]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/indirect.c
f6663c3a946d2b16cc6fd6bc9ec6d87c506617be
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / indirect.c
1 /*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25
26 #include <trace/events/ext4.h>
27
28 typedef struct {
29 __le32 *p;
30 __le32 key;
31 struct buffer_head *bh;
32 } Indirect;
33
34 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
35 {
36 p->key = *(p->p = v);
37 p->bh = bh;
38 }
39
40 /**
41 * ext4_block_to_path - parse the block number into array of offsets
42 * @inode: inode in question (we are only interested in its superblock)
43 * @i_block: block number to be parsed
44 * @offsets: array to store the offsets in
45 * @boundary: set this non-zero if the referred-to block is likely to be
46 * followed (on disk) by an indirect block.
47 *
48 * To store the locations of file's data ext4 uses a data structure common
49 * for UNIX filesystems - tree of pointers anchored in the inode, with
50 * data blocks at leaves and indirect blocks in intermediate nodes.
51 * This function translates the block number into path in that tree -
52 * return value is the path length and @offsets[n] is the offset of
53 * pointer to (n+1)th node in the nth one. If @block is out of range
54 * (negative or too large) warning is printed and zero returned.
55 *
56 * Note: function doesn't find node addresses, so no IO is needed. All
57 * we need to know is the capacity of indirect blocks (taken from the
58 * inode->i_sb).
59 */
60
61 /*
62 * Portability note: the last comparison (check that we fit into triple
63 * indirect block) is spelled differently, because otherwise on an
64 * architecture with 32-bit longs and 8Kb pages we might get into trouble
65 * if our filesystem had 8Kb blocks. We might use long long, but that would
66 * kill us on x86. Oh, well, at least the sign propagation does not matter -
67 * i_block would have to be negative in the very beginning, so we would not
68 * get there at all.
69 */
70
71 static int ext4_block_to_path(struct inode *inode,
72 ext4_lblk_t i_block,
73 ext4_lblk_t offsets[4], int *boundary)
74 {
75 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
76 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
77 const long direct_blocks = EXT4_NDIR_BLOCKS,
78 indirect_blocks = ptrs,
79 double_blocks = (1 << (ptrs_bits * 2));
80 int n = 0;
81 int final = 0;
82
83 if (i_block < direct_blocks) {
84 offsets[n++] = i_block;
85 final = direct_blocks;
86 } else if ((i_block -= direct_blocks) < indirect_blocks) {
87 offsets[n++] = EXT4_IND_BLOCK;
88 offsets[n++] = i_block;
89 final = ptrs;
90 } else if ((i_block -= indirect_blocks) < double_blocks) {
91 offsets[n++] = EXT4_DIND_BLOCK;
92 offsets[n++] = i_block >> ptrs_bits;
93 offsets[n++] = i_block & (ptrs - 1);
94 final = ptrs;
95 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
96 offsets[n++] = EXT4_TIND_BLOCK;
97 offsets[n++] = i_block >> (ptrs_bits * 2);
98 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
99 offsets[n++] = i_block & (ptrs - 1);
100 final = ptrs;
101 } else {
102 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
103 i_block + direct_blocks +
104 indirect_blocks + double_blocks, inode->i_ino);
105 }
106 if (boundary)
107 *boundary = final - 1 - (i_block & (ptrs - 1));
108 return n;
109 }
110
111 /**
112 * ext4_get_branch - read the chain of indirect blocks leading to data
113 * @inode: inode in question
114 * @depth: depth of the chain (1 - direct pointer, etc.)
115 * @offsets: offsets of pointers in inode/indirect blocks
116 * @chain: place to store the result
117 * @err: here we store the error value
118 *
119 * Function fills the array of triples <key, p, bh> and returns %NULL
120 * if everything went OK or the pointer to the last filled triple
121 * (incomplete one) otherwise. Upon the return chain[i].key contains
122 * the number of (i+1)-th block in the chain (as it is stored in memory,
123 * i.e. little-endian 32-bit), chain[i].p contains the address of that
124 * number (it points into struct inode for i==0 and into the bh->b_data
125 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
126 * block for i>0 and NULL for i==0. In other words, it holds the block
127 * numbers of the chain, addresses they were taken from (and where we can
128 * verify that chain did not change) and buffer_heads hosting these
129 * numbers.
130 *
131 * Function stops when it stumbles upon zero pointer (absent block)
132 * (pointer to last triple returned, *@err == 0)
133 * or when it gets an IO error reading an indirect block
134 * (ditto, *@err == -EIO)
135 * or when it reads all @depth-1 indirect blocks successfully and finds
136 * the whole chain, all way to the data (returns %NULL, *err == 0).
137 *
138 * Need to be called with
139 * down_read(&EXT4_I(inode)->i_data_sem)
140 */
141 static Indirect *ext4_get_branch(struct inode *inode, int depth,
142 ext4_lblk_t *offsets,
143 Indirect chain[4], int *err)
144 {
145 struct super_block *sb = inode->i_sb;
146 Indirect *p = chain;
147 struct buffer_head *bh;
148
149 *err = 0;
150 /* i_data is not going away, no lock needed */
151 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
152 if (!p->key)
153 goto no_block;
154 while (--depth) {
155 bh = sb_getblk(sb, le32_to_cpu(p->key));
156 if (unlikely(!bh))
157 goto failure;
158
159 if (!bh_uptodate_or_lock(bh)) {
160 if (bh_submit_read(bh) < 0) {
161 put_bh(bh);
162 goto failure;
163 }
164 /* validate block references */
165 if (ext4_check_indirect_blockref(inode, bh)) {
166 put_bh(bh);
167 goto failure;
168 }
169 }
170
171 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
172 /* Reader: end */
173 if (!p->key)
174 goto no_block;
175 }
176 return NULL;
177
178 failure:
179 *err = -EIO;
180 no_block:
181 return p;
182 }
183
184 /**
185 * ext4_find_near - find a place for allocation with sufficient locality
186 * @inode: owner
187 * @ind: descriptor of indirect block.
188 *
189 * This function returns the preferred place for block allocation.
190 * It is used when heuristic for sequential allocation fails.
191 * Rules are:
192 * + if there is a block to the left of our position - allocate near it.
193 * + if pointer will live in indirect block - allocate near that block.
194 * + if pointer will live in inode - allocate in the same
195 * cylinder group.
196 *
197 * In the latter case we colour the starting block by the callers PID to
198 * prevent it from clashing with concurrent allocations for a different inode
199 * in the same block group. The PID is used here so that functionally related
200 * files will be close-by on-disk.
201 *
202 * Caller must make sure that @ind is valid and will stay that way.
203 */
204 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
205 {
206 struct ext4_inode_info *ei = EXT4_I(inode);
207 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
208 __le32 *p;
209
210 /* Try to find previous block */
211 for (p = ind->p - 1; p >= start; p--) {
212 if (*p)
213 return le32_to_cpu(*p);
214 }
215
216 /* No such thing, so let's try location of indirect block */
217 if (ind->bh)
218 return ind->bh->b_blocknr;
219
220 /*
221 * It is going to be referred to from the inode itself? OK, just put it
222 * into the same cylinder group then.
223 */
224 return ext4_inode_to_goal_block(inode);
225 }
226
227 /**
228 * ext4_find_goal - find a preferred place for allocation.
229 * @inode: owner
230 * @block: block we want
231 * @partial: pointer to the last triple within a chain
232 *
233 * Normally this function find the preferred place for block allocation,
234 * returns it.
235 * Because this is only used for non-extent files, we limit the block nr
236 * to 32 bits.
237 */
238 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
239 Indirect *partial)
240 {
241 ext4_fsblk_t goal;
242
243 /*
244 * XXX need to get goal block from mballoc's data structures
245 */
246
247 goal = ext4_find_near(inode, partial);
248 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
249 return goal;
250 }
251
252 /**
253 * ext4_blks_to_allocate - Look up the block map and count the number
254 * of direct blocks need to be allocated for the given branch.
255 *
256 * @branch: chain of indirect blocks
257 * @k: number of blocks need for indirect blocks
258 * @blks: number of data blocks to be mapped.
259 * @blocks_to_boundary: the offset in the indirect block
260 *
261 * return the total number of blocks to be allocate, including the
262 * direct and indirect blocks.
263 */
264 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
265 int blocks_to_boundary)
266 {
267 unsigned int count = 0;
268
269 /*
270 * Simple case, [t,d]Indirect block(s) has not allocated yet
271 * then it's clear blocks on that path have not allocated
272 */
273 if (k > 0) {
274 /* right now we don't handle cross boundary allocation */
275 if (blks < blocks_to_boundary + 1)
276 count += blks;
277 else
278 count += blocks_to_boundary + 1;
279 return count;
280 }
281
282 count++;
283 while (count < blks && count <= blocks_to_boundary &&
284 le32_to_cpu(*(branch[0].p + count)) == 0) {
285 count++;
286 }
287 return count;
288 }
289
290 /**
291 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
292 * @handle: handle for this transaction
293 * @inode: inode which needs allocated blocks
294 * @iblock: the logical block to start allocated at
295 * @goal: preferred physical block of allocation
296 * @indirect_blks: the number of blocks need to allocate for indirect
297 * blocks
298 * @blks: number of desired blocks
299 * @new_blocks: on return it will store the new block numbers for
300 * the indirect blocks(if needed) and the first direct block,
301 * @err: on return it will store the error code
302 *
303 * This function will return the number of blocks allocated as
304 * requested by the passed-in parameters.
305 */
306 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
307 ext4_lblk_t iblock, ext4_fsblk_t goal,
308 int indirect_blks, int blks,
309 ext4_fsblk_t new_blocks[4], int *err)
310 {
311 struct ext4_allocation_request ar;
312 int target, i;
313 unsigned long count = 0, blk_allocated = 0;
314 int index = 0;
315 ext4_fsblk_t current_block = 0;
316 int ret = 0;
317
318 /*
319 * Here we try to allocate the requested multiple blocks at once,
320 * on a best-effort basis.
321 * To build a branch, we should allocate blocks for
322 * the indirect blocks(if not allocated yet), and at least
323 * the first direct block of this branch. That's the
324 * minimum number of blocks need to allocate(required)
325 */
326 /* first we try to allocate the indirect blocks */
327 target = indirect_blks;
328 while (target > 0) {
329 count = target;
330 /* allocating blocks for indirect blocks and direct blocks */
331 current_block = ext4_new_meta_blocks(handle, inode, goal,
332 0, &count, err);
333 if (*err)
334 goto failed_out;
335
336 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
337 EXT4_ERROR_INODE(inode,
338 "current_block %llu + count %lu > %d!",
339 current_block, count,
340 EXT4_MAX_BLOCK_FILE_PHYS);
341 *err = -EIO;
342 goto failed_out;
343 }
344
345 target -= count;
346 /* allocate blocks for indirect blocks */
347 while (index < indirect_blks && count) {
348 new_blocks[index++] = current_block++;
349 count--;
350 }
351 if (count > 0) {
352 /*
353 * save the new block number
354 * for the first direct block
355 */
356 new_blocks[index] = current_block;
357 printk(KERN_INFO "%s returned more blocks than "
358 "requested\n", __func__);
359 WARN_ON(1);
360 break;
361 }
362 }
363
364 target = blks - count ;
365 blk_allocated = count;
366 if (!target)
367 goto allocated;
368 /* Now allocate data blocks */
369 memset(&ar, 0, sizeof(ar));
370 ar.inode = inode;
371 ar.goal = goal;
372 ar.len = target;
373 ar.logical = iblock;
374 if (S_ISREG(inode->i_mode))
375 /* enable in-core preallocation only for regular files */
376 ar.flags = EXT4_MB_HINT_DATA;
377
378 current_block = ext4_mb_new_blocks(handle, &ar, err);
379 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
380 EXT4_ERROR_INODE(inode,
381 "current_block %llu + ar.len %d > %d!",
382 current_block, ar.len,
383 EXT4_MAX_BLOCK_FILE_PHYS);
384 *err = -EIO;
385 goto failed_out;
386 }
387
388 if (*err && (target == blks)) {
389 /*
390 * if the allocation failed and we didn't allocate
391 * any blocks before
392 */
393 goto failed_out;
394 }
395 if (!*err) {
396 if (target == blks) {
397 /*
398 * save the new block number
399 * for the first direct block
400 */
401 new_blocks[index] = current_block;
402 }
403 blk_allocated += ar.len;
404 }
405 allocated:
406 /* total number of blocks allocated for direct blocks */
407 ret = blk_allocated;
408 *err = 0;
409 return ret;
410 failed_out:
411 for (i = 0; i < index; i++)
412 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
413 return ret;
414 }
415
416 /**
417 * ext4_alloc_branch - allocate and set up a chain of blocks.
418 * @handle: handle for this transaction
419 * @inode: owner
420 * @indirect_blks: number of allocated indirect blocks
421 * @blks: number of allocated direct blocks
422 * @goal: preferred place for allocation
423 * @offsets: offsets (in the blocks) to store the pointers to next.
424 * @branch: place to store the chain in.
425 *
426 * This function allocates blocks, zeroes out all but the last one,
427 * links them into chain and (if we are synchronous) writes them to disk.
428 * In other words, it prepares a branch that can be spliced onto the
429 * inode. It stores the information about that chain in the branch[], in
430 * the same format as ext4_get_branch() would do. We are calling it after
431 * we had read the existing part of chain and partial points to the last
432 * triple of that (one with zero ->key). Upon the exit we have the same
433 * picture as after the successful ext4_get_block(), except that in one
434 * place chain is disconnected - *branch->p is still zero (we did not
435 * set the last link), but branch->key contains the number that should
436 * be placed into *branch->p to fill that gap.
437 *
438 * If allocation fails we free all blocks we've allocated (and forget
439 * their buffer_heads) and return the error value the from failed
440 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
441 * as described above and return 0.
442 */
443 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
444 ext4_lblk_t iblock, int indirect_blks,
445 int *blks, ext4_fsblk_t goal,
446 ext4_lblk_t *offsets, Indirect *branch)
447 {
448 int blocksize = inode->i_sb->s_blocksize;
449 int i, n = 0;
450 int err = 0;
451 struct buffer_head *bh;
452 int num;
453 ext4_fsblk_t new_blocks[4];
454 ext4_fsblk_t current_block;
455
456 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
457 *blks, new_blocks, &err);
458 if (err)
459 return err;
460
461 branch[0].key = cpu_to_le32(new_blocks[0]);
462 /*
463 * metadata blocks and data blocks are allocated.
464 */
465 for (n = 1; n <= indirect_blks; n++) {
466 /*
467 * Get buffer_head for parent block, zero it out
468 * and set the pointer to new one, then send
469 * parent to disk.
470 */
471 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
472 if (unlikely(!bh)) {
473 err = -EIO;
474 goto failed;
475 }
476
477 branch[n].bh = bh;
478 lock_buffer(bh);
479 BUFFER_TRACE(bh, "call get_create_access");
480 err = ext4_journal_get_create_access(handle, bh);
481 if (err) {
482 /* Don't brelse(bh) here; it's done in
483 * ext4_journal_forget() below */
484 unlock_buffer(bh);
485 goto failed;
486 }
487
488 memset(bh->b_data, 0, blocksize);
489 branch[n].p = (__le32 *) bh->b_data + offsets[n];
490 branch[n].key = cpu_to_le32(new_blocks[n]);
491 *branch[n].p = branch[n].key;
492 if (n == indirect_blks) {
493 current_block = new_blocks[n];
494 /*
495 * End of chain, update the last new metablock of
496 * the chain to point to the new allocated
497 * data blocks numbers
498 */
499 for (i = 1; i < num; i++)
500 *(branch[n].p + i) = cpu_to_le32(++current_block);
501 }
502 BUFFER_TRACE(bh, "marking uptodate");
503 set_buffer_uptodate(bh);
504 unlock_buffer(bh);
505
506 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
507 err = ext4_handle_dirty_metadata(handle, inode, bh);
508 if (err)
509 goto failed;
510 }
511 *blks = num;
512 return err;
513 failed:
514 /* Allocation failed, free what we already allocated */
515 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
516 for (i = 1; i <= n ; i++) {
517 /*
518 * branch[i].bh is newly allocated, so there is no
519 * need to revoke the block, which is why we don't
520 * need to set EXT4_FREE_BLOCKS_METADATA.
521 */
522 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
523 EXT4_FREE_BLOCKS_FORGET);
524 }
525 for (i = n+1; i < indirect_blks; i++)
526 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
527
528 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
529
530 return err;
531 }
532
533 /**
534 * ext4_splice_branch - splice the allocated branch onto inode.
535 * @handle: handle for this transaction
536 * @inode: owner
537 * @block: (logical) number of block we are adding
538 * @chain: chain of indirect blocks (with a missing link - see
539 * ext4_alloc_branch)
540 * @where: location of missing link
541 * @num: number of indirect blocks we are adding
542 * @blks: number of direct blocks we are adding
543 *
544 * This function fills the missing link and does all housekeeping needed in
545 * inode (->i_blocks, etc.). In case of success we end up with the full
546 * chain to new block and return 0.
547 */
548 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
549 ext4_lblk_t block, Indirect *where, int num,
550 int blks)
551 {
552 int i;
553 int err = 0;
554 ext4_fsblk_t current_block;
555
556 /*
557 * If we're splicing into a [td]indirect block (as opposed to the
558 * inode) then we need to get write access to the [td]indirect block
559 * before the splice.
560 */
561 if (where->bh) {
562 BUFFER_TRACE(where->bh, "get_write_access");
563 err = ext4_journal_get_write_access(handle, where->bh);
564 if (err)
565 goto err_out;
566 }
567 /* That's it */
568
569 *where->p = where->key;
570
571 /*
572 * Update the host buffer_head or inode to point to more just allocated
573 * direct blocks blocks
574 */
575 if (num == 0 && blks > 1) {
576 current_block = le32_to_cpu(where->key) + 1;
577 for (i = 1; i < blks; i++)
578 *(where->p + i) = cpu_to_le32(current_block++);
579 }
580
581 /* We are done with atomic stuff, now do the rest of housekeeping */
582 /* had we spliced it onto indirect block? */
583 if (where->bh) {
584 /*
585 * If we spliced it onto an indirect block, we haven't
586 * altered the inode. Note however that if it is being spliced
587 * onto an indirect block at the very end of the file (the
588 * file is growing) then we *will* alter the inode to reflect
589 * the new i_size. But that is not done here - it is done in
590 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
591 */
592 jbd_debug(5, "splicing indirect only\n");
593 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
594 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
595 if (err)
596 goto err_out;
597 } else {
598 /*
599 * OK, we spliced it into the inode itself on a direct block.
600 */
601 ext4_mark_inode_dirty(handle, inode);
602 jbd_debug(5, "splicing direct\n");
603 }
604 return err;
605
606 err_out:
607 for (i = 1; i <= num; i++) {
608 /*
609 * branch[i].bh is newly allocated, so there is no
610 * need to revoke the block, which is why we don't
611 * need to set EXT4_FREE_BLOCKS_METADATA.
612 */
613 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
614 EXT4_FREE_BLOCKS_FORGET);
615 }
616 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
617 blks, 0);
618
619 return err;
620 }
621
622 /*
623 * The ext4_ind_map_blocks() function handles non-extents inodes
624 * (i.e., using the traditional indirect/double-indirect i_blocks
625 * scheme) for ext4_map_blocks().
626 *
627 * Allocation strategy is simple: if we have to allocate something, we will
628 * have to go the whole way to leaf. So let's do it before attaching anything
629 * to tree, set linkage between the newborn blocks, write them if sync is
630 * required, recheck the path, free and repeat if check fails, otherwise
631 * set the last missing link (that will protect us from any truncate-generated
632 * removals - all blocks on the path are immune now) and possibly force the
633 * write on the parent block.
634 * That has a nice additional property: no special recovery from the failed
635 * allocations is needed - we simply release blocks and do not touch anything
636 * reachable from inode.
637 *
638 * `handle' can be NULL if create == 0.
639 *
640 * return > 0, # of blocks mapped or allocated.
641 * return = 0, if plain lookup failed.
642 * return < 0, error case.
643 *
644 * The ext4_ind_get_blocks() function should be called with
645 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
646 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
647 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
648 * blocks.
649 */
650 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
651 struct ext4_map_blocks *map,
652 int flags)
653 {
654 int err = -EIO;
655 ext4_lblk_t offsets[4];
656 Indirect chain[4];
657 Indirect *partial;
658 ext4_fsblk_t goal;
659 int indirect_blks;
660 int blocks_to_boundary = 0;
661 int depth;
662 int count = 0;
663 ext4_fsblk_t first_block = 0;
664
665 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
666 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
667 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
668 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
669 &blocks_to_boundary);
670
671 if (depth == 0)
672 goto out;
673
674 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
675
676 /* Simplest case - block found, no allocation needed */
677 if (!partial) {
678 first_block = le32_to_cpu(chain[depth - 1].key);
679 count++;
680 /*map more blocks*/
681 while (count < map->m_len && count <= blocks_to_boundary) {
682 ext4_fsblk_t blk;
683
684 blk = le32_to_cpu(*(chain[depth-1].p + count));
685
686 if (blk == first_block + count)
687 count++;
688 else
689 break;
690 }
691 goto got_it;
692 }
693
694 /* Next simple case - plain lookup or failed read of indirect block */
695 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
696 goto cleanup;
697
698 /*
699 * Okay, we need to do block allocation.
700 */
701 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
702 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
703 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
704 "non-extent mapped inodes with bigalloc");
705 return -ENOSPC;
706 }
707
708 goal = ext4_find_goal(inode, map->m_lblk, partial);
709
710 /* the number of blocks need to allocate for [d,t]indirect blocks */
711 indirect_blks = (chain + depth) - partial - 1;
712
713 /*
714 * Next look up the indirect map to count the totoal number of
715 * direct blocks to allocate for this branch.
716 */
717 count = ext4_blks_to_allocate(partial, indirect_blks,
718 map->m_len, blocks_to_boundary);
719 /*
720 * Block out ext4_truncate while we alter the tree
721 */
722 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
723 &count, goal,
724 offsets + (partial - chain), partial);
725
726 /*
727 * The ext4_splice_branch call will free and forget any buffers
728 * on the new chain if there is a failure, but that risks using
729 * up transaction credits, especially for bitmaps where the
730 * credits cannot be returned. Can we handle this somehow? We
731 * may need to return -EAGAIN upwards in the worst case. --sct
732 */
733 if (!err)
734 err = ext4_splice_branch(handle, inode, map->m_lblk,
735 partial, indirect_blks, count);
736 if (err)
737 goto cleanup;
738
739 map->m_flags |= EXT4_MAP_NEW;
740
741 ext4_update_inode_fsync_trans(handle, inode, 1);
742 got_it:
743 map->m_flags |= EXT4_MAP_MAPPED;
744 map->m_pblk = le32_to_cpu(chain[depth-1].key);
745 map->m_len = count;
746 if (count > blocks_to_boundary)
747 map->m_flags |= EXT4_MAP_BOUNDARY;
748 err = count;
749 /* Clean up and exit */
750 partial = chain + depth - 1; /* the whole chain */
751 cleanup:
752 while (partial > chain) {
753 BUFFER_TRACE(partial->bh, "call brelse");
754 brelse(partial->bh);
755 partial--;
756 }
757 out:
758 trace_ext4_ind_map_blocks_exit(inode, map, err);
759 return err;
760 }
761
762 /*
763 * O_DIRECT for ext3 (or indirect map) based files
764 *
765 * If the O_DIRECT write will extend the file then add this inode to the
766 * orphan list. So recovery will truncate it back to the original size
767 * if the machine crashes during the write.
768 *
769 * If the O_DIRECT write is intantiating holes inside i_size and the machine
770 * crashes then stale disk data _may_ be exposed inside the file. But current
771 * VFS code falls back into buffered path in that case so we are safe.
772 */
773 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
774 const struct iovec *iov, loff_t offset,
775 unsigned long nr_segs)
776 {
777 struct file *file = iocb->ki_filp;
778 struct inode *inode = file->f_mapping->host;
779 struct ext4_inode_info *ei = EXT4_I(inode);
780 handle_t *handle;
781 ssize_t ret;
782 int orphan = 0;
783 size_t count = iov_length(iov, nr_segs);
784 int retries = 0;
785
786 if (rw == WRITE) {
787 loff_t final_size = offset + count;
788
789 if (final_size > inode->i_size) {
790 /* Credits for sb + inode write */
791 handle = ext4_journal_start(inode, 2);
792 if (IS_ERR(handle)) {
793 ret = PTR_ERR(handle);
794 goto out;
795 }
796 ret = ext4_orphan_add(handle, inode);
797 if (ret) {
798 ext4_journal_stop(handle);
799 goto out;
800 }
801 orphan = 1;
802 ei->i_disksize = inode->i_size;
803 ext4_journal_stop(handle);
804 }
805 }
806
807 retry:
808 if (rw == READ && ext4_should_dioread_nolock(inode)) {
809 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
810 mutex_lock(&inode->i_mutex);
811 ext4_flush_unwritten_io(inode);
812 mutex_unlock(&inode->i_mutex);
813 }
814 /*
815 * Nolock dioread optimization may be dynamically disabled
816 * via ext4_inode_block_unlocked_dio(). Check inode's state
817 * while holding extra i_dio_count ref.
818 */
819 atomic_inc(&inode->i_dio_count);
820 smp_mb();
821 if (unlikely(ext4_test_inode_state(inode,
822 EXT4_STATE_DIOREAD_LOCK))) {
823 inode_dio_done(inode);
824 goto locked;
825 }
826 ret = __blockdev_direct_IO(rw, iocb, inode,
827 inode->i_sb->s_bdev, iov,
828 offset, nr_segs,
829 ext4_get_block, NULL, NULL, 0);
830 inode_dio_done(inode);
831 } else {
832 locked:
833 ret = blockdev_direct_IO(rw, iocb, inode, iov,
834 offset, nr_segs, ext4_get_block);
835
836 if (unlikely((rw & WRITE) && ret < 0)) {
837 loff_t isize = i_size_read(inode);
838 loff_t end = offset + iov_length(iov, nr_segs);
839
840 if (end > isize)
841 ext4_truncate_failed_write(inode);
842 }
843 }
844 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
845 goto retry;
846
847 if (orphan) {
848 int err;
849
850 /* Credits for sb + inode write */
851 handle = ext4_journal_start(inode, 2);
852 if (IS_ERR(handle)) {
853 /* This is really bad luck. We've written the data
854 * but cannot extend i_size. Bail out and pretend
855 * the write failed... */
856 ret = PTR_ERR(handle);
857 if (inode->i_nlink)
858 ext4_orphan_del(NULL, inode);
859
860 goto out;
861 }
862 if (inode->i_nlink)
863 ext4_orphan_del(handle, inode);
864 if (ret > 0) {
865 loff_t end = offset + ret;
866 if (end > inode->i_size) {
867 ei->i_disksize = end;
868 i_size_write(inode, end);
869 /*
870 * We're going to return a positive `ret'
871 * here due to non-zero-length I/O, so there's
872 * no way of reporting error returns from
873 * ext4_mark_inode_dirty() to userspace. So
874 * ignore it.
875 */
876 ext4_mark_inode_dirty(handle, inode);
877 }
878 }
879 err = ext4_journal_stop(handle);
880 if (ret == 0)
881 ret = err;
882 }
883 out:
884 return ret;
885 }
886
887 /*
888 * Calculate the number of metadata blocks need to reserve
889 * to allocate a new block at @lblocks for non extent file based file
890 */
891 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
892 {
893 struct ext4_inode_info *ei = EXT4_I(inode);
894 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
895 int blk_bits;
896
897 if (lblock < EXT4_NDIR_BLOCKS)
898 return 0;
899
900 lblock -= EXT4_NDIR_BLOCKS;
901
902 if (ei->i_da_metadata_calc_len &&
903 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
904 ei->i_da_metadata_calc_len++;
905 return 0;
906 }
907 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
908 ei->i_da_metadata_calc_len = 1;
909 blk_bits = order_base_2(lblock);
910 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
911 }
912
913 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
914 {
915 int indirects;
916
917 /* if nrblocks are contiguous */
918 if (chunk) {
919 /*
920 * With N contiguous data blocks, we need at most
921 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
922 * 2 dindirect blocks, and 1 tindirect block
923 */
924 return DIV_ROUND_UP(nrblocks,
925 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
926 }
927 /*
928 * if nrblocks are not contiguous, worse case, each block touch
929 * a indirect block, and each indirect block touch a double indirect
930 * block, plus a triple indirect block
931 */
932 indirects = nrblocks * 2 + 1;
933 return indirects;
934 }
935
936 /*
937 * Truncate transactions can be complex and absolutely huge. So we need to
938 * be able to restart the transaction at a conventient checkpoint to make
939 * sure we don't overflow the journal.
940 *
941 * start_transaction gets us a new handle for a truncate transaction,
942 * and extend_transaction tries to extend the existing one a bit. If
943 * extend fails, we need to propagate the failure up and restart the
944 * transaction in the top-level truncate loop. --sct
945 */
946 static handle_t *start_transaction(struct inode *inode)
947 {
948 handle_t *result;
949
950 result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode));
951 if (!IS_ERR(result))
952 return result;
953
954 ext4_std_error(inode->i_sb, PTR_ERR(result));
955 return result;
956 }
957
958 /*
959 * Try to extend this transaction for the purposes of truncation.
960 *
961 * Returns 0 if we managed to create more room. If we can't create more
962 * room, and the transaction must be restarted we return 1.
963 */
964 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
965 {
966 if (!ext4_handle_valid(handle))
967 return 0;
968 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
969 return 0;
970 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
971 return 0;
972 return 1;
973 }
974
975 /*
976 * Probably it should be a library function... search for first non-zero word
977 * or memcmp with zero_page, whatever is better for particular architecture.
978 * Linus?
979 */
980 static inline int all_zeroes(__le32 *p, __le32 *q)
981 {
982 while (p < q)
983 if (*p++)
984 return 0;
985 return 1;
986 }
987
988 /**
989 * ext4_find_shared - find the indirect blocks for partial truncation.
990 * @inode: inode in question
991 * @depth: depth of the affected branch
992 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
993 * @chain: place to store the pointers to partial indirect blocks
994 * @top: place to the (detached) top of branch
995 *
996 * This is a helper function used by ext4_truncate().
997 *
998 * When we do truncate() we may have to clean the ends of several
999 * indirect blocks but leave the blocks themselves alive. Block is
1000 * partially truncated if some data below the new i_size is referred
1001 * from it (and it is on the path to the first completely truncated
1002 * data block, indeed). We have to free the top of that path along
1003 * with everything to the right of the path. Since no allocation
1004 * past the truncation point is possible until ext4_truncate()
1005 * finishes, we may safely do the latter, but top of branch may
1006 * require special attention - pageout below the truncation point
1007 * might try to populate it.
1008 *
1009 * We atomically detach the top of branch from the tree, store the
1010 * block number of its root in *@top, pointers to buffer_heads of
1011 * partially truncated blocks - in @chain[].bh and pointers to
1012 * their last elements that should not be removed - in
1013 * @chain[].p. Return value is the pointer to last filled element
1014 * of @chain.
1015 *
1016 * The work left to caller to do the actual freeing of subtrees:
1017 * a) free the subtree starting from *@top
1018 * b) free the subtrees whose roots are stored in
1019 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1020 * c) free the subtrees growing from the inode past the @chain[0].
1021 * (no partially truncated stuff there). */
1022
1023 static Indirect *ext4_find_shared(struct inode *inode, int depth,
1024 ext4_lblk_t offsets[4], Indirect chain[4],
1025 __le32 *top)
1026 {
1027 Indirect *partial, *p;
1028 int k, err;
1029
1030 *top = 0;
1031 /* Make k index the deepest non-null offset + 1 */
1032 for (k = depth; k > 1 && !offsets[k-1]; k--)
1033 ;
1034 partial = ext4_get_branch(inode, k, offsets, chain, &err);
1035 /* Writer: pointers */
1036 if (!partial)
1037 partial = chain + k-1;
1038 /*
1039 * If the branch acquired continuation since we've looked at it -
1040 * fine, it should all survive and (new) top doesn't belong to us.
1041 */
1042 if (!partial->key && *partial->p)
1043 /* Writer: end */
1044 goto no_top;
1045 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
1046 ;
1047 /*
1048 * OK, we've found the last block that must survive. The rest of our
1049 * branch should be detached before unlocking. However, if that rest
1050 * of branch is all ours and does not grow immediately from the inode
1051 * it's easier to cheat and just decrement partial->p.
1052 */
1053 if (p == chain + k - 1 && p > chain) {
1054 p->p--;
1055 } else {
1056 *top = *p->p;
1057 /* Nope, don't do this in ext4. Must leave the tree intact */
1058 #if 0
1059 *p->p = 0;
1060 #endif
1061 }
1062 /* Writer: end */
1063
1064 while (partial > p) {
1065 brelse(partial->bh);
1066 partial--;
1067 }
1068 no_top:
1069 return partial;
1070 }
1071
1072 /*
1073 * Zero a number of block pointers in either an inode or an indirect block.
1074 * If we restart the transaction we must again get write access to the
1075 * indirect block for further modification.
1076 *
1077 * We release `count' blocks on disk, but (last - first) may be greater
1078 * than `count' because there can be holes in there.
1079 *
1080 * Return 0 on success, 1 on invalid block range
1081 * and < 0 on fatal error.
1082 */
1083 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
1084 struct buffer_head *bh,
1085 ext4_fsblk_t block_to_free,
1086 unsigned long count, __le32 *first,
1087 __le32 *last)
1088 {
1089 __le32 *p;
1090 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
1091 int err;
1092
1093 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1094 flags |= EXT4_FREE_BLOCKS_METADATA;
1095
1096 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
1097 count)) {
1098 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
1099 "blocks %llu len %lu",
1100 (unsigned long long) block_to_free, count);
1101 return 1;
1102 }
1103
1104 if (try_to_extend_transaction(handle, inode)) {
1105 if (bh) {
1106 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1107 err = ext4_handle_dirty_metadata(handle, inode, bh);
1108 if (unlikely(err))
1109 goto out_err;
1110 }
1111 err = ext4_mark_inode_dirty(handle, inode);
1112 if (unlikely(err))
1113 goto out_err;
1114 err = ext4_truncate_restart_trans(handle, inode,
1115 ext4_blocks_for_truncate(inode));
1116 if (unlikely(err))
1117 goto out_err;
1118 if (bh) {
1119 BUFFER_TRACE(bh, "retaking write access");
1120 err = ext4_journal_get_write_access(handle, bh);
1121 if (unlikely(err))
1122 goto out_err;
1123 }
1124 }
1125
1126 for (p = first; p < last; p++)
1127 *p = 0;
1128
1129 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
1130 return 0;
1131 out_err:
1132 ext4_std_error(inode->i_sb, err);
1133 return err;
1134 }
1135
1136 /**
1137 * ext4_free_data - free a list of data blocks
1138 * @handle: handle for this transaction
1139 * @inode: inode we are dealing with
1140 * @this_bh: indirect buffer_head which contains *@first and *@last
1141 * @first: array of block numbers
1142 * @last: points immediately past the end of array
1143 *
1144 * We are freeing all blocks referred from that array (numbers are stored as
1145 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1146 *
1147 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1148 * blocks are contiguous then releasing them at one time will only affect one
1149 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1150 * actually use a lot of journal space.
1151 *
1152 * @this_bh will be %NULL if @first and @last point into the inode's direct
1153 * block pointers.
1154 */
1155 static void ext4_free_data(handle_t *handle, struct inode *inode,
1156 struct buffer_head *this_bh,
1157 __le32 *first, __le32 *last)
1158 {
1159 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1160 unsigned long count = 0; /* Number of blocks in the run */
1161 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1162 corresponding to
1163 block_to_free */
1164 ext4_fsblk_t nr; /* Current block # */
1165 __le32 *p; /* Pointer into inode/ind
1166 for current block */
1167 int err = 0;
1168
1169 if (this_bh) { /* For indirect block */
1170 BUFFER_TRACE(this_bh, "get_write_access");
1171 err = ext4_journal_get_write_access(handle, this_bh);
1172 /* Important: if we can't update the indirect pointers
1173 * to the blocks, we can't free them. */
1174 if (err)
1175 return;
1176 }
1177
1178 for (p = first; p < last; p++) {
1179 nr = le32_to_cpu(*p);
1180 if (nr) {
1181 /* accumulate blocks to free if they're contiguous */
1182 if (count == 0) {
1183 block_to_free = nr;
1184 block_to_free_p = p;
1185 count = 1;
1186 } else if (nr == block_to_free + count) {
1187 count++;
1188 } else {
1189 err = ext4_clear_blocks(handle, inode, this_bh,
1190 block_to_free, count,
1191 block_to_free_p, p);
1192 if (err)
1193 break;
1194 block_to_free = nr;
1195 block_to_free_p = p;
1196 count = 1;
1197 }
1198 }
1199 }
1200
1201 if (!err && count > 0)
1202 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1203 count, block_to_free_p, p);
1204 if (err < 0)
1205 /* fatal error */
1206 return;
1207
1208 if (this_bh) {
1209 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1210
1211 /*
1212 * The buffer head should have an attached journal head at this
1213 * point. However, if the data is corrupted and an indirect
1214 * block pointed to itself, it would have been detached when
1215 * the block was cleared. Check for this instead of OOPSing.
1216 */
1217 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1218 ext4_handle_dirty_metadata(handle, inode, this_bh);
1219 else
1220 EXT4_ERROR_INODE(inode,
1221 "circular indirect block detected at "
1222 "block %llu",
1223 (unsigned long long) this_bh->b_blocknr);
1224 }
1225 }
1226
1227 /**
1228 * ext4_free_branches - free an array of branches
1229 * @handle: JBD handle for this transaction
1230 * @inode: inode we are dealing with
1231 * @parent_bh: the buffer_head which contains *@first and *@last
1232 * @first: array of block numbers
1233 * @last: pointer immediately past the end of array
1234 * @depth: depth of the branches to free
1235 *
1236 * We are freeing all blocks referred from these branches (numbers are
1237 * stored as little-endian 32-bit) and updating @inode->i_blocks
1238 * appropriately.
1239 */
1240 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1241 struct buffer_head *parent_bh,
1242 __le32 *first, __le32 *last, int depth)
1243 {
1244 ext4_fsblk_t nr;
1245 __le32 *p;
1246
1247 if (ext4_handle_is_aborted(handle))
1248 return;
1249
1250 if (depth--) {
1251 struct buffer_head *bh;
1252 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1253 p = last;
1254 while (--p >= first) {
1255 nr = le32_to_cpu(*p);
1256 if (!nr)
1257 continue; /* A hole */
1258
1259 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1260 nr, 1)) {
1261 EXT4_ERROR_INODE(inode,
1262 "invalid indirect mapped "
1263 "block %lu (level %d)",
1264 (unsigned long) nr, depth);
1265 break;
1266 }
1267
1268 /* Go read the buffer for the next level down */
1269 bh = sb_bread(inode->i_sb, nr);
1270
1271 /*
1272 * A read failure? Report error and clear slot
1273 * (should be rare).
1274 */
1275 if (!bh) {
1276 EXT4_ERROR_INODE_BLOCK(inode, nr,
1277 "Read failure");
1278 continue;
1279 }
1280
1281 /* This zaps the entire block. Bottom up. */
1282 BUFFER_TRACE(bh, "free child branches");
1283 ext4_free_branches(handle, inode, bh,
1284 (__le32 *) bh->b_data,
1285 (__le32 *) bh->b_data + addr_per_block,
1286 depth);
1287 brelse(bh);
1288
1289 /*
1290 * Everything below this this pointer has been
1291 * released. Now let this top-of-subtree go.
1292 *
1293 * We want the freeing of this indirect block to be
1294 * atomic in the journal with the updating of the
1295 * bitmap block which owns it. So make some room in
1296 * the journal.
1297 *
1298 * We zero the parent pointer *after* freeing its
1299 * pointee in the bitmaps, so if extend_transaction()
1300 * for some reason fails to put the bitmap changes and
1301 * the release into the same transaction, recovery
1302 * will merely complain about releasing a free block,
1303 * rather than leaking blocks.
1304 */
1305 if (ext4_handle_is_aborted(handle))
1306 return;
1307 if (try_to_extend_transaction(handle, inode)) {
1308 ext4_mark_inode_dirty(handle, inode);
1309 ext4_truncate_restart_trans(handle, inode,
1310 ext4_blocks_for_truncate(inode));
1311 }
1312
1313 /*
1314 * The forget flag here is critical because if
1315 * we are journaling (and not doing data
1316 * journaling), we have to make sure a revoke
1317 * record is written to prevent the journal
1318 * replay from overwriting the (former)
1319 * indirect block if it gets reallocated as a
1320 * data block. This must happen in the same
1321 * transaction where the data blocks are
1322 * actually freed.
1323 */
1324 ext4_free_blocks(handle, inode, NULL, nr, 1,
1325 EXT4_FREE_BLOCKS_METADATA|
1326 EXT4_FREE_BLOCKS_FORGET);
1327
1328 if (parent_bh) {
1329 /*
1330 * The block which we have just freed is
1331 * pointed to by an indirect block: journal it
1332 */
1333 BUFFER_TRACE(parent_bh, "get_write_access");
1334 if (!ext4_journal_get_write_access(handle,
1335 parent_bh)){
1336 *p = 0;
1337 BUFFER_TRACE(parent_bh,
1338 "call ext4_handle_dirty_metadata");
1339 ext4_handle_dirty_metadata(handle,
1340 inode,
1341 parent_bh);
1342 }
1343 }
1344 }
1345 } else {
1346 /* We have reached the bottom of the tree. */
1347 BUFFER_TRACE(parent_bh, "free data blocks");
1348 ext4_free_data(handle, inode, parent_bh, first, last);
1349 }
1350 }
1351
1352 void ext4_ind_truncate(struct inode *inode)
1353 {
1354 handle_t *handle;
1355 struct ext4_inode_info *ei = EXT4_I(inode);
1356 __le32 *i_data = ei->i_data;
1357 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1358 struct address_space *mapping = inode->i_mapping;
1359 ext4_lblk_t offsets[4];
1360 Indirect chain[4];
1361 Indirect *partial;
1362 __le32 nr = 0;
1363 int n = 0;
1364 ext4_lblk_t last_block, max_block;
1365 loff_t page_len;
1366 unsigned blocksize = inode->i_sb->s_blocksize;
1367 int err;
1368
1369 handle = start_transaction(inode);
1370 if (IS_ERR(handle))
1371 return; /* AKPM: return what? */
1372
1373 last_block = (inode->i_size + blocksize-1)
1374 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1375 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1376 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1377
1378 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
1379 page_len = PAGE_CACHE_SIZE -
1380 (inode->i_size & (PAGE_CACHE_SIZE - 1));
1381
1382 err = ext4_discard_partial_page_buffers(handle,
1383 mapping, inode->i_size, page_len, 0);
1384
1385 if (err)
1386 goto out_stop;
1387 }
1388
1389 if (last_block != max_block) {
1390 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1391 if (n == 0)
1392 goto out_stop; /* error */
1393 }
1394
1395 /*
1396 * OK. This truncate is going to happen. We add the inode to the
1397 * orphan list, so that if this truncate spans multiple transactions,
1398 * and we crash, we will resume the truncate when the filesystem
1399 * recovers. It also marks the inode dirty, to catch the new size.
1400 *
1401 * Implication: the file must always be in a sane, consistent
1402 * truncatable state while each transaction commits.
1403 */
1404 if (ext4_orphan_add(handle, inode))
1405 goto out_stop;
1406
1407 /*
1408 * From here we block out all ext4_get_block() callers who want to
1409 * modify the block allocation tree.
1410 */
1411 down_write(&ei->i_data_sem);
1412
1413 ext4_discard_preallocations(inode);
1414 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1415
1416 /*
1417 * The orphan list entry will now protect us from any crash which
1418 * occurs before the truncate completes, so it is now safe to propagate
1419 * the new, shorter inode size (held for now in i_size) into the
1420 * on-disk inode. We do this via i_disksize, which is the value which
1421 * ext4 *really* writes onto the disk inode.
1422 */
1423 ei->i_disksize = inode->i_size;
1424
1425 if (last_block == max_block) {
1426 /*
1427 * It is unnecessary to free any data blocks if last_block is
1428 * equal to the indirect block limit.
1429 */
1430 goto out_unlock;
1431 } else if (n == 1) { /* direct blocks */
1432 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1433 i_data + EXT4_NDIR_BLOCKS);
1434 goto do_indirects;
1435 }
1436
1437 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1438 /* Kill the top of shared branch (not detached) */
1439 if (nr) {
1440 if (partial == chain) {
1441 /* Shared branch grows from the inode */
1442 ext4_free_branches(handle, inode, NULL,
1443 &nr, &nr+1, (chain+n-1) - partial);
1444 *partial->p = 0;
1445 /*
1446 * We mark the inode dirty prior to restart,
1447 * and prior to stop. No need for it here.
1448 */
1449 } else {
1450 /* Shared branch grows from an indirect block */
1451 BUFFER_TRACE(partial->bh, "get_write_access");
1452 ext4_free_branches(handle, inode, partial->bh,
1453 partial->p,
1454 partial->p+1, (chain+n-1) - partial);
1455 }
1456 }
1457 /* Clear the ends of indirect blocks on the shared branch */
1458 while (partial > chain) {
1459 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1460 (__le32*)partial->bh->b_data+addr_per_block,
1461 (chain+n-1) - partial);
1462 BUFFER_TRACE(partial->bh, "call brelse");
1463 brelse(partial->bh);
1464 partial--;
1465 }
1466 do_indirects:
1467 /* Kill the remaining (whole) subtrees */
1468 switch (offsets[0]) {
1469 default:
1470 nr = i_data[EXT4_IND_BLOCK];
1471 if (nr) {
1472 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1473 i_data[EXT4_IND_BLOCK] = 0;
1474 }
1475 case EXT4_IND_BLOCK:
1476 nr = i_data[EXT4_DIND_BLOCK];
1477 if (nr) {
1478 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1479 i_data[EXT4_DIND_BLOCK] = 0;
1480 }
1481 case EXT4_DIND_BLOCK:
1482 nr = i_data[EXT4_TIND_BLOCK];
1483 if (nr) {
1484 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1485 i_data[EXT4_TIND_BLOCK] = 0;
1486 }
1487 case EXT4_TIND_BLOCK:
1488 ;
1489 }
1490
1491 out_unlock:
1492 up_write(&ei->i_data_sem);
1493 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
1494 ext4_mark_inode_dirty(handle, inode);
1495
1496 /*
1497 * In a multi-transaction truncate, we only make the final transaction
1498 * synchronous
1499 */
1500 if (IS_SYNC(inode))
1501 ext4_handle_sync(handle);
1502 out_stop:
1503 /*
1504 * If this was a simple ftruncate(), and the file will remain alive
1505 * then we need to clear up the orphan record which we created above.
1506 * However, if this was a real unlink then we were called by
1507 * ext4_delete_inode(), and we allow that function to clean up the
1508 * orphan info for us.
1509 */
1510 if (inode->i_nlink)
1511 ext4_orphan_del(handle, inode);
1512
1513 ext4_journal_stop(handle);
1514 trace_ext4_truncate_exit(inode);
1515 }
1516