]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
Merge remote-tracking branch 'asoc/fix/da7213' into asoc-linus
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75 return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80 {
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120 {
121 trace_ext4_begin_ordered_truncate(inode, new_size);
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139 struct inode *inode, struct page *page, loff_t from,
140 loff_t length, int flags);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages(&inode->i_data, 0);
218 ext4_ioend_shutdown(inode);
219 goto no_delete;
220 }
221
222 if (!is_bad_inode(inode))
223 dquot_initialize(inode);
224
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
228 ext4_ioend_shutdown(inode);
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
254 inode->i_size = 0;
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
257 ext4_warning(inode->i_sb,
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
261 if (inode->i_blocks)
262 ext4_truncate(inode);
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
270 if (!ext4_handle_has_enough_credits(handle, 3)) {
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
275 ext4_warning(inode->i_sb,
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
279 ext4_orphan_del(NULL, inode);
280 sb_end_intwrite(inode->i_sb);
281 goto no_delete;
282 }
283 }
284
285 /*
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
292 */
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
303 if (ext4_mark_inode_dirty(handle, inode))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode);
306 else
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
309 sb_end_intwrite(inode->i_sb);
310 return;
311 no_delete:
312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
313 }
314
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321
322 /*
323 * Calculate the number of metadata blocks need to reserve
324 * to allocate a block located at @lblock
325 */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329 return ext4_ext_calc_metadata_amount(inode, lblock);
330
331 return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333
334 /*
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
337 */
338 void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
340 {
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 struct ext4_inode_info *ei = EXT4_I(inode);
343
344 spin_lock(&ei->i_block_reservation_lock);
345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 if (unlikely(used > ei->i_reserved_data_blocks)) {
347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 "with only %d reserved data blocks",
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
353 }
354
355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 "with only %d reserved metadata blocks "
358 "(releasing %d blocks with reserved %d data blocks)",
359 inode->i_ino, ei->i_allocated_meta_blocks,
360 ei->i_reserved_meta_blocks, used,
361 ei->i_reserved_data_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 used + ei->i_allocated_meta_blocks);
371 ei->i_allocated_meta_blocks = 0;
372
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 ei->i_reserved_meta_blocks);
381 ei->i_reserved_meta_blocks = 0;
382 ei->i_da_metadata_calc_len = 0;
383 }
384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 else {
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
393 * not re-claim the quota for fallocated blocks.
394 */
395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 }
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
405 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409 unsigned int line,
410 struct ext4_map_blocks *map)
411 {
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
418 return -EIO;
419 }
420 return 0;
421 }
422
423 #define check_block_validity(inode, map) \
424 __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
429 */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432 {
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
476 if (num >= max_pages) {
477 done = 1;
478 break;
479 }
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484 }
485
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488 struct inode *inode,
489 struct ext4_map_blocks *es_map,
490 struct ext4_map_blocks *map,
491 int flags)
492 {
493 int retval;
494
495 map->m_flags = 0;
496 /*
497 * There is a race window that the result is not the same.
498 * e.g. xfstests #223 when dioread_nolock enables. The reason
499 * is that we lookup a block mapping in extent status tree with
500 * out taking i_data_sem. So at the time the unwritten extent
501 * could be converted.
502 */
503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 down_read((&EXT4_I(inode)->i_data_sem));
505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 EXT4_GET_BLOCKS_KEEP_SIZE);
508 } else {
509 retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 EXT4_GET_BLOCKS_KEEP_SIZE);
511 }
512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 up_read((&EXT4_I(inode)->i_data_sem));
514 /*
515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 * because it shouldn't be marked in es_map->m_flags.
517 */
518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519
520 /*
521 * We don't check m_len because extent will be collpased in status
522 * tree. So the m_len might not equal.
523 */
524 if (es_map->m_lblk != map->m_lblk ||
525 es_map->m_flags != map->m_flags ||
526 es_map->m_pblk != map->m_pblk) {
527 printk("ES cache assertation failed for inode: %lu "
528 "es_cached ex [%d/%d/%llu/%x] != "
529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 inode->i_ino, es_map->m_lblk, es_map->m_len,
531 es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 map->m_len, map->m_pblk, map->m_flags,
533 retval, flags);
534 }
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537
538 /*
539 * The ext4_map_blocks() function tries to look up the requested blocks,
540 * and returns if the blocks are already mapped.
541 *
542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543 * and store the allocated blocks in the result buffer head and mark it
544 * mapped.
545 *
546 * If file type is extents based, it will call ext4_ext_map_blocks(),
547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548 * based files
549 *
550 * On success, it returns the number of blocks being mapped or allocate.
551 * if create==0 and the blocks are pre-allocated and uninitialized block,
552 * the result buffer head is unmapped. If the create ==1, it will make sure
553 * the buffer head is mapped.
554 *
555 * It returns 0 if plain look up failed (blocks have not been allocated), in
556 * that case, buffer head is unmapped
557 *
558 * It returns the error in case of allocation failure.
559 */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 struct ext4_map_blocks *map, int flags)
562 {
563 struct extent_status es;
564 int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566 struct ext4_map_blocks orig_map;
567
568 memcpy(&orig_map, map, sizeof(*map));
569 #endif
570
571 map->m_flags = 0;
572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 (unsigned long) map->m_lblk);
575
576 /* Lookup extent status tree firstly */
577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 map->m_pblk = ext4_es_pblock(&es) +
580 map->m_lblk - es.es_lblk;
581 map->m_flags |= ext4_es_is_written(&es) ?
582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 retval = es.es_len - (map->m_lblk - es.es_lblk);
584 if (retval > map->m_len)
585 retval = map->m_len;
586 map->m_len = retval;
587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 retval = 0;
589 } else {
590 BUG_ON(1);
591 }
592 #ifdef ES_AGGRESSIVE_TEST
593 ext4_map_blocks_es_recheck(handle, inode, map,
594 &orig_map, flags);
595 #endif
596 goto found;
597 }
598
599 /*
600 * Try to see if we can get the block without requesting a new
601 * file system block.
602 */
603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 down_read((&EXT4_I(inode)->i_data_sem));
605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 EXT4_GET_BLOCKS_KEEP_SIZE);
608 } else {
609 retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 EXT4_GET_BLOCKS_KEEP_SIZE);
611 }
612 if (retval > 0) {
613 int ret;
614 unsigned long long status;
615
616 #ifdef ES_AGGRESSIVE_TEST
617 if (retval != map->m_len) {
618 printk("ES len assertation failed for inode: %lu "
619 "retval %d != map->m_len %d "
620 "in %s (lookup)\n", inode->i_ino, retval,
621 map->m_len, __func__);
622 }
623 #endif
624
625 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 ext4_find_delalloc_range(inode, map->m_lblk,
629 map->m_lblk + map->m_len - 1))
630 status |= EXTENT_STATUS_DELAYED;
631 ret = ext4_es_insert_extent(inode, map->m_lblk,
632 map->m_len, map->m_pblk, status);
633 if (ret < 0)
634 retval = ret;
635 }
636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 up_read((&EXT4_I(inode)->i_data_sem));
638
639 found:
640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641 int ret = check_block_validity(inode, map);
642 if (ret != 0)
643 return ret;
644 }
645
646 /* If it is only a block(s) look up */
647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 return retval;
649
650 /*
651 * Returns if the blocks have already allocated
652 *
653 * Note that if blocks have been preallocated
654 * ext4_ext_get_block() returns the create = 0
655 * with buffer head unmapped.
656 */
657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 return retval;
659
660 /*
661 * Here we clear m_flags because after allocating an new extent,
662 * it will be set again.
663 */
664 map->m_flags &= ~EXT4_MAP_FLAGS;
665
666 /*
667 * New blocks allocate and/or writing to uninitialized extent
668 * will possibly result in updating i_data, so we take
669 * the write lock of i_data_sem, and call get_blocks()
670 * with create == 1 flag.
671 */
672 down_write((&EXT4_I(inode)->i_data_sem));
673
674 /*
675 * if the caller is from delayed allocation writeout path
676 * we have already reserved fs blocks for allocation
677 * let the underlying get_block() function know to
678 * avoid double accounting
679 */
680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 /*
683 * We need to check for EXT4 here because migrate
684 * could have changed the inode type in between
685 */
686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687 retval = ext4_ext_map_blocks(handle, inode, map, flags);
688 } else {
689 retval = ext4_ind_map_blocks(handle, inode, map, flags);
690
691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 /*
693 * We allocated new blocks which will result in
694 * i_data's format changing. Force the migrate
695 * to fail by clearing migrate flags
696 */
697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698 }
699
700 /*
701 * Update reserved blocks/metadata blocks after successful
702 * block allocation which had been deferred till now. We don't
703 * support fallocate for non extent files. So we can update
704 * reserve space here.
705 */
706 if ((retval > 0) &&
707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 ext4_da_update_reserve_space(inode, retval, 1);
709 }
710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712
713 if (retval > 0) {
714 int ret;
715 unsigned long long status;
716
717 #ifdef ES_AGGRESSIVE_TEST
718 if (retval != map->m_len) {
719 printk("ES len assertation failed for inode: %lu "
720 "retval %d != map->m_len %d "
721 "in %s (allocation)\n", inode->i_ino, retval,
722 map->m_len, __func__);
723 }
724 #endif
725
726 /*
727 * If the extent has been zeroed out, we don't need to update
728 * extent status tree.
729 */
730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 if (ext4_es_is_written(&es))
733 goto has_zeroout;
734 }
735 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 ext4_find_delalloc_range(inode, map->m_lblk,
739 map->m_lblk + map->m_len - 1))
740 status |= EXTENT_STATUS_DELAYED;
741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 map->m_pblk, status);
743 if (ret < 0)
744 retval = ret;
745 }
746
747 has_zeroout:
748 up_write((&EXT4_I(inode)->i_data_sem));
749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750 int ret = check_block_validity(inode, map);
751 if (ret != 0)
752 return ret;
753 }
754 return retval;
755 }
756
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
762 {
763 handle_t *handle = ext4_journal_current_handle();
764 struct ext4_map_blocks map;
765 int ret = 0, started = 0;
766 int dio_credits;
767
768 if (ext4_has_inline_data(inode))
769 return -ERANGE;
770
771 map.m_lblk = iblock;
772 map.m_len = bh->b_size >> inode->i_blkbits;
773
774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775 /* Direct IO write... */
776 if (map.m_len > DIO_MAX_BLOCKS)
777 map.m_len = DIO_MAX_BLOCKS;
778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 dio_credits);
781 if (IS_ERR(handle)) {
782 ret = PTR_ERR(handle);
783 return ret;
784 }
785 started = 1;
786 }
787
788 ret = ext4_map_blocks(handle, inode, &map, flags);
789 if (ret > 0) {
790 map_bh(bh, inode->i_sb, map.m_pblk);
791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 ret = 0;
794 }
795 if (started)
796 ext4_journal_stop(handle);
797 return ret;
798 }
799
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801 struct buffer_head *bh, int create)
802 {
803 return _ext4_get_block(inode, iblock, bh,
804 create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806
807 /*
808 * `handle' can be NULL if create is zero
809 */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811 ext4_lblk_t block, int create, int *errp)
812 {
813 struct ext4_map_blocks map;
814 struct buffer_head *bh;
815 int fatal = 0, err;
816
817 J_ASSERT(handle != NULL || create == 0);
818
819 map.m_lblk = block;
820 map.m_len = 1;
821 err = ext4_map_blocks(handle, inode, &map,
822 create ? EXT4_GET_BLOCKS_CREATE : 0);
823
824 /* ensure we send some value back into *errp */
825 *errp = 0;
826
827 if (create && err == 0)
828 err = -ENOSPC; /* should never happen */
829 if (err < 0)
830 *errp = err;
831 if (err <= 0)
832 return NULL;
833
834 bh = sb_getblk(inode->i_sb, map.m_pblk);
835 if (unlikely(!bh)) {
836 *errp = -ENOMEM;
837 return NULL;
838 }
839 if (map.m_flags & EXT4_MAP_NEW) {
840 J_ASSERT(create != 0);
841 J_ASSERT(handle != NULL);
842
843 /*
844 * Now that we do not always journal data, we should
845 * keep in mind whether this should always journal the
846 * new buffer as metadata. For now, regular file
847 * writes use ext4_get_block instead, so it's not a
848 * problem.
849 */
850 lock_buffer(bh);
851 BUFFER_TRACE(bh, "call get_create_access");
852 fatal = ext4_journal_get_create_access(handle, bh);
853 if (!fatal && !buffer_uptodate(bh)) {
854 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 set_buffer_uptodate(bh);
856 }
857 unlock_buffer(bh);
858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 err = ext4_handle_dirty_metadata(handle, inode, bh);
860 if (!fatal)
861 fatal = err;
862 } else {
863 BUFFER_TRACE(bh, "not a new buffer");
864 }
865 if (fatal) {
866 *errp = fatal;
867 brelse(bh);
868 bh = NULL;
869 }
870 return bh;
871 }
872
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874 ext4_lblk_t block, int create, int *err)
875 {
876 struct buffer_head *bh;
877
878 bh = ext4_getblk(handle, inode, block, create, err);
879 if (!bh)
880 return bh;
881 if (buffer_uptodate(bh))
882 return bh;
883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 wait_on_buffer(bh);
885 if (buffer_uptodate(bh))
886 return bh;
887 put_bh(bh);
888 *err = -EIO;
889 return NULL;
890 }
891
892 int ext4_walk_page_buffers(handle_t *handle,
893 struct buffer_head *head,
894 unsigned from,
895 unsigned to,
896 int *partial,
897 int (*fn)(handle_t *handle,
898 struct buffer_head *bh))
899 {
900 struct buffer_head *bh;
901 unsigned block_start, block_end;
902 unsigned blocksize = head->b_size;
903 int err, ret = 0;
904 struct buffer_head *next;
905
906 for (bh = head, block_start = 0;
907 ret == 0 && (bh != head || !block_start);
908 block_start = block_end, bh = next) {
909 next = bh->b_this_page;
910 block_end = block_start + blocksize;
911 if (block_end <= from || block_start >= to) {
912 if (partial && !buffer_uptodate(bh))
913 *partial = 1;
914 continue;
915 }
916 err = (*fn)(handle, bh);
917 if (!ret)
918 ret = err;
919 }
920 return ret;
921 }
922
923 /*
924 * To preserve ordering, it is essential that the hole instantiation and
925 * the data write be encapsulated in a single transaction. We cannot
926 * close off a transaction and start a new one between the ext4_get_block()
927 * and the commit_write(). So doing the jbd2_journal_start at the start of
928 * prepare_write() is the right place.
929 *
930 * Also, this function can nest inside ext4_writepage(). In that case, we
931 * *know* that ext4_writepage() has generated enough buffer credits to do the
932 * whole page. So we won't block on the journal in that case, which is good,
933 * because the caller may be PF_MEMALLOC.
934 *
935 * By accident, ext4 can be reentered when a transaction is open via
936 * quota file writes. If we were to commit the transaction while thus
937 * reentered, there can be a deadlock - we would be holding a quota
938 * lock, and the commit would never complete if another thread had a
939 * transaction open and was blocking on the quota lock - a ranking
940 * violation.
941 *
942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943 * will _not_ run commit under these circumstances because handle->h_ref
944 * is elevated. We'll still have enough credits for the tiny quotafile
945 * write.
946 */
947 int do_journal_get_write_access(handle_t *handle,
948 struct buffer_head *bh)
949 {
950 int dirty = buffer_dirty(bh);
951 int ret;
952
953 if (!buffer_mapped(bh) || buffer_freed(bh))
954 return 0;
955 /*
956 * __block_write_begin() could have dirtied some buffers. Clean
957 * the dirty bit as jbd2_journal_get_write_access() could complain
958 * otherwise about fs integrity issues. Setting of the dirty bit
959 * by __block_write_begin() isn't a real problem here as we clear
960 * the bit before releasing a page lock and thus writeback cannot
961 * ever write the buffer.
962 */
963 if (dirty)
964 clear_buffer_dirty(bh);
965 ret = ext4_journal_get_write_access(handle, bh);
966 if (!ret && dirty)
967 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 return ret;
969 }
970
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 loff_t pos, unsigned len, unsigned flags,
975 struct page **pagep, void **fsdata)
976 {
977 struct inode *inode = mapping->host;
978 int ret, needed_blocks;
979 handle_t *handle;
980 int retries = 0;
981 struct page *page;
982 pgoff_t index;
983 unsigned from, to;
984
985 trace_ext4_write_begin(inode, pos, len, flags);
986 /*
987 * Reserve one block more for addition to orphan list in case
988 * we allocate blocks but write fails for some reason
989 */
990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 index = pos >> PAGE_CACHE_SHIFT;
992 from = pos & (PAGE_CACHE_SIZE - 1);
993 to = from + len;
994
995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 flags, pagep);
998 if (ret < 0)
999 return ret;
1000 if (ret == 1)
1001 return 0;
1002 }
1003
1004 /*
1005 * grab_cache_page_write_begin() can take a long time if the
1006 * system is thrashing due to memory pressure, or if the page
1007 * is being written back. So grab it first before we start
1008 * the transaction handle. This also allows us to allocate
1009 * the page (if needed) without using GFP_NOFS.
1010 */
1011 retry_grab:
1012 page = grab_cache_page_write_begin(mapping, index, flags);
1013 if (!page)
1014 return -ENOMEM;
1015 unlock_page(page);
1016
1017 retry_journal:
1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 if (IS_ERR(handle)) {
1020 page_cache_release(page);
1021 return PTR_ERR(handle);
1022 }
1023
1024 lock_page(page);
1025 if (page->mapping != mapping) {
1026 /* The page got truncated from under us */
1027 unlock_page(page);
1028 page_cache_release(page);
1029 ext4_journal_stop(handle);
1030 goto retry_grab;
1031 }
1032 wait_on_page_writeback(page);
1033
1034 if (ext4_should_dioread_nolock(inode))
1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036 else
1037 ret = __block_write_begin(page, pos, len, ext4_get_block);
1038
1039 if (!ret && ext4_should_journal_data(inode)) {
1040 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 from, to, NULL,
1042 do_journal_get_write_access);
1043 }
1044
1045 if (ret) {
1046 unlock_page(page);
1047 /*
1048 * __block_write_begin may have instantiated a few blocks
1049 * outside i_size. Trim these off again. Don't need
1050 * i_size_read because we hold i_mutex.
1051 *
1052 * Add inode to orphan list in case we crash before
1053 * truncate finishes
1054 */
1055 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 ext4_orphan_add(handle, inode);
1057
1058 ext4_journal_stop(handle);
1059 if (pos + len > inode->i_size) {
1060 ext4_truncate_failed_write(inode);
1061 /*
1062 * If truncate failed early the inode might
1063 * still be on the orphan list; we need to
1064 * make sure the inode is removed from the
1065 * orphan list in that case.
1066 */
1067 if (inode->i_nlink)
1068 ext4_orphan_del(NULL, inode);
1069 }
1070
1071 if (ret == -ENOSPC &&
1072 ext4_should_retry_alloc(inode->i_sb, &retries))
1073 goto retry_journal;
1074 page_cache_release(page);
1075 return ret;
1076 }
1077 *pagep = page;
1078 return ret;
1079 }
1080
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084 int ret;
1085 if (!buffer_mapped(bh) || buffer_freed(bh))
1086 return 0;
1087 set_buffer_uptodate(bh);
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 clear_buffer_meta(bh);
1090 clear_buffer_prio(bh);
1091 return ret;
1092 }
1093
1094 /*
1095 * We need to pick up the new inode size which generic_commit_write gave us
1096 * `file' can be NULL - eg, when called from page_symlink().
1097 *
1098 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1099 * buffers are managed internally.
1100 */
1101 static int ext4_write_end(struct file *file,
1102 struct address_space *mapping,
1103 loff_t pos, unsigned len, unsigned copied,
1104 struct page *page, void *fsdata)
1105 {
1106 handle_t *handle = ext4_journal_current_handle();
1107 struct inode *inode = mapping->host;
1108 int ret = 0, ret2;
1109 int i_size_changed = 0;
1110
1111 trace_ext4_write_end(inode, pos, len, copied);
1112 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113 ret = ext4_jbd2_file_inode(handle, inode);
1114 if (ret) {
1115 unlock_page(page);
1116 page_cache_release(page);
1117 goto errout;
1118 }
1119 }
1120
1121 if (ext4_has_inline_data(inode))
1122 copied = ext4_write_inline_data_end(inode, pos, len,
1123 copied, page);
1124 else
1125 copied = block_write_end(file, mapping, pos,
1126 len, copied, page, fsdata);
1127
1128 /*
1129 * No need to use i_size_read() here, the i_size
1130 * cannot change under us because we hole i_mutex.
1131 *
1132 * But it's important to update i_size while still holding page lock:
1133 * page writeout could otherwise come in and zero beyond i_size.
1134 */
1135 if (pos + copied > inode->i_size) {
1136 i_size_write(inode, pos + copied);
1137 i_size_changed = 1;
1138 }
1139
1140 if (pos + copied > EXT4_I(inode)->i_disksize) {
1141 /* We need to mark inode dirty even if
1142 * new_i_size is less that inode->i_size
1143 * but greater than i_disksize. (hint delalloc)
1144 */
1145 ext4_update_i_disksize(inode, (pos + copied));
1146 i_size_changed = 1;
1147 }
1148 unlock_page(page);
1149 page_cache_release(page);
1150
1151 /*
1152 * Don't mark the inode dirty under page lock. First, it unnecessarily
1153 * makes the holding time of page lock longer. Second, it forces lock
1154 * ordering of page lock and transaction start for journaling
1155 * filesystems.
1156 */
1157 if (i_size_changed)
1158 ext4_mark_inode_dirty(handle, inode);
1159
1160 if (copied < 0)
1161 ret = copied;
1162 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1163 /* if we have allocated more blocks and copied
1164 * less. We will have blocks allocated outside
1165 * inode->i_size. So truncate them
1166 */
1167 ext4_orphan_add(handle, inode);
1168 errout:
1169 ret2 = ext4_journal_stop(handle);
1170 if (!ret)
1171 ret = ret2;
1172
1173 if (pos + len > inode->i_size) {
1174 ext4_truncate_failed_write(inode);
1175 /*
1176 * If truncate failed early the inode might still be
1177 * on the orphan list; we need to make sure the inode
1178 * is removed from the orphan list in that case.
1179 */
1180 if (inode->i_nlink)
1181 ext4_orphan_del(NULL, inode);
1182 }
1183
1184 return ret ? ret : copied;
1185 }
1186
1187 static int ext4_journalled_write_end(struct file *file,
1188 struct address_space *mapping,
1189 loff_t pos, unsigned len, unsigned copied,
1190 struct page *page, void *fsdata)
1191 {
1192 handle_t *handle = ext4_journal_current_handle();
1193 struct inode *inode = mapping->host;
1194 int ret = 0, ret2;
1195 int partial = 0;
1196 unsigned from, to;
1197 loff_t new_i_size;
1198
1199 trace_ext4_journalled_write_end(inode, pos, len, copied);
1200 from = pos & (PAGE_CACHE_SIZE - 1);
1201 to = from + len;
1202
1203 BUG_ON(!ext4_handle_valid(handle));
1204
1205 if (ext4_has_inline_data(inode))
1206 copied = ext4_write_inline_data_end(inode, pos, len,
1207 copied, page);
1208 else {
1209 if (copied < len) {
1210 if (!PageUptodate(page))
1211 copied = 0;
1212 page_zero_new_buffers(page, from+copied, to);
1213 }
1214
1215 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1216 to, &partial, write_end_fn);
1217 if (!partial)
1218 SetPageUptodate(page);
1219 }
1220 new_i_size = pos + copied;
1221 if (new_i_size > inode->i_size)
1222 i_size_write(inode, pos+copied);
1223 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1224 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1225 if (new_i_size > EXT4_I(inode)->i_disksize) {
1226 ext4_update_i_disksize(inode, new_i_size);
1227 ret2 = ext4_mark_inode_dirty(handle, inode);
1228 if (!ret)
1229 ret = ret2;
1230 }
1231
1232 unlock_page(page);
1233 page_cache_release(page);
1234 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235 /* if we have allocated more blocks and copied
1236 * less. We will have blocks allocated outside
1237 * inode->i_size. So truncate them
1238 */
1239 ext4_orphan_add(handle, inode);
1240
1241 ret2 = ext4_journal_stop(handle);
1242 if (!ret)
1243 ret = ret2;
1244 if (pos + len > inode->i_size) {
1245 ext4_truncate_failed_write(inode);
1246 /*
1247 * If truncate failed early the inode might still be
1248 * on the orphan list; we need to make sure the inode
1249 * is removed from the orphan list in that case.
1250 */
1251 if (inode->i_nlink)
1252 ext4_orphan_del(NULL, inode);
1253 }
1254
1255 return ret ? ret : copied;
1256 }
1257
1258 /*
1259 * Reserve a metadata for a single block located at lblock
1260 */
1261 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1262 {
1263 int retries = 0;
1264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1265 struct ext4_inode_info *ei = EXT4_I(inode);
1266 unsigned int md_needed;
1267 ext4_lblk_t save_last_lblock;
1268 int save_len;
1269
1270 /*
1271 * recalculate the amount of metadata blocks to reserve
1272 * in order to allocate nrblocks
1273 * worse case is one extent per block
1274 */
1275 repeat:
1276 spin_lock(&ei->i_block_reservation_lock);
1277 /*
1278 * ext4_calc_metadata_amount() has side effects, which we have
1279 * to be prepared undo if we fail to claim space.
1280 */
1281 save_len = ei->i_da_metadata_calc_len;
1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283 md_needed = EXT4_NUM_B2C(sbi,
1284 ext4_calc_metadata_amount(inode, lblock));
1285 trace_ext4_da_reserve_space(inode, md_needed);
1286
1287 /*
1288 * We do still charge estimated metadata to the sb though;
1289 * we cannot afford to run out of free blocks.
1290 */
1291 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1292 ei->i_da_metadata_calc_len = save_len;
1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 spin_unlock(&ei->i_block_reservation_lock);
1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296 cond_resched();
1297 goto repeat;
1298 }
1299 return -ENOSPC;
1300 }
1301 ei->i_reserved_meta_blocks += md_needed;
1302 spin_unlock(&ei->i_block_reservation_lock);
1303
1304 return 0; /* success */
1305 }
1306
1307 /*
1308 * Reserve a single cluster located at lblock
1309 */
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312 int retries = 0;
1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314 struct ext4_inode_info *ei = EXT4_I(inode);
1315 unsigned int md_needed;
1316 int ret;
1317 ext4_lblk_t save_last_lblock;
1318 int save_len;
1319
1320 /*
1321 * We will charge metadata quota at writeout time; this saves
1322 * us from metadata over-estimation, though we may go over by
1323 * a small amount in the end. Here we just reserve for data.
1324 */
1325 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326 if (ret)
1327 return ret;
1328
1329 /*
1330 * recalculate the amount of metadata blocks to reserve
1331 * in order to allocate nrblocks
1332 * worse case is one extent per block
1333 */
1334 repeat:
1335 spin_lock(&ei->i_block_reservation_lock);
1336 /*
1337 * ext4_calc_metadata_amount() has side effects, which we have
1338 * to be prepared undo if we fail to claim space.
1339 */
1340 save_len = ei->i_da_metadata_calc_len;
1341 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342 md_needed = EXT4_NUM_B2C(sbi,
1343 ext4_calc_metadata_amount(inode, lblock));
1344 trace_ext4_da_reserve_space(inode, md_needed);
1345
1346 /*
1347 * We do still charge estimated metadata to the sb though;
1348 * we cannot afford to run out of free blocks.
1349 */
1350 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351 ei->i_da_metadata_calc_len = save_len;
1352 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353 spin_unlock(&ei->i_block_reservation_lock);
1354 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1355 cond_resched();
1356 goto repeat;
1357 }
1358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359 return -ENOSPC;
1360 }
1361 ei->i_reserved_data_blocks++;
1362 ei->i_reserved_meta_blocks += md_needed;
1363 spin_unlock(&ei->i_block_reservation_lock);
1364
1365 return 0; /* success */
1366 }
1367
1368 static void ext4_da_release_space(struct inode *inode, int to_free)
1369 {
1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371 struct ext4_inode_info *ei = EXT4_I(inode);
1372
1373 if (!to_free)
1374 return; /* Nothing to release, exit */
1375
1376 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1377
1378 trace_ext4_da_release_space(inode, to_free);
1379 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1380 /*
1381 * if there aren't enough reserved blocks, then the
1382 * counter is messed up somewhere. Since this
1383 * function is called from invalidate page, it's
1384 * harmless to return without any action.
1385 */
1386 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387 "ino %lu, to_free %d with only %d reserved "
1388 "data blocks", inode->i_ino, to_free,
1389 ei->i_reserved_data_blocks);
1390 WARN_ON(1);
1391 to_free = ei->i_reserved_data_blocks;
1392 }
1393 ei->i_reserved_data_blocks -= to_free;
1394
1395 if (ei->i_reserved_data_blocks == 0) {
1396 /*
1397 * We can release all of the reserved metadata blocks
1398 * only when we have written all of the delayed
1399 * allocation blocks.
1400 * Note that in case of bigalloc, i_reserved_meta_blocks,
1401 * i_reserved_data_blocks, etc. refer to number of clusters.
1402 */
1403 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404 ei->i_reserved_meta_blocks);
1405 ei->i_reserved_meta_blocks = 0;
1406 ei->i_da_metadata_calc_len = 0;
1407 }
1408
1409 /* update fs dirty data blocks counter */
1410 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1411
1412 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1413
1414 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1415 }
1416
1417 static void ext4_da_page_release_reservation(struct page *page,
1418 unsigned long offset)
1419 {
1420 int to_release = 0;
1421 struct buffer_head *head, *bh;
1422 unsigned int curr_off = 0;
1423 struct inode *inode = page->mapping->host;
1424 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425 int num_clusters;
1426 ext4_fsblk_t lblk;
1427
1428 head = page_buffers(page);
1429 bh = head;
1430 do {
1431 unsigned int next_off = curr_off + bh->b_size;
1432
1433 if ((offset <= curr_off) && (buffer_delay(bh))) {
1434 to_release++;
1435 clear_buffer_delay(bh);
1436 }
1437 curr_off = next_off;
1438 } while ((bh = bh->b_this_page) != head);
1439
1440 if (to_release) {
1441 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442 ext4_es_remove_extent(inode, lblk, to_release);
1443 }
1444
1445 /* If we have released all the blocks belonging to a cluster, then we
1446 * need to release the reserved space for that cluster. */
1447 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448 while (num_clusters > 0) {
1449 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450 ((num_clusters - 1) << sbi->s_cluster_bits);
1451 if (sbi->s_cluster_ratio == 1 ||
1452 !ext4_find_delalloc_cluster(inode, lblk))
1453 ext4_da_release_space(inode, 1);
1454
1455 num_clusters--;
1456 }
1457 }
1458
1459 /*
1460 * Delayed allocation stuff
1461 */
1462
1463 /*
1464 * mpage_da_submit_io - walks through extent of pages and try to write
1465 * them with writepage() call back
1466 *
1467 * @mpd->inode: inode
1468 * @mpd->first_page: first page of the extent
1469 * @mpd->next_page: page after the last page of the extent
1470 *
1471 * By the time mpage_da_submit_io() is called we expect all blocks
1472 * to be allocated. this may be wrong if allocation failed.
1473 *
1474 * As pages are already locked by write_cache_pages(), we can't use it
1475 */
1476 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477 struct ext4_map_blocks *map)
1478 {
1479 struct pagevec pvec;
1480 unsigned long index, end;
1481 int ret = 0, err, nr_pages, i;
1482 struct inode *inode = mpd->inode;
1483 struct address_space *mapping = inode->i_mapping;
1484 loff_t size = i_size_read(inode);
1485 unsigned int len, block_start;
1486 struct buffer_head *bh, *page_bufs = NULL;
1487 sector_t pblock = 0, cur_logical = 0;
1488 struct ext4_io_submit io_submit;
1489
1490 BUG_ON(mpd->next_page <= mpd->first_page);
1491 ext4_io_submit_init(&io_submit, mpd->wbc);
1492 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1493 if (!io_submit.io_end)
1494 return -ENOMEM;
1495 /*
1496 * We need to start from the first_page to the next_page - 1
1497 * to make sure we also write the mapped dirty buffer_heads.
1498 * If we look at mpd->b_blocknr we would only be looking
1499 * at the currently mapped buffer_heads.
1500 */
1501 index = mpd->first_page;
1502 end = mpd->next_page - 1;
1503
1504 pagevec_init(&pvec, 0);
1505 while (index <= end) {
1506 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1507 if (nr_pages == 0)
1508 break;
1509 for (i = 0; i < nr_pages; i++) {
1510 int skip_page = 0;
1511 struct page *page = pvec.pages[i];
1512
1513 index = page->index;
1514 if (index > end)
1515 break;
1516
1517 if (index == size >> PAGE_CACHE_SHIFT)
1518 len = size & ~PAGE_CACHE_MASK;
1519 else
1520 len = PAGE_CACHE_SIZE;
1521 if (map) {
1522 cur_logical = index << (PAGE_CACHE_SHIFT -
1523 inode->i_blkbits);
1524 pblock = map->m_pblk + (cur_logical -
1525 map->m_lblk);
1526 }
1527 index++;
1528
1529 BUG_ON(!PageLocked(page));
1530 BUG_ON(PageWriteback(page));
1531
1532 bh = page_bufs = page_buffers(page);
1533 block_start = 0;
1534 do {
1535 if (map && (cur_logical >= map->m_lblk) &&
1536 (cur_logical <= (map->m_lblk +
1537 (map->m_len - 1)))) {
1538 if (buffer_delay(bh)) {
1539 clear_buffer_delay(bh);
1540 bh->b_blocknr = pblock;
1541 }
1542 if (buffer_unwritten(bh) ||
1543 buffer_mapped(bh))
1544 BUG_ON(bh->b_blocknr != pblock);
1545 if (map->m_flags & EXT4_MAP_UNINIT)
1546 set_buffer_uninit(bh);
1547 clear_buffer_unwritten(bh);
1548 }
1549
1550 /*
1551 * skip page if block allocation undone and
1552 * block is dirty
1553 */
1554 if (ext4_bh_delay_or_unwritten(NULL, bh))
1555 skip_page = 1;
1556 bh = bh->b_this_page;
1557 block_start += bh->b_size;
1558 cur_logical++;
1559 pblock++;
1560 } while (bh != page_bufs);
1561
1562 if (skip_page) {
1563 unlock_page(page);
1564 continue;
1565 }
1566
1567 clear_page_dirty_for_io(page);
1568 err = ext4_bio_write_page(&io_submit, page, len,
1569 mpd->wbc);
1570 if (!err)
1571 mpd->pages_written++;
1572 /*
1573 * In error case, we have to continue because
1574 * remaining pages are still locked
1575 */
1576 if (ret == 0)
1577 ret = err;
1578 }
1579 pagevec_release(&pvec);
1580 }
1581 ext4_io_submit(&io_submit);
1582 /* Drop io_end reference we got from init */
1583 ext4_put_io_end_defer(io_submit.io_end);
1584 return ret;
1585 }
1586
1587 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1588 {
1589 int nr_pages, i;
1590 pgoff_t index, end;
1591 struct pagevec pvec;
1592 struct inode *inode = mpd->inode;
1593 struct address_space *mapping = inode->i_mapping;
1594 ext4_lblk_t start, last;
1595
1596 index = mpd->first_page;
1597 end = mpd->next_page - 1;
1598
1599 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1601 ext4_es_remove_extent(inode, start, last - start + 1);
1602
1603 pagevec_init(&pvec, 0);
1604 while (index <= end) {
1605 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1606 if (nr_pages == 0)
1607 break;
1608 for (i = 0; i < nr_pages; i++) {
1609 struct page *page = pvec.pages[i];
1610 if (page->index > end)
1611 break;
1612 BUG_ON(!PageLocked(page));
1613 BUG_ON(PageWriteback(page));
1614 block_invalidatepage(page, 0);
1615 ClearPageUptodate(page);
1616 unlock_page(page);
1617 }
1618 index = pvec.pages[nr_pages - 1]->index + 1;
1619 pagevec_release(&pvec);
1620 }
1621 return;
1622 }
1623
1624 static void ext4_print_free_blocks(struct inode *inode)
1625 {
1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 struct super_block *sb = inode->i_sb;
1628 struct ext4_inode_info *ei = EXT4_I(inode);
1629
1630 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1631 EXT4_C2B(EXT4_SB(inode->i_sb),
1632 ext4_count_free_clusters(sb)));
1633 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1634 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1635 (long long) EXT4_C2B(EXT4_SB(sb),
1636 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1637 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1638 (long long) EXT4_C2B(EXT4_SB(sb),
1639 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1640 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1641 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1642 ei->i_reserved_data_blocks);
1643 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1644 ei->i_reserved_meta_blocks);
1645 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1646 ei->i_allocated_meta_blocks);
1647 return;
1648 }
1649
1650 /*
1651 * mpage_da_map_and_submit - go through given space, map them
1652 * if necessary, and then submit them for I/O
1653 *
1654 * @mpd - bh describing space
1655 *
1656 * The function skips space we know is already mapped to disk blocks.
1657 *
1658 */
1659 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1660 {
1661 int err, blks, get_blocks_flags;
1662 struct ext4_map_blocks map, *mapp = NULL;
1663 sector_t next = mpd->b_blocknr;
1664 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1665 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1666 handle_t *handle = NULL;
1667
1668 /*
1669 * If the blocks are mapped already, or we couldn't accumulate
1670 * any blocks, then proceed immediately to the submission stage.
1671 */
1672 if ((mpd->b_size == 0) ||
1673 ((mpd->b_state & (1 << BH_Mapped)) &&
1674 !(mpd->b_state & (1 << BH_Delay)) &&
1675 !(mpd->b_state & (1 << BH_Unwritten))))
1676 goto submit_io;
1677
1678 handle = ext4_journal_current_handle();
1679 BUG_ON(!handle);
1680
1681 /*
1682 * Call ext4_map_blocks() to allocate any delayed allocation
1683 * blocks, or to convert an uninitialized extent to be
1684 * initialized (in the case where we have written into
1685 * one or more preallocated blocks).
1686 *
1687 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1688 * indicate that we are on the delayed allocation path. This
1689 * affects functions in many different parts of the allocation
1690 * call path. This flag exists primarily because we don't
1691 * want to change *many* call functions, so ext4_map_blocks()
1692 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1693 * inode's allocation semaphore is taken.
1694 *
1695 * If the blocks in questions were delalloc blocks, set
1696 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1697 * variables are updated after the blocks have been allocated.
1698 */
1699 map.m_lblk = next;
1700 map.m_len = max_blocks;
1701 /*
1702 * We're in delalloc path and it is possible that we're going to
1703 * need more metadata blocks than previously reserved. However
1704 * we must not fail because we're in writeback and there is
1705 * nothing we can do about it so it might result in data loss.
1706 * So use reserved blocks to allocate metadata if possible.
1707 */
1708 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1709 EXT4_GET_BLOCKS_METADATA_NOFAIL;
1710 if (ext4_should_dioread_nolock(mpd->inode))
1711 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1712 if (mpd->b_state & (1 << BH_Delay))
1713 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1714
1715
1716 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1717 if (blks < 0) {
1718 struct super_block *sb = mpd->inode->i_sb;
1719
1720 err = blks;
1721 /*
1722 * If get block returns EAGAIN or ENOSPC and there
1723 * appears to be free blocks we will just let
1724 * mpage_da_submit_io() unlock all of the pages.
1725 */
1726 if (err == -EAGAIN)
1727 goto submit_io;
1728
1729 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1730 mpd->retval = err;
1731 goto submit_io;
1732 }
1733
1734 /*
1735 * get block failure will cause us to loop in
1736 * writepages, because a_ops->writepage won't be able
1737 * to make progress. The page will be redirtied by
1738 * writepage and writepages will again try to write
1739 * the same.
1740 */
1741 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1742 ext4_msg(sb, KERN_CRIT,
1743 "delayed block allocation failed for inode %lu "
1744 "at logical offset %llu with max blocks %zd "
1745 "with error %d", mpd->inode->i_ino,
1746 (unsigned long long) next,
1747 mpd->b_size >> mpd->inode->i_blkbits, err);
1748 ext4_msg(sb, KERN_CRIT,
1749 "This should not happen!! Data will be lost");
1750 if (err == -ENOSPC)
1751 ext4_print_free_blocks(mpd->inode);
1752 }
1753 /* invalidate all the pages */
1754 ext4_da_block_invalidatepages(mpd);
1755
1756 /* Mark this page range as having been completed */
1757 mpd->io_done = 1;
1758 return;
1759 }
1760 BUG_ON(blks == 0);
1761
1762 mapp = &map;
1763 if (map.m_flags & EXT4_MAP_NEW) {
1764 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1765 int i;
1766
1767 for (i = 0; i < map.m_len; i++)
1768 unmap_underlying_metadata(bdev, map.m_pblk + i);
1769 }
1770
1771 /*
1772 * Update on-disk size along with block allocation.
1773 */
1774 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1775 if (disksize > i_size_read(mpd->inode))
1776 disksize = i_size_read(mpd->inode);
1777 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1778 ext4_update_i_disksize(mpd->inode, disksize);
1779 err = ext4_mark_inode_dirty(handle, mpd->inode);
1780 if (err)
1781 ext4_error(mpd->inode->i_sb,
1782 "Failed to mark inode %lu dirty",
1783 mpd->inode->i_ino);
1784 }
1785
1786 submit_io:
1787 mpage_da_submit_io(mpd, mapp);
1788 mpd->io_done = 1;
1789 }
1790
1791 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1792 (1 << BH_Delay) | (1 << BH_Unwritten))
1793
1794 /*
1795 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1796 *
1797 * @mpd->lbh - extent of blocks
1798 * @logical - logical number of the block in the file
1799 * @b_state - b_state of the buffer head added
1800 *
1801 * the function is used to collect contig. blocks in same state
1802 */
1803 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1804 unsigned long b_state)
1805 {
1806 sector_t next;
1807 int blkbits = mpd->inode->i_blkbits;
1808 int nrblocks = mpd->b_size >> blkbits;
1809
1810 /*
1811 * XXX Don't go larger than mballoc is willing to allocate
1812 * This is a stopgap solution. We eventually need to fold
1813 * mpage_da_submit_io() into this function and then call
1814 * ext4_map_blocks() multiple times in a loop
1815 */
1816 if (nrblocks >= (8*1024*1024 >> blkbits))
1817 goto flush_it;
1818
1819 /* check if the reserved journal credits might overflow */
1820 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1821 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1822 /*
1823 * With non-extent format we are limited by the journal
1824 * credit available. Total credit needed to insert
1825 * nrblocks contiguous blocks is dependent on the
1826 * nrblocks. So limit nrblocks.
1827 */
1828 goto flush_it;
1829 }
1830 }
1831 /*
1832 * First block in the extent
1833 */
1834 if (mpd->b_size == 0) {
1835 mpd->b_blocknr = logical;
1836 mpd->b_size = 1 << blkbits;
1837 mpd->b_state = b_state & BH_FLAGS;
1838 return;
1839 }
1840
1841 next = mpd->b_blocknr + nrblocks;
1842 /*
1843 * Can we merge the block to our big extent?
1844 */
1845 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1846 mpd->b_size += 1 << blkbits;
1847 return;
1848 }
1849
1850 flush_it:
1851 /*
1852 * We couldn't merge the block to our extent, so we
1853 * need to flush current extent and start new one
1854 */
1855 mpage_da_map_and_submit(mpd);
1856 return;
1857 }
1858
1859 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1860 {
1861 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1862 }
1863
1864 /*
1865 * This function is grabs code from the very beginning of
1866 * ext4_map_blocks, but assumes that the caller is from delayed write
1867 * time. This function looks up the requested blocks and sets the
1868 * buffer delay bit under the protection of i_data_sem.
1869 */
1870 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1871 struct ext4_map_blocks *map,
1872 struct buffer_head *bh)
1873 {
1874 struct extent_status es;
1875 int retval;
1876 sector_t invalid_block = ~((sector_t) 0xffff);
1877 #ifdef ES_AGGRESSIVE_TEST
1878 struct ext4_map_blocks orig_map;
1879
1880 memcpy(&orig_map, map, sizeof(*map));
1881 #endif
1882
1883 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1884 invalid_block = ~0;
1885
1886 map->m_flags = 0;
1887 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1888 "logical block %lu\n", inode->i_ino, map->m_len,
1889 (unsigned long) map->m_lblk);
1890
1891 /* Lookup extent status tree firstly */
1892 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1893
1894 if (ext4_es_is_hole(&es)) {
1895 retval = 0;
1896 down_read((&EXT4_I(inode)->i_data_sem));
1897 goto add_delayed;
1898 }
1899
1900 /*
1901 * Delayed extent could be allocated by fallocate.
1902 * So we need to check it.
1903 */
1904 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1905 map_bh(bh, inode->i_sb, invalid_block);
1906 set_buffer_new(bh);
1907 set_buffer_delay(bh);
1908 return 0;
1909 }
1910
1911 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1912 retval = es.es_len - (iblock - es.es_lblk);
1913 if (retval > map->m_len)
1914 retval = map->m_len;
1915 map->m_len = retval;
1916 if (ext4_es_is_written(&es))
1917 map->m_flags |= EXT4_MAP_MAPPED;
1918 else if (ext4_es_is_unwritten(&es))
1919 map->m_flags |= EXT4_MAP_UNWRITTEN;
1920 else
1921 BUG_ON(1);
1922
1923 #ifdef ES_AGGRESSIVE_TEST
1924 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1925 #endif
1926 return retval;
1927 }
1928
1929 /*
1930 * Try to see if we can get the block without requesting a new
1931 * file system block.
1932 */
1933 down_read((&EXT4_I(inode)->i_data_sem));
1934 if (ext4_has_inline_data(inode)) {
1935 /*
1936 * We will soon create blocks for this page, and let
1937 * us pretend as if the blocks aren't allocated yet.
1938 * In case of clusters, we have to handle the work
1939 * of mapping from cluster so that the reserved space
1940 * is calculated properly.
1941 */
1942 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1943 ext4_find_delalloc_cluster(inode, map->m_lblk))
1944 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1945 retval = 0;
1946 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1947 retval = ext4_ext_map_blocks(NULL, inode, map,
1948 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1949 else
1950 retval = ext4_ind_map_blocks(NULL, inode, map,
1951 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1952
1953 add_delayed:
1954 if (retval == 0) {
1955 int ret;
1956 /*
1957 * XXX: __block_prepare_write() unmaps passed block,
1958 * is it OK?
1959 */
1960 /*
1961 * If the block was allocated from previously allocated cluster,
1962 * then we don't need to reserve it again. However we still need
1963 * to reserve metadata for every block we're going to write.
1964 */
1965 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1966 ret = ext4_da_reserve_space(inode, iblock);
1967 if (ret) {
1968 /* not enough space to reserve */
1969 retval = ret;
1970 goto out_unlock;
1971 }
1972 } else {
1973 ret = ext4_da_reserve_metadata(inode, iblock);
1974 if (ret) {
1975 /* not enough space to reserve */
1976 retval = ret;
1977 goto out_unlock;
1978 }
1979 }
1980
1981 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1982 ~0, EXTENT_STATUS_DELAYED);
1983 if (ret) {
1984 retval = ret;
1985 goto out_unlock;
1986 }
1987
1988 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1989 * and it should not appear on the bh->b_state.
1990 */
1991 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1992
1993 map_bh(bh, inode->i_sb, invalid_block);
1994 set_buffer_new(bh);
1995 set_buffer_delay(bh);
1996 } else if (retval > 0) {
1997 int ret;
1998 unsigned long long status;
1999
2000 #ifdef ES_AGGRESSIVE_TEST
2001 if (retval != map->m_len) {
2002 printk("ES len assertation failed for inode: %lu "
2003 "retval %d != map->m_len %d "
2004 "in %s (lookup)\n", inode->i_ino, retval,
2005 map->m_len, __func__);
2006 }
2007 #endif
2008
2009 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2010 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2011 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2012 map->m_pblk, status);
2013 if (ret != 0)
2014 retval = ret;
2015 }
2016
2017 out_unlock:
2018 up_read((&EXT4_I(inode)->i_data_sem));
2019
2020 return retval;
2021 }
2022
2023 /*
2024 * This is a special get_blocks_t callback which is used by
2025 * ext4_da_write_begin(). It will either return mapped block or
2026 * reserve space for a single block.
2027 *
2028 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2029 * We also have b_blocknr = -1 and b_bdev initialized properly
2030 *
2031 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2032 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2033 * initialized properly.
2034 */
2035 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2036 struct buffer_head *bh, int create)
2037 {
2038 struct ext4_map_blocks map;
2039 int ret = 0;
2040
2041 BUG_ON(create == 0);
2042 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2043
2044 map.m_lblk = iblock;
2045 map.m_len = 1;
2046
2047 /*
2048 * first, we need to know whether the block is allocated already
2049 * preallocated blocks are unmapped but should treated
2050 * the same as allocated blocks.
2051 */
2052 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2053 if (ret <= 0)
2054 return ret;
2055
2056 map_bh(bh, inode->i_sb, map.m_pblk);
2057 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2058
2059 if (buffer_unwritten(bh)) {
2060 /* A delayed write to unwritten bh should be marked
2061 * new and mapped. Mapped ensures that we don't do
2062 * get_block multiple times when we write to the same
2063 * offset and new ensures that we do proper zero out
2064 * for partial write.
2065 */
2066 set_buffer_new(bh);
2067 set_buffer_mapped(bh);
2068 }
2069 return 0;
2070 }
2071
2072 static int bget_one(handle_t *handle, struct buffer_head *bh)
2073 {
2074 get_bh(bh);
2075 return 0;
2076 }
2077
2078 static int bput_one(handle_t *handle, struct buffer_head *bh)
2079 {
2080 put_bh(bh);
2081 return 0;
2082 }
2083
2084 static int __ext4_journalled_writepage(struct page *page,
2085 unsigned int len)
2086 {
2087 struct address_space *mapping = page->mapping;
2088 struct inode *inode = mapping->host;
2089 struct buffer_head *page_bufs = NULL;
2090 handle_t *handle = NULL;
2091 int ret = 0, err = 0;
2092 int inline_data = ext4_has_inline_data(inode);
2093 struct buffer_head *inode_bh = NULL;
2094
2095 ClearPageChecked(page);
2096
2097 if (inline_data) {
2098 BUG_ON(page->index != 0);
2099 BUG_ON(len > ext4_get_max_inline_size(inode));
2100 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2101 if (inode_bh == NULL)
2102 goto out;
2103 } else {
2104 page_bufs = page_buffers(page);
2105 if (!page_bufs) {
2106 BUG();
2107 goto out;
2108 }
2109 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2110 NULL, bget_one);
2111 }
2112 /* As soon as we unlock the page, it can go away, but we have
2113 * references to buffers so we are safe */
2114 unlock_page(page);
2115
2116 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2117 ext4_writepage_trans_blocks(inode));
2118 if (IS_ERR(handle)) {
2119 ret = PTR_ERR(handle);
2120 goto out;
2121 }
2122
2123 BUG_ON(!ext4_handle_valid(handle));
2124
2125 if (inline_data) {
2126 ret = ext4_journal_get_write_access(handle, inode_bh);
2127
2128 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2129
2130 } else {
2131 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2132 do_journal_get_write_access);
2133
2134 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2135 write_end_fn);
2136 }
2137 if (ret == 0)
2138 ret = err;
2139 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2140 err = ext4_journal_stop(handle);
2141 if (!ret)
2142 ret = err;
2143
2144 if (!ext4_has_inline_data(inode))
2145 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2146 NULL, bput_one);
2147 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2148 out:
2149 brelse(inode_bh);
2150 return ret;
2151 }
2152
2153 /*
2154 * Note that we don't need to start a transaction unless we're journaling data
2155 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2156 * need to file the inode to the transaction's list in ordered mode because if
2157 * we are writing back data added by write(), the inode is already there and if
2158 * we are writing back data modified via mmap(), no one guarantees in which
2159 * transaction the data will hit the disk. In case we are journaling data, we
2160 * cannot start transaction directly because transaction start ranks above page
2161 * lock so we have to do some magic.
2162 *
2163 * This function can get called via...
2164 * - ext4_da_writepages after taking page lock (have journal handle)
2165 * - journal_submit_inode_data_buffers (no journal handle)
2166 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2167 * - grab_page_cache when doing write_begin (have journal handle)
2168 *
2169 * We don't do any block allocation in this function. If we have page with
2170 * multiple blocks we need to write those buffer_heads that are mapped. This
2171 * is important for mmaped based write. So if we do with blocksize 1K
2172 * truncate(f, 1024);
2173 * a = mmap(f, 0, 4096);
2174 * a[0] = 'a';
2175 * truncate(f, 4096);
2176 * we have in the page first buffer_head mapped via page_mkwrite call back
2177 * but other buffer_heads would be unmapped but dirty (dirty done via the
2178 * do_wp_page). So writepage should write the first block. If we modify
2179 * the mmap area beyond 1024 we will again get a page_fault and the
2180 * page_mkwrite callback will do the block allocation and mark the
2181 * buffer_heads mapped.
2182 *
2183 * We redirty the page if we have any buffer_heads that is either delay or
2184 * unwritten in the page.
2185 *
2186 * We can get recursively called as show below.
2187 *
2188 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2189 * ext4_writepage()
2190 *
2191 * But since we don't do any block allocation we should not deadlock.
2192 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2193 */
2194 static int ext4_writepage(struct page *page,
2195 struct writeback_control *wbc)
2196 {
2197 int ret = 0;
2198 loff_t size;
2199 unsigned int len;
2200 struct buffer_head *page_bufs = NULL;
2201 struct inode *inode = page->mapping->host;
2202 struct ext4_io_submit io_submit;
2203
2204 trace_ext4_writepage(page);
2205 size = i_size_read(inode);
2206 if (page->index == size >> PAGE_CACHE_SHIFT)
2207 len = size & ~PAGE_CACHE_MASK;
2208 else
2209 len = PAGE_CACHE_SIZE;
2210
2211 page_bufs = page_buffers(page);
2212 /*
2213 * We cannot do block allocation or other extent handling in this
2214 * function. If there are buffers needing that, we have to redirty
2215 * the page. But we may reach here when we do a journal commit via
2216 * journal_submit_inode_data_buffers() and in that case we must write
2217 * allocated buffers to achieve data=ordered mode guarantees.
2218 */
2219 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2220 ext4_bh_delay_or_unwritten)) {
2221 redirty_page_for_writepage(wbc, page);
2222 if (current->flags & PF_MEMALLOC) {
2223 /*
2224 * For memory cleaning there's no point in writing only
2225 * some buffers. So just bail out. Warn if we came here
2226 * from direct reclaim.
2227 */
2228 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2229 == PF_MEMALLOC);
2230 unlock_page(page);
2231 return 0;
2232 }
2233 }
2234
2235 if (PageChecked(page) && ext4_should_journal_data(inode))
2236 /*
2237 * It's mmapped pagecache. Add buffers and journal it. There
2238 * doesn't seem much point in redirtying the page here.
2239 */
2240 return __ext4_journalled_writepage(page, len);
2241
2242 ext4_io_submit_init(&io_submit, wbc);
2243 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2244 if (!io_submit.io_end) {
2245 redirty_page_for_writepage(wbc, page);
2246 return -ENOMEM;
2247 }
2248 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2249 ext4_io_submit(&io_submit);
2250 /* Drop io_end reference we got from init */
2251 ext4_put_io_end_defer(io_submit.io_end);
2252 return ret;
2253 }
2254
2255 /*
2256 * This is called via ext4_da_writepages() to
2257 * calculate the total number of credits to reserve to fit
2258 * a single extent allocation into a single transaction,
2259 * ext4_da_writpeages() will loop calling this before
2260 * the block allocation.
2261 */
2262
2263 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2264 {
2265 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2266
2267 /*
2268 * With non-extent format the journal credit needed to
2269 * insert nrblocks contiguous block is dependent on
2270 * number of contiguous block. So we will limit
2271 * number of contiguous block to a sane value
2272 */
2273 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2274 (max_blocks > EXT4_MAX_TRANS_DATA))
2275 max_blocks = EXT4_MAX_TRANS_DATA;
2276
2277 return ext4_chunk_trans_blocks(inode, max_blocks);
2278 }
2279
2280 /*
2281 * write_cache_pages_da - walk the list of dirty pages of the given
2282 * address space and accumulate pages that need writing, and call
2283 * mpage_da_map_and_submit to map a single contiguous memory region
2284 * and then write them.
2285 */
2286 static int write_cache_pages_da(handle_t *handle,
2287 struct address_space *mapping,
2288 struct writeback_control *wbc,
2289 struct mpage_da_data *mpd,
2290 pgoff_t *done_index)
2291 {
2292 struct buffer_head *bh, *head;
2293 struct inode *inode = mapping->host;
2294 struct pagevec pvec;
2295 unsigned int nr_pages;
2296 sector_t logical;
2297 pgoff_t index, end;
2298 long nr_to_write = wbc->nr_to_write;
2299 int i, tag, ret = 0;
2300
2301 memset(mpd, 0, sizeof(struct mpage_da_data));
2302 mpd->wbc = wbc;
2303 mpd->inode = inode;
2304 pagevec_init(&pvec, 0);
2305 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2306 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2307
2308 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2309 tag = PAGECACHE_TAG_TOWRITE;
2310 else
2311 tag = PAGECACHE_TAG_DIRTY;
2312
2313 *done_index = index;
2314 while (index <= end) {
2315 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2316 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2317 if (nr_pages == 0)
2318 return 0;
2319
2320 for (i = 0; i < nr_pages; i++) {
2321 struct page *page = pvec.pages[i];
2322
2323 /*
2324 * At this point, the page may be truncated or
2325 * invalidated (changing page->mapping to NULL), or
2326 * even swizzled back from swapper_space to tmpfs file
2327 * mapping. However, page->index will not change
2328 * because we have a reference on the page.
2329 */
2330 if (page->index > end)
2331 goto out;
2332
2333 *done_index = page->index + 1;
2334
2335 /*
2336 * If we can't merge this page, and we have
2337 * accumulated an contiguous region, write it
2338 */
2339 if ((mpd->next_page != page->index) &&
2340 (mpd->next_page != mpd->first_page)) {
2341 mpage_da_map_and_submit(mpd);
2342 goto ret_extent_tail;
2343 }
2344
2345 lock_page(page);
2346
2347 /*
2348 * If the page is no longer dirty, or its
2349 * mapping no longer corresponds to inode we
2350 * are writing (which means it has been
2351 * truncated or invalidated), or the page is
2352 * already under writeback and we are not
2353 * doing a data integrity writeback, skip the page
2354 */
2355 if (!PageDirty(page) ||
2356 (PageWriteback(page) &&
2357 (wbc->sync_mode == WB_SYNC_NONE)) ||
2358 unlikely(page->mapping != mapping)) {
2359 unlock_page(page);
2360 continue;
2361 }
2362
2363 wait_on_page_writeback(page);
2364 BUG_ON(PageWriteback(page));
2365
2366 /*
2367 * If we have inline data and arrive here, it means that
2368 * we will soon create the block for the 1st page, so
2369 * we'd better clear the inline data here.
2370 */
2371 if (ext4_has_inline_data(inode)) {
2372 BUG_ON(ext4_test_inode_state(inode,
2373 EXT4_STATE_MAY_INLINE_DATA));
2374 ext4_destroy_inline_data(handle, inode);
2375 }
2376
2377 if (mpd->next_page != page->index)
2378 mpd->first_page = page->index;
2379 mpd->next_page = page->index + 1;
2380 logical = (sector_t) page->index <<
2381 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2382
2383 /* Add all dirty buffers to mpd */
2384 head = page_buffers(page);
2385 bh = head;
2386 do {
2387 BUG_ON(buffer_locked(bh));
2388 /*
2389 * We need to try to allocate unmapped blocks
2390 * in the same page. Otherwise we won't make
2391 * progress with the page in ext4_writepage
2392 */
2393 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2394 mpage_add_bh_to_extent(mpd, logical,
2395 bh->b_state);
2396 if (mpd->io_done)
2397 goto ret_extent_tail;
2398 } else if (buffer_dirty(bh) &&
2399 buffer_mapped(bh)) {
2400 /*
2401 * mapped dirty buffer. We need to
2402 * update the b_state because we look
2403 * at b_state in mpage_da_map_blocks.
2404 * We don't update b_size because if we
2405 * find an unmapped buffer_head later
2406 * we need to use the b_state flag of
2407 * that buffer_head.
2408 */
2409 if (mpd->b_size == 0)
2410 mpd->b_state =
2411 bh->b_state & BH_FLAGS;
2412 }
2413 logical++;
2414 } while ((bh = bh->b_this_page) != head);
2415
2416 if (nr_to_write > 0) {
2417 nr_to_write--;
2418 if (nr_to_write == 0 &&
2419 wbc->sync_mode == WB_SYNC_NONE)
2420 /*
2421 * We stop writing back only if we are
2422 * not doing integrity sync. In case of
2423 * integrity sync we have to keep going
2424 * because someone may be concurrently
2425 * dirtying pages, and we might have
2426 * synced a lot of newly appeared dirty
2427 * pages, but have not synced all of the
2428 * old dirty pages.
2429 */
2430 goto out;
2431 }
2432 }
2433 pagevec_release(&pvec);
2434 cond_resched();
2435 }
2436 return 0;
2437 ret_extent_tail:
2438 ret = MPAGE_DA_EXTENT_TAIL;
2439 out:
2440 pagevec_release(&pvec);
2441 cond_resched();
2442 return ret;
2443 }
2444
2445
2446 static int ext4_da_writepages(struct address_space *mapping,
2447 struct writeback_control *wbc)
2448 {
2449 pgoff_t index;
2450 int range_whole = 0;
2451 handle_t *handle = NULL;
2452 struct mpage_da_data mpd;
2453 struct inode *inode = mapping->host;
2454 int pages_written = 0;
2455 unsigned int max_pages;
2456 int range_cyclic, cycled = 1, io_done = 0;
2457 int needed_blocks, ret = 0;
2458 long desired_nr_to_write, nr_to_writebump = 0;
2459 loff_t range_start = wbc->range_start;
2460 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2461 pgoff_t done_index = 0;
2462 pgoff_t end;
2463 struct blk_plug plug;
2464
2465 trace_ext4_da_writepages(inode, wbc);
2466
2467 /*
2468 * No pages to write? This is mainly a kludge to avoid starting
2469 * a transaction for special inodes like journal inode on last iput()
2470 * because that could violate lock ordering on umount
2471 */
2472 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2473 return 0;
2474
2475 /*
2476 * If the filesystem has aborted, it is read-only, so return
2477 * right away instead of dumping stack traces later on that
2478 * will obscure the real source of the problem. We test
2479 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2480 * the latter could be true if the filesystem is mounted
2481 * read-only, and in that case, ext4_da_writepages should
2482 * *never* be called, so if that ever happens, we would want
2483 * the stack trace.
2484 */
2485 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2486 return -EROFS;
2487
2488 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2489 range_whole = 1;
2490
2491 range_cyclic = wbc->range_cyclic;
2492 if (wbc->range_cyclic) {
2493 index = mapping->writeback_index;
2494 if (index)
2495 cycled = 0;
2496 wbc->range_start = index << PAGE_CACHE_SHIFT;
2497 wbc->range_end = LLONG_MAX;
2498 wbc->range_cyclic = 0;
2499 end = -1;
2500 } else {
2501 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2502 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2503 }
2504
2505 /*
2506 * This works around two forms of stupidity. The first is in
2507 * the writeback code, which caps the maximum number of pages
2508 * written to be 1024 pages. This is wrong on multiple
2509 * levels; different architectues have a different page size,
2510 * which changes the maximum amount of data which gets
2511 * written. Secondly, 4 megabytes is way too small. XFS
2512 * forces this value to be 16 megabytes by multiplying
2513 * nr_to_write parameter by four, and then relies on its
2514 * allocator to allocate larger extents to make them
2515 * contiguous. Unfortunately this brings us to the second
2516 * stupidity, which is that ext4's mballoc code only allocates
2517 * at most 2048 blocks. So we force contiguous writes up to
2518 * the number of dirty blocks in the inode, or
2519 * sbi->max_writeback_mb_bump whichever is smaller.
2520 */
2521 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2522 if (!range_cyclic && range_whole) {
2523 if (wbc->nr_to_write == LONG_MAX)
2524 desired_nr_to_write = wbc->nr_to_write;
2525 else
2526 desired_nr_to_write = wbc->nr_to_write * 8;
2527 } else
2528 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2529 max_pages);
2530 if (desired_nr_to_write > max_pages)
2531 desired_nr_to_write = max_pages;
2532
2533 if (wbc->nr_to_write < desired_nr_to_write) {
2534 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2535 wbc->nr_to_write = desired_nr_to_write;
2536 }
2537
2538 retry:
2539 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2540 tag_pages_for_writeback(mapping, index, end);
2541
2542 blk_start_plug(&plug);
2543 while (!ret && wbc->nr_to_write > 0) {
2544
2545 /*
2546 * we insert one extent at a time. So we need
2547 * credit needed for single extent allocation.
2548 * journalled mode is currently not supported
2549 * by delalloc
2550 */
2551 BUG_ON(ext4_should_journal_data(inode));
2552 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2553
2554 /* start a new transaction*/
2555 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2556 needed_blocks);
2557 if (IS_ERR(handle)) {
2558 ret = PTR_ERR(handle);
2559 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2560 "%ld pages, ino %lu; err %d", __func__,
2561 wbc->nr_to_write, inode->i_ino, ret);
2562 blk_finish_plug(&plug);
2563 goto out_writepages;
2564 }
2565
2566 /*
2567 * Now call write_cache_pages_da() to find the next
2568 * contiguous region of logical blocks that need
2569 * blocks to be allocated by ext4 and submit them.
2570 */
2571 ret = write_cache_pages_da(handle, mapping,
2572 wbc, &mpd, &done_index);
2573 /*
2574 * If we have a contiguous extent of pages and we
2575 * haven't done the I/O yet, map the blocks and submit
2576 * them for I/O.
2577 */
2578 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2579 mpage_da_map_and_submit(&mpd);
2580 ret = MPAGE_DA_EXTENT_TAIL;
2581 }
2582 trace_ext4_da_write_pages(inode, &mpd);
2583 wbc->nr_to_write -= mpd.pages_written;
2584
2585 ext4_journal_stop(handle);
2586
2587 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2588 /* commit the transaction which would
2589 * free blocks released in the transaction
2590 * and try again
2591 */
2592 jbd2_journal_force_commit_nested(sbi->s_journal);
2593 ret = 0;
2594 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2595 /*
2596 * Got one extent now try with rest of the pages.
2597 * If mpd.retval is set -EIO, journal is aborted.
2598 * So we don't need to write any more.
2599 */
2600 pages_written += mpd.pages_written;
2601 ret = mpd.retval;
2602 io_done = 1;
2603 } else if (wbc->nr_to_write)
2604 /*
2605 * There is no more writeout needed
2606 * or we requested for a noblocking writeout
2607 * and we found the device congested
2608 */
2609 break;
2610 }
2611 blk_finish_plug(&plug);
2612 if (!io_done && !cycled) {
2613 cycled = 1;
2614 index = 0;
2615 wbc->range_start = index << PAGE_CACHE_SHIFT;
2616 wbc->range_end = mapping->writeback_index - 1;
2617 goto retry;
2618 }
2619
2620 /* Update index */
2621 wbc->range_cyclic = range_cyclic;
2622 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2623 /*
2624 * set the writeback_index so that range_cyclic
2625 * mode will write it back later
2626 */
2627 mapping->writeback_index = done_index;
2628
2629 out_writepages:
2630 wbc->nr_to_write -= nr_to_writebump;
2631 wbc->range_start = range_start;
2632 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2633 return ret;
2634 }
2635
2636 static int ext4_nonda_switch(struct super_block *sb)
2637 {
2638 s64 free_clusters, dirty_clusters;
2639 struct ext4_sb_info *sbi = EXT4_SB(sb);
2640
2641 /*
2642 * switch to non delalloc mode if we are running low
2643 * on free block. The free block accounting via percpu
2644 * counters can get slightly wrong with percpu_counter_batch getting
2645 * accumulated on each CPU without updating global counters
2646 * Delalloc need an accurate free block accounting. So switch
2647 * to non delalloc when we are near to error range.
2648 */
2649 free_clusters =
2650 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2651 dirty_clusters =
2652 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2653 /*
2654 * Start pushing delalloc when 1/2 of free blocks are dirty.
2655 */
2656 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2657 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2658
2659 if (2 * free_clusters < 3 * dirty_clusters ||
2660 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2661 /*
2662 * free block count is less than 150% of dirty blocks
2663 * or free blocks is less than watermark
2664 */
2665 return 1;
2666 }
2667 return 0;
2668 }
2669
2670 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2671 loff_t pos, unsigned len, unsigned flags,
2672 struct page **pagep, void **fsdata)
2673 {
2674 int ret, retries = 0;
2675 struct page *page;
2676 pgoff_t index;
2677 struct inode *inode = mapping->host;
2678 handle_t *handle;
2679
2680 index = pos >> PAGE_CACHE_SHIFT;
2681
2682 if (ext4_nonda_switch(inode->i_sb)) {
2683 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2684 return ext4_write_begin(file, mapping, pos,
2685 len, flags, pagep, fsdata);
2686 }
2687 *fsdata = (void *)0;
2688 trace_ext4_da_write_begin(inode, pos, len, flags);
2689
2690 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2691 ret = ext4_da_write_inline_data_begin(mapping, inode,
2692 pos, len, flags,
2693 pagep, fsdata);
2694 if (ret < 0)
2695 return ret;
2696 if (ret == 1)
2697 return 0;
2698 }
2699
2700 /*
2701 * grab_cache_page_write_begin() can take a long time if the
2702 * system is thrashing due to memory pressure, or if the page
2703 * is being written back. So grab it first before we start
2704 * the transaction handle. This also allows us to allocate
2705 * the page (if needed) without using GFP_NOFS.
2706 */
2707 retry_grab:
2708 page = grab_cache_page_write_begin(mapping, index, flags);
2709 if (!page)
2710 return -ENOMEM;
2711 unlock_page(page);
2712
2713 /*
2714 * With delayed allocation, we don't log the i_disksize update
2715 * if there is delayed block allocation. But we still need
2716 * to journalling the i_disksize update if writes to the end
2717 * of file which has an already mapped buffer.
2718 */
2719 retry_journal:
2720 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2721 if (IS_ERR(handle)) {
2722 page_cache_release(page);
2723 return PTR_ERR(handle);
2724 }
2725
2726 lock_page(page);
2727 if (page->mapping != mapping) {
2728 /* The page got truncated from under us */
2729 unlock_page(page);
2730 page_cache_release(page);
2731 ext4_journal_stop(handle);
2732 goto retry_grab;
2733 }
2734 /* In case writeback began while the page was unlocked */
2735 wait_on_page_writeback(page);
2736
2737 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2738 if (ret < 0) {
2739 unlock_page(page);
2740 ext4_journal_stop(handle);
2741 /*
2742 * block_write_begin may have instantiated a few blocks
2743 * outside i_size. Trim these off again. Don't need
2744 * i_size_read because we hold i_mutex.
2745 */
2746 if (pos + len > inode->i_size)
2747 ext4_truncate_failed_write(inode);
2748
2749 if (ret == -ENOSPC &&
2750 ext4_should_retry_alloc(inode->i_sb, &retries))
2751 goto retry_journal;
2752
2753 page_cache_release(page);
2754 return ret;
2755 }
2756
2757 *pagep = page;
2758 return ret;
2759 }
2760
2761 /*
2762 * Check if we should update i_disksize
2763 * when write to the end of file but not require block allocation
2764 */
2765 static int ext4_da_should_update_i_disksize(struct page *page,
2766 unsigned long offset)
2767 {
2768 struct buffer_head *bh;
2769 struct inode *inode = page->mapping->host;
2770 unsigned int idx;
2771 int i;
2772
2773 bh = page_buffers(page);
2774 idx = offset >> inode->i_blkbits;
2775
2776 for (i = 0; i < idx; i++)
2777 bh = bh->b_this_page;
2778
2779 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2780 return 0;
2781 return 1;
2782 }
2783
2784 static int ext4_da_write_end(struct file *file,
2785 struct address_space *mapping,
2786 loff_t pos, unsigned len, unsigned copied,
2787 struct page *page, void *fsdata)
2788 {
2789 struct inode *inode = mapping->host;
2790 int ret = 0, ret2;
2791 handle_t *handle = ext4_journal_current_handle();
2792 loff_t new_i_size;
2793 unsigned long start, end;
2794 int write_mode = (int)(unsigned long)fsdata;
2795
2796 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2797 return ext4_write_end(file, mapping, pos,
2798 len, copied, page, fsdata);
2799
2800 trace_ext4_da_write_end(inode, pos, len, copied);
2801 start = pos & (PAGE_CACHE_SIZE - 1);
2802 end = start + copied - 1;
2803
2804 /*
2805 * generic_write_end() will run mark_inode_dirty() if i_size
2806 * changes. So let's piggyback the i_disksize mark_inode_dirty
2807 * into that.
2808 */
2809 new_i_size = pos + copied;
2810 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2811 if (ext4_has_inline_data(inode) ||
2812 ext4_da_should_update_i_disksize(page, end)) {
2813 down_write(&EXT4_I(inode)->i_data_sem);
2814 if (new_i_size > EXT4_I(inode)->i_disksize)
2815 EXT4_I(inode)->i_disksize = new_i_size;
2816 up_write(&EXT4_I(inode)->i_data_sem);
2817 /* We need to mark inode dirty even if
2818 * new_i_size is less that inode->i_size
2819 * bu greater than i_disksize.(hint delalloc)
2820 */
2821 ext4_mark_inode_dirty(handle, inode);
2822 }
2823 }
2824
2825 if (write_mode != CONVERT_INLINE_DATA &&
2826 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2827 ext4_has_inline_data(inode))
2828 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2829 page);
2830 else
2831 ret2 = generic_write_end(file, mapping, pos, len, copied,
2832 page, fsdata);
2833
2834 copied = ret2;
2835 if (ret2 < 0)
2836 ret = ret2;
2837 ret2 = ext4_journal_stop(handle);
2838 if (!ret)
2839 ret = ret2;
2840
2841 return ret ? ret : copied;
2842 }
2843
2844 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2845 {
2846 /*
2847 * Drop reserved blocks
2848 */
2849 BUG_ON(!PageLocked(page));
2850 if (!page_has_buffers(page))
2851 goto out;
2852
2853 ext4_da_page_release_reservation(page, offset);
2854
2855 out:
2856 ext4_invalidatepage(page, offset);
2857
2858 return;
2859 }
2860
2861 /*
2862 * Force all delayed allocation blocks to be allocated for a given inode.
2863 */
2864 int ext4_alloc_da_blocks(struct inode *inode)
2865 {
2866 trace_ext4_alloc_da_blocks(inode);
2867
2868 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2869 !EXT4_I(inode)->i_reserved_meta_blocks)
2870 return 0;
2871
2872 /*
2873 * We do something simple for now. The filemap_flush() will
2874 * also start triggering a write of the data blocks, which is
2875 * not strictly speaking necessary (and for users of
2876 * laptop_mode, not even desirable). However, to do otherwise
2877 * would require replicating code paths in:
2878 *
2879 * ext4_da_writepages() ->
2880 * write_cache_pages() ---> (via passed in callback function)
2881 * __mpage_da_writepage() -->
2882 * mpage_add_bh_to_extent()
2883 * mpage_da_map_blocks()
2884 *
2885 * The problem is that write_cache_pages(), located in
2886 * mm/page-writeback.c, marks pages clean in preparation for
2887 * doing I/O, which is not desirable if we're not planning on
2888 * doing I/O at all.
2889 *
2890 * We could call write_cache_pages(), and then redirty all of
2891 * the pages by calling redirty_page_for_writepage() but that
2892 * would be ugly in the extreme. So instead we would need to
2893 * replicate parts of the code in the above functions,
2894 * simplifying them because we wouldn't actually intend to
2895 * write out the pages, but rather only collect contiguous
2896 * logical block extents, call the multi-block allocator, and
2897 * then update the buffer heads with the block allocations.
2898 *
2899 * For now, though, we'll cheat by calling filemap_flush(),
2900 * which will map the blocks, and start the I/O, but not
2901 * actually wait for the I/O to complete.
2902 */
2903 return filemap_flush(inode->i_mapping);
2904 }
2905
2906 /*
2907 * bmap() is special. It gets used by applications such as lilo and by
2908 * the swapper to find the on-disk block of a specific piece of data.
2909 *
2910 * Naturally, this is dangerous if the block concerned is still in the
2911 * journal. If somebody makes a swapfile on an ext4 data-journaling
2912 * filesystem and enables swap, then they may get a nasty shock when the
2913 * data getting swapped to that swapfile suddenly gets overwritten by
2914 * the original zero's written out previously to the journal and
2915 * awaiting writeback in the kernel's buffer cache.
2916 *
2917 * So, if we see any bmap calls here on a modified, data-journaled file,
2918 * take extra steps to flush any blocks which might be in the cache.
2919 */
2920 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2921 {
2922 struct inode *inode = mapping->host;
2923 journal_t *journal;
2924 int err;
2925
2926 /*
2927 * We can get here for an inline file via the FIBMAP ioctl
2928 */
2929 if (ext4_has_inline_data(inode))
2930 return 0;
2931
2932 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2933 test_opt(inode->i_sb, DELALLOC)) {
2934 /*
2935 * With delalloc we want to sync the file
2936 * so that we can make sure we allocate
2937 * blocks for file
2938 */
2939 filemap_write_and_wait(mapping);
2940 }
2941
2942 if (EXT4_JOURNAL(inode) &&
2943 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2944 /*
2945 * This is a REALLY heavyweight approach, but the use of
2946 * bmap on dirty files is expected to be extremely rare:
2947 * only if we run lilo or swapon on a freshly made file
2948 * do we expect this to happen.
2949 *
2950 * (bmap requires CAP_SYS_RAWIO so this does not
2951 * represent an unprivileged user DOS attack --- we'd be
2952 * in trouble if mortal users could trigger this path at
2953 * will.)
2954 *
2955 * NB. EXT4_STATE_JDATA is not set on files other than
2956 * regular files. If somebody wants to bmap a directory
2957 * or symlink and gets confused because the buffer
2958 * hasn't yet been flushed to disk, they deserve
2959 * everything they get.
2960 */
2961
2962 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2963 journal = EXT4_JOURNAL(inode);
2964 jbd2_journal_lock_updates(journal);
2965 err = jbd2_journal_flush(journal);
2966 jbd2_journal_unlock_updates(journal);
2967
2968 if (err)
2969 return 0;
2970 }
2971
2972 return generic_block_bmap(mapping, block, ext4_get_block);
2973 }
2974
2975 static int ext4_readpage(struct file *file, struct page *page)
2976 {
2977 int ret = -EAGAIN;
2978 struct inode *inode = page->mapping->host;
2979
2980 trace_ext4_readpage(page);
2981
2982 if (ext4_has_inline_data(inode))
2983 ret = ext4_readpage_inline(inode, page);
2984
2985 if (ret == -EAGAIN)
2986 return mpage_readpage(page, ext4_get_block);
2987
2988 return ret;
2989 }
2990
2991 static int
2992 ext4_readpages(struct file *file, struct address_space *mapping,
2993 struct list_head *pages, unsigned nr_pages)
2994 {
2995 struct inode *inode = mapping->host;
2996
2997 /* If the file has inline data, no need to do readpages. */
2998 if (ext4_has_inline_data(inode))
2999 return 0;
3000
3001 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3002 }
3003
3004 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3005 {
3006 trace_ext4_invalidatepage(page, offset);
3007
3008 /* No journalling happens on data buffers when this function is used */
3009 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3010
3011 block_invalidatepage(page, offset);
3012 }
3013
3014 static int __ext4_journalled_invalidatepage(struct page *page,
3015 unsigned long offset)
3016 {
3017 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3018
3019 trace_ext4_journalled_invalidatepage(page, offset);
3020
3021 /*
3022 * If it's a full truncate we just forget about the pending dirtying
3023 */
3024 if (offset == 0)
3025 ClearPageChecked(page);
3026
3027 return jbd2_journal_invalidatepage(journal, page, offset);
3028 }
3029
3030 /* Wrapper for aops... */
3031 static void ext4_journalled_invalidatepage(struct page *page,
3032 unsigned long offset)
3033 {
3034 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3035 }
3036
3037 static int ext4_releasepage(struct page *page, gfp_t wait)
3038 {
3039 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040
3041 trace_ext4_releasepage(page);
3042
3043 /* Page has dirty journalled data -> cannot release */
3044 if (PageChecked(page))
3045 return 0;
3046 if (journal)
3047 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3048 else
3049 return try_to_free_buffers(page);
3050 }
3051
3052 /*
3053 * ext4_get_block used when preparing for a DIO write or buffer write.
3054 * We allocate an uinitialized extent if blocks haven't been allocated.
3055 * The extent will be converted to initialized after the IO is complete.
3056 */
3057 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3058 struct buffer_head *bh_result, int create)
3059 {
3060 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3061 inode->i_ino, create);
3062 return _ext4_get_block(inode, iblock, bh_result,
3063 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3064 }
3065
3066 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3067 struct buffer_head *bh_result, int create)
3068 {
3069 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3070 inode->i_ino, create);
3071 return _ext4_get_block(inode, iblock, bh_result,
3072 EXT4_GET_BLOCKS_NO_LOCK);
3073 }
3074
3075 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3076 ssize_t size, void *private, int ret,
3077 bool is_async)
3078 {
3079 struct inode *inode = file_inode(iocb->ki_filp);
3080 ext4_io_end_t *io_end = iocb->private;
3081
3082 /* if not async direct IO just return */
3083 if (!io_end) {
3084 inode_dio_done(inode);
3085 if (is_async)
3086 aio_complete(iocb, ret, 0);
3087 return;
3088 }
3089
3090 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3091 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3092 iocb->private, io_end->inode->i_ino, iocb, offset,
3093 size);
3094
3095 iocb->private = NULL;
3096 io_end->offset = offset;
3097 io_end->size = size;
3098 if (is_async) {
3099 io_end->iocb = iocb;
3100 io_end->result = ret;
3101 }
3102 ext4_put_io_end_defer(io_end);
3103 }
3104
3105 /*
3106 * For ext4 extent files, ext4 will do direct-io write to holes,
3107 * preallocated extents, and those write extend the file, no need to
3108 * fall back to buffered IO.
3109 *
3110 * For holes, we fallocate those blocks, mark them as uninitialized
3111 * If those blocks were preallocated, we mark sure they are split, but
3112 * still keep the range to write as uninitialized.
3113 *
3114 * The unwritten extents will be converted to written when DIO is completed.
3115 * For async direct IO, since the IO may still pending when return, we
3116 * set up an end_io call back function, which will do the conversion
3117 * when async direct IO completed.
3118 *
3119 * If the O_DIRECT write will extend the file then add this inode to the
3120 * orphan list. So recovery will truncate it back to the original size
3121 * if the machine crashes during the write.
3122 *
3123 */
3124 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3125 const struct iovec *iov, loff_t offset,
3126 unsigned long nr_segs)
3127 {
3128 struct file *file = iocb->ki_filp;
3129 struct inode *inode = file->f_mapping->host;
3130 ssize_t ret;
3131 size_t count = iov_length(iov, nr_segs);
3132 int overwrite = 0;
3133 get_block_t *get_block_func = NULL;
3134 int dio_flags = 0;
3135 loff_t final_size = offset + count;
3136 ext4_io_end_t *io_end = NULL;
3137
3138 /* Use the old path for reads and writes beyond i_size. */
3139 if (rw != WRITE || final_size > inode->i_size)
3140 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3141
3142 BUG_ON(iocb->private == NULL);
3143
3144 /* If we do a overwrite dio, i_mutex locking can be released */
3145 overwrite = *((int *)iocb->private);
3146
3147 if (overwrite) {
3148 atomic_inc(&inode->i_dio_count);
3149 down_read(&EXT4_I(inode)->i_data_sem);
3150 mutex_unlock(&inode->i_mutex);
3151 }
3152
3153 /*
3154 * We could direct write to holes and fallocate.
3155 *
3156 * Allocated blocks to fill the hole are marked as
3157 * uninitialized to prevent parallel buffered read to expose
3158 * the stale data before DIO complete the data IO.
3159 *
3160 * As to previously fallocated extents, ext4 get_block will
3161 * just simply mark the buffer mapped but still keep the
3162 * extents uninitialized.
3163 *
3164 * For non AIO case, we will convert those unwritten extents
3165 * to written after return back from blockdev_direct_IO.
3166 *
3167 * For async DIO, the conversion needs to be deferred when the
3168 * IO is completed. The ext4 end_io callback function will be
3169 * called to take care of the conversion work. Here for async
3170 * case, we allocate an io_end structure to hook to the iocb.
3171 */
3172 iocb->private = NULL;
3173 ext4_inode_aio_set(inode, NULL);
3174 if (!is_sync_kiocb(iocb)) {
3175 io_end = ext4_init_io_end(inode, GFP_NOFS);
3176 if (!io_end) {
3177 ret = -ENOMEM;
3178 goto retake_lock;
3179 }
3180 io_end->flag |= EXT4_IO_END_DIRECT;
3181 /*
3182 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3183 */
3184 iocb->private = ext4_get_io_end(io_end);
3185 /*
3186 * we save the io structure for current async direct
3187 * IO, so that later ext4_map_blocks() could flag the
3188 * io structure whether there is a unwritten extents
3189 * needs to be converted when IO is completed.
3190 */
3191 ext4_inode_aio_set(inode, io_end);
3192 }
3193
3194 if (overwrite) {
3195 get_block_func = ext4_get_block_write_nolock;
3196 } else {
3197 get_block_func = ext4_get_block_write;
3198 dio_flags = DIO_LOCKING;
3199 }
3200 ret = __blockdev_direct_IO(rw, iocb, inode,
3201 inode->i_sb->s_bdev, iov,
3202 offset, nr_segs,
3203 get_block_func,
3204 ext4_end_io_dio,
3205 NULL,
3206 dio_flags);
3207
3208 /*
3209 * Put our reference to io_end. This can free the io_end structure e.g.
3210 * in sync IO case or in case of error. It can even perform extent
3211 * conversion if all bios we submitted finished before we got here.
3212 * Note that in that case iocb->private can be already set to NULL
3213 * here.
3214 */
3215 if (io_end) {
3216 ext4_inode_aio_set(inode, NULL);
3217 ext4_put_io_end(io_end);
3218 /*
3219 * In case of error or no write ext4_end_io_dio() was not
3220 * called so we have to put iocb's reference.
3221 */
3222 if (ret <= 0 && ret != -EIOCBQUEUED) {
3223 WARN_ON(iocb->private != io_end);
3224 ext4_put_io_end(io_end);
3225 iocb->private = NULL;
3226 }
3227 }
3228 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3229 EXT4_STATE_DIO_UNWRITTEN)) {
3230 int err;
3231 /*
3232 * for non AIO case, since the IO is already
3233 * completed, we could do the conversion right here
3234 */
3235 err = ext4_convert_unwritten_extents(inode,
3236 offset, ret);
3237 if (err < 0)
3238 ret = err;
3239 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3240 }
3241
3242 retake_lock:
3243 /* take i_mutex locking again if we do a ovewrite dio */
3244 if (overwrite) {
3245 inode_dio_done(inode);
3246 up_read(&EXT4_I(inode)->i_data_sem);
3247 mutex_lock(&inode->i_mutex);
3248 }
3249
3250 return ret;
3251 }
3252
3253 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3254 const struct iovec *iov, loff_t offset,
3255 unsigned long nr_segs)
3256 {
3257 struct file *file = iocb->ki_filp;
3258 struct inode *inode = file->f_mapping->host;
3259 ssize_t ret;
3260
3261 /*
3262 * If we are doing data journalling we don't support O_DIRECT
3263 */
3264 if (ext4_should_journal_data(inode))
3265 return 0;
3266
3267 /* Let buffer I/O handle the inline data case. */
3268 if (ext4_has_inline_data(inode))
3269 return 0;
3270
3271 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3272 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3273 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3274 else
3275 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3276 trace_ext4_direct_IO_exit(inode, offset,
3277 iov_length(iov, nr_segs), rw, ret);
3278 return ret;
3279 }
3280
3281 /*
3282 * Pages can be marked dirty completely asynchronously from ext4's journalling
3283 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3284 * much here because ->set_page_dirty is called under VFS locks. The page is
3285 * not necessarily locked.
3286 *
3287 * We cannot just dirty the page and leave attached buffers clean, because the
3288 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3289 * or jbddirty because all the journalling code will explode.
3290 *
3291 * So what we do is to mark the page "pending dirty" and next time writepage
3292 * is called, propagate that into the buffers appropriately.
3293 */
3294 static int ext4_journalled_set_page_dirty(struct page *page)
3295 {
3296 SetPageChecked(page);
3297 return __set_page_dirty_nobuffers(page);
3298 }
3299
3300 static const struct address_space_operations ext4_aops = {
3301 .readpage = ext4_readpage,
3302 .readpages = ext4_readpages,
3303 .writepage = ext4_writepage,
3304 .write_begin = ext4_write_begin,
3305 .write_end = ext4_write_end,
3306 .bmap = ext4_bmap,
3307 .invalidatepage = ext4_invalidatepage,
3308 .releasepage = ext4_releasepage,
3309 .direct_IO = ext4_direct_IO,
3310 .migratepage = buffer_migrate_page,
3311 .is_partially_uptodate = block_is_partially_uptodate,
3312 .error_remove_page = generic_error_remove_page,
3313 };
3314
3315 static const struct address_space_operations ext4_journalled_aops = {
3316 .readpage = ext4_readpage,
3317 .readpages = ext4_readpages,
3318 .writepage = ext4_writepage,
3319 .write_begin = ext4_write_begin,
3320 .write_end = ext4_journalled_write_end,
3321 .set_page_dirty = ext4_journalled_set_page_dirty,
3322 .bmap = ext4_bmap,
3323 .invalidatepage = ext4_journalled_invalidatepage,
3324 .releasepage = ext4_releasepage,
3325 .direct_IO = ext4_direct_IO,
3326 .is_partially_uptodate = block_is_partially_uptodate,
3327 .error_remove_page = generic_error_remove_page,
3328 };
3329
3330 static const struct address_space_operations ext4_da_aops = {
3331 .readpage = ext4_readpage,
3332 .readpages = ext4_readpages,
3333 .writepage = ext4_writepage,
3334 .writepages = ext4_da_writepages,
3335 .write_begin = ext4_da_write_begin,
3336 .write_end = ext4_da_write_end,
3337 .bmap = ext4_bmap,
3338 .invalidatepage = ext4_da_invalidatepage,
3339 .releasepage = ext4_releasepage,
3340 .direct_IO = ext4_direct_IO,
3341 .migratepage = buffer_migrate_page,
3342 .is_partially_uptodate = block_is_partially_uptodate,
3343 .error_remove_page = generic_error_remove_page,
3344 };
3345
3346 void ext4_set_aops(struct inode *inode)
3347 {
3348 switch (ext4_inode_journal_mode(inode)) {
3349 case EXT4_INODE_ORDERED_DATA_MODE:
3350 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3351 break;
3352 case EXT4_INODE_WRITEBACK_DATA_MODE:
3353 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3354 break;
3355 case EXT4_INODE_JOURNAL_DATA_MODE:
3356 inode->i_mapping->a_ops = &ext4_journalled_aops;
3357 return;
3358 default:
3359 BUG();
3360 }
3361 if (test_opt(inode->i_sb, DELALLOC))
3362 inode->i_mapping->a_ops = &ext4_da_aops;
3363 else
3364 inode->i_mapping->a_ops = &ext4_aops;
3365 }
3366
3367
3368 /*
3369 * ext4_discard_partial_page_buffers()
3370 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3371 * This function finds and locks the page containing the offset
3372 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3373 * Calling functions that already have the page locked should call
3374 * ext4_discard_partial_page_buffers_no_lock directly.
3375 */
3376 int ext4_discard_partial_page_buffers(handle_t *handle,
3377 struct address_space *mapping, loff_t from,
3378 loff_t length, int flags)
3379 {
3380 struct inode *inode = mapping->host;
3381 struct page *page;
3382 int err = 0;
3383
3384 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3385 mapping_gfp_mask(mapping) & ~__GFP_FS);
3386 if (!page)
3387 return -ENOMEM;
3388
3389 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3390 from, length, flags);
3391
3392 unlock_page(page);
3393 page_cache_release(page);
3394 return err;
3395 }
3396
3397 /*
3398 * ext4_discard_partial_page_buffers_no_lock()
3399 * Zeros a page range of length 'length' starting from offset 'from'.
3400 * Buffer heads that correspond to the block aligned regions of the
3401 * zeroed range will be unmapped. Unblock aligned regions
3402 * will have the corresponding buffer head mapped if needed so that
3403 * that region of the page can be updated with the partial zero out.
3404 *
3405 * This function assumes that the page has already been locked. The
3406 * The range to be discarded must be contained with in the given page.
3407 * If the specified range exceeds the end of the page it will be shortened
3408 * to the end of the page that corresponds to 'from'. This function is
3409 * appropriate for updating a page and it buffer heads to be unmapped and
3410 * zeroed for blocks that have been either released, or are going to be
3411 * released.
3412 *
3413 * handle: The journal handle
3414 * inode: The files inode
3415 * page: A locked page that contains the offset "from"
3416 * from: The starting byte offset (from the beginning of the file)
3417 * to begin discarding
3418 * len: The length of bytes to discard
3419 * flags: Optional flags that may be used:
3420 *
3421 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3422 * Only zero the regions of the page whose buffer heads
3423 * have already been unmapped. This flag is appropriate
3424 * for updating the contents of a page whose blocks may
3425 * have already been released, and we only want to zero
3426 * out the regions that correspond to those released blocks.
3427 *
3428 * Returns zero on success or negative on failure.
3429 */
3430 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3431 struct inode *inode, struct page *page, loff_t from,
3432 loff_t length, int flags)
3433 {
3434 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3435 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3436 unsigned int blocksize, max, pos;
3437 ext4_lblk_t iblock;
3438 struct buffer_head *bh;
3439 int err = 0;
3440
3441 blocksize = inode->i_sb->s_blocksize;
3442 max = PAGE_CACHE_SIZE - offset;
3443
3444 if (index != page->index)
3445 return -EINVAL;
3446
3447 /*
3448 * correct length if it does not fall between
3449 * 'from' and the end of the page
3450 */
3451 if (length > max || length < 0)
3452 length = max;
3453
3454 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3455
3456 if (!page_has_buffers(page))
3457 create_empty_buffers(page, blocksize, 0);
3458
3459 /* Find the buffer that contains "offset" */
3460 bh = page_buffers(page);
3461 pos = blocksize;
3462 while (offset >= pos) {
3463 bh = bh->b_this_page;
3464 iblock++;
3465 pos += blocksize;
3466 }
3467
3468 pos = offset;
3469 while (pos < offset + length) {
3470 unsigned int end_of_block, range_to_discard;
3471
3472 err = 0;
3473
3474 /* The length of space left to zero and unmap */
3475 range_to_discard = offset + length - pos;
3476
3477 /* The length of space until the end of the block */
3478 end_of_block = blocksize - (pos & (blocksize-1));
3479
3480 /*
3481 * Do not unmap or zero past end of block
3482 * for this buffer head
3483 */
3484 if (range_to_discard > end_of_block)
3485 range_to_discard = end_of_block;
3486
3487
3488 /*
3489 * Skip this buffer head if we are only zeroing unampped
3490 * regions of the page
3491 */
3492 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3493 buffer_mapped(bh))
3494 goto next;
3495
3496 /* If the range is block aligned, unmap */
3497 if (range_to_discard == blocksize) {
3498 clear_buffer_dirty(bh);
3499 bh->b_bdev = NULL;
3500 clear_buffer_mapped(bh);
3501 clear_buffer_req(bh);
3502 clear_buffer_new(bh);
3503 clear_buffer_delay(bh);
3504 clear_buffer_unwritten(bh);
3505 clear_buffer_uptodate(bh);
3506 zero_user(page, pos, range_to_discard);
3507 BUFFER_TRACE(bh, "Buffer discarded");
3508 goto next;
3509 }
3510
3511 /*
3512 * If this block is not completely contained in the range
3513 * to be discarded, then it is not going to be released. Because
3514 * we need to keep this block, we need to make sure this part
3515 * of the page is uptodate before we modify it by writeing
3516 * partial zeros on it.
3517 */
3518 if (!buffer_mapped(bh)) {
3519 /*
3520 * Buffer head must be mapped before we can read
3521 * from the block
3522 */
3523 BUFFER_TRACE(bh, "unmapped");
3524 ext4_get_block(inode, iblock, bh, 0);
3525 /* unmapped? It's a hole - nothing to do */
3526 if (!buffer_mapped(bh)) {
3527 BUFFER_TRACE(bh, "still unmapped");
3528 goto next;
3529 }
3530 }
3531
3532 /* Ok, it's mapped. Make sure it's up-to-date */
3533 if (PageUptodate(page))
3534 set_buffer_uptodate(bh);
3535
3536 if (!buffer_uptodate(bh)) {
3537 err = -EIO;
3538 ll_rw_block(READ, 1, &bh);
3539 wait_on_buffer(bh);
3540 /* Uhhuh. Read error. Complain and punt.*/
3541 if (!buffer_uptodate(bh))
3542 goto next;
3543 }
3544
3545 if (ext4_should_journal_data(inode)) {
3546 BUFFER_TRACE(bh, "get write access");
3547 err = ext4_journal_get_write_access(handle, bh);
3548 if (err)
3549 goto next;
3550 }
3551
3552 zero_user(page, pos, range_to_discard);
3553
3554 err = 0;
3555 if (ext4_should_journal_data(inode)) {
3556 err = ext4_handle_dirty_metadata(handle, inode, bh);
3557 } else
3558 mark_buffer_dirty(bh);
3559
3560 BUFFER_TRACE(bh, "Partial buffer zeroed");
3561 next:
3562 bh = bh->b_this_page;
3563 iblock++;
3564 pos += range_to_discard;
3565 }
3566
3567 return err;
3568 }
3569
3570 int ext4_can_truncate(struct inode *inode)
3571 {
3572 if (S_ISREG(inode->i_mode))
3573 return 1;
3574 if (S_ISDIR(inode->i_mode))
3575 return 1;
3576 if (S_ISLNK(inode->i_mode))
3577 return !ext4_inode_is_fast_symlink(inode);
3578 return 0;
3579 }
3580
3581 /*
3582 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3583 * associated with the given offset and length
3584 *
3585 * @inode: File inode
3586 * @offset: The offset where the hole will begin
3587 * @len: The length of the hole
3588 *
3589 * Returns: 0 on success or negative on failure
3590 */
3591
3592 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3593 {
3594 struct inode *inode = file_inode(file);
3595 struct super_block *sb = inode->i_sb;
3596 ext4_lblk_t first_block, stop_block;
3597 struct address_space *mapping = inode->i_mapping;
3598 loff_t first_page, last_page, page_len;
3599 loff_t first_page_offset, last_page_offset;
3600 handle_t *handle;
3601 unsigned int credits;
3602 int ret = 0;
3603
3604 if (!S_ISREG(inode->i_mode))
3605 return -EOPNOTSUPP;
3606
3607 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3608 /* TODO: Add support for bigalloc file systems */
3609 return -EOPNOTSUPP;
3610 }
3611
3612 trace_ext4_punch_hole(inode, offset, length);
3613
3614 /*
3615 * Write out all dirty pages to avoid race conditions
3616 * Then release them.
3617 */
3618 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3619 ret = filemap_write_and_wait_range(mapping, offset,
3620 offset + length - 1);
3621 if (ret)
3622 return ret;
3623 }
3624
3625 mutex_lock(&inode->i_mutex);
3626 /* It's not possible punch hole on append only file */
3627 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3628 ret = -EPERM;
3629 goto out_mutex;
3630 }
3631 if (IS_SWAPFILE(inode)) {
3632 ret = -ETXTBSY;
3633 goto out_mutex;
3634 }
3635
3636 /* No need to punch hole beyond i_size */
3637 if (offset >= inode->i_size)
3638 goto out_mutex;
3639
3640 /*
3641 * If the hole extends beyond i_size, set the hole
3642 * to end after the page that contains i_size
3643 */
3644 if (offset + length > inode->i_size) {
3645 length = inode->i_size +
3646 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3647 offset;
3648 }
3649
3650 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3651 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3652
3653 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3654 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3655
3656 /* Now release the pages */
3657 if (last_page_offset > first_page_offset) {
3658 truncate_pagecache_range(inode, first_page_offset,
3659 last_page_offset - 1);
3660 }
3661
3662 /* Wait all existing dio workers, newcomers will block on i_mutex */
3663 ext4_inode_block_unlocked_dio(inode);
3664 ret = ext4_flush_unwritten_io(inode);
3665 if (ret)
3666 goto out_dio;
3667 inode_dio_wait(inode);
3668
3669 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3670 credits = ext4_writepage_trans_blocks(inode);
3671 else
3672 credits = ext4_blocks_for_truncate(inode);
3673 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3674 if (IS_ERR(handle)) {
3675 ret = PTR_ERR(handle);
3676 ext4_std_error(sb, ret);
3677 goto out_dio;
3678 }
3679
3680 /*
3681 * Now we need to zero out the non-page-aligned data in the
3682 * pages at the start and tail of the hole, and unmap the
3683 * buffer heads for the block aligned regions of the page that
3684 * were completely zeroed.
3685 */
3686 if (first_page > last_page) {
3687 /*
3688 * If the file space being truncated is contained
3689 * within a page just zero out and unmap the middle of
3690 * that page
3691 */
3692 ret = ext4_discard_partial_page_buffers(handle,
3693 mapping, offset, length, 0);
3694
3695 if (ret)
3696 goto out_stop;
3697 } else {
3698 /*
3699 * zero out and unmap the partial page that contains
3700 * the start of the hole
3701 */
3702 page_len = first_page_offset - offset;
3703 if (page_len > 0) {
3704 ret = ext4_discard_partial_page_buffers(handle, mapping,
3705 offset, page_len, 0);
3706 if (ret)
3707 goto out_stop;
3708 }
3709
3710 /*
3711 * zero out and unmap the partial page that contains
3712 * the end of the hole
3713 */
3714 page_len = offset + length - last_page_offset;
3715 if (page_len > 0) {
3716 ret = ext4_discard_partial_page_buffers(handle, mapping,
3717 last_page_offset, page_len, 0);
3718 if (ret)
3719 goto out_stop;
3720 }
3721 }
3722
3723 /*
3724 * If i_size is contained in the last page, we need to
3725 * unmap and zero the partial page after i_size
3726 */
3727 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3728 inode->i_size % PAGE_CACHE_SIZE != 0) {
3729 page_len = PAGE_CACHE_SIZE -
3730 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3731
3732 if (page_len > 0) {
3733 ret = ext4_discard_partial_page_buffers(handle,
3734 mapping, inode->i_size, page_len, 0);
3735
3736 if (ret)
3737 goto out_stop;
3738 }
3739 }
3740
3741 first_block = (offset + sb->s_blocksize - 1) >>
3742 EXT4_BLOCK_SIZE_BITS(sb);
3743 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3744
3745 /* If there are no blocks to remove, return now */
3746 if (first_block >= stop_block)
3747 goto out_stop;
3748
3749 down_write(&EXT4_I(inode)->i_data_sem);
3750 ext4_discard_preallocations(inode);
3751
3752 ret = ext4_es_remove_extent(inode, first_block,
3753 stop_block - first_block);
3754 if (ret) {
3755 up_write(&EXT4_I(inode)->i_data_sem);
3756 goto out_stop;
3757 }
3758
3759 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760 ret = ext4_ext_remove_space(inode, first_block,
3761 stop_block - 1);
3762 else
3763 ret = ext4_free_hole_blocks(handle, inode, first_block,
3764 stop_block);
3765
3766 ext4_discard_preallocations(inode);
3767 up_write(&EXT4_I(inode)->i_data_sem);
3768 if (IS_SYNC(inode))
3769 ext4_handle_sync(handle);
3770 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3771 ext4_mark_inode_dirty(handle, inode);
3772 out_stop:
3773 ext4_journal_stop(handle);
3774 out_dio:
3775 ext4_inode_resume_unlocked_dio(inode);
3776 out_mutex:
3777 mutex_unlock(&inode->i_mutex);
3778 return ret;
3779 }
3780
3781 /*
3782 * ext4_truncate()
3783 *
3784 * We block out ext4_get_block() block instantiations across the entire
3785 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3786 * simultaneously on behalf of the same inode.
3787 *
3788 * As we work through the truncate and commit bits of it to the journal there
3789 * is one core, guiding principle: the file's tree must always be consistent on
3790 * disk. We must be able to restart the truncate after a crash.
3791 *
3792 * The file's tree may be transiently inconsistent in memory (although it
3793 * probably isn't), but whenever we close off and commit a journal transaction,
3794 * the contents of (the filesystem + the journal) must be consistent and
3795 * restartable. It's pretty simple, really: bottom up, right to left (although
3796 * left-to-right works OK too).
3797 *
3798 * Note that at recovery time, journal replay occurs *before* the restart of
3799 * truncate against the orphan inode list.
3800 *
3801 * The committed inode has the new, desired i_size (which is the same as
3802 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3803 * that this inode's truncate did not complete and it will again call
3804 * ext4_truncate() to have another go. So there will be instantiated blocks
3805 * to the right of the truncation point in a crashed ext4 filesystem. But
3806 * that's fine - as long as they are linked from the inode, the post-crash
3807 * ext4_truncate() run will find them and release them.
3808 */
3809 void ext4_truncate(struct inode *inode)
3810 {
3811 struct ext4_inode_info *ei = EXT4_I(inode);
3812 unsigned int credits;
3813 handle_t *handle;
3814 struct address_space *mapping = inode->i_mapping;
3815 loff_t page_len;
3816
3817 /*
3818 * There is a possibility that we're either freeing the inode
3819 * or it completely new indode. In those cases we might not
3820 * have i_mutex locked because it's not necessary.
3821 */
3822 if (!(inode->i_state & (I_NEW|I_FREEING)))
3823 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3824 trace_ext4_truncate_enter(inode);
3825
3826 if (!ext4_can_truncate(inode))
3827 return;
3828
3829 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830
3831 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3832 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3833
3834 if (ext4_has_inline_data(inode)) {
3835 int has_inline = 1;
3836
3837 ext4_inline_data_truncate(inode, &has_inline);
3838 if (has_inline)
3839 return;
3840 }
3841
3842 /*
3843 * finish any pending end_io work so we won't run the risk of
3844 * converting any truncated blocks to initialized later
3845 */
3846 ext4_flush_unwritten_io(inode);
3847
3848 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3849 credits = ext4_writepage_trans_blocks(inode);
3850 else
3851 credits = ext4_blocks_for_truncate(inode);
3852
3853 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3854 if (IS_ERR(handle)) {
3855 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3856 return;
3857 }
3858
3859 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3860 page_len = PAGE_CACHE_SIZE -
3861 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3862
3863 if (ext4_discard_partial_page_buffers(handle,
3864 mapping, inode->i_size, page_len, 0))
3865 goto out_stop;
3866 }
3867
3868 /*
3869 * We add the inode to the orphan list, so that if this
3870 * truncate spans multiple transactions, and we crash, we will
3871 * resume the truncate when the filesystem recovers. It also
3872 * marks the inode dirty, to catch the new size.
3873 *
3874 * Implication: the file must always be in a sane, consistent
3875 * truncatable state while each transaction commits.
3876 */
3877 if (ext4_orphan_add(handle, inode))
3878 goto out_stop;
3879
3880 down_write(&EXT4_I(inode)->i_data_sem);
3881
3882 ext4_discard_preallocations(inode);
3883
3884 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3885 ext4_ext_truncate(handle, inode);
3886 else
3887 ext4_ind_truncate(handle, inode);
3888
3889 up_write(&ei->i_data_sem);
3890
3891 if (IS_SYNC(inode))
3892 ext4_handle_sync(handle);
3893
3894 out_stop:
3895 /*
3896 * If this was a simple ftruncate() and the file will remain alive,
3897 * then we need to clear up the orphan record which we created above.
3898 * However, if this was a real unlink then we were called by
3899 * ext4_delete_inode(), and we allow that function to clean up the
3900 * orphan info for us.
3901 */
3902 if (inode->i_nlink)
3903 ext4_orphan_del(handle, inode);
3904
3905 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3906 ext4_mark_inode_dirty(handle, inode);
3907 ext4_journal_stop(handle);
3908
3909 trace_ext4_truncate_exit(inode);
3910 }
3911
3912 /*
3913 * ext4_get_inode_loc returns with an extra refcount against the inode's
3914 * underlying buffer_head on success. If 'in_mem' is true, we have all
3915 * data in memory that is needed to recreate the on-disk version of this
3916 * inode.
3917 */
3918 static int __ext4_get_inode_loc(struct inode *inode,
3919 struct ext4_iloc *iloc, int in_mem)
3920 {
3921 struct ext4_group_desc *gdp;
3922 struct buffer_head *bh;
3923 struct super_block *sb = inode->i_sb;
3924 ext4_fsblk_t block;
3925 int inodes_per_block, inode_offset;
3926
3927 iloc->bh = NULL;
3928 if (!ext4_valid_inum(sb, inode->i_ino))
3929 return -EIO;
3930
3931 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3932 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3933 if (!gdp)
3934 return -EIO;
3935
3936 /*
3937 * Figure out the offset within the block group inode table
3938 */
3939 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3940 inode_offset = ((inode->i_ino - 1) %
3941 EXT4_INODES_PER_GROUP(sb));
3942 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3943 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3944
3945 bh = sb_getblk(sb, block);
3946 if (unlikely(!bh))
3947 return -ENOMEM;
3948 if (!buffer_uptodate(bh)) {
3949 lock_buffer(bh);
3950
3951 /*
3952 * If the buffer has the write error flag, we have failed
3953 * to write out another inode in the same block. In this
3954 * case, we don't have to read the block because we may
3955 * read the old inode data successfully.
3956 */
3957 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3958 set_buffer_uptodate(bh);
3959
3960 if (buffer_uptodate(bh)) {
3961 /* someone brought it uptodate while we waited */
3962 unlock_buffer(bh);
3963 goto has_buffer;
3964 }
3965
3966 /*
3967 * If we have all information of the inode in memory and this
3968 * is the only valid inode in the block, we need not read the
3969 * block.
3970 */
3971 if (in_mem) {
3972 struct buffer_head *bitmap_bh;
3973 int i, start;
3974
3975 start = inode_offset & ~(inodes_per_block - 1);
3976
3977 /* Is the inode bitmap in cache? */
3978 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3979 if (unlikely(!bitmap_bh))
3980 goto make_io;
3981
3982 /*
3983 * If the inode bitmap isn't in cache then the
3984 * optimisation may end up performing two reads instead
3985 * of one, so skip it.
3986 */
3987 if (!buffer_uptodate(bitmap_bh)) {
3988 brelse(bitmap_bh);
3989 goto make_io;
3990 }
3991 for (i = start; i < start + inodes_per_block; i++) {
3992 if (i == inode_offset)
3993 continue;
3994 if (ext4_test_bit(i, bitmap_bh->b_data))
3995 break;
3996 }
3997 brelse(bitmap_bh);
3998 if (i == start + inodes_per_block) {
3999 /* all other inodes are free, so skip I/O */
4000 memset(bh->b_data, 0, bh->b_size);
4001 set_buffer_uptodate(bh);
4002 unlock_buffer(bh);
4003 goto has_buffer;
4004 }
4005 }
4006
4007 make_io:
4008 /*
4009 * If we need to do any I/O, try to pre-readahead extra
4010 * blocks from the inode table.
4011 */
4012 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4013 ext4_fsblk_t b, end, table;
4014 unsigned num;
4015 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4016
4017 table = ext4_inode_table(sb, gdp);
4018 /* s_inode_readahead_blks is always a power of 2 */
4019 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4020 if (table > b)
4021 b = table;
4022 end = b + ra_blks;
4023 num = EXT4_INODES_PER_GROUP(sb);
4024 if (ext4_has_group_desc_csum(sb))
4025 num -= ext4_itable_unused_count(sb, gdp);
4026 table += num / inodes_per_block;
4027 if (end > table)
4028 end = table;
4029 while (b <= end)
4030 sb_breadahead(sb, b++);
4031 }
4032
4033 /*
4034 * There are other valid inodes in the buffer, this inode
4035 * has in-inode xattrs, or we don't have this inode in memory.
4036 * Read the block from disk.
4037 */
4038 trace_ext4_load_inode(inode);
4039 get_bh(bh);
4040 bh->b_end_io = end_buffer_read_sync;
4041 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4042 wait_on_buffer(bh);
4043 if (!buffer_uptodate(bh)) {
4044 EXT4_ERROR_INODE_BLOCK(inode, block,
4045 "unable to read itable block");
4046 brelse(bh);
4047 return -EIO;
4048 }
4049 }
4050 has_buffer:
4051 iloc->bh = bh;
4052 return 0;
4053 }
4054
4055 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4056 {
4057 /* We have all inode data except xattrs in memory here. */
4058 return __ext4_get_inode_loc(inode, iloc,
4059 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4060 }
4061
4062 void ext4_set_inode_flags(struct inode *inode)
4063 {
4064 unsigned int flags = EXT4_I(inode)->i_flags;
4065
4066 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4067 if (flags & EXT4_SYNC_FL)
4068 inode->i_flags |= S_SYNC;
4069 if (flags & EXT4_APPEND_FL)
4070 inode->i_flags |= S_APPEND;
4071 if (flags & EXT4_IMMUTABLE_FL)
4072 inode->i_flags |= S_IMMUTABLE;
4073 if (flags & EXT4_NOATIME_FL)
4074 inode->i_flags |= S_NOATIME;
4075 if (flags & EXT4_DIRSYNC_FL)
4076 inode->i_flags |= S_DIRSYNC;
4077 }
4078
4079 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4080 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4081 {
4082 unsigned int vfs_fl;
4083 unsigned long old_fl, new_fl;
4084
4085 do {
4086 vfs_fl = ei->vfs_inode.i_flags;
4087 old_fl = ei->i_flags;
4088 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4089 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4090 EXT4_DIRSYNC_FL);
4091 if (vfs_fl & S_SYNC)
4092 new_fl |= EXT4_SYNC_FL;
4093 if (vfs_fl & S_APPEND)
4094 new_fl |= EXT4_APPEND_FL;
4095 if (vfs_fl & S_IMMUTABLE)
4096 new_fl |= EXT4_IMMUTABLE_FL;
4097 if (vfs_fl & S_NOATIME)
4098 new_fl |= EXT4_NOATIME_FL;
4099 if (vfs_fl & S_DIRSYNC)
4100 new_fl |= EXT4_DIRSYNC_FL;
4101 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4102 }
4103
4104 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4105 struct ext4_inode_info *ei)
4106 {
4107 blkcnt_t i_blocks ;
4108 struct inode *inode = &(ei->vfs_inode);
4109 struct super_block *sb = inode->i_sb;
4110
4111 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4112 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4113 /* we are using combined 48 bit field */
4114 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4115 le32_to_cpu(raw_inode->i_blocks_lo);
4116 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4117 /* i_blocks represent file system block size */
4118 return i_blocks << (inode->i_blkbits - 9);
4119 } else {
4120 return i_blocks;
4121 }
4122 } else {
4123 return le32_to_cpu(raw_inode->i_blocks_lo);
4124 }
4125 }
4126
4127 static inline void ext4_iget_extra_inode(struct inode *inode,
4128 struct ext4_inode *raw_inode,
4129 struct ext4_inode_info *ei)
4130 {
4131 __le32 *magic = (void *)raw_inode +
4132 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4133 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4134 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4135 ext4_find_inline_data_nolock(inode);
4136 } else
4137 EXT4_I(inode)->i_inline_off = 0;
4138 }
4139
4140 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4141 {
4142 struct ext4_iloc iloc;
4143 struct ext4_inode *raw_inode;
4144 struct ext4_inode_info *ei;
4145 struct inode *inode;
4146 journal_t *journal = EXT4_SB(sb)->s_journal;
4147 long ret;
4148 int block;
4149 uid_t i_uid;
4150 gid_t i_gid;
4151
4152 inode = iget_locked(sb, ino);
4153 if (!inode)
4154 return ERR_PTR(-ENOMEM);
4155 if (!(inode->i_state & I_NEW))
4156 return inode;
4157
4158 ei = EXT4_I(inode);
4159 iloc.bh = NULL;
4160
4161 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4162 if (ret < 0)
4163 goto bad_inode;
4164 raw_inode = ext4_raw_inode(&iloc);
4165
4166 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4167 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4168 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4169 EXT4_INODE_SIZE(inode->i_sb)) {
4170 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4171 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4172 EXT4_INODE_SIZE(inode->i_sb));
4173 ret = -EIO;
4174 goto bad_inode;
4175 }
4176 } else
4177 ei->i_extra_isize = 0;
4178
4179 /* Precompute checksum seed for inode metadata */
4180 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4181 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183 __u32 csum;
4184 __le32 inum = cpu_to_le32(inode->i_ino);
4185 __le32 gen = raw_inode->i_generation;
4186 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4187 sizeof(inum));
4188 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4189 sizeof(gen));
4190 }
4191
4192 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4193 EXT4_ERROR_INODE(inode, "checksum invalid");
4194 ret = -EIO;
4195 goto bad_inode;
4196 }
4197
4198 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4199 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4200 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4201 if (!(test_opt(inode->i_sb, NO_UID32))) {
4202 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4203 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4204 }
4205 i_uid_write(inode, i_uid);
4206 i_gid_write(inode, i_gid);
4207 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4208
4209 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4210 ei->i_inline_off = 0;
4211 ei->i_dir_start_lookup = 0;
4212 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4213 /* We now have enough fields to check if the inode was active or not.
4214 * This is needed because nfsd might try to access dead inodes
4215 * the test is that same one that e2fsck uses
4216 * NeilBrown 1999oct15
4217 */
4218 if (inode->i_nlink == 0) {
4219 if ((inode->i_mode == 0 ||
4220 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4221 ino != EXT4_BOOT_LOADER_INO) {
4222 /* this inode is deleted */
4223 ret = -ESTALE;
4224 goto bad_inode;
4225 }
4226 /* The only unlinked inodes we let through here have
4227 * valid i_mode and are being read by the orphan
4228 * recovery code: that's fine, we're about to complete
4229 * the process of deleting those.
4230 * OR it is the EXT4_BOOT_LOADER_INO which is
4231 * not initialized on a new filesystem. */
4232 }
4233 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4234 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4235 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4236 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4237 ei->i_file_acl |=
4238 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4239 inode->i_size = ext4_isize(raw_inode);
4240 ei->i_disksize = inode->i_size;
4241 #ifdef CONFIG_QUOTA
4242 ei->i_reserved_quota = 0;
4243 #endif
4244 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4245 ei->i_block_group = iloc.block_group;
4246 ei->i_last_alloc_group = ~0;
4247 /*
4248 * NOTE! The in-memory inode i_data array is in little-endian order
4249 * even on big-endian machines: we do NOT byteswap the block numbers!
4250 */
4251 for (block = 0; block < EXT4_N_BLOCKS; block++)
4252 ei->i_data[block] = raw_inode->i_block[block];
4253 INIT_LIST_HEAD(&ei->i_orphan);
4254
4255 /*
4256 * Set transaction id's of transactions that have to be committed
4257 * to finish f[data]sync. We set them to currently running transaction
4258 * as we cannot be sure that the inode or some of its metadata isn't
4259 * part of the transaction - the inode could have been reclaimed and
4260 * now it is reread from disk.
4261 */
4262 if (journal) {
4263 transaction_t *transaction;
4264 tid_t tid;
4265
4266 read_lock(&journal->j_state_lock);
4267 if (journal->j_running_transaction)
4268 transaction = journal->j_running_transaction;
4269 else
4270 transaction = journal->j_committing_transaction;
4271 if (transaction)
4272 tid = transaction->t_tid;
4273 else
4274 tid = journal->j_commit_sequence;
4275 read_unlock(&journal->j_state_lock);
4276 ei->i_sync_tid = tid;
4277 ei->i_datasync_tid = tid;
4278 }
4279
4280 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4281 if (ei->i_extra_isize == 0) {
4282 /* The extra space is currently unused. Use it. */
4283 ei->i_extra_isize = sizeof(struct ext4_inode) -
4284 EXT4_GOOD_OLD_INODE_SIZE;
4285 } else {
4286 ext4_iget_extra_inode(inode, raw_inode, ei);
4287 }
4288 }
4289
4290 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4291 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4292 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4293 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4294
4295 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4296 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4297 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4298 inode->i_version |=
4299 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4300 }
4301
4302 ret = 0;
4303 if (ei->i_file_acl &&
4304 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4305 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4306 ei->i_file_acl);
4307 ret = -EIO;
4308 goto bad_inode;
4309 } else if (!ext4_has_inline_data(inode)) {
4310 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4311 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4312 (S_ISLNK(inode->i_mode) &&
4313 !ext4_inode_is_fast_symlink(inode))))
4314 /* Validate extent which is part of inode */
4315 ret = ext4_ext_check_inode(inode);
4316 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4317 (S_ISLNK(inode->i_mode) &&
4318 !ext4_inode_is_fast_symlink(inode))) {
4319 /* Validate block references which are part of inode */
4320 ret = ext4_ind_check_inode(inode);
4321 }
4322 }
4323 if (ret)
4324 goto bad_inode;
4325
4326 if (S_ISREG(inode->i_mode)) {
4327 inode->i_op = &ext4_file_inode_operations;
4328 inode->i_fop = &ext4_file_operations;
4329 ext4_set_aops(inode);
4330 } else if (S_ISDIR(inode->i_mode)) {
4331 inode->i_op = &ext4_dir_inode_operations;
4332 inode->i_fop = &ext4_dir_operations;
4333 } else if (S_ISLNK(inode->i_mode)) {
4334 if (ext4_inode_is_fast_symlink(inode)) {
4335 inode->i_op = &ext4_fast_symlink_inode_operations;
4336 nd_terminate_link(ei->i_data, inode->i_size,
4337 sizeof(ei->i_data) - 1);
4338 } else {
4339 inode->i_op = &ext4_symlink_inode_operations;
4340 ext4_set_aops(inode);
4341 }
4342 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4343 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4344 inode->i_op = &ext4_special_inode_operations;
4345 if (raw_inode->i_block[0])
4346 init_special_inode(inode, inode->i_mode,
4347 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4348 else
4349 init_special_inode(inode, inode->i_mode,
4350 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4351 } else if (ino == EXT4_BOOT_LOADER_INO) {
4352 make_bad_inode(inode);
4353 } else {
4354 ret = -EIO;
4355 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4356 goto bad_inode;
4357 }
4358 brelse(iloc.bh);
4359 ext4_set_inode_flags(inode);
4360 unlock_new_inode(inode);
4361 return inode;
4362
4363 bad_inode:
4364 brelse(iloc.bh);
4365 iget_failed(inode);
4366 return ERR_PTR(ret);
4367 }
4368
4369 static int ext4_inode_blocks_set(handle_t *handle,
4370 struct ext4_inode *raw_inode,
4371 struct ext4_inode_info *ei)
4372 {
4373 struct inode *inode = &(ei->vfs_inode);
4374 u64 i_blocks = inode->i_blocks;
4375 struct super_block *sb = inode->i_sb;
4376
4377 if (i_blocks <= ~0U) {
4378 /*
4379 * i_blocks can be represented in a 32 bit variable
4380 * as multiple of 512 bytes
4381 */
4382 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4383 raw_inode->i_blocks_high = 0;
4384 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4385 return 0;
4386 }
4387 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4388 return -EFBIG;
4389
4390 if (i_blocks <= 0xffffffffffffULL) {
4391 /*
4392 * i_blocks can be represented in a 48 bit variable
4393 * as multiple of 512 bytes
4394 */
4395 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4396 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4397 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398 } else {
4399 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4400 /* i_block is stored in file system block size */
4401 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4402 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4403 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4404 }
4405 return 0;
4406 }
4407
4408 /*
4409 * Post the struct inode info into an on-disk inode location in the
4410 * buffer-cache. This gobbles the caller's reference to the
4411 * buffer_head in the inode location struct.
4412 *
4413 * The caller must have write access to iloc->bh.
4414 */
4415 static int ext4_do_update_inode(handle_t *handle,
4416 struct inode *inode,
4417 struct ext4_iloc *iloc)
4418 {
4419 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4420 struct ext4_inode_info *ei = EXT4_I(inode);
4421 struct buffer_head *bh = iloc->bh;
4422 int err = 0, rc, block;
4423 int need_datasync = 0;
4424 uid_t i_uid;
4425 gid_t i_gid;
4426
4427 /* For fields not not tracking in the in-memory inode,
4428 * initialise them to zero for new inodes. */
4429 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4430 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4431
4432 ext4_get_inode_flags(ei);
4433 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4434 i_uid = i_uid_read(inode);
4435 i_gid = i_gid_read(inode);
4436 if (!(test_opt(inode->i_sb, NO_UID32))) {
4437 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4438 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4439 /*
4440 * Fix up interoperability with old kernels. Otherwise, old inodes get
4441 * re-used with the upper 16 bits of the uid/gid intact
4442 */
4443 if (!ei->i_dtime) {
4444 raw_inode->i_uid_high =
4445 cpu_to_le16(high_16_bits(i_uid));
4446 raw_inode->i_gid_high =
4447 cpu_to_le16(high_16_bits(i_gid));
4448 } else {
4449 raw_inode->i_uid_high = 0;
4450 raw_inode->i_gid_high = 0;
4451 }
4452 } else {
4453 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4454 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4455 raw_inode->i_uid_high = 0;
4456 raw_inode->i_gid_high = 0;
4457 }
4458 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4459
4460 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4461 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4462 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4463 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4464
4465 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4466 goto out_brelse;
4467 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4468 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4469 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4470 cpu_to_le32(EXT4_OS_HURD))
4471 raw_inode->i_file_acl_high =
4472 cpu_to_le16(ei->i_file_acl >> 32);
4473 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4474 if (ei->i_disksize != ext4_isize(raw_inode)) {
4475 ext4_isize_set(raw_inode, ei->i_disksize);
4476 need_datasync = 1;
4477 }
4478 if (ei->i_disksize > 0x7fffffffULL) {
4479 struct super_block *sb = inode->i_sb;
4480 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4481 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4482 EXT4_SB(sb)->s_es->s_rev_level ==
4483 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4484 /* If this is the first large file
4485 * created, add a flag to the superblock.
4486 */
4487 err = ext4_journal_get_write_access(handle,
4488 EXT4_SB(sb)->s_sbh);
4489 if (err)
4490 goto out_brelse;
4491 ext4_update_dynamic_rev(sb);
4492 EXT4_SET_RO_COMPAT_FEATURE(sb,
4493 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4494 ext4_handle_sync(handle);
4495 err = ext4_handle_dirty_super(handle, sb);
4496 }
4497 }
4498 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4499 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4500 if (old_valid_dev(inode->i_rdev)) {
4501 raw_inode->i_block[0] =
4502 cpu_to_le32(old_encode_dev(inode->i_rdev));
4503 raw_inode->i_block[1] = 0;
4504 } else {
4505 raw_inode->i_block[0] = 0;
4506 raw_inode->i_block[1] =
4507 cpu_to_le32(new_encode_dev(inode->i_rdev));
4508 raw_inode->i_block[2] = 0;
4509 }
4510 } else if (!ext4_has_inline_data(inode)) {
4511 for (block = 0; block < EXT4_N_BLOCKS; block++)
4512 raw_inode->i_block[block] = ei->i_data[block];
4513 }
4514
4515 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4516 if (ei->i_extra_isize) {
4517 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4518 raw_inode->i_version_hi =
4519 cpu_to_le32(inode->i_version >> 32);
4520 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4521 }
4522
4523 ext4_inode_csum_set(inode, raw_inode, ei);
4524
4525 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4526 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4527 if (!err)
4528 err = rc;
4529 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4530
4531 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4532 out_brelse:
4533 brelse(bh);
4534 ext4_std_error(inode->i_sb, err);
4535 return err;
4536 }
4537
4538 /*
4539 * ext4_write_inode()
4540 *
4541 * We are called from a few places:
4542 *
4543 * - Within generic_file_write() for O_SYNC files.
4544 * Here, there will be no transaction running. We wait for any running
4545 * transaction to commit.
4546 *
4547 * - Within sys_sync(), kupdate and such.
4548 * We wait on commit, if tol to.
4549 *
4550 * - Within prune_icache() (PF_MEMALLOC == true)
4551 * Here we simply return. We can't afford to block kswapd on the
4552 * journal commit.
4553 *
4554 * In all cases it is actually safe for us to return without doing anything,
4555 * because the inode has been copied into a raw inode buffer in
4556 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4557 * knfsd.
4558 *
4559 * Note that we are absolutely dependent upon all inode dirtiers doing the
4560 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4561 * which we are interested.
4562 *
4563 * It would be a bug for them to not do this. The code:
4564 *
4565 * mark_inode_dirty(inode)
4566 * stuff();
4567 * inode->i_size = expr;
4568 *
4569 * is in error because a kswapd-driven write_inode() could occur while
4570 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4571 * will no longer be on the superblock's dirty inode list.
4572 */
4573 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4574 {
4575 int err;
4576
4577 if (current->flags & PF_MEMALLOC)
4578 return 0;
4579
4580 if (EXT4_SB(inode->i_sb)->s_journal) {
4581 if (ext4_journal_current_handle()) {
4582 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4583 dump_stack();
4584 return -EIO;
4585 }
4586
4587 if (wbc->sync_mode != WB_SYNC_ALL)
4588 return 0;
4589
4590 err = ext4_force_commit(inode->i_sb);
4591 } else {
4592 struct ext4_iloc iloc;
4593
4594 err = __ext4_get_inode_loc(inode, &iloc, 0);
4595 if (err)
4596 return err;
4597 if (wbc->sync_mode == WB_SYNC_ALL)
4598 sync_dirty_buffer(iloc.bh);
4599 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4600 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4601 "IO error syncing inode");
4602 err = -EIO;
4603 }
4604 brelse(iloc.bh);
4605 }
4606 return err;
4607 }
4608
4609 /*
4610 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4611 * buffers that are attached to a page stradding i_size and are undergoing
4612 * commit. In that case we have to wait for commit to finish and try again.
4613 */
4614 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4615 {
4616 struct page *page;
4617 unsigned offset;
4618 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4619 tid_t commit_tid = 0;
4620 int ret;
4621
4622 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4623 /*
4624 * All buffers in the last page remain valid? Then there's nothing to
4625 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4626 * blocksize case
4627 */
4628 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4629 return;
4630 while (1) {
4631 page = find_lock_page(inode->i_mapping,
4632 inode->i_size >> PAGE_CACHE_SHIFT);
4633 if (!page)
4634 return;
4635 ret = __ext4_journalled_invalidatepage(page, offset);
4636 unlock_page(page);
4637 page_cache_release(page);
4638 if (ret != -EBUSY)
4639 return;
4640 commit_tid = 0;
4641 read_lock(&journal->j_state_lock);
4642 if (journal->j_committing_transaction)
4643 commit_tid = journal->j_committing_transaction->t_tid;
4644 read_unlock(&journal->j_state_lock);
4645 if (commit_tid)
4646 jbd2_log_wait_commit(journal, commit_tid);
4647 }
4648 }
4649
4650 /*
4651 * ext4_setattr()
4652 *
4653 * Called from notify_change.
4654 *
4655 * We want to trap VFS attempts to truncate the file as soon as
4656 * possible. In particular, we want to make sure that when the VFS
4657 * shrinks i_size, we put the inode on the orphan list and modify
4658 * i_disksize immediately, so that during the subsequent flushing of
4659 * dirty pages and freeing of disk blocks, we can guarantee that any
4660 * commit will leave the blocks being flushed in an unused state on
4661 * disk. (On recovery, the inode will get truncated and the blocks will
4662 * be freed, so we have a strong guarantee that no future commit will
4663 * leave these blocks visible to the user.)
4664 *
4665 * Another thing we have to assure is that if we are in ordered mode
4666 * and inode is still attached to the committing transaction, we must
4667 * we start writeout of all the dirty pages which are being truncated.
4668 * This way we are sure that all the data written in the previous
4669 * transaction are already on disk (truncate waits for pages under
4670 * writeback).
4671 *
4672 * Called with inode->i_mutex down.
4673 */
4674 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4675 {
4676 struct inode *inode = dentry->d_inode;
4677 int error, rc = 0;
4678 int orphan = 0;
4679 const unsigned int ia_valid = attr->ia_valid;
4680
4681 error = inode_change_ok(inode, attr);
4682 if (error)
4683 return error;
4684
4685 if (is_quota_modification(inode, attr))
4686 dquot_initialize(inode);
4687 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4688 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4689 handle_t *handle;
4690
4691 /* (user+group)*(old+new) structure, inode write (sb,
4692 * inode block, ? - but truncate inode update has it) */
4693 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4694 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4695 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4696 if (IS_ERR(handle)) {
4697 error = PTR_ERR(handle);
4698 goto err_out;
4699 }
4700 error = dquot_transfer(inode, attr);
4701 if (error) {
4702 ext4_journal_stop(handle);
4703 return error;
4704 }
4705 /* Update corresponding info in inode so that everything is in
4706 * one transaction */
4707 if (attr->ia_valid & ATTR_UID)
4708 inode->i_uid = attr->ia_uid;
4709 if (attr->ia_valid & ATTR_GID)
4710 inode->i_gid = attr->ia_gid;
4711 error = ext4_mark_inode_dirty(handle, inode);
4712 ext4_journal_stop(handle);
4713 }
4714
4715 if (attr->ia_valid & ATTR_SIZE) {
4716
4717 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4718 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4719
4720 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4721 return -EFBIG;
4722 }
4723 }
4724
4725 if (S_ISREG(inode->i_mode) &&
4726 attr->ia_valid & ATTR_SIZE &&
4727 (attr->ia_size < inode->i_size)) {
4728 handle_t *handle;
4729
4730 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4731 if (IS_ERR(handle)) {
4732 error = PTR_ERR(handle);
4733 goto err_out;
4734 }
4735 if (ext4_handle_valid(handle)) {
4736 error = ext4_orphan_add(handle, inode);
4737 orphan = 1;
4738 }
4739 EXT4_I(inode)->i_disksize = attr->ia_size;
4740 rc = ext4_mark_inode_dirty(handle, inode);
4741 if (!error)
4742 error = rc;
4743 ext4_journal_stop(handle);
4744
4745 if (ext4_should_order_data(inode)) {
4746 error = ext4_begin_ordered_truncate(inode,
4747 attr->ia_size);
4748 if (error) {
4749 /* Do as much error cleanup as possible */
4750 handle = ext4_journal_start(inode,
4751 EXT4_HT_INODE, 3);
4752 if (IS_ERR(handle)) {
4753 ext4_orphan_del(NULL, inode);
4754 goto err_out;
4755 }
4756 ext4_orphan_del(handle, inode);
4757 orphan = 0;
4758 ext4_journal_stop(handle);
4759 goto err_out;
4760 }
4761 }
4762 }
4763
4764 if (attr->ia_valid & ATTR_SIZE) {
4765 if (attr->ia_size != inode->i_size) {
4766 loff_t oldsize = inode->i_size;
4767
4768 i_size_write(inode, attr->ia_size);
4769 /*
4770 * Blocks are going to be removed from the inode. Wait
4771 * for dio in flight. Temporarily disable
4772 * dioread_nolock to prevent livelock.
4773 */
4774 if (orphan) {
4775 if (!ext4_should_journal_data(inode)) {
4776 ext4_inode_block_unlocked_dio(inode);
4777 inode_dio_wait(inode);
4778 ext4_inode_resume_unlocked_dio(inode);
4779 } else
4780 ext4_wait_for_tail_page_commit(inode);
4781 }
4782 /*
4783 * Truncate pagecache after we've waited for commit
4784 * in data=journal mode to make pages freeable.
4785 */
4786 truncate_pagecache(inode, oldsize, inode->i_size);
4787 }
4788 ext4_truncate(inode);
4789 }
4790
4791 if (!rc) {
4792 setattr_copy(inode, attr);
4793 mark_inode_dirty(inode);
4794 }
4795
4796 /*
4797 * If the call to ext4_truncate failed to get a transaction handle at
4798 * all, we need to clean up the in-core orphan list manually.
4799 */
4800 if (orphan && inode->i_nlink)
4801 ext4_orphan_del(NULL, inode);
4802
4803 if (!rc && (ia_valid & ATTR_MODE))
4804 rc = ext4_acl_chmod(inode);
4805
4806 err_out:
4807 ext4_std_error(inode->i_sb, error);
4808 if (!error)
4809 error = rc;
4810 return error;
4811 }
4812
4813 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4814 struct kstat *stat)
4815 {
4816 struct inode *inode;
4817 unsigned long delalloc_blocks;
4818
4819 inode = dentry->d_inode;
4820 generic_fillattr(inode, stat);
4821
4822 /*
4823 * We can't update i_blocks if the block allocation is delayed
4824 * otherwise in the case of system crash before the real block
4825 * allocation is done, we will have i_blocks inconsistent with
4826 * on-disk file blocks.
4827 * We always keep i_blocks updated together with real
4828 * allocation. But to not confuse with user, stat
4829 * will return the blocks that include the delayed allocation
4830 * blocks for this file.
4831 */
4832 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4833 EXT4_I(inode)->i_reserved_data_blocks);
4834
4835 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4836 return 0;
4837 }
4838
4839 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4840 {
4841 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4842 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4843 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4844 }
4845
4846 /*
4847 * Account for index blocks, block groups bitmaps and block group
4848 * descriptor blocks if modify datablocks and index blocks
4849 * worse case, the indexs blocks spread over different block groups
4850 *
4851 * If datablocks are discontiguous, they are possible to spread over
4852 * different block groups too. If they are contiguous, with flexbg,
4853 * they could still across block group boundary.
4854 *
4855 * Also account for superblock, inode, quota and xattr blocks
4856 */
4857 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4858 {
4859 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4860 int gdpblocks;
4861 int idxblocks;
4862 int ret = 0;
4863
4864 /*
4865 * How many index blocks need to touch to modify nrblocks?
4866 * The "Chunk" flag indicating whether the nrblocks is
4867 * physically contiguous on disk
4868 *
4869 * For Direct IO and fallocate, they calls get_block to allocate
4870 * one single extent at a time, so they could set the "Chunk" flag
4871 */
4872 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4873
4874 ret = idxblocks;
4875
4876 /*
4877 * Now let's see how many group bitmaps and group descriptors need
4878 * to account
4879 */
4880 groups = idxblocks;
4881 if (chunk)
4882 groups += 1;
4883 else
4884 groups += nrblocks;
4885
4886 gdpblocks = groups;
4887 if (groups > ngroups)
4888 groups = ngroups;
4889 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4890 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4891
4892 /* bitmaps and block group descriptor blocks */
4893 ret += groups + gdpblocks;
4894
4895 /* Blocks for super block, inode, quota and xattr blocks */
4896 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4897
4898 return ret;
4899 }
4900
4901 /*
4902 * Calculate the total number of credits to reserve to fit
4903 * the modification of a single pages into a single transaction,
4904 * which may include multiple chunks of block allocations.
4905 *
4906 * This could be called via ext4_write_begin()
4907 *
4908 * We need to consider the worse case, when
4909 * one new block per extent.
4910 */
4911 int ext4_writepage_trans_blocks(struct inode *inode)
4912 {
4913 int bpp = ext4_journal_blocks_per_page(inode);
4914 int ret;
4915
4916 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4917
4918 /* Account for data blocks for journalled mode */
4919 if (ext4_should_journal_data(inode))
4920 ret += bpp;
4921 return ret;
4922 }
4923
4924 /*
4925 * Calculate the journal credits for a chunk of data modification.
4926 *
4927 * This is called from DIO, fallocate or whoever calling
4928 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4929 *
4930 * journal buffers for data blocks are not included here, as DIO
4931 * and fallocate do no need to journal data buffers.
4932 */
4933 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4934 {
4935 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4936 }
4937
4938 /*
4939 * The caller must have previously called ext4_reserve_inode_write().
4940 * Give this, we know that the caller already has write access to iloc->bh.
4941 */
4942 int ext4_mark_iloc_dirty(handle_t *handle,
4943 struct inode *inode, struct ext4_iloc *iloc)
4944 {
4945 int err = 0;
4946
4947 if (IS_I_VERSION(inode))
4948 inode_inc_iversion(inode);
4949
4950 /* the do_update_inode consumes one bh->b_count */
4951 get_bh(iloc->bh);
4952
4953 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4954 err = ext4_do_update_inode(handle, inode, iloc);
4955 put_bh(iloc->bh);
4956 return err;
4957 }
4958
4959 /*
4960 * On success, We end up with an outstanding reference count against
4961 * iloc->bh. This _must_ be cleaned up later.
4962 */
4963
4964 int
4965 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4966 struct ext4_iloc *iloc)
4967 {
4968 int err;
4969
4970 err = ext4_get_inode_loc(inode, iloc);
4971 if (!err) {
4972 BUFFER_TRACE(iloc->bh, "get_write_access");
4973 err = ext4_journal_get_write_access(handle, iloc->bh);
4974 if (err) {
4975 brelse(iloc->bh);
4976 iloc->bh = NULL;
4977 }
4978 }
4979 ext4_std_error(inode->i_sb, err);
4980 return err;
4981 }
4982
4983 /*
4984 * Expand an inode by new_extra_isize bytes.
4985 * Returns 0 on success or negative error number on failure.
4986 */
4987 static int ext4_expand_extra_isize(struct inode *inode,
4988 unsigned int new_extra_isize,
4989 struct ext4_iloc iloc,
4990 handle_t *handle)
4991 {
4992 struct ext4_inode *raw_inode;
4993 struct ext4_xattr_ibody_header *header;
4994
4995 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4996 return 0;
4997
4998 raw_inode = ext4_raw_inode(&iloc);
4999
5000 header = IHDR(inode, raw_inode);
5001
5002 /* No extended attributes present */
5003 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5004 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5005 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5006 new_extra_isize);
5007 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5008 return 0;
5009 }
5010
5011 /* try to expand with EAs present */
5012 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5013 raw_inode, handle);
5014 }
5015
5016 /*
5017 * What we do here is to mark the in-core inode as clean with respect to inode
5018 * dirtiness (it may still be data-dirty).
5019 * This means that the in-core inode may be reaped by prune_icache
5020 * without having to perform any I/O. This is a very good thing,
5021 * because *any* task may call prune_icache - even ones which
5022 * have a transaction open against a different journal.
5023 *
5024 * Is this cheating? Not really. Sure, we haven't written the
5025 * inode out, but prune_icache isn't a user-visible syncing function.
5026 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5027 * we start and wait on commits.
5028 */
5029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5030 {
5031 struct ext4_iloc iloc;
5032 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5033 static unsigned int mnt_count;
5034 int err, ret;
5035
5036 might_sleep();
5037 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5038 err = ext4_reserve_inode_write(handle, inode, &iloc);
5039 if (ext4_handle_valid(handle) &&
5040 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5041 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5042 /*
5043 * We need extra buffer credits since we may write into EA block
5044 * with this same handle. If journal_extend fails, then it will
5045 * only result in a minor loss of functionality for that inode.
5046 * If this is felt to be critical, then e2fsck should be run to
5047 * force a large enough s_min_extra_isize.
5048 */
5049 if ((jbd2_journal_extend(handle,
5050 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5051 ret = ext4_expand_extra_isize(inode,
5052 sbi->s_want_extra_isize,
5053 iloc, handle);
5054 if (ret) {
5055 ext4_set_inode_state(inode,
5056 EXT4_STATE_NO_EXPAND);
5057 if (mnt_count !=
5058 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5059 ext4_warning(inode->i_sb,
5060 "Unable to expand inode %lu. Delete"
5061 " some EAs or run e2fsck.",
5062 inode->i_ino);
5063 mnt_count =
5064 le16_to_cpu(sbi->s_es->s_mnt_count);
5065 }
5066 }
5067 }
5068 }
5069 if (!err)
5070 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5071 return err;
5072 }
5073
5074 /*
5075 * ext4_dirty_inode() is called from __mark_inode_dirty()
5076 *
5077 * We're really interested in the case where a file is being extended.
5078 * i_size has been changed by generic_commit_write() and we thus need
5079 * to include the updated inode in the current transaction.
5080 *
5081 * Also, dquot_alloc_block() will always dirty the inode when blocks
5082 * are allocated to the file.
5083 *
5084 * If the inode is marked synchronous, we don't honour that here - doing
5085 * so would cause a commit on atime updates, which we don't bother doing.
5086 * We handle synchronous inodes at the highest possible level.
5087 */
5088 void ext4_dirty_inode(struct inode *inode, int flags)
5089 {
5090 handle_t *handle;
5091
5092 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5093 if (IS_ERR(handle))
5094 goto out;
5095
5096 ext4_mark_inode_dirty(handle, inode);
5097
5098 ext4_journal_stop(handle);
5099 out:
5100 return;
5101 }
5102
5103 #if 0
5104 /*
5105 * Bind an inode's backing buffer_head into this transaction, to prevent
5106 * it from being flushed to disk early. Unlike
5107 * ext4_reserve_inode_write, this leaves behind no bh reference and
5108 * returns no iloc structure, so the caller needs to repeat the iloc
5109 * lookup to mark the inode dirty later.
5110 */
5111 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5112 {
5113 struct ext4_iloc iloc;
5114
5115 int err = 0;
5116 if (handle) {
5117 err = ext4_get_inode_loc(inode, &iloc);
5118 if (!err) {
5119 BUFFER_TRACE(iloc.bh, "get_write_access");
5120 err = jbd2_journal_get_write_access(handle, iloc.bh);
5121 if (!err)
5122 err = ext4_handle_dirty_metadata(handle,
5123 NULL,
5124 iloc.bh);
5125 brelse(iloc.bh);
5126 }
5127 }
5128 ext4_std_error(inode->i_sb, err);
5129 return err;
5130 }
5131 #endif
5132
5133 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5134 {
5135 journal_t *journal;
5136 handle_t *handle;
5137 int err;
5138
5139 /*
5140 * We have to be very careful here: changing a data block's
5141 * journaling status dynamically is dangerous. If we write a
5142 * data block to the journal, change the status and then delete
5143 * that block, we risk forgetting to revoke the old log record
5144 * from the journal and so a subsequent replay can corrupt data.
5145 * So, first we make sure that the journal is empty and that
5146 * nobody is changing anything.
5147 */
5148
5149 journal = EXT4_JOURNAL(inode);
5150 if (!journal)
5151 return 0;
5152 if (is_journal_aborted(journal))
5153 return -EROFS;
5154 /* We have to allocate physical blocks for delalloc blocks
5155 * before flushing journal. otherwise delalloc blocks can not
5156 * be allocated any more. even more truncate on delalloc blocks
5157 * could trigger BUG by flushing delalloc blocks in journal.
5158 * There is no delalloc block in non-journal data mode.
5159 */
5160 if (val && test_opt(inode->i_sb, DELALLOC)) {
5161 err = ext4_alloc_da_blocks(inode);
5162 if (err < 0)
5163 return err;
5164 }
5165
5166 /* Wait for all existing dio workers */
5167 ext4_inode_block_unlocked_dio(inode);
5168 inode_dio_wait(inode);
5169
5170 jbd2_journal_lock_updates(journal);
5171
5172 /*
5173 * OK, there are no updates running now, and all cached data is
5174 * synced to disk. We are now in a completely consistent state
5175 * which doesn't have anything in the journal, and we know that
5176 * no filesystem updates are running, so it is safe to modify
5177 * the inode's in-core data-journaling state flag now.
5178 */
5179
5180 if (val)
5181 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5182 else {
5183 jbd2_journal_flush(journal);
5184 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5185 }
5186 ext4_set_aops(inode);
5187
5188 jbd2_journal_unlock_updates(journal);
5189 ext4_inode_resume_unlocked_dio(inode);
5190
5191 /* Finally we can mark the inode as dirty. */
5192
5193 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5194 if (IS_ERR(handle))
5195 return PTR_ERR(handle);
5196
5197 err = ext4_mark_inode_dirty(handle, inode);
5198 ext4_handle_sync(handle);
5199 ext4_journal_stop(handle);
5200 ext4_std_error(inode->i_sb, err);
5201
5202 return err;
5203 }
5204
5205 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5206 {
5207 return !buffer_mapped(bh);
5208 }
5209
5210 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5211 {
5212 struct page *page = vmf->page;
5213 loff_t size;
5214 unsigned long len;
5215 int ret;
5216 struct file *file = vma->vm_file;
5217 struct inode *inode = file_inode(file);
5218 struct address_space *mapping = inode->i_mapping;
5219 handle_t *handle;
5220 get_block_t *get_block;
5221 int retries = 0;
5222
5223 sb_start_pagefault(inode->i_sb);
5224 file_update_time(vma->vm_file);
5225 /* Delalloc case is easy... */
5226 if (test_opt(inode->i_sb, DELALLOC) &&
5227 !ext4_should_journal_data(inode) &&
5228 !ext4_nonda_switch(inode->i_sb)) {
5229 do {
5230 ret = __block_page_mkwrite(vma, vmf,
5231 ext4_da_get_block_prep);
5232 } while (ret == -ENOSPC &&
5233 ext4_should_retry_alloc(inode->i_sb, &retries));
5234 goto out_ret;
5235 }
5236
5237 lock_page(page);
5238 size = i_size_read(inode);
5239 /* Page got truncated from under us? */
5240 if (page->mapping != mapping || page_offset(page) > size) {
5241 unlock_page(page);
5242 ret = VM_FAULT_NOPAGE;
5243 goto out;
5244 }
5245
5246 if (page->index == size >> PAGE_CACHE_SHIFT)
5247 len = size & ~PAGE_CACHE_MASK;
5248 else
5249 len = PAGE_CACHE_SIZE;
5250 /*
5251 * Return if we have all the buffers mapped. This avoids the need to do
5252 * journal_start/journal_stop which can block and take a long time
5253 */
5254 if (page_has_buffers(page)) {
5255 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5256 0, len, NULL,
5257 ext4_bh_unmapped)) {
5258 /* Wait so that we don't change page under IO */
5259 wait_for_stable_page(page);
5260 ret = VM_FAULT_LOCKED;
5261 goto out;
5262 }
5263 }
5264 unlock_page(page);
5265 /* OK, we need to fill the hole... */
5266 if (ext4_should_dioread_nolock(inode))
5267 get_block = ext4_get_block_write;
5268 else
5269 get_block = ext4_get_block;
5270 retry_alloc:
5271 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5272 ext4_writepage_trans_blocks(inode));
5273 if (IS_ERR(handle)) {
5274 ret = VM_FAULT_SIGBUS;
5275 goto out;
5276 }
5277 ret = __block_page_mkwrite(vma, vmf, get_block);
5278 if (!ret && ext4_should_journal_data(inode)) {
5279 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5280 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5281 unlock_page(page);
5282 ret = VM_FAULT_SIGBUS;
5283 ext4_journal_stop(handle);
5284 goto out;
5285 }
5286 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5287 }
5288 ext4_journal_stop(handle);
5289 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5290 goto retry_alloc;
5291 out_ret:
5292 ret = block_page_mkwrite_return(ret);
5293 out:
5294 sb_end_pagefault(inode->i_sb);
5295 return ret;
5296 }