock_shared
&& (!IS_NOSEC(inode
) || *extend
||
447 !ext4_overwrite_io(inode
, offset
, count
))) {
448 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
452 inode_unlock_shared(inode
);
453 *ilock_shared
= false;
458 ret
= file_modified(file
);
465 inode_unlock_shared(inode
);
471 static ssize_t
ext4_dio_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
475 struct inode
*inode
= file_inode(iocb
->ki_filp
);
476 loff_t offset
= iocb
->ki_pos
;
477 size_t count
= iov_iter_count(from
);
478 const struct iomap_ops
*iomap_ops
= &ext4_iomap_ops
;
479 bool extend
= false, unaligned_io
= false;
480 bool ilock_shared
= true;
483 * We initially start with shared inode lock unless it is
484 * unaligned IO which needs exclusive lock anyways.
486 if (ext4_unaligned_io(inode
, from
, offset
)) {
488 ilock_shared
= false;
491 * Quick check here without any i_rwsem lock to see if it is extending
492 * IO. A more reliable check is done in ext4_dio_write_checks() with
493 * proper locking in place.
495 if (offset
+ count
> i_size_read(inode
))
496 ilock_shared
= false;
498 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
500 if (!inode_trylock_shared(inode
))
503 if (!inode_trylock(inode
))
508 inode_lock_shared(inode
);
513 /* Fallback to buffered I/O if the inode does not support direct I/O. */
514 if (!ext4_dio_supported(inode
)) {
516 inode_unlock_shared(inode
);
519 return ext4_buffered_write_iter(iocb
, from
);
522 ret
= ext4_dio_write_checks(iocb
, from
, &ilock_shared
, &extend
);
526 /* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
527 if ((iocb
->ki_flags
& IOCB_NOWAIT
) && (unaligned_io
|| extend
)) {
532 offset
= iocb
->ki_pos
;
536 * Unaligned direct IO must be serialized among each other as zeroing
537 * of partial blocks of two competing unaligned IOs can result in data
540 * So we make sure we don't allow any unaligned IO in flight.
541 * For IOs where we need not wait (like unaligned non-AIO DIO),
542 * below inode_dio_wait() may anyway become a no-op, since we start
543 * with exclusive lock.
546 inode_dio_wait(inode
);
549 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
550 if (IS_ERR(handle
)) {
551 ret
= PTR_ERR(handle
);
555 ext4_fc_start_update(inode
);
556 ret
= ext4_orphan_add(handle
, inode
);
557 ext4_fc_stop_update(inode
);
559 ext4_journal_stop(handle
);
563 ext4_journal_stop(handle
);
567 iomap_ops
= &ext4_iomap_overwrite_ops
;
568 ret
= iomap_dio_rw(iocb
, from
, iomap_ops
, &ext4_dio_write_ops
,
569 (unaligned_io
|| extend
) ? IOMAP_DIO_FORCE_WAIT
: 0);
574 ret
= ext4_handle_inode_extension(inode
, offset
, ret
, count
);
578 inode_unlock_shared(inode
);
582 if (ret
>= 0 && iov_iter_count(from
)) {
586 offset
= iocb
->ki_pos
;
587 err
= ext4_buffered_write_iter(iocb
, from
);
592 * We need to ensure that the pages within the page cache for
593 * the range covered by this I/O are written to disk and
594 * invalidated. This is in attempt to preserve the expected
595 * direct I/O semantics in the case we fallback to buffered I/O
596 * to complete off the I/O request.
599 endbyte
= offset
+ err
- 1;
600 err
= filemap_write_and_wait_range(iocb
->ki_filp
->f_mapping
,
603 invalidate_mapping_pages(iocb
->ki_filp
->f_mapping
,
604 offset
>> PAGE_SHIFT
,
605 endbyte
>> PAGE_SHIFT
);
613 ext4_dax_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
620 struct inode
*inode
= file_inode(iocb
->ki_filp
);
622 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
623 if (!inode_trylock(inode
))
629 ret
= ext4_write_checks(iocb
, from
);
633 offset
= iocb
->ki_pos
;
634 count
= iov_iter_count(from
);
636 if (offset
+ count
> EXT4_I(inode
)->i_disksize
) {
637 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
638 if (IS_ERR(handle
)) {
639 ret
= PTR_ERR(handle
);
643 ret
= ext4_orphan_add(handle
, inode
);
645 ext4_journal_stop(handle
);
650 ext4_journal_stop(handle
);
653 ret
= dax_iomap_rw(iocb
, from
, &ext4_iomap_ops
);
656 ret
= ext4_handle_inode_extension(inode
, offset
, ret
, count
);
660 ret
= generic_write_sync(iocb
, ret
);
666 ext4_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
668 struct inode
*inode
= file_inode(iocb
->ki_filp
);
670 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
675 return ext4_dax_write_iter(iocb
, from
);
677 if (iocb
->ki_flags
& IOCB_DIRECT
)
678 return ext4_dio_write_iter(iocb
, from
);
680 return ext4_buffered_write_iter(iocb
, from
);
684 static vm_fault_t
ext4_dax_huge_fault(struct vm_fault
*vmf
,
685 enum page_entry_size pe_size
)
690 handle_t
*handle
= NULL
;
691 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
692 struct super_block
*sb
= inode
->i_sb
;
695 * We have to distinguish real writes from writes which will result in a
696 * COW page; COW writes should *not* poke the journal (the file will not
697 * be changed). Doing so would cause unintended failures when mounted
700 * We check for VM_SHARED rather than vmf->cow_page since the latter is
701 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
702 * other sizes, dax_iomap_fault will handle splitting / fallback so that
703 * we eventually come back with a COW page.
705 bool write
= (vmf
->flags
& FAULT_FLAG_WRITE
) &&
706 (vmf
->vma
->vm_flags
& VM_SHARED
);
707 struct address_space
*mapping
= vmf
->vma
->vm_file
->f_mapping
;
711 sb_start_pagefault(sb
);
712 file_update_time(vmf
->vma
->vm_file
);
713 filemap_invalidate_lock_shared(mapping
);
715 handle
= ext4_journal_start_sb(sb
, EXT4_HT_WRITE_PAGE
,
716 EXT4_DATA_TRANS_BLOCKS(sb
));
717 if (IS_ERR(handle
)) {
718 filemap_invalidate_unlock_shared(mapping
);
719 sb_end_pagefault(sb
);
720 return VM_FAULT_SIGBUS
;
723 filemap_invalidate_lock_shared(mapping
);
725 result
= dax_iomap_fault(vmf
, pe_size
, &pfn
, &error
, &ext4_iomap_ops
);
727 ext4_journal_stop(handle
);
729 if ((result
& VM_FAULT_ERROR
) && error
== -ENOSPC
&&
730 ext4_should_retry_alloc(sb
, &retries
))
732 /* Handling synchronous page fault? */
733 if (result
& VM_FAULT_NEEDDSYNC
)
734 result
= dax_finish_sync_fault(vmf
, pe_size
, pfn
);
735 filemap_invalidate_unlock_shared(mapping
);
736 sb_end_pagefault(sb
);
738 filemap_invalidate_unlock_shared(mapping
);
744 static vm_fault_t
ext4_dax_fault(struct vm_fault
*vmf
)
746 return ext4_dax_huge_fault(vmf
, PE_SIZE_PTE
);
749 static const struct vm_operations_struct ext4_dax_vm_ops
= {
750 .fault
= ext4_dax_fault
,
751 .huge_fault
= ext4_dax_huge_fault
,
752 .page_mkwrite
= ext4_dax_fault
,
753 .pfn_mkwrite
= ext4_dax_fault
,
756 #define ext4_dax_vm_ops ext4_file_vm_ops
759 static const struct vm_operations_struct ext4_file_vm_ops
= {
760 .fault
= filemap_fault
,
761 .map_pages
= filemap_map_pages
,
762 .page_mkwrite
= ext4_page_mkwrite
,
765 static int ext4_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
767 struct inode
*inode
= file
->f_mapping
->host
;
768 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
769 struct dax_device
*dax_dev
= sbi
->s_daxdev
;
771 if (unlikely(ext4_forced_shutdown(sbi
)))
775 * We don't support synchronous mappings for non-DAX files and
776 * for DAX files if underneath dax_device is not synchronous.
778 if (!daxdev_mapping_supported(vma
, dax_dev
))
782 if (IS_DAX(file_inode(file
))) {
783 vma
->vm_ops
= &ext4_dax_vm_ops
;
784 vma
->vm_flags
|= VM_HUGEPAGE
;
786 vma
->vm_ops
= &ext4_file_vm_ops
;
791 static int ext4_sample_last_mounted(struct super_block
*sb
,
792 struct vfsmount
*mnt
)
794 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
800 if (likely(ext4_test_mount_flag(sb
, EXT4_MF_MNTDIR_SAMPLED
)))
803 if (sb_rdonly(sb
) || !sb_start_intwrite_trylock(sb
))
806 ext4_set_mount_flag(sb
, EXT4_MF_MNTDIR_SAMPLED
);
808 * Sample where the filesystem has been mounted and
809 * store it in the superblock for sysadmin convenience
810 * when trying to sort through large numbers of block
811 * devices or filesystem images.
813 memset(buf
, 0, sizeof(buf
));
815 path
.dentry
= mnt
->mnt_root
;
816 cp
= d_path(&path
, buf
, sizeof(buf
));
821 handle
= ext4_journal_start_sb(sb
, EXT4_HT_MISC
, 1);
822 err
= PTR_ERR(handle
);
825 BUFFER_TRACE(sbi
->s_sbh
, "get_write_access");
826 err
= ext4_journal_get_write_access(handle
, sb
, sbi
->s_sbh
,
830 lock_buffer(sbi
->s_sbh
);
831 strncpy(sbi
->s_es
->s_last_mounted
, cp
,
832 sizeof(sbi
->s_es
->s_last_mounted
));
833 ext4_superblock_csum_set(sb
);
834 unlock_buffer(sbi
->s_sbh
);
835 ext4_handle_dirty_metadata(handle
, NULL
, sbi
->s_sbh
);
837 ext4_journal_stop(handle
);
843 static int ext4_file_open(struct inode
*inode
, struct file
*filp
)
847 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
850 ret
= ext4_sample_last_mounted(inode
->i_sb
, filp
->f_path
.mnt
);
854 ret
= fscrypt_file_open(inode
, filp
);
858 ret
= fsverity_file_open(inode
, filp
);
863 * Set up the jbd2_inode if we are opening the inode for
864 * writing and the journal is present
866 if (filp
->f_mode
& FMODE_WRITE
) {
867 ret
= ext4_inode_attach_jinode(inode
);
872 filp
->f_mode
|= FMODE_NOWAIT
| FMODE_BUF_RASYNC
;
873 return dquot_file_open(inode
, filp
);
877 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
878 * by calling generic_file_llseek_size() with the appropriate maxbytes
881 loff_t
ext4_llseek(struct file
*file
, loff_t offset
, int whence
)
883 struct inode
*inode
= file
->f_mapping
->host
;
886 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
887 maxbytes
= EXT4_SB(inode
->i_sb
)->s_bitmap_maxbytes
;
889 maxbytes
= inode
->i_sb
->s_maxbytes
;
893 return generic_file_llseek_size(file
, offset
, whence
,
894 maxbytes
, i_size_read(inode
));
896 inode_lock_shared(inode
);
897 offset
= iomap_seek_hole(inode
, offset
,
898 &ext4_iomap_report_ops
);
899 inode_unlock_shared(inode
);
902 inode_lock_shared(inode
);
903 offset
= iomap_seek_data(inode
, offset
,
904 &ext4_iomap_report_ops
);
905 inode_unlock_shared(inode
);
911 return vfs_setpos(file
, offset
, maxbytes
);
914 const struct file_operations ext4_file_operations
= {
915 .llseek
= ext4_llseek
,
916 .read_iter
= ext4_file_read_iter
,
917 .write_iter
= ext4_file_write_iter
,
918 .iopoll
= iomap_dio_iopoll
,
919 .unlocked_ioctl
= ext4_ioctl
,
921 .compat_ioctl
= ext4_compat_ioctl
,
923 .mmap
= ext4_file_mmap
,
924 .mmap_supported_flags
= MAP_SYNC
,
925 .open
= ext4_file_open
,
926 .release
= ext4_release_file
,
927 .fsync
= ext4_sync_file
,
928 .get_unmapped_area
= thp_get_unmapped_area
,
929 .splice_read
= generic_file_splice_read
,
930 .splice_write
= iter_file_splice_write
,
931 .fallocate
= ext4_fallocate
,
934 const struct inode_operations ext4_file_inode_operations
= {
935 .setattr
= ext4_setattr
,
936 .getattr
= ext4_file_getattr
,
937 .listxattr
= ext4_listxattr
,
938 .get_acl
= ext4_get_acl
,
939 .set_acl
= ext4_set_acl
,
940 .fiemap
= ext4_fiemap
,
941 .fileattr_get
= ext4_fileattr_get
,
942 .fileattr_set
= ext4_fileattr_set
,