]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/ext4/fsync.c
ext4: get rid of open-coded d_find_any_alias()
[mirror_ubuntu-hirsute-kernel.git] / fs / ext4 / fsync.c
1 /*
2 * linux/fs/ext4/fsync.c
3 *
4 * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
5 * from
6 * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 * from
10 * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
11 *
12 * ext4fs fsync primitive
13 *
14 * Big-endian to little-endian byte-swapping/bitmaps by
15 * David S. Miller (davem@caip.rutgers.edu), 1995
16 *
17 * Removed unnecessary code duplication for little endian machines
18 * and excessive __inline__s.
19 * Andi Kleen, 1997
20 *
21 * Major simplications and cleanup - we only need to do the metadata, because
22 * we can depend on generic_block_fdatasync() to sync the data blocks.
23 */
24
25 #include <linux/time.h>
26 #include <linux/fs.h>
27 #include <linux/sched.h>
28 #include <linux/writeback.h>
29 #include <linux/jbd2.h>
30 #include <linux/blkdev.h>
31
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
34
35 #include <trace/events/ext4.h>
36
37 static void dump_completed_IO(struct inode * inode)
38 {
39 #ifdef EXT4FS_DEBUG
40 struct list_head *cur, *before, *after;
41 ext4_io_end_t *io, *io0, *io1;
42 unsigned long flags;
43
44 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
45 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
46 return;
47 }
48
49 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
50 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
51 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
52 cur = &io->list;
53 before = cur->prev;
54 io0 = container_of(before, ext4_io_end_t, list);
55 after = cur->next;
56 io1 = container_of(after, ext4_io_end_t, list);
57
58 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
59 io, inode->i_ino, io0, io1);
60 }
61 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
62 #endif
63 }
64
65 /*
66 * This function is called from ext4_sync_file().
67 *
68 * When IO is completed, the work to convert unwritten extents to
69 * written is queued on workqueue but may not get immediately
70 * scheduled. When fsync is called, we need to ensure the
71 * conversion is complete before fsync returns.
72 * The inode keeps track of a list of pending/completed IO that
73 * might needs to do the conversion. This function walks through
74 * the list and convert the related unwritten extents for completed IO
75 * to written.
76 * The function return the number of pending IOs on success.
77 */
78 int ext4_flush_completed_IO(struct inode *inode)
79 {
80 ext4_io_end_t *io;
81 struct ext4_inode_info *ei = EXT4_I(inode);
82 unsigned long flags;
83 int ret = 0;
84 int ret2 = 0;
85
86 dump_completed_IO(inode);
87 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
88 while (!list_empty(&ei->i_completed_io_list)){
89 io = list_entry(ei->i_completed_io_list.next,
90 ext4_io_end_t, list);
91 list_del_init(&io->list);
92 io->flag |= EXT4_IO_END_IN_FSYNC;
93 /*
94 * Calling ext4_end_io_nolock() to convert completed
95 * IO to written.
96 *
97 * When ext4_sync_file() is called, run_queue() may already
98 * about to flush the work corresponding to this io structure.
99 * It will be upset if it founds the io structure related
100 * to the work-to-be schedule is freed.
101 *
102 * Thus we need to keep the io structure still valid here after
103 * conversion finished. The io structure has a flag to
104 * avoid double converting from both fsync and background work
105 * queue work.
106 */
107 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
108 ret = ext4_end_io_nolock(io);
109 if (ret < 0)
110 ret2 = ret;
111 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
112 io->flag &= ~EXT4_IO_END_IN_FSYNC;
113 }
114 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
115 return (ret2 < 0) ? ret2 : 0;
116 }
117
118 /*
119 * If we're not journaling and this is a just-created file, we have to
120 * sync our parent directory (if it was freshly created) since
121 * otherwise it will only be written by writeback, leaving a huge
122 * window during which a crash may lose the file. This may apply for
123 * the parent directory's parent as well, and so on recursively, if
124 * they are also freshly created.
125 */
126 static int ext4_sync_parent(struct inode *inode)
127 {
128 struct writeback_control wbc;
129 struct dentry *dentry = NULL;
130 struct inode *next;
131 int ret = 0;
132
133 if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
134 return 0;
135 inode = igrab(inode);
136 while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
137 ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
138 dentry = d_find_any_alias(inode);
139 if (!dentry)
140 break;
141 next = igrab(dentry->d_parent->d_inode);
142 dput(dentry);
143 if (!next)
144 break;
145 iput(inode);
146 inode = next;
147 ret = sync_mapping_buffers(inode->i_mapping);
148 if (ret)
149 break;
150 memset(&wbc, 0, sizeof(wbc));
151 wbc.sync_mode = WB_SYNC_ALL;
152 wbc.nr_to_write = 0; /* only write out the inode */
153 ret = sync_inode(inode, &wbc);
154 if (ret)
155 break;
156 }
157 iput(inode);
158 return ret;
159 }
160
161 /**
162 * __sync_file - generic_file_fsync without the locking and filemap_write
163 * @inode: inode to sync
164 * @datasync: only sync essential metadata if true
165 *
166 * This is just generic_file_fsync without the locking. This is needed for
167 * nojournal mode to make sure this inodes data/metadata makes it to disk
168 * properly. The i_mutex should be held already.
169 */
170 static int __sync_inode(struct inode *inode, int datasync)
171 {
172 int err;
173 int ret;
174
175 ret = sync_mapping_buffers(inode->i_mapping);
176 if (!(inode->i_state & I_DIRTY))
177 return ret;
178 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
179 return ret;
180
181 err = sync_inode_metadata(inode, 1);
182 if (ret == 0)
183 ret = err;
184 return ret;
185 }
186
187 /*
188 * akpm: A new design for ext4_sync_file().
189 *
190 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
191 * There cannot be a transaction open by this task.
192 * Another task could have dirtied this inode. Its data can be in any
193 * state in the journalling system.
194 *
195 * What we do is just kick off a commit and wait on it. This will snapshot the
196 * inode to disk.
197 *
198 * i_mutex lock is held when entering and exiting this function
199 */
200
201 int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
202 {
203 struct inode *inode = file->f_mapping->host;
204 struct ext4_inode_info *ei = EXT4_I(inode);
205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 int ret;
207 tid_t commit_tid;
208 bool needs_barrier = false;
209
210 J_ASSERT(ext4_journal_current_handle() == NULL);
211
212 trace_ext4_sync_file_enter(file, datasync);
213
214 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
215 if (ret)
216 return ret;
217 mutex_lock(&inode->i_mutex);
218
219 if (inode->i_sb->s_flags & MS_RDONLY)
220 goto out;
221
222 ret = ext4_flush_completed_IO(inode);
223 if (ret < 0)
224 goto out;
225
226 if (!journal) {
227 ret = __sync_inode(inode, datasync);
228 if (!ret && !list_empty(&inode->i_dentry))
229 ret = ext4_sync_parent(inode);
230 goto out;
231 }
232
233 /*
234 * data=writeback,ordered:
235 * The caller's filemap_fdatawrite()/wait will sync the data.
236 * Metadata is in the journal, we wait for proper transaction to
237 * commit here.
238 *
239 * data=journal:
240 * filemap_fdatawrite won't do anything (the buffers are clean).
241 * ext4_force_commit will write the file data into the journal and
242 * will wait on that.
243 * filemap_fdatawait() will encounter a ton of newly-dirtied pages
244 * (they were dirtied by commit). But that's OK - the blocks are
245 * safe in-journal, which is all fsync() needs to ensure.
246 */
247 if (ext4_should_journal_data(inode)) {
248 ret = ext4_force_commit(inode->i_sb);
249 goto out;
250 }
251
252 commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
253 if (journal->j_flags & JBD2_BARRIER &&
254 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
255 needs_barrier = true;
256 jbd2_log_start_commit(journal, commit_tid);
257 ret = jbd2_log_wait_commit(journal, commit_tid);
258 if (needs_barrier)
259 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
260 out:
261 mutex_unlock(&inode->i_mutex);
262 trace_ext4_sync_file_exit(inode, ret);
263 return ret;
264 }