]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/ialloc.c
dax: use common 4k zero page for dax mmap reads
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / ialloc.c
1 /*
2 * linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <linux/cred.h>
25
26 #include <asm/byteorder.h>
27
28 #include "ext4.h"
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32
33 #include <trace/events/ext4.h>
34
35 /*
36 * ialloc.c contains the inodes allocation and deallocation routines
37 */
38
39 /*
40 * The free inodes are managed by bitmaps. A file system contains several
41 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
42 * block for inodes, N blocks for the inode table and data blocks.
43 *
44 * The file system contains group descriptors which are located after the
45 * super block. Each descriptor contains the number of the bitmap block and
46 * the free blocks count in the block.
47 */
48
49 /*
50 * To avoid calling the atomic setbit hundreds or thousands of times, we only
51 * need to use it within a single byte (to ensure we get endianness right).
52 * We can use memset for the rest of the bitmap as there are no other users.
53 */
54 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 {
56 int i;
57
58 if (start_bit >= end_bit)
59 return;
60
61 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
62 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
63 ext4_set_bit(i, bitmap);
64 if (i < end_bit)
65 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 }
67
68 /* Initializes an uninitialized inode bitmap */
69 static int ext4_init_inode_bitmap(struct super_block *sb,
70 struct buffer_head *bh,
71 ext4_group_t block_group,
72 struct ext4_group_desc *gdp)
73 {
74 struct ext4_group_info *grp;
75 struct ext4_sb_info *sbi = EXT4_SB(sb);
76 J_ASSERT_BH(bh, buffer_locked(bh));
77
78 /* If checksum is bad mark all blocks and inodes use to prevent
79 * allocation, essentially implementing a per-group read-only flag. */
80 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
81 grp = ext4_get_group_info(sb, block_group);
82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
83 percpu_counter_sub(&sbi->s_freeclusters_counter,
84 grp->bb_free);
85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
87 int count;
88 count = ext4_free_inodes_count(sb, gdp);
89 percpu_counter_sub(&sbi->s_freeinodes_counter,
90 count);
91 }
92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
93 return -EFSBADCRC;
94 }
95
96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
98 bh->b_data);
99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
100 EXT4_INODES_PER_GROUP(sb) / 8);
101 ext4_group_desc_csum_set(sb, block_group, gdp);
102
103 return 0;
104 }
105
106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107 {
108 if (uptodate) {
109 set_buffer_uptodate(bh);
110 set_bitmap_uptodate(bh);
111 }
112 unlock_buffer(bh);
113 put_bh(bh);
114 }
115
116 static int ext4_validate_inode_bitmap(struct super_block *sb,
117 struct ext4_group_desc *desc,
118 ext4_group_t block_group,
119 struct buffer_head *bh)
120 {
121 ext4_fsblk_t blk;
122 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
123 struct ext4_sb_info *sbi = EXT4_SB(sb);
124
125 if (buffer_verified(bh))
126 return 0;
127 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
128 return -EFSCORRUPTED;
129
130 ext4_lock_group(sb, block_group);
131 blk = ext4_inode_bitmap(sb, desc);
132 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
133 EXT4_INODES_PER_GROUP(sb) / 8)) {
134 ext4_unlock_group(sb, block_group);
135 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
136 "inode_bitmap = %llu", block_group, blk);
137 grp = ext4_get_group_info(sb, block_group);
138 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
139 int count;
140 count = ext4_free_inodes_count(sb, desc);
141 percpu_counter_sub(&sbi->s_freeinodes_counter,
142 count);
143 }
144 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
145 return -EFSBADCRC;
146 }
147 set_buffer_verified(bh);
148 ext4_unlock_group(sb, block_group);
149 return 0;
150 }
151
152 /*
153 * Read the inode allocation bitmap for a given block_group, reading
154 * into the specified slot in the superblock's bitmap cache.
155 *
156 * Return buffer_head of bitmap on success or NULL.
157 */
158 static struct buffer_head *
159 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
160 {
161 struct ext4_group_desc *desc;
162 struct buffer_head *bh = NULL;
163 ext4_fsblk_t bitmap_blk;
164 int err;
165
166 desc = ext4_get_group_desc(sb, block_group, NULL);
167 if (!desc)
168 return ERR_PTR(-EFSCORRUPTED);
169
170 bitmap_blk = ext4_inode_bitmap(sb, desc);
171 bh = sb_getblk(sb, bitmap_blk);
172 if (unlikely(!bh)) {
173 ext4_error(sb, "Cannot read inode bitmap - "
174 "block_group = %u, inode_bitmap = %llu",
175 block_group, bitmap_blk);
176 return ERR_PTR(-EIO);
177 }
178 if (bitmap_uptodate(bh))
179 goto verify;
180
181 lock_buffer(bh);
182 if (bitmap_uptodate(bh)) {
183 unlock_buffer(bh);
184 goto verify;
185 }
186
187 ext4_lock_group(sb, block_group);
188 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
189 err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
190 set_bitmap_uptodate(bh);
191 set_buffer_uptodate(bh);
192 set_buffer_verified(bh);
193 ext4_unlock_group(sb, block_group);
194 unlock_buffer(bh);
195 if (err) {
196 ext4_error(sb, "Failed to init inode bitmap for group "
197 "%u: %d", block_group, err);
198 goto out;
199 }
200 return bh;
201 }
202 ext4_unlock_group(sb, block_group);
203
204 if (buffer_uptodate(bh)) {
205 /*
206 * if not uninit if bh is uptodate,
207 * bitmap is also uptodate
208 */
209 set_bitmap_uptodate(bh);
210 unlock_buffer(bh);
211 goto verify;
212 }
213 /*
214 * submit the buffer_head for reading
215 */
216 trace_ext4_load_inode_bitmap(sb, block_group);
217 bh->b_end_io = ext4_end_bitmap_read;
218 get_bh(bh);
219 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
220 wait_on_buffer(bh);
221 if (!buffer_uptodate(bh)) {
222 put_bh(bh);
223 ext4_error(sb, "Cannot read inode bitmap - "
224 "block_group = %u, inode_bitmap = %llu",
225 block_group, bitmap_blk);
226 return ERR_PTR(-EIO);
227 }
228
229 verify:
230 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
231 if (err)
232 goto out;
233 return bh;
234 out:
235 put_bh(bh);
236 return ERR_PTR(err);
237 }
238
239 /*
240 * NOTE! When we get the inode, we're the only people
241 * that have access to it, and as such there are no
242 * race conditions we have to worry about. The inode
243 * is not on the hash-lists, and it cannot be reached
244 * through the filesystem because the directory entry
245 * has been deleted earlier.
246 *
247 * HOWEVER: we must make sure that we get no aliases,
248 * which means that we have to call "clear_inode()"
249 * _before_ we mark the inode not in use in the inode
250 * bitmaps. Otherwise a newly created file might use
251 * the same inode number (not actually the same pointer
252 * though), and then we'd have two inodes sharing the
253 * same inode number and space on the harddisk.
254 */
255 void ext4_free_inode(handle_t *handle, struct inode *inode)
256 {
257 struct super_block *sb = inode->i_sb;
258 int is_directory;
259 unsigned long ino;
260 struct buffer_head *bitmap_bh = NULL;
261 struct buffer_head *bh2;
262 ext4_group_t block_group;
263 unsigned long bit;
264 struct ext4_group_desc *gdp;
265 struct ext4_super_block *es;
266 struct ext4_sb_info *sbi;
267 int fatal = 0, err, count, cleared;
268 struct ext4_group_info *grp;
269
270 if (!sb) {
271 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
272 "nonexistent device\n", __func__, __LINE__);
273 return;
274 }
275 if (atomic_read(&inode->i_count) > 1) {
276 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
277 __func__, __LINE__, inode->i_ino,
278 atomic_read(&inode->i_count));
279 return;
280 }
281 if (inode->i_nlink) {
282 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
283 __func__, __LINE__, inode->i_ino, inode->i_nlink);
284 return;
285 }
286 sbi = EXT4_SB(sb);
287
288 ino = inode->i_ino;
289 ext4_debug("freeing inode %lu\n", ino);
290 trace_ext4_free_inode(inode);
291
292 /*
293 * Note: we must free any quota before locking the superblock,
294 * as writing the quota to disk may need the lock as well.
295 */
296 dquot_initialize(inode);
297 dquot_free_inode(inode);
298 dquot_drop(inode);
299
300 is_directory = S_ISDIR(inode->i_mode);
301
302 /* Do this BEFORE marking the inode not in use or returning an error */
303 ext4_clear_inode(inode);
304
305 es = EXT4_SB(sb)->s_es;
306 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
307 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
308 goto error_return;
309 }
310 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
311 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
312 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
313 /* Don't bother if the inode bitmap is corrupt. */
314 grp = ext4_get_group_info(sb, block_group);
315 if (IS_ERR(bitmap_bh)) {
316 fatal = PTR_ERR(bitmap_bh);
317 bitmap_bh = NULL;
318 goto error_return;
319 }
320 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
321 fatal = -EFSCORRUPTED;
322 goto error_return;
323 }
324
325 BUFFER_TRACE(bitmap_bh, "get_write_access");
326 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
327 if (fatal)
328 goto error_return;
329
330 fatal = -ESRCH;
331 gdp = ext4_get_group_desc(sb, block_group, &bh2);
332 if (gdp) {
333 BUFFER_TRACE(bh2, "get_write_access");
334 fatal = ext4_journal_get_write_access(handle, bh2);
335 }
336 ext4_lock_group(sb, block_group);
337 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
338 if (fatal || !cleared) {
339 ext4_unlock_group(sb, block_group);
340 goto out;
341 }
342
343 count = ext4_free_inodes_count(sb, gdp) + 1;
344 ext4_free_inodes_set(sb, gdp, count);
345 if (is_directory) {
346 count = ext4_used_dirs_count(sb, gdp) - 1;
347 ext4_used_dirs_set(sb, gdp, count);
348 percpu_counter_dec(&sbi->s_dirs_counter);
349 }
350 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
351 EXT4_INODES_PER_GROUP(sb) / 8);
352 ext4_group_desc_csum_set(sb, block_group, gdp);
353 ext4_unlock_group(sb, block_group);
354
355 percpu_counter_inc(&sbi->s_freeinodes_counter);
356 if (sbi->s_log_groups_per_flex) {
357 ext4_group_t f = ext4_flex_group(sbi, block_group);
358
359 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
360 if (is_directory)
361 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
362 }
363 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
364 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
365 out:
366 if (cleared) {
367 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
368 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
369 if (!fatal)
370 fatal = err;
371 } else {
372 ext4_error(sb, "bit already cleared for inode %lu", ino);
373 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
374 int count;
375 count = ext4_free_inodes_count(sb, gdp);
376 percpu_counter_sub(&sbi->s_freeinodes_counter,
377 count);
378 }
379 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
380 }
381
382 error_return:
383 brelse(bitmap_bh);
384 ext4_std_error(sb, fatal);
385 }
386
387 struct orlov_stats {
388 __u64 free_clusters;
389 __u32 free_inodes;
390 __u32 used_dirs;
391 };
392
393 /*
394 * Helper function for Orlov's allocator; returns critical information
395 * for a particular block group or flex_bg. If flex_size is 1, then g
396 * is a block group number; otherwise it is flex_bg number.
397 */
398 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
399 int flex_size, struct orlov_stats *stats)
400 {
401 struct ext4_group_desc *desc;
402 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
403
404 if (flex_size > 1) {
405 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
406 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
407 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
408 return;
409 }
410
411 desc = ext4_get_group_desc(sb, g, NULL);
412 if (desc) {
413 stats->free_inodes = ext4_free_inodes_count(sb, desc);
414 stats->free_clusters = ext4_free_group_clusters(sb, desc);
415 stats->used_dirs = ext4_used_dirs_count(sb, desc);
416 } else {
417 stats->free_inodes = 0;
418 stats->free_clusters = 0;
419 stats->used_dirs = 0;
420 }
421 }
422
423 /*
424 * Orlov's allocator for directories.
425 *
426 * We always try to spread first-level directories.
427 *
428 * If there are blockgroups with both free inodes and free blocks counts
429 * not worse than average we return one with smallest directory count.
430 * Otherwise we simply return a random group.
431 *
432 * For the rest rules look so:
433 *
434 * It's OK to put directory into a group unless
435 * it has too many directories already (max_dirs) or
436 * it has too few free inodes left (min_inodes) or
437 * it has too few free blocks left (min_blocks) or
438 * Parent's group is preferred, if it doesn't satisfy these
439 * conditions we search cyclically through the rest. If none
440 * of the groups look good we just look for a group with more
441 * free inodes than average (starting at parent's group).
442 */
443
444 static int find_group_orlov(struct super_block *sb, struct inode *parent,
445 ext4_group_t *group, umode_t mode,
446 const struct qstr *qstr)
447 {
448 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
449 struct ext4_sb_info *sbi = EXT4_SB(sb);
450 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
451 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
452 unsigned int freei, avefreei, grp_free;
453 ext4_fsblk_t freeb, avefreec;
454 unsigned int ndirs;
455 int max_dirs, min_inodes;
456 ext4_grpblk_t min_clusters;
457 ext4_group_t i, grp, g, ngroups;
458 struct ext4_group_desc *desc;
459 struct orlov_stats stats;
460 int flex_size = ext4_flex_bg_size(sbi);
461 struct dx_hash_info hinfo;
462
463 ngroups = real_ngroups;
464 if (flex_size > 1) {
465 ngroups = (real_ngroups + flex_size - 1) >>
466 sbi->s_log_groups_per_flex;
467 parent_group >>= sbi->s_log_groups_per_flex;
468 }
469
470 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
471 avefreei = freei / ngroups;
472 freeb = EXT4_C2B(sbi,
473 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
474 avefreec = freeb;
475 do_div(avefreec, ngroups);
476 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
477
478 if (S_ISDIR(mode) &&
479 ((parent == d_inode(sb->s_root)) ||
480 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
481 int best_ndir = inodes_per_group;
482 int ret = -1;
483
484 if (qstr) {
485 hinfo.hash_version = DX_HASH_HALF_MD4;
486 hinfo.seed = sbi->s_hash_seed;
487 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
488 grp = hinfo.hash;
489 } else
490 grp = prandom_u32();
491 parent_group = (unsigned)grp % ngroups;
492 for (i = 0; i < ngroups; i++) {
493 g = (parent_group + i) % ngroups;
494 get_orlov_stats(sb, g, flex_size, &stats);
495 if (!stats.free_inodes)
496 continue;
497 if (stats.used_dirs >= best_ndir)
498 continue;
499 if (stats.free_inodes < avefreei)
500 continue;
501 if (stats.free_clusters < avefreec)
502 continue;
503 grp = g;
504 ret = 0;
505 best_ndir = stats.used_dirs;
506 }
507 if (ret)
508 goto fallback;
509 found_flex_bg:
510 if (flex_size == 1) {
511 *group = grp;
512 return 0;
513 }
514
515 /*
516 * We pack inodes at the beginning of the flexgroup's
517 * inode tables. Block allocation decisions will do
518 * something similar, although regular files will
519 * start at 2nd block group of the flexgroup. See
520 * ext4_ext_find_goal() and ext4_find_near().
521 */
522 grp *= flex_size;
523 for (i = 0; i < flex_size; i++) {
524 if (grp+i >= real_ngroups)
525 break;
526 desc = ext4_get_group_desc(sb, grp+i, NULL);
527 if (desc && ext4_free_inodes_count(sb, desc)) {
528 *group = grp+i;
529 return 0;
530 }
531 }
532 goto fallback;
533 }
534
535 max_dirs = ndirs / ngroups + inodes_per_group / 16;
536 min_inodes = avefreei - inodes_per_group*flex_size / 4;
537 if (min_inodes < 1)
538 min_inodes = 1;
539 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
540
541 /*
542 * Start looking in the flex group where we last allocated an
543 * inode for this parent directory
544 */
545 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
546 parent_group = EXT4_I(parent)->i_last_alloc_group;
547 if (flex_size > 1)
548 parent_group >>= sbi->s_log_groups_per_flex;
549 }
550
551 for (i = 0; i < ngroups; i++) {
552 grp = (parent_group + i) % ngroups;
553 get_orlov_stats(sb, grp, flex_size, &stats);
554 if (stats.used_dirs >= max_dirs)
555 continue;
556 if (stats.free_inodes < min_inodes)
557 continue;
558 if (stats.free_clusters < min_clusters)
559 continue;
560 goto found_flex_bg;
561 }
562
563 fallback:
564 ngroups = real_ngroups;
565 avefreei = freei / ngroups;
566 fallback_retry:
567 parent_group = EXT4_I(parent)->i_block_group;
568 for (i = 0; i < ngroups; i++) {
569 grp = (parent_group + i) % ngroups;
570 desc = ext4_get_group_desc(sb, grp, NULL);
571 if (desc) {
572 grp_free = ext4_free_inodes_count(sb, desc);
573 if (grp_free && grp_free >= avefreei) {
574 *group = grp;
575 return 0;
576 }
577 }
578 }
579
580 if (avefreei) {
581 /*
582 * The free-inodes counter is approximate, and for really small
583 * filesystems the above test can fail to find any blockgroups
584 */
585 avefreei = 0;
586 goto fallback_retry;
587 }
588
589 return -1;
590 }
591
592 static int find_group_other(struct super_block *sb, struct inode *parent,
593 ext4_group_t *group, umode_t mode)
594 {
595 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
596 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
597 struct ext4_group_desc *desc;
598 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
599
600 /*
601 * Try to place the inode is the same flex group as its
602 * parent. If we can't find space, use the Orlov algorithm to
603 * find another flex group, and store that information in the
604 * parent directory's inode information so that use that flex
605 * group for future allocations.
606 */
607 if (flex_size > 1) {
608 int retry = 0;
609
610 try_again:
611 parent_group &= ~(flex_size-1);
612 last = parent_group + flex_size;
613 if (last > ngroups)
614 last = ngroups;
615 for (i = parent_group; i < last; i++) {
616 desc = ext4_get_group_desc(sb, i, NULL);
617 if (desc && ext4_free_inodes_count(sb, desc)) {
618 *group = i;
619 return 0;
620 }
621 }
622 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
623 retry = 1;
624 parent_group = EXT4_I(parent)->i_last_alloc_group;
625 goto try_again;
626 }
627 /*
628 * If this didn't work, use the Orlov search algorithm
629 * to find a new flex group; we pass in the mode to
630 * avoid the topdir algorithms.
631 */
632 *group = parent_group + flex_size;
633 if (*group > ngroups)
634 *group = 0;
635 return find_group_orlov(sb, parent, group, mode, NULL);
636 }
637
638 /*
639 * Try to place the inode in its parent directory
640 */
641 *group = parent_group;
642 desc = ext4_get_group_desc(sb, *group, NULL);
643 if (desc && ext4_free_inodes_count(sb, desc) &&
644 ext4_free_group_clusters(sb, desc))
645 return 0;
646
647 /*
648 * We're going to place this inode in a different blockgroup from its
649 * parent. We want to cause files in a common directory to all land in
650 * the same blockgroup. But we want files which are in a different
651 * directory which shares a blockgroup with our parent to land in a
652 * different blockgroup.
653 *
654 * So add our directory's i_ino into the starting point for the hash.
655 */
656 *group = (*group + parent->i_ino) % ngroups;
657
658 /*
659 * Use a quadratic hash to find a group with a free inode and some free
660 * blocks.
661 */
662 for (i = 1; i < ngroups; i <<= 1) {
663 *group += i;
664 if (*group >= ngroups)
665 *group -= ngroups;
666 desc = ext4_get_group_desc(sb, *group, NULL);
667 if (desc && ext4_free_inodes_count(sb, desc) &&
668 ext4_free_group_clusters(sb, desc))
669 return 0;
670 }
671
672 /*
673 * That failed: try linear search for a free inode, even if that group
674 * has no free blocks.
675 */
676 *group = parent_group;
677 for (i = 0; i < ngroups; i++) {
678 if (++*group >= ngroups)
679 *group = 0;
680 desc = ext4_get_group_desc(sb, *group, NULL);
681 if (desc && ext4_free_inodes_count(sb, desc))
682 return 0;
683 }
684
685 return -1;
686 }
687
688 /*
689 * In no journal mode, if an inode has recently been deleted, we want
690 * to avoid reusing it until we're reasonably sure the inode table
691 * block has been written back to disk. (Yes, these values are
692 * somewhat arbitrary...)
693 */
694 #define RECENTCY_MIN 5
695 #define RECENTCY_DIRTY 30
696
697 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
698 {
699 struct ext4_group_desc *gdp;
700 struct ext4_inode *raw_inode;
701 struct buffer_head *bh;
702 unsigned long dtime, now;
703 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
704 int offset, ret = 0, recentcy = RECENTCY_MIN;
705
706 gdp = ext4_get_group_desc(sb, group, NULL);
707 if (unlikely(!gdp))
708 return 0;
709
710 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
711 (ino / inodes_per_block));
712 if (unlikely(!bh) || !buffer_uptodate(bh))
713 /*
714 * If the block is not in the buffer cache, then it
715 * must have been written out.
716 */
717 goto out;
718
719 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
720 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
721 dtime = le32_to_cpu(raw_inode->i_dtime);
722 now = get_seconds();
723 if (buffer_dirty(bh))
724 recentcy += RECENTCY_DIRTY;
725
726 if (dtime && (dtime < now) && (now < dtime + recentcy))
727 ret = 1;
728 out:
729 brelse(bh);
730 return ret;
731 }
732
733 /*
734 * There are two policies for allocating an inode. If the new inode is
735 * a directory, then a forward search is made for a block group with both
736 * free space and a low directory-to-inode ratio; if that fails, then of
737 * the groups with above-average free space, that group with the fewest
738 * directories already is chosen.
739 *
740 * For other inodes, search forward from the parent directory's block
741 * group to find a free inode.
742 */
743 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
744 umode_t mode, const struct qstr *qstr,
745 __u32 goal, uid_t *owner, __u32 i_flags,
746 int handle_type, unsigned int line_no,
747 int nblocks)
748 {
749 struct super_block *sb;
750 struct buffer_head *inode_bitmap_bh = NULL;
751 struct buffer_head *group_desc_bh;
752 ext4_group_t ngroups, group = 0;
753 unsigned long ino = 0;
754 struct inode *inode;
755 struct ext4_group_desc *gdp = NULL;
756 struct ext4_inode_info *ei;
757 struct ext4_sb_info *sbi;
758 int ret2, err;
759 struct inode *ret;
760 ext4_group_t i;
761 ext4_group_t flex_group;
762 struct ext4_group_info *grp;
763 int encrypt = 0;
764
765 /* Cannot create files in a deleted directory */
766 if (!dir || !dir->i_nlink)
767 return ERR_PTR(-EPERM);
768
769 sb = dir->i_sb;
770 sbi = EXT4_SB(sb);
771
772 if (unlikely(ext4_forced_shutdown(sbi)))
773 return ERR_PTR(-EIO);
774
775 /* Supplied owner must be valid */
776 if (owner && (owner[0] == (uid_t)-1 || owner[1] == (uid_t)-1))
777 return ERR_PTR(-EOVERFLOW);
778
779 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
780 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
781 !(i_flags & EXT4_EA_INODE_FL)) {
782 err = fscrypt_get_encryption_info(dir);
783 if (err)
784 return ERR_PTR(err);
785 if (!fscrypt_has_encryption_key(dir))
786 return ERR_PTR(-ENOKEY);
787 encrypt = 1;
788 }
789
790 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
791 #ifdef CONFIG_EXT4_FS_POSIX_ACL
792 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
793
794 if (p) {
795 int acl_size = p->a_count * sizeof(ext4_acl_entry);
796
797 nblocks += (S_ISDIR(mode) ? 2 : 1) *
798 __ext4_xattr_set_credits(sb, NULL /* inode */,
799 NULL /* block_bh */, acl_size,
800 true /* is_create */);
801 posix_acl_release(p);
802 }
803 #endif
804
805 #ifdef CONFIG_SECURITY
806 {
807 int num_security_xattrs = 1;
808
809 #ifdef CONFIG_INTEGRITY
810 num_security_xattrs++;
811 #endif
812 /*
813 * We assume that security xattrs are never
814 * more than 1k. In practice they are under
815 * 128 bytes.
816 */
817 nblocks += num_security_xattrs *
818 __ext4_xattr_set_credits(sb, NULL /* inode */,
819 NULL /* block_bh */, 1024,
820 true /* is_create */);
821 }
822 #endif
823 if (encrypt)
824 nblocks += __ext4_xattr_set_credits(sb,
825 NULL /* inode */, NULL /* block_bh */,
826 FSCRYPT_SET_CONTEXT_MAX_SIZE,
827 true /* is_create */);
828 }
829
830 ngroups = ext4_get_groups_count(sb);
831 trace_ext4_request_inode(dir, mode);
832 inode = new_inode(sb);
833 if (!inode)
834 return ERR_PTR(-ENOMEM);
835 ei = EXT4_I(inode);
836
837 /*
838 * Initialize owners and quota early so that we don't have to account
839 * for quota initialization worst case in standard inode creating
840 * transaction
841 */
842 if (owner) {
843 inode->i_mode = mode;
844 i_uid_write(inode, owner[0]);
845 i_gid_write(inode, owner[1]);
846 } else if (test_opt(sb, GRPID)) {
847 inode->i_mode = mode;
848 inode->i_uid = current_fsuid();
849 inode->i_gid = dir->i_gid;
850 } else
851 inode_init_owner(inode, dir, mode);
852
853 if (ext4_has_feature_project(sb) &&
854 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
855 ei->i_projid = EXT4_I(dir)->i_projid;
856 else
857 ei->i_projid = make_kprojid(sb->s_user_ns, EXT4_DEF_PROJID);
858
859 err = dquot_initialize(inode);
860 if (err)
861 goto out;
862
863 if (!goal)
864 goal = sbi->s_inode_goal;
865
866 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
867 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
868 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
869 ret2 = 0;
870 goto got_group;
871 }
872
873 if (S_ISDIR(mode))
874 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
875 else
876 ret2 = find_group_other(sb, dir, &group, mode);
877
878 got_group:
879 EXT4_I(dir)->i_last_alloc_group = group;
880 err = -ENOSPC;
881 if (ret2 == -1)
882 goto out;
883
884 /*
885 * Normally we will only go through one pass of this loop,
886 * unless we get unlucky and it turns out the group we selected
887 * had its last inode grabbed by someone else.
888 */
889 for (i = 0; i < ngroups; i++, ino = 0) {
890 err = -EIO;
891
892 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
893 if (!gdp)
894 goto out;
895
896 /*
897 * Check free inodes count before loading bitmap.
898 */
899 if (ext4_free_inodes_count(sb, gdp) == 0) {
900 if (++group == ngroups)
901 group = 0;
902 continue;
903 }
904
905 grp = ext4_get_group_info(sb, group);
906 /* Skip groups with already-known suspicious inode tables */
907 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
908 if (++group == ngroups)
909 group = 0;
910 continue;
911 }
912
913 brelse(inode_bitmap_bh);
914 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
915 /* Skip groups with suspicious inode tables */
916 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
917 IS_ERR(inode_bitmap_bh)) {
918 inode_bitmap_bh = NULL;
919 if (++group == ngroups)
920 group = 0;
921 continue;
922 }
923
924 repeat_in_this_group:
925 ino = ext4_find_next_zero_bit((unsigned long *)
926 inode_bitmap_bh->b_data,
927 EXT4_INODES_PER_GROUP(sb), ino);
928 if (ino >= EXT4_INODES_PER_GROUP(sb))
929 goto next_group;
930 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
931 ext4_error(sb, "reserved inode found cleared - "
932 "inode=%lu", ino + 1);
933 continue;
934 }
935 if ((EXT4_SB(sb)->s_journal == NULL) &&
936 recently_deleted(sb, group, ino)) {
937 ino++;
938 goto next_inode;
939 }
940 if (!handle) {
941 BUG_ON(nblocks <= 0);
942 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
943 handle_type, nblocks,
944 0);
945 if (IS_ERR(handle)) {
946 err = PTR_ERR(handle);
947 ext4_std_error(sb, err);
948 goto out;
949 }
950 }
951 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
952 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
953 if (err) {
954 ext4_std_error(sb, err);
955 goto out;
956 }
957 ext4_lock_group(sb, group);
958 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
959 ext4_unlock_group(sb, group);
960 ino++; /* the inode bitmap is zero-based */
961 if (!ret2)
962 goto got; /* we grabbed the inode! */
963 next_inode:
964 if (ino < EXT4_INODES_PER_GROUP(sb))
965 goto repeat_in_this_group;
966 next_group:
967 if (++group == ngroups)
968 group = 0;
969 }
970 err = -ENOSPC;
971 goto out;
972
973 got:
974 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
975 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
976 if (err) {
977 ext4_std_error(sb, err);
978 goto out;
979 }
980
981 BUFFER_TRACE(group_desc_bh, "get_write_access");
982 err = ext4_journal_get_write_access(handle, group_desc_bh);
983 if (err) {
984 ext4_std_error(sb, err);
985 goto out;
986 }
987
988 /* We may have to initialize the block bitmap if it isn't already */
989 if (ext4_has_group_desc_csum(sb) &&
990 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
991 struct buffer_head *block_bitmap_bh;
992
993 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
994 if (IS_ERR(block_bitmap_bh)) {
995 err = PTR_ERR(block_bitmap_bh);
996 goto out;
997 }
998 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
999 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1000 if (err) {
1001 brelse(block_bitmap_bh);
1002 ext4_std_error(sb, err);
1003 goto out;
1004 }
1005
1006 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1007 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1008
1009 /* recheck and clear flag under lock if we still need to */
1010 ext4_lock_group(sb, group);
1011 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1012 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1013 ext4_free_group_clusters_set(sb, gdp,
1014 ext4_free_clusters_after_init(sb, group, gdp));
1015 ext4_block_bitmap_csum_set(sb, group, gdp,
1016 block_bitmap_bh);
1017 ext4_group_desc_csum_set(sb, group, gdp);
1018 }
1019 ext4_unlock_group(sb, group);
1020 brelse(block_bitmap_bh);
1021
1022 if (err) {
1023 ext4_std_error(sb, err);
1024 goto out;
1025 }
1026 }
1027
1028 /* Update the relevant bg descriptor fields */
1029 if (ext4_has_group_desc_csum(sb)) {
1030 int free;
1031 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1032
1033 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1034 ext4_lock_group(sb, group); /* while we modify the bg desc */
1035 free = EXT4_INODES_PER_GROUP(sb) -
1036 ext4_itable_unused_count(sb, gdp);
1037 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1038 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1039 free = 0;
1040 }
1041 /*
1042 * Check the relative inode number against the last used
1043 * relative inode number in this group. if it is greater
1044 * we need to update the bg_itable_unused count
1045 */
1046 if (ino > free)
1047 ext4_itable_unused_set(sb, gdp,
1048 (EXT4_INODES_PER_GROUP(sb) - ino));
1049 up_read(&grp->alloc_sem);
1050 } else {
1051 ext4_lock_group(sb, group);
1052 }
1053
1054 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1055 if (S_ISDIR(mode)) {
1056 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1057 if (sbi->s_log_groups_per_flex) {
1058 ext4_group_t f = ext4_flex_group(sbi, group);
1059
1060 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1061 }
1062 }
1063 if (ext4_has_group_desc_csum(sb)) {
1064 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1065 EXT4_INODES_PER_GROUP(sb) / 8);
1066 ext4_group_desc_csum_set(sb, group, gdp);
1067 }
1068 ext4_unlock_group(sb, group);
1069
1070 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1071 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1072 if (err) {
1073 ext4_std_error(sb, err);
1074 goto out;
1075 }
1076
1077 percpu_counter_dec(&sbi->s_freeinodes_counter);
1078 if (S_ISDIR(mode))
1079 percpu_counter_inc(&sbi->s_dirs_counter);
1080
1081 if (sbi->s_log_groups_per_flex) {
1082 flex_group = ext4_flex_group(sbi, group);
1083 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1084 }
1085
1086 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1087 /* This is the optimal IO size (for stat), not the fs block size */
1088 inode->i_blocks = 0;
1089 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1090 current_time(inode);
1091
1092 memset(ei->i_data, 0, sizeof(ei->i_data));
1093 ei->i_dir_start_lookup = 0;
1094 ei->i_disksize = 0;
1095
1096 /* Don't inherit extent flag from directory, amongst others. */
1097 ei->i_flags =
1098 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1099 ei->i_flags |= i_flags;
1100 ei->i_file_acl = 0;
1101 ei->i_dtime = 0;
1102 ei->i_block_group = group;
1103 ei->i_last_alloc_group = ~0;
1104
1105 ext4_set_inode_flags(inode);
1106 if (IS_DIRSYNC(inode))
1107 ext4_handle_sync(handle);
1108 if (insert_inode_locked(inode) < 0) {
1109 /*
1110 * Likely a bitmap corruption causing inode to be allocated
1111 * twice.
1112 */
1113 err = -EIO;
1114 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1115 inode->i_ino);
1116 goto out;
1117 }
1118 spin_lock(&sbi->s_next_gen_lock);
1119 inode->i_generation = sbi->s_next_generation++;
1120 spin_unlock(&sbi->s_next_gen_lock);
1121
1122 /* Precompute checksum seed for inode metadata */
1123 if (ext4_has_metadata_csum(sb)) {
1124 __u32 csum;
1125 __le32 inum = cpu_to_le32(inode->i_ino);
1126 __le32 gen = cpu_to_le32(inode->i_generation);
1127 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1128 sizeof(inum));
1129 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1130 sizeof(gen));
1131 }
1132
1133 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1134 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1135
1136 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1137 ei->i_inline_off = 0;
1138 if (ext4_has_feature_inline_data(sb))
1139 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1140 ret = inode;
1141 err = dquot_alloc_inode(inode);
1142 if (err)
1143 goto fail_drop;
1144
1145 /*
1146 * Since the encryption xattr will always be unique, create it first so
1147 * that it's less likely to end up in an external xattr block and
1148 * prevent its deduplication.
1149 */
1150 if (encrypt) {
1151 err = fscrypt_inherit_context(dir, inode, handle, true);
1152 if (err)
1153 goto fail_free_drop;
1154 }
1155
1156 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1157 err = ext4_init_acl(handle, inode, dir);
1158 if (err)
1159 goto fail_free_drop;
1160
1161 err = ext4_init_security(handle, inode, dir, qstr);
1162 if (err)
1163 goto fail_free_drop;
1164 }
1165
1166 if (ext4_has_feature_extents(sb)) {
1167 /* set extent flag only for directory, file and normal symlink*/
1168 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1169 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1170 ext4_ext_tree_init(handle, inode);
1171 }
1172 }
1173
1174 if (ext4_handle_valid(handle)) {
1175 ei->i_sync_tid = handle->h_transaction->t_tid;
1176 ei->i_datasync_tid = handle->h_transaction->t_tid;
1177 }
1178
1179 err = ext4_mark_inode_dirty(handle, inode);
1180 if (err) {
1181 ext4_std_error(sb, err);
1182 goto fail_free_drop;
1183 }
1184
1185 ext4_debug("allocating inode %lu\n", inode->i_ino);
1186 trace_ext4_allocate_inode(inode, dir, mode);
1187 brelse(inode_bitmap_bh);
1188 return ret;
1189
1190 fail_free_drop:
1191 dquot_free_inode(inode);
1192 fail_drop:
1193 clear_nlink(inode);
1194 unlock_new_inode(inode);
1195 out:
1196 dquot_drop(inode);
1197 inode->i_flags |= S_NOQUOTA;
1198 iput(inode);
1199 brelse(inode_bitmap_bh);
1200 return ERR_PTR(err);
1201 }
1202
1203 /* Verify that we are loading a valid orphan from disk */
1204 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1205 {
1206 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1207 ext4_group_t block_group;
1208 int bit;
1209 struct buffer_head *bitmap_bh = NULL;
1210 struct inode *inode = NULL;
1211 int err = -EFSCORRUPTED;
1212
1213 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1214 goto bad_orphan;
1215
1216 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1217 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1218 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1219 if (IS_ERR(bitmap_bh)) {
1220 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1221 ino, PTR_ERR(bitmap_bh));
1222 return (struct inode *) bitmap_bh;
1223 }
1224
1225 /* Having the inode bit set should be a 100% indicator that this
1226 * is a valid orphan (no e2fsck run on fs). Orphans also include
1227 * inodes that were being truncated, so we can't check i_nlink==0.
1228 */
1229 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1230 goto bad_orphan;
1231
1232 inode = ext4_iget(sb, ino);
1233 if (IS_ERR(inode)) {
1234 err = PTR_ERR(inode);
1235 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1236 ino, err);
1237 return inode;
1238 }
1239
1240 /*
1241 * If the orphans has i_nlinks > 0 then it should be able to
1242 * be truncated, otherwise it won't be removed from the orphan
1243 * list during processing and an infinite loop will result.
1244 * Similarly, it must not be a bad inode.
1245 */
1246 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1247 is_bad_inode(inode))
1248 goto bad_orphan;
1249
1250 if (NEXT_ORPHAN(inode) > max_ino)
1251 goto bad_orphan;
1252 brelse(bitmap_bh);
1253 return inode;
1254
1255 bad_orphan:
1256 ext4_error(sb, "bad orphan inode %lu", ino);
1257 if (bitmap_bh)
1258 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1259 bit, (unsigned long long)bitmap_bh->b_blocknr,
1260 ext4_test_bit(bit, bitmap_bh->b_data));
1261 if (inode) {
1262 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1263 is_bad_inode(inode));
1264 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1265 NEXT_ORPHAN(inode));
1266 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1267 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1268 /* Avoid freeing blocks if we got a bad deleted inode */
1269 if (inode->i_nlink == 0)
1270 inode->i_blocks = 0;
1271 iput(inode);
1272 }
1273 brelse(bitmap_bh);
1274 return ERR_PTR(err);
1275 }
1276
1277 unsigned long ext4_count_free_inodes(struct super_block *sb)
1278 {
1279 unsigned long desc_count;
1280 struct ext4_group_desc *gdp;
1281 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1282 #ifdef EXT4FS_DEBUG
1283 struct ext4_super_block *es;
1284 unsigned long bitmap_count, x;
1285 struct buffer_head *bitmap_bh = NULL;
1286
1287 es = EXT4_SB(sb)->s_es;
1288 desc_count = 0;
1289 bitmap_count = 0;
1290 gdp = NULL;
1291 for (i = 0; i < ngroups; i++) {
1292 gdp = ext4_get_group_desc(sb, i, NULL);
1293 if (!gdp)
1294 continue;
1295 desc_count += ext4_free_inodes_count(sb, gdp);
1296 brelse(bitmap_bh);
1297 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1298 if (IS_ERR(bitmap_bh)) {
1299 bitmap_bh = NULL;
1300 continue;
1301 }
1302
1303 x = ext4_count_free(bitmap_bh->b_data,
1304 EXT4_INODES_PER_GROUP(sb) / 8);
1305 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1306 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1307 bitmap_count += x;
1308 }
1309 brelse(bitmap_bh);
1310 printk(KERN_DEBUG "ext4_count_free_inodes: "
1311 "stored = %u, computed = %lu, %lu\n",
1312 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1313 return desc_count;
1314 #else
1315 desc_count = 0;
1316 for (i = 0; i < ngroups; i++) {
1317 gdp = ext4_get_group_desc(sb, i, NULL);
1318 if (!gdp)
1319 continue;
1320 desc_count += ext4_free_inodes_count(sb, gdp);
1321 cond_resched();
1322 }
1323 return desc_count;
1324 #endif
1325 }
1326
1327 /* Called at mount-time, super-block is locked */
1328 unsigned long ext4_count_dirs(struct super_block * sb)
1329 {
1330 unsigned long count = 0;
1331 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1332
1333 for (i = 0; i < ngroups; i++) {
1334 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1335 if (!gdp)
1336 continue;
1337 count += ext4_used_dirs_count(sb, gdp);
1338 }
1339 return count;
1340 }
1341
1342 /*
1343 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1344 * inode table. Must be called without any spinlock held. The only place
1345 * where it is called from on active part of filesystem is ext4lazyinit
1346 * thread, so we do not need any special locks, however we have to prevent
1347 * inode allocation from the current group, so we take alloc_sem lock, to
1348 * block ext4_new_inode() until we are finished.
1349 */
1350 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1351 int barrier)
1352 {
1353 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1354 struct ext4_sb_info *sbi = EXT4_SB(sb);
1355 struct ext4_group_desc *gdp = NULL;
1356 struct buffer_head *group_desc_bh;
1357 handle_t *handle;
1358 ext4_fsblk_t blk;
1359 int num, ret = 0, used_blks = 0;
1360
1361 /* This should not happen, but just to be sure check this */
1362 if (sb->s_flags & MS_RDONLY) {
1363 ret = 1;
1364 goto out;
1365 }
1366
1367 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1368 if (!gdp)
1369 goto out;
1370
1371 /*
1372 * We do not need to lock this, because we are the only one
1373 * handling this flag.
1374 */
1375 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1376 goto out;
1377
1378 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1379 if (IS_ERR(handle)) {
1380 ret = PTR_ERR(handle);
1381 goto out;
1382 }
1383
1384 down_write(&grp->alloc_sem);
1385 /*
1386 * If inode bitmap was already initialized there may be some
1387 * used inodes so we need to skip blocks with used inodes in
1388 * inode table.
1389 */
1390 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1391 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1392 ext4_itable_unused_count(sb, gdp)),
1393 sbi->s_inodes_per_block);
1394
1395 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1396 ext4_error(sb, "Something is wrong with group %u: "
1397 "used itable blocks: %d; "
1398 "itable unused count: %u",
1399 group, used_blks,
1400 ext4_itable_unused_count(sb, gdp));
1401 ret = 1;
1402 goto err_out;
1403 }
1404
1405 blk = ext4_inode_table(sb, gdp) + used_blks;
1406 num = sbi->s_itb_per_group - used_blks;
1407
1408 BUFFER_TRACE(group_desc_bh, "get_write_access");
1409 ret = ext4_journal_get_write_access(handle,
1410 group_desc_bh);
1411 if (ret)
1412 goto err_out;
1413
1414 /*
1415 * Skip zeroout if the inode table is full. But we set the ZEROED
1416 * flag anyway, because obviously, when it is full it does not need
1417 * further zeroing.
1418 */
1419 if (unlikely(num == 0))
1420 goto skip_zeroout;
1421
1422 ext4_debug("going to zero out inode table in group %d\n",
1423 group);
1424 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1425 if (ret < 0)
1426 goto err_out;
1427 if (barrier)
1428 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1429
1430 skip_zeroout:
1431 ext4_lock_group(sb, group);
1432 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1433 ext4_group_desc_csum_set(sb, group, gdp);
1434 ext4_unlock_group(sb, group);
1435
1436 BUFFER_TRACE(group_desc_bh,
1437 "call ext4_handle_dirty_metadata");
1438 ret = ext4_handle_dirty_metadata(handle, NULL,
1439 group_desc_bh);
1440
1441 err_out:
1442 up_write(&grp->alloc_sem);
1443 ext4_journal_stop(handle);
1444 out:
1445 return ret;
1446 }