]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/ialloc.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / ialloc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/ialloc.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
14 */
15
16 #include <linux/time.h>
17 #include <linux/fs.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <linux/cred.h>
26
27 #include <asm/byteorder.h>
28
29 #include "ext4.h"
30 #include "ext4_jbd2.h"
31 #include "xattr.h"
32 #include "acl.h"
33
34 #include <trace/events/ext4.h>
35
36 /*
37 * ialloc.c contains the inodes allocation and deallocation routines
38 */
39
40 /*
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
44 *
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
48 */
49
50 /*
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
54 */
55 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56 {
57 int i;
58
59 if (start_bit >= end_bit)
60 return;
61
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67 }
68
69 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70 {
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
74 }
75 unlock_buffer(bh);
76 put_bh(bh);
77 }
78
79 static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
83 {
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 struct ext4_sb_info *sbi = EXT4_SB(sb);
87
88 if (buffer_verified(bh))
89 return 0;
90 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
91 return -EFSCORRUPTED;
92
93 ext4_lock_group(sb, block_group);
94 if (buffer_verified(bh))
95 goto verified;
96 blk = ext4_inode_bitmap(sb, desc);
97 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
98 EXT4_INODES_PER_GROUP(sb) / 8)) {
99 ext4_unlock_group(sb, block_group);
100 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
101 "inode_bitmap = %llu", block_group, blk);
102 grp = ext4_get_group_info(sb, block_group);
103 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
104 int count;
105 count = ext4_free_inodes_count(sb, desc);
106 percpu_counter_sub(&sbi->s_freeinodes_counter,
107 count);
108 }
109 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
110 return -EFSBADCRC;
111 }
112 set_buffer_verified(bh);
113 verified:
114 ext4_unlock_group(sb, block_group);
115 return 0;
116 }
117
118 /*
119 * Read the inode allocation bitmap for a given block_group, reading
120 * into the specified slot in the superblock's bitmap cache.
121 *
122 * Return buffer_head of bitmap on success or NULL.
123 */
124 static struct buffer_head *
125 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
126 {
127 struct ext4_group_desc *desc;
128 struct ext4_sb_info *sbi = EXT4_SB(sb);
129 struct buffer_head *bh = NULL;
130 ext4_fsblk_t bitmap_blk;
131 int err;
132
133 desc = ext4_get_group_desc(sb, block_group, NULL);
134 if (!desc)
135 return ERR_PTR(-EFSCORRUPTED);
136
137 bitmap_blk = ext4_inode_bitmap(sb, desc);
138 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
139 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
140 ext4_error(sb, "Invalid inode bitmap blk %llu in "
141 "block_group %u", bitmap_blk, block_group);
142 return ERR_PTR(-EFSCORRUPTED);
143 }
144 bh = sb_getblk(sb, bitmap_blk);
145 if (unlikely(!bh)) {
146 ext4_warning(sb, "Cannot read inode bitmap - "
147 "block_group = %u, inode_bitmap = %llu",
148 block_group, bitmap_blk);
149 return ERR_PTR(-EIO);
150 }
151 if (bitmap_uptodate(bh))
152 goto verify;
153
154 lock_buffer(bh);
155 if (bitmap_uptodate(bh)) {
156 unlock_buffer(bh);
157 goto verify;
158 }
159
160 ext4_lock_group(sb, block_group);
161 if (ext4_has_group_desc_csum(sb) &&
162 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
163 if (block_group == 0) {
164 ext4_unlock_group(sb, block_group);
165 unlock_buffer(bh);
166 ext4_error(sb, "Inode bitmap for bg 0 marked "
167 "uninitialized");
168 err = -EFSCORRUPTED;
169 goto out;
170 }
171 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
172 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
173 sb->s_blocksize * 8, bh->b_data);
174 set_bitmap_uptodate(bh);
175 set_buffer_uptodate(bh);
176 set_buffer_verified(bh);
177 ext4_unlock_group(sb, block_group);
178 unlock_buffer(bh);
179 return bh;
180 }
181 ext4_unlock_group(sb, block_group);
182
183 if (buffer_uptodate(bh)) {
184 /*
185 * if not uninit if bh is uptodate,
186 * bitmap is also uptodate
187 */
188 set_bitmap_uptodate(bh);
189 unlock_buffer(bh);
190 goto verify;
191 }
192 /*
193 * submit the buffer_head for reading
194 */
195 trace_ext4_load_inode_bitmap(sb, block_group);
196 bh->b_end_io = ext4_end_bitmap_read;
197 get_bh(bh);
198 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
199 wait_on_buffer(bh);
200 if (!buffer_uptodate(bh)) {
201 put_bh(bh);
202 ext4_error(sb, "Cannot read inode bitmap - "
203 "block_group = %u, inode_bitmap = %llu",
204 block_group, bitmap_blk);
205 return ERR_PTR(-EIO);
206 }
207
208 verify:
209 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
210 if (err)
211 goto out;
212 return bh;
213 out:
214 put_bh(bh);
215 return ERR_PTR(err);
216 }
217
218 /*
219 * NOTE! When we get the inode, we're the only people
220 * that have access to it, and as such there are no
221 * race conditions we have to worry about. The inode
222 * is not on the hash-lists, and it cannot be reached
223 * through the filesystem because the directory entry
224 * has been deleted earlier.
225 *
226 * HOWEVER: we must make sure that we get no aliases,
227 * which means that we have to call "clear_inode()"
228 * _before_ we mark the inode not in use in the inode
229 * bitmaps. Otherwise a newly created file might use
230 * the same inode number (not actually the same pointer
231 * though), and then we'd have two inodes sharing the
232 * same inode number and space on the harddisk.
233 */
234 void ext4_free_inode(handle_t *handle, struct inode *inode)
235 {
236 struct super_block *sb = inode->i_sb;
237 int is_directory;
238 unsigned long ino;
239 struct buffer_head *bitmap_bh = NULL;
240 struct buffer_head *bh2;
241 ext4_group_t block_group;
242 unsigned long bit;
243 struct ext4_group_desc *gdp;
244 struct ext4_super_block *es;
245 struct ext4_sb_info *sbi;
246 int fatal = 0, err, count, cleared;
247 struct ext4_group_info *grp;
248
249 if (!sb) {
250 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
251 "nonexistent device\n", __func__, __LINE__);
252 return;
253 }
254 if (atomic_read(&inode->i_count) > 1) {
255 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
256 __func__, __LINE__, inode->i_ino,
257 atomic_read(&inode->i_count));
258 return;
259 }
260 if (inode->i_nlink) {
261 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
262 __func__, __LINE__, inode->i_ino, inode->i_nlink);
263 return;
264 }
265 sbi = EXT4_SB(sb);
266
267 ino = inode->i_ino;
268 ext4_debug("freeing inode %lu\n", ino);
269 trace_ext4_free_inode(inode);
270
271 /*
272 * Note: we must free any quota before locking the superblock,
273 * as writing the quota to disk may need the lock as well.
274 */
275 dquot_initialize(inode);
276 dquot_free_inode(inode);
277 dquot_drop(inode);
278
279 is_directory = S_ISDIR(inode->i_mode);
280
281 /* Do this BEFORE marking the inode not in use or returning an error */
282 ext4_clear_inode(inode);
283
284 es = EXT4_SB(sb)->s_es;
285 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
286 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
287 goto error_return;
288 }
289 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
290 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
291 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
292 /* Don't bother if the inode bitmap is corrupt. */
293 grp = ext4_get_group_info(sb, block_group);
294 if (IS_ERR(bitmap_bh)) {
295 fatal = PTR_ERR(bitmap_bh);
296 bitmap_bh = NULL;
297 goto error_return;
298 }
299 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
300 fatal = -EFSCORRUPTED;
301 goto error_return;
302 }
303
304 BUFFER_TRACE(bitmap_bh, "get_write_access");
305 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
306 if (fatal)
307 goto error_return;
308
309 fatal = -ESRCH;
310 gdp = ext4_get_group_desc(sb, block_group, &bh2);
311 if (gdp) {
312 BUFFER_TRACE(bh2, "get_write_access");
313 fatal = ext4_journal_get_write_access(handle, bh2);
314 }
315 ext4_lock_group(sb, block_group);
316 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
317 if (fatal || !cleared) {
318 ext4_unlock_group(sb, block_group);
319 goto out;
320 }
321
322 count = ext4_free_inodes_count(sb, gdp) + 1;
323 ext4_free_inodes_set(sb, gdp, count);
324 if (is_directory) {
325 count = ext4_used_dirs_count(sb, gdp) - 1;
326 ext4_used_dirs_set(sb, gdp, count);
327 percpu_counter_dec(&sbi->s_dirs_counter);
328 }
329 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
330 EXT4_INODES_PER_GROUP(sb) / 8);
331 ext4_group_desc_csum_set(sb, block_group, gdp);
332 ext4_unlock_group(sb, block_group);
333
334 percpu_counter_inc(&sbi->s_freeinodes_counter);
335 if (sbi->s_log_groups_per_flex) {
336 ext4_group_t f = ext4_flex_group(sbi, block_group);
337
338 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
339 if (is_directory)
340 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
341 }
342 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
343 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
344 out:
345 if (cleared) {
346 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
347 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
348 if (!fatal)
349 fatal = err;
350 } else {
351 ext4_error(sb, "bit already cleared for inode %lu", ino);
352 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
353 int count;
354 count = ext4_free_inodes_count(sb, gdp);
355 percpu_counter_sub(&sbi->s_freeinodes_counter,
356 count);
357 }
358 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
359 }
360
361 error_return:
362 brelse(bitmap_bh);
363 ext4_std_error(sb, fatal);
364 }
365
366 struct orlov_stats {
367 __u64 free_clusters;
368 __u32 free_inodes;
369 __u32 used_dirs;
370 };
371
372 /*
373 * Helper function for Orlov's allocator; returns critical information
374 * for a particular block group or flex_bg. If flex_size is 1, then g
375 * is a block group number; otherwise it is flex_bg number.
376 */
377 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
378 int flex_size, struct orlov_stats *stats)
379 {
380 struct ext4_group_desc *desc;
381 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
382
383 if (flex_size > 1) {
384 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
385 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
386 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
387 return;
388 }
389
390 desc = ext4_get_group_desc(sb, g, NULL);
391 if (desc) {
392 stats->free_inodes = ext4_free_inodes_count(sb, desc);
393 stats->free_clusters = ext4_free_group_clusters(sb, desc);
394 stats->used_dirs = ext4_used_dirs_count(sb, desc);
395 } else {
396 stats->free_inodes = 0;
397 stats->free_clusters = 0;
398 stats->used_dirs = 0;
399 }
400 }
401
402 /*
403 * Orlov's allocator for directories.
404 *
405 * We always try to spread first-level directories.
406 *
407 * If there are blockgroups with both free inodes and free blocks counts
408 * not worse than average we return one with smallest directory count.
409 * Otherwise we simply return a random group.
410 *
411 * For the rest rules look so:
412 *
413 * It's OK to put directory into a group unless
414 * it has too many directories already (max_dirs) or
415 * it has too few free inodes left (min_inodes) or
416 * it has too few free blocks left (min_blocks) or
417 * Parent's group is preferred, if it doesn't satisfy these
418 * conditions we search cyclically through the rest. If none
419 * of the groups look good we just look for a group with more
420 * free inodes than average (starting at parent's group).
421 */
422
423 static int find_group_orlov(struct super_block *sb, struct inode *parent,
424 ext4_group_t *group, umode_t mode,
425 const struct qstr *qstr)
426 {
427 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
428 struct ext4_sb_info *sbi = EXT4_SB(sb);
429 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
430 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
431 unsigned int freei, avefreei, grp_free;
432 ext4_fsblk_t freeb, avefreec;
433 unsigned int ndirs;
434 int max_dirs, min_inodes;
435 ext4_grpblk_t min_clusters;
436 ext4_group_t i, grp, g, ngroups;
437 struct ext4_group_desc *desc;
438 struct orlov_stats stats;
439 int flex_size = ext4_flex_bg_size(sbi);
440 struct dx_hash_info hinfo;
441
442 ngroups = real_ngroups;
443 if (flex_size > 1) {
444 ngroups = (real_ngroups + flex_size - 1) >>
445 sbi->s_log_groups_per_flex;
446 parent_group >>= sbi->s_log_groups_per_flex;
447 }
448
449 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
450 avefreei = freei / ngroups;
451 freeb = EXT4_C2B(sbi,
452 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
453 avefreec = freeb;
454 do_div(avefreec, ngroups);
455 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
456
457 if (S_ISDIR(mode) &&
458 ((parent == d_inode(sb->s_root)) ||
459 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
460 int best_ndir = inodes_per_group;
461 int ret = -1;
462
463 if (qstr) {
464 hinfo.hash_version = DX_HASH_HALF_MD4;
465 hinfo.seed = sbi->s_hash_seed;
466 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
467 grp = hinfo.hash;
468 } else
469 grp = prandom_u32();
470 parent_group = (unsigned)grp % ngroups;
471 for (i = 0; i < ngroups; i++) {
472 g = (parent_group + i) % ngroups;
473 get_orlov_stats(sb, g, flex_size, &stats);
474 if (!stats.free_inodes)
475 continue;
476 if (stats.used_dirs >= best_ndir)
477 continue;
478 if (stats.free_inodes < avefreei)
479 continue;
480 if (stats.free_clusters < avefreec)
481 continue;
482 grp = g;
483 ret = 0;
484 best_ndir = stats.used_dirs;
485 }
486 if (ret)
487 goto fallback;
488 found_flex_bg:
489 if (flex_size == 1) {
490 *group = grp;
491 return 0;
492 }
493
494 /*
495 * We pack inodes at the beginning of the flexgroup's
496 * inode tables. Block allocation decisions will do
497 * something similar, although regular files will
498 * start at 2nd block group of the flexgroup. See
499 * ext4_ext_find_goal() and ext4_find_near().
500 */
501 grp *= flex_size;
502 for (i = 0; i < flex_size; i++) {
503 if (grp+i >= real_ngroups)
504 break;
505 desc = ext4_get_group_desc(sb, grp+i, NULL);
506 if (desc && ext4_free_inodes_count(sb, desc)) {
507 *group = grp+i;
508 return 0;
509 }
510 }
511 goto fallback;
512 }
513
514 max_dirs = ndirs / ngroups + inodes_per_group / 16;
515 min_inodes = avefreei - inodes_per_group*flex_size / 4;
516 if (min_inodes < 1)
517 min_inodes = 1;
518 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
519
520 /*
521 * Start looking in the flex group where we last allocated an
522 * inode for this parent directory
523 */
524 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
525 parent_group = EXT4_I(parent)->i_last_alloc_group;
526 if (flex_size > 1)
527 parent_group >>= sbi->s_log_groups_per_flex;
528 }
529
530 for (i = 0; i < ngroups; i++) {
531 grp = (parent_group + i) % ngroups;
532 get_orlov_stats(sb, grp, flex_size, &stats);
533 if (stats.used_dirs >= max_dirs)
534 continue;
535 if (stats.free_inodes < min_inodes)
536 continue;
537 if (stats.free_clusters < min_clusters)
538 continue;
539 goto found_flex_bg;
540 }
541
542 fallback:
543 ngroups = real_ngroups;
544 avefreei = freei / ngroups;
545 fallback_retry:
546 parent_group = EXT4_I(parent)->i_block_group;
547 for (i = 0; i < ngroups; i++) {
548 grp = (parent_group + i) % ngroups;
549 desc = ext4_get_group_desc(sb, grp, NULL);
550 if (desc) {
551 grp_free = ext4_free_inodes_count(sb, desc);
552 if (grp_free && grp_free >= avefreei) {
553 *group = grp;
554 return 0;
555 }
556 }
557 }
558
559 if (avefreei) {
560 /*
561 * The free-inodes counter is approximate, and for really small
562 * filesystems the above test can fail to find any blockgroups
563 */
564 avefreei = 0;
565 goto fallback_retry;
566 }
567
568 return -1;
569 }
570
571 static int find_group_other(struct super_block *sb, struct inode *parent,
572 ext4_group_t *group, umode_t mode)
573 {
574 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
575 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
576 struct ext4_group_desc *desc;
577 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
578
579 /*
580 * Try to place the inode is the same flex group as its
581 * parent. If we can't find space, use the Orlov algorithm to
582 * find another flex group, and store that information in the
583 * parent directory's inode information so that use that flex
584 * group for future allocations.
585 */
586 if (flex_size > 1) {
587 int retry = 0;
588
589 try_again:
590 parent_group &= ~(flex_size-1);
591 last = parent_group + flex_size;
592 if (last > ngroups)
593 last = ngroups;
594 for (i = parent_group; i < last; i++) {
595 desc = ext4_get_group_desc(sb, i, NULL);
596 if (desc && ext4_free_inodes_count(sb, desc)) {
597 *group = i;
598 return 0;
599 }
600 }
601 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
602 retry = 1;
603 parent_group = EXT4_I(parent)->i_last_alloc_group;
604 goto try_again;
605 }
606 /*
607 * If this didn't work, use the Orlov search algorithm
608 * to find a new flex group; we pass in the mode to
609 * avoid the topdir algorithms.
610 */
611 *group = parent_group + flex_size;
612 if (*group > ngroups)
613 *group = 0;
614 return find_group_orlov(sb, parent, group, mode, NULL);
615 }
616
617 /*
618 * Try to place the inode in its parent directory
619 */
620 *group = parent_group;
621 desc = ext4_get_group_desc(sb, *group, NULL);
622 if (desc && ext4_free_inodes_count(sb, desc) &&
623 ext4_free_group_clusters(sb, desc))
624 return 0;
625
626 /*
627 * We're going to place this inode in a different blockgroup from its
628 * parent. We want to cause files in a common directory to all land in
629 * the same blockgroup. But we want files which are in a different
630 * directory which shares a blockgroup with our parent to land in a
631 * different blockgroup.
632 *
633 * So add our directory's i_ino into the starting point for the hash.
634 */
635 *group = (*group + parent->i_ino) % ngroups;
636
637 /*
638 * Use a quadratic hash to find a group with a free inode and some free
639 * blocks.
640 */
641 for (i = 1; i < ngroups; i <<= 1) {
642 *group += i;
643 if (*group >= ngroups)
644 *group -= ngroups;
645 desc = ext4_get_group_desc(sb, *group, NULL);
646 if (desc && ext4_free_inodes_count(sb, desc) &&
647 ext4_free_group_clusters(sb, desc))
648 return 0;
649 }
650
651 /*
652 * That failed: try linear search for a free inode, even if that group
653 * has no free blocks.
654 */
655 *group = parent_group;
656 for (i = 0; i < ngroups; i++) {
657 if (++*group >= ngroups)
658 *group = 0;
659 desc = ext4_get_group_desc(sb, *group, NULL);
660 if (desc && ext4_free_inodes_count(sb, desc))
661 return 0;
662 }
663
664 return -1;
665 }
666
667 /*
668 * In no journal mode, if an inode has recently been deleted, we want
669 * to avoid reusing it until we're reasonably sure the inode table
670 * block has been written back to disk. (Yes, these values are
671 * somewhat arbitrary...)
672 */
673 #define RECENTCY_MIN 5
674 #define RECENTCY_DIRTY 300
675
676 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
677 {
678 struct ext4_group_desc *gdp;
679 struct ext4_inode *raw_inode;
680 struct buffer_head *bh;
681 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
682 int offset, ret = 0;
683 int recentcy = RECENTCY_MIN;
684 u32 dtime, now;
685
686 gdp = ext4_get_group_desc(sb, group, NULL);
687 if (unlikely(!gdp))
688 return 0;
689
690 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
691 (ino / inodes_per_block));
692 if (!bh || !buffer_uptodate(bh))
693 /*
694 * If the block is not in the buffer cache, then it
695 * must have been written out.
696 */
697 goto out;
698
699 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
700 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
701
702 /* i_dtime is only 32 bits on disk, but we only care about relative
703 * times in the range of a few minutes (i.e. long enough to sync a
704 * recently-deleted inode to disk), so using the low 32 bits of the
705 * clock (a 68 year range) is enough, see time_before32() */
706 dtime = le32_to_cpu(raw_inode->i_dtime);
707 now = ktime_get_real_seconds();
708 if (buffer_dirty(bh))
709 recentcy += RECENTCY_DIRTY;
710
711 if (dtime && time_before32(dtime, now) &&
712 time_before32(now, dtime + recentcy))
713 ret = 1;
714 out:
715 brelse(bh);
716 return ret;
717 }
718
719 static int find_inode_bit(struct super_block *sb, ext4_group_t group,
720 struct buffer_head *bitmap, unsigned long *ino)
721 {
722 next:
723 *ino = ext4_find_next_zero_bit((unsigned long *)
724 bitmap->b_data,
725 EXT4_INODES_PER_GROUP(sb), *ino);
726 if (*ino >= EXT4_INODES_PER_GROUP(sb))
727 return 0;
728
729 if ((EXT4_SB(sb)->s_journal == NULL) &&
730 recently_deleted(sb, group, *ino)) {
731 *ino = *ino + 1;
732 if (*ino < EXT4_INODES_PER_GROUP(sb))
733 goto next;
734 return 0;
735 }
736
737 return 1;
738 }
739
740 /*
741 * There are two policies for allocating an inode. If the new inode is
742 * a directory, then a forward search is made for a block group with both
743 * free space and a low directory-to-inode ratio; if that fails, then of
744 * the groups with above-average free space, that group with the fewest
745 * directories already is chosen.
746 *
747 * For other inodes, search forward from the parent directory's block
748 * group to find a free inode.
749 */
750 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
751 umode_t mode, const struct qstr *qstr,
752 __u32 goal, uid_t *owner, __u32 i_flags,
753 int handle_type, unsigned int line_no,
754 int nblocks)
755 {
756 struct super_block *sb;
757 struct buffer_head *inode_bitmap_bh = NULL;
758 struct buffer_head *group_desc_bh;
759 ext4_group_t ngroups, group = 0;
760 unsigned long ino = 0;
761 struct inode *inode;
762 struct ext4_group_desc *gdp = NULL;
763 struct ext4_inode_info *ei;
764 struct ext4_sb_info *sbi;
765 int ret2, err;
766 struct inode *ret;
767 ext4_group_t i;
768 ext4_group_t flex_group;
769 struct ext4_group_info *grp;
770 int encrypt = 0;
771
772 /* Cannot create files in a deleted directory */
773 if (!dir || !dir->i_nlink)
774 return ERR_PTR(-EPERM);
775
776 sb = dir->i_sb;
777 sbi = EXT4_SB(sb);
778
779 if (unlikely(ext4_forced_shutdown(sbi)))
780 return ERR_PTR(-EIO);
781
782 /* Supplied owner must be valid */
783 if (owner && (owner[0] == (uid_t)-1 || owner[1] == (uid_t)-1))
784 return ERR_PTR(-EOVERFLOW);
785
786 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
787 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
788 !(i_flags & EXT4_EA_INODE_FL)) {
789 err = fscrypt_get_encryption_info(dir);
790 if (err)
791 return ERR_PTR(err);
792 if (!fscrypt_has_encryption_key(dir))
793 return ERR_PTR(-ENOKEY);
794 encrypt = 1;
795 }
796
797 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
798 #ifdef CONFIG_EXT4_FS_POSIX_ACL
799 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
800
801 if (IS_ERR(p))
802 return ERR_CAST(p);
803 if (p) {
804 int acl_size = p->a_count * sizeof(ext4_acl_entry);
805
806 nblocks += (S_ISDIR(mode) ? 2 : 1) *
807 __ext4_xattr_set_credits(sb, NULL /* inode */,
808 NULL /* block_bh */, acl_size,
809 true /* is_create */);
810 posix_acl_release(p);
811 }
812 #endif
813
814 #ifdef CONFIG_SECURITY
815 {
816 int num_security_xattrs = 1;
817
818 #ifdef CONFIG_INTEGRITY
819 num_security_xattrs++;
820 #endif
821 /*
822 * We assume that security xattrs are never
823 * more than 1k. In practice they are under
824 * 128 bytes.
825 */
826 nblocks += num_security_xattrs *
827 __ext4_xattr_set_credits(sb, NULL /* inode */,
828 NULL /* block_bh */, 1024,
829 true /* is_create */);
830 }
831 #endif
832 if (encrypt)
833 nblocks += __ext4_xattr_set_credits(sb,
834 NULL /* inode */, NULL /* block_bh */,
835 FSCRYPT_SET_CONTEXT_MAX_SIZE,
836 true /* is_create */);
837 }
838
839 ngroups = ext4_get_groups_count(sb);
840 trace_ext4_request_inode(dir, mode);
841 inode = new_inode(sb);
842 if (!inode)
843 return ERR_PTR(-ENOMEM);
844 ei = EXT4_I(inode);
845
846 /*
847 * Initialize owners and quota early so that we don't have to account
848 * for quota initialization worst case in standard inode creating
849 * transaction
850 */
851 if (owner) {
852 inode->i_mode = mode;
853 i_uid_write(inode, owner[0]);
854 i_gid_write(inode, owner[1]);
855 } else if (test_opt(sb, GRPID)) {
856 inode->i_mode = mode;
857 inode->i_uid = current_fsuid();
858 inode->i_gid = dir->i_gid;
859 } else
860 inode_init_owner(inode, dir, mode);
861
862 if (ext4_has_feature_project(sb) &&
863 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
864 ei->i_projid = EXT4_I(dir)->i_projid;
865 else
866 ei->i_projid = make_kprojid(sb->s_user_ns, EXT4_DEF_PROJID);
867
868 err = dquot_initialize(inode);
869 if (err)
870 goto out;
871
872 if (!goal)
873 goal = sbi->s_inode_goal;
874
875 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
876 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
877 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
878 ret2 = 0;
879 goto got_group;
880 }
881
882 if (S_ISDIR(mode))
883 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
884 else
885 ret2 = find_group_other(sb, dir, &group, mode);
886
887 got_group:
888 EXT4_I(dir)->i_last_alloc_group = group;
889 err = -ENOSPC;
890 if (ret2 == -1)
891 goto out;
892
893 /*
894 * Normally we will only go through one pass of this loop,
895 * unless we get unlucky and it turns out the group we selected
896 * had its last inode grabbed by someone else.
897 */
898 for (i = 0; i < ngroups; i++, ino = 0) {
899 err = -EIO;
900
901 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
902 if (!gdp)
903 goto out;
904
905 /*
906 * Check free inodes count before loading bitmap.
907 */
908 if (ext4_free_inodes_count(sb, gdp) == 0)
909 goto next_group;
910
911 grp = ext4_get_group_info(sb, group);
912 /* Skip groups with already-known suspicious inode tables */
913 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
914 goto next_group;
915
916 brelse(inode_bitmap_bh);
917 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
918 /* Skip groups with suspicious inode tables */
919 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
920 IS_ERR(inode_bitmap_bh)) {
921 inode_bitmap_bh = NULL;
922 goto next_group;
923 }
924
925 repeat_in_this_group:
926 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
927 if (!ret2)
928 goto next_group;
929
930 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
931 ext4_error(sb, "reserved inode found cleared - "
932 "inode=%lu", ino + 1);
933 goto next_group;
934 }
935
936 if (!handle) {
937 BUG_ON(nblocks <= 0);
938 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
939 handle_type, nblocks,
940 0);
941 if (IS_ERR(handle)) {
942 err = PTR_ERR(handle);
943 ext4_std_error(sb, err);
944 goto out;
945 }
946 }
947 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
948 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
949 if (err) {
950 ext4_std_error(sb, err);
951 goto out;
952 }
953 ext4_lock_group(sb, group);
954 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
955 if (ret2) {
956 /* Someone already took the bit. Repeat the search
957 * with lock held.
958 */
959 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
960 if (ret2) {
961 ext4_set_bit(ino, inode_bitmap_bh->b_data);
962 ret2 = 0;
963 } else {
964 ret2 = 1; /* we didn't grab the inode */
965 }
966 }
967 ext4_unlock_group(sb, group);
968 ino++; /* the inode bitmap is zero-based */
969 if (!ret2)
970 goto got; /* we grabbed the inode! */
971
972 if (ino < EXT4_INODES_PER_GROUP(sb))
973 goto repeat_in_this_group;
974 next_group:
975 if (++group == ngroups)
976 group = 0;
977 }
978 err = -ENOSPC;
979 goto out;
980
981 got:
982 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
984 if (err) {
985 ext4_std_error(sb, err);
986 goto out;
987 }
988
989 BUFFER_TRACE(group_desc_bh, "get_write_access");
990 err = ext4_journal_get_write_access(handle, group_desc_bh);
991 if (err) {
992 ext4_std_error(sb, err);
993 goto out;
994 }
995
996 /* We may have to initialize the block bitmap if it isn't already */
997 if (ext4_has_group_desc_csum(sb) &&
998 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
999 struct buffer_head *block_bitmap_bh;
1000
1001 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1002 if (IS_ERR(block_bitmap_bh)) {
1003 err = PTR_ERR(block_bitmap_bh);
1004 goto out;
1005 }
1006 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1007 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
1008 if (err) {
1009 brelse(block_bitmap_bh);
1010 ext4_std_error(sb, err);
1011 goto out;
1012 }
1013
1014 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1015 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1016
1017 /* recheck and clear flag under lock if we still need to */
1018 ext4_lock_group(sb, group);
1019 if (ext4_has_group_desc_csum(sb) &&
1020 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1021 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1022 ext4_free_group_clusters_set(sb, gdp,
1023 ext4_free_clusters_after_init(sb, group, gdp));
1024 ext4_block_bitmap_csum_set(sb, group, gdp,
1025 block_bitmap_bh);
1026 ext4_group_desc_csum_set(sb, group, gdp);
1027 }
1028 ext4_unlock_group(sb, group);
1029 brelse(block_bitmap_bh);
1030
1031 if (err) {
1032 ext4_std_error(sb, err);
1033 goto out;
1034 }
1035 }
1036
1037 /* Update the relevant bg descriptor fields */
1038 if (ext4_has_group_desc_csum(sb)) {
1039 int free;
1040 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1041
1042 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1043 ext4_lock_group(sb, group); /* while we modify the bg desc */
1044 free = EXT4_INODES_PER_GROUP(sb) -
1045 ext4_itable_unused_count(sb, gdp);
1046 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1047 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1048 free = 0;
1049 }
1050 /*
1051 * Check the relative inode number against the last used
1052 * relative inode number in this group. if it is greater
1053 * we need to update the bg_itable_unused count
1054 */
1055 if (ino > free)
1056 ext4_itable_unused_set(sb, gdp,
1057 (EXT4_INODES_PER_GROUP(sb) - ino));
1058 up_read(&grp->alloc_sem);
1059 } else {
1060 ext4_lock_group(sb, group);
1061 }
1062
1063 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1064 if (S_ISDIR(mode)) {
1065 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1066 if (sbi->s_log_groups_per_flex) {
1067 ext4_group_t f = ext4_flex_group(sbi, group);
1068
1069 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1070 }
1071 }
1072 if (ext4_has_group_desc_csum(sb)) {
1073 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1074 EXT4_INODES_PER_GROUP(sb) / 8);
1075 ext4_group_desc_csum_set(sb, group, gdp);
1076 }
1077 ext4_unlock_group(sb, group);
1078
1079 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1080 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1081 if (err) {
1082 ext4_std_error(sb, err);
1083 goto out;
1084 }
1085
1086 percpu_counter_dec(&sbi->s_freeinodes_counter);
1087 if (S_ISDIR(mode))
1088 percpu_counter_inc(&sbi->s_dirs_counter);
1089
1090 if (sbi->s_log_groups_per_flex) {
1091 flex_group = ext4_flex_group(sbi, group);
1092 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1093 }
1094
1095 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1096 /* This is the optimal IO size (for stat), not the fs block size */
1097 inode->i_blocks = 0;
1098 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1099 current_time(inode);
1100
1101 memset(ei->i_data, 0, sizeof(ei->i_data));
1102 ei->i_dir_start_lookup = 0;
1103 ei->i_disksize = 0;
1104
1105 /* Don't inherit extent flag from directory, amongst others. */
1106 ei->i_flags =
1107 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1108 ei->i_flags |= i_flags;
1109 ei->i_file_acl = 0;
1110 ei->i_dtime = 0;
1111 ei->i_block_group = group;
1112 ei->i_last_alloc_group = ~0;
1113
1114 ext4_set_inode_flags(inode);
1115 if (IS_DIRSYNC(inode))
1116 ext4_handle_sync(handle);
1117 if (insert_inode_locked(inode) < 0) {
1118 /*
1119 * Likely a bitmap corruption causing inode to be allocated
1120 * twice.
1121 */
1122 err = -EIO;
1123 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1124 inode->i_ino);
1125 goto out;
1126 }
1127 inode->i_generation = prandom_u32();
1128
1129 /* Precompute checksum seed for inode metadata */
1130 if (ext4_has_metadata_csum(sb)) {
1131 __u32 csum;
1132 __le32 inum = cpu_to_le32(inode->i_ino);
1133 __le32 gen = cpu_to_le32(inode->i_generation);
1134 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1135 sizeof(inum));
1136 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1137 sizeof(gen));
1138 }
1139
1140 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1141 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1142
1143 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1144 ei->i_inline_off = 0;
1145 if (ext4_has_feature_inline_data(sb))
1146 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1147 ret = inode;
1148 err = dquot_alloc_inode(inode);
1149 if (err)
1150 goto fail_drop;
1151
1152 /*
1153 * Since the encryption xattr will always be unique, create it first so
1154 * that it's less likely to end up in an external xattr block and
1155 * prevent its deduplication.
1156 */
1157 if (encrypt) {
1158 err = fscrypt_inherit_context(dir, inode, handle, true);
1159 if (err)
1160 goto fail_free_drop;
1161 }
1162
1163 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1164 err = ext4_init_acl(handle, inode, dir);
1165 if (err)
1166 goto fail_free_drop;
1167
1168 err = ext4_init_security(handle, inode, dir, qstr);
1169 if (err)
1170 goto fail_free_drop;
1171 }
1172
1173 if (ext4_has_feature_extents(sb)) {
1174 /* set extent flag only for directory, file and normal symlink*/
1175 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1176 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1177 ext4_ext_tree_init(handle, inode);
1178 }
1179 }
1180
1181 if (ext4_handle_valid(handle)) {
1182 ei->i_sync_tid = handle->h_transaction->t_tid;
1183 ei->i_datasync_tid = handle->h_transaction->t_tid;
1184 }
1185
1186 err = ext4_mark_inode_dirty(handle, inode);
1187 if (err) {
1188 ext4_std_error(sb, err);
1189 goto fail_free_drop;
1190 }
1191
1192 ext4_debug("allocating inode %lu\n", inode->i_ino);
1193 trace_ext4_allocate_inode(inode, dir, mode);
1194 brelse(inode_bitmap_bh);
1195 return ret;
1196
1197 fail_free_drop:
1198 dquot_free_inode(inode);
1199 fail_drop:
1200 clear_nlink(inode);
1201 unlock_new_inode(inode);
1202 out:
1203 dquot_drop(inode);
1204 inode->i_flags |= S_NOQUOTA;
1205 iput(inode);
1206 brelse(inode_bitmap_bh);
1207 return ERR_PTR(err);
1208 }
1209
1210 /* Verify that we are loading a valid orphan from disk */
1211 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1212 {
1213 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1214 ext4_group_t block_group;
1215 int bit;
1216 struct buffer_head *bitmap_bh = NULL;
1217 struct inode *inode = NULL;
1218 int err = -EFSCORRUPTED;
1219
1220 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1221 goto bad_orphan;
1222
1223 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1224 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1225 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1226 if (IS_ERR(bitmap_bh)) {
1227 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1228 ino, PTR_ERR(bitmap_bh));
1229 return (struct inode *) bitmap_bh;
1230 }
1231
1232 /* Having the inode bit set should be a 100% indicator that this
1233 * is a valid orphan (no e2fsck run on fs). Orphans also include
1234 * inodes that were being truncated, so we can't check i_nlink==0.
1235 */
1236 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1237 goto bad_orphan;
1238
1239 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1240 if (IS_ERR(inode)) {
1241 err = PTR_ERR(inode);
1242 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1243 ino, err);
1244 return inode;
1245 }
1246
1247 /*
1248 * If the orphans has i_nlinks > 0 then it should be able to
1249 * be truncated, otherwise it won't be removed from the orphan
1250 * list during processing and an infinite loop will result.
1251 * Similarly, it must not be a bad inode.
1252 */
1253 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1254 is_bad_inode(inode))
1255 goto bad_orphan;
1256
1257 if (NEXT_ORPHAN(inode) > max_ino)
1258 goto bad_orphan;
1259 brelse(bitmap_bh);
1260 return inode;
1261
1262 bad_orphan:
1263 ext4_error(sb, "bad orphan inode %lu", ino);
1264 if (bitmap_bh)
1265 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1266 bit, (unsigned long long)bitmap_bh->b_blocknr,
1267 ext4_test_bit(bit, bitmap_bh->b_data));
1268 if (inode) {
1269 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1270 is_bad_inode(inode));
1271 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1272 NEXT_ORPHAN(inode));
1273 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1274 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1275 /* Avoid freeing blocks if we got a bad deleted inode */
1276 if (inode->i_nlink == 0)
1277 inode->i_blocks = 0;
1278 iput(inode);
1279 }
1280 brelse(bitmap_bh);
1281 return ERR_PTR(err);
1282 }
1283
1284 unsigned long ext4_count_free_inodes(struct super_block *sb)
1285 {
1286 unsigned long desc_count;
1287 struct ext4_group_desc *gdp;
1288 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1289 #ifdef EXT4FS_DEBUG
1290 struct ext4_super_block *es;
1291 unsigned long bitmap_count, x;
1292 struct buffer_head *bitmap_bh = NULL;
1293
1294 es = EXT4_SB(sb)->s_es;
1295 desc_count = 0;
1296 bitmap_count = 0;
1297 gdp = NULL;
1298 for (i = 0; i < ngroups; i++) {
1299 gdp = ext4_get_group_desc(sb, i, NULL);
1300 if (!gdp)
1301 continue;
1302 desc_count += ext4_free_inodes_count(sb, gdp);
1303 brelse(bitmap_bh);
1304 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1305 if (IS_ERR(bitmap_bh)) {
1306 bitmap_bh = NULL;
1307 continue;
1308 }
1309
1310 x = ext4_count_free(bitmap_bh->b_data,
1311 EXT4_INODES_PER_GROUP(sb) / 8);
1312 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1313 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1314 bitmap_count += x;
1315 }
1316 brelse(bitmap_bh);
1317 printk(KERN_DEBUG "ext4_count_free_inodes: "
1318 "stored = %u, computed = %lu, %lu\n",
1319 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1320 return desc_count;
1321 #else
1322 desc_count = 0;
1323 for (i = 0; i < ngroups; i++) {
1324 gdp = ext4_get_group_desc(sb, i, NULL);
1325 if (!gdp)
1326 continue;
1327 desc_count += ext4_free_inodes_count(sb, gdp);
1328 cond_resched();
1329 }
1330 return desc_count;
1331 #endif
1332 }
1333
1334 /* Called at mount-time, super-block is locked */
1335 unsigned long ext4_count_dirs(struct super_block * sb)
1336 {
1337 unsigned long count = 0;
1338 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1339
1340 for (i = 0; i < ngroups; i++) {
1341 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1342 if (!gdp)
1343 continue;
1344 count += ext4_used_dirs_count(sb, gdp);
1345 }
1346 return count;
1347 }
1348
1349 /*
1350 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1351 * inode table. Must be called without any spinlock held. The only place
1352 * where it is called from on active part of filesystem is ext4lazyinit
1353 * thread, so we do not need any special locks, however we have to prevent
1354 * inode allocation from the current group, so we take alloc_sem lock, to
1355 * block ext4_new_inode() until we are finished.
1356 */
1357 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1358 int barrier)
1359 {
1360 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1361 struct ext4_sb_info *sbi = EXT4_SB(sb);
1362 struct ext4_group_desc *gdp = NULL;
1363 struct buffer_head *group_desc_bh;
1364 handle_t *handle;
1365 ext4_fsblk_t blk;
1366 int num, ret = 0, used_blks = 0;
1367
1368 /* This should not happen, but just to be sure check this */
1369 if (sb_rdonly(sb)) {
1370 ret = 1;
1371 goto out;
1372 }
1373
1374 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1375 if (!gdp)
1376 goto out;
1377
1378 /*
1379 * We do not need to lock this, because we are the only one
1380 * handling this flag.
1381 */
1382 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1383 goto out;
1384
1385 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1386 if (IS_ERR(handle)) {
1387 ret = PTR_ERR(handle);
1388 goto out;
1389 }
1390
1391 down_write(&grp->alloc_sem);
1392 /*
1393 * If inode bitmap was already initialized there may be some
1394 * used inodes so we need to skip blocks with used inodes in
1395 * inode table.
1396 */
1397 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1398 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1399 ext4_itable_unused_count(sb, gdp)),
1400 sbi->s_inodes_per_block);
1401
1402 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1403 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1404 ext4_itable_unused_count(sb, gdp)) <
1405 EXT4_FIRST_INO(sb)))) {
1406 ext4_error(sb, "Something is wrong with group %u: "
1407 "used itable blocks: %d; "
1408 "itable unused count: %u",
1409 group, used_blks,
1410 ext4_itable_unused_count(sb, gdp));
1411 ret = 1;
1412 goto err_out;
1413 }
1414
1415 blk = ext4_inode_table(sb, gdp) + used_blks;
1416 num = sbi->s_itb_per_group - used_blks;
1417
1418 BUFFER_TRACE(group_desc_bh, "get_write_access");
1419 ret = ext4_journal_get_write_access(handle,
1420 group_desc_bh);
1421 if (ret)
1422 goto err_out;
1423
1424 /*
1425 * Skip zeroout if the inode table is full. But we set the ZEROED
1426 * flag anyway, because obviously, when it is full it does not need
1427 * further zeroing.
1428 */
1429 if (unlikely(num == 0))
1430 goto skip_zeroout;
1431
1432 ext4_debug("going to zero out inode table in group %d\n",
1433 group);
1434 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1435 if (ret < 0)
1436 goto err_out;
1437 if (barrier)
1438 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1439
1440 skip_zeroout:
1441 ext4_lock_group(sb, group);
1442 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1443 ext4_group_desc_csum_set(sb, group, gdp);
1444 ext4_unlock_group(sb, group);
1445
1446 BUFFER_TRACE(group_desc_bh,
1447 "call ext4_handle_dirty_metadata");
1448 ret = ext4_handle_dirty_metadata(handle, NULL,
1449 group_desc_bh);
1450
1451 err_out:
1452 up_write(&grp->alloc_sem);
1453 ext4_journal_stop(handle);
1454 out:
1455 return ret;
1456 }