]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ext4/inode.c
13a198924a0f2f0f844054618323a6af7bec352b
[mirror_ubuntu-jammy-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 return S_ISLNK(inode->i_mode) && inode->i_size &&
152 (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188 int extra_credits = 3;
189 struct ext4_xattr_inode_array *ea_inode_array = NULL;
190
191 trace_ext4_evict_inode(inode);
192
193 if (inode->i_nlink) {
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (inode->i_ino != EXT4_JOURNAL_INO &&
213 ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 inode->i_data.nrpages) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
222 truncate_inode_pages_final(&inode->i_data);
223
224 goto no_delete;
225 }
226
227 if (is_bad_inode(inode))
228 goto no_delete;
229 dquot_initialize(inode);
230
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
233 truncate_inode_pages_final(&inode->i_data);
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240
241 if (!IS_NOQUOTA(inode))
242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+extra_credits);
246 if (IS_ERR(handle)) {
247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 /*
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
251 * cleaned up.
252 */
253 ext4_orphan_del(NULL, inode);
254 sb_end_intwrite(inode->i_sb);
255 goto no_delete;
256 }
257
258 if (IS_SYNC(inode))
259 ext4_handle_sync(handle);
260
261 /*
262 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 * special handling of symlinks here because i_size is used to
264 * determine whether ext4_inode_info->i_data contains symlink data or
265 * block mappings. Setting i_size to 0 will remove its fast symlink
266 * status. Erase i_data so that it becomes a valid empty block map.
267 */
268 if (ext4_inode_is_fast_symlink(inode))
269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270 inode->i_size = 0;
271 err = ext4_mark_inode_dirty(handle, inode);
272 if (err) {
273 ext4_warning(inode->i_sb,
274 "couldn't mark inode dirty (err %d)", err);
275 goto stop_handle;
276 }
277 if (inode->i_blocks) {
278 err = ext4_truncate(inode);
279 if (err) {
280 ext4_error(inode->i_sb,
281 "couldn't truncate inode %lu (err %d)",
282 inode->i_ino, err);
283 goto stop_handle;
284 }
285 }
286
287 /* Remove xattr references. */
288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289 extra_credits);
290 if (err) {
291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293 ext4_journal_stop(handle);
294 ext4_orphan_del(NULL, inode);
295 sb_end_intwrite(inode->i_sb);
296 ext4_xattr_inode_array_free(ea_inode_array);
297 goto no_delete;
298 }
299
300 /*
301 * Kill off the orphan record which ext4_truncate created.
302 * AKPM: I think this can be inside the above `if'.
303 * Note that ext4_orphan_del() has to be able to cope with the
304 * deletion of a non-existent orphan - this is because we don't
305 * know if ext4_truncate() actually created an orphan record.
306 * (Well, we could do this if we need to, but heck - it works)
307 */
308 ext4_orphan_del(handle, inode);
309 EXT4_I(inode)->i_dtime = get_seconds();
310
311 /*
312 * One subtle ordering requirement: if anything has gone wrong
313 * (transaction abort, IO errors, whatever), then we can still
314 * do these next steps (the fs will already have been marked as
315 * having errors), but we can't free the inode if the mark_dirty
316 * fails.
317 */
318 if (ext4_mark_inode_dirty(handle, inode))
319 /* If that failed, just do the required in-core inode clear. */
320 ext4_clear_inode(inode);
321 else
322 ext4_free_inode(handle, inode);
323 ext4_journal_stop(handle);
324 sb_end_intwrite(inode->i_sb);
325 ext4_xattr_inode_array_free(ea_inode_array);
326 return;
327 no_delete:
328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
329 }
330
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334 return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337
338 /*
339 * Called with i_data_sem down, which is important since we can call
340 * ext4_discard_preallocations() from here.
341 */
342 void ext4_da_update_reserve_space(struct inode *inode,
343 int used, int quota_claim)
344 {
345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 struct ext4_inode_info *ei = EXT4_I(inode);
347
348 spin_lock(&ei->i_block_reservation_lock);
349 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 if (unlikely(used > ei->i_reserved_data_blocks)) {
351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 "with only %d reserved data blocks",
353 __func__, inode->i_ino, used,
354 ei->i_reserved_data_blocks);
355 WARN_ON(1);
356 used = ei->i_reserved_data_blocks;
357 }
358
359 /* Update per-inode reservations */
360 ei->i_reserved_data_blocks -= used;
361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362
363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364
365 /* Update quota subsystem for data blocks */
366 if (quota_claim)
367 dquot_claim_block(inode, EXT4_C2B(sbi, used));
368 else {
369 /*
370 * We did fallocate with an offset that is already delayed
371 * allocated. So on delayed allocated writeback we should
372 * not re-claim the quota for fallocated blocks.
373 */
374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375 }
376
377 /*
378 * If we have done all the pending block allocations and if
379 * there aren't any writers on the inode, we can discard the
380 * inode's preallocations.
381 */
382 if ((ei->i_reserved_data_blocks == 0) &&
383 (atomic_read(&inode->i_writecount) == 0))
384 ext4_discard_preallocations(inode);
385 }
386
387 static int __check_block_validity(struct inode *inode, const char *func,
388 unsigned int line,
389 struct ext4_map_blocks *map)
390 {
391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392 map->m_len)) {
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock "
395 "(length %d)", (unsigned long) map->m_lblk,
396 map->m_len);
397 return -EFSCORRUPTED;
398 }
399 return 0;
400 }
401
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 ext4_lblk_t len)
404 {
405 int ret;
406
407 if (ext4_encrypted_inode(inode))
408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 if (ret > 0)
412 ret = 0;
413
414 return ret;
415 }
416
417 #define check_block_validity(inode, map) \
418 __check_block_validity((inode), __func__, __LINE__, (map))
419
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422 struct inode *inode,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
425 int flags)
426 {
427 int retval;
428
429 map->m_flags = 0;
430 /*
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
436 */
437 down_read(&EXT4_I(inode)->i_data_sem);
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 EXT4_GET_BLOCKS_KEEP_SIZE);
441 } else {
442 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 EXT4_GET_BLOCKS_KEEP_SIZE);
444 }
445 up_read((&EXT4_I(inode)->i_data_sem));
446
447 /*
448 * We don't check m_len because extent will be collpased in status
449 * tree. So the m_len might not equal.
450 */
451 if (es_map->m_lblk != map->m_lblk ||
452 es_map->m_flags != map->m_flags ||
453 es_map->m_pblk != map->m_pblk) {
454 printk("ES cache assertion failed for inode: %lu "
455 "es_cached ex [%d/%d/%llu/%x] != "
456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 inode->i_ino, es_map->m_lblk, es_map->m_len,
458 es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 map->m_len, map->m_pblk, map->m_flags,
460 retval, flags);
461 }
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464
465 /*
466 * The ext4_map_blocks() function tries to look up the requested blocks,
467 * and returns if the blocks are already mapped.
468 *
469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470 * and store the allocated blocks in the result buffer head and mark it
471 * mapped.
472 *
473 * If file type is extents based, it will call ext4_ext_map_blocks(),
474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475 * based files
476 *
477 * On success, it returns the number of blocks being mapped or allocated. if
478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480 *
481 * It returns 0 if plain look up failed (blocks have not been allocated), in
482 * that case, @map is returned as unmapped but we still do fill map->m_len to
483 * indicate the length of a hole starting at map->m_lblk.
484 *
485 * It returns the error in case of allocation failure.
486 */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 struct ext4_map_blocks *map, int flags)
489 {
490 struct extent_status es;
491 int retval;
492 int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494 struct ext4_map_blocks orig_map;
495
496 memcpy(&orig_map, map, sizeof(*map));
497 #endif
498
499 map->m_flags = 0;
500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 (unsigned long) map->m_lblk);
503
504 /*
505 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 */
507 if (unlikely(map->m_len > INT_MAX))
508 map->m_len = INT_MAX;
509
510 /* We can handle the block number less than EXT_MAX_BLOCKS */
511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 return -EFSCORRUPTED;
513
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526 map->m_pblk = 0;
527 retval = es.es_len - (map->m_lblk - es.es_lblk);
528 if (retval > map->m_len)
529 retval = map->m_len;
530 map->m_len = retval;
531 retval = 0;
532 } else {
533 BUG_ON(1);
534 }
535 #ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
537 &orig_map, flags);
538 #endif
539 goto found;
540 }
541
542 /*
543 * Try to see if we can get the block without requesting a new
544 * file system block.
545 */
546 down_read(&EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
550 } else {
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
553 }
554 if (retval > 0) {
555 unsigned int status;
556
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
562 WARN_ON(1);
563 }
564
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 !(status & EXTENT_STATUS_WRITTEN) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
577 up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 ret = check_block_validity(inode, map);
582 if (ret != 0)
583 return ret;
584 }
585
586 /* If it is only a block(s) look up */
587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 return retval;
589
590 /*
591 * Returns if the blocks have already allocated
592 *
593 * Note that if blocks have been preallocated
594 * ext4_ext_get_block() returns the create = 0
595 * with buffer head unmapped.
596 */
597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 /*
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
602 */
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 return retval;
605
606 /*
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
609 */
610 map->m_flags &= ~EXT4_MAP_FLAGS;
611
612 /*
613 * New blocks allocate and/or writing to unwritten extent
614 * will possibly result in updating i_data, so we take
615 * the write lock of i_data_sem, and call get_block()
616 * with create == 1 flag.
617 */
618 down_write(&EXT4_I(inode)->i_data_sem);
619
620 /*
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
623 */
624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 } else {
627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 /*
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
634 */
635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 }
637
638 /*
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
643 */
644 if ((retval > 0) &&
645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 ext4_da_update_reserve_space(inode, retval, 1);
647 }
648
649 if (retval > 0) {
650 unsigned int status;
651
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
657 WARN_ON(1);
658 }
659
660 /*
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
666 */
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671 map->m_len);
672 ret = ext4_issue_zeroout(inode, map->m_lblk,
673 map->m_pblk, map->m_len);
674 if (ret) {
675 retval = ret;
676 goto out_sem;
677 }
678 }
679
680 /*
681 * If the extent has been zeroed out, we don't need to update
682 * extent status tree.
683 */
684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 if (ext4_es_is_written(&es))
687 goto out_sem;
688 }
689 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 !(status & EXTENT_STATUS_WRITTEN) &&
693 ext4_find_delalloc_range(inode, map->m_lblk,
694 map->m_lblk + map->m_len - 1))
695 status |= EXTENT_STATUS_DELAYED;
696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 map->m_pblk, status);
698 if (ret < 0) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
704 out_sem:
705 up_write((&EXT4_I(inode)->i_data_sem));
706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 ret = check_block_validity(inode, map);
708 if (ret != 0)
709 return ret;
710
711 /*
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
714 * ordered data list.
715 */
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 !ext4_is_quota_file(inode) &&
720 ext4_should_order_data(inode)) {
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode);
723 else
724 ret = ext4_jbd2_inode_add_write(handle, inode);
725 if (ret)
726 return ret;
727 }
728 }
729 return retval;
730 }
731
732 /*
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
735 */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 unsigned long old_state;
739 unsigned long new_state;
740
741 flags &= EXT4_MAP_FLAGS;
742
743 /* Dummy buffer_head? Set non-atomically. */
744 if (!bh->b_page) {
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 return;
747 }
748 /*
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
752 */
753 do {
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 } while (unlikely(
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
762 {
763 struct ext4_map_blocks map;
764 int ret = 0;
765
766 if (ext4_has_inline_data(inode))
767 return -ERANGE;
768
769 map.m_lblk = iblock;
770 map.m_len = bh->b_size >> inode->i_blkbits;
771
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 flags);
774 if (ret > 0) {
775 map_bh(bh, inode->i_sb, map.m_pblk);
776 ext4_update_bh_state(bh, map.m_flags);
777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 ret = 0;
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 }
783 return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
788 {
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
797 */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
800 {
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811 * Get blocks function for the cases that need to start a transaction -
812 * generally difference cases of direct IO and DAX IO. It also handles retries
813 * in case of ENOSPC.
814 */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh_result, int flags)
817 {
818 int dio_credits;
819 handle_t *handle;
820 int retries = 0;
821 int ret;
822
823 /* Trim mapping request to maximum we can map at once for DIO */
824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 dio_credits = ext4_chunk_trans_blocks(inode,
827 bh_result->b_size >> inode->i_blkbits);
828 retry:
829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830 if (IS_ERR(handle))
831 return PTR_ERR(handle);
832
833 ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 ext4_journal_stop(handle);
835
836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837 goto retry;
838 return ret;
839 }
840
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create)
844 {
845 /* We don't expect handle for direct IO */
846 WARN_ON_ONCE(ext4_journal_current_handle());
847
848 if (!create)
849 return _ext4_get_block(inode, iblock, bh, 0);
850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852
853 /*
854 * Get block function for AIO DIO writes when we create unwritten extent if
855 * blocks are not allocated yet. The extent will be converted to written
856 * after IO is complete.
857 */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 sector_t iblock, struct buffer_head *bh_result, int create)
860 {
861 int ret;
862
863 /* We don't expect handle for direct IO */
864 WARN_ON_ONCE(ext4_journal_current_handle());
865
866 ret = ext4_get_block_trans(inode, iblock, bh_result,
867 EXT4_GET_BLOCKS_IO_CREATE_EXT);
868
869 /*
870 * When doing DIO using unwritten extents, we need io_end to convert
871 * unwritten extents to written on IO completion. We allocate io_end
872 * once we spot unwritten extent and store it in b_private. Generic
873 * DIO code keeps b_private set and furthermore passes the value to
874 * our completion callback in 'private' argument.
875 */
876 if (!ret && buffer_unwritten(bh_result)) {
877 if (!bh_result->b_private) {
878 ext4_io_end_t *io_end;
879
880 io_end = ext4_init_io_end(inode, GFP_KERNEL);
881 if (!io_end)
882 return -ENOMEM;
883 bh_result->b_private = io_end;
884 ext4_set_io_unwritten_flag(inode, io_end);
885 }
886 set_buffer_defer_completion(bh_result);
887 }
888
889 return ret;
890 }
891
892 /*
893 * Get block function for non-AIO DIO writes when we create unwritten extent if
894 * blocks are not allocated yet. The extent will be converted to written
895 * after IO is complete by ext4_direct_IO_write().
896 */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 sector_t iblock, struct buffer_head *bh_result, int create)
899 {
900 int ret;
901
902 /* We don't expect handle for direct IO */
903 WARN_ON_ONCE(ext4_journal_current_handle());
904
905 ret = ext4_get_block_trans(inode, iblock, bh_result,
906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
907
908 /*
909 * Mark inode as having pending DIO writes to unwritten extents.
910 * ext4_direct_IO_write() checks this flag and converts extents to
911 * written.
912 */
913 if (!ret && buffer_unwritten(bh_result))
914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915
916 return ret;
917 }
918
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 struct buffer_head *bh_result, int create)
921 {
922 int ret;
923
924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 inode->i_ino, create);
926 /* We don't expect handle for direct IO */
927 WARN_ON_ONCE(ext4_journal_current_handle());
928
929 ret = _ext4_get_block(inode, iblock, bh_result, 0);
930 /*
931 * Blocks should have been preallocated! ext4_file_write_iter() checks
932 * that.
933 */
934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935
936 return ret;
937 }
938
939
940 /*
941 * `handle' can be NULL if create is zero
942 */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 ext4_lblk_t block, int map_flags)
945 {
946 struct ext4_map_blocks map;
947 struct buffer_head *bh;
948 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949 int err;
950
951 J_ASSERT(handle != NULL || create == 0);
952
953 map.m_lblk = block;
954 map.m_len = 1;
955 err = ext4_map_blocks(handle, inode, &map, map_flags);
956
957 if (err == 0)
958 return create ? ERR_PTR(-ENOSPC) : NULL;
959 if (err < 0)
960 return ERR_PTR(err);
961
962 bh = sb_getblk(inode->i_sb, map.m_pblk);
963 if (unlikely(!bh))
964 return ERR_PTR(-ENOMEM);
965 if (map.m_flags & EXT4_MAP_NEW) {
966 J_ASSERT(create != 0);
967 J_ASSERT(handle != NULL);
968
969 /*
970 * Now that we do not always journal data, we should
971 * keep in mind whether this should always journal the
972 * new buffer as metadata. For now, regular file
973 * writes use ext4_get_block instead, so it's not a
974 * problem.
975 */
976 lock_buffer(bh);
977 BUFFER_TRACE(bh, "call get_create_access");
978 err = ext4_journal_get_create_access(handle, bh);
979 if (unlikely(err)) {
980 unlock_buffer(bh);
981 goto errout;
982 }
983 if (!buffer_uptodate(bh)) {
984 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 set_buffer_uptodate(bh);
986 }
987 unlock_buffer(bh);
988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
990 if (unlikely(err))
991 goto errout;
992 } else
993 BUFFER_TRACE(bh, "not a new buffer");
994 return bh;
995 errout:
996 brelse(bh);
997 return ERR_PTR(err);
998 }
999
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 ext4_lblk_t block, int map_flags)
1002 {
1003 struct buffer_head *bh;
1004
1005 bh = ext4_getblk(handle, inode, block, map_flags);
1006 if (IS_ERR(bh))
1007 return bh;
1008 if (!bh || buffer_uptodate(bh))
1009 return bh;
1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011 wait_on_buffer(bh);
1012 if (buffer_uptodate(bh))
1013 return bh;
1014 put_bh(bh);
1015 return ERR_PTR(-EIO);
1016 }
1017
1018 /* Read a contiguous batch of blocks. */
1019 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1020 bool wait, struct buffer_head **bhs)
1021 {
1022 int i, err;
1023
1024 for (i = 0; i < bh_count; i++) {
1025 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1026 if (IS_ERR(bhs[i])) {
1027 err = PTR_ERR(bhs[i]);
1028 bh_count = i;
1029 goto out_brelse;
1030 }
1031 }
1032
1033 for (i = 0; i < bh_count; i++)
1034 /* Note that NULL bhs[i] is valid because of holes. */
1035 if (bhs[i] && !buffer_uptodate(bhs[i]))
1036 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1037 &bhs[i]);
1038
1039 if (!wait)
1040 return 0;
1041
1042 for (i = 0; i < bh_count; i++)
1043 if (bhs[i])
1044 wait_on_buffer(bhs[i]);
1045
1046 for (i = 0; i < bh_count; i++) {
1047 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1048 err = -EIO;
1049 goto out_brelse;
1050 }
1051 }
1052 return 0;
1053
1054 out_brelse:
1055 for (i = 0; i < bh_count; i++) {
1056 brelse(bhs[i]);
1057 bhs[i] = NULL;
1058 }
1059 return err;
1060 }
1061
1062 int ext4_walk_page_buffers(handle_t *handle,
1063 struct buffer_head *head,
1064 unsigned from,
1065 unsigned to,
1066 int *partial,
1067 int (*fn)(handle_t *handle,
1068 struct buffer_head *bh))
1069 {
1070 struct buffer_head *bh;
1071 unsigned block_start, block_end;
1072 unsigned blocksize = head->b_size;
1073 int err, ret = 0;
1074 struct buffer_head *next;
1075
1076 for (bh = head, block_start = 0;
1077 ret == 0 && (bh != head || !block_start);
1078 block_start = block_end, bh = next) {
1079 next = bh->b_this_page;
1080 block_end = block_start + blocksize;
1081 if (block_end <= from || block_start >= to) {
1082 if (partial && !buffer_uptodate(bh))
1083 *partial = 1;
1084 continue;
1085 }
1086 err = (*fn)(handle, bh);
1087 if (!ret)
1088 ret = err;
1089 }
1090 return ret;
1091 }
1092
1093 /*
1094 * To preserve ordering, it is essential that the hole instantiation and
1095 * the data write be encapsulated in a single transaction. We cannot
1096 * close off a transaction and start a new one between the ext4_get_block()
1097 * and the commit_write(). So doing the jbd2_journal_start at the start of
1098 * prepare_write() is the right place.
1099 *
1100 * Also, this function can nest inside ext4_writepage(). In that case, we
1101 * *know* that ext4_writepage() has generated enough buffer credits to do the
1102 * whole page. So we won't block on the journal in that case, which is good,
1103 * because the caller may be PF_MEMALLOC.
1104 *
1105 * By accident, ext4 can be reentered when a transaction is open via
1106 * quota file writes. If we were to commit the transaction while thus
1107 * reentered, there can be a deadlock - we would be holding a quota
1108 * lock, and the commit would never complete if another thread had a
1109 * transaction open and was blocking on the quota lock - a ranking
1110 * violation.
1111 *
1112 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1113 * will _not_ run commit under these circumstances because handle->h_ref
1114 * is elevated. We'll still have enough credits for the tiny quotafile
1115 * write.
1116 */
1117 int do_journal_get_write_access(handle_t *handle,
1118 struct buffer_head *bh)
1119 {
1120 int dirty = buffer_dirty(bh);
1121 int ret;
1122
1123 if (!buffer_mapped(bh) || buffer_freed(bh))
1124 return 0;
1125 /*
1126 * __block_write_begin() could have dirtied some buffers. Clean
1127 * the dirty bit as jbd2_journal_get_write_access() could complain
1128 * otherwise about fs integrity issues. Setting of the dirty bit
1129 * by __block_write_begin() isn't a real problem here as we clear
1130 * the bit before releasing a page lock and thus writeback cannot
1131 * ever write the buffer.
1132 */
1133 if (dirty)
1134 clear_buffer_dirty(bh);
1135 BUFFER_TRACE(bh, "get write access");
1136 ret = ext4_journal_get_write_access(handle, bh);
1137 if (!ret && dirty)
1138 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1139 return ret;
1140 }
1141
1142 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1143 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1144 get_block_t *get_block)
1145 {
1146 unsigned from = pos & (PAGE_SIZE - 1);
1147 unsigned to = from + len;
1148 struct inode *inode = page->mapping->host;
1149 unsigned block_start, block_end;
1150 sector_t block;
1151 int err = 0;
1152 unsigned blocksize = inode->i_sb->s_blocksize;
1153 unsigned bbits;
1154 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1155 bool decrypt = false;
1156
1157 BUG_ON(!PageLocked(page));
1158 BUG_ON(from > PAGE_SIZE);
1159 BUG_ON(to > PAGE_SIZE);
1160 BUG_ON(from > to);
1161
1162 if (!page_has_buffers(page))
1163 create_empty_buffers(page, blocksize, 0);
1164 head = page_buffers(page);
1165 bbits = ilog2(blocksize);
1166 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1167
1168 for (bh = head, block_start = 0; bh != head || !block_start;
1169 block++, block_start = block_end, bh = bh->b_this_page) {
1170 block_end = block_start + blocksize;
1171 if (block_end <= from || block_start >= to) {
1172 if (PageUptodate(page)) {
1173 if (!buffer_uptodate(bh))
1174 set_buffer_uptodate(bh);
1175 }
1176 continue;
1177 }
1178 if (buffer_new(bh))
1179 clear_buffer_new(bh);
1180 if (!buffer_mapped(bh)) {
1181 WARN_ON(bh->b_size != blocksize);
1182 err = get_block(inode, block, bh, 1);
1183 if (err)
1184 break;
1185 if (buffer_new(bh)) {
1186 clean_bdev_bh_alias(bh);
1187 if (PageUptodate(page)) {
1188 clear_buffer_new(bh);
1189 set_buffer_uptodate(bh);
1190 mark_buffer_dirty(bh);
1191 continue;
1192 }
1193 if (block_end > to || block_start < from)
1194 zero_user_segments(page, to, block_end,
1195 block_start, from);
1196 continue;
1197 }
1198 }
1199 if (PageUptodate(page)) {
1200 if (!buffer_uptodate(bh))
1201 set_buffer_uptodate(bh);
1202 continue;
1203 }
1204 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1205 !buffer_unwritten(bh) &&
1206 (block_start < from || block_end > to)) {
1207 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1208 *wait_bh++ = bh;
1209 decrypt = ext4_encrypted_inode(inode) &&
1210 S_ISREG(inode->i_mode);
1211 }
1212 }
1213 /*
1214 * If we issued read requests, let them complete.
1215 */
1216 while (wait_bh > wait) {
1217 wait_on_buffer(*--wait_bh);
1218 if (!buffer_uptodate(*wait_bh))
1219 err = -EIO;
1220 }
1221 if (unlikely(err))
1222 page_zero_new_buffers(page, from, to);
1223 else if (decrypt)
1224 err = fscrypt_decrypt_page(page->mapping->host, page,
1225 PAGE_SIZE, 0, page->index);
1226 return err;
1227 }
1228 #endif
1229
1230 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1231 loff_t pos, unsigned len, unsigned flags,
1232 struct page **pagep, void **fsdata)
1233 {
1234 struct inode *inode = mapping->host;
1235 int ret, needed_blocks;
1236 handle_t *handle;
1237 int retries = 0;
1238 struct page *page;
1239 pgoff_t index;
1240 unsigned from, to;
1241
1242 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1243 return -EIO;
1244
1245 trace_ext4_write_begin(inode, pos, len, flags);
1246 /*
1247 * Reserve one block more for addition to orphan list in case
1248 * we allocate blocks but write fails for some reason
1249 */
1250 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1251 index = pos >> PAGE_SHIFT;
1252 from = pos & (PAGE_SIZE - 1);
1253 to = from + len;
1254
1255 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1256 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1257 flags, pagep);
1258 if (ret < 0)
1259 return ret;
1260 if (ret == 1)
1261 return 0;
1262 }
1263
1264 /*
1265 * grab_cache_page_write_begin() can take a long time if the
1266 * system is thrashing due to memory pressure, or if the page
1267 * is being written back. So grab it first before we start
1268 * the transaction handle. This also allows us to allocate
1269 * the page (if needed) without using GFP_NOFS.
1270 */
1271 retry_grab:
1272 page = grab_cache_page_write_begin(mapping, index, flags);
1273 if (!page)
1274 return -ENOMEM;
1275 unlock_page(page);
1276
1277 retry_journal:
1278 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1279 if (IS_ERR(handle)) {
1280 put_page(page);
1281 return PTR_ERR(handle);
1282 }
1283
1284 lock_page(page);
1285 if (page->mapping != mapping) {
1286 /* The page got truncated from under us */
1287 unlock_page(page);
1288 put_page(page);
1289 ext4_journal_stop(handle);
1290 goto retry_grab;
1291 }
1292 /* In case writeback began while the page was unlocked */
1293 wait_for_stable_page(page);
1294
1295 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1296 if (ext4_should_dioread_nolock(inode))
1297 ret = ext4_block_write_begin(page, pos, len,
1298 ext4_get_block_unwritten);
1299 else
1300 ret = ext4_block_write_begin(page, pos, len,
1301 ext4_get_block);
1302 #else
1303 if (ext4_should_dioread_nolock(inode))
1304 ret = __block_write_begin(page, pos, len,
1305 ext4_get_block_unwritten);
1306 else
1307 ret = __block_write_begin(page, pos, len, ext4_get_block);
1308 #endif
1309 if (!ret && ext4_should_journal_data(inode)) {
1310 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1311 from, to, NULL,
1312 do_journal_get_write_access);
1313 }
1314
1315 if (ret) {
1316 unlock_page(page);
1317 /*
1318 * __block_write_begin may have instantiated a few blocks
1319 * outside i_size. Trim these off again. Don't need
1320 * i_size_read because we hold i_mutex.
1321 *
1322 * Add inode to orphan list in case we crash before
1323 * truncate finishes
1324 */
1325 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1326 ext4_orphan_add(handle, inode);
1327
1328 ext4_journal_stop(handle);
1329 if (pos + len > inode->i_size) {
1330 ext4_truncate_failed_write(inode);
1331 /*
1332 * If truncate failed early the inode might
1333 * still be on the orphan list; we need to
1334 * make sure the inode is removed from the
1335 * orphan list in that case.
1336 */
1337 if (inode->i_nlink)
1338 ext4_orphan_del(NULL, inode);
1339 }
1340
1341 if (ret == -ENOSPC &&
1342 ext4_should_retry_alloc(inode->i_sb, &retries))
1343 goto retry_journal;
1344 put_page(page);
1345 return ret;
1346 }
1347 *pagep = page;
1348 return ret;
1349 }
1350
1351 /* For write_end() in data=journal mode */
1352 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1353 {
1354 int ret;
1355 if (!buffer_mapped(bh) || buffer_freed(bh))
1356 return 0;
1357 set_buffer_uptodate(bh);
1358 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1359 clear_buffer_meta(bh);
1360 clear_buffer_prio(bh);
1361 return ret;
1362 }
1363
1364 /*
1365 * We need to pick up the new inode size which generic_commit_write gave us
1366 * `file' can be NULL - eg, when called from page_symlink().
1367 *
1368 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1369 * buffers are managed internally.
1370 */
1371 static int ext4_write_end(struct file *file,
1372 struct address_space *mapping,
1373 loff_t pos, unsigned len, unsigned copied,
1374 struct page *page, void *fsdata)
1375 {
1376 handle_t *handle = ext4_journal_current_handle();
1377 struct inode *inode = mapping->host;
1378 loff_t old_size = inode->i_size;
1379 int ret = 0, ret2;
1380 int i_size_changed = 0;
1381
1382 trace_ext4_write_end(inode, pos, len, copied);
1383 if (ext4_has_inline_data(inode)) {
1384 ret = ext4_write_inline_data_end(inode, pos, len,
1385 copied, page);
1386 if (ret < 0) {
1387 unlock_page(page);
1388 put_page(page);
1389 goto errout;
1390 }
1391 copied = ret;
1392 } else
1393 copied = block_write_end(file, mapping, pos,
1394 len, copied, page, fsdata);
1395 /*
1396 * it's important to update i_size while still holding page lock:
1397 * page writeout could otherwise come in and zero beyond i_size.
1398 */
1399 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1400 unlock_page(page);
1401 put_page(page);
1402
1403 if (old_size < pos)
1404 pagecache_isize_extended(inode, old_size, pos);
1405 /*
1406 * Don't mark the inode dirty under page lock. First, it unnecessarily
1407 * makes the holding time of page lock longer. Second, it forces lock
1408 * ordering of page lock and transaction start for journaling
1409 * filesystems.
1410 */
1411 if (i_size_changed)
1412 ext4_mark_inode_dirty(handle, inode);
1413
1414 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1415 /* if we have allocated more blocks and copied
1416 * less. We will have blocks allocated outside
1417 * inode->i_size. So truncate them
1418 */
1419 ext4_orphan_add(handle, inode);
1420 errout:
1421 ret2 = ext4_journal_stop(handle);
1422 if (!ret)
1423 ret = ret2;
1424
1425 if (pos + len > inode->i_size) {
1426 ext4_truncate_failed_write(inode);
1427 /*
1428 * If truncate failed early the inode might still be
1429 * on the orphan list; we need to make sure the inode
1430 * is removed from the orphan list in that case.
1431 */
1432 if (inode->i_nlink)
1433 ext4_orphan_del(NULL, inode);
1434 }
1435
1436 return ret ? ret : copied;
1437 }
1438
1439 /*
1440 * This is a private version of page_zero_new_buffers() which doesn't
1441 * set the buffer to be dirty, since in data=journalled mode we need
1442 * to call ext4_handle_dirty_metadata() instead.
1443 */
1444 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1445 struct page *page,
1446 unsigned from, unsigned to)
1447 {
1448 unsigned int block_start = 0, block_end;
1449 struct buffer_head *head, *bh;
1450
1451 bh = head = page_buffers(page);
1452 do {
1453 block_end = block_start + bh->b_size;
1454 if (buffer_new(bh)) {
1455 if (block_end > from && block_start < to) {
1456 if (!PageUptodate(page)) {
1457 unsigned start, size;
1458
1459 start = max(from, block_start);
1460 size = min(to, block_end) - start;
1461
1462 zero_user(page, start, size);
1463 write_end_fn(handle, bh);
1464 }
1465 clear_buffer_new(bh);
1466 }
1467 }
1468 block_start = block_end;
1469 bh = bh->b_this_page;
1470 } while (bh != head);
1471 }
1472
1473 static int ext4_journalled_write_end(struct file *file,
1474 struct address_space *mapping,
1475 loff_t pos, unsigned len, unsigned copied,
1476 struct page *page, void *fsdata)
1477 {
1478 handle_t *handle = ext4_journal_current_handle();
1479 struct inode *inode = mapping->host;
1480 loff_t old_size = inode->i_size;
1481 int ret = 0, ret2;
1482 int partial = 0;
1483 unsigned from, to;
1484 int size_changed = 0;
1485
1486 trace_ext4_journalled_write_end(inode, pos, len, copied);
1487 from = pos & (PAGE_SIZE - 1);
1488 to = from + len;
1489
1490 BUG_ON(!ext4_handle_valid(handle));
1491
1492 if (ext4_has_inline_data(inode)) {
1493 ret = ext4_write_inline_data_end(inode, pos, len,
1494 copied, page);
1495 if (ret < 0) {
1496 unlock_page(page);
1497 put_page(page);
1498 goto errout;
1499 }
1500 copied = ret;
1501 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1502 copied = 0;
1503 ext4_journalled_zero_new_buffers(handle, page, from, to);
1504 } else {
1505 if (unlikely(copied < len))
1506 ext4_journalled_zero_new_buffers(handle, page,
1507 from + copied, to);
1508 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1509 from + copied, &partial,
1510 write_end_fn);
1511 if (!partial)
1512 SetPageUptodate(page);
1513 }
1514 size_changed = ext4_update_inode_size(inode, pos + copied);
1515 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1516 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1517 unlock_page(page);
1518 put_page(page);
1519
1520 if (old_size < pos)
1521 pagecache_isize_extended(inode, old_size, pos);
1522
1523 if (size_changed) {
1524 ret2 = ext4_mark_inode_dirty(handle, inode);
1525 if (!ret)
1526 ret = ret2;
1527 }
1528
1529 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1530 /* if we have allocated more blocks and copied
1531 * less. We will have blocks allocated outside
1532 * inode->i_size. So truncate them
1533 */
1534 ext4_orphan_add(handle, inode);
1535
1536 errout:
1537 ret2 = ext4_journal_stop(handle);
1538 if (!ret)
1539 ret = ret2;
1540 if (pos + len > inode->i_size) {
1541 ext4_truncate_failed_write(inode);
1542 /*
1543 * If truncate failed early the inode might still be
1544 * on the orphan list; we need to make sure the inode
1545 * is removed from the orphan list in that case.
1546 */
1547 if (inode->i_nlink)
1548 ext4_orphan_del(NULL, inode);
1549 }
1550
1551 return ret ? ret : copied;
1552 }
1553
1554 /*
1555 * Reserve space for a single cluster
1556 */
1557 static int ext4_da_reserve_space(struct inode *inode)
1558 {
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 struct ext4_inode_info *ei = EXT4_I(inode);
1561 int ret;
1562
1563 /*
1564 * We will charge metadata quota at writeout time; this saves
1565 * us from metadata over-estimation, though we may go over by
1566 * a small amount in the end. Here we just reserve for data.
1567 */
1568 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1569 if (ret)
1570 return ret;
1571
1572 spin_lock(&ei->i_block_reservation_lock);
1573 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1574 spin_unlock(&ei->i_block_reservation_lock);
1575 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1576 return -ENOSPC;
1577 }
1578 ei->i_reserved_data_blocks++;
1579 trace_ext4_da_reserve_space(inode);
1580 spin_unlock(&ei->i_block_reservation_lock);
1581
1582 return 0; /* success */
1583 }
1584
1585 static void ext4_da_release_space(struct inode *inode, int to_free)
1586 {
1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1588 struct ext4_inode_info *ei = EXT4_I(inode);
1589
1590 if (!to_free)
1591 return; /* Nothing to release, exit */
1592
1593 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1594
1595 trace_ext4_da_release_space(inode, to_free);
1596 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1597 /*
1598 * if there aren't enough reserved blocks, then the
1599 * counter is messed up somewhere. Since this
1600 * function is called from invalidate page, it's
1601 * harmless to return without any action.
1602 */
1603 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1604 "ino %lu, to_free %d with only %d reserved "
1605 "data blocks", inode->i_ino, to_free,
1606 ei->i_reserved_data_blocks);
1607 WARN_ON(1);
1608 to_free = ei->i_reserved_data_blocks;
1609 }
1610 ei->i_reserved_data_blocks -= to_free;
1611
1612 /* update fs dirty data blocks counter */
1613 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1614
1615 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1616
1617 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1618 }
1619
1620 static void ext4_da_page_release_reservation(struct page *page,
1621 unsigned int offset,
1622 unsigned int length)
1623 {
1624 int to_release = 0, contiguous_blks = 0;
1625 struct buffer_head *head, *bh;
1626 unsigned int curr_off = 0;
1627 struct inode *inode = page->mapping->host;
1628 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1629 unsigned int stop = offset + length;
1630 int num_clusters;
1631 ext4_fsblk_t lblk;
1632
1633 BUG_ON(stop > PAGE_SIZE || stop < length);
1634
1635 head = page_buffers(page);
1636 bh = head;
1637 do {
1638 unsigned int next_off = curr_off + bh->b_size;
1639
1640 if (next_off > stop)
1641 break;
1642
1643 if ((offset <= curr_off) && (buffer_delay(bh))) {
1644 to_release++;
1645 contiguous_blks++;
1646 clear_buffer_delay(bh);
1647 } else if (contiguous_blks) {
1648 lblk = page->index <<
1649 (PAGE_SHIFT - inode->i_blkbits);
1650 lblk += (curr_off >> inode->i_blkbits) -
1651 contiguous_blks;
1652 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1653 contiguous_blks = 0;
1654 }
1655 curr_off = next_off;
1656 } while ((bh = bh->b_this_page) != head);
1657
1658 if (contiguous_blks) {
1659 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1661 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1662 }
1663
1664 /* If we have released all the blocks belonging to a cluster, then we
1665 * need to release the reserved space for that cluster. */
1666 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1667 while (num_clusters > 0) {
1668 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1669 ((num_clusters - 1) << sbi->s_cluster_bits);
1670 if (sbi->s_cluster_ratio == 1 ||
1671 !ext4_find_delalloc_cluster(inode, lblk))
1672 ext4_da_release_space(inode, 1);
1673
1674 num_clusters--;
1675 }
1676 }
1677
1678 /*
1679 * Delayed allocation stuff
1680 */
1681
1682 struct mpage_da_data {
1683 struct inode *inode;
1684 struct writeback_control *wbc;
1685
1686 pgoff_t first_page; /* The first page to write */
1687 pgoff_t next_page; /* Current page to examine */
1688 pgoff_t last_page; /* Last page to examine */
1689 /*
1690 * Extent to map - this can be after first_page because that can be
1691 * fully mapped. We somewhat abuse m_flags to store whether the extent
1692 * is delalloc or unwritten.
1693 */
1694 struct ext4_map_blocks map;
1695 struct ext4_io_submit io_submit; /* IO submission data */
1696 unsigned int do_map:1;
1697 };
1698
1699 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1700 bool invalidate)
1701 {
1702 int nr_pages, i;
1703 pgoff_t index, end;
1704 struct pagevec pvec;
1705 struct inode *inode = mpd->inode;
1706 struct address_space *mapping = inode->i_mapping;
1707
1708 /* This is necessary when next_page == 0. */
1709 if (mpd->first_page >= mpd->next_page)
1710 return;
1711
1712 index = mpd->first_page;
1713 end = mpd->next_page - 1;
1714 if (invalidate) {
1715 ext4_lblk_t start, last;
1716 start = index << (PAGE_SHIFT - inode->i_blkbits);
1717 last = end << (PAGE_SHIFT - inode->i_blkbits);
1718 ext4_es_remove_extent(inode, start, last - start + 1);
1719 }
1720
1721 pagevec_init(&pvec, 0);
1722 while (index <= end) {
1723 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1724 if (nr_pages == 0)
1725 break;
1726 for (i = 0; i < nr_pages; i++) {
1727 struct page *page = pvec.pages[i];
1728
1729 BUG_ON(!PageLocked(page));
1730 BUG_ON(PageWriteback(page));
1731 if (invalidate) {
1732 if (page_mapped(page))
1733 clear_page_dirty_for_io(page);
1734 block_invalidatepage(page, 0, PAGE_SIZE);
1735 ClearPageUptodate(page);
1736 }
1737 unlock_page(page);
1738 }
1739 pagevec_release(&pvec);
1740 }
1741 }
1742
1743 static void ext4_print_free_blocks(struct inode *inode)
1744 {
1745 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1746 struct super_block *sb = inode->i_sb;
1747 struct ext4_inode_info *ei = EXT4_I(inode);
1748
1749 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1750 EXT4_C2B(EXT4_SB(inode->i_sb),
1751 ext4_count_free_clusters(sb)));
1752 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1753 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1754 (long long) EXT4_C2B(EXT4_SB(sb),
1755 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1756 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1757 (long long) EXT4_C2B(EXT4_SB(sb),
1758 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1759 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1760 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1761 ei->i_reserved_data_blocks);
1762 return;
1763 }
1764
1765 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1766 {
1767 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1768 }
1769
1770 /*
1771 * This function is grabs code from the very beginning of
1772 * ext4_map_blocks, but assumes that the caller is from delayed write
1773 * time. This function looks up the requested blocks and sets the
1774 * buffer delay bit under the protection of i_data_sem.
1775 */
1776 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1777 struct ext4_map_blocks *map,
1778 struct buffer_head *bh)
1779 {
1780 struct extent_status es;
1781 int retval;
1782 sector_t invalid_block = ~((sector_t) 0xffff);
1783 #ifdef ES_AGGRESSIVE_TEST
1784 struct ext4_map_blocks orig_map;
1785
1786 memcpy(&orig_map, map, sizeof(*map));
1787 #endif
1788
1789 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1790 invalid_block = ~0;
1791
1792 map->m_flags = 0;
1793 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1794 "logical block %lu\n", inode->i_ino, map->m_len,
1795 (unsigned long) map->m_lblk);
1796
1797 /* Lookup extent status tree firstly */
1798 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1799 if (ext4_es_is_hole(&es)) {
1800 retval = 0;
1801 down_read(&EXT4_I(inode)->i_data_sem);
1802 goto add_delayed;
1803 }
1804
1805 /*
1806 * Delayed extent could be allocated by fallocate.
1807 * So we need to check it.
1808 */
1809 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1810 map_bh(bh, inode->i_sb, invalid_block);
1811 set_buffer_new(bh);
1812 set_buffer_delay(bh);
1813 return 0;
1814 }
1815
1816 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1817 retval = es.es_len - (iblock - es.es_lblk);
1818 if (retval > map->m_len)
1819 retval = map->m_len;
1820 map->m_len = retval;
1821 if (ext4_es_is_written(&es))
1822 map->m_flags |= EXT4_MAP_MAPPED;
1823 else if (ext4_es_is_unwritten(&es))
1824 map->m_flags |= EXT4_MAP_UNWRITTEN;
1825 else
1826 BUG_ON(1);
1827
1828 #ifdef ES_AGGRESSIVE_TEST
1829 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1830 #endif
1831 return retval;
1832 }
1833
1834 /*
1835 * Try to see if we can get the block without requesting a new
1836 * file system block.
1837 */
1838 down_read(&EXT4_I(inode)->i_data_sem);
1839 if (ext4_has_inline_data(inode))
1840 retval = 0;
1841 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1842 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1843 else
1844 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1845
1846 add_delayed:
1847 if (retval == 0) {
1848 int ret;
1849 /*
1850 * XXX: __block_prepare_write() unmaps passed block,
1851 * is it OK?
1852 */
1853 /*
1854 * If the block was allocated from previously allocated cluster,
1855 * then we don't need to reserve it again. However we still need
1856 * to reserve metadata for every block we're going to write.
1857 */
1858 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1859 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1860 ret = ext4_da_reserve_space(inode);
1861 if (ret) {
1862 /* not enough space to reserve */
1863 retval = ret;
1864 goto out_unlock;
1865 }
1866 }
1867
1868 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1869 ~0, EXTENT_STATUS_DELAYED);
1870 if (ret) {
1871 retval = ret;
1872 goto out_unlock;
1873 }
1874
1875 map_bh(bh, inode->i_sb, invalid_block);
1876 set_buffer_new(bh);
1877 set_buffer_delay(bh);
1878 } else if (retval > 0) {
1879 int ret;
1880 unsigned int status;
1881
1882 if (unlikely(retval != map->m_len)) {
1883 ext4_warning(inode->i_sb,
1884 "ES len assertion failed for inode "
1885 "%lu: retval %d != map->m_len %d",
1886 inode->i_ino, retval, map->m_len);
1887 WARN_ON(1);
1888 }
1889
1890 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1891 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1892 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1893 map->m_pblk, status);
1894 if (ret != 0)
1895 retval = ret;
1896 }
1897
1898 out_unlock:
1899 up_read((&EXT4_I(inode)->i_data_sem));
1900
1901 return retval;
1902 }
1903
1904 /*
1905 * This is a special get_block_t callback which is used by
1906 * ext4_da_write_begin(). It will either return mapped block or
1907 * reserve space for a single block.
1908 *
1909 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1910 * We also have b_blocknr = -1 and b_bdev initialized properly
1911 *
1912 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1913 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1914 * initialized properly.
1915 */
1916 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1917 struct buffer_head *bh, int create)
1918 {
1919 struct ext4_map_blocks map;
1920 int ret = 0;
1921
1922 BUG_ON(create == 0);
1923 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1924
1925 map.m_lblk = iblock;
1926 map.m_len = 1;
1927
1928 /*
1929 * first, we need to know whether the block is allocated already
1930 * preallocated blocks are unmapped but should treated
1931 * the same as allocated blocks.
1932 */
1933 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1934 if (ret <= 0)
1935 return ret;
1936
1937 map_bh(bh, inode->i_sb, map.m_pblk);
1938 ext4_update_bh_state(bh, map.m_flags);
1939
1940 if (buffer_unwritten(bh)) {
1941 /* A delayed write to unwritten bh should be marked
1942 * new and mapped. Mapped ensures that we don't do
1943 * get_block multiple times when we write to the same
1944 * offset and new ensures that we do proper zero out
1945 * for partial write.
1946 */
1947 set_buffer_new(bh);
1948 set_buffer_mapped(bh);
1949 }
1950 return 0;
1951 }
1952
1953 static int bget_one(handle_t *handle, struct buffer_head *bh)
1954 {
1955 get_bh(bh);
1956 return 0;
1957 }
1958
1959 static int bput_one(handle_t *handle, struct buffer_head *bh)
1960 {
1961 put_bh(bh);
1962 return 0;
1963 }
1964
1965 static int __ext4_journalled_writepage(struct page *page,
1966 unsigned int len)
1967 {
1968 struct address_space *mapping = page->mapping;
1969 struct inode *inode = mapping->host;
1970 struct buffer_head *page_bufs = NULL;
1971 handle_t *handle = NULL;
1972 int ret = 0, err = 0;
1973 int inline_data = ext4_has_inline_data(inode);
1974 struct buffer_head *inode_bh = NULL;
1975
1976 ClearPageChecked(page);
1977
1978 if (inline_data) {
1979 BUG_ON(page->index != 0);
1980 BUG_ON(len > ext4_get_max_inline_size(inode));
1981 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1982 if (inode_bh == NULL)
1983 goto out;
1984 } else {
1985 page_bufs = page_buffers(page);
1986 if (!page_bufs) {
1987 BUG();
1988 goto out;
1989 }
1990 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1991 NULL, bget_one);
1992 }
1993 /*
1994 * We need to release the page lock before we start the
1995 * journal, so grab a reference so the page won't disappear
1996 * out from under us.
1997 */
1998 get_page(page);
1999 unlock_page(page);
2000
2001 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2002 ext4_writepage_trans_blocks(inode));
2003 if (IS_ERR(handle)) {
2004 ret = PTR_ERR(handle);
2005 put_page(page);
2006 goto out_no_pagelock;
2007 }
2008 BUG_ON(!ext4_handle_valid(handle));
2009
2010 lock_page(page);
2011 put_page(page);
2012 if (page->mapping != mapping) {
2013 /* The page got truncated from under us */
2014 ext4_journal_stop(handle);
2015 ret = 0;
2016 goto out;
2017 }
2018
2019 if (inline_data) {
2020 BUFFER_TRACE(inode_bh, "get write access");
2021 ret = ext4_journal_get_write_access(handle, inode_bh);
2022
2023 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2024
2025 } else {
2026 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2027 do_journal_get_write_access);
2028
2029 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2030 write_end_fn);
2031 }
2032 if (ret == 0)
2033 ret = err;
2034 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2035 err = ext4_journal_stop(handle);
2036 if (!ret)
2037 ret = err;
2038
2039 if (!ext4_has_inline_data(inode))
2040 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2041 NULL, bput_one);
2042 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2043 out:
2044 unlock_page(page);
2045 out_no_pagelock:
2046 brelse(inode_bh);
2047 return ret;
2048 }
2049
2050 /*
2051 * Note that we don't need to start a transaction unless we're journaling data
2052 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2053 * need to file the inode to the transaction's list in ordered mode because if
2054 * we are writing back data added by write(), the inode is already there and if
2055 * we are writing back data modified via mmap(), no one guarantees in which
2056 * transaction the data will hit the disk. In case we are journaling data, we
2057 * cannot start transaction directly because transaction start ranks above page
2058 * lock so we have to do some magic.
2059 *
2060 * This function can get called via...
2061 * - ext4_writepages after taking page lock (have journal handle)
2062 * - journal_submit_inode_data_buffers (no journal handle)
2063 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2064 * - grab_page_cache when doing write_begin (have journal handle)
2065 *
2066 * We don't do any block allocation in this function. If we have page with
2067 * multiple blocks we need to write those buffer_heads that are mapped. This
2068 * is important for mmaped based write. So if we do with blocksize 1K
2069 * truncate(f, 1024);
2070 * a = mmap(f, 0, 4096);
2071 * a[0] = 'a';
2072 * truncate(f, 4096);
2073 * we have in the page first buffer_head mapped via page_mkwrite call back
2074 * but other buffer_heads would be unmapped but dirty (dirty done via the
2075 * do_wp_page). So writepage should write the first block. If we modify
2076 * the mmap area beyond 1024 we will again get a page_fault and the
2077 * page_mkwrite callback will do the block allocation and mark the
2078 * buffer_heads mapped.
2079 *
2080 * We redirty the page if we have any buffer_heads that is either delay or
2081 * unwritten in the page.
2082 *
2083 * We can get recursively called as show below.
2084 *
2085 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2086 * ext4_writepage()
2087 *
2088 * But since we don't do any block allocation we should not deadlock.
2089 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2090 */
2091 static int ext4_writepage(struct page *page,
2092 struct writeback_control *wbc)
2093 {
2094 int ret = 0;
2095 loff_t size;
2096 unsigned int len;
2097 struct buffer_head *page_bufs = NULL;
2098 struct inode *inode = page->mapping->host;
2099 struct ext4_io_submit io_submit;
2100 bool keep_towrite = false;
2101
2102 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2103 ext4_invalidatepage(page, 0, PAGE_SIZE);
2104 unlock_page(page);
2105 return -EIO;
2106 }
2107
2108 trace_ext4_writepage(page);
2109 size = i_size_read(inode);
2110 if (page->index == size >> PAGE_SHIFT)
2111 len = size & ~PAGE_MASK;
2112 else
2113 len = PAGE_SIZE;
2114
2115 page_bufs = page_buffers(page);
2116 /*
2117 * We cannot do block allocation or other extent handling in this
2118 * function. If there are buffers needing that, we have to redirty
2119 * the page. But we may reach here when we do a journal commit via
2120 * journal_submit_inode_data_buffers() and in that case we must write
2121 * allocated buffers to achieve data=ordered mode guarantees.
2122 *
2123 * Also, if there is only one buffer per page (the fs block
2124 * size == the page size), if one buffer needs block
2125 * allocation or needs to modify the extent tree to clear the
2126 * unwritten flag, we know that the page can't be written at
2127 * all, so we might as well refuse the write immediately.
2128 * Unfortunately if the block size != page size, we can't as
2129 * easily detect this case using ext4_walk_page_buffers(), but
2130 * for the extremely common case, this is an optimization that
2131 * skips a useless round trip through ext4_bio_write_page().
2132 */
2133 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2134 ext4_bh_delay_or_unwritten)) {
2135 redirty_page_for_writepage(wbc, page);
2136 if ((current->flags & PF_MEMALLOC) ||
2137 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2138 /*
2139 * For memory cleaning there's no point in writing only
2140 * some buffers. So just bail out. Warn if we came here
2141 * from direct reclaim.
2142 */
2143 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2144 == PF_MEMALLOC);
2145 unlock_page(page);
2146 return 0;
2147 }
2148 keep_towrite = true;
2149 }
2150
2151 if (PageChecked(page) && ext4_should_journal_data(inode))
2152 /*
2153 * It's mmapped pagecache. Add buffers and journal it. There
2154 * doesn't seem much point in redirtying the page here.
2155 */
2156 return __ext4_journalled_writepage(page, len);
2157
2158 ext4_io_submit_init(&io_submit, wbc);
2159 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2160 if (!io_submit.io_end) {
2161 redirty_page_for_writepage(wbc, page);
2162 unlock_page(page);
2163 return -ENOMEM;
2164 }
2165 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2166 ext4_io_submit(&io_submit);
2167 /* Drop io_end reference we got from init */
2168 ext4_put_io_end_defer(io_submit.io_end);
2169 return ret;
2170 }
2171
2172 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2173 {
2174 int len;
2175 loff_t size;
2176 int err;
2177
2178 BUG_ON(page->index != mpd->first_page);
2179 clear_page_dirty_for_io(page);
2180 /*
2181 * We have to be very careful here! Nothing protects writeback path
2182 * against i_size changes and the page can be writeably mapped into
2183 * page tables. So an application can be growing i_size and writing
2184 * data through mmap while writeback runs. clear_page_dirty_for_io()
2185 * write-protects our page in page tables and the page cannot get
2186 * written to again until we release page lock. So only after
2187 * clear_page_dirty_for_io() we are safe to sample i_size for
2188 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2189 * on the barrier provided by TestClearPageDirty in
2190 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2191 * after page tables are updated.
2192 */
2193 size = i_size_read(mpd->inode);
2194 if (page->index == size >> PAGE_SHIFT)
2195 len = size & ~PAGE_MASK;
2196 else
2197 len = PAGE_SIZE;
2198 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2199 if (!err)
2200 mpd->wbc->nr_to_write--;
2201 mpd->first_page++;
2202
2203 return err;
2204 }
2205
2206 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2207
2208 /*
2209 * mballoc gives us at most this number of blocks...
2210 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2211 * The rest of mballoc seems to handle chunks up to full group size.
2212 */
2213 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2214
2215 /*
2216 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2217 *
2218 * @mpd - extent of blocks
2219 * @lblk - logical number of the block in the file
2220 * @bh - buffer head we want to add to the extent
2221 *
2222 * The function is used to collect contig. blocks in the same state. If the
2223 * buffer doesn't require mapping for writeback and we haven't started the
2224 * extent of buffers to map yet, the function returns 'true' immediately - the
2225 * caller can write the buffer right away. Otherwise the function returns true
2226 * if the block has been added to the extent, false if the block couldn't be
2227 * added.
2228 */
2229 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2230 struct buffer_head *bh)
2231 {
2232 struct ext4_map_blocks *map = &mpd->map;
2233
2234 /* Buffer that doesn't need mapping for writeback? */
2235 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2236 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2237 /* So far no extent to map => we write the buffer right away */
2238 if (map->m_len == 0)
2239 return true;
2240 return false;
2241 }
2242
2243 /* First block in the extent? */
2244 if (map->m_len == 0) {
2245 /* We cannot map unless handle is started... */
2246 if (!mpd->do_map)
2247 return false;
2248 map->m_lblk = lblk;
2249 map->m_len = 1;
2250 map->m_flags = bh->b_state & BH_FLAGS;
2251 return true;
2252 }
2253
2254 /* Don't go larger than mballoc is willing to allocate */
2255 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2256 return false;
2257
2258 /* Can we merge the block to our big extent? */
2259 if (lblk == map->m_lblk + map->m_len &&
2260 (bh->b_state & BH_FLAGS) == map->m_flags) {
2261 map->m_len++;
2262 return true;
2263 }
2264 return false;
2265 }
2266
2267 /*
2268 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2269 *
2270 * @mpd - extent of blocks for mapping
2271 * @head - the first buffer in the page
2272 * @bh - buffer we should start processing from
2273 * @lblk - logical number of the block in the file corresponding to @bh
2274 *
2275 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2276 * the page for IO if all buffers in this page were mapped and there's no
2277 * accumulated extent of buffers to map or add buffers in the page to the
2278 * extent of buffers to map. The function returns 1 if the caller can continue
2279 * by processing the next page, 0 if it should stop adding buffers to the
2280 * extent to map because we cannot extend it anymore. It can also return value
2281 * < 0 in case of error during IO submission.
2282 */
2283 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2284 struct buffer_head *head,
2285 struct buffer_head *bh,
2286 ext4_lblk_t lblk)
2287 {
2288 struct inode *inode = mpd->inode;
2289 int err;
2290 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2291 >> inode->i_blkbits;
2292
2293 do {
2294 BUG_ON(buffer_locked(bh));
2295
2296 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2297 /* Found extent to map? */
2298 if (mpd->map.m_len)
2299 return 0;
2300 /* Buffer needs mapping and handle is not started? */
2301 if (!mpd->do_map)
2302 return 0;
2303 /* Everything mapped so far and we hit EOF */
2304 break;
2305 }
2306 } while (lblk++, (bh = bh->b_this_page) != head);
2307 /* So far everything mapped? Submit the page for IO. */
2308 if (mpd->map.m_len == 0) {
2309 err = mpage_submit_page(mpd, head->b_page);
2310 if (err < 0)
2311 return err;
2312 }
2313 return lblk < blocks;
2314 }
2315
2316 /*
2317 * mpage_map_buffers - update buffers corresponding to changed extent and
2318 * submit fully mapped pages for IO
2319 *
2320 * @mpd - description of extent to map, on return next extent to map
2321 *
2322 * Scan buffers corresponding to changed extent (we expect corresponding pages
2323 * to be already locked) and update buffer state according to new extent state.
2324 * We map delalloc buffers to their physical location, clear unwritten bits,
2325 * and mark buffers as uninit when we perform writes to unwritten extents
2326 * and do extent conversion after IO is finished. If the last page is not fully
2327 * mapped, we update @map to the next extent in the last page that needs
2328 * mapping. Otherwise we submit the page for IO.
2329 */
2330 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2331 {
2332 struct pagevec pvec;
2333 int nr_pages, i;
2334 struct inode *inode = mpd->inode;
2335 struct buffer_head *head, *bh;
2336 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2337 pgoff_t start, end;
2338 ext4_lblk_t lblk;
2339 sector_t pblock;
2340 int err;
2341
2342 start = mpd->map.m_lblk >> bpp_bits;
2343 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2344 lblk = start << bpp_bits;
2345 pblock = mpd->map.m_pblk;
2346
2347 pagevec_init(&pvec, 0);
2348 while (start <= end) {
2349 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2350 &start, end);
2351 if (nr_pages == 0)
2352 break;
2353 for (i = 0; i < nr_pages; i++) {
2354 struct page *page = pvec.pages[i];
2355
2356 bh = head = page_buffers(page);
2357 do {
2358 if (lblk < mpd->map.m_lblk)
2359 continue;
2360 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2361 /*
2362 * Buffer after end of mapped extent.
2363 * Find next buffer in the page to map.
2364 */
2365 mpd->map.m_len = 0;
2366 mpd->map.m_flags = 0;
2367 /*
2368 * FIXME: If dioread_nolock supports
2369 * blocksize < pagesize, we need to make
2370 * sure we add size mapped so far to
2371 * io_end->size as the following call
2372 * can submit the page for IO.
2373 */
2374 err = mpage_process_page_bufs(mpd, head,
2375 bh, lblk);
2376 pagevec_release(&pvec);
2377 if (err > 0)
2378 err = 0;
2379 return err;
2380 }
2381 if (buffer_delay(bh)) {
2382 clear_buffer_delay(bh);
2383 bh->b_blocknr = pblock++;
2384 }
2385 clear_buffer_unwritten(bh);
2386 } while (lblk++, (bh = bh->b_this_page) != head);
2387
2388 /*
2389 * FIXME: This is going to break if dioread_nolock
2390 * supports blocksize < pagesize as we will try to
2391 * convert potentially unmapped parts of inode.
2392 */
2393 mpd->io_submit.io_end->size += PAGE_SIZE;
2394 /* Page fully mapped - let IO run! */
2395 err = mpage_submit_page(mpd, page);
2396 if (err < 0) {
2397 pagevec_release(&pvec);
2398 return err;
2399 }
2400 }
2401 pagevec_release(&pvec);
2402 }
2403 /* Extent fully mapped and matches with page boundary. We are done. */
2404 mpd->map.m_len = 0;
2405 mpd->map.m_flags = 0;
2406 return 0;
2407 }
2408
2409 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2410 {
2411 struct inode *inode = mpd->inode;
2412 struct ext4_map_blocks *map = &mpd->map;
2413 int get_blocks_flags;
2414 int err, dioread_nolock;
2415
2416 trace_ext4_da_write_pages_extent(inode, map);
2417 /*
2418 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2419 * to convert an unwritten extent to be initialized (in the case
2420 * where we have written into one or more preallocated blocks). It is
2421 * possible that we're going to need more metadata blocks than
2422 * previously reserved. However we must not fail because we're in
2423 * writeback and there is nothing we can do about it so it might result
2424 * in data loss. So use reserved blocks to allocate metadata if
2425 * possible.
2426 *
2427 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2428 * the blocks in question are delalloc blocks. This indicates
2429 * that the blocks and quotas has already been checked when
2430 * the data was copied into the page cache.
2431 */
2432 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2433 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2434 EXT4_GET_BLOCKS_IO_SUBMIT;
2435 dioread_nolock = ext4_should_dioread_nolock(inode);
2436 if (dioread_nolock)
2437 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2438 if (map->m_flags & (1 << BH_Delay))
2439 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2440
2441 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2442 if (err < 0)
2443 return err;
2444 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2445 if (!mpd->io_submit.io_end->handle &&
2446 ext4_handle_valid(handle)) {
2447 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2448 handle->h_rsv_handle = NULL;
2449 }
2450 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2451 }
2452
2453 BUG_ON(map->m_len == 0);
2454 if (map->m_flags & EXT4_MAP_NEW) {
2455 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2456 map->m_len);
2457 }
2458 return 0;
2459 }
2460
2461 /*
2462 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2463 * mpd->len and submit pages underlying it for IO
2464 *
2465 * @handle - handle for journal operations
2466 * @mpd - extent to map
2467 * @give_up_on_write - we set this to true iff there is a fatal error and there
2468 * is no hope of writing the data. The caller should discard
2469 * dirty pages to avoid infinite loops.
2470 *
2471 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2472 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2473 * them to initialized or split the described range from larger unwritten
2474 * extent. Note that we need not map all the described range since allocation
2475 * can return less blocks or the range is covered by more unwritten extents. We
2476 * cannot map more because we are limited by reserved transaction credits. On
2477 * the other hand we always make sure that the last touched page is fully
2478 * mapped so that it can be written out (and thus forward progress is
2479 * guaranteed). After mapping we submit all mapped pages for IO.
2480 */
2481 static int mpage_map_and_submit_extent(handle_t *handle,
2482 struct mpage_da_data *mpd,
2483 bool *give_up_on_write)
2484 {
2485 struct inode *inode = mpd->inode;
2486 struct ext4_map_blocks *map = &mpd->map;
2487 int err;
2488 loff_t disksize;
2489 int progress = 0;
2490
2491 mpd->io_submit.io_end->offset =
2492 ((loff_t)map->m_lblk) << inode->i_blkbits;
2493 do {
2494 err = mpage_map_one_extent(handle, mpd);
2495 if (err < 0) {
2496 struct super_block *sb = inode->i_sb;
2497
2498 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2499 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2500 goto invalidate_dirty_pages;
2501 /*
2502 * Let the uper layers retry transient errors.
2503 * In the case of ENOSPC, if ext4_count_free_blocks()
2504 * is non-zero, a commit should free up blocks.
2505 */
2506 if ((err == -ENOMEM) ||
2507 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2508 if (progress)
2509 goto update_disksize;
2510 return err;
2511 }
2512 ext4_msg(sb, KERN_CRIT,
2513 "Delayed block allocation failed for "
2514 "inode %lu at logical offset %llu with"
2515 " max blocks %u with error %d",
2516 inode->i_ino,
2517 (unsigned long long)map->m_lblk,
2518 (unsigned)map->m_len, -err);
2519 ext4_msg(sb, KERN_CRIT,
2520 "This should not happen!! Data will "
2521 "be lost\n");
2522 if (err == -ENOSPC)
2523 ext4_print_free_blocks(inode);
2524 invalidate_dirty_pages:
2525 *give_up_on_write = true;
2526 return err;
2527 }
2528 progress = 1;
2529 /*
2530 * Update buffer state, submit mapped pages, and get us new
2531 * extent to map
2532 */
2533 err = mpage_map_and_submit_buffers(mpd);
2534 if (err < 0)
2535 goto update_disksize;
2536 } while (map->m_len);
2537
2538 update_disksize:
2539 /*
2540 * Update on-disk size after IO is submitted. Races with
2541 * truncate are avoided by checking i_size under i_data_sem.
2542 */
2543 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2544 if (disksize > EXT4_I(inode)->i_disksize) {
2545 int err2;
2546 loff_t i_size;
2547
2548 down_write(&EXT4_I(inode)->i_data_sem);
2549 i_size = i_size_read(inode);
2550 if (disksize > i_size)
2551 disksize = i_size;
2552 if (disksize > EXT4_I(inode)->i_disksize)
2553 EXT4_I(inode)->i_disksize = disksize;
2554 up_write(&EXT4_I(inode)->i_data_sem);
2555 err2 = ext4_mark_inode_dirty(handle, inode);
2556 if (err2)
2557 ext4_error(inode->i_sb,
2558 "Failed to mark inode %lu dirty",
2559 inode->i_ino);
2560 if (!err)
2561 err = err2;
2562 }
2563 return err;
2564 }
2565
2566 /*
2567 * Calculate the total number of credits to reserve for one writepages
2568 * iteration. This is called from ext4_writepages(). We map an extent of
2569 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2570 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2571 * bpp - 1 blocks in bpp different extents.
2572 */
2573 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2574 {
2575 int bpp = ext4_journal_blocks_per_page(inode);
2576
2577 return ext4_meta_trans_blocks(inode,
2578 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2579 }
2580
2581 /*
2582 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2583 * and underlying extent to map
2584 *
2585 * @mpd - where to look for pages
2586 *
2587 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2588 * IO immediately. When we find a page which isn't mapped we start accumulating
2589 * extent of buffers underlying these pages that needs mapping (formed by
2590 * either delayed or unwritten buffers). We also lock the pages containing
2591 * these buffers. The extent found is returned in @mpd structure (starting at
2592 * mpd->lblk with length mpd->len blocks).
2593 *
2594 * Note that this function can attach bios to one io_end structure which are
2595 * neither logically nor physically contiguous. Although it may seem as an
2596 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2597 * case as we need to track IO to all buffers underlying a page in one io_end.
2598 */
2599 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2600 {
2601 struct address_space *mapping = mpd->inode->i_mapping;
2602 struct pagevec pvec;
2603 unsigned int nr_pages;
2604 long left = mpd->wbc->nr_to_write;
2605 pgoff_t index = mpd->first_page;
2606 pgoff_t end = mpd->last_page;
2607 int tag;
2608 int i, err = 0;
2609 int blkbits = mpd->inode->i_blkbits;
2610 ext4_lblk_t lblk;
2611 struct buffer_head *head;
2612
2613 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2614 tag = PAGECACHE_TAG_TOWRITE;
2615 else
2616 tag = PAGECACHE_TAG_DIRTY;
2617
2618 pagevec_init(&pvec, 0);
2619 mpd->map.m_len = 0;
2620 mpd->next_page = index;
2621 while (index <= end) {
2622 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2623 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2624 if (nr_pages == 0)
2625 goto out;
2626
2627 for (i = 0; i < nr_pages; i++) {
2628 struct page *page = pvec.pages[i];
2629
2630 /*
2631 * At this point, the page may be truncated or
2632 * invalidated (changing page->mapping to NULL), or
2633 * even swizzled back from swapper_space to tmpfs file
2634 * mapping. However, page->index will not change
2635 * because we have a reference on the page.
2636 */
2637 if (page->index > end)
2638 goto out;
2639
2640 /*
2641 * Accumulated enough dirty pages? This doesn't apply
2642 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 * keep going because someone may be concurrently
2644 * dirtying pages, and we might have synced a lot of
2645 * newly appeared dirty pages, but have not synced all
2646 * of the old dirty pages.
2647 */
2648 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649 goto out;
2650
2651 /* If we can't merge this page, we are done. */
2652 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653 goto out;
2654
2655 lock_page(page);
2656 /*
2657 * If the page is no longer dirty, or its mapping no
2658 * longer corresponds to inode we are writing (which
2659 * means it has been truncated or invalidated), or the
2660 * page is already under writeback and we are not doing
2661 * a data integrity writeback, skip the page
2662 */
2663 if (!PageDirty(page) ||
2664 (PageWriteback(page) &&
2665 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2666 unlikely(page->mapping != mapping)) {
2667 unlock_page(page);
2668 continue;
2669 }
2670
2671 wait_on_page_writeback(page);
2672 BUG_ON(PageWriteback(page));
2673
2674 if (mpd->map.m_len == 0)
2675 mpd->first_page = page->index;
2676 mpd->next_page = page->index + 1;
2677 /* Add all dirty buffers to mpd */
2678 lblk = ((ext4_lblk_t)page->index) <<
2679 (PAGE_SHIFT - blkbits);
2680 head = page_buffers(page);
2681 err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 if (err <= 0)
2683 goto out;
2684 err = 0;
2685 left--;
2686 }
2687 pagevec_release(&pvec);
2688 cond_resched();
2689 }
2690 return 0;
2691 out:
2692 pagevec_release(&pvec);
2693 return err;
2694 }
2695
2696 static int __writepage(struct page *page, struct writeback_control *wbc,
2697 void *data)
2698 {
2699 struct address_space *mapping = data;
2700 int ret = ext4_writepage(page, wbc);
2701 mapping_set_error(mapping, ret);
2702 return ret;
2703 }
2704
2705 static int ext4_writepages(struct address_space *mapping,
2706 struct writeback_control *wbc)
2707 {
2708 pgoff_t writeback_index = 0;
2709 long nr_to_write = wbc->nr_to_write;
2710 int range_whole = 0;
2711 int cycled = 1;
2712 handle_t *handle = NULL;
2713 struct mpage_da_data mpd;
2714 struct inode *inode = mapping->host;
2715 int needed_blocks, rsv_blocks = 0, ret = 0;
2716 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2717 bool done;
2718 struct blk_plug plug;
2719 bool give_up_on_write = false;
2720
2721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722 return -EIO;
2723
2724 percpu_down_read(&sbi->s_journal_flag_rwsem);
2725 trace_ext4_writepages(inode, wbc);
2726
2727 if (dax_mapping(mapping)) {
2728 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729 wbc);
2730 goto out_writepages;
2731 }
2732
2733 /*
2734 * No pages to write? This is mainly a kludge to avoid starting
2735 * a transaction for special inodes like journal inode on last iput()
2736 * because that could violate lock ordering on umount
2737 */
2738 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2739 goto out_writepages;
2740
2741 if (ext4_should_journal_data(inode)) {
2742 struct blk_plug plug;
2743
2744 blk_start_plug(&plug);
2745 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746 blk_finish_plug(&plug);
2747 goto out_writepages;
2748 }
2749
2750 /*
2751 * If the filesystem has aborted, it is read-only, so return
2752 * right away instead of dumping stack traces later on that
2753 * will obscure the real source of the problem. We test
2754 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2755 * the latter could be true if the filesystem is mounted
2756 * read-only, and in that case, ext4_writepages should
2757 * *never* be called, so if that ever happens, we would want
2758 * the stack trace.
2759 */
2760 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2762 ret = -EROFS;
2763 goto out_writepages;
2764 }
2765
2766 if (ext4_should_dioread_nolock(inode)) {
2767 /*
2768 * We may need to convert up to one extent per block in
2769 * the page and we may dirty the inode.
2770 */
2771 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2772 }
2773
2774 /*
2775 * If we have inline data and arrive here, it means that
2776 * we will soon create the block for the 1st page, so
2777 * we'd better clear the inline data here.
2778 */
2779 if (ext4_has_inline_data(inode)) {
2780 /* Just inode will be modified... */
2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 if (IS_ERR(handle)) {
2783 ret = PTR_ERR(handle);
2784 goto out_writepages;
2785 }
2786 BUG_ON(ext4_test_inode_state(inode,
2787 EXT4_STATE_MAY_INLINE_DATA));
2788 ext4_destroy_inline_data(handle, inode);
2789 ext4_journal_stop(handle);
2790 }
2791
2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793 range_whole = 1;
2794
2795 if (wbc->range_cyclic) {
2796 writeback_index = mapping->writeback_index;
2797 if (writeback_index)
2798 cycled = 0;
2799 mpd.first_page = writeback_index;
2800 mpd.last_page = -1;
2801 } else {
2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2804 }
2805
2806 mpd.inode = inode;
2807 mpd.wbc = wbc;
2808 ext4_io_submit_init(&mpd.io_submit, wbc);
2809 retry:
2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812 done = false;
2813 blk_start_plug(&plug);
2814
2815 /*
2816 * First writeback pages that don't need mapping - we can avoid
2817 * starting a transaction unnecessarily and also avoid being blocked
2818 * in the block layer on device congestion while having transaction
2819 * started.
2820 */
2821 mpd.do_map = 0;
2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 if (!mpd.io_submit.io_end) {
2824 ret = -ENOMEM;
2825 goto unplug;
2826 }
2827 ret = mpage_prepare_extent_to_map(&mpd);
2828 /* Submit prepared bio */
2829 ext4_io_submit(&mpd.io_submit);
2830 ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 mpd.io_submit.io_end = NULL;
2832 /* Unlock pages we didn't use */
2833 mpage_release_unused_pages(&mpd, false);
2834 if (ret < 0)
2835 goto unplug;
2836
2837 while (!done && mpd.first_page <= mpd.last_page) {
2838 /* For each extent of pages we use new io_end */
2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 if (!mpd.io_submit.io_end) {
2841 ret = -ENOMEM;
2842 break;
2843 }
2844
2845 /*
2846 * We have two constraints: We find one extent to map and we
2847 * must always write out whole page (makes a difference when
2848 * blocksize < pagesize) so that we don't block on IO when we
2849 * try to write out the rest of the page. Journalled mode is
2850 * not supported by delalloc.
2851 */
2852 BUG_ON(ext4_should_journal_data(inode));
2853 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2854
2855 /* start a new transaction */
2856 handle = ext4_journal_start_with_reserve(inode,
2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858 if (IS_ERR(handle)) {
2859 ret = PTR_ERR(handle);
2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861 "%ld pages, ino %lu; err %d", __func__,
2862 wbc->nr_to_write, inode->i_ino, ret);
2863 /* Release allocated io_end */
2864 ext4_put_io_end(mpd.io_submit.io_end);
2865 mpd.io_submit.io_end = NULL;
2866 break;
2867 }
2868 mpd.do_map = 1;
2869
2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 ret = mpage_prepare_extent_to_map(&mpd);
2872 if (!ret) {
2873 if (mpd.map.m_len)
2874 ret = mpage_map_and_submit_extent(handle, &mpd,
2875 &give_up_on_write);
2876 else {
2877 /*
2878 * We scanned the whole range (or exhausted
2879 * nr_to_write), submitted what was mapped and
2880 * didn't find anything needing mapping. We are
2881 * done.
2882 */
2883 done = true;
2884 }
2885 }
2886 /*
2887 * Caution: If the handle is synchronous,
2888 * ext4_journal_stop() can wait for transaction commit
2889 * to finish which may depend on writeback of pages to
2890 * complete or on page lock to be released. In that
2891 * case, we have to wait until after after we have
2892 * submitted all the IO, released page locks we hold,
2893 * and dropped io_end reference (for extent conversion
2894 * to be able to complete) before stopping the handle.
2895 */
2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 ext4_journal_stop(handle);
2898 handle = NULL;
2899 mpd.do_map = 0;
2900 }
2901 /* Submit prepared bio */
2902 ext4_io_submit(&mpd.io_submit);
2903 /* Unlock pages we didn't use */
2904 mpage_release_unused_pages(&mpd, give_up_on_write);
2905 /*
2906 * Drop our io_end reference we got from init. We have
2907 * to be careful and use deferred io_end finishing if
2908 * we are still holding the transaction as we can
2909 * release the last reference to io_end which may end
2910 * up doing unwritten extent conversion.
2911 */
2912 if (handle) {
2913 ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 ext4_journal_stop(handle);
2915 } else
2916 ext4_put_io_end(mpd.io_submit.io_end);
2917 mpd.io_submit.io_end = NULL;
2918
2919 if (ret == -ENOSPC && sbi->s_journal) {
2920 /*
2921 * Commit the transaction which would
2922 * free blocks released in the transaction
2923 * and try again
2924 */
2925 jbd2_journal_force_commit_nested(sbi->s_journal);
2926 ret = 0;
2927 continue;
2928 }
2929 /* Fatal error - ENOMEM, EIO... */
2930 if (ret)
2931 break;
2932 }
2933 unplug:
2934 blk_finish_plug(&plug);
2935 if (!ret && !cycled && wbc->nr_to_write > 0) {
2936 cycled = 1;
2937 mpd.last_page = writeback_index - 1;
2938 mpd.first_page = 0;
2939 goto retry;
2940 }
2941
2942 /* Update index */
2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944 /*
2945 * Set the writeback_index so that range_cyclic
2946 * mode will write it back later
2947 */
2948 mapping->writeback_index = mpd.first_page;
2949
2950 out_writepages:
2951 trace_ext4_writepages_result(inode, wbc, ret,
2952 nr_to_write - wbc->nr_to_write);
2953 percpu_up_read(&sbi->s_journal_flag_rwsem);
2954 return ret;
2955 }
2956
2957 static int ext4_nonda_switch(struct super_block *sb)
2958 {
2959 s64 free_clusters, dirty_clusters;
2960 struct ext4_sb_info *sbi = EXT4_SB(sb);
2961
2962 /*
2963 * switch to non delalloc mode if we are running low
2964 * on free block. The free block accounting via percpu
2965 * counters can get slightly wrong with percpu_counter_batch getting
2966 * accumulated on each CPU without updating global counters
2967 * Delalloc need an accurate free block accounting. So switch
2968 * to non delalloc when we are near to error range.
2969 */
2970 free_clusters =
2971 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972 dirty_clusters =
2973 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2974 /*
2975 * Start pushing delalloc when 1/2 of free blocks are dirty.
2976 */
2977 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2978 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2979
2980 if (2 * free_clusters < 3 * dirty_clusters ||
2981 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2982 /*
2983 * free block count is less than 150% of dirty blocks
2984 * or free blocks is less than watermark
2985 */
2986 return 1;
2987 }
2988 return 0;
2989 }
2990
2991 /* We always reserve for an inode update; the superblock could be there too */
2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993 {
2994 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2995 return 1;
2996
2997 if (pos + len <= 0x7fffffffULL)
2998 return 1;
2999
3000 /* We might need to update the superblock to set LARGE_FILE */
3001 return 2;
3002 }
3003
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005 loff_t pos, unsigned len, unsigned flags,
3006 struct page **pagep, void **fsdata)
3007 {
3008 int ret, retries = 0;
3009 struct page *page;
3010 pgoff_t index;
3011 struct inode *inode = mapping->host;
3012 handle_t *handle;
3013
3014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015 return -EIO;
3016
3017 index = pos >> PAGE_SHIFT;
3018
3019 if (ext4_nonda_switch(inode->i_sb) ||
3020 S_ISLNK(inode->i_mode)) {
3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022 return ext4_write_begin(file, mapping, pos,
3023 len, flags, pagep, fsdata);
3024 }
3025 *fsdata = (void *)0;
3026 trace_ext4_da_write_begin(inode, pos, len, flags);
3027
3028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029 ret = ext4_da_write_inline_data_begin(mapping, inode,
3030 pos, len, flags,
3031 pagep, fsdata);
3032 if (ret < 0)
3033 return ret;
3034 if (ret == 1)
3035 return 0;
3036 }
3037
3038 /*
3039 * grab_cache_page_write_begin() can take a long time if the
3040 * system is thrashing due to memory pressure, or if the page
3041 * is being written back. So grab it first before we start
3042 * the transaction handle. This also allows us to allocate
3043 * the page (if needed) without using GFP_NOFS.
3044 */
3045 retry_grab:
3046 page = grab_cache_page_write_begin(mapping, index, flags);
3047 if (!page)
3048 return -ENOMEM;
3049 unlock_page(page);
3050
3051 /*
3052 * With delayed allocation, we don't log the i_disksize update
3053 * if there is delayed block allocation. But we still need
3054 * to journalling the i_disksize update if writes to the end
3055 * of file which has an already mapped buffer.
3056 */
3057 retry_journal:
3058 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059 ext4_da_write_credits(inode, pos, len));
3060 if (IS_ERR(handle)) {
3061 put_page(page);
3062 return PTR_ERR(handle);
3063 }
3064
3065 lock_page(page);
3066 if (page->mapping != mapping) {
3067 /* The page got truncated from under us */
3068 unlock_page(page);
3069 put_page(page);
3070 ext4_journal_stop(handle);
3071 goto retry_grab;
3072 }
3073 /* In case writeback began while the page was unlocked */
3074 wait_for_stable_page(page);
3075
3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3077 ret = ext4_block_write_begin(page, pos, len,
3078 ext4_da_get_block_prep);
3079 #else
3080 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3081 #endif
3082 if (ret < 0) {
3083 unlock_page(page);
3084 ext4_journal_stop(handle);
3085 /*
3086 * block_write_begin may have instantiated a few blocks
3087 * outside i_size. Trim these off again. Don't need
3088 * i_size_read because we hold i_mutex.
3089 */
3090 if (pos + len > inode->i_size)
3091 ext4_truncate_failed_write(inode);
3092
3093 if (ret == -ENOSPC &&
3094 ext4_should_retry_alloc(inode->i_sb, &retries))
3095 goto retry_journal;
3096
3097 put_page(page);
3098 return ret;
3099 }
3100
3101 *pagep = page;
3102 return ret;
3103 }
3104
3105 /*
3106 * Check if we should update i_disksize
3107 * when write to the end of file but not require block allocation
3108 */
3109 static int ext4_da_should_update_i_disksize(struct page *page,
3110 unsigned long offset)
3111 {
3112 struct buffer_head *bh;
3113 struct inode *inode = page->mapping->host;
3114 unsigned int idx;
3115 int i;
3116
3117 bh = page_buffers(page);
3118 idx = offset >> inode->i_blkbits;
3119
3120 for (i = 0; i < idx; i++)
3121 bh = bh->b_this_page;
3122
3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124 return 0;
3125 return 1;
3126 }
3127
3128 static int ext4_da_write_end(struct file *file,
3129 struct address_space *mapping,
3130 loff_t pos, unsigned len, unsigned copied,
3131 struct page *page, void *fsdata)
3132 {
3133 struct inode *inode = mapping->host;
3134 int ret = 0, ret2;
3135 handle_t *handle = ext4_journal_current_handle();
3136 loff_t new_i_size;
3137 unsigned long start, end;
3138 int write_mode = (int)(unsigned long)fsdata;
3139
3140 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 return ext4_write_end(file, mapping, pos,
3142 len, copied, page, fsdata);
3143
3144 trace_ext4_da_write_end(inode, pos, len, copied);
3145 start = pos & (PAGE_SIZE - 1);
3146 end = start + copied - 1;
3147
3148 /*
3149 * generic_write_end() will run mark_inode_dirty() if i_size
3150 * changes. So let's piggyback the i_disksize mark_inode_dirty
3151 * into that.
3152 */
3153 new_i_size = pos + copied;
3154 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3155 if (ext4_has_inline_data(inode) ||
3156 ext4_da_should_update_i_disksize(page, end)) {
3157 ext4_update_i_disksize(inode, new_i_size);
3158 /* We need to mark inode dirty even if
3159 * new_i_size is less that inode->i_size
3160 * bu greater than i_disksize.(hint delalloc)
3161 */
3162 ext4_mark_inode_dirty(handle, inode);
3163 }
3164 }
3165
3166 if (write_mode != CONVERT_INLINE_DATA &&
3167 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168 ext4_has_inline_data(inode))
3169 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170 page);
3171 else
3172 ret2 = generic_write_end(file, mapping, pos, len, copied,
3173 page, fsdata);
3174
3175 copied = ret2;
3176 if (ret2 < 0)
3177 ret = ret2;
3178 ret2 = ext4_journal_stop(handle);
3179 if (!ret)
3180 ret = ret2;
3181
3182 return ret ? ret : copied;
3183 }
3184
3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186 unsigned int length)
3187 {
3188 /*
3189 * Drop reserved blocks
3190 */
3191 BUG_ON(!PageLocked(page));
3192 if (!page_has_buffers(page))
3193 goto out;
3194
3195 ext4_da_page_release_reservation(page, offset, length);
3196
3197 out:
3198 ext4_invalidatepage(page, offset, length);
3199
3200 return;
3201 }
3202
3203 /*
3204 * Force all delayed allocation blocks to be allocated for a given inode.
3205 */
3206 int ext4_alloc_da_blocks(struct inode *inode)
3207 {
3208 trace_ext4_alloc_da_blocks(inode);
3209
3210 if (!EXT4_I(inode)->i_reserved_data_blocks)
3211 return 0;
3212
3213 /*
3214 * We do something simple for now. The filemap_flush() will
3215 * also start triggering a write of the data blocks, which is
3216 * not strictly speaking necessary (and for users of
3217 * laptop_mode, not even desirable). However, to do otherwise
3218 * would require replicating code paths in:
3219 *
3220 * ext4_writepages() ->
3221 * write_cache_pages() ---> (via passed in callback function)
3222 * __mpage_da_writepage() -->
3223 * mpage_add_bh_to_extent()
3224 * mpage_da_map_blocks()
3225 *
3226 * The problem is that write_cache_pages(), located in
3227 * mm/page-writeback.c, marks pages clean in preparation for
3228 * doing I/O, which is not desirable if we're not planning on
3229 * doing I/O at all.
3230 *
3231 * We could call write_cache_pages(), and then redirty all of
3232 * the pages by calling redirty_page_for_writepage() but that
3233 * would be ugly in the extreme. So instead we would need to
3234 * replicate parts of the code in the above functions,
3235 * simplifying them because we wouldn't actually intend to
3236 * write out the pages, but rather only collect contiguous
3237 * logical block extents, call the multi-block allocator, and
3238 * then update the buffer heads with the block allocations.
3239 *
3240 * For now, though, we'll cheat by calling filemap_flush(),
3241 * which will map the blocks, and start the I/O, but not
3242 * actually wait for the I/O to complete.
3243 */
3244 return filemap_flush(inode->i_mapping);
3245 }
3246
3247 /*
3248 * bmap() is special. It gets used by applications such as lilo and by
3249 * the swapper to find the on-disk block of a specific piece of data.
3250 *
3251 * Naturally, this is dangerous if the block concerned is still in the
3252 * journal. If somebody makes a swapfile on an ext4 data-journaling
3253 * filesystem and enables swap, then they may get a nasty shock when the
3254 * data getting swapped to that swapfile suddenly gets overwritten by
3255 * the original zero's written out previously to the journal and
3256 * awaiting writeback in the kernel's buffer cache.
3257 *
3258 * So, if we see any bmap calls here on a modified, data-journaled file,
3259 * take extra steps to flush any blocks which might be in the cache.
3260 */
3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3262 {
3263 struct inode *inode = mapping->host;
3264 journal_t *journal;
3265 int err;
3266
3267 /*
3268 * We can get here for an inline file via the FIBMAP ioctl
3269 */
3270 if (ext4_has_inline_data(inode))
3271 return 0;
3272
3273 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274 test_opt(inode->i_sb, DELALLOC)) {
3275 /*
3276 * With delalloc we want to sync the file
3277 * so that we can make sure we allocate
3278 * blocks for file
3279 */
3280 filemap_write_and_wait(mapping);
3281 }
3282
3283 if (EXT4_JOURNAL(inode) &&
3284 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3285 /*
3286 * This is a REALLY heavyweight approach, but the use of
3287 * bmap on dirty files is expected to be extremely rare:
3288 * only if we run lilo or swapon on a freshly made file
3289 * do we expect this to happen.
3290 *
3291 * (bmap requires CAP_SYS_RAWIO so this does not
3292 * represent an unprivileged user DOS attack --- we'd be
3293 * in trouble if mortal users could trigger this path at
3294 * will.)
3295 *
3296 * NB. EXT4_STATE_JDATA is not set on files other than
3297 * regular files. If somebody wants to bmap a directory
3298 * or symlink and gets confused because the buffer
3299 * hasn't yet been flushed to disk, they deserve
3300 * everything they get.
3301 */
3302
3303 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3304 journal = EXT4_JOURNAL(inode);
3305 jbd2_journal_lock_updates(journal);
3306 err = jbd2_journal_flush(journal);
3307 jbd2_journal_unlock_updates(journal);
3308
3309 if (err)
3310 return 0;
3311 }
3312
3313 return generic_block_bmap(mapping, block, ext4_get_block);
3314 }
3315
3316 static int ext4_readpage(struct file *file, struct page *page)
3317 {
3318 int ret = -EAGAIN;
3319 struct inode *inode = page->mapping->host;
3320
3321 trace_ext4_readpage(page);
3322
3323 if (ext4_has_inline_data(inode))
3324 ret = ext4_readpage_inline(inode, page);
3325
3326 if (ret == -EAGAIN)
3327 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3328
3329 return ret;
3330 }
3331
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334 struct list_head *pages, unsigned nr_pages)
3335 {
3336 struct inode *inode = mapping->host;
3337
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3340 return 0;
3341
3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3343 }
3344
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
3347 {
3348 trace_ext4_invalidatepage(page, offset, length);
3349
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353 block_invalidatepage(page, offset, length);
3354 }
3355
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357 unsigned int offset,
3358 unsigned int length)
3359 {
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362 trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364 /*
3365 * If it's a full truncate we just forget about the pending dirtying
3366 */
3367 if (offset == 0 && length == PAGE_SIZE)
3368 ClearPageChecked(page);
3369
3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375 unsigned int offset,
3376 unsigned int length)
3377 {
3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385 trace_ext4_releasepage(page);
3386
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
3389 return 0;
3390 if (journal)
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 else
3393 return try_to_free_buffers(page);
3394 }
3395
3396 #ifdef CONFIG_FS_DAX
3397 static bool ext4_inode_datasync_dirty(struct inode *inode)
3398 {
3399 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3400
3401 if (journal)
3402 return !jbd2_transaction_committed(journal,
3403 EXT4_I(inode)->i_datasync_tid);
3404 /* Any metadata buffers to write? */
3405 if (!list_empty(&inode->i_mapping->private_list))
3406 return true;
3407 return inode->i_state & I_DIRTY_DATASYNC;
3408 }
3409
3410 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3411 unsigned flags, struct iomap *iomap)
3412 {
3413 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3414 unsigned int blkbits = inode->i_blkbits;
3415 unsigned long first_block = offset >> blkbits;
3416 unsigned long last_block = (offset + length - 1) >> blkbits;
3417 struct ext4_map_blocks map;
3418 int ret;
3419
3420 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3421 return -ERANGE;
3422
3423 map.m_lblk = first_block;
3424 map.m_len = last_block - first_block + 1;
3425
3426 if (!(flags & IOMAP_WRITE)) {
3427 ret = ext4_map_blocks(NULL, inode, &map, 0);
3428 } else {
3429 int dio_credits;
3430 handle_t *handle;
3431 int retries = 0;
3432
3433 /* Trim mapping request to maximum we can map at once for DIO */
3434 if (map.m_len > DIO_MAX_BLOCKS)
3435 map.m_len = DIO_MAX_BLOCKS;
3436 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3437 retry:
3438 /*
3439 * Either we allocate blocks and then we don't get unwritten
3440 * extent so we have reserved enough credits, or the blocks
3441 * are already allocated and unwritten and in that case
3442 * extent conversion fits in the credits as well.
3443 */
3444 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3445 dio_credits);
3446 if (IS_ERR(handle))
3447 return PTR_ERR(handle);
3448
3449 ret = ext4_map_blocks(handle, inode, &map,
3450 EXT4_GET_BLOCKS_CREATE_ZERO);
3451 if (ret < 0) {
3452 ext4_journal_stop(handle);
3453 if (ret == -ENOSPC &&
3454 ext4_should_retry_alloc(inode->i_sb, &retries))
3455 goto retry;
3456 return ret;
3457 }
3458
3459 /*
3460 * If we added blocks beyond i_size, we need to make sure they
3461 * will get truncated if we crash before updating i_size in
3462 * ext4_iomap_end(). For faults we don't need to do that (and
3463 * even cannot because for orphan list operations inode_lock is
3464 * required) - if we happen to instantiate block beyond i_size,
3465 * it is because we race with truncate which has already added
3466 * the inode to the orphan list.
3467 */
3468 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3469 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3470 int err;
3471
3472 err = ext4_orphan_add(handle, inode);
3473 if (err < 0) {
3474 ext4_journal_stop(handle);
3475 return err;
3476 }
3477 }
3478 ext4_journal_stop(handle);
3479 }
3480
3481 iomap->flags = 0;
3482 if ((flags & IOMAP_WRITE) && ext4_inode_datasync_dirty(inode))
3483 iomap->flags |= IOMAP_F_DIRTY;
3484 iomap->bdev = inode->i_sb->s_bdev;
3485 iomap->dax_dev = sbi->s_daxdev;
3486 iomap->offset = first_block << blkbits;
3487
3488 if (ret == 0) {
3489 iomap->type = IOMAP_HOLE;
3490 iomap->blkno = IOMAP_NULL_BLOCK;
3491 iomap->length = (u64)map.m_len << blkbits;
3492 } else {
3493 if (map.m_flags & EXT4_MAP_MAPPED) {
3494 iomap->type = IOMAP_MAPPED;
3495 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3496 iomap->type = IOMAP_UNWRITTEN;
3497 } else {
3498 WARN_ON_ONCE(1);
3499 return -EIO;
3500 }
3501 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3502 iomap->length = (u64)map.m_len << blkbits;
3503 }
3504
3505 if (map.m_flags & EXT4_MAP_NEW)
3506 iomap->flags |= IOMAP_F_NEW;
3507 return 0;
3508 }
3509
3510 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3511 ssize_t written, unsigned flags, struct iomap *iomap)
3512 {
3513 int ret = 0;
3514 handle_t *handle;
3515 int blkbits = inode->i_blkbits;
3516 bool truncate = false;
3517
3518 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3519 return 0;
3520
3521 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3522 if (IS_ERR(handle)) {
3523 ret = PTR_ERR(handle);
3524 goto orphan_del;
3525 }
3526 if (ext4_update_inode_size(inode, offset + written))
3527 ext4_mark_inode_dirty(handle, inode);
3528 /*
3529 * We may need to truncate allocated but not written blocks beyond EOF.
3530 */
3531 if (iomap->offset + iomap->length >
3532 ALIGN(inode->i_size, 1 << blkbits)) {
3533 ext4_lblk_t written_blk, end_blk;
3534
3535 written_blk = (offset + written) >> blkbits;
3536 end_blk = (offset + length) >> blkbits;
3537 if (written_blk < end_blk && ext4_can_truncate(inode))
3538 truncate = true;
3539 }
3540 /*
3541 * Remove inode from orphan list if we were extending a inode and
3542 * everything went fine.
3543 */
3544 if (!truncate && inode->i_nlink &&
3545 !list_empty(&EXT4_I(inode)->i_orphan))
3546 ext4_orphan_del(handle, inode);
3547 ext4_journal_stop(handle);
3548 if (truncate) {
3549 ext4_truncate_failed_write(inode);
3550 orphan_del:
3551 /*
3552 * If truncate failed early the inode might still be on the
3553 * orphan list; we need to make sure the inode is removed from
3554 * the orphan list in that case.
3555 */
3556 if (inode->i_nlink)
3557 ext4_orphan_del(NULL, inode);
3558 }
3559 return ret;
3560 }
3561
3562 const struct iomap_ops ext4_iomap_ops = {
3563 .iomap_begin = ext4_iomap_begin,
3564 .iomap_end = ext4_iomap_end,
3565 };
3566
3567 #endif
3568
3569 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3570 ssize_t size, void *private)
3571 {
3572 ext4_io_end_t *io_end = private;
3573
3574 /* if not async direct IO just return */
3575 if (!io_end)
3576 return 0;
3577
3578 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3579 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3580 io_end, io_end->inode->i_ino, iocb, offset, size);
3581
3582 /*
3583 * Error during AIO DIO. We cannot convert unwritten extents as the
3584 * data was not written. Just clear the unwritten flag and drop io_end.
3585 */
3586 if (size <= 0) {
3587 ext4_clear_io_unwritten_flag(io_end);
3588 size = 0;
3589 }
3590 io_end->offset = offset;
3591 io_end->size = size;
3592 ext4_put_io_end(io_end);
3593
3594 return 0;
3595 }
3596
3597 /*
3598 * Handling of direct IO writes.
3599 *
3600 * For ext4 extent files, ext4 will do direct-io write even to holes,
3601 * preallocated extents, and those write extend the file, no need to
3602 * fall back to buffered IO.
3603 *
3604 * For holes, we fallocate those blocks, mark them as unwritten
3605 * If those blocks were preallocated, we mark sure they are split, but
3606 * still keep the range to write as unwritten.
3607 *
3608 * The unwritten extents will be converted to written when DIO is completed.
3609 * For async direct IO, since the IO may still pending when return, we
3610 * set up an end_io call back function, which will do the conversion
3611 * when async direct IO completed.
3612 *
3613 * If the O_DIRECT write will extend the file then add this inode to the
3614 * orphan list. So recovery will truncate it back to the original size
3615 * if the machine crashes during the write.
3616 *
3617 */
3618 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3619 {
3620 struct file *file = iocb->ki_filp;
3621 struct inode *inode = file->f_mapping->host;
3622 struct ext4_inode_info *ei = EXT4_I(inode);
3623 ssize_t ret;
3624 loff_t offset = iocb->ki_pos;
3625 size_t count = iov_iter_count(iter);
3626 int overwrite = 0;
3627 get_block_t *get_block_func = NULL;
3628 int dio_flags = 0;
3629 loff_t final_size = offset + count;
3630 int orphan = 0;
3631 handle_t *handle;
3632
3633 if (final_size > inode->i_size) {
3634 /* Credits for sb + inode write */
3635 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3636 if (IS_ERR(handle)) {
3637 ret = PTR_ERR(handle);
3638 goto out;
3639 }
3640 ret = ext4_orphan_add(handle, inode);
3641 if (ret) {
3642 ext4_journal_stop(handle);
3643 goto out;
3644 }
3645 orphan = 1;
3646 ei->i_disksize = inode->i_size;
3647 ext4_journal_stop(handle);
3648 }
3649
3650 BUG_ON(iocb->private == NULL);
3651
3652 /*
3653 * Make all waiters for direct IO properly wait also for extent
3654 * conversion. This also disallows race between truncate() and
3655 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3656 */
3657 inode_dio_begin(inode);
3658
3659 /* If we do a overwrite dio, i_mutex locking can be released */
3660 overwrite = *((int *)iocb->private);
3661
3662 if (overwrite)
3663 inode_unlock(inode);
3664
3665 /*
3666 * For extent mapped files we could direct write to holes and fallocate.
3667 *
3668 * Allocated blocks to fill the hole are marked as unwritten to prevent
3669 * parallel buffered read to expose the stale data before DIO complete
3670 * the data IO.
3671 *
3672 * As to previously fallocated extents, ext4 get_block will just simply
3673 * mark the buffer mapped but still keep the extents unwritten.
3674 *
3675 * For non AIO case, we will convert those unwritten extents to written
3676 * after return back from blockdev_direct_IO. That way we save us from
3677 * allocating io_end structure and also the overhead of offloading
3678 * the extent convertion to a workqueue.
3679 *
3680 * For async DIO, the conversion needs to be deferred when the
3681 * IO is completed. The ext4 end_io callback function will be
3682 * called to take care of the conversion work. Here for async
3683 * case, we allocate an io_end structure to hook to the iocb.
3684 */
3685 iocb->private = NULL;
3686 if (overwrite)
3687 get_block_func = ext4_dio_get_block_overwrite;
3688 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3689 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3690 get_block_func = ext4_dio_get_block;
3691 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3692 } else if (is_sync_kiocb(iocb)) {
3693 get_block_func = ext4_dio_get_block_unwritten_sync;
3694 dio_flags = DIO_LOCKING;
3695 } else {
3696 get_block_func = ext4_dio_get_block_unwritten_async;
3697 dio_flags = DIO_LOCKING;
3698 }
3699 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3700 get_block_func, ext4_end_io_dio, NULL,
3701 dio_flags);
3702
3703 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3704 EXT4_STATE_DIO_UNWRITTEN)) {
3705 int err;
3706 /*
3707 * for non AIO case, since the IO is already
3708 * completed, we could do the conversion right here
3709 */
3710 err = ext4_convert_unwritten_extents(NULL, inode,
3711 offset, ret);
3712 if (err < 0)
3713 ret = err;
3714 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3715 }
3716
3717 inode_dio_end(inode);
3718 /* take i_mutex locking again if we do a ovewrite dio */
3719 if (overwrite)
3720 inode_lock(inode);
3721
3722 if (ret < 0 && final_size > inode->i_size)
3723 ext4_truncate_failed_write(inode);
3724
3725 /* Handle extending of i_size after direct IO write */
3726 if (orphan) {
3727 int err;
3728
3729 /* Credits for sb + inode write */
3730 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3731 if (IS_ERR(handle)) {
3732 /* This is really bad luck. We've written the data
3733 * but cannot extend i_size. Bail out and pretend
3734 * the write failed... */
3735 ret = PTR_ERR(handle);
3736 if (inode->i_nlink)
3737 ext4_orphan_del(NULL, inode);
3738
3739 goto out;
3740 }
3741 if (inode->i_nlink)
3742 ext4_orphan_del(handle, inode);
3743 if (ret > 0) {
3744 loff_t end = offset + ret;
3745 if (end > inode->i_size) {
3746 ei->i_disksize = end;
3747 i_size_write(inode, end);
3748 /*
3749 * We're going to return a positive `ret'
3750 * here due to non-zero-length I/O, so there's
3751 * no way of reporting error returns from
3752 * ext4_mark_inode_dirty() to userspace. So
3753 * ignore it.
3754 */
3755 ext4_mark_inode_dirty(handle, inode);
3756 }
3757 }
3758 err = ext4_journal_stop(handle);
3759 if (ret == 0)
3760 ret = err;
3761 }
3762 out:
3763 return ret;
3764 }
3765
3766 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3767 {
3768 struct address_space *mapping = iocb->ki_filp->f_mapping;
3769 struct inode *inode = mapping->host;
3770 size_t count = iov_iter_count(iter);
3771 ssize_t ret;
3772
3773 /*
3774 * Shared inode_lock is enough for us - it protects against concurrent
3775 * writes & truncates and since we take care of writing back page cache,
3776 * we are protected against page writeback as well.
3777 */
3778 inode_lock_shared(inode);
3779 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3780 iocb->ki_pos + count - 1);
3781 if (ret)
3782 goto out_unlock;
3783 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3784 iter, ext4_dio_get_block, NULL, NULL, 0);
3785 out_unlock:
3786 inode_unlock_shared(inode);
3787 return ret;
3788 }
3789
3790 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3791 {
3792 struct file *file = iocb->ki_filp;
3793 struct inode *inode = file->f_mapping->host;
3794 size_t count = iov_iter_count(iter);
3795 loff_t offset = iocb->ki_pos;
3796 ssize_t ret;
3797
3798 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3799 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3800 return 0;
3801 #endif
3802
3803 /*
3804 * If we are doing data journalling we don't support O_DIRECT
3805 */
3806 if (ext4_should_journal_data(inode))
3807 return 0;
3808
3809 /* Let buffer I/O handle the inline data case. */
3810 if (ext4_has_inline_data(inode))
3811 return 0;
3812
3813 /* DAX uses iomap path now */
3814 if (WARN_ON_ONCE(IS_DAX(inode)))
3815 return 0;
3816
3817 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3818 if (iov_iter_rw(iter) == READ)
3819 ret = ext4_direct_IO_read(iocb, iter);
3820 else
3821 ret = ext4_direct_IO_write(iocb, iter);
3822 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3823 return ret;
3824 }
3825
3826 /*
3827 * Pages can be marked dirty completely asynchronously from ext4's journalling
3828 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3829 * much here because ->set_page_dirty is called under VFS locks. The page is
3830 * not necessarily locked.
3831 *
3832 * We cannot just dirty the page and leave attached buffers clean, because the
3833 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3834 * or jbddirty because all the journalling code will explode.
3835 *
3836 * So what we do is to mark the page "pending dirty" and next time writepage
3837 * is called, propagate that into the buffers appropriately.
3838 */
3839 static int ext4_journalled_set_page_dirty(struct page *page)
3840 {
3841 SetPageChecked(page);
3842 return __set_page_dirty_nobuffers(page);
3843 }
3844
3845 static int ext4_set_page_dirty(struct page *page)
3846 {
3847 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3848 WARN_ON_ONCE(!page_has_buffers(page));
3849 return __set_page_dirty_buffers(page);
3850 }
3851
3852 static const struct address_space_operations ext4_aops = {
3853 .readpage = ext4_readpage,
3854 .readpages = ext4_readpages,
3855 .writepage = ext4_writepage,
3856 .writepages = ext4_writepages,
3857 .write_begin = ext4_write_begin,
3858 .write_end = ext4_write_end,
3859 .set_page_dirty = ext4_set_page_dirty,
3860 .bmap = ext4_bmap,
3861 .invalidatepage = ext4_invalidatepage,
3862 .releasepage = ext4_releasepage,
3863 .direct_IO = ext4_direct_IO,
3864 .migratepage = buffer_migrate_page,
3865 .is_partially_uptodate = block_is_partially_uptodate,
3866 .error_remove_page = generic_error_remove_page,
3867 };
3868
3869 static const struct address_space_operations ext4_journalled_aops = {
3870 .readpage = ext4_readpage,
3871 .readpages = ext4_readpages,
3872 .writepage = ext4_writepage,
3873 .writepages = ext4_writepages,
3874 .write_begin = ext4_write_begin,
3875 .write_end = ext4_journalled_write_end,
3876 .set_page_dirty = ext4_journalled_set_page_dirty,
3877 .bmap = ext4_bmap,
3878 .invalidatepage = ext4_journalled_invalidatepage,
3879 .releasepage = ext4_releasepage,
3880 .direct_IO = ext4_direct_IO,
3881 .is_partially_uptodate = block_is_partially_uptodate,
3882 .error_remove_page = generic_error_remove_page,
3883 };
3884
3885 static const struct address_space_operations ext4_da_aops = {
3886 .readpage = ext4_readpage,
3887 .readpages = ext4_readpages,
3888 .writepage = ext4_writepage,
3889 .writepages = ext4_writepages,
3890 .write_begin = ext4_da_write_begin,
3891 .write_end = ext4_da_write_end,
3892 .set_page_dirty = ext4_set_page_dirty,
3893 .bmap = ext4_bmap,
3894 .invalidatepage = ext4_da_invalidatepage,
3895 .releasepage = ext4_releasepage,
3896 .direct_IO = ext4_direct_IO,
3897 .migratepage = buffer_migrate_page,
3898 .is_partially_uptodate = block_is_partially_uptodate,
3899 .error_remove_page = generic_error_remove_page,
3900 };
3901
3902 void ext4_set_aops(struct inode *inode)
3903 {
3904 switch (ext4_inode_journal_mode(inode)) {
3905 case EXT4_INODE_ORDERED_DATA_MODE:
3906 case EXT4_INODE_WRITEBACK_DATA_MODE:
3907 break;
3908 case EXT4_INODE_JOURNAL_DATA_MODE:
3909 inode->i_mapping->a_ops = &ext4_journalled_aops;
3910 return;
3911 default:
3912 BUG();
3913 }
3914 if (test_opt(inode->i_sb, DELALLOC))
3915 inode->i_mapping->a_ops = &ext4_da_aops;
3916 else
3917 inode->i_mapping->a_ops = &ext4_aops;
3918 }
3919
3920 static int __ext4_block_zero_page_range(handle_t *handle,
3921 struct address_space *mapping, loff_t from, loff_t length)
3922 {
3923 ext4_fsblk_t index = from >> PAGE_SHIFT;
3924 unsigned offset = from & (PAGE_SIZE-1);
3925 unsigned blocksize, pos;
3926 ext4_lblk_t iblock;
3927 struct inode *inode = mapping->host;
3928 struct buffer_head *bh;
3929 struct page *page;
3930 int err = 0;
3931
3932 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3933 mapping_gfp_constraint(mapping, ~__GFP_FS));
3934 if (!page)
3935 return -ENOMEM;
3936
3937 blocksize = inode->i_sb->s_blocksize;
3938
3939 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3940
3941 if (!page_has_buffers(page))
3942 create_empty_buffers(page, blocksize, 0);
3943
3944 /* Find the buffer that contains "offset" */
3945 bh = page_buffers(page);
3946 pos = blocksize;
3947 while (offset >= pos) {
3948 bh = bh->b_this_page;
3949 iblock++;
3950 pos += blocksize;
3951 }
3952 if (buffer_freed(bh)) {
3953 BUFFER_TRACE(bh, "freed: skip");
3954 goto unlock;
3955 }
3956 if (!buffer_mapped(bh)) {
3957 BUFFER_TRACE(bh, "unmapped");
3958 ext4_get_block(inode, iblock, bh, 0);
3959 /* unmapped? It's a hole - nothing to do */
3960 if (!buffer_mapped(bh)) {
3961 BUFFER_TRACE(bh, "still unmapped");
3962 goto unlock;
3963 }
3964 }
3965
3966 /* Ok, it's mapped. Make sure it's up-to-date */
3967 if (PageUptodate(page))
3968 set_buffer_uptodate(bh);
3969
3970 if (!buffer_uptodate(bh)) {
3971 err = -EIO;
3972 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3973 wait_on_buffer(bh);
3974 /* Uhhuh. Read error. Complain and punt. */
3975 if (!buffer_uptodate(bh))
3976 goto unlock;
3977 if (S_ISREG(inode->i_mode) &&
3978 ext4_encrypted_inode(inode)) {
3979 /* We expect the key to be set. */
3980 BUG_ON(!fscrypt_has_encryption_key(inode));
3981 BUG_ON(blocksize != PAGE_SIZE);
3982 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3983 page, PAGE_SIZE, 0, page->index));
3984 }
3985 }
3986 if (ext4_should_journal_data(inode)) {
3987 BUFFER_TRACE(bh, "get write access");
3988 err = ext4_journal_get_write_access(handle, bh);
3989 if (err)
3990 goto unlock;
3991 }
3992 zero_user(page, offset, length);
3993 BUFFER_TRACE(bh, "zeroed end of block");
3994
3995 if (ext4_should_journal_data(inode)) {
3996 err = ext4_handle_dirty_metadata(handle, inode, bh);
3997 } else {
3998 err = 0;
3999 mark_buffer_dirty(bh);
4000 if (ext4_should_order_data(inode))
4001 err = ext4_jbd2_inode_add_write(handle, inode);
4002 }
4003
4004 unlock:
4005 unlock_page(page);
4006 put_page(page);
4007 return err;
4008 }
4009
4010 /*
4011 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4012 * starting from file offset 'from'. The range to be zero'd must
4013 * be contained with in one block. If the specified range exceeds
4014 * the end of the block it will be shortened to end of the block
4015 * that cooresponds to 'from'
4016 */
4017 static int ext4_block_zero_page_range(handle_t *handle,
4018 struct address_space *mapping, loff_t from, loff_t length)
4019 {
4020 struct inode *inode = mapping->host;
4021 unsigned offset = from & (PAGE_SIZE-1);
4022 unsigned blocksize = inode->i_sb->s_blocksize;
4023 unsigned max = blocksize - (offset & (blocksize - 1));
4024
4025 /*
4026 * correct length if it does not fall between
4027 * 'from' and the end of the block
4028 */
4029 if (length > max || length < 0)
4030 length = max;
4031
4032 if (IS_DAX(inode)) {
4033 return iomap_zero_range(inode, from, length, NULL,
4034 &ext4_iomap_ops);
4035 }
4036 return __ext4_block_zero_page_range(handle, mapping, from, length);
4037 }
4038
4039 /*
4040 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4041 * up to the end of the block which corresponds to `from'.
4042 * This required during truncate. We need to physically zero the tail end
4043 * of that block so it doesn't yield old data if the file is later grown.
4044 */
4045 static int ext4_block_truncate_page(handle_t *handle,
4046 struct address_space *mapping, loff_t from)
4047 {
4048 unsigned offset = from & (PAGE_SIZE-1);
4049 unsigned length;
4050 unsigned blocksize;
4051 struct inode *inode = mapping->host;
4052
4053 /* If we are processing an encrypted inode during orphan list handling */
4054 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4055 return 0;
4056
4057 blocksize = inode->i_sb->s_blocksize;
4058 length = blocksize - (offset & (blocksize - 1));
4059
4060 return ext4_block_zero_page_range(handle, mapping, from, length);
4061 }
4062
4063 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4064 loff_t lstart, loff_t length)
4065 {
4066 struct super_block *sb = inode->i_sb;
4067 struct address_space *mapping = inode->i_mapping;
4068 unsigned partial_start, partial_end;
4069 ext4_fsblk_t start, end;
4070 loff_t byte_end = (lstart + length - 1);
4071 int err = 0;
4072
4073 partial_start = lstart & (sb->s_blocksize - 1);
4074 partial_end = byte_end & (sb->s_blocksize - 1);
4075
4076 start = lstart >> sb->s_blocksize_bits;
4077 end = byte_end >> sb->s_blocksize_bits;
4078
4079 /* Handle partial zero within the single block */
4080 if (start == end &&
4081 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4082 err = ext4_block_zero_page_range(handle, mapping,
4083 lstart, length);
4084 return err;
4085 }
4086 /* Handle partial zero out on the start of the range */
4087 if (partial_start) {
4088 err = ext4_block_zero_page_range(handle, mapping,
4089 lstart, sb->s_blocksize);
4090 if (err)
4091 return err;
4092 }
4093 /* Handle partial zero out on the end of the range */
4094 if (partial_end != sb->s_blocksize - 1)
4095 err = ext4_block_zero_page_range(handle, mapping,
4096 byte_end - partial_end,
4097 partial_end + 1);
4098 return err;
4099 }
4100
4101 int ext4_can_truncate(struct inode *inode)
4102 {
4103 if (S_ISREG(inode->i_mode))
4104 return 1;
4105 if (S_ISDIR(inode->i_mode))
4106 return 1;
4107 if (S_ISLNK(inode->i_mode))
4108 return !ext4_inode_is_fast_symlink(inode);
4109 return 0;
4110 }
4111
4112 /*
4113 * We have to make sure i_disksize gets properly updated before we truncate
4114 * page cache due to hole punching or zero range. Otherwise i_disksize update
4115 * can get lost as it may have been postponed to submission of writeback but
4116 * that will never happen after we truncate page cache.
4117 */
4118 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4119 loff_t len)
4120 {
4121 handle_t *handle;
4122 loff_t size = i_size_read(inode);
4123
4124 WARN_ON(!inode_is_locked(inode));
4125 if (offset > size || offset + len < size)
4126 return 0;
4127
4128 if (EXT4_I(inode)->i_disksize >= size)
4129 return 0;
4130
4131 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4132 if (IS_ERR(handle))
4133 return PTR_ERR(handle);
4134 ext4_update_i_disksize(inode, size);
4135 ext4_mark_inode_dirty(handle, inode);
4136 ext4_journal_stop(handle);
4137
4138 return 0;
4139 }
4140
4141 /*
4142 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4143 * associated with the given offset and length
4144 *
4145 * @inode: File inode
4146 * @offset: The offset where the hole will begin
4147 * @len: The length of the hole
4148 *
4149 * Returns: 0 on success or negative on failure
4150 */
4151
4152 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4153 {
4154 struct super_block *sb = inode->i_sb;
4155 ext4_lblk_t first_block, stop_block;
4156 struct address_space *mapping = inode->i_mapping;
4157 loff_t first_block_offset, last_block_offset;
4158 handle_t *handle;
4159 unsigned int credits;
4160 int ret = 0;
4161
4162 if (!S_ISREG(inode->i_mode))
4163 return -EOPNOTSUPP;
4164
4165 trace_ext4_punch_hole(inode, offset, length, 0);
4166
4167 /*
4168 * Write out all dirty pages to avoid race conditions
4169 * Then release them.
4170 */
4171 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4172 ret = filemap_write_and_wait_range(mapping, offset,
4173 offset + length - 1);
4174 if (ret)
4175 return ret;
4176 }
4177
4178 inode_lock(inode);
4179
4180 /* No need to punch hole beyond i_size */
4181 if (offset >= inode->i_size)
4182 goto out_mutex;
4183
4184 /*
4185 * If the hole extends beyond i_size, set the hole
4186 * to end after the page that contains i_size
4187 */
4188 if (offset + length > inode->i_size) {
4189 length = inode->i_size +
4190 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4191 offset;
4192 }
4193
4194 if (offset & (sb->s_blocksize - 1) ||
4195 (offset + length) & (sb->s_blocksize - 1)) {
4196 /*
4197 * Attach jinode to inode for jbd2 if we do any zeroing of
4198 * partial block
4199 */
4200 ret = ext4_inode_attach_jinode(inode);
4201 if (ret < 0)
4202 goto out_mutex;
4203
4204 }
4205
4206 /* Wait all existing dio workers, newcomers will block on i_mutex */
4207 ext4_inode_block_unlocked_dio(inode);
4208 inode_dio_wait(inode);
4209
4210 /*
4211 * Prevent page faults from reinstantiating pages we have released from
4212 * page cache.
4213 */
4214 down_write(&EXT4_I(inode)->i_mmap_sem);
4215 first_block_offset = round_up(offset, sb->s_blocksize);
4216 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4217
4218 /* Now release the pages and zero block aligned part of pages*/
4219 if (last_block_offset > first_block_offset) {
4220 ret = ext4_update_disksize_before_punch(inode, offset, length);
4221 if (ret)
4222 goto out_dio;
4223 truncate_pagecache_range(inode, first_block_offset,
4224 last_block_offset);
4225 }
4226
4227 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4228 credits = ext4_writepage_trans_blocks(inode);
4229 else
4230 credits = ext4_blocks_for_truncate(inode);
4231 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4232 if (IS_ERR(handle)) {
4233 ret = PTR_ERR(handle);
4234 ext4_std_error(sb, ret);
4235 goto out_dio;
4236 }
4237
4238 ret = ext4_zero_partial_blocks(handle, inode, offset,
4239 length);
4240 if (ret)
4241 goto out_stop;
4242
4243 first_block = (offset + sb->s_blocksize - 1) >>
4244 EXT4_BLOCK_SIZE_BITS(sb);
4245 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4246
4247 /* If there are no blocks to remove, return now */
4248 if (first_block >= stop_block)
4249 goto out_stop;
4250
4251 down_write(&EXT4_I(inode)->i_data_sem);
4252 ext4_discard_preallocations(inode);
4253
4254 ret = ext4_es_remove_extent(inode, first_block,
4255 stop_block - first_block);
4256 if (ret) {
4257 up_write(&EXT4_I(inode)->i_data_sem);
4258 goto out_stop;
4259 }
4260
4261 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4262 ret = ext4_ext_remove_space(inode, first_block,
4263 stop_block - 1);
4264 else
4265 ret = ext4_ind_remove_space(handle, inode, first_block,
4266 stop_block);
4267
4268 up_write(&EXT4_I(inode)->i_data_sem);
4269 if (IS_SYNC(inode))
4270 ext4_handle_sync(handle);
4271
4272 inode->i_mtime = inode->i_ctime = current_time(inode);
4273 ext4_mark_inode_dirty(handle, inode);
4274 if (ret >= 0)
4275 ext4_update_inode_fsync_trans(handle, inode, 1);
4276 out_stop:
4277 ext4_journal_stop(handle);
4278 out_dio:
4279 up_write(&EXT4_I(inode)->i_mmap_sem);
4280 ext4_inode_resume_unlocked_dio(inode);
4281 out_mutex:
4282 inode_unlock(inode);
4283 return ret;
4284 }
4285
4286 int ext4_inode_attach_jinode(struct inode *inode)
4287 {
4288 struct ext4_inode_info *ei = EXT4_I(inode);
4289 struct jbd2_inode *jinode;
4290
4291 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4292 return 0;
4293
4294 jinode = jbd2_alloc_inode(GFP_KERNEL);
4295 spin_lock(&inode->i_lock);
4296 if (!ei->jinode) {
4297 if (!jinode) {
4298 spin_unlock(&inode->i_lock);
4299 return -ENOMEM;
4300 }
4301 ei->jinode = jinode;
4302 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4303 jinode = NULL;
4304 }
4305 spin_unlock(&inode->i_lock);
4306 if (unlikely(jinode != NULL))
4307 jbd2_free_inode(jinode);
4308 return 0;
4309 }
4310
4311 /*
4312 * ext4_truncate()
4313 *
4314 * We block out ext4_get_block() block instantiations across the entire
4315 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4316 * simultaneously on behalf of the same inode.
4317 *
4318 * As we work through the truncate and commit bits of it to the journal there
4319 * is one core, guiding principle: the file's tree must always be consistent on
4320 * disk. We must be able to restart the truncate after a crash.
4321 *
4322 * The file's tree may be transiently inconsistent in memory (although it
4323 * probably isn't), but whenever we close off and commit a journal transaction,
4324 * the contents of (the filesystem + the journal) must be consistent and
4325 * restartable. It's pretty simple, really: bottom up, right to left (although
4326 * left-to-right works OK too).
4327 *
4328 * Note that at recovery time, journal replay occurs *before* the restart of
4329 * truncate against the orphan inode list.
4330 *
4331 * The committed inode has the new, desired i_size (which is the same as
4332 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4333 * that this inode's truncate did not complete and it will again call
4334 * ext4_truncate() to have another go. So there will be instantiated blocks
4335 * to the right of the truncation point in a crashed ext4 filesystem. But
4336 * that's fine - as long as they are linked from the inode, the post-crash
4337 * ext4_truncate() run will find them and release them.
4338 */
4339 int ext4_truncate(struct inode *inode)
4340 {
4341 struct ext4_inode_info *ei = EXT4_I(inode);
4342 unsigned int credits;
4343 int err = 0;
4344 handle_t *handle;
4345 struct address_space *mapping = inode->i_mapping;
4346
4347 /*
4348 * There is a possibility that we're either freeing the inode
4349 * or it's a completely new inode. In those cases we might not
4350 * have i_mutex locked because it's not necessary.
4351 */
4352 if (!(inode->i_state & (I_NEW|I_FREEING)))
4353 WARN_ON(!inode_is_locked(inode));
4354 trace_ext4_truncate_enter(inode);
4355
4356 if (!ext4_can_truncate(inode))
4357 return 0;
4358
4359 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4360
4361 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4362 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4363
4364 if (ext4_has_inline_data(inode)) {
4365 int has_inline = 1;
4366
4367 err = ext4_inline_data_truncate(inode, &has_inline);
4368 if (err)
4369 return err;
4370 if (has_inline)
4371 return 0;
4372 }
4373
4374 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4375 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4376 if (ext4_inode_attach_jinode(inode) < 0)
4377 return 0;
4378 }
4379
4380 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4381 credits = ext4_writepage_trans_blocks(inode);
4382 else
4383 credits = ext4_blocks_for_truncate(inode);
4384
4385 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4386 if (IS_ERR(handle))
4387 return PTR_ERR(handle);
4388
4389 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4390 ext4_block_truncate_page(handle, mapping, inode->i_size);
4391
4392 /*
4393 * We add the inode to the orphan list, so that if this
4394 * truncate spans multiple transactions, and we crash, we will
4395 * resume the truncate when the filesystem recovers. It also
4396 * marks the inode dirty, to catch the new size.
4397 *
4398 * Implication: the file must always be in a sane, consistent
4399 * truncatable state while each transaction commits.
4400 */
4401 err = ext4_orphan_add(handle, inode);
4402 if (err)
4403 goto out_stop;
4404
4405 down_write(&EXT4_I(inode)->i_data_sem);
4406
4407 ext4_discard_preallocations(inode);
4408
4409 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4410 err = ext4_ext_truncate(handle, inode);
4411 else
4412 ext4_ind_truncate(handle, inode);
4413
4414 up_write(&ei->i_data_sem);
4415 if (err)
4416 goto out_stop;
4417
4418 if (IS_SYNC(inode))
4419 ext4_handle_sync(handle);
4420
4421 out_stop:
4422 /*
4423 * If this was a simple ftruncate() and the file will remain alive,
4424 * then we need to clear up the orphan record which we created above.
4425 * However, if this was a real unlink then we were called by
4426 * ext4_evict_inode(), and we allow that function to clean up the
4427 * orphan info for us.
4428 */
4429 if (inode->i_nlink)
4430 ext4_orphan_del(handle, inode);
4431
4432 inode->i_mtime = inode->i_ctime = current_time(inode);
4433 ext4_mark_inode_dirty(handle, inode);
4434 ext4_journal_stop(handle);
4435
4436 trace_ext4_truncate_exit(inode);
4437 return err;
4438 }
4439
4440 /*
4441 * ext4_get_inode_loc returns with an extra refcount against the inode's
4442 * underlying buffer_head on success. If 'in_mem' is true, we have all
4443 * data in memory that is needed to recreate the on-disk version of this
4444 * inode.
4445 */
4446 static int __ext4_get_inode_loc(struct inode *inode,
4447 struct ext4_iloc *iloc, int in_mem)
4448 {
4449 struct ext4_group_desc *gdp;
4450 struct buffer_head *bh;
4451 struct super_block *sb = inode->i_sb;
4452 ext4_fsblk_t block;
4453 int inodes_per_block, inode_offset;
4454
4455 iloc->bh = NULL;
4456 if (!ext4_valid_inum(sb, inode->i_ino))
4457 return -EFSCORRUPTED;
4458
4459 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4460 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4461 if (!gdp)
4462 return -EIO;
4463
4464 /*
4465 * Figure out the offset within the block group inode table
4466 */
4467 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4468 inode_offset = ((inode->i_ino - 1) %
4469 EXT4_INODES_PER_GROUP(sb));
4470 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4471 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4472
4473 bh = sb_getblk(sb, block);
4474 if (unlikely(!bh))
4475 return -ENOMEM;
4476 if (!buffer_uptodate(bh)) {
4477 lock_buffer(bh);
4478
4479 /*
4480 * If the buffer has the write error flag, we have failed
4481 * to write out another inode in the same block. In this
4482 * case, we don't have to read the block because we may
4483 * read the old inode data successfully.
4484 */
4485 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4486 set_buffer_uptodate(bh);
4487
4488 if (buffer_uptodate(bh)) {
4489 /* someone brought it uptodate while we waited */
4490 unlock_buffer(bh);
4491 goto has_buffer;
4492 }
4493
4494 /*
4495 * If we have all information of the inode in memory and this
4496 * is the only valid inode in the block, we need not read the
4497 * block.
4498 */
4499 if (in_mem) {
4500 struct buffer_head *bitmap_bh;
4501 int i, start;
4502
4503 start = inode_offset & ~(inodes_per_block - 1);
4504
4505 /* Is the inode bitmap in cache? */
4506 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4507 if (unlikely(!bitmap_bh))
4508 goto make_io;
4509
4510 /*
4511 * If the inode bitmap isn't in cache then the
4512 * optimisation may end up performing two reads instead
4513 * of one, so skip it.
4514 */
4515 if (!buffer_uptodate(bitmap_bh)) {
4516 brelse(bitmap_bh);
4517 goto make_io;
4518 }
4519 for (i = start; i < start + inodes_per_block; i++) {
4520 if (i == inode_offset)
4521 continue;
4522 if (ext4_test_bit(i, bitmap_bh->b_data))
4523 break;
4524 }
4525 brelse(bitmap_bh);
4526 if (i == start + inodes_per_block) {
4527 /* all other inodes are free, so skip I/O */
4528 memset(bh->b_data, 0, bh->b_size);
4529 set_buffer_uptodate(bh);
4530 unlock_buffer(bh);
4531 goto has_buffer;
4532 }
4533 }
4534
4535 make_io:
4536 /*
4537 * If we need to do any I/O, try to pre-readahead extra
4538 * blocks from the inode table.
4539 */
4540 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4541 ext4_fsblk_t b, end, table;
4542 unsigned num;
4543 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4544
4545 table = ext4_inode_table(sb, gdp);
4546 /* s_inode_readahead_blks is always a power of 2 */
4547 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4548 if (table > b)
4549 b = table;
4550 end = b + ra_blks;
4551 num = EXT4_INODES_PER_GROUP(sb);
4552 if (ext4_has_group_desc_csum(sb))
4553 num -= ext4_itable_unused_count(sb, gdp);
4554 table += num / inodes_per_block;
4555 if (end > table)
4556 end = table;
4557 while (b <= end)
4558 sb_breadahead(sb, b++);
4559 }
4560
4561 /*
4562 * There are other valid inodes in the buffer, this inode
4563 * has in-inode xattrs, or we don't have this inode in memory.
4564 * Read the block from disk.
4565 */
4566 trace_ext4_load_inode(inode);
4567 get_bh(bh);
4568 bh->b_end_io = end_buffer_read_sync;
4569 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4570 wait_on_buffer(bh);
4571 if (!buffer_uptodate(bh)) {
4572 EXT4_ERROR_INODE_BLOCK(inode, block,
4573 "unable to read itable block");
4574 brelse(bh);
4575 return -EIO;
4576 }
4577 }
4578 has_buffer:
4579 iloc->bh = bh;
4580 return 0;
4581 }
4582
4583 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4584 {
4585 /* We have all inode data except xattrs in memory here. */
4586 return __ext4_get_inode_loc(inode, iloc,
4587 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4588 }
4589
4590 void ext4_set_inode_flags(struct inode *inode)
4591 {
4592 unsigned int flags = EXT4_I(inode)->i_flags;
4593 unsigned int new_fl = 0;
4594
4595 if (flags & EXT4_SYNC_FL)
4596 new_fl |= S_SYNC;
4597 if (flags & EXT4_APPEND_FL)
4598 new_fl |= S_APPEND;
4599 if (flags & EXT4_IMMUTABLE_FL)
4600 new_fl |= S_IMMUTABLE;
4601 if (flags & EXT4_NOATIME_FL)
4602 new_fl |= S_NOATIME;
4603 if (flags & EXT4_DIRSYNC_FL)
4604 new_fl |= S_DIRSYNC;
4605 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4606 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4607 !ext4_encrypted_inode(inode))
4608 new_fl |= S_DAX;
4609 inode_set_flags(inode, new_fl,
4610 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4611 }
4612
4613 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4614 struct ext4_inode_info *ei)
4615 {
4616 blkcnt_t i_blocks ;
4617 struct inode *inode = &(ei->vfs_inode);
4618 struct super_block *sb = inode->i_sb;
4619
4620 if (ext4_has_feature_huge_file(sb)) {
4621 /* we are using combined 48 bit field */
4622 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4623 le32_to_cpu(raw_inode->i_blocks_lo);
4624 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4625 /* i_blocks represent file system block size */
4626 return i_blocks << (inode->i_blkbits - 9);
4627 } else {
4628 return i_blocks;
4629 }
4630 } else {
4631 return le32_to_cpu(raw_inode->i_blocks_lo);
4632 }
4633 }
4634
4635 static inline void ext4_iget_extra_inode(struct inode *inode,
4636 struct ext4_inode *raw_inode,
4637 struct ext4_inode_info *ei)
4638 {
4639 __le32 *magic = (void *)raw_inode +
4640 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4641 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4642 EXT4_INODE_SIZE(inode->i_sb) &&
4643 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4644 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4645 ext4_find_inline_data_nolock(inode);
4646 } else
4647 EXT4_I(inode)->i_inline_off = 0;
4648 }
4649
4650 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4651 {
4652 if (!ext4_has_feature_project(inode->i_sb))
4653 return -EOPNOTSUPP;
4654 *projid = EXT4_I(inode)->i_projid;
4655 return 0;
4656 }
4657
4658 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4659 {
4660 struct ext4_iloc iloc;
4661 struct ext4_inode *raw_inode;
4662 struct ext4_inode_info *ei;
4663 struct inode *inode;
4664 journal_t *journal = EXT4_SB(sb)->s_journal;
4665 long ret;
4666 loff_t size;
4667 int block;
4668 uid_t i_uid;
4669 gid_t i_gid;
4670 projid_t i_projid;
4671
4672 inode = iget_locked(sb, ino);
4673 if (!inode)
4674 return ERR_PTR(-ENOMEM);
4675 if (!(inode->i_state & I_NEW))
4676 return inode;
4677
4678 ei = EXT4_I(inode);
4679 iloc.bh = NULL;
4680
4681 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4682 if (ret < 0)
4683 goto bad_inode;
4684 raw_inode = ext4_raw_inode(&iloc);
4685
4686 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4687 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4688 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4689 EXT4_INODE_SIZE(inode->i_sb) ||
4690 (ei->i_extra_isize & 3)) {
4691 EXT4_ERROR_INODE(inode,
4692 "bad extra_isize %u (inode size %u)",
4693 ei->i_extra_isize,
4694 EXT4_INODE_SIZE(inode->i_sb));
4695 ret = -EFSCORRUPTED;
4696 goto bad_inode;
4697 }
4698 } else
4699 ei->i_extra_isize = 0;
4700
4701 /* Precompute checksum seed for inode metadata */
4702 if (ext4_has_metadata_csum(sb)) {
4703 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4704 __u32 csum;
4705 __le32 inum = cpu_to_le32(inode->i_ino);
4706 __le32 gen = raw_inode->i_generation;
4707 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4708 sizeof(inum));
4709 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4710 sizeof(gen));
4711 }
4712
4713 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4714 EXT4_ERROR_INODE(inode, "checksum invalid");
4715 ret = -EFSBADCRC;
4716 goto bad_inode;
4717 }
4718
4719 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4720 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4721 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4722 if (ext4_has_feature_project(sb) &&
4723 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4724 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4725 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4726 else
4727 i_projid = EXT4_DEF_PROJID;
4728
4729 if (!(test_opt(inode->i_sb, NO_UID32))) {
4730 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4731 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4732 }
4733 i_uid_write(inode, i_uid);
4734 i_gid_write(inode, i_gid);
4735 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4736 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4737
4738 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4739 ei->i_inline_off = 0;
4740 ei->i_dir_start_lookup = 0;
4741 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4742 /* We now have enough fields to check if the inode was active or not.
4743 * This is needed because nfsd might try to access dead inodes
4744 * the test is that same one that e2fsck uses
4745 * NeilBrown 1999oct15
4746 */
4747 if (inode->i_nlink == 0) {
4748 if ((inode->i_mode == 0 ||
4749 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4750 ino != EXT4_BOOT_LOADER_INO) {
4751 /* this inode is deleted */
4752 ret = -ESTALE;
4753 goto bad_inode;
4754 }
4755 /* The only unlinked inodes we let through here have
4756 * valid i_mode and are being read by the orphan
4757 * recovery code: that's fine, we're about to complete
4758 * the process of deleting those.
4759 * OR it is the EXT4_BOOT_LOADER_INO which is
4760 * not initialized on a new filesystem. */
4761 }
4762 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4763 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4764 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4765 if (ext4_has_feature_64bit(sb))
4766 ei->i_file_acl |=
4767 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4768 inode->i_size = ext4_isize(sb, raw_inode);
4769 if ((size = i_size_read(inode)) < 0) {
4770 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4771 ret = -EFSCORRUPTED;
4772 goto bad_inode;
4773 }
4774 ei->i_disksize = inode->i_size;
4775 #ifdef CONFIG_QUOTA
4776 ei->i_reserved_quota = 0;
4777 #endif
4778 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4779 ei->i_block_group = iloc.block_group;
4780 ei->i_last_alloc_group = ~0;
4781 /*
4782 * NOTE! The in-memory inode i_data array is in little-endian order
4783 * even on big-endian machines: we do NOT byteswap the block numbers!
4784 */
4785 for (block = 0; block < EXT4_N_BLOCKS; block++)
4786 ei->i_data[block] = raw_inode->i_block[block];
4787 INIT_LIST_HEAD(&ei->i_orphan);
4788
4789 /*
4790 * Set transaction id's of transactions that have to be committed
4791 * to finish f[data]sync. We set them to currently running transaction
4792 * as we cannot be sure that the inode or some of its metadata isn't
4793 * part of the transaction - the inode could have been reclaimed and
4794 * now it is reread from disk.
4795 */
4796 if (journal) {
4797 transaction_t *transaction;
4798 tid_t tid;
4799
4800 read_lock(&journal->j_state_lock);
4801 if (journal->j_running_transaction)
4802 transaction = journal->j_running_transaction;
4803 else
4804 transaction = journal->j_committing_transaction;
4805 if (transaction)
4806 tid = transaction->t_tid;
4807 else
4808 tid = journal->j_commit_sequence;
4809 read_unlock(&journal->j_state_lock);
4810 ei->i_sync_tid = tid;
4811 ei->i_datasync_tid = tid;
4812 }
4813
4814 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4815 if (ei->i_extra_isize == 0) {
4816 /* The extra space is currently unused. Use it. */
4817 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4818 ei->i_extra_isize = sizeof(struct ext4_inode) -
4819 EXT4_GOOD_OLD_INODE_SIZE;
4820 } else {
4821 ext4_iget_extra_inode(inode, raw_inode, ei);
4822 }
4823 }
4824
4825 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4826 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4827 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4828 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4829
4830 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4831 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4832 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4833 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4834 inode->i_version |=
4835 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4836 }
4837 }
4838
4839 ret = 0;
4840 if (ei->i_file_acl &&
4841 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4842 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4843 ei->i_file_acl);
4844 ret = -EFSCORRUPTED;
4845 goto bad_inode;
4846 } else if (!ext4_has_inline_data(inode)) {
4847 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4848 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4849 (S_ISLNK(inode->i_mode) &&
4850 !ext4_inode_is_fast_symlink(inode))))
4851 /* Validate extent which is part of inode */
4852 ret = ext4_ext_check_inode(inode);
4853 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4854 (S_ISLNK(inode->i_mode) &&
4855 !ext4_inode_is_fast_symlink(inode))) {
4856 /* Validate block references which are part of inode */
4857 ret = ext4_ind_check_inode(inode);
4858 }
4859 }
4860 if (ret)
4861 goto bad_inode;
4862
4863 if (S_ISREG(inode->i_mode)) {
4864 inode->i_op = &ext4_file_inode_operations;
4865 inode->i_fop = &ext4_file_operations;
4866 ext4_set_aops(inode);
4867 } else if (S_ISDIR(inode->i_mode)) {
4868 inode->i_op = &ext4_dir_inode_operations;
4869 inode->i_fop = &ext4_dir_operations;
4870 } else if (S_ISLNK(inode->i_mode)) {
4871 if (ext4_encrypted_inode(inode)) {
4872 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4873 ext4_set_aops(inode);
4874 } else if (ext4_inode_is_fast_symlink(inode)) {
4875 inode->i_link = (char *)ei->i_data;
4876 inode->i_op = &ext4_fast_symlink_inode_operations;
4877 nd_terminate_link(ei->i_data, inode->i_size,
4878 sizeof(ei->i_data) - 1);
4879 } else {
4880 inode->i_op = &ext4_symlink_inode_operations;
4881 ext4_set_aops(inode);
4882 }
4883 inode_nohighmem(inode);
4884 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4885 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4886 inode->i_op = &ext4_special_inode_operations;
4887 if (raw_inode->i_block[0])
4888 init_special_inode(inode, inode->i_mode,
4889 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4890 else
4891 init_special_inode(inode, inode->i_mode,
4892 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4893 } else if (ino == EXT4_BOOT_LOADER_INO) {
4894 make_bad_inode(inode);
4895 } else {
4896 ret = -EFSCORRUPTED;
4897 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4898 goto bad_inode;
4899 }
4900 brelse(iloc.bh);
4901 ext4_set_inode_flags(inode);
4902
4903 unlock_new_inode(inode);
4904 return inode;
4905
4906 bad_inode:
4907 brelse(iloc.bh);
4908 iget_failed(inode);
4909 return ERR_PTR(ret);
4910 }
4911
4912 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4913 {
4914 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4915 return ERR_PTR(-EFSCORRUPTED);
4916 return ext4_iget(sb, ino);
4917 }
4918
4919 static int ext4_inode_blocks_set(handle_t *handle,
4920 struct ext4_inode *raw_inode,
4921 struct ext4_inode_info *ei)
4922 {
4923 struct inode *inode = &(ei->vfs_inode);
4924 u64 i_blocks = inode->i_blocks;
4925 struct super_block *sb = inode->i_sb;
4926
4927 if (i_blocks <= ~0U) {
4928 /*
4929 * i_blocks can be represented in a 32 bit variable
4930 * as multiple of 512 bytes
4931 */
4932 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4933 raw_inode->i_blocks_high = 0;
4934 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4935 return 0;
4936 }
4937 if (!ext4_has_feature_huge_file(sb))
4938 return -EFBIG;
4939
4940 if (i_blocks <= 0xffffffffffffULL) {
4941 /*
4942 * i_blocks can be represented in a 48 bit variable
4943 * as multiple of 512 bytes
4944 */
4945 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4946 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4947 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4948 } else {
4949 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4950 /* i_block is stored in file system block size */
4951 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4952 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4953 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4954 }
4955 return 0;
4956 }
4957
4958 struct other_inode {
4959 unsigned long orig_ino;
4960 struct ext4_inode *raw_inode;
4961 };
4962
4963 static int other_inode_match(struct inode * inode, unsigned long ino,
4964 void *data)
4965 {
4966 struct other_inode *oi = (struct other_inode *) data;
4967
4968 if ((inode->i_ino != ino) ||
4969 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4970 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4971 ((inode->i_state & I_DIRTY_TIME) == 0))
4972 return 0;
4973 spin_lock(&inode->i_lock);
4974 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4975 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4976 (inode->i_state & I_DIRTY_TIME)) {
4977 struct ext4_inode_info *ei = EXT4_I(inode);
4978
4979 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4980 spin_unlock(&inode->i_lock);
4981
4982 spin_lock(&ei->i_raw_lock);
4983 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4984 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4985 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4986 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4987 spin_unlock(&ei->i_raw_lock);
4988 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4989 return -1;
4990 }
4991 spin_unlock(&inode->i_lock);
4992 return -1;
4993 }
4994
4995 /*
4996 * Opportunistically update the other time fields for other inodes in
4997 * the same inode table block.
4998 */
4999 static void ext4_update_other_inodes_time(struct super_block *sb,
5000 unsigned long orig_ino, char *buf)
5001 {
5002 struct other_inode oi;
5003 unsigned long ino;
5004 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5005 int inode_size = EXT4_INODE_SIZE(sb);
5006
5007 oi.orig_ino = orig_ino;
5008 /*
5009 * Calculate the first inode in the inode table block. Inode
5010 * numbers are one-based. That is, the first inode in a block
5011 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5012 */
5013 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5014 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5015 if (ino == orig_ino)
5016 continue;
5017 oi.raw_inode = (struct ext4_inode *) buf;
5018 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5019 }
5020 }
5021
5022 /*
5023 * Post the struct inode info into an on-disk inode location in the
5024 * buffer-cache. This gobbles the caller's reference to the
5025 * buffer_head in the inode location struct.
5026 *
5027 * The caller must have write access to iloc->bh.
5028 */
5029 static int ext4_do_update_inode(handle_t *handle,
5030 struct inode *inode,
5031 struct ext4_iloc *iloc)
5032 {
5033 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5034 struct ext4_inode_info *ei = EXT4_I(inode);
5035 struct buffer_head *bh = iloc->bh;
5036 struct super_block *sb = inode->i_sb;
5037 int err = 0, rc, block;
5038 int need_datasync = 0, set_large_file = 0;
5039 uid_t i_uid;
5040 gid_t i_gid;
5041 projid_t i_projid;
5042
5043 spin_lock(&ei->i_raw_lock);
5044
5045 /* For fields not tracked in the in-memory inode,
5046 * initialise them to zero for new inodes. */
5047 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5048 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5049
5050 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5051 i_uid = i_uid_read(inode);
5052 i_gid = i_gid_read(inode);
5053 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5054 if (!(test_opt(inode->i_sb, NO_UID32))) {
5055 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5056 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5057 /*
5058 * Fix up interoperability with old kernels. Otherwise, old inodes get
5059 * re-used with the upper 16 bits of the uid/gid intact
5060 */
5061 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5062 raw_inode->i_uid_high = 0;
5063 raw_inode->i_gid_high = 0;
5064 } else {
5065 raw_inode->i_uid_high =
5066 cpu_to_le16(high_16_bits(i_uid));
5067 raw_inode->i_gid_high =
5068 cpu_to_le16(high_16_bits(i_gid));
5069 }
5070 } else {
5071 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5072 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5073 raw_inode->i_uid_high = 0;
5074 raw_inode->i_gid_high = 0;
5075 }
5076 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5077
5078 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5079 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5080 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5081 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5082
5083 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5084 if (err) {
5085 spin_unlock(&ei->i_raw_lock);
5086 goto out_brelse;
5087 }
5088 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5089 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5090 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5091 raw_inode->i_file_acl_high =
5092 cpu_to_le16(ei->i_file_acl >> 32);
5093 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5094 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5095 ext4_isize_set(raw_inode, ei->i_disksize);
5096 need_datasync = 1;
5097 }
5098 if (ei->i_disksize > 0x7fffffffULL) {
5099 if (!ext4_has_feature_large_file(sb) ||
5100 EXT4_SB(sb)->s_es->s_rev_level ==
5101 cpu_to_le32(EXT4_GOOD_OLD_REV))
5102 set_large_file = 1;
5103 }
5104 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5105 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5106 if (old_valid_dev(inode->i_rdev)) {
5107 raw_inode->i_block[0] =
5108 cpu_to_le32(old_encode_dev(inode->i_rdev));
5109 raw_inode->i_block[1] = 0;
5110 } else {
5111 raw_inode->i_block[0] = 0;
5112 raw_inode->i_block[1] =
5113 cpu_to_le32(new_encode_dev(inode->i_rdev));
5114 raw_inode->i_block[2] = 0;
5115 }
5116 } else if (!ext4_has_inline_data(inode)) {
5117 for (block = 0; block < EXT4_N_BLOCKS; block++)
5118 raw_inode->i_block[block] = ei->i_data[block];
5119 }
5120
5121 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5122 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5123 if (ei->i_extra_isize) {
5124 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5125 raw_inode->i_version_hi =
5126 cpu_to_le32(inode->i_version >> 32);
5127 raw_inode->i_extra_isize =
5128 cpu_to_le16(ei->i_extra_isize);
5129 }
5130 }
5131
5132 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5133 i_projid != EXT4_DEF_PROJID);
5134
5135 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5136 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5137 raw_inode->i_projid = cpu_to_le32(i_projid);
5138
5139 ext4_inode_csum_set(inode, raw_inode, ei);
5140 spin_unlock(&ei->i_raw_lock);
5141 if (inode->i_sb->s_flags & MS_LAZYTIME)
5142 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5143 bh->b_data);
5144
5145 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5146 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5147 if (!err)
5148 err = rc;
5149 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5150 if (set_large_file) {
5151 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5152 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5153 if (err)
5154 goto out_brelse;
5155 ext4_update_dynamic_rev(sb);
5156 ext4_set_feature_large_file(sb);
5157 ext4_handle_sync(handle);
5158 err = ext4_handle_dirty_super(handle, sb);
5159 }
5160 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5161 out_brelse:
5162 brelse(bh);
5163 ext4_std_error(inode->i_sb, err);
5164 return err;
5165 }
5166
5167 /*
5168 * ext4_write_inode()
5169 *
5170 * We are called from a few places:
5171 *
5172 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5173 * Here, there will be no transaction running. We wait for any running
5174 * transaction to commit.
5175 *
5176 * - Within flush work (sys_sync(), kupdate and such).
5177 * We wait on commit, if told to.
5178 *
5179 * - Within iput_final() -> write_inode_now()
5180 * We wait on commit, if told to.
5181 *
5182 * In all cases it is actually safe for us to return without doing anything,
5183 * because the inode has been copied into a raw inode buffer in
5184 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5185 * writeback.
5186 *
5187 * Note that we are absolutely dependent upon all inode dirtiers doing the
5188 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5189 * which we are interested.
5190 *
5191 * It would be a bug for them to not do this. The code:
5192 *
5193 * mark_inode_dirty(inode)
5194 * stuff();
5195 * inode->i_size = expr;
5196 *
5197 * is in error because write_inode() could occur while `stuff()' is running,
5198 * and the new i_size will be lost. Plus the inode will no longer be on the
5199 * superblock's dirty inode list.
5200 */
5201 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5202 {
5203 int err;
5204
5205 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5206 return 0;
5207
5208 if (EXT4_SB(inode->i_sb)->s_journal) {
5209 if (ext4_journal_current_handle()) {
5210 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5211 dump_stack();
5212 return -EIO;
5213 }
5214
5215 /*
5216 * No need to force transaction in WB_SYNC_NONE mode. Also
5217 * ext4_sync_fs() will force the commit after everything is
5218 * written.
5219 */
5220 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5221 return 0;
5222
5223 err = ext4_force_commit(inode->i_sb);
5224 } else {
5225 struct ext4_iloc iloc;
5226
5227 err = __ext4_get_inode_loc(inode, &iloc, 0);
5228 if (err)
5229 return err;
5230 /*
5231 * sync(2) will flush the whole buffer cache. No need to do
5232 * it here separately for each inode.
5233 */
5234 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5235 sync_dirty_buffer(iloc.bh);
5236 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5237 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5238 "IO error syncing inode");
5239 err = -EIO;
5240 }
5241 brelse(iloc.bh);
5242 }
5243 return err;
5244 }
5245
5246 /*
5247 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5248 * buffers that are attached to a page stradding i_size and are undergoing
5249 * commit. In that case we have to wait for commit to finish and try again.
5250 */
5251 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5252 {
5253 struct page *page;
5254 unsigned offset;
5255 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5256 tid_t commit_tid = 0;
5257 int ret;
5258
5259 offset = inode->i_size & (PAGE_SIZE - 1);
5260 /*
5261 * All buffers in the last page remain valid? Then there's nothing to
5262 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5263 * blocksize case
5264 */
5265 if (offset > PAGE_SIZE - i_blocksize(inode))
5266 return;
5267 while (1) {
5268 page = find_lock_page(inode->i_mapping,
5269 inode->i_size >> PAGE_SHIFT);
5270 if (!page)
5271 return;
5272 ret = __ext4_journalled_invalidatepage(page, offset,
5273 PAGE_SIZE - offset);
5274 unlock_page(page);
5275 put_page(page);
5276 if (ret != -EBUSY)
5277 return;
5278 commit_tid = 0;
5279 read_lock(&journal->j_state_lock);
5280 if (journal->j_committing_transaction)
5281 commit_tid = journal->j_committing_transaction->t_tid;
5282 read_unlock(&journal->j_state_lock);
5283 if (commit_tid)
5284 jbd2_log_wait_commit(journal, commit_tid);
5285 }
5286 }
5287
5288 /*
5289 * ext4_setattr()
5290 *
5291 * Called from notify_change.
5292 *
5293 * We want to trap VFS attempts to truncate the file as soon as
5294 * possible. In particular, we want to make sure that when the VFS
5295 * shrinks i_size, we put the inode on the orphan list and modify
5296 * i_disksize immediately, so that during the subsequent flushing of
5297 * dirty pages and freeing of disk blocks, we can guarantee that any
5298 * commit will leave the blocks being flushed in an unused state on
5299 * disk. (On recovery, the inode will get truncated and the blocks will
5300 * be freed, so we have a strong guarantee that no future commit will
5301 * leave these blocks visible to the user.)
5302 *
5303 * Another thing we have to assure is that if we are in ordered mode
5304 * and inode is still attached to the committing transaction, we must
5305 * we start writeout of all the dirty pages which are being truncated.
5306 * This way we are sure that all the data written in the previous
5307 * transaction are already on disk (truncate waits for pages under
5308 * writeback).
5309 *
5310 * Called with inode->i_mutex down.
5311 */
5312 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5313 {
5314 struct inode *inode = d_inode(dentry);
5315 int error, rc = 0;
5316 int orphan = 0;
5317 const unsigned int ia_valid = attr->ia_valid;
5318
5319 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5320 return -EIO;
5321
5322 error = setattr_prepare(dentry, attr);
5323 if (error)
5324 return error;
5325
5326 if (is_quota_modification(inode, attr)) {
5327 error = dquot_initialize(inode);
5328 if (error)
5329 return error;
5330 }
5331 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5332 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5333 handle_t *handle;
5334
5335 /* (user+group)*(old+new) structure, inode write (sb,
5336 * inode block, ? - but truncate inode update has it) */
5337 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5338 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5339 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5340 if (IS_ERR(handle)) {
5341 error = PTR_ERR(handle);
5342 goto err_out;
5343 }
5344
5345 /* dquot_transfer() calls back ext4_get_inode_usage() which
5346 * counts xattr inode references.
5347 */
5348 down_read(&EXT4_I(inode)->xattr_sem);
5349 error = dquot_transfer(inode, attr);
5350 up_read(&EXT4_I(inode)->xattr_sem);
5351
5352 if (error) {
5353 ext4_journal_stop(handle);
5354 return error;
5355 }
5356 /* Update corresponding info in inode so that everything is in
5357 * one transaction */
5358 if (attr->ia_valid & ATTR_UID)
5359 inode->i_uid = attr->ia_uid;
5360 if (attr->ia_valid & ATTR_GID)
5361 inode->i_gid = attr->ia_gid;
5362 error = ext4_mark_inode_dirty(handle, inode);
5363 ext4_journal_stop(handle);
5364 }
5365
5366 if (attr->ia_valid & ATTR_SIZE) {
5367 handle_t *handle;
5368 loff_t oldsize = inode->i_size;
5369 int shrink = (attr->ia_size <= inode->i_size);
5370
5371 if (ext4_encrypted_inode(inode)) {
5372 error = fscrypt_get_encryption_info(inode);
5373 if (error)
5374 return error;
5375 if (!fscrypt_has_encryption_key(inode))
5376 return -ENOKEY;
5377 }
5378
5379 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5380 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5381
5382 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5383 return -EFBIG;
5384 }
5385 if (!S_ISREG(inode->i_mode))
5386 return -EINVAL;
5387
5388 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5389 inode_inc_iversion(inode);
5390
5391 if (ext4_should_order_data(inode) &&
5392 (attr->ia_size < inode->i_size)) {
5393 error = ext4_begin_ordered_truncate(inode,
5394 attr->ia_size);
5395 if (error)
5396 goto err_out;
5397 }
5398 if (attr->ia_size != inode->i_size) {
5399 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5400 if (IS_ERR(handle)) {
5401 error = PTR_ERR(handle);
5402 goto err_out;
5403 }
5404 if (ext4_handle_valid(handle) && shrink) {
5405 error = ext4_orphan_add(handle, inode);
5406 orphan = 1;
5407 }
5408 /*
5409 * Update c/mtime on truncate up, ext4_truncate() will
5410 * update c/mtime in shrink case below
5411 */
5412 if (!shrink) {
5413 inode->i_mtime = current_time(inode);
5414 inode->i_ctime = inode->i_mtime;
5415 }
5416 down_write(&EXT4_I(inode)->i_data_sem);
5417 EXT4_I(inode)->i_disksize = attr->ia_size;
5418 rc = ext4_mark_inode_dirty(handle, inode);
5419 if (!error)
5420 error = rc;
5421 /*
5422 * We have to update i_size under i_data_sem together
5423 * with i_disksize to avoid races with writeback code
5424 * running ext4_wb_update_i_disksize().
5425 */
5426 if (!error)
5427 i_size_write(inode, attr->ia_size);
5428 up_write(&EXT4_I(inode)->i_data_sem);
5429 ext4_journal_stop(handle);
5430 if (error) {
5431 if (orphan)
5432 ext4_orphan_del(NULL, inode);
5433 goto err_out;
5434 }
5435 }
5436 if (!shrink)
5437 pagecache_isize_extended(inode, oldsize, inode->i_size);
5438
5439 /*
5440 * Blocks are going to be removed from the inode. Wait
5441 * for dio in flight. Temporarily disable
5442 * dioread_nolock to prevent livelock.
5443 */
5444 if (orphan) {
5445 if (!ext4_should_journal_data(inode)) {
5446 ext4_inode_block_unlocked_dio(inode);
5447 inode_dio_wait(inode);
5448 ext4_inode_resume_unlocked_dio(inode);
5449 } else
5450 ext4_wait_for_tail_page_commit(inode);
5451 }
5452 down_write(&EXT4_I(inode)->i_mmap_sem);
5453 /*
5454 * Truncate pagecache after we've waited for commit
5455 * in data=journal mode to make pages freeable.
5456 */
5457 truncate_pagecache(inode, inode->i_size);
5458 if (shrink) {
5459 rc = ext4_truncate(inode);
5460 if (rc)
5461 error = rc;
5462 }
5463 up_write(&EXT4_I(inode)->i_mmap_sem);
5464 }
5465
5466 if (!error) {
5467 setattr_copy(inode, attr);
5468 mark_inode_dirty(inode);
5469 }
5470
5471 /*
5472 * If the call to ext4_truncate failed to get a transaction handle at
5473 * all, we need to clean up the in-core orphan list manually.
5474 */
5475 if (orphan && inode->i_nlink)
5476 ext4_orphan_del(NULL, inode);
5477
5478 if (!error && (ia_valid & ATTR_MODE))
5479 rc = posix_acl_chmod(inode, inode->i_mode);
5480
5481 err_out:
5482 ext4_std_error(inode->i_sb, error);
5483 if (!error)
5484 error = rc;
5485 return error;
5486 }
5487
5488 int ext4_getattr(const struct path *path, struct kstat *stat,
5489 u32 request_mask, unsigned int query_flags)
5490 {
5491 struct inode *inode = d_inode(path->dentry);
5492 struct ext4_inode *raw_inode;
5493 struct ext4_inode_info *ei = EXT4_I(inode);
5494 unsigned int flags;
5495
5496 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5497 stat->result_mask |= STATX_BTIME;
5498 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5499 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5500 }
5501
5502 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5503 if (flags & EXT4_APPEND_FL)
5504 stat->attributes |= STATX_ATTR_APPEND;
5505 if (flags & EXT4_COMPR_FL)
5506 stat->attributes |= STATX_ATTR_COMPRESSED;
5507 if (flags & EXT4_ENCRYPT_FL)
5508 stat->attributes |= STATX_ATTR_ENCRYPTED;
5509 if (flags & EXT4_IMMUTABLE_FL)
5510 stat->attributes |= STATX_ATTR_IMMUTABLE;
5511 if (flags & EXT4_NODUMP_FL)
5512 stat->attributes |= STATX_ATTR_NODUMP;
5513
5514 stat->attributes_mask |= (STATX_ATTR_APPEND |
5515 STATX_ATTR_COMPRESSED |
5516 STATX_ATTR_ENCRYPTED |
5517 STATX_ATTR_IMMUTABLE |
5518 STATX_ATTR_NODUMP);
5519
5520 generic_fillattr(inode, stat);
5521 return 0;
5522 }
5523
5524 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5525 u32 request_mask, unsigned int query_flags)
5526 {
5527 struct inode *inode = d_inode(path->dentry);
5528 u64 delalloc_blocks;
5529
5530 ext4_getattr(path, stat, request_mask, query_flags);
5531
5532 /*
5533 * If there is inline data in the inode, the inode will normally not
5534 * have data blocks allocated (it may have an external xattr block).
5535 * Report at least one sector for such files, so tools like tar, rsync,
5536 * others don't incorrectly think the file is completely sparse.
5537 */
5538 if (unlikely(ext4_has_inline_data(inode)))
5539 stat->blocks += (stat->size + 511) >> 9;
5540
5541 /*
5542 * We can't update i_blocks if the block allocation is delayed
5543 * otherwise in the case of system crash before the real block
5544 * allocation is done, we will have i_blocks inconsistent with
5545 * on-disk file blocks.
5546 * We always keep i_blocks updated together with real
5547 * allocation. But to not confuse with user, stat
5548 * will return the blocks that include the delayed allocation
5549 * blocks for this file.
5550 */
5551 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5552 EXT4_I(inode)->i_reserved_data_blocks);
5553 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5554 return 0;
5555 }
5556
5557 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5558 int pextents)
5559 {
5560 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5561 return ext4_ind_trans_blocks(inode, lblocks);
5562 return ext4_ext_index_trans_blocks(inode, pextents);
5563 }
5564
5565 /*
5566 * Account for index blocks, block groups bitmaps and block group
5567 * descriptor blocks if modify datablocks and index blocks
5568 * worse case, the indexs blocks spread over different block groups
5569 *
5570 * If datablocks are discontiguous, they are possible to spread over
5571 * different block groups too. If they are contiguous, with flexbg,
5572 * they could still across block group boundary.
5573 *
5574 * Also account for superblock, inode, quota and xattr blocks
5575 */
5576 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5577 int pextents)
5578 {
5579 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5580 int gdpblocks;
5581 int idxblocks;
5582 int ret = 0;
5583
5584 /*
5585 * How many index blocks need to touch to map @lblocks logical blocks
5586 * to @pextents physical extents?
5587 */
5588 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5589
5590 ret = idxblocks;
5591
5592 /*
5593 * Now let's see how many group bitmaps and group descriptors need
5594 * to account
5595 */
5596 groups = idxblocks + pextents;
5597 gdpblocks = groups;
5598 if (groups > ngroups)
5599 groups = ngroups;
5600 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5601 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5602
5603 /* bitmaps and block group descriptor blocks */
5604 ret += groups + gdpblocks;
5605
5606 /* Blocks for super block, inode, quota and xattr blocks */
5607 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5608
5609 return ret;
5610 }
5611
5612 /*
5613 * Calculate the total number of credits to reserve to fit
5614 * the modification of a single pages into a single transaction,
5615 * which may include multiple chunks of block allocations.
5616 *
5617 * This could be called via ext4_write_begin()
5618 *
5619 * We need to consider the worse case, when
5620 * one new block per extent.
5621 */
5622 int ext4_writepage_trans_blocks(struct inode *inode)
5623 {
5624 int bpp = ext4_journal_blocks_per_page(inode);
5625 int ret;
5626
5627 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5628
5629 /* Account for data blocks for journalled mode */
5630 if (ext4_should_journal_data(inode))
5631 ret += bpp;
5632 return ret;
5633 }
5634
5635 /*
5636 * Calculate the journal credits for a chunk of data modification.
5637 *
5638 * This is called from DIO, fallocate or whoever calling
5639 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5640 *
5641 * journal buffers for data blocks are not included here, as DIO
5642 * and fallocate do no need to journal data buffers.
5643 */
5644 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5645 {
5646 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5647 }
5648
5649 /*
5650 * The caller must have previously called ext4_reserve_inode_write().
5651 * Give this, we know that the caller already has write access to iloc->bh.
5652 */
5653 int ext4_mark_iloc_dirty(handle_t *handle,
5654 struct inode *inode, struct ext4_iloc *iloc)
5655 {
5656 int err = 0;
5657
5658 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5659 return -EIO;
5660
5661 if (IS_I_VERSION(inode))
5662 inode_inc_iversion(inode);
5663
5664 /* the do_update_inode consumes one bh->b_count */
5665 get_bh(iloc->bh);
5666
5667 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5668 err = ext4_do_update_inode(handle, inode, iloc);
5669 put_bh(iloc->bh);
5670 return err;
5671 }
5672
5673 /*
5674 * On success, We end up with an outstanding reference count against
5675 * iloc->bh. This _must_ be cleaned up later.
5676 */
5677
5678 int
5679 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5680 struct ext4_iloc *iloc)
5681 {
5682 int err;
5683
5684 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5685 return -EIO;
5686
5687 err = ext4_get_inode_loc(inode, iloc);
5688 if (!err) {
5689 BUFFER_TRACE(iloc->bh, "get_write_access");
5690 err = ext4_journal_get_write_access(handle, iloc->bh);
5691 if (err) {
5692 brelse(iloc->bh);
5693 iloc->bh = NULL;
5694 }
5695 }
5696 ext4_std_error(inode->i_sb, err);
5697 return err;
5698 }
5699
5700 static int __ext4_expand_extra_isize(struct inode *inode,
5701 unsigned int new_extra_isize,
5702 struct ext4_iloc *iloc,
5703 handle_t *handle, int *no_expand)
5704 {
5705 struct ext4_inode *raw_inode;
5706 struct ext4_xattr_ibody_header *header;
5707 int error;
5708
5709 raw_inode = ext4_raw_inode(iloc);
5710
5711 header = IHDR(inode, raw_inode);
5712
5713 /* No extended attributes present */
5714 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5715 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5716 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5717 EXT4_I(inode)->i_extra_isize, 0,
5718 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5719 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5720 return 0;
5721 }
5722
5723 /* try to expand with EAs present */
5724 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5725 raw_inode, handle);
5726 if (error) {
5727 /*
5728 * Inode size expansion failed; don't try again
5729 */
5730 *no_expand = 1;
5731 }
5732
5733 return error;
5734 }
5735
5736 /*
5737 * Expand an inode by new_extra_isize bytes.
5738 * Returns 0 on success or negative error number on failure.
5739 */
5740 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5741 unsigned int new_extra_isize,
5742 struct ext4_iloc iloc,
5743 handle_t *handle)
5744 {
5745 int no_expand;
5746 int error;
5747
5748 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5749 return -EOVERFLOW;
5750
5751 /*
5752 * In nojournal mode, we can immediately attempt to expand
5753 * the inode. When journaled, we first need to obtain extra
5754 * buffer credits since we may write into the EA block
5755 * with this same handle. If journal_extend fails, then it will
5756 * only result in a minor loss of functionality for that inode.
5757 * If this is felt to be critical, then e2fsck should be run to
5758 * force a large enough s_min_extra_isize.
5759 */
5760 if (ext4_handle_valid(handle) &&
5761 jbd2_journal_extend(handle,
5762 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5763 return -ENOSPC;
5764
5765 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5766 return -EBUSY;
5767
5768 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5769 handle, &no_expand);
5770 ext4_write_unlock_xattr(inode, &no_expand);
5771
5772 return error;
5773 }
5774
5775 int ext4_expand_extra_isize(struct inode *inode,
5776 unsigned int new_extra_isize,
5777 struct ext4_iloc *iloc)
5778 {
5779 handle_t *handle;
5780 int no_expand;
5781 int error, rc;
5782
5783 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5784 brelse(iloc->bh);
5785 return -EOVERFLOW;
5786 }
5787
5788 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5789 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5790 if (IS_ERR(handle)) {
5791 error = PTR_ERR(handle);
5792 brelse(iloc->bh);
5793 return error;
5794 }
5795
5796 ext4_write_lock_xattr(inode, &no_expand);
5797
5798 BUFFER_TRACE(iloc.bh, "get_write_access");
5799 error = ext4_journal_get_write_access(handle, iloc->bh);
5800 if (error) {
5801 brelse(iloc->bh);
5802 goto out_stop;
5803 }
5804
5805 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5806 handle, &no_expand);
5807
5808 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5809 if (!error)
5810 error = rc;
5811
5812 ext4_write_unlock_xattr(inode, &no_expand);
5813 out_stop:
5814 ext4_journal_stop(handle);
5815 return error;
5816 }
5817
5818 /*
5819 * What we do here is to mark the in-core inode as clean with respect to inode
5820 * dirtiness (it may still be data-dirty).
5821 * This means that the in-core inode may be reaped by prune_icache
5822 * without having to perform any I/O. This is a very good thing,
5823 * because *any* task may call prune_icache - even ones which
5824 * have a transaction open against a different journal.
5825 *
5826 * Is this cheating? Not really. Sure, we haven't written the
5827 * inode out, but prune_icache isn't a user-visible syncing function.
5828 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5829 * we start and wait on commits.
5830 */
5831 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5832 {
5833 struct ext4_iloc iloc;
5834 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5835 int err;
5836
5837 might_sleep();
5838 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5839 err = ext4_reserve_inode_write(handle, inode, &iloc);
5840 if (err)
5841 return err;
5842
5843 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5844 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5845 iloc, handle);
5846
5847 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5848 }
5849
5850 /*
5851 * ext4_dirty_inode() is called from __mark_inode_dirty()
5852 *
5853 * We're really interested in the case where a file is being extended.
5854 * i_size has been changed by generic_commit_write() and we thus need
5855 * to include the updated inode in the current transaction.
5856 *
5857 * Also, dquot_alloc_block() will always dirty the inode when blocks
5858 * are allocated to the file.
5859 *
5860 * If the inode is marked synchronous, we don't honour that here - doing
5861 * so would cause a commit on atime updates, which we don't bother doing.
5862 * We handle synchronous inodes at the highest possible level.
5863 *
5864 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5865 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5866 * to copy into the on-disk inode structure are the timestamp files.
5867 */
5868 void ext4_dirty_inode(struct inode *inode, int flags)
5869 {
5870 handle_t *handle;
5871
5872 if (flags == I_DIRTY_TIME)
5873 return;
5874 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5875 if (IS_ERR(handle))
5876 goto out;
5877
5878 ext4_mark_inode_dirty(handle, inode);
5879
5880 ext4_journal_stop(handle);
5881 out:
5882 return;
5883 }
5884
5885 #if 0
5886 /*
5887 * Bind an inode's backing buffer_head into this transaction, to prevent
5888 * it from being flushed to disk early. Unlike
5889 * ext4_reserve_inode_write, this leaves behind no bh reference and
5890 * returns no iloc structure, so the caller needs to repeat the iloc
5891 * lookup to mark the inode dirty later.
5892 */
5893 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5894 {
5895 struct ext4_iloc iloc;
5896
5897 int err = 0;
5898 if (handle) {
5899 err = ext4_get_inode_loc(inode, &iloc);
5900 if (!err) {
5901 BUFFER_TRACE(iloc.bh, "get_write_access");
5902 err = jbd2_journal_get_write_access(handle, iloc.bh);
5903 if (!err)
5904 err = ext4_handle_dirty_metadata(handle,
5905 NULL,
5906 iloc.bh);
5907 brelse(iloc.bh);
5908 }
5909 }
5910 ext4_std_error(inode->i_sb, err);
5911 return err;
5912 }
5913 #endif
5914
5915 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5916 {
5917 journal_t *journal;
5918 handle_t *handle;
5919 int err;
5920 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5921
5922 /*
5923 * We have to be very careful here: changing a data block's
5924 * journaling status dynamically is dangerous. If we write a
5925 * data block to the journal, change the status and then delete
5926 * that block, we risk forgetting to revoke the old log record
5927 * from the journal and so a subsequent replay can corrupt data.
5928 * So, first we make sure that the journal is empty and that
5929 * nobody is changing anything.
5930 */
5931
5932 journal = EXT4_JOURNAL(inode);
5933 if (!journal)
5934 return 0;
5935 if (is_journal_aborted(journal))
5936 return -EROFS;
5937
5938 /* Wait for all existing dio workers */
5939 ext4_inode_block_unlocked_dio(inode);
5940 inode_dio_wait(inode);
5941
5942 /*
5943 * Before flushing the journal and switching inode's aops, we have
5944 * to flush all dirty data the inode has. There can be outstanding
5945 * delayed allocations, there can be unwritten extents created by
5946 * fallocate or buffered writes in dioread_nolock mode covered by
5947 * dirty data which can be converted only after flushing the dirty
5948 * data (and journalled aops don't know how to handle these cases).
5949 */
5950 if (val) {
5951 down_write(&EXT4_I(inode)->i_mmap_sem);
5952 err = filemap_write_and_wait(inode->i_mapping);
5953 if (err < 0) {
5954 up_write(&EXT4_I(inode)->i_mmap_sem);
5955 ext4_inode_resume_unlocked_dio(inode);
5956 return err;
5957 }
5958 }
5959
5960 percpu_down_write(&sbi->s_journal_flag_rwsem);
5961 jbd2_journal_lock_updates(journal);
5962
5963 /*
5964 * OK, there are no updates running now, and all cached data is
5965 * synced to disk. We are now in a completely consistent state
5966 * which doesn't have anything in the journal, and we know that
5967 * no filesystem updates are running, so it is safe to modify
5968 * the inode's in-core data-journaling state flag now.
5969 */
5970
5971 if (val)
5972 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5973 else {
5974 err = jbd2_journal_flush(journal);
5975 if (err < 0) {
5976 jbd2_journal_unlock_updates(journal);
5977 percpu_up_write(&sbi->s_journal_flag_rwsem);
5978 ext4_inode_resume_unlocked_dio(inode);
5979 return err;
5980 }
5981 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5982 }
5983 ext4_set_aops(inode);
5984 /*
5985 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5986 * E.g. S_DAX may get cleared / set.
5987 */
5988 ext4_set_inode_flags(inode);
5989
5990 jbd2_journal_unlock_updates(journal);
5991 percpu_up_write(&sbi->s_journal_flag_rwsem);
5992
5993 if (val)
5994 up_write(&EXT4_I(inode)->i_mmap_sem);
5995 ext4_inode_resume_unlocked_dio(inode);
5996
5997 /* Finally we can mark the inode as dirty. */
5998
5999 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6000 if (IS_ERR(handle))
6001 return PTR_ERR(handle);
6002
6003 err = ext4_mark_inode_dirty(handle, inode);
6004 ext4_handle_sync(handle);
6005 ext4_journal_stop(handle);
6006 ext4_std_error(inode->i_sb, err);
6007
6008 return err;
6009 }
6010
6011 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6012 {
6013 return !buffer_mapped(bh);
6014 }
6015
6016 int ext4_page_mkwrite(struct vm_fault *vmf)
6017 {
6018 struct vm_area_struct *vma = vmf->vma;
6019 struct page *page = vmf->page;
6020 loff_t size;
6021 unsigned long len;
6022 int ret;
6023 struct file *file = vma->vm_file;
6024 struct inode *inode = file_inode(file);
6025 struct address_space *mapping = inode->i_mapping;
6026 handle_t *handle;
6027 get_block_t *get_block;
6028 int retries = 0;
6029
6030 sb_start_pagefault(inode->i_sb);
6031 file_update_time(vma->vm_file);
6032
6033 down_read(&EXT4_I(inode)->i_mmap_sem);
6034
6035 ret = ext4_convert_inline_data(inode);
6036 if (ret)
6037 goto out_ret;
6038
6039 /* Delalloc case is easy... */
6040 if (test_opt(inode->i_sb, DELALLOC) &&
6041 !ext4_should_journal_data(inode) &&
6042 !ext4_nonda_switch(inode->i_sb)) {
6043 do {
6044 ret = block_page_mkwrite(vma, vmf,
6045 ext4_da_get_block_prep);
6046 } while (ret == -ENOSPC &&
6047 ext4_should_retry_alloc(inode->i_sb, &retries));
6048 goto out_ret;
6049 }
6050
6051 lock_page(page);
6052 size = i_size_read(inode);
6053 /* Page got truncated from under us? */
6054 if (page->mapping != mapping || page_offset(page) > size) {
6055 unlock_page(page);
6056 ret = VM_FAULT_NOPAGE;
6057 goto out;
6058 }
6059
6060 if (page->index == size >> PAGE_SHIFT)
6061 len = size & ~PAGE_MASK;
6062 else
6063 len = PAGE_SIZE;
6064 /*
6065 * Return if we have all the buffers mapped. This avoids the need to do
6066 * journal_start/journal_stop which can block and take a long time
6067 */
6068 if (page_has_buffers(page)) {
6069 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6070 0, len, NULL,
6071 ext4_bh_unmapped)) {
6072 /* Wait so that we don't change page under IO */
6073 wait_for_stable_page(page);
6074 ret = VM_FAULT_LOCKED;
6075 goto out;
6076 }
6077 }
6078 unlock_page(page);
6079 /* OK, we need to fill the hole... */
6080 if (ext4_should_dioread_nolock(inode))
6081 get_block = ext4_get_block_unwritten;
6082 else
6083 get_block = ext4_get_block;
6084 retry_alloc:
6085 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6086 ext4_writepage_trans_blocks(inode));
6087 if (IS_ERR(handle)) {
6088 ret = VM_FAULT_SIGBUS;
6089 goto out;
6090 }
6091 ret = block_page_mkwrite(vma, vmf, get_block);
6092 if (!ret && ext4_should_journal_data(inode)) {
6093 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6094 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6095 unlock_page(page);
6096 ret = VM_FAULT_SIGBUS;
6097 ext4_journal_stop(handle);
6098 goto out;
6099 }
6100 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6101 }
6102 ext4_journal_stop(handle);
6103 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6104 goto retry_alloc;
6105 out_ret:
6106 ret = block_page_mkwrite_return(ret);
6107 out:
6108 up_read(&EXT4_I(inode)->i_mmap_sem);
6109 sb_end_pagefault(inode->i_sb);
6110 return ret;
6111 }
6112
6113 int ext4_filemap_fault(struct vm_fault *vmf)
6114 {
6115 struct inode *inode = file_inode(vmf->vma->vm_file);
6116 int err;
6117
6118 down_read(&EXT4_I(inode)->i_mmap_sem);
6119 err = filemap_fault(vmf);
6120 up_read(&EXT4_I(inode)->i_mmap_sem);
6121
6122 return err;
6123 }
6124
6125 /*
6126 * Find the first extent at or after @lblk in an inode that is not a hole.
6127 * Search for @map_len blocks at most. The extent is returned in @result.
6128 *
6129 * The function returns 1 if we found an extent. The function returns 0 in
6130 * case there is no extent at or after @lblk and in that case also sets
6131 * @result->es_len to 0. In case of error, the error code is returned.
6132 */
6133 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6134 unsigned int map_len, struct extent_status *result)
6135 {
6136 struct ext4_map_blocks map;
6137 struct extent_status es = {};
6138 int ret;
6139
6140 map.m_lblk = lblk;
6141 map.m_len = map_len;
6142
6143 /*
6144 * For non-extent based files this loop may iterate several times since
6145 * we do not determine full hole size.
6146 */
6147 while (map.m_len > 0) {
6148 ret = ext4_map_blocks(NULL, inode, &map, 0);
6149 if (ret < 0)
6150 return ret;
6151 /* There's extent covering m_lblk? Just return it. */
6152 if (ret > 0) {
6153 int status;
6154
6155 ext4_es_store_pblock(result, map.m_pblk);
6156 result->es_lblk = map.m_lblk;
6157 result->es_len = map.m_len;
6158 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6159 status = EXTENT_STATUS_UNWRITTEN;
6160 else
6161 status = EXTENT_STATUS_WRITTEN;
6162 ext4_es_store_status(result, status);
6163 return 1;
6164 }
6165 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6166 map.m_lblk + map.m_len - 1,
6167 &es);
6168 /* Is delalloc data before next block in extent tree? */
6169 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6170 ext4_lblk_t offset = 0;
6171
6172 if (es.es_lblk < lblk)
6173 offset = lblk - es.es_lblk;
6174 result->es_lblk = es.es_lblk + offset;
6175 ext4_es_store_pblock(result,
6176 ext4_es_pblock(&es) + offset);
6177 result->es_len = es.es_len - offset;
6178 ext4_es_store_status(result, ext4_es_status(&es));
6179
6180 return 1;
6181 }
6182 /* There's a hole at m_lblk, advance us after it */
6183 map.m_lblk += map.m_len;
6184 map_len -= map.m_len;
6185 map.m_len = map_len;
6186 cond_resched();
6187 }
6188 result->es_len = 0;
6189 return 0;
6190 }