]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/ialloc.c
UBUNTU: SAUCE: ext4: fix ext4_validate_inode_bitmap: comm stress-ng: Corrupt inode...
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / ialloc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/ialloc.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
14 */
15
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26
27 #include <asm/byteorder.h>
28
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 #include <trace/events/ext4.h>
35
36 /*
37 * ialloc.c contains the inodes allocation and deallocation routines
38 */
39
40 /*
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
44 *
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
48 */
49
50 /*
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
54 */
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 int i;
58
59 if (start_bit >= end_bit)
60 return;
61
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
74 }
75 unlock_buffer(bh);
76 put_bh(bh);
77 }
78
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
83 {
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 struct ext4_sb_info *sbi = EXT4_SB(sb);
87
88 if (buffer_verified(bh))
89 return 0;
90 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
91 return -EFSCORRUPTED;
92
93 ext4_lock_group(sb, block_group);
94 if (buffer_verified(bh))
95 goto verified;
96 blk = ext4_inode_bitmap(sb, desc);
97 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
98 EXT4_INODES_PER_GROUP(sb) / 8)) {
99 ext4_unlock_group(sb, block_group);
100 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
101 "inode_bitmap = %llu", block_group, blk);
102 grp = ext4_get_group_info(sb, block_group);
103 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
104 int count;
105 count = ext4_free_inodes_count(sb, desc);
106 percpu_counter_sub(&sbi->s_freeinodes_counter,
107 count);
108 }
109 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
110 return -EFSBADCRC;
111 }
112 set_buffer_verified(bh);
113 verified:
114 ext4_unlock_group(sb, block_group);
115 return 0;
116 }
117
118 /*
119 * Read the inode allocation bitmap for a given block_group, reading
120 * into the specified slot in the superblock's bitmap cache.
121 *
122 * Return buffer_head of bitmap on success or NULL.
123 */
124 static struct buffer_head *
125 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
126 {
127 struct ext4_group_desc *desc;
128 struct buffer_head *bh = NULL;
129 ext4_fsblk_t bitmap_blk;
130 int err;
131
132 desc = ext4_get_group_desc(sb, block_group, NULL);
133 if (!desc)
134 return ERR_PTR(-EFSCORRUPTED);
135
136 bitmap_blk = ext4_inode_bitmap(sb, desc);
137 bh = sb_getblk(sb, bitmap_blk);
138 if (unlikely(!bh)) {
139 ext4_error(sb, "Cannot read inode bitmap - "
140 "block_group = %u, inode_bitmap = %llu",
141 block_group, bitmap_blk);
142 return ERR_PTR(-EIO);
143 }
144 if (bitmap_uptodate(bh))
145 goto verify;
146
147 lock_buffer(bh);
148 if (bitmap_uptodate(bh)) {
149 unlock_buffer(bh);
150 goto verify;
151 }
152
153 ext4_lock_group(sb, block_group);
154 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
155 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
156 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
157 sb->s_blocksize * 8, bh->b_data);
158 set_bitmap_uptodate(bh);
159 set_buffer_uptodate(bh);
160 set_buffer_verified(bh);
161 ext4_unlock_group(sb, block_group);
162 unlock_buffer(bh);
163 return bh;
164 }
165 ext4_unlock_group(sb, block_group);
166
167 if (buffer_uptodate(bh)) {
168 /*
169 * if not uninit if bh is uptodate,
170 * bitmap is also uptodate
171 */
172 set_bitmap_uptodate(bh);
173 unlock_buffer(bh);
174 goto verify;
175 }
176 /*
177 * submit the buffer_head for reading
178 */
179 trace_ext4_load_inode_bitmap(sb, block_group);
180 bh->b_end_io = ext4_end_bitmap_read;
181 get_bh(bh);
182 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
183 wait_on_buffer(bh);
184 if (!buffer_uptodate(bh)) {
185 put_bh(bh);
186 ext4_error(sb, "Cannot read inode bitmap - "
187 "block_group = %u, inode_bitmap = %llu",
188 block_group, bitmap_blk);
189 return ERR_PTR(-EIO);
190 }
191
192 verify:
193 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
194 if (err)
195 goto out;
196 return bh;
197 out:
198 put_bh(bh);
199 return ERR_PTR(err);
200 }
201
202 /*
203 * NOTE! When we get the inode, we're the only people
204 * that have access to it, and as such there are no
205 * race conditions we have to worry about. The inode
206 * is not on the hash-lists, and it cannot be reached
207 * through the filesystem because the directory entry
208 * has been deleted earlier.
209 *
210 * HOWEVER: we must make sure that we get no aliases,
211 * which means that we have to call "clear_inode()"
212 * _before_ we mark the inode not in use in the inode
213 * bitmaps. Otherwise a newly created file might use
214 * the same inode number (not actually the same pointer
215 * though), and then we'd have two inodes sharing the
216 * same inode number and space on the harddisk.
217 */
218 void ext4_free_inode(handle_t *handle, struct inode *inode)
219 {
220 struct super_block *sb = inode->i_sb;
221 int is_directory;
222 unsigned long ino;
223 struct buffer_head *bitmap_bh = NULL;
224 struct buffer_head *bh2;
225 ext4_group_t block_group;
226 unsigned long bit;
227 struct ext4_group_desc *gdp;
228 struct ext4_super_block *es;
229 struct ext4_sb_info *sbi;
230 int fatal = 0, err, count, cleared;
231 struct ext4_group_info *grp;
232
233 if (!sb) {
234 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
235 "nonexistent device\n", __func__, __LINE__);
236 return;
237 }
238 if (atomic_read(&inode->i_count) > 1) {
239 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
240 __func__, __LINE__, inode->i_ino,
241 atomic_read(&inode->i_count));
242 return;
243 }
244 if (inode->i_nlink) {
245 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
246 __func__, __LINE__, inode->i_ino, inode->i_nlink);
247 return;
248 }
249 sbi = EXT4_SB(sb);
250
251 ino = inode->i_ino;
252 ext4_debug("freeing inode %lu\n", ino);
253 trace_ext4_free_inode(inode);
254
255 /*
256 * Note: we must free any quota before locking the superblock,
257 * as writing the quota to disk may need the lock as well.
258 */
259 dquot_initialize(inode);
260 dquot_free_inode(inode);
261 dquot_drop(inode);
262
263 is_directory = S_ISDIR(inode->i_mode);
264
265 /* Do this BEFORE marking the inode not in use or returning an error */
266 ext4_clear_inode(inode);
267
268 es = EXT4_SB(sb)->s_es;
269 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
270 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
271 goto error_return;
272 }
273 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
274 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
275 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
276 /* Don't bother if the inode bitmap is corrupt. */
277 grp = ext4_get_group_info(sb, block_group);
278 if (IS_ERR(bitmap_bh)) {
279 fatal = PTR_ERR(bitmap_bh);
280 bitmap_bh = NULL;
281 goto error_return;
282 }
283 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
284 fatal = -EFSCORRUPTED;
285 goto error_return;
286 }
287
288 BUFFER_TRACE(bitmap_bh, "get_write_access");
289 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
290 if (fatal)
291 goto error_return;
292
293 fatal = -ESRCH;
294 gdp = ext4_get_group_desc(sb, block_group, &bh2);
295 if (gdp) {
296 BUFFER_TRACE(bh2, "get_write_access");
297 fatal = ext4_journal_get_write_access(handle, bh2);
298 }
299 ext4_lock_group(sb, block_group);
300 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
301 if (fatal || !cleared) {
302 ext4_unlock_group(sb, block_group);
303 goto out;
304 }
305
306 count = ext4_free_inodes_count(sb, gdp) + 1;
307 ext4_free_inodes_set(sb, gdp, count);
308 if (is_directory) {
309 count = ext4_used_dirs_count(sb, gdp) - 1;
310 ext4_used_dirs_set(sb, gdp, count);
311 percpu_counter_dec(&sbi->s_dirs_counter);
312 }
313 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
314 EXT4_INODES_PER_GROUP(sb) / 8);
315 ext4_group_desc_csum_set(sb, block_group, gdp);
316 ext4_unlock_group(sb, block_group);
317
318 percpu_counter_inc(&sbi->s_freeinodes_counter);
319 if (sbi->s_log_groups_per_flex) {
320 ext4_group_t f = ext4_flex_group(sbi, block_group);
321
322 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
323 if (is_directory)
324 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
325 }
326 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
327 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
328 out:
329 if (cleared) {
330 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
331 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
332 if (!fatal)
333 fatal = err;
334 } else {
335 ext4_error(sb, "bit already cleared for inode %lu", ino);
336 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
337 int count;
338 count = ext4_free_inodes_count(sb, gdp);
339 percpu_counter_sub(&sbi->s_freeinodes_counter,
340 count);
341 }
342 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
343 }
344
345 error_return:
346 brelse(bitmap_bh);
347 ext4_std_error(sb, fatal);
348 }
349
350 struct orlov_stats {
351 __u64 free_clusters;
352 __u32 free_inodes;
353 __u32 used_dirs;
354 };
355
356 /*
357 * Helper function for Orlov's allocator; returns critical information
358 * for a particular block group or flex_bg. If flex_size is 1, then g
359 * is a block group number; otherwise it is flex_bg number.
360 */
361 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
362 int flex_size, struct orlov_stats *stats)
363 {
364 struct ext4_group_desc *desc;
365 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
366
367 if (flex_size > 1) {
368 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
369 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
370 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
371 return;
372 }
373
374 desc = ext4_get_group_desc(sb, g, NULL);
375 if (desc) {
376 stats->free_inodes = ext4_free_inodes_count(sb, desc);
377 stats->free_clusters = ext4_free_group_clusters(sb, desc);
378 stats->used_dirs = ext4_used_dirs_count(sb, desc);
379 } else {
380 stats->free_inodes = 0;
381 stats->free_clusters = 0;
382 stats->used_dirs = 0;
383 }
384 }
385
386 /*
387 * Orlov's allocator for directories.
388 *
389 * We always try to spread first-level directories.
390 *
391 * If there are blockgroups with both free inodes and free blocks counts
392 * not worse than average we return one with smallest directory count.
393 * Otherwise we simply return a random group.
394 *
395 * For the rest rules look so:
396 *
397 * It's OK to put directory into a group unless
398 * it has too many directories already (max_dirs) or
399 * it has too few free inodes left (min_inodes) or
400 * it has too few free blocks left (min_blocks) or
401 * Parent's group is preferred, if it doesn't satisfy these
402 * conditions we search cyclically through the rest. If none
403 * of the groups look good we just look for a group with more
404 * free inodes than average (starting at parent's group).
405 */
406
407 static int find_group_orlov(struct super_block *sb, struct inode *parent,
408 ext4_group_t *group, umode_t mode,
409 const struct qstr *qstr)
410 {
411 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
412 struct ext4_sb_info *sbi = EXT4_SB(sb);
413 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
414 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
415 unsigned int freei, avefreei, grp_free;
416 ext4_fsblk_t freeb, avefreec;
417 unsigned int ndirs;
418 int max_dirs, min_inodes;
419 ext4_grpblk_t min_clusters;
420 ext4_group_t i, grp, g, ngroups;
421 struct ext4_group_desc *desc;
422 struct orlov_stats stats;
423 int flex_size = ext4_flex_bg_size(sbi);
424 struct dx_hash_info hinfo;
425
426 ngroups = real_ngroups;
427 if (flex_size > 1) {
428 ngroups = (real_ngroups + flex_size - 1) >>
429 sbi->s_log_groups_per_flex;
430 parent_group >>= sbi->s_log_groups_per_flex;
431 }
432
433 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
434 avefreei = freei / ngroups;
435 freeb = EXT4_C2B(sbi,
436 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
437 avefreec = freeb;
438 do_div(avefreec, ngroups);
439 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
440
441 if (S_ISDIR(mode) &&
442 ((parent == d_inode(sb->s_root)) ||
443 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
444 int best_ndir = inodes_per_group;
445 int ret = -1;
446
447 if (qstr) {
448 hinfo.hash_version = DX_HASH_HALF_MD4;
449 hinfo.seed = sbi->s_hash_seed;
450 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
451 grp = hinfo.hash;
452 } else
453 grp = prandom_u32();
454 parent_group = (unsigned)grp % ngroups;
455 for (i = 0; i < ngroups; i++) {
456 g = (parent_group + i) % ngroups;
457 get_orlov_stats(sb, g, flex_size, &stats);
458 if (!stats.free_inodes)
459 continue;
460 if (stats.used_dirs >= best_ndir)
461 continue;
462 if (stats.free_inodes < avefreei)
463 continue;
464 if (stats.free_clusters < avefreec)
465 continue;
466 grp = g;
467 ret = 0;
468 best_ndir = stats.used_dirs;
469 }
470 if (ret)
471 goto fallback;
472 found_flex_bg:
473 if (flex_size == 1) {
474 *group = grp;
475 return 0;
476 }
477
478 /*
479 * We pack inodes at the beginning of the flexgroup's
480 * inode tables. Block allocation decisions will do
481 * something similar, although regular files will
482 * start at 2nd block group of the flexgroup. See
483 * ext4_ext_find_goal() and ext4_find_near().
484 */
485 grp *= flex_size;
486 for (i = 0; i < flex_size; i++) {
487 if (grp+i >= real_ngroups)
488 break;
489 desc = ext4_get_group_desc(sb, grp+i, NULL);
490 if (desc && ext4_free_inodes_count(sb, desc)) {
491 *group = grp+i;
492 return 0;
493 }
494 }
495 goto fallback;
496 }
497
498 max_dirs = ndirs / ngroups + inodes_per_group / 16;
499 min_inodes = avefreei - inodes_per_group*flex_size / 4;
500 if (min_inodes < 1)
501 min_inodes = 1;
502 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
503
504 /*
505 * Start looking in the flex group where we last allocated an
506 * inode for this parent directory
507 */
508 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
509 parent_group = EXT4_I(parent)->i_last_alloc_group;
510 if (flex_size > 1)
511 parent_group >>= sbi->s_log_groups_per_flex;
512 }
513
514 for (i = 0; i < ngroups; i++) {
515 grp = (parent_group + i) % ngroups;
516 get_orlov_stats(sb, grp, flex_size, &stats);
517 if (stats.used_dirs >= max_dirs)
518 continue;
519 if (stats.free_inodes < min_inodes)
520 continue;
521 if (stats.free_clusters < min_clusters)
522 continue;
523 goto found_flex_bg;
524 }
525
526 fallback:
527 ngroups = real_ngroups;
528 avefreei = freei / ngroups;
529 fallback_retry:
530 parent_group = EXT4_I(parent)->i_block_group;
531 for (i = 0; i < ngroups; i++) {
532 grp = (parent_group + i) % ngroups;
533 desc = ext4_get_group_desc(sb, grp, NULL);
534 if (desc) {
535 grp_free = ext4_free_inodes_count(sb, desc);
536 if (grp_free && grp_free >= avefreei) {
537 *group = grp;
538 return 0;
539 }
540 }
541 }
542
543 if (avefreei) {
544 /*
545 * The free-inodes counter is approximate, and for really small
546 * filesystems the above test can fail to find any blockgroups
547 */
548 avefreei = 0;
549 goto fallback_retry;
550 }
551
552 return -1;
553 }
554
555 static int find_group_other(struct super_block *sb, struct inode *parent,
556 ext4_group_t *group, umode_t mode)
557 {
558 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
559 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
560 struct ext4_group_desc *desc;
561 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
562
563 /*
564 * Try to place the inode is the same flex group as its
565 * parent. If we can't find space, use the Orlov algorithm to
566 * find another flex group, and store that information in the
567 * parent directory's inode information so that use that flex
568 * group for future allocations.
569 */
570 if (flex_size > 1) {
571 int retry = 0;
572
573 try_again:
574 parent_group &= ~(flex_size-1);
575 last = parent_group + flex_size;
576 if (last > ngroups)
577 last = ngroups;
578 for (i = parent_group; i < last; i++) {
579 desc = ext4_get_group_desc(sb, i, NULL);
580 if (desc && ext4_free_inodes_count(sb, desc)) {
581 *group = i;
582 return 0;
583 }
584 }
585 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
586 retry = 1;
587 parent_group = EXT4_I(parent)->i_last_alloc_group;
588 goto try_again;
589 }
590 /*
591 * If this didn't work, use the Orlov search algorithm
592 * to find a new flex group; we pass in the mode to
593 * avoid the topdir algorithms.
594 */
595 *group = parent_group + flex_size;
596 if (*group > ngroups)
597 *group = 0;
598 return find_group_orlov(sb, parent, group, mode, NULL);
599 }
600
601 /*
602 * Try to place the inode in its parent directory
603 */
604 *group = parent_group;
605 desc = ext4_get_group_desc(sb, *group, NULL);
606 if (desc && ext4_free_inodes_count(sb, desc) &&
607 ext4_free_group_clusters(sb, desc))
608 return 0;
609
610 /*
611 * We're going to place this inode in a different blockgroup from its
612 * parent. We want to cause files in a common directory to all land in
613 * the same blockgroup. But we want files which are in a different
614 * directory which shares a blockgroup with our parent to land in a
615 * different blockgroup.
616 *
617 * So add our directory's i_ino into the starting point for the hash.
618 */
619 *group = (*group + parent->i_ino) % ngroups;
620
621 /*
622 * Use a quadratic hash to find a group with a free inode and some free
623 * blocks.
624 */
625 for (i = 1; i < ngroups; i <<= 1) {
626 *group += i;
627 if (*group >= ngroups)
628 *group -= ngroups;
629 desc = ext4_get_group_desc(sb, *group, NULL);
630 if (desc && ext4_free_inodes_count(sb, desc) &&
631 ext4_free_group_clusters(sb, desc))
632 return 0;
633 }
634
635 /*
636 * That failed: try linear search for a free inode, even if that group
637 * has no free blocks.
638 */
639 *group = parent_group;
640 for (i = 0; i < ngroups; i++) {
641 if (++*group >= ngroups)
642 *group = 0;
643 desc = ext4_get_group_desc(sb, *group, NULL);
644 if (desc && ext4_free_inodes_count(sb, desc))
645 return 0;
646 }
647
648 return -1;
649 }
650
651 /*
652 * In no journal mode, if an inode has recently been deleted, we want
653 * to avoid reusing it until we're reasonably sure the inode table
654 * block has been written back to disk. (Yes, these values are
655 * somewhat arbitrary...)
656 */
657 #define RECENTCY_MIN 5
658 #define RECENTCY_DIRTY 300
659
660 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
661 {
662 struct ext4_group_desc *gdp;
663 struct ext4_inode *raw_inode;
664 struct buffer_head *bh;
665 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
666 int offset, ret = 0;
667 int recentcy = RECENTCY_MIN;
668 u32 dtime, now;
669
670 gdp = ext4_get_group_desc(sb, group, NULL);
671 if (unlikely(!gdp))
672 return 0;
673
674 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
675 (ino / inodes_per_block));
676 if (!bh || !buffer_uptodate(bh))
677 /*
678 * If the block is not in the buffer cache, then it
679 * must have been written out.
680 */
681 goto out;
682
683 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
684 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
685
686 /* i_dtime is only 32 bits on disk, but we only care about relative
687 * times in the range of a few minutes (i.e. long enough to sync a
688 * recently-deleted inode to disk), so using the low 32 bits of the
689 * clock (a 68 year range) is enough, see time_before32() */
690 dtime = le32_to_cpu(raw_inode->i_dtime);
691 now = ktime_get_real_seconds();
692 if (buffer_dirty(bh))
693 recentcy += RECENTCY_DIRTY;
694
695 if (dtime && time_before32(dtime, now) &&
696 time_before32(now, dtime + recentcy))
697 ret = 1;
698 out:
699 brelse(bh);
700 return ret;
701 }
702
703 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
704 struct buffer_head *bitmap, unsigned long *ino)
705 {
706 next:
707 *ino = ext4_find_next_zero_bit((unsigned long *)
708 bitmap->b_data,
709 EXT4_INODES_PER_GROUP(sb), *ino);
710 if (*ino >= EXT4_INODES_PER_GROUP(sb))
711 return 0;
712
713 if ((EXT4_SB(sb)->s_journal == NULL) &&
714 recently_deleted(sb, group, *ino)) {
715 *ino = *ino + 1;
716 if (*ino < EXT4_INODES_PER_GROUP(sb))
717 goto next;
718 return 0;
719 }
720
721 return 1;
722 }
723
724 /*
725 * There are two policies for allocating an inode. If the new inode is
726 * a directory, then a forward search is made for a block group with both
727 * free space and a low directory-to-inode ratio; if that fails, then of
728 * the groups with above-average free space, that group with the fewest
729 * directories already is chosen.
730 *
731 * For other inodes, search forward from the parent directory's block
732 * group to find a free inode.
733 */
734 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
735 umode_t mode, const struct qstr *qstr,
736 __u32 goal, uid_t *owner, __u32 i_flags,
737 int handle_type, unsigned int line_no,
738 int nblocks)
739 {
740 struct super_block *sb;
741 struct buffer_head *inode_bitmap_bh = NULL;
742 struct buffer_head *group_desc_bh;
743 ext4_group_t ngroups, group = 0;
744 unsigned long ino = 0;
745 struct inode *inode;
746 struct ext4_group_desc *gdp = NULL;
747 struct ext4_inode_info *ei;
748 struct ext4_sb_info *sbi;
749 int ret2, err;
750 struct inode *ret;
751 ext4_group_t i;
752 ext4_group_t flex_group;
753 struct ext4_group_info *grp;
754 int encrypt = 0;
755
756 /* Cannot create files in a deleted directory */
757 if (!dir || !dir->i_nlink)
758 return ERR_PTR(-EPERM);
759
760 sb = dir->i_sb;
761 sbi = EXT4_SB(sb);
762
763 if (unlikely(ext4_forced_shutdown(sbi)))
764 return ERR_PTR(-EIO);
765
766 /* Supplied owner must be valid */
767 if (owner && (owner[0] == (uid_t)-1 || owner[1] == (uid_t)-1))
768 return ERR_PTR(-EOVERFLOW);
769
770 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
771 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
772 !(i_flags & EXT4_EA_INODE_FL)) {
773 err = fscrypt_get_encryption_info(dir);
774 if (err)
775 return ERR_PTR(err);
776 if (!fscrypt_has_encryption_key(dir))
777 return ERR_PTR(-ENOKEY);
778 encrypt = 1;
779 }
780
781 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
782 #ifdef CONFIG_EXT4_FS_POSIX_ACL
783 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
784
785 if (IS_ERR(p))
786 return ERR_CAST(p);
787 if (p) {
788 int acl_size = p->a_count * sizeof(ext4_acl_entry);
789
790 nblocks += (S_ISDIR(mode) ? 2 : 1) *
791 __ext4_xattr_set_credits(sb, NULL /* inode */,
792 NULL /* block_bh */, acl_size,
793 true /* is_create */);
794 posix_acl_release(p);
795 }
796 #endif
797
798 #ifdef CONFIG_SECURITY
799 {
800 int num_security_xattrs = 1;
801
802 #ifdef CONFIG_INTEGRITY
803 num_security_xattrs++;
804 #endif
805 /*
806 * We assume that security xattrs are never
807 * more than 1k. In practice they are under
808 * 128 bytes.
809 */
810 nblocks += num_security_xattrs *
811 __ext4_xattr_set_credits(sb, NULL /* inode */,
812 NULL /* block_bh */, 1024,
813 true /* is_create */);
814 }
815 #endif
816 if (encrypt)
817 nblocks += __ext4_xattr_set_credits(sb,
818 NULL /* inode */, NULL /* block_bh */,
819 FSCRYPT_SET_CONTEXT_MAX_SIZE,
820 true /* is_create */);
821 }
822
823 ngroups = ext4_get_groups_count(sb);
824 trace_ext4_request_inode(dir, mode);
825 inode = new_inode(sb);
826 if (!inode)
827 return ERR_PTR(-ENOMEM);
828 ei = EXT4_I(inode);
829
830 /*
831 * Initialize owners and quota early so that we don't have to account
832 * for quota initialization worst case in standard inode creating
833 * transaction
834 */
835 if (owner) {
836 inode->i_mode = mode;
837 i_uid_write(inode, owner[0]);
838 i_gid_write(inode, owner[1]);
839 } else if (test_opt(sb, GRPID)) {
840 inode->i_mode = mode;
841 inode->i_uid = current_fsuid();
842 inode->i_gid = dir->i_gid;
843 } else
844 inode_init_owner(inode, dir, mode);
845
846 if (ext4_has_feature_project(sb) &&
847 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
848 ei->i_projid = EXT4_I(dir)->i_projid;
849 else
850 ei->i_projid = make_kprojid(sb->s_user_ns, EXT4_DEF_PROJID);
851
852 err = dquot_initialize(inode);
853 if (err)
854 goto out;
855
856 if (!goal)
857 goal = sbi->s_inode_goal;
858
859 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
860 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
861 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
862 ret2 = 0;
863 goto got_group;
864 }
865
866 if (S_ISDIR(mode))
867 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
868 else
869 ret2 = find_group_other(sb, dir, &group, mode);
870
871 got_group:
872 EXT4_I(dir)->i_last_alloc_group = group;
873 err = -ENOSPC;
874 if (ret2 == -1)
875 goto out;
876
877 /*
878 * Normally we will only go through one pass of this loop,
879 * unless we get unlucky and it turns out the group we selected
880 * had its last inode grabbed by someone else.
881 */
882 for (i = 0; i < ngroups; i++, ino = 0) {
883 err = -EIO;
884
885 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
886 if (!gdp)
887 goto out;
888
889 /*
890 * Check free inodes count before loading bitmap.
891 */
892 if (ext4_free_inodes_count(sb, gdp) == 0)
893 goto next_group;
894
895 grp = ext4_get_group_info(sb, group);
896 /* Skip groups with already-known suspicious inode tables */
897 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
898 goto next_group;
899
900 brelse(inode_bitmap_bh);
901 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
902 /* Skip groups with suspicious inode tables */
903 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
904 IS_ERR(inode_bitmap_bh)) {
905 inode_bitmap_bh = NULL;
906 goto next_group;
907 }
908
909 repeat_in_this_group:
910 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
911 if (!ret2)
912 goto next_group;
913
914 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
915 ext4_error(sb, "reserved inode found cleared - "
916 "inode=%lu", ino + 1);
917 goto next_group;
918 }
919
920 if (!handle) {
921 BUG_ON(nblocks <= 0);
922 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
923 handle_type, nblocks,
924 0);
925 if (IS_ERR(handle)) {
926 err = PTR_ERR(handle);
927 ext4_std_error(sb, err);
928 goto out;
929 }
930 }
931 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
932 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
933 if (err) {
934 ext4_std_error(sb, err);
935 goto out;
936 }
937 ext4_lock_group(sb, group);
938 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
939 if (ret2) {
940 /* Someone already took the bit. Repeat the search
941 * with lock held.
942 */
943 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
944 if (ret2) {
945 ext4_set_bit(ino, inode_bitmap_bh->b_data);
946 ret2 = 0;
947 } else {
948 ret2 = 1; /* we didn't grab the inode */
949 }
950 }
951 ext4_unlock_group(sb, group);
952 ino++; /* the inode bitmap is zero-based */
953 if (!ret2)
954 goto got; /* we grabbed the inode! */
955
956 if (ino < EXT4_INODES_PER_GROUP(sb))
957 goto repeat_in_this_group;
958 next_group:
959 if (++group == ngroups)
960 group = 0;
961 }
962 err = -ENOSPC;
963 goto out;
964
965 got:
966 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
967 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
968 if (err) {
969 ext4_std_error(sb, err);
970 goto out;
971 }
972
973 BUFFER_TRACE(group_desc_bh, "get_write_access");
974 err = ext4_journal_get_write_access(handle, group_desc_bh);
975 if (err) {
976 ext4_std_error(sb, err);
977 goto out;
978 }
979
980 /* We may have to initialize the block bitmap if it isn't already */
981 if (ext4_has_group_desc_csum(sb) &&
982 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
983 struct buffer_head *block_bitmap_bh;
984
985 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
986 if (IS_ERR(block_bitmap_bh)) {
987 err = PTR_ERR(block_bitmap_bh);
988 goto out;
989 }
990 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
991 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
992 if (err) {
993 brelse(block_bitmap_bh);
994 ext4_std_error(sb, err);
995 goto out;
996 }
997
998 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
999 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1000
1001 /* recheck and clear flag under lock if we still need to */
1002 ext4_lock_group(sb, group);
1003 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1004 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1005 ext4_free_group_clusters_set(sb, gdp,
1006 ext4_free_clusters_after_init(sb, group, gdp));
1007 ext4_block_bitmap_csum_set(sb, group, gdp,
1008 block_bitmap_bh);
1009 ext4_group_desc_csum_set(sb, group, gdp);
1010 }
1011 ext4_unlock_group(sb, group);
1012 brelse(block_bitmap_bh);
1013
1014 if (err) {
1015 ext4_std_error(sb, err);
1016 goto out;
1017 }
1018 }
1019
1020 /* Update the relevant bg descriptor fields */
1021 if (ext4_has_group_desc_csum(sb)) {
1022 int free;
1023 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1024
1025 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1026 ext4_lock_group(sb, group); /* while we modify the bg desc */
1027 free = EXT4_INODES_PER_GROUP(sb) -
1028 ext4_itable_unused_count(sb, gdp);
1029 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1030 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1031 free = 0;
1032 }
1033 /*
1034 * Check the relative inode number against the last used
1035 * relative inode number in this group. if it is greater
1036 * we need to update the bg_itable_unused count
1037 */
1038 if (ino > free)
1039 ext4_itable_unused_set(sb, gdp,
1040 (EXT4_INODES_PER_GROUP(sb) - ino));
1041 up_read(&grp->alloc_sem);
1042 } else {
1043 ext4_lock_group(sb, group);
1044 }
1045
1046 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1047 if (S_ISDIR(mode)) {
1048 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1049 if (sbi->s_log_groups_per_flex) {
1050 ext4_group_t f = ext4_flex_group(sbi, group);
1051
1052 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1053 }
1054 }
1055 if (ext4_has_group_desc_csum(sb)) {
1056 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1057 EXT4_INODES_PER_GROUP(sb) / 8);
1058 ext4_group_desc_csum_set(sb, group, gdp);
1059 }
1060 ext4_unlock_group(sb, group);
1061
1062 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1063 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1064 if (err) {
1065 ext4_std_error(sb, err);
1066 goto out;
1067 }
1068
1069 percpu_counter_dec(&sbi->s_freeinodes_counter);
1070 if (S_ISDIR(mode))
1071 percpu_counter_inc(&sbi->s_dirs_counter);
1072
1073 if (sbi->s_log_groups_per_flex) {
1074 flex_group = ext4_flex_group(sbi, group);
1075 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1076 }
1077
1078 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1079 /* This is the optimal IO size (for stat), not the fs block size */
1080 inode->i_blocks = 0;
1081 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1082 current_time(inode);
1083
1084 memset(ei->i_data, 0, sizeof(ei->i_data));
1085 ei->i_dir_start_lookup = 0;
1086 ei->i_disksize = 0;
1087
1088 /* Don't inherit extent flag from directory, amongst others. */
1089 ei->i_flags =
1090 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1091 ei->i_flags |= i_flags;
1092 ei->i_file_acl = 0;
1093 ei->i_dtime = 0;
1094 ei->i_block_group = group;
1095 ei->i_last_alloc_group = ~0;
1096
1097 ext4_set_inode_flags(inode);
1098 if (IS_DIRSYNC(inode))
1099 ext4_handle_sync(handle);
1100 if (insert_inode_locked(inode) < 0) {
1101 /*
1102 * Likely a bitmap corruption causing inode to be allocated
1103 * twice.
1104 */
1105 err = -EIO;
1106 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1107 inode->i_ino);
1108 goto out;
1109 }
1110 inode->i_generation = prandom_u32();
1111
1112 /* Precompute checksum seed for inode metadata */
1113 if (ext4_has_metadata_csum(sb)) {
1114 __u32 csum;
1115 __le32 inum = cpu_to_le32(inode->i_ino);
1116 __le32 gen = cpu_to_le32(inode->i_generation);
1117 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1118 sizeof(inum));
1119 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1120 sizeof(gen));
1121 }
1122
1123 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1124 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1125
1126 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1127 ei->i_inline_off = 0;
1128 if (ext4_has_feature_inline_data(sb))
1129 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1130 ret = inode;
1131 err = dquot_alloc_inode(inode);
1132 if (err)
1133 goto fail_drop;
1134
1135 /*
1136 * Since the encryption xattr will always be unique, create it first so
1137 * that it's less likely to end up in an external xattr block and
1138 * prevent its deduplication.
1139 */
1140 if (encrypt) {
1141 err = fscrypt_inherit_context(dir, inode, handle, true);
1142 if (err)
1143 goto fail_free_drop;
1144 }
1145
1146 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1147 err = ext4_init_acl(handle, inode, dir);
1148 if (err)
1149 goto fail_free_drop;
1150
1151 err = ext4_init_security(handle, inode, dir, qstr);
1152 if (err)
1153 goto fail_free_drop;
1154 }
1155
1156 if (ext4_has_feature_extents(sb)) {
1157 /* set extent flag only for directory, file and normal symlink*/
1158 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1159 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1160 ext4_ext_tree_init(handle, inode);
1161 }
1162 }
1163
1164 if (ext4_handle_valid(handle)) {
1165 ei->i_sync_tid = handle->h_transaction->t_tid;
1166 ei->i_datasync_tid = handle->h_transaction->t_tid;
1167 }
1168
1169 err = ext4_mark_inode_dirty(handle, inode);
1170 if (err) {
1171 ext4_std_error(sb, err);
1172 goto fail_free_drop;
1173 }
1174
1175 ext4_debug("allocating inode %lu\n", inode->i_ino);
1176 trace_ext4_allocate_inode(inode, dir, mode);
1177 brelse(inode_bitmap_bh);
1178 return ret;
1179
1180 fail_free_drop:
1181 dquot_free_inode(inode);
1182 fail_drop:
1183 clear_nlink(inode);
1184 unlock_new_inode(inode);
1185 out:
1186 dquot_drop(inode);
1187 inode->i_flags |= S_NOQUOTA;
1188 iput(inode);
1189 brelse(inode_bitmap_bh);
1190 return ERR_PTR(err);
1191 }
1192
1193 /* Verify that we are loading a valid orphan from disk */
1194 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1195 {
1196 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1197 ext4_group_t block_group;
1198 int bit;
1199 struct buffer_head *bitmap_bh = NULL;
1200 struct inode *inode = NULL;
1201 int err = -EFSCORRUPTED;
1202
1203 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1204 goto bad_orphan;
1205
1206 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1207 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1208 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1209 if (IS_ERR(bitmap_bh)) {
1210 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1211 ino, PTR_ERR(bitmap_bh));
1212 return (struct inode *) bitmap_bh;
1213 }
1214
1215 /* Having the inode bit set should be a 100% indicator that this
1216 * is a valid orphan (no e2fsck run on fs). Orphans also include
1217 * inodes that were being truncated, so we can't check i_nlink==0.
1218 */
1219 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1220 goto bad_orphan;
1221
1222 inode = ext4_iget(sb, ino);
1223 if (IS_ERR(inode)) {
1224 err = PTR_ERR(inode);
1225 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1226 ino, err);
1227 return inode;
1228 }
1229
1230 /*
1231 * If the orphans has i_nlinks > 0 then it should be able to
1232 * be truncated, otherwise it won't be removed from the orphan
1233 * list during processing and an infinite loop will result.
1234 * Similarly, it must not be a bad inode.
1235 */
1236 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1237 is_bad_inode(inode))
1238 goto bad_orphan;
1239
1240 if (NEXT_ORPHAN(inode) > max_ino)
1241 goto bad_orphan;
1242 brelse(bitmap_bh);
1243 return inode;
1244
1245 bad_orphan:
1246 ext4_error(sb, "bad orphan inode %lu", ino);
1247 if (bitmap_bh)
1248 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1249 bit, (unsigned long long)bitmap_bh->b_blocknr,
1250 ext4_test_bit(bit, bitmap_bh->b_data));
1251 if (inode) {
1252 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1253 is_bad_inode(inode));
1254 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1255 NEXT_ORPHAN(inode));
1256 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1257 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1258 /* Avoid freeing blocks if we got a bad deleted inode */
1259 if (inode->i_nlink == 0)
1260 inode->i_blocks = 0;
1261 iput(inode);
1262 }
1263 brelse(bitmap_bh);
1264 return ERR_PTR(err);
1265 }
1266
1267 unsigned long ext4_count_free_inodes(struct super_block *sb)
1268 {
1269 unsigned long desc_count;
1270 struct ext4_group_desc *gdp;
1271 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1272 #ifdef EXT4FS_DEBUG
1273 struct ext4_super_block *es;
1274 unsigned long bitmap_count, x;
1275 struct buffer_head *bitmap_bh = NULL;
1276
1277 es = EXT4_SB(sb)->s_es;
1278 desc_count = 0;
1279 bitmap_count = 0;
1280 gdp = NULL;
1281 for (i = 0; i < ngroups; i++) {
1282 gdp = ext4_get_group_desc(sb, i, NULL);
1283 if (!gdp)
1284 continue;
1285 desc_count += ext4_free_inodes_count(sb, gdp);
1286 brelse(bitmap_bh);
1287 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1288 if (IS_ERR(bitmap_bh)) {
1289 bitmap_bh = NULL;
1290 continue;
1291 }
1292
1293 x = ext4_count_free(bitmap_bh->b_data,
1294 EXT4_INODES_PER_GROUP(sb) / 8);
1295 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1296 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1297 bitmap_count += x;
1298 }
1299 brelse(bitmap_bh);
1300 printk(KERN_DEBUG "ext4_count_free_inodes: "
1301 "stored = %u, computed = %lu, %lu\n",
1302 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1303 return desc_count;
1304 #else
1305 desc_count = 0;
1306 for (i = 0; i < ngroups; i++) {
1307 gdp = ext4_get_group_desc(sb, i, NULL);
1308 if (!gdp)
1309 continue;
1310 desc_count += ext4_free_inodes_count(sb, gdp);
1311 cond_resched();
1312 }
1313 return desc_count;
1314 #endif
1315 }
1316
1317 /* Called at mount-time, super-block is locked */
1318 unsigned long ext4_count_dirs(struct super_block * sb)
1319 {
1320 unsigned long count = 0;
1321 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1322
1323 for (i = 0; i < ngroups; i++) {
1324 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1325 if (!gdp)
1326 continue;
1327 count += ext4_used_dirs_count(sb, gdp);
1328 }
1329 return count;
1330 }
1331
1332 /*
1333 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1334 * inode table. Must be called without any spinlock held. The only place
1335 * where it is called from on active part of filesystem is ext4lazyinit
1336 * thread, so we do not need any special locks, however we have to prevent
1337 * inode allocation from the current group, so we take alloc_sem lock, to
1338 * block ext4_new_inode() until we are finished.
1339 */
1340 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1341 int barrier)
1342 {
1343 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1344 struct ext4_sb_info *sbi = EXT4_SB(sb);
1345 struct ext4_group_desc *gdp = NULL;
1346 struct buffer_head *group_desc_bh;
1347 handle_t *handle;
1348 ext4_fsblk_t blk;
1349 int num, ret = 0, used_blks = 0;
1350
1351 /* This should not happen, but just to be sure check this */
1352 if (sb_rdonly(sb)) {
1353 ret = 1;
1354 goto out;
1355 }
1356
1357 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1358 if (!gdp)
1359 goto out;
1360
1361 /*
1362 * We do not need to lock this, because we are the only one
1363 * handling this flag.
1364 */
1365 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1366 goto out;
1367
1368 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 goto out;
1372 }
1373
1374 down_write(&grp->alloc_sem);
1375 /*
1376 * If inode bitmap was already initialized there may be some
1377 * used inodes so we need to skip blocks with used inodes in
1378 * inode table.
1379 */
1380 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1381 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1382 ext4_itable_unused_count(sb, gdp)),
1383 sbi->s_inodes_per_block);
1384
1385 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1386 ext4_error(sb, "Something is wrong with group %u: "
1387 "used itable blocks: %d; "
1388 "itable unused count: %u",
1389 group, used_blks,
1390 ext4_itable_unused_count(sb, gdp));
1391 ret = 1;
1392 goto err_out;
1393 }
1394
1395 blk = ext4_inode_table(sb, gdp) + used_blks;
1396 num = sbi->s_itb_per_group - used_blks;
1397
1398 BUFFER_TRACE(group_desc_bh, "get_write_access");
1399 ret = ext4_journal_get_write_access(handle,
1400 group_desc_bh);
1401 if (ret)
1402 goto err_out;
1403
1404 /*
1405 * Skip zeroout if the inode table is full. But we set the ZEROED
1406 * flag anyway, because obviously, when it is full it does not need
1407 * further zeroing.
1408 */
1409 if (unlikely(num == 0))
1410 goto skip_zeroout;
1411
1412 ext4_debug("going to zero out inode table in group %d\n",
1413 group);
1414 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1415 if (ret < 0)
1416 goto err_out;
1417 if (barrier)
1418 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1419
1420 skip_zeroout:
1421 ext4_lock_group(sb, group);
1422 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1423 ext4_group_desc_csum_set(sb, group, gdp);
1424 ext4_unlock_group(sb, group);
1425
1426 BUFFER_TRACE(group_desc_bh,
1427 "call ext4_handle_dirty_metadata");
1428 ret = ext4_handle_dirty_metadata(handle, NULL,
1429 group_desc_bh);
1430
1431 err_out:
1432 up_write(&grp->alloc_sem);
1433 ext4_journal_stop(handle);
1434 out:
1435 return ret;
1436 }