]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/ialloc.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / ialloc.c
1 /*
2 * linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <linux/cred.h>
25
26 #include <asm/byteorder.h>
27
28 #include "ext4.h"
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32
33 #include <trace/events/ext4.h>
34
35 /*
36 * ialloc.c contains the inodes allocation and deallocation routines
37 */
38
39 /*
40 * The free inodes are managed by bitmaps. A file system contains several
41 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
42 * block for inodes, N blocks for the inode table and data blocks.
43 *
44 * The file system contains group descriptors which are located after the
45 * super block. Each descriptor contains the number of the bitmap block and
46 * the free blocks count in the block.
47 */
48
49 /*
50 * To avoid calling the atomic setbit hundreds or thousands of times, we only
51 * need to use it within a single byte (to ensure we get endianness right).
52 * We can use memset for the rest of the bitmap as there are no other users.
53 */
54 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
55 {
56 int i;
57
58 if (start_bit >= end_bit)
59 return;
60
61 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
62 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
63 ext4_set_bit(i, bitmap);
64 if (i < end_bit)
65 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 }
67
68 /* Initializes an uninitialized inode bitmap */
69 static int ext4_init_inode_bitmap(struct super_block *sb,
70 struct buffer_head *bh,
71 ext4_group_t block_group,
72 struct ext4_group_desc *gdp)
73 {
74 struct ext4_group_info *grp;
75 struct ext4_sb_info *sbi = EXT4_SB(sb);
76 J_ASSERT_BH(bh, buffer_locked(bh));
77
78 /* If checksum is bad mark all blocks and inodes use to prevent
79 * allocation, essentially implementing a per-group read-only flag. */
80 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
81 grp = ext4_get_group_info(sb, block_group);
82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
83 percpu_counter_sub(&sbi->s_freeclusters_counter,
84 grp->bb_free);
85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
87 int count;
88 count = ext4_free_inodes_count(sb, gdp);
89 percpu_counter_sub(&sbi->s_freeinodes_counter,
90 count);
91 }
92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
93 return -EFSBADCRC;
94 }
95
96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
98 bh->b_data);
99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
100 EXT4_INODES_PER_GROUP(sb) / 8);
101 ext4_group_desc_csum_set(sb, block_group, gdp);
102
103 return 0;
104 }
105
106 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107 {
108 if (uptodate) {
109 set_buffer_uptodate(bh);
110 set_bitmap_uptodate(bh);
111 }
112 unlock_buffer(bh);
113 put_bh(bh);
114 }
115
116 static int ext4_validate_inode_bitmap(struct super_block *sb,
117 struct ext4_group_desc *desc,
118 ext4_group_t block_group,
119 struct buffer_head *bh)
120 {
121 ext4_fsblk_t blk;
122 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
123 struct ext4_sb_info *sbi = EXT4_SB(sb);
124
125 if (buffer_verified(bh))
126 return 0;
127 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
128 return -EFSCORRUPTED;
129
130 ext4_lock_group(sb, block_group);
131 blk = ext4_inode_bitmap(sb, desc);
132 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
133 EXT4_INODES_PER_GROUP(sb) / 8)) {
134 ext4_unlock_group(sb, block_group);
135 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
136 "inode_bitmap = %llu", block_group, blk);
137 grp = ext4_get_group_info(sb, block_group);
138 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
139 int count;
140 count = ext4_free_inodes_count(sb, desc);
141 percpu_counter_sub(&sbi->s_freeinodes_counter,
142 count);
143 }
144 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
145 return -EFSBADCRC;
146 }
147 set_buffer_verified(bh);
148 ext4_unlock_group(sb, block_group);
149 return 0;
150 }
151
152 /*
153 * Read the inode allocation bitmap for a given block_group, reading
154 * into the specified slot in the superblock's bitmap cache.
155 *
156 * Return buffer_head of bitmap on success or NULL.
157 */
158 static struct buffer_head *
159 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
160 {
161 struct ext4_group_desc *desc;
162 struct buffer_head *bh = NULL;
163 ext4_fsblk_t bitmap_blk;
164 int err;
165
166 desc = ext4_get_group_desc(sb, block_group, NULL);
167 if (!desc)
168 return ERR_PTR(-EFSCORRUPTED);
169
170 bitmap_blk = ext4_inode_bitmap(sb, desc);
171 bh = sb_getblk(sb, bitmap_blk);
172 if (unlikely(!bh)) {
173 ext4_error(sb, "Cannot read inode bitmap - "
174 "block_group = %u, inode_bitmap = %llu",
175 block_group, bitmap_blk);
176 return ERR_PTR(-EIO);
177 }
178 if (bitmap_uptodate(bh))
179 goto verify;
180
181 lock_buffer(bh);
182 if (bitmap_uptodate(bh)) {
183 unlock_buffer(bh);
184 goto verify;
185 }
186
187 ext4_lock_group(sb, block_group);
188 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
189 err = ext4_init_inode_bitmap(sb, bh, block_group, desc);
190 set_bitmap_uptodate(bh);
191 set_buffer_uptodate(bh);
192 set_buffer_verified(bh);
193 ext4_unlock_group(sb, block_group);
194 unlock_buffer(bh);
195 if (err) {
196 ext4_error(sb, "Failed to init inode bitmap for group "
197 "%u: %d", block_group, err);
198 goto out;
199 }
200 return bh;
201 }
202 ext4_unlock_group(sb, block_group);
203
204 if (buffer_uptodate(bh)) {
205 /*
206 * if not uninit if bh is uptodate,
207 * bitmap is also uptodate
208 */
209 set_bitmap_uptodate(bh);
210 unlock_buffer(bh);
211 goto verify;
212 }
213 /*
214 * submit the buffer_head for reading
215 */
216 trace_ext4_load_inode_bitmap(sb, block_group);
217 bh->b_end_io = ext4_end_bitmap_read;
218 get_bh(bh);
219 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
220 wait_on_buffer(bh);
221 if (!buffer_uptodate(bh)) {
222 put_bh(bh);
223 ext4_error(sb, "Cannot read inode bitmap - "
224 "block_group = %u, inode_bitmap = %llu",
225 block_group, bitmap_blk);
226 return ERR_PTR(-EIO);
227 }
228
229 verify:
230 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
231 if (err)
232 goto out;
233 return bh;
234 out:
235 put_bh(bh);
236 return ERR_PTR(err);
237 }
238
239 /*
240 * NOTE! When we get the inode, we're the only people
241 * that have access to it, and as such there are no
242 * race conditions we have to worry about. The inode
243 * is not on the hash-lists, and it cannot be reached
244 * through the filesystem because the directory entry
245 * has been deleted earlier.
246 *
247 * HOWEVER: we must make sure that we get no aliases,
248 * which means that we have to call "clear_inode()"
249 * _before_ we mark the inode not in use in the inode
250 * bitmaps. Otherwise a newly created file might use
251 * the same inode number (not actually the same pointer
252 * though), and then we'd have two inodes sharing the
253 * same inode number and space on the harddisk.
254 */
255 void ext4_free_inode(handle_t *handle, struct inode *inode)
256 {
257 struct super_block *sb = inode->i_sb;
258 int is_directory;
259 unsigned long ino;
260 struct buffer_head *bitmap_bh = NULL;
261 struct buffer_head *bh2;
262 ext4_group_t block_group;
263 unsigned long bit;
264 struct ext4_group_desc *gdp;
265 struct ext4_super_block *es;
266 struct ext4_sb_info *sbi;
267 int fatal = 0, err, count, cleared;
268 struct ext4_group_info *grp;
269
270 if (!sb) {
271 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
272 "nonexistent device\n", __func__, __LINE__);
273 return;
274 }
275 if (atomic_read(&inode->i_count) > 1) {
276 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
277 __func__, __LINE__, inode->i_ino,
278 atomic_read(&inode->i_count));
279 return;
280 }
281 if (inode->i_nlink) {
282 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
283 __func__, __LINE__, inode->i_ino, inode->i_nlink);
284 return;
285 }
286 sbi = EXT4_SB(sb);
287
288 ino = inode->i_ino;
289 ext4_debug("freeing inode %lu\n", ino);
290 trace_ext4_free_inode(inode);
291
292 /*
293 * Note: we must free any quota before locking the superblock,
294 * as writing the quota to disk may need the lock as well.
295 */
296 dquot_initialize(inode);
297 ext4_xattr_delete_inode(handle, inode);
298 dquot_free_inode(inode);
299 dquot_drop(inode);
300
301 is_directory = S_ISDIR(inode->i_mode);
302
303 /* Do this BEFORE marking the inode not in use or returning an error */
304 ext4_clear_inode(inode);
305
306 es = EXT4_SB(sb)->s_es;
307 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
308 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
309 goto error_return;
310 }
311 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
312 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
313 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
314 /* Don't bother if the inode bitmap is corrupt. */
315 grp = ext4_get_group_info(sb, block_group);
316 if (IS_ERR(bitmap_bh)) {
317 fatal = PTR_ERR(bitmap_bh);
318 bitmap_bh = NULL;
319 goto error_return;
320 }
321 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
322 fatal = -EFSCORRUPTED;
323 goto error_return;
324 }
325
326 BUFFER_TRACE(bitmap_bh, "get_write_access");
327 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
328 if (fatal)
329 goto error_return;
330
331 fatal = -ESRCH;
332 gdp = ext4_get_group_desc(sb, block_group, &bh2);
333 if (gdp) {
334 BUFFER_TRACE(bh2, "get_write_access");
335 fatal = ext4_journal_get_write_access(handle, bh2);
336 }
337 ext4_lock_group(sb, block_group);
338 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
339 if (fatal || !cleared) {
340 ext4_unlock_group(sb, block_group);
341 goto out;
342 }
343
344 count = ext4_free_inodes_count(sb, gdp) + 1;
345 ext4_free_inodes_set(sb, gdp, count);
346 if (is_directory) {
347 count = ext4_used_dirs_count(sb, gdp) - 1;
348 ext4_used_dirs_set(sb, gdp, count);
349 percpu_counter_dec(&sbi->s_dirs_counter);
350 }
351 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
352 EXT4_INODES_PER_GROUP(sb) / 8);
353 ext4_group_desc_csum_set(sb, block_group, gdp);
354 ext4_unlock_group(sb, block_group);
355
356 percpu_counter_inc(&sbi->s_freeinodes_counter);
357 if (sbi->s_log_groups_per_flex) {
358 ext4_group_t f = ext4_flex_group(sbi, block_group);
359
360 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
361 if (is_directory)
362 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
363 }
364 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
365 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
366 out:
367 if (cleared) {
368 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
369 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
370 if (!fatal)
371 fatal = err;
372 } else {
373 ext4_error(sb, "bit already cleared for inode %lu", ino);
374 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
375 int count;
376 count = ext4_free_inodes_count(sb, gdp);
377 percpu_counter_sub(&sbi->s_freeinodes_counter,
378 count);
379 }
380 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
381 }
382
383 error_return:
384 brelse(bitmap_bh);
385 ext4_std_error(sb, fatal);
386 }
387
388 struct orlov_stats {
389 __u64 free_clusters;
390 __u32 free_inodes;
391 __u32 used_dirs;
392 };
393
394 /*
395 * Helper function for Orlov's allocator; returns critical information
396 * for a particular block group or flex_bg. If flex_size is 1, then g
397 * is a block group number; otherwise it is flex_bg number.
398 */
399 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
400 int flex_size, struct orlov_stats *stats)
401 {
402 struct ext4_group_desc *desc;
403 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
404
405 if (flex_size > 1) {
406 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
407 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
408 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
409 return;
410 }
411
412 desc = ext4_get_group_desc(sb, g, NULL);
413 if (desc) {
414 stats->free_inodes = ext4_free_inodes_count(sb, desc);
415 stats->free_clusters = ext4_free_group_clusters(sb, desc);
416 stats->used_dirs = ext4_used_dirs_count(sb, desc);
417 } else {
418 stats->free_inodes = 0;
419 stats->free_clusters = 0;
420 stats->used_dirs = 0;
421 }
422 }
423
424 /*
425 * Orlov's allocator for directories.
426 *
427 * We always try to spread first-level directories.
428 *
429 * If there are blockgroups with both free inodes and free blocks counts
430 * not worse than average we return one with smallest directory count.
431 * Otherwise we simply return a random group.
432 *
433 * For the rest rules look so:
434 *
435 * It's OK to put directory into a group unless
436 * it has too many directories already (max_dirs) or
437 * it has too few free inodes left (min_inodes) or
438 * it has too few free blocks left (min_blocks) or
439 * Parent's group is preferred, if it doesn't satisfy these
440 * conditions we search cyclically through the rest. If none
441 * of the groups look good we just look for a group with more
442 * free inodes than average (starting at parent's group).
443 */
444
445 static int find_group_orlov(struct super_block *sb, struct inode *parent,
446 ext4_group_t *group, umode_t mode,
447 const struct qstr *qstr)
448 {
449 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
450 struct ext4_sb_info *sbi = EXT4_SB(sb);
451 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
452 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
453 unsigned int freei, avefreei, grp_free;
454 ext4_fsblk_t freeb, avefreec;
455 unsigned int ndirs;
456 int max_dirs, min_inodes;
457 ext4_grpblk_t min_clusters;
458 ext4_group_t i, grp, g, ngroups;
459 struct ext4_group_desc *desc;
460 struct orlov_stats stats;
461 int flex_size = ext4_flex_bg_size(sbi);
462 struct dx_hash_info hinfo;
463
464 ngroups = real_ngroups;
465 if (flex_size > 1) {
466 ngroups = (real_ngroups + flex_size - 1) >>
467 sbi->s_log_groups_per_flex;
468 parent_group >>= sbi->s_log_groups_per_flex;
469 }
470
471 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
472 avefreei = freei / ngroups;
473 freeb = EXT4_C2B(sbi,
474 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
475 avefreec = freeb;
476 do_div(avefreec, ngroups);
477 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
478
479 if (S_ISDIR(mode) &&
480 ((parent == d_inode(sb->s_root)) ||
481 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
482 int best_ndir = inodes_per_group;
483 int ret = -1;
484
485 if (qstr) {
486 hinfo.hash_version = DX_HASH_HALF_MD4;
487 hinfo.seed = sbi->s_hash_seed;
488 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
489 grp = hinfo.hash;
490 } else
491 grp = prandom_u32();
492 parent_group = (unsigned)grp % ngroups;
493 for (i = 0; i < ngroups; i++) {
494 g = (parent_group + i) % ngroups;
495 get_orlov_stats(sb, g, flex_size, &stats);
496 if (!stats.free_inodes)
497 continue;
498 if (stats.used_dirs >= best_ndir)
499 continue;
500 if (stats.free_inodes < avefreei)
501 continue;
502 if (stats.free_clusters < avefreec)
503 continue;
504 grp = g;
505 ret = 0;
506 best_ndir = stats.used_dirs;
507 }
508 if (ret)
509 goto fallback;
510 found_flex_bg:
511 if (flex_size == 1) {
512 *group = grp;
513 return 0;
514 }
515
516 /*
517 * We pack inodes at the beginning of the flexgroup's
518 * inode tables. Block allocation decisions will do
519 * something similar, although regular files will
520 * start at 2nd block group of the flexgroup. See
521 * ext4_ext_find_goal() and ext4_find_near().
522 */
523 grp *= flex_size;
524 for (i = 0; i < flex_size; i++) {
525 if (grp+i >= real_ngroups)
526 break;
527 desc = ext4_get_group_desc(sb, grp+i, NULL);
528 if (desc && ext4_free_inodes_count(sb, desc)) {
529 *group = grp+i;
530 return 0;
531 }
532 }
533 goto fallback;
534 }
535
536 max_dirs = ndirs / ngroups + inodes_per_group / 16;
537 min_inodes = avefreei - inodes_per_group*flex_size / 4;
538 if (min_inodes < 1)
539 min_inodes = 1;
540 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
541
542 /*
543 * Start looking in the flex group where we last allocated an
544 * inode for this parent directory
545 */
546 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
547 parent_group = EXT4_I(parent)->i_last_alloc_group;
548 if (flex_size > 1)
549 parent_group >>= sbi->s_log_groups_per_flex;
550 }
551
552 for (i = 0; i < ngroups; i++) {
553 grp = (parent_group + i) % ngroups;
554 get_orlov_stats(sb, grp, flex_size, &stats);
555 if (stats.used_dirs >= max_dirs)
556 continue;
557 if (stats.free_inodes < min_inodes)
558 continue;
559 if (stats.free_clusters < min_clusters)
560 continue;
561 goto found_flex_bg;
562 }
563
564 fallback:
565 ngroups = real_ngroups;
566 avefreei = freei / ngroups;
567 fallback_retry:
568 parent_group = EXT4_I(parent)->i_block_group;
569 for (i = 0; i < ngroups; i++) {
570 grp = (parent_group + i) % ngroups;
571 desc = ext4_get_group_desc(sb, grp, NULL);
572 if (desc) {
573 grp_free = ext4_free_inodes_count(sb, desc);
574 if (grp_free && grp_free >= avefreei) {
575 *group = grp;
576 return 0;
577 }
578 }
579 }
580
581 if (avefreei) {
582 /*
583 * The free-inodes counter is approximate, and for really small
584 * filesystems the above test can fail to find any blockgroups
585 */
586 avefreei = 0;
587 goto fallback_retry;
588 }
589
590 return -1;
591 }
592
593 static int find_group_other(struct super_block *sb, struct inode *parent,
594 ext4_group_t *group, umode_t mode)
595 {
596 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
597 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
598 struct ext4_group_desc *desc;
599 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
600
601 /*
602 * Try to place the inode is the same flex group as its
603 * parent. If we can't find space, use the Orlov algorithm to
604 * find another flex group, and store that information in the
605 * parent directory's inode information so that use that flex
606 * group for future allocations.
607 */
608 if (flex_size > 1) {
609 int retry = 0;
610
611 try_again:
612 parent_group &= ~(flex_size-1);
613 last = parent_group + flex_size;
614 if (last > ngroups)
615 last = ngroups;
616 for (i = parent_group; i < last; i++) {
617 desc = ext4_get_group_desc(sb, i, NULL);
618 if (desc && ext4_free_inodes_count(sb, desc)) {
619 *group = i;
620 return 0;
621 }
622 }
623 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
624 retry = 1;
625 parent_group = EXT4_I(parent)->i_last_alloc_group;
626 goto try_again;
627 }
628 /*
629 * If this didn't work, use the Orlov search algorithm
630 * to find a new flex group; we pass in the mode to
631 * avoid the topdir algorithms.
632 */
633 *group = parent_group + flex_size;
634 if (*group > ngroups)
635 *group = 0;
636 return find_group_orlov(sb, parent, group, mode, NULL);
637 }
638
639 /*
640 * Try to place the inode in its parent directory
641 */
642 *group = parent_group;
643 desc = ext4_get_group_desc(sb, *group, NULL);
644 if (desc && ext4_free_inodes_count(sb, desc) &&
645 ext4_free_group_clusters(sb, desc))
646 return 0;
647
648 /*
649 * We're going to place this inode in a different blockgroup from its
650 * parent. We want to cause files in a common directory to all land in
651 * the same blockgroup. But we want files which are in a different
652 * directory which shares a blockgroup with our parent to land in a
653 * different blockgroup.
654 *
655 * So add our directory's i_ino into the starting point for the hash.
656 */
657 *group = (*group + parent->i_ino) % ngroups;
658
659 /*
660 * Use a quadratic hash to find a group with a free inode and some free
661 * blocks.
662 */
663 for (i = 1; i < ngroups; i <<= 1) {
664 *group += i;
665 if (*group >= ngroups)
666 *group -= ngroups;
667 desc = ext4_get_group_desc(sb, *group, NULL);
668 if (desc && ext4_free_inodes_count(sb, desc) &&
669 ext4_free_group_clusters(sb, desc))
670 return 0;
671 }
672
673 /*
674 * That failed: try linear search for a free inode, even if that group
675 * has no free blocks.
676 */
677 *group = parent_group;
678 for (i = 0; i < ngroups; i++) {
679 if (++*group >= ngroups)
680 *group = 0;
681 desc = ext4_get_group_desc(sb, *group, NULL);
682 if (desc && ext4_free_inodes_count(sb, desc))
683 return 0;
684 }
685
686 return -1;
687 }
688
689 /*
690 * In no journal mode, if an inode has recently been deleted, we want
691 * to avoid reusing it until we're reasonably sure the inode table
692 * block has been written back to disk. (Yes, these values are
693 * somewhat arbitrary...)
694 */
695 #define RECENTCY_MIN 5
696 #define RECENTCY_DIRTY 30
697
698 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
699 {
700 struct ext4_group_desc *gdp;
701 struct ext4_inode *raw_inode;
702 struct buffer_head *bh;
703 unsigned long dtime, now;
704 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
705 int offset, ret = 0, recentcy = RECENTCY_MIN;
706
707 gdp = ext4_get_group_desc(sb, group, NULL);
708 if (unlikely(!gdp))
709 return 0;
710
711 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
712 (ino / inodes_per_block));
713 if (unlikely(!bh) || !buffer_uptodate(bh))
714 /*
715 * If the block is not in the buffer cache, then it
716 * must have been written out.
717 */
718 goto out;
719
720 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
721 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
722 dtime = le32_to_cpu(raw_inode->i_dtime);
723 now = get_seconds();
724 if (buffer_dirty(bh))
725 recentcy += RECENTCY_DIRTY;
726
727 if (dtime && (dtime < now) && (now < dtime + recentcy))
728 ret = 1;
729 out:
730 brelse(bh);
731 return ret;
732 }
733
734 /*
735 * There are two policies for allocating an inode. If the new inode is
736 * a directory, then a forward search is made for a block group with both
737 * free space and a low directory-to-inode ratio; if that fails, then of
738 * the groups with above-average free space, that group with the fewest
739 * directories already is chosen.
740 *
741 * For other inodes, search forward from the parent directory's block
742 * group to find a free inode.
743 */
744 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
745 umode_t mode, const struct qstr *qstr,
746 __u32 goal, uid_t *owner, int handle_type,
747 unsigned int line_no, int nblocks)
748 {
749 struct super_block *sb;
750 struct buffer_head *inode_bitmap_bh = NULL;
751 struct buffer_head *group_desc_bh;
752 ext4_group_t ngroups, group = 0;
753 unsigned long ino = 0;
754 struct inode *inode;
755 struct ext4_group_desc *gdp = NULL;
756 struct ext4_inode_info *ei;
757 struct ext4_sb_info *sbi;
758 int ret2, err;
759 struct inode *ret;
760 ext4_group_t i;
761 ext4_group_t flex_group;
762 struct ext4_group_info *grp;
763 int encrypt = 0;
764
765 /* Cannot create files in a deleted directory */
766 if (!dir || !dir->i_nlink)
767 return ERR_PTR(-EPERM);
768
769 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
770 return ERR_PTR(-EIO);
771
772 if ((ext4_encrypted_inode(dir) ||
773 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
774 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
775 err = fscrypt_get_encryption_info(dir);
776 if (err)
777 return ERR_PTR(err);
778 if (!fscrypt_has_encryption_key(dir))
779 return ERR_PTR(-ENOKEY);
780 if (!handle)
781 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
782 encrypt = 1;
783 }
784
785 sb = dir->i_sb;
786 ngroups = ext4_get_groups_count(sb);
787 trace_ext4_request_inode(dir, mode);
788 inode = new_inode(sb);
789 if (!inode)
790 return ERR_PTR(-ENOMEM);
791 ei = EXT4_I(inode);
792 sbi = EXT4_SB(sb);
793
794 /*
795 * Initialize owners and quota early so that we don't have to account
796 * for quota initialization worst case in standard inode creating
797 * transaction
798 */
799 if (owner) {
800 inode->i_mode = mode;
801 i_uid_write(inode, owner[0]);
802 i_gid_write(inode, owner[1]);
803 } else if (test_opt(sb, GRPID)) {
804 inode->i_mode = mode;
805 inode->i_uid = current_fsuid();
806 inode->i_gid = dir->i_gid;
807 } else
808 inode_init_owner(inode, dir, mode);
809
810 if (ext4_has_feature_project(sb) &&
811 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
812 ei->i_projid = EXT4_I(dir)->i_projid;
813 else
814 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
815
816 err = dquot_initialize(inode);
817 if (err)
818 goto out;
819
820 if (!goal)
821 goal = sbi->s_inode_goal;
822
823 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
824 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
825 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
826 ret2 = 0;
827 goto got_group;
828 }
829
830 if (S_ISDIR(mode))
831 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
832 else
833 ret2 = find_group_other(sb, dir, &group, mode);
834
835 got_group:
836 EXT4_I(dir)->i_last_alloc_group = group;
837 err = -ENOSPC;
838 if (ret2 == -1)
839 goto out;
840
841 /*
842 * Normally we will only go through one pass of this loop,
843 * unless we get unlucky and it turns out the group we selected
844 * had its last inode grabbed by someone else.
845 */
846 for (i = 0; i < ngroups; i++, ino = 0) {
847 err = -EIO;
848
849 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
850 if (!gdp)
851 goto out;
852
853 /*
854 * Check free inodes count before loading bitmap.
855 */
856 if (ext4_free_inodes_count(sb, gdp) == 0) {
857 if (++group == ngroups)
858 group = 0;
859 continue;
860 }
861
862 grp = ext4_get_group_info(sb, group);
863 /* Skip groups with already-known suspicious inode tables */
864 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
865 if (++group == ngroups)
866 group = 0;
867 continue;
868 }
869
870 brelse(inode_bitmap_bh);
871 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
872 /* Skip groups with suspicious inode tables */
873 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
874 IS_ERR(inode_bitmap_bh)) {
875 inode_bitmap_bh = NULL;
876 if (++group == ngroups)
877 group = 0;
878 continue;
879 }
880
881 repeat_in_this_group:
882 ino = ext4_find_next_zero_bit((unsigned long *)
883 inode_bitmap_bh->b_data,
884 EXT4_INODES_PER_GROUP(sb), ino);
885 if (ino >= EXT4_INODES_PER_GROUP(sb))
886 goto next_group;
887 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
888 ext4_error(sb, "reserved inode found cleared - "
889 "inode=%lu", ino + 1);
890 continue;
891 }
892 if ((EXT4_SB(sb)->s_journal == NULL) &&
893 recently_deleted(sb, group, ino)) {
894 ino++;
895 goto next_inode;
896 }
897 if (!handle) {
898 BUG_ON(nblocks <= 0);
899 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
900 handle_type, nblocks,
901 0);
902 if (IS_ERR(handle)) {
903 err = PTR_ERR(handle);
904 ext4_std_error(sb, err);
905 goto out;
906 }
907 }
908 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
909 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
910 if (err) {
911 ext4_std_error(sb, err);
912 goto out;
913 }
914 ext4_lock_group(sb, group);
915 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
916 ext4_unlock_group(sb, group);
917 ino++; /* the inode bitmap is zero-based */
918 if (!ret2)
919 goto got; /* we grabbed the inode! */
920 next_inode:
921 if (ino < EXT4_INODES_PER_GROUP(sb))
922 goto repeat_in_this_group;
923 next_group:
924 if (++group == ngroups)
925 group = 0;
926 }
927 err = -ENOSPC;
928 goto out;
929
930 got:
931 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
932 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
933 if (err) {
934 ext4_std_error(sb, err);
935 goto out;
936 }
937
938 BUFFER_TRACE(group_desc_bh, "get_write_access");
939 err = ext4_journal_get_write_access(handle, group_desc_bh);
940 if (err) {
941 ext4_std_error(sb, err);
942 goto out;
943 }
944
945 /* We may have to initialize the block bitmap if it isn't already */
946 if (ext4_has_group_desc_csum(sb) &&
947 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
948 struct buffer_head *block_bitmap_bh;
949
950 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
951 if (IS_ERR(block_bitmap_bh)) {
952 err = PTR_ERR(block_bitmap_bh);
953 goto out;
954 }
955 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
956 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
957 if (err) {
958 brelse(block_bitmap_bh);
959 ext4_std_error(sb, err);
960 goto out;
961 }
962
963 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
964 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
965
966 /* recheck and clear flag under lock if we still need to */
967 ext4_lock_group(sb, group);
968 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
969 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
970 ext4_free_group_clusters_set(sb, gdp,
971 ext4_free_clusters_after_init(sb, group, gdp));
972 ext4_block_bitmap_csum_set(sb, group, gdp,
973 block_bitmap_bh);
974 ext4_group_desc_csum_set(sb, group, gdp);
975 }
976 ext4_unlock_group(sb, group);
977 brelse(block_bitmap_bh);
978
979 if (err) {
980 ext4_std_error(sb, err);
981 goto out;
982 }
983 }
984
985 /* Update the relevant bg descriptor fields */
986 if (ext4_has_group_desc_csum(sb)) {
987 int free;
988 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
989
990 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
991 ext4_lock_group(sb, group); /* while we modify the bg desc */
992 free = EXT4_INODES_PER_GROUP(sb) -
993 ext4_itable_unused_count(sb, gdp);
994 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
995 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
996 free = 0;
997 }
998 /*
999 * Check the relative inode number against the last used
1000 * relative inode number in this group. if it is greater
1001 * we need to update the bg_itable_unused count
1002 */
1003 if (ino > free)
1004 ext4_itable_unused_set(sb, gdp,
1005 (EXT4_INODES_PER_GROUP(sb) - ino));
1006 up_read(&grp->alloc_sem);
1007 } else {
1008 ext4_lock_group(sb, group);
1009 }
1010
1011 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1012 if (S_ISDIR(mode)) {
1013 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1014 if (sbi->s_log_groups_per_flex) {
1015 ext4_group_t f = ext4_flex_group(sbi, group);
1016
1017 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1018 }
1019 }
1020 if (ext4_has_group_desc_csum(sb)) {
1021 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1022 EXT4_INODES_PER_GROUP(sb) / 8);
1023 ext4_group_desc_csum_set(sb, group, gdp);
1024 }
1025 ext4_unlock_group(sb, group);
1026
1027 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1028 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1029 if (err) {
1030 ext4_std_error(sb, err);
1031 goto out;
1032 }
1033
1034 percpu_counter_dec(&sbi->s_freeinodes_counter);
1035 if (S_ISDIR(mode))
1036 percpu_counter_inc(&sbi->s_dirs_counter);
1037
1038 if (sbi->s_log_groups_per_flex) {
1039 flex_group = ext4_flex_group(sbi, group);
1040 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1041 }
1042
1043 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1044 /* This is the optimal IO size (for stat), not the fs block size */
1045 inode->i_blocks = 0;
1046 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1047 current_time(inode);
1048
1049 memset(ei->i_data, 0, sizeof(ei->i_data));
1050 ei->i_dir_start_lookup = 0;
1051 ei->i_disksize = 0;
1052
1053 /* Don't inherit extent flag from directory, amongst others. */
1054 ei->i_flags =
1055 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1056 ei->i_file_acl = 0;
1057 ei->i_dtime = 0;
1058 ei->i_block_group = group;
1059 ei->i_last_alloc_group = ~0;
1060
1061 ext4_set_inode_flags(inode);
1062 if (IS_DIRSYNC(inode))
1063 ext4_handle_sync(handle);
1064 if (insert_inode_locked(inode) < 0) {
1065 /*
1066 * Likely a bitmap corruption causing inode to be allocated
1067 * twice.
1068 */
1069 err = -EIO;
1070 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1071 inode->i_ino);
1072 goto out;
1073 }
1074 spin_lock(&sbi->s_next_gen_lock);
1075 inode->i_generation = sbi->s_next_generation++;
1076 spin_unlock(&sbi->s_next_gen_lock);
1077
1078 /* Precompute checksum seed for inode metadata */
1079 if (ext4_has_metadata_csum(sb)) {
1080 __u32 csum;
1081 __le32 inum = cpu_to_le32(inode->i_ino);
1082 __le32 gen = cpu_to_le32(inode->i_generation);
1083 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1084 sizeof(inum));
1085 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1086 sizeof(gen));
1087 }
1088
1089 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1090 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1091
1092 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1093 ei->i_inline_off = 0;
1094 if (ext4_has_feature_inline_data(sb))
1095 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1096 ret = inode;
1097 err = dquot_alloc_inode(inode);
1098 if (err)
1099 goto fail_drop;
1100
1101 err = ext4_init_acl(handle, inode, dir);
1102 if (err)
1103 goto fail_free_drop;
1104
1105 err = ext4_init_security(handle, inode, dir, qstr);
1106 if (err)
1107 goto fail_free_drop;
1108
1109 if (ext4_has_feature_extents(sb)) {
1110 /* set extent flag only for directory, file and normal symlink*/
1111 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1112 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1113 ext4_ext_tree_init(handle, inode);
1114 }
1115 }
1116
1117 if (ext4_handle_valid(handle)) {
1118 ei->i_sync_tid = handle->h_transaction->t_tid;
1119 ei->i_datasync_tid = handle->h_transaction->t_tid;
1120 }
1121
1122 if (encrypt) {
1123 err = fscrypt_inherit_context(dir, inode, handle, true);
1124 if (err)
1125 goto fail_free_drop;
1126 }
1127
1128 err = ext4_mark_inode_dirty(handle, inode);
1129 if (err) {
1130 ext4_std_error(sb, err);
1131 goto fail_free_drop;
1132 }
1133
1134 ext4_debug("allocating inode %lu\n", inode->i_ino);
1135 trace_ext4_allocate_inode(inode, dir, mode);
1136 brelse(inode_bitmap_bh);
1137 return ret;
1138
1139 fail_free_drop:
1140 dquot_free_inode(inode);
1141 fail_drop:
1142 clear_nlink(inode);
1143 unlock_new_inode(inode);
1144 out:
1145 dquot_drop(inode);
1146 inode->i_flags |= S_NOQUOTA;
1147 iput(inode);
1148 brelse(inode_bitmap_bh);
1149 return ERR_PTR(err);
1150 }
1151
1152 /* Verify that we are loading a valid orphan from disk */
1153 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1154 {
1155 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1156 ext4_group_t block_group;
1157 int bit;
1158 struct buffer_head *bitmap_bh = NULL;
1159 struct inode *inode = NULL;
1160 int err = -EFSCORRUPTED;
1161
1162 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1163 goto bad_orphan;
1164
1165 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1166 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1167 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1168 if (IS_ERR(bitmap_bh)) {
1169 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1170 ino, PTR_ERR(bitmap_bh));
1171 return (struct inode *) bitmap_bh;
1172 }
1173
1174 /* Having the inode bit set should be a 100% indicator that this
1175 * is a valid orphan (no e2fsck run on fs). Orphans also include
1176 * inodes that were being truncated, so we can't check i_nlink==0.
1177 */
1178 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1179 goto bad_orphan;
1180
1181 inode = ext4_iget(sb, ino);
1182 if (IS_ERR(inode)) {
1183 err = PTR_ERR(inode);
1184 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1185 ino, err);
1186 return inode;
1187 }
1188
1189 /*
1190 * If the orphans has i_nlinks > 0 then it should be able to
1191 * be truncated, otherwise it won't be removed from the orphan
1192 * list during processing and an infinite loop will result.
1193 * Similarly, it must not be a bad inode.
1194 */
1195 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1196 is_bad_inode(inode))
1197 goto bad_orphan;
1198
1199 if (NEXT_ORPHAN(inode) > max_ino)
1200 goto bad_orphan;
1201 brelse(bitmap_bh);
1202 return inode;
1203
1204 bad_orphan:
1205 ext4_error(sb, "bad orphan inode %lu", ino);
1206 if (bitmap_bh)
1207 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1208 bit, (unsigned long long)bitmap_bh->b_blocknr,
1209 ext4_test_bit(bit, bitmap_bh->b_data));
1210 if (inode) {
1211 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1212 is_bad_inode(inode));
1213 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1214 NEXT_ORPHAN(inode));
1215 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1216 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1217 /* Avoid freeing blocks if we got a bad deleted inode */
1218 if (inode->i_nlink == 0)
1219 inode->i_blocks = 0;
1220 iput(inode);
1221 }
1222 brelse(bitmap_bh);
1223 return ERR_PTR(err);
1224 }
1225
1226 unsigned long ext4_count_free_inodes(struct super_block *sb)
1227 {
1228 unsigned long desc_count;
1229 struct ext4_group_desc *gdp;
1230 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1231 #ifdef EXT4FS_DEBUG
1232 struct ext4_super_block *es;
1233 unsigned long bitmap_count, x;
1234 struct buffer_head *bitmap_bh = NULL;
1235
1236 es = EXT4_SB(sb)->s_es;
1237 desc_count = 0;
1238 bitmap_count = 0;
1239 gdp = NULL;
1240 for (i = 0; i < ngroups; i++) {
1241 gdp = ext4_get_group_desc(sb, i, NULL);
1242 if (!gdp)
1243 continue;
1244 desc_count += ext4_free_inodes_count(sb, gdp);
1245 brelse(bitmap_bh);
1246 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1247 if (IS_ERR(bitmap_bh)) {
1248 bitmap_bh = NULL;
1249 continue;
1250 }
1251
1252 x = ext4_count_free(bitmap_bh->b_data,
1253 EXT4_INODES_PER_GROUP(sb) / 8);
1254 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1255 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1256 bitmap_count += x;
1257 }
1258 brelse(bitmap_bh);
1259 printk(KERN_DEBUG "ext4_count_free_inodes: "
1260 "stored = %u, computed = %lu, %lu\n",
1261 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1262 return desc_count;
1263 #else
1264 desc_count = 0;
1265 for (i = 0; i < ngroups; i++) {
1266 gdp = ext4_get_group_desc(sb, i, NULL);
1267 if (!gdp)
1268 continue;
1269 desc_count += ext4_free_inodes_count(sb, gdp);
1270 cond_resched();
1271 }
1272 return desc_count;
1273 #endif
1274 }
1275
1276 /* Called at mount-time, super-block is locked */
1277 unsigned long ext4_count_dirs(struct super_block * sb)
1278 {
1279 unsigned long count = 0;
1280 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1281
1282 for (i = 0; i < ngroups; i++) {
1283 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1284 if (!gdp)
1285 continue;
1286 count += ext4_used_dirs_count(sb, gdp);
1287 }
1288 return count;
1289 }
1290
1291 /*
1292 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1293 * inode table. Must be called without any spinlock held. The only place
1294 * where it is called from on active part of filesystem is ext4lazyinit
1295 * thread, so we do not need any special locks, however we have to prevent
1296 * inode allocation from the current group, so we take alloc_sem lock, to
1297 * block ext4_new_inode() until we are finished.
1298 */
1299 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1300 int barrier)
1301 {
1302 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1303 struct ext4_sb_info *sbi = EXT4_SB(sb);
1304 struct ext4_group_desc *gdp = NULL;
1305 struct buffer_head *group_desc_bh;
1306 handle_t *handle;
1307 ext4_fsblk_t blk;
1308 int num, ret = 0, used_blks = 0;
1309
1310 /* This should not happen, but just to be sure check this */
1311 if (sb->s_flags & MS_RDONLY) {
1312 ret = 1;
1313 goto out;
1314 }
1315
1316 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1317 if (!gdp)
1318 goto out;
1319
1320 /*
1321 * We do not need to lock this, because we are the only one
1322 * handling this flag.
1323 */
1324 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1325 goto out;
1326
1327 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1328 if (IS_ERR(handle)) {
1329 ret = PTR_ERR(handle);
1330 goto out;
1331 }
1332
1333 down_write(&grp->alloc_sem);
1334 /*
1335 * If inode bitmap was already initialized there may be some
1336 * used inodes so we need to skip blocks with used inodes in
1337 * inode table.
1338 */
1339 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1340 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1341 ext4_itable_unused_count(sb, gdp)),
1342 sbi->s_inodes_per_block);
1343
1344 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1345 ext4_error(sb, "Something is wrong with group %u: "
1346 "used itable blocks: %d; "
1347 "itable unused count: %u",
1348 group, used_blks,
1349 ext4_itable_unused_count(sb, gdp));
1350 ret = 1;
1351 goto err_out;
1352 }
1353
1354 blk = ext4_inode_table(sb, gdp) + used_blks;
1355 num = sbi->s_itb_per_group - used_blks;
1356
1357 BUFFER_TRACE(group_desc_bh, "get_write_access");
1358 ret = ext4_journal_get_write_access(handle,
1359 group_desc_bh);
1360 if (ret)
1361 goto err_out;
1362
1363 /*
1364 * Skip zeroout if the inode table is full. But we set the ZEROED
1365 * flag anyway, because obviously, when it is full it does not need
1366 * further zeroing.
1367 */
1368 if (unlikely(num == 0))
1369 goto skip_zeroout;
1370
1371 ext4_debug("going to zero out inode table in group %d\n",
1372 group);
1373 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1374 if (ret < 0)
1375 goto err_out;
1376 if (barrier)
1377 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1378
1379 skip_zeroout:
1380 ext4_lock_group(sb, group);
1381 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1382 ext4_group_desc_csum_set(sb, group, gdp);
1383 ext4_unlock_group(sb, group);
1384
1385 BUFFER_TRACE(group_desc_bh,
1386 "call ext4_handle_dirty_metadata");
1387 ret = ext4_handle_dirty_metadata(handle, NULL,
1388 group_desc_bh);
1389
1390 err_out:
1391 up_write(&grp->alloc_sem);
1392 ext4_journal_stop(handle);
1393 out:
1394 return ret;
1395 }