]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148 */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 return S_ISLNK(inode->i_mode) && inode->i_size &&
152 (inode->i_size < EXT4_N_BLOCKS * 4);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188 int extra_credits = 3;
189 struct ext4_xattr_inode_array *ea_inode_array = NULL;
190
191 trace_ext4_evict_inode(inode);
192
193 if (inode->i_nlink) {
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (inode->i_ino != EXT4_JOURNAL_INO &&
213 ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
215 inode->i_data.nrpages) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
222 truncate_inode_pages_final(&inode->i_data);
223
224 goto no_delete;
225 }
226
227 if (is_bad_inode(inode))
228 goto no_delete;
229 dquot_initialize(inode);
230
231 if (ext4_should_order_data(inode))
232 ext4_begin_ordered_truncate(inode, 0);
233 truncate_inode_pages_final(&inode->i_data);
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240
241 if (!IS_NOQUOTA(inode))
242 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
243
244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
245 ext4_blocks_for_truncate(inode)+extra_credits);
246 if (IS_ERR(handle)) {
247 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 /*
249 * If we're going to skip the normal cleanup, we still need to
250 * make sure that the in-core orphan linked list is properly
251 * cleaned up.
252 */
253 ext4_orphan_del(NULL, inode);
254 sb_end_intwrite(inode->i_sb);
255 goto no_delete;
256 }
257
258 if (IS_SYNC(inode))
259 ext4_handle_sync(handle);
260
261 /*
262 * Set inode->i_size to 0 before calling ext4_truncate(). We need
263 * special handling of symlinks here because i_size is used to
264 * determine whether ext4_inode_info->i_data contains symlink data or
265 * block mappings. Setting i_size to 0 will remove its fast symlink
266 * status. Erase i_data so that it becomes a valid empty block map.
267 */
268 if (ext4_inode_is_fast_symlink(inode))
269 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
270 inode->i_size = 0;
271 err = ext4_mark_inode_dirty(handle, inode);
272 if (err) {
273 ext4_warning(inode->i_sb,
274 "couldn't mark inode dirty (err %d)", err);
275 goto stop_handle;
276 }
277 if (inode->i_blocks) {
278 err = ext4_truncate(inode);
279 if (err) {
280 ext4_error(inode->i_sb,
281 "couldn't truncate inode %lu (err %d)",
282 inode->i_ino, err);
283 goto stop_handle;
284 }
285 }
286
287 /* Remove xattr references. */
288 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
289 extra_credits);
290 if (err) {
291 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
292 stop_handle:
293 ext4_journal_stop(handle);
294 ext4_orphan_del(NULL, inode);
295 sb_end_intwrite(inode->i_sb);
296 ext4_xattr_inode_array_free(ea_inode_array);
297 goto no_delete;
298 }
299
300 /*
301 * Kill off the orphan record which ext4_truncate created.
302 * AKPM: I think this can be inside the above `if'.
303 * Note that ext4_orphan_del() has to be able to cope with the
304 * deletion of a non-existent orphan - this is because we don't
305 * know if ext4_truncate() actually created an orphan record.
306 * (Well, we could do this if we need to, but heck - it works)
307 */
308 ext4_orphan_del(handle, inode);
309 EXT4_I(inode)->i_dtime = get_seconds();
310
311 /*
312 * One subtle ordering requirement: if anything has gone wrong
313 * (transaction abort, IO errors, whatever), then we can still
314 * do these next steps (the fs will already have been marked as
315 * having errors), but we can't free the inode if the mark_dirty
316 * fails.
317 */
318 if (ext4_mark_inode_dirty(handle, inode))
319 /* If that failed, just do the required in-core inode clear. */
320 ext4_clear_inode(inode);
321 else
322 ext4_free_inode(handle, inode);
323 ext4_journal_stop(handle);
324 sb_end_intwrite(inode->i_sb);
325 ext4_xattr_inode_array_free(ea_inode_array);
326 return;
327 no_delete:
328 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
329 }
330
331 #ifdef CONFIG_QUOTA
332 qsize_t *ext4_get_reserved_space(struct inode *inode)
333 {
334 return &EXT4_I(inode)->i_reserved_quota;
335 }
336 #endif
337
338 /*
339 * Called with i_data_sem down, which is important since we can call
340 * ext4_discard_preallocations() from here.
341 */
342 void ext4_da_update_reserve_space(struct inode *inode,
343 int used, int quota_claim)
344 {
345 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
346 struct ext4_inode_info *ei = EXT4_I(inode);
347
348 spin_lock(&ei->i_block_reservation_lock);
349 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
350 if (unlikely(used > ei->i_reserved_data_blocks)) {
351 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
352 "with only %d reserved data blocks",
353 __func__, inode->i_ino, used,
354 ei->i_reserved_data_blocks);
355 WARN_ON(1);
356 used = ei->i_reserved_data_blocks;
357 }
358
359 /* Update per-inode reservations */
360 ei->i_reserved_data_blocks -= used;
361 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
362
363 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
364
365 /* Update quota subsystem for data blocks */
366 if (quota_claim)
367 dquot_claim_block(inode, EXT4_C2B(sbi, used));
368 else {
369 /*
370 * We did fallocate with an offset that is already delayed
371 * allocated. So on delayed allocated writeback we should
372 * not re-claim the quota for fallocated blocks.
373 */
374 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
375 }
376
377 /*
378 * If we have done all the pending block allocations and if
379 * there aren't any writers on the inode, we can discard the
380 * inode's preallocations.
381 */
382 if ((ei->i_reserved_data_blocks == 0) &&
383 (atomic_read(&inode->i_writecount) == 0))
384 ext4_discard_preallocations(inode);
385 }
386
387 static int __check_block_validity(struct inode *inode, const char *func,
388 unsigned int line,
389 struct ext4_map_blocks *map)
390 {
391 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
392 map->m_len)) {
393 ext4_error_inode(inode, func, line, map->m_pblk,
394 "lblock %lu mapped to illegal pblock "
395 "(length %d)", (unsigned long) map->m_lblk,
396 map->m_len);
397 return -EFSCORRUPTED;
398 }
399 return 0;
400 }
401
402 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
403 ext4_lblk_t len)
404 {
405 int ret;
406
407 if (ext4_encrypted_inode(inode))
408 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409
410 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
411 if (ret > 0)
412 ret = 0;
413
414 return ret;
415 }
416
417 #define check_block_validity(inode, map) \
418 __check_block_validity((inode), __func__, __LINE__, (map))
419
420 #ifdef ES_AGGRESSIVE_TEST
421 static void ext4_map_blocks_es_recheck(handle_t *handle,
422 struct inode *inode,
423 struct ext4_map_blocks *es_map,
424 struct ext4_map_blocks *map,
425 int flags)
426 {
427 int retval;
428
429 map->m_flags = 0;
430 /*
431 * There is a race window that the result is not the same.
432 * e.g. xfstests #223 when dioread_nolock enables. The reason
433 * is that we lookup a block mapping in extent status tree with
434 * out taking i_data_sem. So at the time the unwritten extent
435 * could be converted.
436 */
437 down_read(&EXT4_I(inode)->i_data_sem);
438 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
439 retval = ext4_ext_map_blocks(handle, inode, map, flags &
440 EXT4_GET_BLOCKS_KEEP_SIZE);
441 } else {
442 retval = ext4_ind_map_blocks(handle, inode, map, flags &
443 EXT4_GET_BLOCKS_KEEP_SIZE);
444 }
445 up_read((&EXT4_I(inode)->i_data_sem));
446
447 /*
448 * We don't check m_len because extent will be collpased in status
449 * tree. So the m_len might not equal.
450 */
451 if (es_map->m_lblk != map->m_lblk ||
452 es_map->m_flags != map->m_flags ||
453 es_map->m_pblk != map->m_pblk) {
454 printk("ES cache assertion failed for inode: %lu "
455 "es_cached ex [%d/%d/%llu/%x] != "
456 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 inode->i_ino, es_map->m_lblk, es_map->m_len,
458 es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 map->m_len, map->m_pblk, map->m_flags,
460 retval, flags);
461 }
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464
465 /*
466 * The ext4_map_blocks() function tries to look up the requested blocks,
467 * and returns if the blocks are already mapped.
468 *
469 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
470 * and store the allocated blocks in the result buffer head and mark it
471 * mapped.
472 *
473 * If file type is extents based, it will call ext4_ext_map_blocks(),
474 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
475 * based files
476 *
477 * On success, it returns the number of blocks being mapped or allocated. if
478 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
479 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480 *
481 * It returns 0 if plain look up failed (blocks have not been allocated), in
482 * that case, @map is returned as unmapped but we still do fill map->m_len to
483 * indicate the length of a hole starting at map->m_lblk.
484 *
485 * It returns the error in case of allocation failure.
486 */
487 int ext4_map_blocks(handle_t *handle, struct inode *inode,
488 struct ext4_map_blocks *map, int flags)
489 {
490 struct extent_status es;
491 int retval;
492 int ret = 0;
493 #ifdef ES_AGGRESSIVE_TEST
494 struct ext4_map_blocks orig_map;
495
496 memcpy(&orig_map, map, sizeof(*map));
497 #endif
498
499 map->m_flags = 0;
500 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
501 "logical block %lu\n", inode->i_ino, flags, map->m_len,
502 (unsigned long) map->m_lblk);
503
504 /*
505 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 */
507 if (unlikely(map->m_len > INT_MAX))
508 map->m_len = INT_MAX;
509
510 /* We can handle the block number less than EXT_MAX_BLOCKS */
511 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
512 return -EFSCORRUPTED;
513
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526 map->m_pblk = 0;
527 retval = es.es_len - (map->m_lblk - es.es_lblk);
528 if (retval > map->m_len)
529 retval = map->m_len;
530 map->m_len = retval;
531 retval = 0;
532 } else {
533 BUG_ON(1);
534 }
535 #ifdef ES_AGGRESSIVE_TEST
536 ext4_map_blocks_es_recheck(handle, inode, map,
537 &orig_map, flags);
538 #endif
539 goto found;
540 }
541
542 /*
543 * Try to see if we can get the block without requesting a new
544 * file system block.
545 */
546 down_read(&EXT4_I(inode)->i_data_sem);
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
550 } else {
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
553 }
554 if (retval > 0) {
555 unsigned int status;
556
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
562 WARN_ON(1);
563 }
564
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 !(status & EXTENT_STATUS_WRITTEN) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
577 up_read((&EXT4_I(inode)->i_data_sem));
578
579 found:
580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 ret = check_block_validity(inode, map);
582 if (ret != 0)
583 return ret;
584 }
585
586 /* If it is only a block(s) look up */
587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 return retval;
589
590 /*
591 * Returns if the blocks have already allocated
592 *
593 * Note that if blocks have been preallocated
594 * ext4_ext_get_block() returns the create = 0
595 * with buffer head unmapped.
596 */
597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 /*
599 * If we need to convert extent to unwritten
600 * we continue and do the actual work in
601 * ext4_ext_map_blocks()
602 */
603 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 return retval;
605
606 /*
607 * Here we clear m_flags because after allocating an new extent,
608 * it will be set again.
609 */
610 map->m_flags &= ~EXT4_MAP_FLAGS;
611
612 /*
613 * New blocks allocate and/or writing to unwritten extent
614 * will possibly result in updating i_data, so we take
615 * the write lock of i_data_sem, and call get_block()
616 * with create == 1 flag.
617 */
618 down_write(&EXT4_I(inode)->i_data_sem);
619
620 /*
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
623 */
624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 } else {
627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 /*
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
634 */
635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 }
637
638 /*
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
643 */
644 if ((retval > 0) &&
645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 ext4_da_update_reserve_space(inode, retval, 1);
647 }
648
649 if (retval > 0) {
650 unsigned int status;
651
652 if (unlikely(retval != map->m_len)) {
653 ext4_warning(inode->i_sb,
654 "ES len assertion failed for inode "
655 "%lu: retval %d != map->m_len %d",
656 inode->i_ino, retval, map->m_len);
657 WARN_ON(1);
658 }
659
660 /*
661 * We have to zeroout blocks before inserting them into extent
662 * status tree. Otherwise someone could look them up there and
663 * use them before they are really zeroed. We also have to
664 * unmap metadata before zeroing as otherwise writeback can
665 * overwrite zeros with stale data from block device.
666 */
667 if (flags & EXT4_GET_BLOCKS_ZERO &&
668 map->m_flags & EXT4_MAP_MAPPED &&
669 map->m_flags & EXT4_MAP_NEW) {
670 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
671 map->m_len);
672 ret = ext4_issue_zeroout(inode, map->m_lblk,
673 map->m_pblk, map->m_len);
674 if (ret) {
675 retval = ret;
676 goto out_sem;
677 }
678 }
679
680 /*
681 * If the extent has been zeroed out, we don't need to update
682 * extent status tree.
683 */
684 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
685 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
686 if (ext4_es_is_written(&es))
687 goto out_sem;
688 }
689 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
690 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
691 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
692 !(status & EXTENT_STATUS_WRITTEN) &&
693 ext4_find_delalloc_range(inode, map->m_lblk,
694 map->m_lblk + map->m_len - 1))
695 status |= EXTENT_STATUS_DELAYED;
696 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
697 map->m_pblk, status);
698 if (ret < 0) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
704 out_sem:
705 up_write((&EXT4_I(inode)->i_data_sem));
706 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
707 ret = check_block_validity(inode, map);
708 if (ret != 0)
709 return ret;
710
711 /*
712 * Inodes with freshly allocated blocks where contents will be
713 * visible after transaction commit must be on transaction's
714 * ordered data list.
715 */
716 if (map->m_flags & EXT4_MAP_NEW &&
717 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
718 !(flags & EXT4_GET_BLOCKS_ZERO) &&
719 !ext4_is_quota_file(inode) &&
720 ext4_should_order_data(inode)) {
721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
722 ret = ext4_jbd2_inode_add_wait(handle, inode);
723 else
724 ret = ext4_jbd2_inode_add_write(handle, inode);
725 if (ret)
726 return ret;
727 }
728 }
729 return retval;
730 }
731
732 /*
733 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
734 * we have to be careful as someone else may be manipulating b_state as well.
735 */
736 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
737 {
738 unsigned long old_state;
739 unsigned long new_state;
740
741 flags &= EXT4_MAP_FLAGS;
742
743 /* Dummy buffer_head? Set non-atomically. */
744 if (!bh->b_page) {
745 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
746 return;
747 }
748 /*
749 * Someone else may be modifying b_state. Be careful! This is ugly but
750 * once we get rid of using bh as a container for mapping information
751 * to pass to / from get_block functions, this can go away.
752 */
753 do {
754 old_state = READ_ONCE(bh->b_state);
755 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
756 } while (unlikely(
757 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
758 }
759
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int flags)
762 {
763 struct ext4_map_blocks map;
764 int ret = 0;
765
766 if (ext4_has_inline_data(inode))
767 return -ERANGE;
768
769 map.m_lblk = iblock;
770 map.m_len = bh->b_size >> inode->i_blkbits;
771
772 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
773 flags);
774 if (ret > 0) {
775 map_bh(bh, inode->i_sb, map.m_pblk);
776 ext4_update_bh_state(bh, map.m_flags);
777 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
778 ret = 0;
779 } else if (ret == 0) {
780 /* hole case, need to fill in bh->b_size */
781 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
782 }
783 return ret;
784 }
785
786 int ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int create)
788 {
789 return _ext4_get_block(inode, iblock, bh,
790 create ? EXT4_GET_BLOCKS_CREATE : 0);
791 }
792
793 /*
794 * Get block function used when preparing for buffered write if we require
795 * creating an unwritten extent if blocks haven't been allocated. The extent
796 * will be converted to written after the IO is complete.
797 */
798 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
799 struct buffer_head *bh_result, int create)
800 {
801 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
802 inode->i_ino, create);
803 return _ext4_get_block(inode, iblock, bh_result,
804 EXT4_GET_BLOCKS_IO_CREATE_EXT);
805 }
806
807 /* Maximum number of blocks we map for direct IO at once. */
808 #define DIO_MAX_BLOCKS 4096
809
810 /*
811 * Get blocks function for the cases that need to start a transaction -
812 * generally difference cases of direct IO and DAX IO. It also handles retries
813 * in case of ENOSPC.
814 */
815 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh_result, int flags)
817 {
818 int dio_credits;
819 handle_t *handle;
820 int retries = 0;
821 int ret;
822
823 /* Trim mapping request to maximum we can map at once for DIO */
824 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
825 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
826 dio_credits = ext4_chunk_trans_blocks(inode,
827 bh_result->b_size >> inode->i_blkbits);
828 retry:
829 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
830 if (IS_ERR(handle))
831 return PTR_ERR(handle);
832
833 ret = _ext4_get_block(inode, iblock, bh_result, flags);
834 ext4_journal_stop(handle);
835
836 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
837 goto retry;
838 return ret;
839 }
840
841 /* Get block function for DIO reads and writes to inodes without extents */
842 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
843 struct buffer_head *bh, int create)
844 {
845 /* We don't expect handle for direct IO */
846 WARN_ON_ONCE(ext4_journal_current_handle());
847
848 if (!create)
849 return _ext4_get_block(inode, iblock, bh, 0);
850 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
851 }
852
853 /*
854 * Get block function for AIO DIO writes when we create unwritten extent if
855 * blocks are not allocated yet. The extent will be converted to written
856 * after IO is complete.
857 */
858 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
859 sector_t iblock, struct buffer_head *bh_result, int create)
860 {
861 int ret;
862
863 /* We don't expect handle for direct IO */
864 WARN_ON_ONCE(ext4_journal_current_handle());
865
866 ret = ext4_get_block_trans(inode, iblock, bh_result,
867 EXT4_GET_BLOCKS_IO_CREATE_EXT);
868
869 /*
870 * When doing DIO using unwritten extents, we need io_end to convert
871 * unwritten extents to written on IO completion. We allocate io_end
872 * once we spot unwritten extent and store it in b_private. Generic
873 * DIO code keeps b_private set and furthermore passes the value to
874 * our completion callback in 'private' argument.
875 */
876 if (!ret && buffer_unwritten(bh_result)) {
877 if (!bh_result->b_private) {
878 ext4_io_end_t *io_end;
879
880 io_end = ext4_init_io_end(inode, GFP_KERNEL);
881 if (!io_end)
882 return -ENOMEM;
883 bh_result->b_private = io_end;
884 ext4_set_io_unwritten_flag(inode, io_end);
885 }
886 set_buffer_defer_completion(bh_result);
887 }
888
889 return ret;
890 }
891
892 /*
893 * Get block function for non-AIO DIO writes when we create unwritten extent if
894 * blocks are not allocated yet. The extent will be converted to written
895 * after IO is complete from ext4_ext_direct_IO() function.
896 */
897 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
898 sector_t iblock, struct buffer_head *bh_result, int create)
899 {
900 int ret;
901
902 /* We don't expect handle for direct IO */
903 WARN_ON_ONCE(ext4_journal_current_handle());
904
905 ret = ext4_get_block_trans(inode, iblock, bh_result,
906 EXT4_GET_BLOCKS_IO_CREATE_EXT);
907
908 /*
909 * Mark inode as having pending DIO writes to unwritten extents.
910 * ext4_ext_direct_IO() checks this flag and converts extents to
911 * written.
912 */
913 if (!ret && buffer_unwritten(bh_result))
914 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
915
916 return ret;
917 }
918
919 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
920 struct buffer_head *bh_result, int create)
921 {
922 int ret;
923
924 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
925 inode->i_ino, create);
926 /* We don't expect handle for direct IO */
927 WARN_ON_ONCE(ext4_journal_current_handle());
928
929 ret = _ext4_get_block(inode, iblock, bh_result, 0);
930 /*
931 * Blocks should have been preallocated! ext4_file_write_iter() checks
932 * that.
933 */
934 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
935
936 return ret;
937 }
938
939
940 /*
941 * `handle' can be NULL if create is zero
942 */
943 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
944 ext4_lblk_t block, int map_flags)
945 {
946 struct ext4_map_blocks map;
947 struct buffer_head *bh;
948 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
949 int err;
950
951 J_ASSERT(handle != NULL || create == 0);
952
953 map.m_lblk = block;
954 map.m_len = 1;
955 err = ext4_map_blocks(handle, inode, &map, map_flags);
956
957 if (err == 0)
958 return create ? ERR_PTR(-ENOSPC) : NULL;
959 if (err < 0)
960 return ERR_PTR(err);
961
962 bh = sb_getblk(inode->i_sb, map.m_pblk);
963 if (unlikely(!bh))
964 return ERR_PTR(-ENOMEM);
965 if (map.m_flags & EXT4_MAP_NEW) {
966 J_ASSERT(create != 0);
967 J_ASSERT(handle != NULL);
968
969 /*
970 * Now that we do not always journal data, we should
971 * keep in mind whether this should always journal the
972 * new buffer as metadata. For now, regular file
973 * writes use ext4_get_block instead, so it's not a
974 * problem.
975 */
976 lock_buffer(bh);
977 BUFFER_TRACE(bh, "call get_create_access");
978 err = ext4_journal_get_create_access(handle, bh);
979 if (unlikely(err)) {
980 unlock_buffer(bh);
981 goto errout;
982 }
983 if (!buffer_uptodate(bh)) {
984 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
985 set_buffer_uptodate(bh);
986 }
987 unlock_buffer(bh);
988 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
989 err = ext4_handle_dirty_metadata(handle, inode, bh);
990 if (unlikely(err))
991 goto errout;
992 } else
993 BUFFER_TRACE(bh, "not a new buffer");
994 return bh;
995 errout:
996 brelse(bh);
997 return ERR_PTR(err);
998 }
999
1000 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1001 ext4_lblk_t block, int map_flags)
1002 {
1003 struct buffer_head *bh;
1004
1005 bh = ext4_getblk(handle, inode, block, map_flags);
1006 if (IS_ERR(bh))
1007 return bh;
1008 if (!bh || buffer_uptodate(bh))
1009 return bh;
1010 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1011 wait_on_buffer(bh);
1012 if (buffer_uptodate(bh))
1013 return bh;
1014 put_bh(bh);
1015 return ERR_PTR(-EIO);
1016 }
1017
1018 int ext4_walk_page_buffers(handle_t *handle,
1019 struct buffer_head *head,
1020 unsigned from,
1021 unsigned to,
1022 int *partial,
1023 int (*fn)(handle_t *handle,
1024 struct buffer_head *bh))
1025 {
1026 struct buffer_head *bh;
1027 unsigned block_start, block_end;
1028 unsigned blocksize = head->b_size;
1029 int err, ret = 0;
1030 struct buffer_head *next;
1031
1032 for (bh = head, block_start = 0;
1033 ret == 0 && (bh != head || !block_start);
1034 block_start = block_end, bh = next) {
1035 next = bh->b_this_page;
1036 block_end = block_start + blocksize;
1037 if (block_end <= from || block_start >= to) {
1038 if (partial && !buffer_uptodate(bh))
1039 *partial = 1;
1040 continue;
1041 }
1042 err = (*fn)(handle, bh);
1043 if (!ret)
1044 ret = err;
1045 }
1046 return ret;
1047 }
1048
1049 /*
1050 * To preserve ordering, it is essential that the hole instantiation and
1051 * the data write be encapsulated in a single transaction. We cannot
1052 * close off a transaction and start a new one between the ext4_get_block()
1053 * and the commit_write(). So doing the jbd2_journal_start at the start of
1054 * prepare_write() is the right place.
1055 *
1056 * Also, this function can nest inside ext4_writepage(). In that case, we
1057 * *know* that ext4_writepage() has generated enough buffer credits to do the
1058 * whole page. So we won't block on the journal in that case, which is good,
1059 * because the caller may be PF_MEMALLOC.
1060 *
1061 * By accident, ext4 can be reentered when a transaction is open via
1062 * quota file writes. If we were to commit the transaction while thus
1063 * reentered, there can be a deadlock - we would be holding a quota
1064 * lock, and the commit would never complete if another thread had a
1065 * transaction open and was blocking on the quota lock - a ranking
1066 * violation.
1067 *
1068 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1069 * will _not_ run commit under these circumstances because handle->h_ref
1070 * is elevated. We'll still have enough credits for the tiny quotafile
1071 * write.
1072 */
1073 int do_journal_get_write_access(handle_t *handle,
1074 struct buffer_head *bh)
1075 {
1076 int dirty = buffer_dirty(bh);
1077 int ret;
1078
1079 if (!buffer_mapped(bh) || buffer_freed(bh))
1080 return 0;
1081 /*
1082 * __block_write_begin() could have dirtied some buffers. Clean
1083 * the dirty bit as jbd2_journal_get_write_access() could complain
1084 * otherwise about fs integrity issues. Setting of the dirty bit
1085 * by __block_write_begin() isn't a real problem here as we clear
1086 * the bit before releasing a page lock and thus writeback cannot
1087 * ever write the buffer.
1088 */
1089 if (dirty)
1090 clear_buffer_dirty(bh);
1091 BUFFER_TRACE(bh, "get write access");
1092 ret = ext4_journal_get_write_access(handle, bh);
1093 if (!ret && dirty)
1094 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1095 return ret;
1096 }
1097
1098 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1099 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1100 get_block_t *get_block)
1101 {
1102 unsigned from = pos & (PAGE_SIZE - 1);
1103 unsigned to = from + len;
1104 struct inode *inode = page->mapping->host;
1105 unsigned block_start, block_end;
1106 sector_t block;
1107 int err = 0;
1108 unsigned blocksize = inode->i_sb->s_blocksize;
1109 unsigned bbits;
1110 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1111 bool decrypt = false;
1112
1113 BUG_ON(!PageLocked(page));
1114 BUG_ON(from > PAGE_SIZE);
1115 BUG_ON(to > PAGE_SIZE);
1116 BUG_ON(from > to);
1117
1118 if (!page_has_buffers(page))
1119 create_empty_buffers(page, blocksize, 0);
1120 head = page_buffers(page);
1121 bbits = ilog2(blocksize);
1122 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1123
1124 for (bh = head, block_start = 0; bh != head || !block_start;
1125 block++, block_start = block_end, bh = bh->b_this_page) {
1126 block_end = block_start + blocksize;
1127 if (block_end <= from || block_start >= to) {
1128 if (PageUptodate(page)) {
1129 if (!buffer_uptodate(bh))
1130 set_buffer_uptodate(bh);
1131 }
1132 continue;
1133 }
1134 if (buffer_new(bh))
1135 clear_buffer_new(bh);
1136 if (!buffer_mapped(bh)) {
1137 WARN_ON(bh->b_size != blocksize);
1138 err = get_block(inode, block, bh, 1);
1139 if (err)
1140 break;
1141 if (buffer_new(bh)) {
1142 clean_bdev_bh_alias(bh);
1143 if (PageUptodate(page)) {
1144 clear_buffer_new(bh);
1145 set_buffer_uptodate(bh);
1146 mark_buffer_dirty(bh);
1147 continue;
1148 }
1149 if (block_end > to || block_start < from)
1150 zero_user_segments(page, to, block_end,
1151 block_start, from);
1152 continue;
1153 }
1154 }
1155 if (PageUptodate(page)) {
1156 if (!buffer_uptodate(bh))
1157 set_buffer_uptodate(bh);
1158 continue;
1159 }
1160 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1161 !buffer_unwritten(bh) &&
1162 (block_start < from || block_end > to)) {
1163 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1164 *wait_bh++ = bh;
1165 decrypt = ext4_encrypted_inode(inode) &&
1166 S_ISREG(inode->i_mode);
1167 }
1168 }
1169 /*
1170 * If we issued read requests, let them complete.
1171 */
1172 while (wait_bh > wait) {
1173 wait_on_buffer(*--wait_bh);
1174 if (!buffer_uptodate(*wait_bh))
1175 err = -EIO;
1176 }
1177 if (unlikely(err))
1178 page_zero_new_buffers(page, from, to);
1179 else if (decrypt)
1180 err = fscrypt_decrypt_page(page->mapping->host, page,
1181 PAGE_SIZE, 0, page->index);
1182 return err;
1183 }
1184 #endif
1185
1186 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1187 loff_t pos, unsigned len, unsigned flags,
1188 struct page **pagep, void **fsdata)
1189 {
1190 struct inode *inode = mapping->host;
1191 int ret, needed_blocks;
1192 handle_t *handle;
1193 int retries = 0;
1194 struct page *page;
1195 pgoff_t index;
1196 unsigned from, to;
1197
1198 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1199 return -EIO;
1200
1201 trace_ext4_write_begin(inode, pos, len, flags);
1202 /*
1203 * Reserve one block more for addition to orphan list in case
1204 * we allocate blocks but write fails for some reason
1205 */
1206 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1207 index = pos >> PAGE_SHIFT;
1208 from = pos & (PAGE_SIZE - 1);
1209 to = from + len;
1210
1211 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1212 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1213 flags, pagep);
1214 if (ret < 0)
1215 return ret;
1216 if (ret == 1)
1217 return 0;
1218 }
1219
1220 /*
1221 * grab_cache_page_write_begin() can take a long time if the
1222 * system is thrashing due to memory pressure, or if the page
1223 * is being written back. So grab it first before we start
1224 * the transaction handle. This also allows us to allocate
1225 * the page (if needed) without using GFP_NOFS.
1226 */
1227 retry_grab:
1228 page = grab_cache_page_write_begin(mapping, index, flags);
1229 if (!page)
1230 return -ENOMEM;
1231 unlock_page(page);
1232
1233 retry_journal:
1234 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1235 if (IS_ERR(handle)) {
1236 put_page(page);
1237 return PTR_ERR(handle);
1238 }
1239
1240 lock_page(page);
1241 if (page->mapping != mapping) {
1242 /* The page got truncated from under us */
1243 unlock_page(page);
1244 put_page(page);
1245 ext4_journal_stop(handle);
1246 goto retry_grab;
1247 }
1248 /* In case writeback began while the page was unlocked */
1249 wait_for_stable_page(page);
1250
1251 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1252 if (ext4_should_dioread_nolock(inode))
1253 ret = ext4_block_write_begin(page, pos, len,
1254 ext4_get_block_unwritten);
1255 else
1256 ret = ext4_block_write_begin(page, pos, len,
1257 ext4_get_block);
1258 #else
1259 if (ext4_should_dioread_nolock(inode))
1260 ret = __block_write_begin(page, pos, len,
1261 ext4_get_block_unwritten);
1262 else
1263 ret = __block_write_begin(page, pos, len, ext4_get_block);
1264 #endif
1265 if (!ret && ext4_should_journal_data(inode)) {
1266 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1267 from, to, NULL,
1268 do_journal_get_write_access);
1269 }
1270
1271 if (ret) {
1272 unlock_page(page);
1273 /*
1274 * __block_write_begin may have instantiated a few blocks
1275 * outside i_size. Trim these off again. Don't need
1276 * i_size_read because we hold i_mutex.
1277 *
1278 * Add inode to orphan list in case we crash before
1279 * truncate finishes
1280 */
1281 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1282 ext4_orphan_add(handle, inode);
1283
1284 ext4_journal_stop(handle);
1285 if (pos + len > inode->i_size) {
1286 ext4_truncate_failed_write(inode);
1287 /*
1288 * If truncate failed early the inode might
1289 * still be on the orphan list; we need to
1290 * make sure the inode is removed from the
1291 * orphan list in that case.
1292 */
1293 if (inode->i_nlink)
1294 ext4_orphan_del(NULL, inode);
1295 }
1296
1297 if (ret == -ENOSPC &&
1298 ext4_should_retry_alloc(inode->i_sb, &retries))
1299 goto retry_journal;
1300 put_page(page);
1301 return ret;
1302 }
1303 *pagep = page;
1304 return ret;
1305 }
1306
1307 /* For write_end() in data=journal mode */
1308 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1309 {
1310 int ret;
1311 if (!buffer_mapped(bh) || buffer_freed(bh))
1312 return 0;
1313 set_buffer_uptodate(bh);
1314 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1315 clear_buffer_meta(bh);
1316 clear_buffer_prio(bh);
1317 return ret;
1318 }
1319
1320 /*
1321 * We need to pick up the new inode size which generic_commit_write gave us
1322 * `file' can be NULL - eg, when called from page_symlink().
1323 *
1324 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1325 * buffers are managed internally.
1326 */
1327 static int ext4_write_end(struct file *file,
1328 struct address_space *mapping,
1329 loff_t pos, unsigned len, unsigned copied,
1330 struct page *page, void *fsdata)
1331 {
1332 handle_t *handle = ext4_journal_current_handle();
1333 struct inode *inode = mapping->host;
1334 loff_t old_size = inode->i_size;
1335 int ret = 0, ret2;
1336 int i_size_changed = 0;
1337
1338 trace_ext4_write_end(inode, pos, len, copied);
1339 if (ext4_has_inline_data(inode)) {
1340 ret = ext4_write_inline_data_end(inode, pos, len,
1341 copied, page);
1342 if (ret < 0) {
1343 unlock_page(page);
1344 put_page(page);
1345 goto errout;
1346 }
1347 copied = ret;
1348 } else
1349 copied = block_write_end(file, mapping, pos,
1350 len, copied, page, fsdata);
1351 /*
1352 * it's important to update i_size while still holding page lock:
1353 * page writeout could otherwise come in and zero beyond i_size.
1354 */
1355 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1356 unlock_page(page);
1357 put_page(page);
1358
1359 if (old_size < pos)
1360 pagecache_isize_extended(inode, old_size, pos);
1361 /*
1362 * Don't mark the inode dirty under page lock. First, it unnecessarily
1363 * makes the holding time of page lock longer. Second, it forces lock
1364 * ordering of page lock and transaction start for journaling
1365 * filesystems.
1366 */
1367 if (i_size_changed)
1368 ext4_mark_inode_dirty(handle, inode);
1369
1370 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1371 /* if we have allocated more blocks and copied
1372 * less. We will have blocks allocated outside
1373 * inode->i_size. So truncate them
1374 */
1375 ext4_orphan_add(handle, inode);
1376 errout:
1377 ret2 = ext4_journal_stop(handle);
1378 if (!ret)
1379 ret = ret2;
1380
1381 if (pos + len > inode->i_size) {
1382 ext4_truncate_failed_write(inode);
1383 /*
1384 * If truncate failed early the inode might still be
1385 * on the orphan list; we need to make sure the inode
1386 * is removed from the orphan list in that case.
1387 */
1388 if (inode->i_nlink)
1389 ext4_orphan_del(NULL, inode);
1390 }
1391
1392 return ret ? ret : copied;
1393 }
1394
1395 /*
1396 * This is a private version of page_zero_new_buffers() which doesn't
1397 * set the buffer to be dirty, since in data=journalled mode we need
1398 * to call ext4_handle_dirty_metadata() instead.
1399 */
1400 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1401 struct page *page,
1402 unsigned from, unsigned to)
1403 {
1404 unsigned int block_start = 0, block_end;
1405 struct buffer_head *head, *bh;
1406
1407 bh = head = page_buffers(page);
1408 do {
1409 block_end = block_start + bh->b_size;
1410 if (buffer_new(bh)) {
1411 if (block_end > from && block_start < to) {
1412 if (!PageUptodate(page)) {
1413 unsigned start, size;
1414
1415 start = max(from, block_start);
1416 size = min(to, block_end) - start;
1417
1418 zero_user(page, start, size);
1419 write_end_fn(handle, bh);
1420 }
1421 clear_buffer_new(bh);
1422 }
1423 }
1424 block_start = block_end;
1425 bh = bh->b_this_page;
1426 } while (bh != head);
1427 }
1428
1429 static int ext4_journalled_write_end(struct file *file,
1430 struct address_space *mapping,
1431 loff_t pos, unsigned len, unsigned copied,
1432 struct page *page, void *fsdata)
1433 {
1434 handle_t *handle = ext4_journal_current_handle();
1435 struct inode *inode = mapping->host;
1436 loff_t old_size = inode->i_size;
1437 int ret = 0, ret2;
1438 int partial = 0;
1439 unsigned from, to;
1440 int size_changed = 0;
1441
1442 trace_ext4_journalled_write_end(inode, pos, len, copied);
1443 from = pos & (PAGE_SIZE - 1);
1444 to = from + len;
1445
1446 BUG_ON(!ext4_handle_valid(handle));
1447
1448 if (ext4_has_inline_data(inode)) {
1449 ret = ext4_write_inline_data_end(inode, pos, len,
1450 copied, page);
1451 if (ret < 0) {
1452 unlock_page(page);
1453 put_page(page);
1454 goto errout;
1455 }
1456 copied = ret;
1457 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1458 copied = 0;
1459 ext4_journalled_zero_new_buffers(handle, page, from, to);
1460 } else {
1461 if (unlikely(copied < len))
1462 ext4_journalled_zero_new_buffers(handle, page,
1463 from + copied, to);
1464 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1465 from + copied, &partial,
1466 write_end_fn);
1467 if (!partial)
1468 SetPageUptodate(page);
1469 }
1470 size_changed = ext4_update_inode_size(inode, pos + copied);
1471 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1472 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1473 unlock_page(page);
1474 put_page(page);
1475
1476 if (old_size < pos)
1477 pagecache_isize_extended(inode, old_size, pos);
1478
1479 if (size_changed) {
1480 ret2 = ext4_mark_inode_dirty(handle, inode);
1481 if (!ret)
1482 ret = ret2;
1483 }
1484
1485 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1486 /* if we have allocated more blocks and copied
1487 * less. We will have blocks allocated outside
1488 * inode->i_size. So truncate them
1489 */
1490 ext4_orphan_add(handle, inode);
1491
1492 errout:
1493 ret2 = ext4_journal_stop(handle);
1494 if (!ret)
1495 ret = ret2;
1496 if (pos + len > inode->i_size) {
1497 ext4_truncate_failed_write(inode);
1498 /*
1499 * If truncate failed early the inode might still be
1500 * on the orphan list; we need to make sure the inode
1501 * is removed from the orphan list in that case.
1502 */
1503 if (inode->i_nlink)
1504 ext4_orphan_del(NULL, inode);
1505 }
1506
1507 return ret ? ret : copied;
1508 }
1509
1510 /*
1511 * Reserve space for a single cluster
1512 */
1513 static int ext4_da_reserve_space(struct inode *inode)
1514 {
1515 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 struct ext4_inode_info *ei = EXT4_I(inode);
1517 int ret;
1518
1519 /*
1520 * We will charge metadata quota at writeout time; this saves
1521 * us from metadata over-estimation, though we may go over by
1522 * a small amount in the end. Here we just reserve for data.
1523 */
1524 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1525 if (ret)
1526 return ret;
1527
1528 spin_lock(&ei->i_block_reservation_lock);
1529 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1530 spin_unlock(&ei->i_block_reservation_lock);
1531 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1532 return -ENOSPC;
1533 }
1534 ei->i_reserved_data_blocks++;
1535 trace_ext4_da_reserve_space(inode);
1536 spin_unlock(&ei->i_block_reservation_lock);
1537
1538 return 0; /* success */
1539 }
1540
1541 static void ext4_da_release_space(struct inode *inode, int to_free)
1542 {
1543 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1544 struct ext4_inode_info *ei = EXT4_I(inode);
1545
1546 if (!to_free)
1547 return; /* Nothing to release, exit */
1548
1549 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1550
1551 trace_ext4_da_release_space(inode, to_free);
1552 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1553 /*
1554 * if there aren't enough reserved blocks, then the
1555 * counter is messed up somewhere. Since this
1556 * function is called from invalidate page, it's
1557 * harmless to return without any action.
1558 */
1559 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1560 "ino %lu, to_free %d with only %d reserved "
1561 "data blocks", inode->i_ino, to_free,
1562 ei->i_reserved_data_blocks);
1563 WARN_ON(1);
1564 to_free = ei->i_reserved_data_blocks;
1565 }
1566 ei->i_reserved_data_blocks -= to_free;
1567
1568 /* update fs dirty data blocks counter */
1569 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1570
1571 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1572
1573 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1574 }
1575
1576 static void ext4_da_page_release_reservation(struct page *page,
1577 unsigned int offset,
1578 unsigned int length)
1579 {
1580 int to_release = 0, contiguous_blks = 0;
1581 struct buffer_head *head, *bh;
1582 unsigned int curr_off = 0;
1583 struct inode *inode = page->mapping->host;
1584 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1585 unsigned int stop = offset + length;
1586 int num_clusters;
1587 ext4_fsblk_t lblk;
1588
1589 BUG_ON(stop > PAGE_SIZE || stop < length);
1590
1591 head = page_buffers(page);
1592 bh = head;
1593 do {
1594 unsigned int next_off = curr_off + bh->b_size;
1595
1596 if (next_off > stop)
1597 break;
1598
1599 if ((offset <= curr_off) && (buffer_delay(bh))) {
1600 to_release++;
1601 contiguous_blks++;
1602 clear_buffer_delay(bh);
1603 } else if (contiguous_blks) {
1604 lblk = page->index <<
1605 (PAGE_SHIFT - inode->i_blkbits);
1606 lblk += (curr_off >> inode->i_blkbits) -
1607 contiguous_blks;
1608 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1609 contiguous_blks = 0;
1610 }
1611 curr_off = next_off;
1612 } while ((bh = bh->b_this_page) != head);
1613
1614 if (contiguous_blks) {
1615 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1616 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1617 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1618 }
1619
1620 /* If we have released all the blocks belonging to a cluster, then we
1621 * need to release the reserved space for that cluster. */
1622 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1623 while (num_clusters > 0) {
1624 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1625 ((num_clusters - 1) << sbi->s_cluster_bits);
1626 if (sbi->s_cluster_ratio == 1 ||
1627 !ext4_find_delalloc_cluster(inode, lblk))
1628 ext4_da_release_space(inode, 1);
1629
1630 num_clusters--;
1631 }
1632 }
1633
1634 /*
1635 * Delayed allocation stuff
1636 */
1637
1638 struct mpage_da_data {
1639 struct inode *inode;
1640 struct writeback_control *wbc;
1641
1642 pgoff_t first_page; /* The first page to write */
1643 pgoff_t next_page; /* Current page to examine */
1644 pgoff_t last_page; /* Last page to examine */
1645 /*
1646 * Extent to map - this can be after first_page because that can be
1647 * fully mapped. We somewhat abuse m_flags to store whether the extent
1648 * is delalloc or unwritten.
1649 */
1650 struct ext4_map_blocks map;
1651 struct ext4_io_submit io_submit; /* IO submission data */
1652 unsigned int do_map:1;
1653 };
1654
1655 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1656 bool invalidate)
1657 {
1658 int nr_pages, i;
1659 pgoff_t index, end;
1660 struct pagevec pvec;
1661 struct inode *inode = mpd->inode;
1662 struct address_space *mapping = inode->i_mapping;
1663
1664 /* This is necessary when next_page == 0. */
1665 if (mpd->first_page >= mpd->next_page)
1666 return;
1667
1668 index = mpd->first_page;
1669 end = mpd->next_page - 1;
1670 if (invalidate) {
1671 ext4_lblk_t start, last;
1672 start = index << (PAGE_SHIFT - inode->i_blkbits);
1673 last = end << (PAGE_SHIFT - inode->i_blkbits);
1674 ext4_es_remove_extent(inode, start, last - start + 1);
1675 }
1676
1677 pagevec_init(&pvec, 0);
1678 while (index <= end) {
1679 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1680 if (nr_pages == 0)
1681 break;
1682 for (i = 0; i < nr_pages; i++) {
1683 struct page *page = pvec.pages[i];
1684 if (page->index > end)
1685 break;
1686 BUG_ON(!PageLocked(page));
1687 BUG_ON(PageWriteback(page));
1688 if (invalidate) {
1689 if (page_mapped(page))
1690 clear_page_dirty_for_io(page);
1691 block_invalidatepage(page, 0, PAGE_SIZE);
1692 ClearPageUptodate(page);
1693 }
1694 unlock_page(page);
1695 }
1696 index = pvec.pages[nr_pages - 1]->index + 1;
1697 pagevec_release(&pvec);
1698 }
1699 }
1700
1701 static void ext4_print_free_blocks(struct inode *inode)
1702 {
1703 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1704 struct super_block *sb = inode->i_sb;
1705 struct ext4_inode_info *ei = EXT4_I(inode);
1706
1707 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1708 EXT4_C2B(EXT4_SB(inode->i_sb),
1709 ext4_count_free_clusters(sb)));
1710 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1711 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1712 (long long) EXT4_C2B(EXT4_SB(sb),
1713 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1714 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1715 (long long) EXT4_C2B(EXT4_SB(sb),
1716 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1717 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1718 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1719 ei->i_reserved_data_blocks);
1720 return;
1721 }
1722
1723 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1724 {
1725 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1726 }
1727
1728 /*
1729 * This function is grabs code from the very beginning of
1730 * ext4_map_blocks, but assumes that the caller is from delayed write
1731 * time. This function looks up the requested blocks and sets the
1732 * buffer delay bit under the protection of i_data_sem.
1733 */
1734 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1735 struct ext4_map_blocks *map,
1736 struct buffer_head *bh)
1737 {
1738 struct extent_status es;
1739 int retval;
1740 sector_t invalid_block = ~((sector_t) 0xffff);
1741 #ifdef ES_AGGRESSIVE_TEST
1742 struct ext4_map_blocks orig_map;
1743
1744 memcpy(&orig_map, map, sizeof(*map));
1745 #endif
1746
1747 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1748 invalid_block = ~0;
1749
1750 map->m_flags = 0;
1751 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1752 "logical block %lu\n", inode->i_ino, map->m_len,
1753 (unsigned long) map->m_lblk);
1754
1755 /* Lookup extent status tree firstly */
1756 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1757 if (ext4_es_is_hole(&es)) {
1758 retval = 0;
1759 down_read(&EXT4_I(inode)->i_data_sem);
1760 goto add_delayed;
1761 }
1762
1763 /*
1764 * Delayed extent could be allocated by fallocate.
1765 * So we need to check it.
1766 */
1767 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1768 map_bh(bh, inode->i_sb, invalid_block);
1769 set_buffer_new(bh);
1770 set_buffer_delay(bh);
1771 return 0;
1772 }
1773
1774 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1775 retval = es.es_len - (iblock - es.es_lblk);
1776 if (retval > map->m_len)
1777 retval = map->m_len;
1778 map->m_len = retval;
1779 if (ext4_es_is_written(&es))
1780 map->m_flags |= EXT4_MAP_MAPPED;
1781 else if (ext4_es_is_unwritten(&es))
1782 map->m_flags |= EXT4_MAP_UNWRITTEN;
1783 else
1784 BUG_ON(1);
1785
1786 #ifdef ES_AGGRESSIVE_TEST
1787 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1788 #endif
1789 return retval;
1790 }
1791
1792 /*
1793 * Try to see if we can get the block without requesting a new
1794 * file system block.
1795 */
1796 down_read(&EXT4_I(inode)->i_data_sem);
1797 if (ext4_has_inline_data(inode))
1798 retval = 0;
1799 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1800 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1801 else
1802 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1803
1804 add_delayed:
1805 if (retval == 0) {
1806 int ret;
1807 /*
1808 * XXX: __block_prepare_write() unmaps passed block,
1809 * is it OK?
1810 */
1811 /*
1812 * If the block was allocated from previously allocated cluster,
1813 * then we don't need to reserve it again. However we still need
1814 * to reserve metadata for every block we're going to write.
1815 */
1816 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1817 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1818 ret = ext4_da_reserve_space(inode);
1819 if (ret) {
1820 /* not enough space to reserve */
1821 retval = ret;
1822 goto out_unlock;
1823 }
1824 }
1825
1826 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1827 ~0, EXTENT_STATUS_DELAYED);
1828 if (ret) {
1829 retval = ret;
1830 goto out_unlock;
1831 }
1832
1833 map_bh(bh, inode->i_sb, invalid_block);
1834 set_buffer_new(bh);
1835 set_buffer_delay(bh);
1836 } else if (retval > 0) {
1837 int ret;
1838 unsigned int status;
1839
1840 if (unlikely(retval != map->m_len)) {
1841 ext4_warning(inode->i_sb,
1842 "ES len assertion failed for inode "
1843 "%lu: retval %d != map->m_len %d",
1844 inode->i_ino, retval, map->m_len);
1845 WARN_ON(1);
1846 }
1847
1848 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1849 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1850 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1851 map->m_pblk, status);
1852 if (ret != 0)
1853 retval = ret;
1854 }
1855
1856 out_unlock:
1857 up_read((&EXT4_I(inode)->i_data_sem));
1858
1859 return retval;
1860 }
1861
1862 /*
1863 * This is a special get_block_t callback which is used by
1864 * ext4_da_write_begin(). It will either return mapped block or
1865 * reserve space for a single block.
1866 *
1867 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1868 * We also have b_blocknr = -1 and b_bdev initialized properly
1869 *
1870 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1871 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1872 * initialized properly.
1873 */
1874 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1875 struct buffer_head *bh, int create)
1876 {
1877 struct ext4_map_blocks map;
1878 int ret = 0;
1879
1880 BUG_ON(create == 0);
1881 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1882
1883 map.m_lblk = iblock;
1884 map.m_len = 1;
1885
1886 /*
1887 * first, we need to know whether the block is allocated already
1888 * preallocated blocks are unmapped but should treated
1889 * the same as allocated blocks.
1890 */
1891 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1892 if (ret <= 0)
1893 return ret;
1894
1895 map_bh(bh, inode->i_sb, map.m_pblk);
1896 ext4_update_bh_state(bh, map.m_flags);
1897
1898 if (buffer_unwritten(bh)) {
1899 /* A delayed write to unwritten bh should be marked
1900 * new and mapped. Mapped ensures that we don't do
1901 * get_block multiple times when we write to the same
1902 * offset and new ensures that we do proper zero out
1903 * for partial write.
1904 */
1905 set_buffer_new(bh);
1906 set_buffer_mapped(bh);
1907 }
1908 return 0;
1909 }
1910
1911 static int bget_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913 get_bh(bh);
1914 return 0;
1915 }
1916
1917 static int bput_one(handle_t *handle, struct buffer_head *bh)
1918 {
1919 put_bh(bh);
1920 return 0;
1921 }
1922
1923 static int __ext4_journalled_writepage(struct page *page,
1924 unsigned int len)
1925 {
1926 struct address_space *mapping = page->mapping;
1927 struct inode *inode = mapping->host;
1928 struct buffer_head *page_bufs = NULL;
1929 handle_t *handle = NULL;
1930 int ret = 0, err = 0;
1931 int inline_data = ext4_has_inline_data(inode);
1932 struct buffer_head *inode_bh = NULL;
1933
1934 ClearPageChecked(page);
1935
1936 if (inline_data) {
1937 BUG_ON(page->index != 0);
1938 BUG_ON(len > ext4_get_max_inline_size(inode));
1939 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1940 if (inode_bh == NULL)
1941 goto out;
1942 } else {
1943 page_bufs = page_buffers(page);
1944 if (!page_bufs) {
1945 BUG();
1946 goto out;
1947 }
1948 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1949 NULL, bget_one);
1950 }
1951 /*
1952 * We need to release the page lock before we start the
1953 * journal, so grab a reference so the page won't disappear
1954 * out from under us.
1955 */
1956 get_page(page);
1957 unlock_page(page);
1958
1959 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1960 ext4_writepage_trans_blocks(inode));
1961 if (IS_ERR(handle)) {
1962 ret = PTR_ERR(handle);
1963 put_page(page);
1964 goto out_no_pagelock;
1965 }
1966 BUG_ON(!ext4_handle_valid(handle));
1967
1968 lock_page(page);
1969 put_page(page);
1970 if (page->mapping != mapping) {
1971 /* The page got truncated from under us */
1972 ext4_journal_stop(handle);
1973 ret = 0;
1974 goto out;
1975 }
1976
1977 if (inline_data) {
1978 BUFFER_TRACE(inode_bh, "get write access");
1979 ret = ext4_journal_get_write_access(handle, inode_bh);
1980
1981 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1982
1983 } else {
1984 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1985 do_journal_get_write_access);
1986
1987 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1988 write_end_fn);
1989 }
1990 if (ret == 0)
1991 ret = err;
1992 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1993 err = ext4_journal_stop(handle);
1994 if (!ret)
1995 ret = err;
1996
1997 if (!ext4_has_inline_data(inode))
1998 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1999 NULL, bput_one);
2000 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2001 out:
2002 unlock_page(page);
2003 out_no_pagelock:
2004 brelse(inode_bh);
2005 return ret;
2006 }
2007
2008 /*
2009 * Note that we don't need to start a transaction unless we're journaling data
2010 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2011 * need to file the inode to the transaction's list in ordered mode because if
2012 * we are writing back data added by write(), the inode is already there and if
2013 * we are writing back data modified via mmap(), no one guarantees in which
2014 * transaction the data will hit the disk. In case we are journaling data, we
2015 * cannot start transaction directly because transaction start ranks above page
2016 * lock so we have to do some magic.
2017 *
2018 * This function can get called via...
2019 * - ext4_writepages after taking page lock (have journal handle)
2020 * - journal_submit_inode_data_buffers (no journal handle)
2021 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2022 * - grab_page_cache when doing write_begin (have journal handle)
2023 *
2024 * We don't do any block allocation in this function. If we have page with
2025 * multiple blocks we need to write those buffer_heads that are mapped. This
2026 * is important for mmaped based write. So if we do with blocksize 1K
2027 * truncate(f, 1024);
2028 * a = mmap(f, 0, 4096);
2029 * a[0] = 'a';
2030 * truncate(f, 4096);
2031 * we have in the page first buffer_head mapped via page_mkwrite call back
2032 * but other buffer_heads would be unmapped but dirty (dirty done via the
2033 * do_wp_page). So writepage should write the first block. If we modify
2034 * the mmap area beyond 1024 we will again get a page_fault and the
2035 * page_mkwrite callback will do the block allocation and mark the
2036 * buffer_heads mapped.
2037 *
2038 * We redirty the page if we have any buffer_heads that is either delay or
2039 * unwritten in the page.
2040 *
2041 * We can get recursively called as show below.
2042 *
2043 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2044 * ext4_writepage()
2045 *
2046 * But since we don't do any block allocation we should not deadlock.
2047 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2048 */
2049 static int ext4_writepage(struct page *page,
2050 struct writeback_control *wbc)
2051 {
2052 int ret = 0;
2053 loff_t size;
2054 unsigned int len;
2055 struct buffer_head *page_bufs = NULL;
2056 struct inode *inode = page->mapping->host;
2057 struct ext4_io_submit io_submit;
2058 bool keep_towrite = false;
2059
2060 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2061 ext4_invalidatepage(page, 0, PAGE_SIZE);
2062 unlock_page(page);
2063 return -EIO;
2064 }
2065
2066 trace_ext4_writepage(page);
2067 size = i_size_read(inode);
2068 if (page->index == size >> PAGE_SHIFT)
2069 len = size & ~PAGE_MASK;
2070 else
2071 len = PAGE_SIZE;
2072
2073 page_bufs = page_buffers(page);
2074 /*
2075 * We cannot do block allocation or other extent handling in this
2076 * function. If there are buffers needing that, we have to redirty
2077 * the page. But we may reach here when we do a journal commit via
2078 * journal_submit_inode_data_buffers() and in that case we must write
2079 * allocated buffers to achieve data=ordered mode guarantees.
2080 *
2081 * Also, if there is only one buffer per page (the fs block
2082 * size == the page size), if one buffer needs block
2083 * allocation or needs to modify the extent tree to clear the
2084 * unwritten flag, we know that the page can't be written at
2085 * all, so we might as well refuse the write immediately.
2086 * Unfortunately if the block size != page size, we can't as
2087 * easily detect this case using ext4_walk_page_buffers(), but
2088 * for the extremely common case, this is an optimization that
2089 * skips a useless round trip through ext4_bio_write_page().
2090 */
2091 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2092 ext4_bh_delay_or_unwritten)) {
2093 redirty_page_for_writepage(wbc, page);
2094 if ((current->flags & PF_MEMALLOC) ||
2095 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2096 /*
2097 * For memory cleaning there's no point in writing only
2098 * some buffers. So just bail out. Warn if we came here
2099 * from direct reclaim.
2100 */
2101 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2102 == PF_MEMALLOC);
2103 unlock_page(page);
2104 return 0;
2105 }
2106 keep_towrite = true;
2107 }
2108
2109 if (PageChecked(page) && ext4_should_journal_data(inode))
2110 /*
2111 * It's mmapped pagecache. Add buffers and journal it. There
2112 * doesn't seem much point in redirtying the page here.
2113 */
2114 return __ext4_journalled_writepage(page, len);
2115
2116 ext4_io_submit_init(&io_submit, wbc);
2117 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2118 if (!io_submit.io_end) {
2119 redirty_page_for_writepage(wbc, page);
2120 unlock_page(page);
2121 return -ENOMEM;
2122 }
2123 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2124 ext4_io_submit(&io_submit);
2125 /* Drop io_end reference we got from init */
2126 ext4_put_io_end_defer(io_submit.io_end);
2127 return ret;
2128 }
2129
2130 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2131 {
2132 int len;
2133 loff_t size;
2134 int err;
2135
2136 BUG_ON(page->index != mpd->first_page);
2137 clear_page_dirty_for_io(page);
2138 /*
2139 * We have to be very careful here! Nothing protects writeback path
2140 * against i_size changes and the page can be writeably mapped into
2141 * page tables. So an application can be growing i_size and writing
2142 * data through mmap while writeback runs. clear_page_dirty_for_io()
2143 * write-protects our page in page tables and the page cannot get
2144 * written to again until we release page lock. So only after
2145 * clear_page_dirty_for_io() we are safe to sample i_size for
2146 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2147 * on the barrier provided by TestClearPageDirty in
2148 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2149 * after page tables are updated.
2150 */
2151 size = i_size_read(mpd->inode);
2152 if (page->index == size >> PAGE_SHIFT)
2153 len = size & ~PAGE_MASK;
2154 else
2155 len = PAGE_SIZE;
2156 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2157 if (!err)
2158 mpd->wbc->nr_to_write--;
2159 mpd->first_page++;
2160
2161 return err;
2162 }
2163
2164 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2165
2166 /*
2167 * mballoc gives us at most this number of blocks...
2168 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2169 * The rest of mballoc seems to handle chunks up to full group size.
2170 */
2171 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2172
2173 /*
2174 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2175 *
2176 * @mpd - extent of blocks
2177 * @lblk - logical number of the block in the file
2178 * @bh - buffer head we want to add to the extent
2179 *
2180 * The function is used to collect contig. blocks in the same state. If the
2181 * buffer doesn't require mapping for writeback and we haven't started the
2182 * extent of buffers to map yet, the function returns 'true' immediately - the
2183 * caller can write the buffer right away. Otherwise the function returns true
2184 * if the block has been added to the extent, false if the block couldn't be
2185 * added.
2186 */
2187 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2188 struct buffer_head *bh)
2189 {
2190 struct ext4_map_blocks *map = &mpd->map;
2191
2192 /* Buffer that doesn't need mapping for writeback? */
2193 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2194 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2195 /* So far no extent to map => we write the buffer right away */
2196 if (map->m_len == 0)
2197 return true;
2198 return false;
2199 }
2200
2201 /* First block in the extent? */
2202 if (map->m_len == 0) {
2203 /* We cannot map unless handle is started... */
2204 if (!mpd->do_map)
2205 return false;
2206 map->m_lblk = lblk;
2207 map->m_len = 1;
2208 map->m_flags = bh->b_state & BH_FLAGS;
2209 return true;
2210 }
2211
2212 /* Don't go larger than mballoc is willing to allocate */
2213 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2214 return false;
2215
2216 /* Can we merge the block to our big extent? */
2217 if (lblk == map->m_lblk + map->m_len &&
2218 (bh->b_state & BH_FLAGS) == map->m_flags) {
2219 map->m_len++;
2220 return true;
2221 }
2222 return false;
2223 }
2224
2225 /*
2226 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2227 *
2228 * @mpd - extent of blocks for mapping
2229 * @head - the first buffer in the page
2230 * @bh - buffer we should start processing from
2231 * @lblk - logical number of the block in the file corresponding to @bh
2232 *
2233 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2234 * the page for IO if all buffers in this page were mapped and there's no
2235 * accumulated extent of buffers to map or add buffers in the page to the
2236 * extent of buffers to map. The function returns 1 if the caller can continue
2237 * by processing the next page, 0 if it should stop adding buffers to the
2238 * extent to map because we cannot extend it anymore. It can also return value
2239 * < 0 in case of error during IO submission.
2240 */
2241 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2242 struct buffer_head *head,
2243 struct buffer_head *bh,
2244 ext4_lblk_t lblk)
2245 {
2246 struct inode *inode = mpd->inode;
2247 int err;
2248 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2249 >> inode->i_blkbits;
2250
2251 do {
2252 BUG_ON(buffer_locked(bh));
2253
2254 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2255 /* Found extent to map? */
2256 if (mpd->map.m_len)
2257 return 0;
2258 /* Buffer needs mapping and handle is not started? */
2259 if (!mpd->do_map)
2260 return 0;
2261 /* Everything mapped so far and we hit EOF */
2262 break;
2263 }
2264 } while (lblk++, (bh = bh->b_this_page) != head);
2265 /* So far everything mapped? Submit the page for IO. */
2266 if (mpd->map.m_len == 0) {
2267 err = mpage_submit_page(mpd, head->b_page);
2268 if (err < 0)
2269 return err;
2270 }
2271 return lblk < blocks;
2272 }
2273
2274 /*
2275 * mpage_map_buffers - update buffers corresponding to changed extent and
2276 * submit fully mapped pages for IO
2277 *
2278 * @mpd - description of extent to map, on return next extent to map
2279 *
2280 * Scan buffers corresponding to changed extent (we expect corresponding pages
2281 * to be already locked) and update buffer state according to new extent state.
2282 * We map delalloc buffers to their physical location, clear unwritten bits,
2283 * and mark buffers as uninit when we perform writes to unwritten extents
2284 * and do extent conversion after IO is finished. If the last page is not fully
2285 * mapped, we update @map to the next extent in the last page that needs
2286 * mapping. Otherwise we submit the page for IO.
2287 */
2288 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2289 {
2290 struct pagevec pvec;
2291 int nr_pages, i;
2292 struct inode *inode = mpd->inode;
2293 struct buffer_head *head, *bh;
2294 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2295 pgoff_t start, end;
2296 ext4_lblk_t lblk;
2297 sector_t pblock;
2298 int err;
2299
2300 start = mpd->map.m_lblk >> bpp_bits;
2301 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2302 lblk = start << bpp_bits;
2303 pblock = mpd->map.m_pblk;
2304
2305 pagevec_init(&pvec, 0);
2306 while (start <= end) {
2307 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2308 PAGEVEC_SIZE);
2309 if (nr_pages == 0)
2310 break;
2311 for (i = 0; i < nr_pages; i++) {
2312 struct page *page = pvec.pages[i];
2313
2314 if (page->index > end)
2315 break;
2316 /* Up to 'end' pages must be contiguous */
2317 BUG_ON(page->index != start);
2318 bh = head = page_buffers(page);
2319 do {
2320 if (lblk < mpd->map.m_lblk)
2321 continue;
2322 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2323 /*
2324 * Buffer after end of mapped extent.
2325 * Find next buffer in the page to map.
2326 */
2327 mpd->map.m_len = 0;
2328 mpd->map.m_flags = 0;
2329 /*
2330 * FIXME: If dioread_nolock supports
2331 * blocksize < pagesize, we need to make
2332 * sure we add size mapped so far to
2333 * io_end->size as the following call
2334 * can submit the page for IO.
2335 */
2336 err = mpage_process_page_bufs(mpd, head,
2337 bh, lblk);
2338 pagevec_release(&pvec);
2339 if (err > 0)
2340 err = 0;
2341 return err;
2342 }
2343 if (buffer_delay(bh)) {
2344 clear_buffer_delay(bh);
2345 bh->b_blocknr = pblock++;
2346 }
2347 clear_buffer_unwritten(bh);
2348 } while (lblk++, (bh = bh->b_this_page) != head);
2349
2350 /*
2351 * FIXME: This is going to break if dioread_nolock
2352 * supports blocksize < pagesize as we will try to
2353 * convert potentially unmapped parts of inode.
2354 */
2355 mpd->io_submit.io_end->size += PAGE_SIZE;
2356 /* Page fully mapped - let IO run! */
2357 err = mpage_submit_page(mpd, page);
2358 if (err < 0) {
2359 pagevec_release(&pvec);
2360 return err;
2361 }
2362 start++;
2363 }
2364 pagevec_release(&pvec);
2365 }
2366 /* Extent fully mapped and matches with page boundary. We are done. */
2367 mpd->map.m_len = 0;
2368 mpd->map.m_flags = 0;
2369 return 0;
2370 }
2371
2372 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2373 {
2374 struct inode *inode = mpd->inode;
2375 struct ext4_map_blocks *map = &mpd->map;
2376 int get_blocks_flags;
2377 int err, dioread_nolock;
2378
2379 trace_ext4_da_write_pages_extent(inode, map);
2380 /*
2381 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2382 * to convert an unwritten extent to be initialized (in the case
2383 * where we have written into one or more preallocated blocks). It is
2384 * possible that we're going to need more metadata blocks than
2385 * previously reserved. However we must not fail because we're in
2386 * writeback and there is nothing we can do about it so it might result
2387 * in data loss. So use reserved blocks to allocate metadata if
2388 * possible.
2389 *
2390 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2391 * the blocks in question are delalloc blocks. This indicates
2392 * that the blocks and quotas has already been checked when
2393 * the data was copied into the page cache.
2394 */
2395 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2396 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2397 EXT4_GET_BLOCKS_IO_SUBMIT;
2398 dioread_nolock = ext4_should_dioread_nolock(inode);
2399 if (dioread_nolock)
2400 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2401 if (map->m_flags & (1 << BH_Delay))
2402 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2403
2404 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2405 if (err < 0)
2406 return err;
2407 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2408 if (!mpd->io_submit.io_end->handle &&
2409 ext4_handle_valid(handle)) {
2410 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2411 handle->h_rsv_handle = NULL;
2412 }
2413 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2414 }
2415
2416 BUG_ON(map->m_len == 0);
2417 if (map->m_flags & EXT4_MAP_NEW) {
2418 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2419 map->m_len);
2420 }
2421 return 0;
2422 }
2423
2424 /*
2425 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2426 * mpd->len and submit pages underlying it for IO
2427 *
2428 * @handle - handle for journal operations
2429 * @mpd - extent to map
2430 * @give_up_on_write - we set this to true iff there is a fatal error and there
2431 * is no hope of writing the data. The caller should discard
2432 * dirty pages to avoid infinite loops.
2433 *
2434 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2435 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2436 * them to initialized or split the described range from larger unwritten
2437 * extent. Note that we need not map all the described range since allocation
2438 * can return less blocks or the range is covered by more unwritten extents. We
2439 * cannot map more because we are limited by reserved transaction credits. On
2440 * the other hand we always make sure that the last touched page is fully
2441 * mapped so that it can be written out (and thus forward progress is
2442 * guaranteed). After mapping we submit all mapped pages for IO.
2443 */
2444 static int mpage_map_and_submit_extent(handle_t *handle,
2445 struct mpage_da_data *mpd,
2446 bool *give_up_on_write)
2447 {
2448 struct inode *inode = mpd->inode;
2449 struct ext4_map_blocks *map = &mpd->map;
2450 int err;
2451 loff_t disksize;
2452 int progress = 0;
2453
2454 mpd->io_submit.io_end->offset =
2455 ((loff_t)map->m_lblk) << inode->i_blkbits;
2456 do {
2457 err = mpage_map_one_extent(handle, mpd);
2458 if (err < 0) {
2459 struct super_block *sb = inode->i_sb;
2460
2461 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2462 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2463 goto invalidate_dirty_pages;
2464 /*
2465 * Let the uper layers retry transient errors.
2466 * In the case of ENOSPC, if ext4_count_free_blocks()
2467 * is non-zero, a commit should free up blocks.
2468 */
2469 if ((err == -ENOMEM) ||
2470 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2471 if (progress)
2472 goto update_disksize;
2473 return err;
2474 }
2475 ext4_msg(sb, KERN_CRIT,
2476 "Delayed block allocation failed for "
2477 "inode %lu at logical offset %llu with"
2478 " max blocks %u with error %d",
2479 inode->i_ino,
2480 (unsigned long long)map->m_lblk,
2481 (unsigned)map->m_len, -err);
2482 ext4_msg(sb, KERN_CRIT,
2483 "This should not happen!! Data will "
2484 "be lost\n");
2485 if (err == -ENOSPC)
2486 ext4_print_free_blocks(inode);
2487 invalidate_dirty_pages:
2488 *give_up_on_write = true;
2489 return err;
2490 }
2491 progress = 1;
2492 /*
2493 * Update buffer state, submit mapped pages, and get us new
2494 * extent to map
2495 */
2496 err = mpage_map_and_submit_buffers(mpd);
2497 if (err < 0)
2498 goto update_disksize;
2499 } while (map->m_len);
2500
2501 update_disksize:
2502 /*
2503 * Update on-disk size after IO is submitted. Races with
2504 * truncate are avoided by checking i_size under i_data_sem.
2505 */
2506 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2507 if (disksize > EXT4_I(inode)->i_disksize) {
2508 int err2;
2509 loff_t i_size;
2510
2511 down_write(&EXT4_I(inode)->i_data_sem);
2512 i_size = i_size_read(inode);
2513 if (disksize > i_size)
2514 disksize = i_size;
2515 if (disksize > EXT4_I(inode)->i_disksize)
2516 EXT4_I(inode)->i_disksize = disksize;
2517 up_write(&EXT4_I(inode)->i_data_sem);
2518 err2 = ext4_mark_inode_dirty(handle, inode);
2519 if (err2)
2520 ext4_error(inode->i_sb,
2521 "Failed to mark inode %lu dirty",
2522 inode->i_ino);
2523 if (!err)
2524 err = err2;
2525 }
2526 return err;
2527 }
2528
2529 /*
2530 * Calculate the total number of credits to reserve for one writepages
2531 * iteration. This is called from ext4_writepages(). We map an extent of
2532 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2533 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2534 * bpp - 1 blocks in bpp different extents.
2535 */
2536 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2537 {
2538 int bpp = ext4_journal_blocks_per_page(inode);
2539
2540 return ext4_meta_trans_blocks(inode,
2541 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2542 }
2543
2544 /*
2545 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2546 * and underlying extent to map
2547 *
2548 * @mpd - where to look for pages
2549 *
2550 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2551 * IO immediately. When we find a page which isn't mapped we start accumulating
2552 * extent of buffers underlying these pages that needs mapping (formed by
2553 * either delayed or unwritten buffers). We also lock the pages containing
2554 * these buffers. The extent found is returned in @mpd structure (starting at
2555 * mpd->lblk with length mpd->len blocks).
2556 *
2557 * Note that this function can attach bios to one io_end structure which are
2558 * neither logically nor physically contiguous. Although it may seem as an
2559 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2560 * case as we need to track IO to all buffers underlying a page in one io_end.
2561 */
2562 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2563 {
2564 struct address_space *mapping = mpd->inode->i_mapping;
2565 struct pagevec pvec;
2566 unsigned int nr_pages;
2567 long left = mpd->wbc->nr_to_write;
2568 pgoff_t index = mpd->first_page;
2569 pgoff_t end = mpd->last_page;
2570 int tag;
2571 int i, err = 0;
2572 int blkbits = mpd->inode->i_blkbits;
2573 ext4_lblk_t lblk;
2574 struct buffer_head *head;
2575
2576 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2577 tag = PAGECACHE_TAG_TOWRITE;
2578 else
2579 tag = PAGECACHE_TAG_DIRTY;
2580
2581 pagevec_init(&pvec, 0);
2582 mpd->map.m_len = 0;
2583 mpd->next_page = index;
2584 while (index <= end) {
2585 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2586 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2587 if (nr_pages == 0)
2588 goto out;
2589
2590 for (i = 0; i < nr_pages; i++) {
2591 struct page *page = pvec.pages[i];
2592
2593 /*
2594 * At this point, the page may be truncated or
2595 * invalidated (changing page->mapping to NULL), or
2596 * even swizzled back from swapper_space to tmpfs file
2597 * mapping. However, page->index will not change
2598 * because we have a reference on the page.
2599 */
2600 if (page->index > end)
2601 goto out;
2602
2603 /*
2604 * Accumulated enough dirty pages? This doesn't apply
2605 * to WB_SYNC_ALL mode. For integrity sync we have to
2606 * keep going because someone may be concurrently
2607 * dirtying pages, and we might have synced a lot of
2608 * newly appeared dirty pages, but have not synced all
2609 * of the old dirty pages.
2610 */
2611 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2612 goto out;
2613
2614 /* If we can't merge this page, we are done. */
2615 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2616 goto out;
2617
2618 lock_page(page);
2619 /*
2620 * If the page is no longer dirty, or its mapping no
2621 * longer corresponds to inode we are writing (which
2622 * means it has been truncated or invalidated), or the
2623 * page is already under writeback and we are not doing
2624 * a data integrity writeback, skip the page
2625 */
2626 if (!PageDirty(page) ||
2627 (PageWriteback(page) &&
2628 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2629 unlikely(page->mapping != mapping)) {
2630 unlock_page(page);
2631 continue;
2632 }
2633
2634 wait_on_page_writeback(page);
2635 BUG_ON(PageWriteback(page));
2636
2637 if (mpd->map.m_len == 0)
2638 mpd->first_page = page->index;
2639 mpd->next_page = page->index + 1;
2640 /* Add all dirty buffers to mpd */
2641 lblk = ((ext4_lblk_t)page->index) <<
2642 (PAGE_SHIFT - blkbits);
2643 head = page_buffers(page);
2644 err = mpage_process_page_bufs(mpd, head, head, lblk);
2645 if (err <= 0)
2646 goto out;
2647 err = 0;
2648 left--;
2649 }
2650 pagevec_release(&pvec);
2651 cond_resched();
2652 }
2653 return 0;
2654 out:
2655 pagevec_release(&pvec);
2656 return err;
2657 }
2658
2659 static int __writepage(struct page *page, struct writeback_control *wbc,
2660 void *data)
2661 {
2662 struct address_space *mapping = data;
2663 int ret = ext4_writepage(page, wbc);
2664 mapping_set_error(mapping, ret);
2665 return ret;
2666 }
2667
2668 static int ext4_writepages(struct address_space *mapping,
2669 struct writeback_control *wbc)
2670 {
2671 pgoff_t writeback_index = 0;
2672 long nr_to_write = wbc->nr_to_write;
2673 int range_whole = 0;
2674 int cycled = 1;
2675 handle_t *handle = NULL;
2676 struct mpage_da_data mpd;
2677 struct inode *inode = mapping->host;
2678 int needed_blocks, rsv_blocks = 0, ret = 0;
2679 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2680 bool done;
2681 struct blk_plug plug;
2682 bool give_up_on_write = false;
2683
2684 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2685 return -EIO;
2686
2687 percpu_down_read(&sbi->s_journal_flag_rwsem);
2688 trace_ext4_writepages(inode, wbc);
2689
2690 if (dax_mapping(mapping)) {
2691 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2692 wbc);
2693 goto out_writepages;
2694 }
2695
2696 /*
2697 * No pages to write? This is mainly a kludge to avoid starting
2698 * a transaction for special inodes like journal inode on last iput()
2699 * because that could violate lock ordering on umount
2700 */
2701 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2702 goto out_writepages;
2703
2704 if (ext4_should_journal_data(inode)) {
2705 struct blk_plug plug;
2706
2707 blk_start_plug(&plug);
2708 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2709 blk_finish_plug(&plug);
2710 goto out_writepages;
2711 }
2712
2713 /*
2714 * If the filesystem has aborted, it is read-only, so return
2715 * right away instead of dumping stack traces later on that
2716 * will obscure the real source of the problem. We test
2717 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2718 * the latter could be true if the filesystem is mounted
2719 * read-only, and in that case, ext4_writepages should
2720 * *never* be called, so if that ever happens, we would want
2721 * the stack trace.
2722 */
2723 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2724 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2725 ret = -EROFS;
2726 goto out_writepages;
2727 }
2728
2729 if (ext4_should_dioread_nolock(inode)) {
2730 /*
2731 * We may need to convert up to one extent per block in
2732 * the page and we may dirty the inode.
2733 */
2734 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2735 }
2736
2737 /*
2738 * If we have inline data and arrive here, it means that
2739 * we will soon create the block for the 1st page, so
2740 * we'd better clear the inline data here.
2741 */
2742 if (ext4_has_inline_data(inode)) {
2743 /* Just inode will be modified... */
2744 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2745 if (IS_ERR(handle)) {
2746 ret = PTR_ERR(handle);
2747 goto out_writepages;
2748 }
2749 BUG_ON(ext4_test_inode_state(inode,
2750 EXT4_STATE_MAY_INLINE_DATA));
2751 ext4_destroy_inline_data(handle, inode);
2752 ext4_journal_stop(handle);
2753 }
2754
2755 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2756 range_whole = 1;
2757
2758 if (wbc->range_cyclic) {
2759 writeback_index = mapping->writeback_index;
2760 if (writeback_index)
2761 cycled = 0;
2762 mpd.first_page = writeback_index;
2763 mpd.last_page = -1;
2764 } else {
2765 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2766 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2767 }
2768
2769 mpd.inode = inode;
2770 mpd.wbc = wbc;
2771 ext4_io_submit_init(&mpd.io_submit, wbc);
2772 retry:
2773 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2774 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2775 done = false;
2776 blk_start_plug(&plug);
2777
2778 /*
2779 * First writeback pages that don't need mapping - we can avoid
2780 * starting a transaction unnecessarily and also avoid being blocked
2781 * in the block layer on device congestion while having transaction
2782 * started.
2783 */
2784 mpd.do_map = 0;
2785 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2786 if (!mpd.io_submit.io_end) {
2787 ret = -ENOMEM;
2788 goto unplug;
2789 }
2790 ret = mpage_prepare_extent_to_map(&mpd);
2791 /* Submit prepared bio */
2792 ext4_io_submit(&mpd.io_submit);
2793 ext4_put_io_end_defer(mpd.io_submit.io_end);
2794 mpd.io_submit.io_end = NULL;
2795 /* Unlock pages we didn't use */
2796 mpage_release_unused_pages(&mpd, false);
2797 if (ret < 0)
2798 goto unplug;
2799
2800 while (!done && mpd.first_page <= mpd.last_page) {
2801 /* For each extent of pages we use new io_end */
2802 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2803 if (!mpd.io_submit.io_end) {
2804 ret = -ENOMEM;
2805 break;
2806 }
2807
2808 /*
2809 * We have two constraints: We find one extent to map and we
2810 * must always write out whole page (makes a difference when
2811 * blocksize < pagesize) so that we don't block on IO when we
2812 * try to write out the rest of the page. Journalled mode is
2813 * not supported by delalloc.
2814 */
2815 BUG_ON(ext4_should_journal_data(inode));
2816 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2817
2818 /* start a new transaction */
2819 handle = ext4_journal_start_with_reserve(inode,
2820 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2821 if (IS_ERR(handle)) {
2822 ret = PTR_ERR(handle);
2823 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2824 "%ld pages, ino %lu; err %d", __func__,
2825 wbc->nr_to_write, inode->i_ino, ret);
2826 /* Release allocated io_end */
2827 ext4_put_io_end(mpd.io_submit.io_end);
2828 mpd.io_submit.io_end = NULL;
2829 break;
2830 }
2831 mpd.do_map = 1;
2832
2833 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2834 ret = mpage_prepare_extent_to_map(&mpd);
2835 if (!ret) {
2836 if (mpd.map.m_len)
2837 ret = mpage_map_and_submit_extent(handle, &mpd,
2838 &give_up_on_write);
2839 else {
2840 /*
2841 * We scanned the whole range (or exhausted
2842 * nr_to_write), submitted what was mapped and
2843 * didn't find anything needing mapping. We are
2844 * done.
2845 */
2846 done = true;
2847 }
2848 }
2849 /*
2850 * Caution: If the handle is synchronous,
2851 * ext4_journal_stop() can wait for transaction commit
2852 * to finish which may depend on writeback of pages to
2853 * complete or on page lock to be released. In that
2854 * case, we have to wait until after after we have
2855 * submitted all the IO, released page locks we hold,
2856 * and dropped io_end reference (for extent conversion
2857 * to be able to complete) before stopping the handle.
2858 */
2859 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2860 ext4_journal_stop(handle);
2861 handle = NULL;
2862 mpd.do_map = 0;
2863 }
2864 /* Submit prepared bio */
2865 ext4_io_submit(&mpd.io_submit);
2866 /* Unlock pages we didn't use */
2867 mpage_release_unused_pages(&mpd, give_up_on_write);
2868 /*
2869 * Drop our io_end reference we got from init. We have
2870 * to be careful and use deferred io_end finishing if
2871 * we are still holding the transaction as we can
2872 * release the last reference to io_end which may end
2873 * up doing unwritten extent conversion.
2874 */
2875 if (handle) {
2876 ext4_put_io_end_defer(mpd.io_submit.io_end);
2877 ext4_journal_stop(handle);
2878 } else
2879 ext4_put_io_end(mpd.io_submit.io_end);
2880 mpd.io_submit.io_end = NULL;
2881
2882 if (ret == -ENOSPC && sbi->s_journal) {
2883 /*
2884 * Commit the transaction which would
2885 * free blocks released in the transaction
2886 * and try again
2887 */
2888 jbd2_journal_force_commit_nested(sbi->s_journal);
2889 ret = 0;
2890 continue;
2891 }
2892 /* Fatal error - ENOMEM, EIO... */
2893 if (ret)
2894 break;
2895 }
2896 unplug:
2897 blk_finish_plug(&plug);
2898 if (!ret && !cycled && wbc->nr_to_write > 0) {
2899 cycled = 1;
2900 mpd.last_page = writeback_index - 1;
2901 mpd.first_page = 0;
2902 goto retry;
2903 }
2904
2905 /* Update index */
2906 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2907 /*
2908 * Set the writeback_index so that range_cyclic
2909 * mode will write it back later
2910 */
2911 mapping->writeback_index = mpd.first_page;
2912
2913 out_writepages:
2914 trace_ext4_writepages_result(inode, wbc, ret,
2915 nr_to_write - wbc->nr_to_write);
2916 percpu_up_read(&sbi->s_journal_flag_rwsem);
2917 return ret;
2918 }
2919
2920 static int ext4_nonda_switch(struct super_block *sb)
2921 {
2922 s64 free_clusters, dirty_clusters;
2923 struct ext4_sb_info *sbi = EXT4_SB(sb);
2924
2925 /*
2926 * switch to non delalloc mode if we are running low
2927 * on free block. The free block accounting via percpu
2928 * counters can get slightly wrong with percpu_counter_batch getting
2929 * accumulated on each CPU without updating global counters
2930 * Delalloc need an accurate free block accounting. So switch
2931 * to non delalloc when we are near to error range.
2932 */
2933 free_clusters =
2934 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2935 dirty_clusters =
2936 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2937 /*
2938 * Start pushing delalloc when 1/2 of free blocks are dirty.
2939 */
2940 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2941 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2942
2943 if (2 * free_clusters < 3 * dirty_clusters ||
2944 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2945 /*
2946 * free block count is less than 150% of dirty blocks
2947 * or free blocks is less than watermark
2948 */
2949 return 1;
2950 }
2951 return 0;
2952 }
2953
2954 /* We always reserve for an inode update; the superblock could be there too */
2955 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2956 {
2957 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2958 return 1;
2959
2960 if (pos + len <= 0x7fffffffULL)
2961 return 1;
2962
2963 /* We might need to update the superblock to set LARGE_FILE */
2964 return 2;
2965 }
2966
2967 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2968 loff_t pos, unsigned len, unsigned flags,
2969 struct page **pagep, void **fsdata)
2970 {
2971 int ret, retries = 0;
2972 struct page *page;
2973 pgoff_t index;
2974 struct inode *inode = mapping->host;
2975 handle_t *handle;
2976
2977 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2978 return -EIO;
2979
2980 index = pos >> PAGE_SHIFT;
2981
2982 if (ext4_nonda_switch(inode->i_sb) ||
2983 S_ISLNK(inode->i_mode)) {
2984 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2985 return ext4_write_begin(file, mapping, pos,
2986 len, flags, pagep, fsdata);
2987 }
2988 *fsdata = (void *)0;
2989 trace_ext4_da_write_begin(inode, pos, len, flags);
2990
2991 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2992 ret = ext4_da_write_inline_data_begin(mapping, inode,
2993 pos, len, flags,
2994 pagep, fsdata);
2995 if (ret < 0)
2996 return ret;
2997 if (ret == 1)
2998 return 0;
2999 }
3000
3001 /*
3002 * grab_cache_page_write_begin() can take a long time if the
3003 * system is thrashing due to memory pressure, or if the page
3004 * is being written back. So grab it first before we start
3005 * the transaction handle. This also allows us to allocate
3006 * the page (if needed) without using GFP_NOFS.
3007 */
3008 retry_grab:
3009 page = grab_cache_page_write_begin(mapping, index, flags);
3010 if (!page)
3011 return -ENOMEM;
3012 unlock_page(page);
3013
3014 /*
3015 * With delayed allocation, we don't log the i_disksize update
3016 * if there is delayed block allocation. But we still need
3017 * to journalling the i_disksize update if writes to the end
3018 * of file which has an already mapped buffer.
3019 */
3020 retry_journal:
3021 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3022 ext4_da_write_credits(inode, pos, len));
3023 if (IS_ERR(handle)) {
3024 put_page(page);
3025 return PTR_ERR(handle);
3026 }
3027
3028 lock_page(page);
3029 if (page->mapping != mapping) {
3030 /* The page got truncated from under us */
3031 unlock_page(page);
3032 put_page(page);
3033 ext4_journal_stop(handle);
3034 goto retry_grab;
3035 }
3036 /* In case writeback began while the page was unlocked */
3037 wait_for_stable_page(page);
3038
3039 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3040 ret = ext4_block_write_begin(page, pos, len,
3041 ext4_da_get_block_prep);
3042 #else
3043 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3044 #endif
3045 if (ret < 0) {
3046 unlock_page(page);
3047 ext4_journal_stop(handle);
3048 /*
3049 * block_write_begin may have instantiated a few blocks
3050 * outside i_size. Trim these off again. Don't need
3051 * i_size_read because we hold i_mutex.
3052 */
3053 if (pos + len > inode->i_size)
3054 ext4_truncate_failed_write(inode);
3055
3056 if (ret == -ENOSPC &&
3057 ext4_should_retry_alloc(inode->i_sb, &retries))
3058 goto retry_journal;
3059
3060 put_page(page);
3061 return ret;
3062 }
3063
3064 *pagep = page;
3065 return ret;
3066 }
3067
3068 /*
3069 * Check if we should update i_disksize
3070 * when write to the end of file but not require block allocation
3071 */
3072 static int ext4_da_should_update_i_disksize(struct page *page,
3073 unsigned long offset)
3074 {
3075 struct buffer_head *bh;
3076 struct inode *inode = page->mapping->host;
3077 unsigned int idx;
3078 int i;
3079
3080 bh = page_buffers(page);
3081 idx = offset >> inode->i_blkbits;
3082
3083 for (i = 0; i < idx; i++)
3084 bh = bh->b_this_page;
3085
3086 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3087 return 0;
3088 return 1;
3089 }
3090
3091 static int ext4_da_write_end(struct file *file,
3092 struct address_space *mapping,
3093 loff_t pos, unsigned len, unsigned copied,
3094 struct page *page, void *fsdata)
3095 {
3096 struct inode *inode = mapping->host;
3097 int ret = 0, ret2;
3098 handle_t *handle = ext4_journal_current_handle();
3099 loff_t new_i_size;
3100 unsigned long start, end;
3101 int write_mode = (int)(unsigned long)fsdata;
3102
3103 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3104 return ext4_write_end(file, mapping, pos,
3105 len, copied, page, fsdata);
3106
3107 trace_ext4_da_write_end(inode, pos, len, copied);
3108 start = pos & (PAGE_SIZE - 1);
3109 end = start + copied - 1;
3110
3111 /*
3112 * generic_write_end() will run mark_inode_dirty() if i_size
3113 * changes. So let's piggyback the i_disksize mark_inode_dirty
3114 * into that.
3115 */
3116 new_i_size = pos + copied;
3117 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3118 if (ext4_has_inline_data(inode) ||
3119 ext4_da_should_update_i_disksize(page, end)) {
3120 ext4_update_i_disksize(inode, new_i_size);
3121 /* We need to mark inode dirty even if
3122 * new_i_size is less that inode->i_size
3123 * bu greater than i_disksize.(hint delalloc)
3124 */
3125 ext4_mark_inode_dirty(handle, inode);
3126 }
3127 }
3128
3129 if (write_mode != CONVERT_INLINE_DATA &&
3130 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3131 ext4_has_inline_data(inode))
3132 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3133 page);
3134 else
3135 ret2 = generic_write_end(file, mapping, pos, len, copied,
3136 page, fsdata);
3137
3138 copied = ret2;
3139 if (ret2 < 0)
3140 ret = ret2;
3141 ret2 = ext4_journal_stop(handle);
3142 if (!ret)
3143 ret = ret2;
3144
3145 return ret ? ret : copied;
3146 }
3147
3148 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3149 unsigned int length)
3150 {
3151 /*
3152 * Drop reserved blocks
3153 */
3154 BUG_ON(!PageLocked(page));
3155 if (!page_has_buffers(page))
3156 goto out;
3157
3158 ext4_da_page_release_reservation(page, offset, length);
3159
3160 out:
3161 ext4_invalidatepage(page, offset, length);
3162
3163 return;
3164 }
3165
3166 /*
3167 * Force all delayed allocation blocks to be allocated for a given inode.
3168 */
3169 int ext4_alloc_da_blocks(struct inode *inode)
3170 {
3171 trace_ext4_alloc_da_blocks(inode);
3172
3173 if (!EXT4_I(inode)->i_reserved_data_blocks)
3174 return 0;
3175
3176 /*
3177 * We do something simple for now. The filemap_flush() will
3178 * also start triggering a write of the data blocks, which is
3179 * not strictly speaking necessary (and for users of
3180 * laptop_mode, not even desirable). However, to do otherwise
3181 * would require replicating code paths in:
3182 *
3183 * ext4_writepages() ->
3184 * write_cache_pages() ---> (via passed in callback function)
3185 * __mpage_da_writepage() -->
3186 * mpage_add_bh_to_extent()
3187 * mpage_da_map_blocks()
3188 *
3189 * The problem is that write_cache_pages(), located in
3190 * mm/page-writeback.c, marks pages clean in preparation for
3191 * doing I/O, which is not desirable if we're not planning on
3192 * doing I/O at all.
3193 *
3194 * We could call write_cache_pages(), and then redirty all of
3195 * the pages by calling redirty_page_for_writepage() but that
3196 * would be ugly in the extreme. So instead we would need to
3197 * replicate parts of the code in the above functions,
3198 * simplifying them because we wouldn't actually intend to
3199 * write out the pages, but rather only collect contiguous
3200 * logical block extents, call the multi-block allocator, and
3201 * then update the buffer heads with the block allocations.
3202 *
3203 * For now, though, we'll cheat by calling filemap_flush(),
3204 * which will map the blocks, and start the I/O, but not
3205 * actually wait for the I/O to complete.
3206 */
3207 return filemap_flush(inode->i_mapping);
3208 }
3209
3210 /*
3211 * bmap() is special. It gets used by applications such as lilo and by
3212 * the swapper to find the on-disk block of a specific piece of data.
3213 *
3214 * Naturally, this is dangerous if the block concerned is still in the
3215 * journal. If somebody makes a swapfile on an ext4 data-journaling
3216 * filesystem and enables swap, then they may get a nasty shock when the
3217 * data getting swapped to that swapfile suddenly gets overwritten by
3218 * the original zero's written out previously to the journal and
3219 * awaiting writeback in the kernel's buffer cache.
3220 *
3221 * So, if we see any bmap calls here on a modified, data-journaled file,
3222 * take extra steps to flush any blocks which might be in the cache.
3223 */
3224 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3225 {
3226 struct inode *inode = mapping->host;
3227 journal_t *journal;
3228 int err;
3229
3230 /*
3231 * We can get here for an inline file via the FIBMAP ioctl
3232 */
3233 if (ext4_has_inline_data(inode))
3234 return 0;
3235
3236 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3237 test_opt(inode->i_sb, DELALLOC)) {
3238 /*
3239 * With delalloc we want to sync the file
3240 * so that we can make sure we allocate
3241 * blocks for file
3242 */
3243 filemap_write_and_wait(mapping);
3244 }
3245
3246 if (EXT4_JOURNAL(inode) &&
3247 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3248 /*
3249 * This is a REALLY heavyweight approach, but the use of
3250 * bmap on dirty files is expected to be extremely rare:
3251 * only if we run lilo or swapon on a freshly made file
3252 * do we expect this to happen.
3253 *
3254 * (bmap requires CAP_SYS_RAWIO so this does not
3255 * represent an unprivileged user DOS attack --- we'd be
3256 * in trouble if mortal users could trigger this path at
3257 * will.)
3258 *
3259 * NB. EXT4_STATE_JDATA is not set on files other than
3260 * regular files. If somebody wants to bmap a directory
3261 * or symlink and gets confused because the buffer
3262 * hasn't yet been flushed to disk, they deserve
3263 * everything they get.
3264 */
3265
3266 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3267 journal = EXT4_JOURNAL(inode);
3268 jbd2_journal_lock_updates(journal);
3269 err = jbd2_journal_flush(journal);
3270 jbd2_journal_unlock_updates(journal);
3271
3272 if (err)
3273 return 0;
3274 }
3275
3276 return generic_block_bmap(mapping, block, ext4_get_block);
3277 }
3278
3279 static int ext4_readpage(struct file *file, struct page *page)
3280 {
3281 int ret = -EAGAIN;
3282 struct inode *inode = page->mapping->host;
3283
3284 trace_ext4_readpage(page);
3285
3286 if (ext4_has_inline_data(inode))
3287 ret = ext4_readpage_inline(inode, page);
3288
3289 if (ret == -EAGAIN)
3290 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3291
3292 return ret;
3293 }
3294
3295 static int
3296 ext4_readpages(struct file *file, struct address_space *mapping,
3297 struct list_head *pages, unsigned nr_pages)
3298 {
3299 struct inode *inode = mapping->host;
3300
3301 /* If the file has inline data, no need to do readpages. */
3302 if (ext4_has_inline_data(inode))
3303 return 0;
3304
3305 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3306 }
3307
3308 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3309 unsigned int length)
3310 {
3311 trace_ext4_invalidatepage(page, offset, length);
3312
3313 /* No journalling happens on data buffers when this function is used */
3314 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3315
3316 block_invalidatepage(page, offset, length);
3317 }
3318
3319 static int __ext4_journalled_invalidatepage(struct page *page,
3320 unsigned int offset,
3321 unsigned int length)
3322 {
3323 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3324
3325 trace_ext4_journalled_invalidatepage(page, offset, length);
3326
3327 /*
3328 * If it's a full truncate we just forget about the pending dirtying
3329 */
3330 if (offset == 0 && length == PAGE_SIZE)
3331 ClearPageChecked(page);
3332
3333 return jbd2_journal_invalidatepage(journal, page, offset, length);
3334 }
3335
3336 /* Wrapper for aops... */
3337 static void ext4_journalled_invalidatepage(struct page *page,
3338 unsigned int offset,
3339 unsigned int length)
3340 {
3341 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3342 }
3343
3344 static int ext4_releasepage(struct page *page, gfp_t wait)
3345 {
3346 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3347
3348 trace_ext4_releasepage(page);
3349
3350 /* Page has dirty journalled data -> cannot release */
3351 if (PageChecked(page))
3352 return 0;
3353 if (journal)
3354 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3355 else
3356 return try_to_free_buffers(page);
3357 }
3358
3359 #ifdef CONFIG_FS_DAX
3360 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3361 unsigned flags, struct iomap *iomap)
3362 {
3363 struct block_device *bdev;
3364 unsigned int blkbits = inode->i_blkbits;
3365 unsigned long first_block = offset >> blkbits;
3366 unsigned long last_block = (offset + length - 1) >> blkbits;
3367 struct ext4_map_blocks map;
3368 int ret;
3369
3370 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3371 return -ERANGE;
3372
3373 map.m_lblk = first_block;
3374 map.m_len = last_block - first_block + 1;
3375
3376 if (!(flags & IOMAP_WRITE)) {
3377 ret = ext4_map_blocks(NULL, inode, &map, 0);
3378 } else {
3379 int dio_credits;
3380 handle_t *handle;
3381 int retries = 0;
3382
3383 /* Trim mapping request to maximum we can map at once for DIO */
3384 if (map.m_len > DIO_MAX_BLOCKS)
3385 map.m_len = DIO_MAX_BLOCKS;
3386 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3387 retry:
3388 /*
3389 * Either we allocate blocks and then we don't get unwritten
3390 * extent so we have reserved enough credits, or the blocks
3391 * are already allocated and unwritten and in that case
3392 * extent conversion fits in the credits as well.
3393 */
3394 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3395 dio_credits);
3396 if (IS_ERR(handle))
3397 return PTR_ERR(handle);
3398
3399 ret = ext4_map_blocks(handle, inode, &map,
3400 EXT4_GET_BLOCKS_CREATE_ZERO);
3401 if (ret < 0) {
3402 ext4_journal_stop(handle);
3403 if (ret == -ENOSPC &&
3404 ext4_should_retry_alloc(inode->i_sb, &retries))
3405 goto retry;
3406 return ret;
3407 }
3408
3409 /*
3410 * If we added blocks beyond i_size, we need to make sure they
3411 * will get truncated if we crash before updating i_size in
3412 * ext4_iomap_end(). For faults we don't need to do that (and
3413 * even cannot because for orphan list operations inode_lock is
3414 * required) - if we happen to instantiate block beyond i_size,
3415 * it is because we race with truncate which has already added
3416 * the inode to the orphan list.
3417 */
3418 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3419 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3420 int err;
3421
3422 err = ext4_orphan_add(handle, inode);
3423 if (err < 0) {
3424 ext4_journal_stop(handle);
3425 return err;
3426 }
3427 }
3428 ext4_journal_stop(handle);
3429 }
3430
3431 iomap->flags = 0;
3432 bdev = inode->i_sb->s_bdev;
3433 iomap->bdev = bdev;
3434 if (blk_queue_dax(bdev->bd_queue))
3435 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3436 else
3437 iomap->dax_dev = NULL;
3438 iomap->offset = first_block << blkbits;
3439
3440 if (ret == 0) {
3441 iomap->type = IOMAP_HOLE;
3442 iomap->blkno = IOMAP_NULL_BLOCK;
3443 iomap->length = (u64)map.m_len << blkbits;
3444 } else {
3445 if (map.m_flags & EXT4_MAP_MAPPED) {
3446 iomap->type = IOMAP_MAPPED;
3447 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3448 iomap->type = IOMAP_UNWRITTEN;
3449 } else {
3450 WARN_ON_ONCE(1);
3451 return -EIO;
3452 }
3453 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3454 iomap->length = (u64)map.m_len << blkbits;
3455 }
3456
3457 if (map.m_flags & EXT4_MAP_NEW)
3458 iomap->flags |= IOMAP_F_NEW;
3459 return 0;
3460 }
3461
3462 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3463 ssize_t written, unsigned flags, struct iomap *iomap)
3464 {
3465 int ret = 0;
3466 handle_t *handle;
3467 int blkbits = inode->i_blkbits;
3468 bool truncate = false;
3469
3470 fs_put_dax(iomap->dax_dev);
3471 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3472 return 0;
3473
3474 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3475 if (IS_ERR(handle)) {
3476 ret = PTR_ERR(handle);
3477 goto orphan_del;
3478 }
3479 if (ext4_update_inode_size(inode, offset + written))
3480 ext4_mark_inode_dirty(handle, inode);
3481 /*
3482 * We may need to truncate allocated but not written blocks beyond EOF.
3483 */
3484 if (iomap->offset + iomap->length >
3485 ALIGN(inode->i_size, 1 << blkbits)) {
3486 ext4_lblk_t written_blk, end_blk;
3487
3488 written_blk = (offset + written) >> blkbits;
3489 end_blk = (offset + length) >> blkbits;
3490 if (written_blk < end_blk && ext4_can_truncate(inode))
3491 truncate = true;
3492 }
3493 /*
3494 * Remove inode from orphan list if we were extending a inode and
3495 * everything went fine.
3496 */
3497 if (!truncate && inode->i_nlink &&
3498 !list_empty(&EXT4_I(inode)->i_orphan))
3499 ext4_orphan_del(handle, inode);
3500 ext4_journal_stop(handle);
3501 if (truncate) {
3502 ext4_truncate_failed_write(inode);
3503 orphan_del:
3504 /*
3505 * If truncate failed early the inode might still be on the
3506 * orphan list; we need to make sure the inode is removed from
3507 * the orphan list in that case.
3508 */
3509 if (inode->i_nlink)
3510 ext4_orphan_del(NULL, inode);
3511 }
3512 return ret;
3513 }
3514
3515 const struct iomap_ops ext4_iomap_ops = {
3516 .iomap_begin = ext4_iomap_begin,
3517 .iomap_end = ext4_iomap_end,
3518 };
3519
3520 #endif
3521
3522 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3523 ssize_t size, void *private)
3524 {
3525 ext4_io_end_t *io_end = private;
3526
3527 /* if not async direct IO just return */
3528 if (!io_end)
3529 return 0;
3530
3531 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3532 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3533 io_end, io_end->inode->i_ino, iocb, offset, size);
3534
3535 /*
3536 * Error during AIO DIO. We cannot convert unwritten extents as the
3537 * data was not written. Just clear the unwritten flag and drop io_end.
3538 */
3539 if (size <= 0) {
3540 ext4_clear_io_unwritten_flag(io_end);
3541 size = 0;
3542 }
3543 io_end->offset = offset;
3544 io_end->size = size;
3545 ext4_put_io_end(io_end);
3546
3547 return 0;
3548 }
3549
3550 /*
3551 * Handling of direct IO writes.
3552 *
3553 * For ext4 extent files, ext4 will do direct-io write even to holes,
3554 * preallocated extents, and those write extend the file, no need to
3555 * fall back to buffered IO.
3556 *
3557 * For holes, we fallocate those blocks, mark them as unwritten
3558 * If those blocks were preallocated, we mark sure they are split, but
3559 * still keep the range to write as unwritten.
3560 *
3561 * The unwritten extents will be converted to written when DIO is completed.
3562 * For async direct IO, since the IO may still pending when return, we
3563 * set up an end_io call back function, which will do the conversion
3564 * when async direct IO completed.
3565 *
3566 * If the O_DIRECT write will extend the file then add this inode to the
3567 * orphan list. So recovery will truncate it back to the original size
3568 * if the machine crashes during the write.
3569 *
3570 */
3571 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3572 {
3573 struct file *file = iocb->ki_filp;
3574 struct inode *inode = file->f_mapping->host;
3575 struct ext4_inode_info *ei = EXT4_I(inode);
3576 ssize_t ret;
3577 loff_t offset = iocb->ki_pos;
3578 size_t count = iov_iter_count(iter);
3579 int overwrite = 0;
3580 get_block_t *get_block_func = NULL;
3581 int dio_flags = 0;
3582 loff_t final_size = offset + count;
3583 int orphan = 0;
3584 handle_t *handle;
3585
3586 if (final_size > inode->i_size) {
3587 /* Credits for sb + inode write */
3588 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3589 if (IS_ERR(handle)) {
3590 ret = PTR_ERR(handle);
3591 goto out;
3592 }
3593 ret = ext4_orphan_add(handle, inode);
3594 if (ret) {
3595 ext4_journal_stop(handle);
3596 goto out;
3597 }
3598 orphan = 1;
3599 ei->i_disksize = inode->i_size;
3600 ext4_journal_stop(handle);
3601 }
3602
3603 BUG_ON(iocb->private == NULL);
3604
3605 /*
3606 * Make all waiters for direct IO properly wait also for extent
3607 * conversion. This also disallows race between truncate() and
3608 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3609 */
3610 inode_dio_begin(inode);
3611
3612 /* If we do a overwrite dio, i_mutex locking can be released */
3613 overwrite = *((int *)iocb->private);
3614
3615 if (overwrite)
3616 inode_unlock(inode);
3617
3618 /*
3619 * For extent mapped files we could direct write to holes and fallocate.
3620 *
3621 * Allocated blocks to fill the hole are marked as unwritten to prevent
3622 * parallel buffered read to expose the stale data before DIO complete
3623 * the data IO.
3624 *
3625 * As to previously fallocated extents, ext4 get_block will just simply
3626 * mark the buffer mapped but still keep the extents unwritten.
3627 *
3628 * For non AIO case, we will convert those unwritten extents to written
3629 * after return back from blockdev_direct_IO. That way we save us from
3630 * allocating io_end structure and also the overhead of offloading
3631 * the extent convertion to a workqueue.
3632 *
3633 * For async DIO, the conversion needs to be deferred when the
3634 * IO is completed. The ext4 end_io callback function will be
3635 * called to take care of the conversion work. Here for async
3636 * case, we allocate an io_end structure to hook to the iocb.
3637 */
3638 iocb->private = NULL;
3639 if (overwrite)
3640 get_block_func = ext4_dio_get_block_overwrite;
3641 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3642 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3643 get_block_func = ext4_dio_get_block;
3644 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3645 } else if (is_sync_kiocb(iocb)) {
3646 get_block_func = ext4_dio_get_block_unwritten_sync;
3647 dio_flags = DIO_LOCKING;
3648 } else {
3649 get_block_func = ext4_dio_get_block_unwritten_async;
3650 dio_flags = DIO_LOCKING;
3651 }
3652 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3653 get_block_func, ext4_end_io_dio, NULL,
3654 dio_flags);
3655
3656 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3657 EXT4_STATE_DIO_UNWRITTEN)) {
3658 int err;
3659 /*
3660 * for non AIO case, since the IO is already
3661 * completed, we could do the conversion right here
3662 */
3663 err = ext4_convert_unwritten_extents(NULL, inode,
3664 offset, ret);
3665 if (err < 0)
3666 ret = err;
3667 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3668 }
3669
3670 inode_dio_end(inode);
3671 /* take i_mutex locking again if we do a ovewrite dio */
3672 if (overwrite)
3673 inode_lock(inode);
3674
3675 if (ret < 0 && final_size > inode->i_size)
3676 ext4_truncate_failed_write(inode);
3677
3678 /* Handle extending of i_size after direct IO write */
3679 if (orphan) {
3680 int err;
3681
3682 /* Credits for sb + inode write */
3683 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3684 if (IS_ERR(handle)) {
3685 /* This is really bad luck. We've written the data
3686 * but cannot extend i_size. Bail out and pretend
3687 * the write failed... */
3688 ret = PTR_ERR(handle);
3689 if (inode->i_nlink)
3690 ext4_orphan_del(NULL, inode);
3691
3692 goto out;
3693 }
3694 if (inode->i_nlink)
3695 ext4_orphan_del(handle, inode);
3696 if (ret > 0) {
3697 loff_t end = offset + ret;
3698 if (end > inode->i_size) {
3699 ei->i_disksize = end;
3700 i_size_write(inode, end);
3701 /*
3702 * We're going to return a positive `ret'
3703 * here due to non-zero-length I/O, so there's
3704 * no way of reporting error returns from
3705 * ext4_mark_inode_dirty() to userspace. So
3706 * ignore it.
3707 */
3708 ext4_mark_inode_dirty(handle, inode);
3709 }
3710 }
3711 err = ext4_journal_stop(handle);
3712 if (ret == 0)
3713 ret = err;
3714 }
3715 out:
3716 return ret;
3717 }
3718
3719 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3720 {
3721 struct address_space *mapping = iocb->ki_filp->f_mapping;
3722 struct inode *inode = mapping->host;
3723 size_t count = iov_iter_count(iter);
3724 ssize_t ret;
3725
3726 /*
3727 * Shared inode_lock is enough for us - it protects against concurrent
3728 * writes & truncates and since we take care of writing back page cache,
3729 * we are protected against page writeback as well.
3730 */
3731 inode_lock_shared(inode);
3732 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3733 iocb->ki_pos + count - 1);
3734 if (ret)
3735 goto out_unlock;
3736 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3737 iter, ext4_dio_get_block, NULL, NULL, 0);
3738 out_unlock:
3739 inode_unlock_shared(inode);
3740 return ret;
3741 }
3742
3743 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3744 {
3745 struct file *file = iocb->ki_filp;
3746 struct inode *inode = file->f_mapping->host;
3747 size_t count = iov_iter_count(iter);
3748 loff_t offset = iocb->ki_pos;
3749 ssize_t ret;
3750
3751 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3752 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3753 return 0;
3754 #endif
3755
3756 /*
3757 * If we are doing data journalling we don't support O_DIRECT
3758 */
3759 if (ext4_should_journal_data(inode))
3760 return 0;
3761
3762 /* Let buffer I/O handle the inline data case. */
3763 if (ext4_has_inline_data(inode))
3764 return 0;
3765
3766 /* DAX uses iomap path now */
3767 if (WARN_ON_ONCE(IS_DAX(inode)))
3768 return 0;
3769
3770 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3771 if (iov_iter_rw(iter) == READ)
3772 ret = ext4_direct_IO_read(iocb, iter);
3773 else
3774 ret = ext4_direct_IO_write(iocb, iter);
3775 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3776 return ret;
3777 }
3778
3779 /*
3780 * Pages can be marked dirty completely asynchronously from ext4's journalling
3781 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3782 * much here because ->set_page_dirty is called under VFS locks. The page is
3783 * not necessarily locked.
3784 *
3785 * We cannot just dirty the page and leave attached buffers clean, because the
3786 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3787 * or jbddirty because all the journalling code will explode.
3788 *
3789 * So what we do is to mark the page "pending dirty" and next time writepage
3790 * is called, propagate that into the buffers appropriately.
3791 */
3792 static int ext4_journalled_set_page_dirty(struct page *page)
3793 {
3794 SetPageChecked(page);
3795 return __set_page_dirty_nobuffers(page);
3796 }
3797
3798 static int ext4_set_page_dirty(struct page *page)
3799 {
3800 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3801 WARN_ON_ONCE(!page_has_buffers(page));
3802 return __set_page_dirty_buffers(page);
3803 }
3804
3805 static const struct address_space_operations ext4_aops = {
3806 .readpage = ext4_readpage,
3807 .readpages = ext4_readpages,
3808 .writepage = ext4_writepage,
3809 .writepages = ext4_writepages,
3810 .write_begin = ext4_write_begin,
3811 .write_end = ext4_write_end,
3812 .set_page_dirty = ext4_set_page_dirty,
3813 .bmap = ext4_bmap,
3814 .invalidatepage = ext4_invalidatepage,
3815 .releasepage = ext4_releasepage,
3816 .direct_IO = ext4_direct_IO,
3817 .migratepage = buffer_migrate_page,
3818 .is_partially_uptodate = block_is_partially_uptodate,
3819 .error_remove_page = generic_error_remove_page,
3820 };
3821
3822 static const struct address_space_operations ext4_journalled_aops = {
3823 .readpage = ext4_readpage,
3824 .readpages = ext4_readpages,
3825 .writepage = ext4_writepage,
3826 .writepages = ext4_writepages,
3827 .write_begin = ext4_write_begin,
3828 .write_end = ext4_journalled_write_end,
3829 .set_page_dirty = ext4_journalled_set_page_dirty,
3830 .bmap = ext4_bmap,
3831 .invalidatepage = ext4_journalled_invalidatepage,
3832 .releasepage = ext4_releasepage,
3833 .direct_IO = ext4_direct_IO,
3834 .is_partially_uptodate = block_is_partially_uptodate,
3835 .error_remove_page = generic_error_remove_page,
3836 };
3837
3838 static const struct address_space_operations ext4_da_aops = {
3839 .readpage = ext4_readpage,
3840 .readpages = ext4_readpages,
3841 .writepage = ext4_writepage,
3842 .writepages = ext4_writepages,
3843 .write_begin = ext4_da_write_begin,
3844 .write_end = ext4_da_write_end,
3845 .set_page_dirty = ext4_set_page_dirty,
3846 .bmap = ext4_bmap,
3847 .invalidatepage = ext4_da_invalidatepage,
3848 .releasepage = ext4_releasepage,
3849 .direct_IO = ext4_direct_IO,
3850 .migratepage = buffer_migrate_page,
3851 .is_partially_uptodate = block_is_partially_uptodate,
3852 .error_remove_page = generic_error_remove_page,
3853 };
3854
3855 void ext4_set_aops(struct inode *inode)
3856 {
3857 switch (ext4_inode_journal_mode(inode)) {
3858 case EXT4_INODE_ORDERED_DATA_MODE:
3859 case EXT4_INODE_WRITEBACK_DATA_MODE:
3860 break;
3861 case EXT4_INODE_JOURNAL_DATA_MODE:
3862 inode->i_mapping->a_ops = &ext4_journalled_aops;
3863 return;
3864 default:
3865 BUG();
3866 }
3867 if (test_opt(inode->i_sb, DELALLOC))
3868 inode->i_mapping->a_ops = &ext4_da_aops;
3869 else
3870 inode->i_mapping->a_ops = &ext4_aops;
3871 }
3872
3873 static int __ext4_block_zero_page_range(handle_t *handle,
3874 struct address_space *mapping, loff_t from, loff_t length)
3875 {
3876 ext4_fsblk_t index = from >> PAGE_SHIFT;
3877 unsigned offset = from & (PAGE_SIZE-1);
3878 unsigned blocksize, pos;
3879 ext4_lblk_t iblock;
3880 struct inode *inode = mapping->host;
3881 struct buffer_head *bh;
3882 struct page *page;
3883 int err = 0;
3884
3885 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3886 mapping_gfp_constraint(mapping, ~__GFP_FS));
3887 if (!page)
3888 return -ENOMEM;
3889
3890 blocksize = inode->i_sb->s_blocksize;
3891
3892 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3893
3894 if (!page_has_buffers(page))
3895 create_empty_buffers(page, blocksize, 0);
3896
3897 /* Find the buffer that contains "offset" */
3898 bh = page_buffers(page);
3899 pos = blocksize;
3900 while (offset >= pos) {
3901 bh = bh->b_this_page;
3902 iblock++;
3903 pos += blocksize;
3904 }
3905 if (buffer_freed(bh)) {
3906 BUFFER_TRACE(bh, "freed: skip");
3907 goto unlock;
3908 }
3909 if (!buffer_mapped(bh)) {
3910 BUFFER_TRACE(bh, "unmapped");
3911 ext4_get_block(inode, iblock, bh, 0);
3912 /* unmapped? It's a hole - nothing to do */
3913 if (!buffer_mapped(bh)) {
3914 BUFFER_TRACE(bh, "still unmapped");
3915 goto unlock;
3916 }
3917 }
3918
3919 /* Ok, it's mapped. Make sure it's up-to-date */
3920 if (PageUptodate(page))
3921 set_buffer_uptodate(bh);
3922
3923 if (!buffer_uptodate(bh)) {
3924 err = -EIO;
3925 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3926 wait_on_buffer(bh);
3927 /* Uhhuh. Read error. Complain and punt. */
3928 if (!buffer_uptodate(bh))
3929 goto unlock;
3930 if (S_ISREG(inode->i_mode) &&
3931 ext4_encrypted_inode(inode)) {
3932 /* We expect the key to be set. */
3933 BUG_ON(!fscrypt_has_encryption_key(inode));
3934 BUG_ON(blocksize != PAGE_SIZE);
3935 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3936 page, PAGE_SIZE, 0, page->index));
3937 }
3938 }
3939 if (ext4_should_journal_data(inode)) {
3940 BUFFER_TRACE(bh, "get write access");
3941 err = ext4_journal_get_write_access(handle, bh);
3942 if (err)
3943 goto unlock;
3944 }
3945 zero_user(page, offset, length);
3946 BUFFER_TRACE(bh, "zeroed end of block");
3947
3948 if (ext4_should_journal_data(inode)) {
3949 err = ext4_handle_dirty_metadata(handle, inode, bh);
3950 } else {
3951 err = 0;
3952 mark_buffer_dirty(bh);
3953 if (ext4_should_order_data(inode))
3954 err = ext4_jbd2_inode_add_write(handle, inode);
3955 }
3956
3957 unlock:
3958 unlock_page(page);
3959 put_page(page);
3960 return err;
3961 }
3962
3963 /*
3964 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3965 * starting from file offset 'from'. The range to be zero'd must
3966 * be contained with in one block. If the specified range exceeds
3967 * the end of the block it will be shortened to end of the block
3968 * that cooresponds to 'from'
3969 */
3970 static int ext4_block_zero_page_range(handle_t *handle,
3971 struct address_space *mapping, loff_t from, loff_t length)
3972 {
3973 struct inode *inode = mapping->host;
3974 unsigned offset = from & (PAGE_SIZE-1);
3975 unsigned blocksize = inode->i_sb->s_blocksize;
3976 unsigned max = blocksize - (offset & (blocksize - 1));
3977
3978 /*
3979 * correct length if it does not fall between
3980 * 'from' and the end of the block
3981 */
3982 if (length > max || length < 0)
3983 length = max;
3984
3985 if (IS_DAX(inode)) {
3986 return iomap_zero_range(inode, from, length, NULL,
3987 &ext4_iomap_ops);
3988 }
3989 return __ext4_block_zero_page_range(handle, mapping, from, length);
3990 }
3991
3992 /*
3993 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3994 * up to the end of the block which corresponds to `from'.
3995 * This required during truncate. We need to physically zero the tail end
3996 * of that block so it doesn't yield old data if the file is later grown.
3997 */
3998 static int ext4_block_truncate_page(handle_t *handle,
3999 struct address_space *mapping, loff_t from)
4000 {
4001 unsigned offset = from & (PAGE_SIZE-1);
4002 unsigned length;
4003 unsigned blocksize;
4004 struct inode *inode = mapping->host;
4005
4006 /* If we are processing an encrypted inode during orphan list handling */
4007 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4008 return 0;
4009
4010 blocksize = inode->i_sb->s_blocksize;
4011 length = blocksize - (offset & (blocksize - 1));
4012
4013 return ext4_block_zero_page_range(handle, mapping, from, length);
4014 }
4015
4016 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4017 loff_t lstart, loff_t length)
4018 {
4019 struct super_block *sb = inode->i_sb;
4020 struct address_space *mapping = inode->i_mapping;
4021 unsigned partial_start, partial_end;
4022 ext4_fsblk_t start, end;
4023 loff_t byte_end = (lstart + length - 1);
4024 int err = 0;
4025
4026 partial_start = lstart & (sb->s_blocksize - 1);
4027 partial_end = byte_end & (sb->s_blocksize - 1);
4028
4029 start = lstart >> sb->s_blocksize_bits;
4030 end = byte_end >> sb->s_blocksize_bits;
4031
4032 /* Handle partial zero within the single block */
4033 if (start == end &&
4034 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4035 err = ext4_block_zero_page_range(handle, mapping,
4036 lstart, length);
4037 return err;
4038 }
4039 /* Handle partial zero out on the start of the range */
4040 if (partial_start) {
4041 err = ext4_block_zero_page_range(handle, mapping,
4042 lstart, sb->s_blocksize);
4043 if (err)
4044 return err;
4045 }
4046 /* Handle partial zero out on the end of the range */
4047 if (partial_end != sb->s_blocksize - 1)
4048 err = ext4_block_zero_page_range(handle, mapping,
4049 byte_end - partial_end,
4050 partial_end + 1);
4051 return err;
4052 }
4053
4054 int ext4_can_truncate(struct inode *inode)
4055 {
4056 if (S_ISREG(inode->i_mode))
4057 return 1;
4058 if (S_ISDIR(inode->i_mode))
4059 return 1;
4060 if (S_ISLNK(inode->i_mode))
4061 return !ext4_inode_is_fast_symlink(inode);
4062 return 0;
4063 }
4064
4065 /*
4066 * We have to make sure i_disksize gets properly updated before we truncate
4067 * page cache due to hole punching or zero range. Otherwise i_disksize update
4068 * can get lost as it may have been postponed to submission of writeback but
4069 * that will never happen after we truncate page cache.
4070 */
4071 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4072 loff_t len)
4073 {
4074 handle_t *handle;
4075 loff_t size = i_size_read(inode);
4076
4077 WARN_ON(!inode_is_locked(inode));
4078 if (offset > size || offset + len < size)
4079 return 0;
4080
4081 if (EXT4_I(inode)->i_disksize >= size)
4082 return 0;
4083
4084 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4085 if (IS_ERR(handle))
4086 return PTR_ERR(handle);
4087 ext4_update_i_disksize(inode, size);
4088 ext4_mark_inode_dirty(handle, inode);
4089 ext4_journal_stop(handle);
4090
4091 return 0;
4092 }
4093
4094 /*
4095 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4096 * associated with the given offset and length
4097 *
4098 * @inode: File inode
4099 * @offset: The offset where the hole will begin
4100 * @len: The length of the hole
4101 *
4102 * Returns: 0 on success or negative on failure
4103 */
4104
4105 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4106 {
4107 struct super_block *sb = inode->i_sb;
4108 ext4_lblk_t first_block, stop_block;
4109 struct address_space *mapping = inode->i_mapping;
4110 loff_t first_block_offset, last_block_offset;
4111 handle_t *handle;
4112 unsigned int credits;
4113 int ret = 0;
4114
4115 if (!S_ISREG(inode->i_mode))
4116 return -EOPNOTSUPP;
4117
4118 trace_ext4_punch_hole(inode, offset, length, 0);
4119
4120 /*
4121 * Write out all dirty pages to avoid race conditions
4122 * Then release them.
4123 */
4124 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4125 ret = filemap_write_and_wait_range(mapping, offset,
4126 offset + length - 1);
4127 if (ret)
4128 return ret;
4129 }
4130
4131 inode_lock(inode);
4132
4133 /* No need to punch hole beyond i_size */
4134 if (offset >= inode->i_size)
4135 goto out_mutex;
4136
4137 /*
4138 * If the hole extends beyond i_size, set the hole
4139 * to end after the page that contains i_size
4140 */
4141 if (offset + length > inode->i_size) {
4142 length = inode->i_size +
4143 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4144 offset;
4145 }
4146
4147 if (offset & (sb->s_blocksize - 1) ||
4148 (offset + length) & (sb->s_blocksize - 1)) {
4149 /*
4150 * Attach jinode to inode for jbd2 if we do any zeroing of
4151 * partial block
4152 */
4153 ret = ext4_inode_attach_jinode(inode);
4154 if (ret < 0)
4155 goto out_mutex;
4156
4157 }
4158
4159 /* Wait all existing dio workers, newcomers will block on i_mutex */
4160 ext4_inode_block_unlocked_dio(inode);
4161 inode_dio_wait(inode);
4162
4163 /*
4164 * Prevent page faults from reinstantiating pages we have released from
4165 * page cache.
4166 */
4167 down_write(&EXT4_I(inode)->i_mmap_sem);
4168 first_block_offset = round_up(offset, sb->s_blocksize);
4169 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4170
4171 /* Now release the pages and zero block aligned part of pages*/
4172 if (last_block_offset > first_block_offset) {
4173 ret = ext4_update_disksize_before_punch(inode, offset, length);
4174 if (ret)
4175 goto out_dio;
4176 truncate_pagecache_range(inode, first_block_offset,
4177 last_block_offset);
4178 }
4179
4180 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4181 credits = ext4_writepage_trans_blocks(inode);
4182 else
4183 credits = ext4_blocks_for_truncate(inode);
4184 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4185 if (IS_ERR(handle)) {
4186 ret = PTR_ERR(handle);
4187 ext4_std_error(sb, ret);
4188 goto out_dio;
4189 }
4190
4191 ret = ext4_zero_partial_blocks(handle, inode, offset,
4192 length);
4193 if (ret)
4194 goto out_stop;
4195
4196 first_block = (offset + sb->s_blocksize - 1) >>
4197 EXT4_BLOCK_SIZE_BITS(sb);
4198 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4199
4200 /* If there are no blocks to remove, return now */
4201 if (first_block >= stop_block)
4202 goto out_stop;
4203
4204 down_write(&EXT4_I(inode)->i_data_sem);
4205 ext4_discard_preallocations(inode);
4206
4207 ret = ext4_es_remove_extent(inode, first_block,
4208 stop_block - first_block);
4209 if (ret) {
4210 up_write(&EXT4_I(inode)->i_data_sem);
4211 goto out_stop;
4212 }
4213
4214 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4215 ret = ext4_ext_remove_space(inode, first_block,
4216 stop_block - 1);
4217 else
4218 ret = ext4_ind_remove_space(handle, inode, first_block,
4219 stop_block);
4220
4221 up_write(&EXT4_I(inode)->i_data_sem);
4222 if (IS_SYNC(inode))
4223 ext4_handle_sync(handle);
4224
4225 inode->i_mtime = inode->i_ctime = current_time(inode);
4226 ext4_mark_inode_dirty(handle, inode);
4227 if (ret >= 0)
4228 ext4_update_inode_fsync_trans(handle, inode, 1);
4229 out_stop:
4230 ext4_journal_stop(handle);
4231 out_dio:
4232 up_write(&EXT4_I(inode)->i_mmap_sem);
4233 ext4_inode_resume_unlocked_dio(inode);
4234 out_mutex:
4235 inode_unlock(inode);
4236 return ret;
4237 }
4238
4239 int ext4_inode_attach_jinode(struct inode *inode)
4240 {
4241 struct ext4_inode_info *ei = EXT4_I(inode);
4242 struct jbd2_inode *jinode;
4243
4244 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4245 return 0;
4246
4247 jinode = jbd2_alloc_inode(GFP_KERNEL);
4248 spin_lock(&inode->i_lock);
4249 if (!ei->jinode) {
4250 if (!jinode) {
4251 spin_unlock(&inode->i_lock);
4252 return -ENOMEM;
4253 }
4254 ei->jinode = jinode;
4255 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4256 jinode = NULL;
4257 }
4258 spin_unlock(&inode->i_lock);
4259 if (unlikely(jinode != NULL))
4260 jbd2_free_inode(jinode);
4261 return 0;
4262 }
4263
4264 /*
4265 * ext4_truncate()
4266 *
4267 * We block out ext4_get_block() block instantiations across the entire
4268 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4269 * simultaneously on behalf of the same inode.
4270 *
4271 * As we work through the truncate and commit bits of it to the journal there
4272 * is one core, guiding principle: the file's tree must always be consistent on
4273 * disk. We must be able to restart the truncate after a crash.
4274 *
4275 * The file's tree may be transiently inconsistent in memory (although it
4276 * probably isn't), but whenever we close off and commit a journal transaction,
4277 * the contents of (the filesystem + the journal) must be consistent and
4278 * restartable. It's pretty simple, really: bottom up, right to left (although
4279 * left-to-right works OK too).
4280 *
4281 * Note that at recovery time, journal replay occurs *before* the restart of
4282 * truncate against the orphan inode list.
4283 *
4284 * The committed inode has the new, desired i_size (which is the same as
4285 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4286 * that this inode's truncate did not complete and it will again call
4287 * ext4_truncate() to have another go. So there will be instantiated blocks
4288 * to the right of the truncation point in a crashed ext4 filesystem. But
4289 * that's fine - as long as they are linked from the inode, the post-crash
4290 * ext4_truncate() run will find them and release them.
4291 */
4292 int ext4_truncate(struct inode *inode)
4293 {
4294 struct ext4_inode_info *ei = EXT4_I(inode);
4295 unsigned int credits;
4296 int err = 0;
4297 handle_t *handle;
4298 struct address_space *mapping = inode->i_mapping;
4299
4300 /*
4301 * There is a possibility that we're either freeing the inode
4302 * or it's a completely new inode. In those cases we might not
4303 * have i_mutex locked because it's not necessary.
4304 */
4305 if (!(inode->i_state & (I_NEW|I_FREEING)))
4306 WARN_ON(!inode_is_locked(inode));
4307 trace_ext4_truncate_enter(inode);
4308
4309 if (!ext4_can_truncate(inode))
4310 return 0;
4311
4312 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4313
4314 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4315 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4316
4317 if (ext4_has_inline_data(inode)) {
4318 int has_inline = 1;
4319
4320 err = ext4_inline_data_truncate(inode, &has_inline);
4321 if (err)
4322 return err;
4323 if (has_inline)
4324 return 0;
4325 }
4326
4327 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4328 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4329 if (ext4_inode_attach_jinode(inode) < 0)
4330 return 0;
4331 }
4332
4333 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4334 credits = ext4_writepage_trans_blocks(inode);
4335 else
4336 credits = ext4_blocks_for_truncate(inode);
4337
4338 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4339 if (IS_ERR(handle))
4340 return PTR_ERR(handle);
4341
4342 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4343 ext4_block_truncate_page(handle, mapping, inode->i_size);
4344
4345 /*
4346 * We add the inode to the orphan list, so that if this
4347 * truncate spans multiple transactions, and we crash, we will
4348 * resume the truncate when the filesystem recovers. It also
4349 * marks the inode dirty, to catch the new size.
4350 *
4351 * Implication: the file must always be in a sane, consistent
4352 * truncatable state while each transaction commits.
4353 */
4354 err = ext4_orphan_add(handle, inode);
4355 if (err)
4356 goto out_stop;
4357
4358 down_write(&EXT4_I(inode)->i_data_sem);
4359
4360 ext4_discard_preallocations(inode);
4361
4362 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363 err = ext4_ext_truncate(handle, inode);
4364 else
4365 ext4_ind_truncate(handle, inode);
4366
4367 up_write(&ei->i_data_sem);
4368 if (err)
4369 goto out_stop;
4370
4371 if (IS_SYNC(inode))
4372 ext4_handle_sync(handle);
4373
4374 out_stop:
4375 /*
4376 * If this was a simple ftruncate() and the file will remain alive,
4377 * then we need to clear up the orphan record which we created above.
4378 * However, if this was a real unlink then we were called by
4379 * ext4_evict_inode(), and we allow that function to clean up the
4380 * orphan info for us.
4381 */
4382 if (inode->i_nlink)
4383 ext4_orphan_del(handle, inode);
4384
4385 inode->i_mtime = inode->i_ctime = current_time(inode);
4386 ext4_mark_inode_dirty(handle, inode);
4387 ext4_journal_stop(handle);
4388
4389 trace_ext4_truncate_exit(inode);
4390 return err;
4391 }
4392
4393 /*
4394 * ext4_get_inode_loc returns with an extra refcount against the inode's
4395 * underlying buffer_head on success. If 'in_mem' is true, we have all
4396 * data in memory that is needed to recreate the on-disk version of this
4397 * inode.
4398 */
4399 static int __ext4_get_inode_loc(struct inode *inode,
4400 struct ext4_iloc *iloc, int in_mem)
4401 {
4402 struct ext4_group_desc *gdp;
4403 struct buffer_head *bh;
4404 struct super_block *sb = inode->i_sb;
4405 ext4_fsblk_t block;
4406 int inodes_per_block, inode_offset;
4407
4408 iloc->bh = NULL;
4409 if (!ext4_valid_inum(sb, inode->i_ino))
4410 return -EFSCORRUPTED;
4411
4412 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4413 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4414 if (!gdp)
4415 return -EIO;
4416
4417 /*
4418 * Figure out the offset within the block group inode table
4419 */
4420 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4421 inode_offset = ((inode->i_ino - 1) %
4422 EXT4_INODES_PER_GROUP(sb));
4423 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4424 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4425
4426 bh = sb_getblk(sb, block);
4427 if (unlikely(!bh))
4428 return -ENOMEM;
4429 if (!buffer_uptodate(bh)) {
4430 lock_buffer(bh);
4431
4432 /*
4433 * If the buffer has the write error flag, we have failed
4434 * to write out another inode in the same block. In this
4435 * case, we don't have to read the block because we may
4436 * read the old inode data successfully.
4437 */
4438 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4439 set_buffer_uptodate(bh);
4440
4441 if (buffer_uptodate(bh)) {
4442 /* someone brought it uptodate while we waited */
4443 unlock_buffer(bh);
4444 goto has_buffer;
4445 }
4446
4447 /*
4448 * If we have all information of the inode in memory and this
4449 * is the only valid inode in the block, we need not read the
4450 * block.
4451 */
4452 if (in_mem) {
4453 struct buffer_head *bitmap_bh;
4454 int i, start;
4455
4456 start = inode_offset & ~(inodes_per_block - 1);
4457
4458 /* Is the inode bitmap in cache? */
4459 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4460 if (unlikely(!bitmap_bh))
4461 goto make_io;
4462
4463 /*
4464 * If the inode bitmap isn't in cache then the
4465 * optimisation may end up performing two reads instead
4466 * of one, so skip it.
4467 */
4468 if (!buffer_uptodate(bitmap_bh)) {
4469 brelse(bitmap_bh);
4470 goto make_io;
4471 }
4472 for (i = start; i < start + inodes_per_block; i++) {
4473 if (i == inode_offset)
4474 continue;
4475 if (ext4_test_bit(i, bitmap_bh->b_data))
4476 break;
4477 }
4478 brelse(bitmap_bh);
4479 if (i == start + inodes_per_block) {
4480 /* all other inodes are free, so skip I/O */
4481 memset(bh->b_data, 0, bh->b_size);
4482 set_buffer_uptodate(bh);
4483 unlock_buffer(bh);
4484 goto has_buffer;
4485 }
4486 }
4487
4488 make_io:
4489 /*
4490 * If we need to do any I/O, try to pre-readahead extra
4491 * blocks from the inode table.
4492 */
4493 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4494 ext4_fsblk_t b, end, table;
4495 unsigned num;
4496 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4497
4498 table = ext4_inode_table(sb, gdp);
4499 /* s_inode_readahead_blks is always a power of 2 */
4500 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4501 if (table > b)
4502 b = table;
4503 end = b + ra_blks;
4504 num = EXT4_INODES_PER_GROUP(sb);
4505 if (ext4_has_group_desc_csum(sb))
4506 num -= ext4_itable_unused_count(sb, gdp);
4507 table += num / inodes_per_block;
4508 if (end > table)
4509 end = table;
4510 while (b <= end)
4511 sb_breadahead(sb, b++);
4512 }
4513
4514 /*
4515 * There are other valid inodes in the buffer, this inode
4516 * has in-inode xattrs, or we don't have this inode in memory.
4517 * Read the block from disk.
4518 */
4519 trace_ext4_load_inode(inode);
4520 get_bh(bh);
4521 bh->b_end_io = end_buffer_read_sync;
4522 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4523 wait_on_buffer(bh);
4524 if (!buffer_uptodate(bh)) {
4525 EXT4_ERROR_INODE_BLOCK(inode, block,
4526 "unable to read itable block");
4527 brelse(bh);
4528 return -EIO;
4529 }
4530 }
4531 has_buffer:
4532 iloc->bh = bh;
4533 return 0;
4534 }
4535
4536 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4537 {
4538 /* We have all inode data except xattrs in memory here. */
4539 return __ext4_get_inode_loc(inode, iloc,
4540 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4541 }
4542
4543 void ext4_set_inode_flags(struct inode *inode)
4544 {
4545 unsigned int flags = EXT4_I(inode)->i_flags;
4546 unsigned int new_fl = 0;
4547
4548 if (flags & EXT4_SYNC_FL)
4549 new_fl |= S_SYNC;
4550 if (flags & EXT4_APPEND_FL)
4551 new_fl |= S_APPEND;
4552 if (flags & EXT4_IMMUTABLE_FL)
4553 new_fl |= S_IMMUTABLE;
4554 if (flags & EXT4_NOATIME_FL)
4555 new_fl |= S_NOATIME;
4556 if (flags & EXT4_DIRSYNC_FL)
4557 new_fl |= S_DIRSYNC;
4558 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4559 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4560 !ext4_encrypted_inode(inode))
4561 new_fl |= S_DAX;
4562 inode_set_flags(inode, new_fl,
4563 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4564 }
4565
4566 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4567 struct ext4_inode_info *ei)
4568 {
4569 blkcnt_t i_blocks ;
4570 struct inode *inode = &(ei->vfs_inode);
4571 struct super_block *sb = inode->i_sb;
4572
4573 if (ext4_has_feature_huge_file(sb)) {
4574 /* we are using combined 48 bit field */
4575 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4576 le32_to_cpu(raw_inode->i_blocks_lo);
4577 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4578 /* i_blocks represent file system block size */
4579 return i_blocks << (inode->i_blkbits - 9);
4580 } else {
4581 return i_blocks;
4582 }
4583 } else {
4584 return le32_to_cpu(raw_inode->i_blocks_lo);
4585 }
4586 }
4587
4588 static inline void ext4_iget_extra_inode(struct inode *inode,
4589 struct ext4_inode *raw_inode,
4590 struct ext4_inode_info *ei)
4591 {
4592 __le32 *magic = (void *)raw_inode +
4593 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4594 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4595 EXT4_INODE_SIZE(inode->i_sb) &&
4596 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4597 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4598 ext4_find_inline_data_nolock(inode);
4599 } else
4600 EXT4_I(inode)->i_inline_off = 0;
4601 }
4602
4603 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4604 {
4605 if (!ext4_has_feature_project(inode->i_sb))
4606 return -EOPNOTSUPP;
4607 *projid = EXT4_I(inode)->i_projid;
4608 return 0;
4609 }
4610
4611 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4612 {
4613 struct ext4_iloc iloc;
4614 struct ext4_inode *raw_inode;
4615 struct ext4_inode_info *ei;
4616 struct inode *inode;
4617 journal_t *journal = EXT4_SB(sb)->s_journal;
4618 long ret;
4619 loff_t size;
4620 int block;
4621 uid_t i_uid;
4622 gid_t i_gid;
4623 projid_t i_projid;
4624
4625 inode = iget_locked(sb, ino);
4626 if (!inode)
4627 return ERR_PTR(-ENOMEM);
4628 if (!(inode->i_state & I_NEW))
4629 return inode;
4630
4631 ei = EXT4_I(inode);
4632 iloc.bh = NULL;
4633
4634 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4635 if (ret < 0)
4636 goto bad_inode;
4637 raw_inode = ext4_raw_inode(&iloc);
4638
4639 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4640 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4641 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4642 EXT4_INODE_SIZE(inode->i_sb) ||
4643 (ei->i_extra_isize & 3)) {
4644 EXT4_ERROR_INODE(inode,
4645 "bad extra_isize %u (inode size %u)",
4646 ei->i_extra_isize,
4647 EXT4_INODE_SIZE(inode->i_sb));
4648 ret = -EFSCORRUPTED;
4649 goto bad_inode;
4650 }
4651 } else
4652 ei->i_extra_isize = 0;
4653
4654 /* Precompute checksum seed for inode metadata */
4655 if (ext4_has_metadata_csum(sb)) {
4656 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4657 __u32 csum;
4658 __le32 inum = cpu_to_le32(inode->i_ino);
4659 __le32 gen = raw_inode->i_generation;
4660 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4661 sizeof(inum));
4662 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4663 sizeof(gen));
4664 }
4665
4666 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4667 EXT4_ERROR_INODE(inode, "checksum invalid");
4668 ret = -EFSBADCRC;
4669 goto bad_inode;
4670 }
4671
4672 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4673 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4674 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4675 if (ext4_has_feature_project(sb) &&
4676 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4677 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4678 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4679 else
4680 i_projid = EXT4_DEF_PROJID;
4681
4682 if (!(test_opt(inode->i_sb, NO_UID32))) {
4683 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4684 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4685 }
4686 i_uid_write(inode, i_uid);
4687 i_gid_write(inode, i_gid);
4688 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4689 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4690
4691 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4692 ei->i_inline_off = 0;
4693 ei->i_dir_start_lookup = 0;
4694 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4695 /* We now have enough fields to check if the inode was active or not.
4696 * This is needed because nfsd might try to access dead inodes
4697 * the test is that same one that e2fsck uses
4698 * NeilBrown 1999oct15
4699 */
4700 if (inode->i_nlink == 0) {
4701 if ((inode->i_mode == 0 ||
4702 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4703 ino != EXT4_BOOT_LOADER_INO) {
4704 /* this inode is deleted */
4705 ret = -ESTALE;
4706 goto bad_inode;
4707 }
4708 /* The only unlinked inodes we let through here have
4709 * valid i_mode and are being read by the orphan
4710 * recovery code: that's fine, we're about to complete
4711 * the process of deleting those.
4712 * OR it is the EXT4_BOOT_LOADER_INO which is
4713 * not initialized on a new filesystem. */
4714 }
4715 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4716 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4717 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4718 if (ext4_has_feature_64bit(sb))
4719 ei->i_file_acl |=
4720 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4721 inode->i_size = ext4_isize(sb, raw_inode);
4722 if ((size = i_size_read(inode)) < 0) {
4723 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4724 ret = -EFSCORRUPTED;
4725 goto bad_inode;
4726 }
4727 ei->i_disksize = inode->i_size;
4728 #ifdef CONFIG_QUOTA
4729 ei->i_reserved_quota = 0;
4730 #endif
4731 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4732 ei->i_block_group = iloc.block_group;
4733 ei->i_last_alloc_group = ~0;
4734 /*
4735 * NOTE! The in-memory inode i_data array is in little-endian order
4736 * even on big-endian machines: we do NOT byteswap the block numbers!
4737 */
4738 for (block = 0; block < EXT4_N_BLOCKS; block++)
4739 ei->i_data[block] = raw_inode->i_block[block];
4740 INIT_LIST_HEAD(&ei->i_orphan);
4741
4742 /*
4743 * Set transaction id's of transactions that have to be committed
4744 * to finish f[data]sync. We set them to currently running transaction
4745 * as we cannot be sure that the inode or some of its metadata isn't
4746 * part of the transaction - the inode could have been reclaimed and
4747 * now it is reread from disk.
4748 */
4749 if (journal) {
4750 transaction_t *transaction;
4751 tid_t tid;
4752
4753 read_lock(&journal->j_state_lock);
4754 if (journal->j_running_transaction)
4755 transaction = journal->j_running_transaction;
4756 else
4757 transaction = journal->j_committing_transaction;
4758 if (transaction)
4759 tid = transaction->t_tid;
4760 else
4761 tid = journal->j_commit_sequence;
4762 read_unlock(&journal->j_state_lock);
4763 ei->i_sync_tid = tid;
4764 ei->i_datasync_tid = tid;
4765 }
4766
4767 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4768 if (ei->i_extra_isize == 0) {
4769 /* The extra space is currently unused. Use it. */
4770 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4771 ei->i_extra_isize = sizeof(struct ext4_inode) -
4772 EXT4_GOOD_OLD_INODE_SIZE;
4773 } else {
4774 ext4_iget_extra_inode(inode, raw_inode, ei);
4775 }
4776 }
4777
4778 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4779 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4780 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4781 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4782
4783 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4784 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4785 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4786 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4787 inode->i_version |=
4788 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4789 }
4790 }
4791
4792 ret = 0;
4793 if (ei->i_file_acl &&
4794 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4795 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4796 ei->i_file_acl);
4797 ret = -EFSCORRUPTED;
4798 goto bad_inode;
4799 } else if (!ext4_has_inline_data(inode)) {
4800 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4801 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4802 (S_ISLNK(inode->i_mode) &&
4803 !ext4_inode_is_fast_symlink(inode))))
4804 /* Validate extent which is part of inode */
4805 ret = ext4_ext_check_inode(inode);
4806 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4807 (S_ISLNK(inode->i_mode) &&
4808 !ext4_inode_is_fast_symlink(inode))) {
4809 /* Validate block references which are part of inode */
4810 ret = ext4_ind_check_inode(inode);
4811 }
4812 }
4813 if (ret)
4814 goto bad_inode;
4815
4816 if (S_ISREG(inode->i_mode)) {
4817 inode->i_op = &ext4_file_inode_operations;
4818 inode->i_fop = &ext4_file_operations;
4819 ext4_set_aops(inode);
4820 } else if (S_ISDIR(inode->i_mode)) {
4821 inode->i_op = &ext4_dir_inode_operations;
4822 inode->i_fop = &ext4_dir_operations;
4823 } else if (S_ISLNK(inode->i_mode)) {
4824 if (ext4_encrypted_inode(inode)) {
4825 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4826 ext4_set_aops(inode);
4827 } else if (ext4_inode_is_fast_symlink(inode)) {
4828 inode->i_link = (char *)ei->i_data;
4829 inode->i_op = &ext4_fast_symlink_inode_operations;
4830 nd_terminate_link(ei->i_data, inode->i_size,
4831 sizeof(ei->i_data) - 1);
4832 } else {
4833 inode->i_op = &ext4_symlink_inode_operations;
4834 ext4_set_aops(inode);
4835 }
4836 inode_nohighmem(inode);
4837 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4838 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4839 inode->i_op = &ext4_special_inode_operations;
4840 if (raw_inode->i_block[0])
4841 init_special_inode(inode, inode->i_mode,
4842 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4843 else
4844 init_special_inode(inode, inode->i_mode,
4845 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4846 } else if (ino == EXT4_BOOT_LOADER_INO) {
4847 make_bad_inode(inode);
4848 } else {
4849 ret = -EFSCORRUPTED;
4850 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4851 goto bad_inode;
4852 }
4853 brelse(iloc.bh);
4854 ext4_set_inode_flags(inode);
4855
4856 if (ei->i_flags & EXT4_EA_INODE_FL) {
4857 ext4_xattr_inode_set_class(inode);
4858
4859 inode_lock(inode);
4860 inode->i_flags |= S_NOQUOTA;
4861 inode_unlock(inode);
4862 }
4863
4864 unlock_new_inode(inode);
4865 return inode;
4866
4867 bad_inode:
4868 brelse(iloc.bh);
4869 iget_failed(inode);
4870 return ERR_PTR(ret);
4871 }
4872
4873 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4874 {
4875 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4876 return ERR_PTR(-EFSCORRUPTED);
4877 return ext4_iget(sb, ino);
4878 }
4879
4880 static int ext4_inode_blocks_set(handle_t *handle,
4881 struct ext4_inode *raw_inode,
4882 struct ext4_inode_info *ei)
4883 {
4884 struct inode *inode = &(ei->vfs_inode);
4885 u64 i_blocks = inode->i_blocks;
4886 struct super_block *sb = inode->i_sb;
4887
4888 if (i_blocks <= ~0U) {
4889 /*
4890 * i_blocks can be represented in a 32 bit variable
4891 * as multiple of 512 bytes
4892 */
4893 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4894 raw_inode->i_blocks_high = 0;
4895 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4896 return 0;
4897 }
4898 if (!ext4_has_feature_huge_file(sb))
4899 return -EFBIG;
4900
4901 if (i_blocks <= 0xffffffffffffULL) {
4902 /*
4903 * i_blocks can be represented in a 48 bit variable
4904 * as multiple of 512 bytes
4905 */
4906 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4907 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4908 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4909 } else {
4910 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4911 /* i_block is stored in file system block size */
4912 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4913 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4914 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4915 }
4916 return 0;
4917 }
4918
4919 struct other_inode {
4920 unsigned long orig_ino;
4921 struct ext4_inode *raw_inode;
4922 };
4923
4924 static int other_inode_match(struct inode * inode, unsigned long ino,
4925 void *data)
4926 {
4927 struct other_inode *oi = (struct other_inode *) data;
4928
4929 if ((inode->i_ino != ino) ||
4930 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4931 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4932 ((inode->i_state & I_DIRTY_TIME) == 0))
4933 return 0;
4934 spin_lock(&inode->i_lock);
4935 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4936 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4937 (inode->i_state & I_DIRTY_TIME)) {
4938 struct ext4_inode_info *ei = EXT4_I(inode);
4939
4940 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4941 spin_unlock(&inode->i_lock);
4942
4943 spin_lock(&ei->i_raw_lock);
4944 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4945 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4946 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4947 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4948 spin_unlock(&ei->i_raw_lock);
4949 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4950 return -1;
4951 }
4952 spin_unlock(&inode->i_lock);
4953 return -1;
4954 }
4955
4956 /*
4957 * Opportunistically update the other time fields for other inodes in
4958 * the same inode table block.
4959 */
4960 static void ext4_update_other_inodes_time(struct super_block *sb,
4961 unsigned long orig_ino, char *buf)
4962 {
4963 struct other_inode oi;
4964 unsigned long ino;
4965 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4966 int inode_size = EXT4_INODE_SIZE(sb);
4967
4968 oi.orig_ino = orig_ino;
4969 /*
4970 * Calculate the first inode in the inode table block. Inode
4971 * numbers are one-based. That is, the first inode in a block
4972 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4973 */
4974 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4975 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4976 if (ino == orig_ino)
4977 continue;
4978 oi.raw_inode = (struct ext4_inode *) buf;
4979 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4980 }
4981 }
4982
4983 /*
4984 * Post the struct inode info into an on-disk inode location in the
4985 * buffer-cache. This gobbles the caller's reference to the
4986 * buffer_head in the inode location struct.
4987 *
4988 * The caller must have write access to iloc->bh.
4989 */
4990 static int ext4_do_update_inode(handle_t *handle,
4991 struct inode *inode,
4992 struct ext4_iloc *iloc)
4993 {
4994 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4995 struct ext4_inode_info *ei = EXT4_I(inode);
4996 struct buffer_head *bh = iloc->bh;
4997 struct super_block *sb = inode->i_sb;
4998 int err = 0, rc, block;
4999 int need_datasync = 0, set_large_file = 0;
5000 uid_t i_uid;
5001 gid_t i_gid;
5002 projid_t i_projid;
5003
5004 spin_lock(&ei->i_raw_lock);
5005
5006 /* For fields not tracked in the in-memory inode,
5007 * initialise them to zero for new inodes. */
5008 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5009 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5010
5011 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5012 i_uid = i_uid_read(inode);
5013 i_gid = i_gid_read(inode);
5014 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5015 if (!(test_opt(inode->i_sb, NO_UID32))) {
5016 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5017 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5018 /*
5019 * Fix up interoperability with old kernels. Otherwise, old inodes get
5020 * re-used with the upper 16 bits of the uid/gid intact
5021 */
5022 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5023 raw_inode->i_uid_high = 0;
5024 raw_inode->i_gid_high = 0;
5025 } else {
5026 raw_inode->i_uid_high =
5027 cpu_to_le16(high_16_bits(i_uid));
5028 raw_inode->i_gid_high =
5029 cpu_to_le16(high_16_bits(i_gid));
5030 }
5031 } else {
5032 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5033 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5034 raw_inode->i_uid_high = 0;
5035 raw_inode->i_gid_high = 0;
5036 }
5037 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5038
5039 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5040 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5041 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5042 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5043
5044 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5045 if (err) {
5046 spin_unlock(&ei->i_raw_lock);
5047 goto out_brelse;
5048 }
5049 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5050 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5051 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5052 raw_inode->i_file_acl_high =
5053 cpu_to_le16(ei->i_file_acl >> 32);
5054 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5055 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5056 ext4_isize_set(raw_inode, ei->i_disksize);
5057 need_datasync = 1;
5058 }
5059 if (ei->i_disksize > 0x7fffffffULL) {
5060 if (!ext4_has_feature_large_file(sb) ||
5061 EXT4_SB(sb)->s_es->s_rev_level ==
5062 cpu_to_le32(EXT4_GOOD_OLD_REV))
5063 set_large_file = 1;
5064 }
5065 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5066 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5067 if (old_valid_dev(inode->i_rdev)) {
5068 raw_inode->i_block[0] =
5069 cpu_to_le32(old_encode_dev(inode->i_rdev));
5070 raw_inode->i_block[1] = 0;
5071 } else {
5072 raw_inode->i_block[0] = 0;
5073 raw_inode->i_block[1] =
5074 cpu_to_le32(new_encode_dev(inode->i_rdev));
5075 raw_inode->i_block[2] = 0;
5076 }
5077 } else if (!ext4_has_inline_data(inode)) {
5078 for (block = 0; block < EXT4_N_BLOCKS; block++)
5079 raw_inode->i_block[block] = ei->i_data[block];
5080 }
5081
5082 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5083 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5084 if (ei->i_extra_isize) {
5085 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5086 raw_inode->i_version_hi =
5087 cpu_to_le32(inode->i_version >> 32);
5088 raw_inode->i_extra_isize =
5089 cpu_to_le16(ei->i_extra_isize);
5090 }
5091 }
5092
5093 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5094 i_projid != EXT4_DEF_PROJID);
5095
5096 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5097 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5098 raw_inode->i_projid = cpu_to_le32(i_projid);
5099
5100 ext4_inode_csum_set(inode, raw_inode, ei);
5101 spin_unlock(&ei->i_raw_lock);
5102 if (inode->i_sb->s_flags & MS_LAZYTIME)
5103 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5104 bh->b_data);
5105
5106 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5107 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5108 if (!err)
5109 err = rc;
5110 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5111 if (set_large_file) {
5112 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5113 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5114 if (err)
5115 goto out_brelse;
5116 ext4_update_dynamic_rev(sb);
5117 ext4_set_feature_large_file(sb);
5118 ext4_handle_sync(handle);
5119 err = ext4_handle_dirty_super(handle, sb);
5120 }
5121 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5122 out_brelse:
5123 brelse(bh);
5124 ext4_std_error(inode->i_sb, err);
5125 return err;
5126 }
5127
5128 /*
5129 * ext4_write_inode()
5130 *
5131 * We are called from a few places:
5132 *
5133 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5134 * Here, there will be no transaction running. We wait for any running
5135 * transaction to commit.
5136 *
5137 * - Within flush work (sys_sync(), kupdate and such).
5138 * We wait on commit, if told to.
5139 *
5140 * - Within iput_final() -> write_inode_now()
5141 * We wait on commit, if told to.
5142 *
5143 * In all cases it is actually safe for us to return without doing anything,
5144 * because the inode has been copied into a raw inode buffer in
5145 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5146 * writeback.
5147 *
5148 * Note that we are absolutely dependent upon all inode dirtiers doing the
5149 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5150 * which we are interested.
5151 *
5152 * It would be a bug for them to not do this. The code:
5153 *
5154 * mark_inode_dirty(inode)
5155 * stuff();
5156 * inode->i_size = expr;
5157 *
5158 * is in error because write_inode() could occur while `stuff()' is running,
5159 * and the new i_size will be lost. Plus the inode will no longer be on the
5160 * superblock's dirty inode list.
5161 */
5162 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5163 {
5164 int err;
5165
5166 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5167 return 0;
5168
5169 if (EXT4_SB(inode->i_sb)->s_journal) {
5170 if (ext4_journal_current_handle()) {
5171 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5172 dump_stack();
5173 return -EIO;
5174 }
5175
5176 /*
5177 * No need to force transaction in WB_SYNC_NONE mode. Also
5178 * ext4_sync_fs() will force the commit after everything is
5179 * written.
5180 */
5181 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5182 return 0;
5183
5184 err = ext4_force_commit(inode->i_sb);
5185 } else {
5186 struct ext4_iloc iloc;
5187
5188 err = __ext4_get_inode_loc(inode, &iloc, 0);
5189 if (err)
5190 return err;
5191 /*
5192 * sync(2) will flush the whole buffer cache. No need to do
5193 * it here separately for each inode.
5194 */
5195 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5196 sync_dirty_buffer(iloc.bh);
5197 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5198 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5199 "IO error syncing inode");
5200 err = -EIO;
5201 }
5202 brelse(iloc.bh);
5203 }
5204 return err;
5205 }
5206
5207 /*
5208 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5209 * buffers that are attached to a page stradding i_size and are undergoing
5210 * commit. In that case we have to wait for commit to finish and try again.
5211 */
5212 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5213 {
5214 struct page *page;
5215 unsigned offset;
5216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5217 tid_t commit_tid = 0;
5218 int ret;
5219
5220 offset = inode->i_size & (PAGE_SIZE - 1);
5221 /*
5222 * All buffers in the last page remain valid? Then there's nothing to
5223 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5224 * blocksize case
5225 */
5226 if (offset > PAGE_SIZE - i_blocksize(inode))
5227 return;
5228 while (1) {
5229 page = find_lock_page(inode->i_mapping,
5230 inode->i_size >> PAGE_SHIFT);
5231 if (!page)
5232 return;
5233 ret = __ext4_journalled_invalidatepage(page, offset,
5234 PAGE_SIZE - offset);
5235 unlock_page(page);
5236 put_page(page);
5237 if (ret != -EBUSY)
5238 return;
5239 commit_tid = 0;
5240 read_lock(&journal->j_state_lock);
5241 if (journal->j_committing_transaction)
5242 commit_tid = journal->j_committing_transaction->t_tid;
5243 read_unlock(&journal->j_state_lock);
5244 if (commit_tid)
5245 jbd2_log_wait_commit(journal, commit_tid);
5246 }
5247 }
5248
5249 /*
5250 * ext4_setattr()
5251 *
5252 * Called from notify_change.
5253 *
5254 * We want to trap VFS attempts to truncate the file as soon as
5255 * possible. In particular, we want to make sure that when the VFS
5256 * shrinks i_size, we put the inode on the orphan list and modify
5257 * i_disksize immediately, so that during the subsequent flushing of
5258 * dirty pages and freeing of disk blocks, we can guarantee that any
5259 * commit will leave the blocks being flushed in an unused state on
5260 * disk. (On recovery, the inode will get truncated and the blocks will
5261 * be freed, so we have a strong guarantee that no future commit will
5262 * leave these blocks visible to the user.)
5263 *
5264 * Another thing we have to assure is that if we are in ordered mode
5265 * and inode is still attached to the committing transaction, we must
5266 * we start writeout of all the dirty pages which are being truncated.
5267 * This way we are sure that all the data written in the previous
5268 * transaction are already on disk (truncate waits for pages under
5269 * writeback).
5270 *
5271 * Called with inode->i_mutex down.
5272 */
5273 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5274 {
5275 struct inode *inode = d_inode(dentry);
5276 int error, rc = 0;
5277 int orphan = 0;
5278 const unsigned int ia_valid = attr->ia_valid;
5279
5280 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5281 return -EIO;
5282
5283 error = setattr_prepare(dentry, attr);
5284 if (error)
5285 return error;
5286
5287 if (is_quota_modification(inode, attr)) {
5288 error = dquot_initialize(inode);
5289 if (error)
5290 return error;
5291 }
5292 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5293 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5294 handle_t *handle;
5295
5296 /* (user+group)*(old+new) structure, inode write (sb,
5297 * inode block, ? - but truncate inode update has it) */
5298 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5299 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5300 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5301 if (IS_ERR(handle)) {
5302 error = PTR_ERR(handle);
5303 goto err_out;
5304 }
5305
5306 /* dquot_transfer() calls back ext4_get_inode_usage() which
5307 * counts xattr inode references.
5308 */
5309 down_read(&EXT4_I(inode)->xattr_sem);
5310 error = dquot_transfer(inode, attr);
5311 up_read(&EXT4_I(inode)->xattr_sem);
5312
5313 if (error) {
5314 ext4_journal_stop(handle);
5315 return error;
5316 }
5317 /* Update corresponding info in inode so that everything is in
5318 * one transaction */
5319 if (attr->ia_valid & ATTR_UID)
5320 inode->i_uid = attr->ia_uid;
5321 if (attr->ia_valid & ATTR_GID)
5322 inode->i_gid = attr->ia_gid;
5323 error = ext4_mark_inode_dirty(handle, inode);
5324 ext4_journal_stop(handle);
5325 }
5326
5327 if (attr->ia_valid & ATTR_SIZE) {
5328 handle_t *handle;
5329 loff_t oldsize = inode->i_size;
5330 int shrink = (attr->ia_size <= inode->i_size);
5331
5332 if (ext4_encrypted_inode(inode)) {
5333 error = fscrypt_get_encryption_info(inode);
5334 if (error)
5335 return error;
5336 if (!fscrypt_has_encryption_key(inode))
5337 return -ENOKEY;
5338 }
5339
5340 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5342
5343 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5344 return -EFBIG;
5345 }
5346 if (!S_ISREG(inode->i_mode))
5347 return -EINVAL;
5348
5349 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5350 inode_inc_iversion(inode);
5351
5352 if (ext4_should_order_data(inode) &&
5353 (attr->ia_size < inode->i_size)) {
5354 error = ext4_begin_ordered_truncate(inode,
5355 attr->ia_size);
5356 if (error)
5357 goto err_out;
5358 }
5359 if (attr->ia_size != inode->i_size) {
5360 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5361 if (IS_ERR(handle)) {
5362 error = PTR_ERR(handle);
5363 goto err_out;
5364 }
5365 if (ext4_handle_valid(handle) && shrink) {
5366 error = ext4_orphan_add(handle, inode);
5367 orphan = 1;
5368 }
5369 /*
5370 * Update c/mtime on truncate up, ext4_truncate() will
5371 * update c/mtime in shrink case below
5372 */
5373 if (!shrink) {
5374 inode->i_mtime = current_time(inode);
5375 inode->i_ctime = inode->i_mtime;
5376 }
5377 down_write(&EXT4_I(inode)->i_data_sem);
5378 EXT4_I(inode)->i_disksize = attr->ia_size;
5379 rc = ext4_mark_inode_dirty(handle, inode);
5380 if (!error)
5381 error = rc;
5382 /*
5383 * We have to update i_size under i_data_sem together
5384 * with i_disksize to avoid races with writeback code
5385 * running ext4_wb_update_i_disksize().
5386 */
5387 if (!error)
5388 i_size_write(inode, attr->ia_size);
5389 up_write(&EXT4_I(inode)->i_data_sem);
5390 ext4_journal_stop(handle);
5391 if (error) {
5392 if (orphan)
5393 ext4_orphan_del(NULL, inode);
5394 goto err_out;
5395 }
5396 }
5397 if (!shrink)
5398 pagecache_isize_extended(inode, oldsize, inode->i_size);
5399
5400 /*
5401 * Blocks are going to be removed from the inode. Wait
5402 * for dio in flight. Temporarily disable
5403 * dioread_nolock to prevent livelock.
5404 */
5405 if (orphan) {
5406 if (!ext4_should_journal_data(inode)) {
5407 ext4_inode_block_unlocked_dio(inode);
5408 inode_dio_wait(inode);
5409 ext4_inode_resume_unlocked_dio(inode);
5410 } else
5411 ext4_wait_for_tail_page_commit(inode);
5412 }
5413 down_write(&EXT4_I(inode)->i_mmap_sem);
5414 /*
5415 * Truncate pagecache after we've waited for commit
5416 * in data=journal mode to make pages freeable.
5417 */
5418 truncate_pagecache(inode, inode->i_size);
5419 if (shrink) {
5420 rc = ext4_truncate(inode);
5421 if (rc)
5422 error = rc;
5423 }
5424 up_write(&EXT4_I(inode)->i_mmap_sem);
5425 }
5426
5427 if (!error) {
5428 setattr_copy(inode, attr);
5429 mark_inode_dirty(inode);
5430 }
5431
5432 /*
5433 * If the call to ext4_truncate failed to get a transaction handle at
5434 * all, we need to clean up the in-core orphan list manually.
5435 */
5436 if (orphan && inode->i_nlink)
5437 ext4_orphan_del(NULL, inode);
5438
5439 if (!error && (ia_valid & ATTR_MODE))
5440 rc = posix_acl_chmod(inode, inode->i_mode);
5441
5442 err_out:
5443 ext4_std_error(inode->i_sb, error);
5444 if (!error)
5445 error = rc;
5446 return error;
5447 }
5448
5449 int ext4_getattr(const struct path *path, struct kstat *stat,
5450 u32 request_mask, unsigned int query_flags)
5451 {
5452 struct inode *inode = d_inode(path->dentry);
5453 struct ext4_inode *raw_inode;
5454 struct ext4_inode_info *ei = EXT4_I(inode);
5455 unsigned int flags;
5456
5457 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5458 stat->result_mask |= STATX_BTIME;
5459 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5460 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5461 }
5462
5463 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5464 if (flags & EXT4_APPEND_FL)
5465 stat->attributes |= STATX_ATTR_APPEND;
5466 if (flags & EXT4_COMPR_FL)
5467 stat->attributes |= STATX_ATTR_COMPRESSED;
5468 if (flags & EXT4_ENCRYPT_FL)
5469 stat->attributes |= STATX_ATTR_ENCRYPTED;
5470 if (flags & EXT4_IMMUTABLE_FL)
5471 stat->attributes |= STATX_ATTR_IMMUTABLE;
5472 if (flags & EXT4_NODUMP_FL)
5473 stat->attributes |= STATX_ATTR_NODUMP;
5474
5475 stat->attributes_mask |= (STATX_ATTR_APPEND |
5476 STATX_ATTR_COMPRESSED |
5477 STATX_ATTR_ENCRYPTED |
5478 STATX_ATTR_IMMUTABLE |
5479 STATX_ATTR_NODUMP);
5480
5481 generic_fillattr(inode, stat);
5482 return 0;
5483 }
5484
5485 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5486 u32 request_mask, unsigned int query_flags)
5487 {
5488 struct inode *inode = d_inode(path->dentry);
5489 u64 delalloc_blocks;
5490
5491 ext4_getattr(path, stat, request_mask, query_flags);
5492
5493 /*
5494 * If there is inline data in the inode, the inode will normally not
5495 * have data blocks allocated (it may have an external xattr block).
5496 * Report at least one sector for such files, so tools like tar, rsync,
5497 * others don't incorrectly think the file is completely sparse.
5498 */
5499 if (unlikely(ext4_has_inline_data(inode)))
5500 stat->blocks += (stat->size + 511) >> 9;
5501
5502 /*
5503 * We can't update i_blocks if the block allocation is delayed
5504 * otherwise in the case of system crash before the real block
5505 * allocation is done, we will have i_blocks inconsistent with
5506 * on-disk file blocks.
5507 * We always keep i_blocks updated together with real
5508 * allocation. But to not confuse with user, stat
5509 * will return the blocks that include the delayed allocation
5510 * blocks for this file.
5511 */
5512 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5513 EXT4_I(inode)->i_reserved_data_blocks);
5514 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5515 return 0;
5516 }
5517
5518 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5519 int pextents)
5520 {
5521 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5522 return ext4_ind_trans_blocks(inode, lblocks);
5523 return ext4_ext_index_trans_blocks(inode, pextents);
5524 }
5525
5526 /*
5527 * Account for index blocks, block groups bitmaps and block group
5528 * descriptor blocks if modify datablocks and index blocks
5529 * worse case, the indexs blocks spread over different block groups
5530 *
5531 * If datablocks are discontiguous, they are possible to spread over
5532 * different block groups too. If they are contiguous, with flexbg,
5533 * they could still across block group boundary.
5534 *
5535 * Also account for superblock, inode, quota and xattr blocks
5536 */
5537 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5538 int pextents)
5539 {
5540 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5541 int gdpblocks;
5542 int idxblocks;
5543 int ret = 0;
5544
5545 /*
5546 * How many index blocks need to touch to map @lblocks logical blocks
5547 * to @pextents physical extents?
5548 */
5549 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5550
5551 ret = idxblocks;
5552
5553 /*
5554 * Now let's see how many group bitmaps and group descriptors need
5555 * to account
5556 */
5557 groups = idxblocks + pextents;
5558 gdpblocks = groups;
5559 if (groups > ngroups)
5560 groups = ngroups;
5561 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5562 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5563
5564 /* bitmaps and block group descriptor blocks */
5565 ret += groups + gdpblocks;
5566
5567 /* Blocks for super block, inode, quota and xattr blocks */
5568 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5569
5570 return ret;
5571 }
5572
5573 /*
5574 * Calculate the total number of credits to reserve to fit
5575 * the modification of a single pages into a single transaction,
5576 * which may include multiple chunks of block allocations.
5577 *
5578 * This could be called via ext4_write_begin()
5579 *
5580 * We need to consider the worse case, when
5581 * one new block per extent.
5582 */
5583 int ext4_writepage_trans_blocks(struct inode *inode)
5584 {
5585 int bpp = ext4_journal_blocks_per_page(inode);
5586 int ret;
5587
5588 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5589
5590 /* Account for data blocks for journalled mode */
5591 if (ext4_should_journal_data(inode))
5592 ret += bpp;
5593 return ret;
5594 }
5595
5596 /*
5597 * Calculate the journal credits for a chunk of data modification.
5598 *
5599 * This is called from DIO, fallocate or whoever calling
5600 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5601 *
5602 * journal buffers for data blocks are not included here, as DIO
5603 * and fallocate do no need to journal data buffers.
5604 */
5605 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5606 {
5607 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5608 }
5609
5610 /*
5611 * The caller must have previously called ext4_reserve_inode_write().
5612 * Give this, we know that the caller already has write access to iloc->bh.
5613 */
5614 int ext4_mark_iloc_dirty(handle_t *handle,
5615 struct inode *inode, struct ext4_iloc *iloc)
5616 {
5617 int err = 0;
5618
5619 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5620 return -EIO;
5621
5622 if (IS_I_VERSION(inode))
5623 inode_inc_iversion(inode);
5624
5625 /* the do_update_inode consumes one bh->b_count */
5626 get_bh(iloc->bh);
5627
5628 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5629 err = ext4_do_update_inode(handle, inode, iloc);
5630 put_bh(iloc->bh);
5631 return err;
5632 }
5633
5634 /*
5635 * On success, We end up with an outstanding reference count against
5636 * iloc->bh. This _must_ be cleaned up later.
5637 */
5638
5639 int
5640 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5641 struct ext4_iloc *iloc)
5642 {
5643 int err;
5644
5645 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5646 return -EIO;
5647
5648 err = ext4_get_inode_loc(inode, iloc);
5649 if (!err) {
5650 BUFFER_TRACE(iloc->bh, "get_write_access");
5651 err = ext4_journal_get_write_access(handle, iloc->bh);
5652 if (err) {
5653 brelse(iloc->bh);
5654 iloc->bh = NULL;
5655 }
5656 }
5657 ext4_std_error(inode->i_sb, err);
5658 return err;
5659 }
5660
5661 /*
5662 * Expand an inode by new_extra_isize bytes.
5663 * Returns 0 on success or negative error number on failure.
5664 */
5665 static int ext4_expand_extra_isize(struct inode *inode,
5666 unsigned int new_extra_isize,
5667 struct ext4_iloc iloc,
5668 handle_t *handle)
5669 {
5670 struct ext4_inode *raw_inode;
5671 struct ext4_xattr_ibody_header *header;
5672
5673 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5674 return 0;
5675
5676 raw_inode = ext4_raw_inode(&iloc);
5677
5678 header = IHDR(inode, raw_inode);
5679
5680 /* No extended attributes present */
5681 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5682 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5683 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5684 EXT4_I(inode)->i_extra_isize, 0,
5685 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5686 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5687 return 0;
5688 }
5689
5690 /* try to expand with EAs present */
5691 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5692 raw_inode, handle);
5693 }
5694
5695 /*
5696 * What we do here is to mark the in-core inode as clean with respect to inode
5697 * dirtiness (it may still be data-dirty).
5698 * This means that the in-core inode may be reaped by prune_icache
5699 * without having to perform any I/O. This is a very good thing,
5700 * because *any* task may call prune_icache - even ones which
5701 * have a transaction open against a different journal.
5702 *
5703 * Is this cheating? Not really. Sure, we haven't written the
5704 * inode out, but prune_icache isn't a user-visible syncing function.
5705 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5706 * we start and wait on commits.
5707 */
5708 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5709 {
5710 struct ext4_iloc iloc;
5711 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5712 static unsigned int mnt_count;
5713 int err, ret;
5714
5715 might_sleep();
5716 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5717 err = ext4_reserve_inode_write(handle, inode, &iloc);
5718 if (err)
5719 return err;
5720 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5721 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5722 /*
5723 * In nojournal mode, we can immediately attempt to expand
5724 * the inode. When journaled, we first need to obtain extra
5725 * buffer credits since we may write into the EA block
5726 * with this same handle. If journal_extend fails, then it will
5727 * only result in a minor loss of functionality for that inode.
5728 * If this is felt to be critical, then e2fsck should be run to
5729 * force a large enough s_min_extra_isize.
5730 */
5731 if (!ext4_handle_valid(handle) ||
5732 jbd2_journal_extend(handle,
5733 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5734 ret = ext4_expand_extra_isize(inode,
5735 sbi->s_want_extra_isize,
5736 iloc, handle);
5737 if (ret) {
5738 if (mnt_count !=
5739 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5740 ext4_warning(inode->i_sb,
5741 "Unable to expand inode %lu. Delete"
5742 " some EAs or run e2fsck.",
5743 inode->i_ino);
5744 mnt_count =
5745 le16_to_cpu(sbi->s_es->s_mnt_count);
5746 }
5747 }
5748 }
5749 }
5750 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5751 }
5752
5753 /*
5754 * ext4_dirty_inode() is called from __mark_inode_dirty()
5755 *
5756 * We're really interested in the case where a file is being extended.
5757 * i_size has been changed by generic_commit_write() and we thus need
5758 * to include the updated inode in the current transaction.
5759 *
5760 * Also, dquot_alloc_block() will always dirty the inode when blocks
5761 * are allocated to the file.
5762 *
5763 * If the inode is marked synchronous, we don't honour that here - doing
5764 * so would cause a commit on atime updates, which we don't bother doing.
5765 * We handle synchronous inodes at the highest possible level.
5766 *
5767 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5768 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5769 * to copy into the on-disk inode structure are the timestamp files.
5770 */
5771 void ext4_dirty_inode(struct inode *inode, int flags)
5772 {
5773 handle_t *handle;
5774
5775 if (flags == I_DIRTY_TIME)
5776 return;
5777 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5778 if (IS_ERR(handle))
5779 goto out;
5780
5781 ext4_mark_inode_dirty(handle, inode);
5782
5783 ext4_journal_stop(handle);
5784 out:
5785 return;
5786 }
5787
5788 #if 0
5789 /*
5790 * Bind an inode's backing buffer_head into this transaction, to prevent
5791 * it from being flushed to disk early. Unlike
5792 * ext4_reserve_inode_write, this leaves behind no bh reference and
5793 * returns no iloc structure, so the caller needs to repeat the iloc
5794 * lookup to mark the inode dirty later.
5795 */
5796 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5797 {
5798 struct ext4_iloc iloc;
5799
5800 int err = 0;
5801 if (handle) {
5802 err = ext4_get_inode_loc(inode, &iloc);
5803 if (!err) {
5804 BUFFER_TRACE(iloc.bh, "get_write_access");
5805 err = jbd2_journal_get_write_access(handle, iloc.bh);
5806 if (!err)
5807 err = ext4_handle_dirty_metadata(handle,
5808 NULL,
5809 iloc.bh);
5810 brelse(iloc.bh);
5811 }
5812 }
5813 ext4_std_error(inode->i_sb, err);
5814 return err;
5815 }
5816 #endif
5817
5818 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5819 {
5820 journal_t *journal;
5821 handle_t *handle;
5822 int err;
5823 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5824
5825 /*
5826 * We have to be very careful here: changing a data block's
5827 * journaling status dynamically is dangerous. If we write a
5828 * data block to the journal, change the status and then delete
5829 * that block, we risk forgetting to revoke the old log record
5830 * from the journal and so a subsequent replay can corrupt data.
5831 * So, first we make sure that the journal is empty and that
5832 * nobody is changing anything.
5833 */
5834
5835 journal = EXT4_JOURNAL(inode);
5836 if (!journal)
5837 return 0;
5838 if (is_journal_aborted(journal))
5839 return -EROFS;
5840
5841 /* Wait for all existing dio workers */
5842 ext4_inode_block_unlocked_dio(inode);
5843 inode_dio_wait(inode);
5844
5845 /*
5846 * Before flushing the journal and switching inode's aops, we have
5847 * to flush all dirty data the inode has. There can be outstanding
5848 * delayed allocations, there can be unwritten extents created by
5849 * fallocate or buffered writes in dioread_nolock mode covered by
5850 * dirty data which can be converted only after flushing the dirty
5851 * data (and journalled aops don't know how to handle these cases).
5852 */
5853 if (val) {
5854 down_write(&EXT4_I(inode)->i_mmap_sem);
5855 err = filemap_write_and_wait(inode->i_mapping);
5856 if (err < 0) {
5857 up_write(&EXT4_I(inode)->i_mmap_sem);
5858 ext4_inode_resume_unlocked_dio(inode);
5859 return err;
5860 }
5861 }
5862
5863 percpu_down_write(&sbi->s_journal_flag_rwsem);
5864 jbd2_journal_lock_updates(journal);
5865
5866 /*
5867 * OK, there are no updates running now, and all cached data is
5868 * synced to disk. We are now in a completely consistent state
5869 * which doesn't have anything in the journal, and we know that
5870 * no filesystem updates are running, so it is safe to modify
5871 * the inode's in-core data-journaling state flag now.
5872 */
5873
5874 if (val)
5875 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5876 else {
5877 err = jbd2_journal_flush(journal);
5878 if (err < 0) {
5879 jbd2_journal_unlock_updates(journal);
5880 percpu_up_write(&sbi->s_journal_flag_rwsem);
5881 ext4_inode_resume_unlocked_dio(inode);
5882 return err;
5883 }
5884 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5885 }
5886 ext4_set_aops(inode);
5887 /*
5888 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5889 * E.g. S_DAX may get cleared / set.
5890 */
5891 ext4_set_inode_flags(inode);
5892
5893 jbd2_journal_unlock_updates(journal);
5894 percpu_up_write(&sbi->s_journal_flag_rwsem);
5895
5896 if (val)
5897 up_write(&EXT4_I(inode)->i_mmap_sem);
5898 ext4_inode_resume_unlocked_dio(inode);
5899
5900 /* Finally we can mark the inode as dirty. */
5901
5902 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5903 if (IS_ERR(handle))
5904 return PTR_ERR(handle);
5905
5906 err = ext4_mark_inode_dirty(handle, inode);
5907 ext4_handle_sync(handle);
5908 ext4_journal_stop(handle);
5909 ext4_std_error(inode->i_sb, err);
5910
5911 return err;
5912 }
5913
5914 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5915 {
5916 return !buffer_mapped(bh);
5917 }
5918
5919 int ext4_page_mkwrite(struct vm_fault *vmf)
5920 {
5921 struct vm_area_struct *vma = vmf->vma;
5922 struct page *page = vmf->page;
5923 loff_t size;
5924 unsigned long len;
5925 int ret;
5926 struct file *file = vma->vm_file;
5927 struct inode *inode = file_inode(file);
5928 struct address_space *mapping = inode->i_mapping;
5929 handle_t *handle;
5930 get_block_t *get_block;
5931 int retries = 0;
5932
5933 sb_start_pagefault(inode->i_sb);
5934 file_update_time(vma->vm_file);
5935
5936 down_read(&EXT4_I(inode)->i_mmap_sem);
5937
5938 ret = ext4_convert_inline_data(inode);
5939 if (ret)
5940 goto out_ret;
5941
5942 /* Delalloc case is easy... */
5943 if (test_opt(inode->i_sb, DELALLOC) &&
5944 !ext4_should_journal_data(inode) &&
5945 !ext4_nonda_switch(inode->i_sb)) {
5946 do {
5947 ret = block_page_mkwrite(vma, vmf,
5948 ext4_da_get_block_prep);
5949 } while (ret == -ENOSPC &&
5950 ext4_should_retry_alloc(inode->i_sb, &retries));
5951 goto out_ret;
5952 }
5953
5954 lock_page(page);
5955 size = i_size_read(inode);
5956 /* Page got truncated from under us? */
5957 if (page->mapping != mapping || page_offset(page) > size) {
5958 unlock_page(page);
5959 ret = VM_FAULT_NOPAGE;
5960 goto out;
5961 }
5962
5963 if (page->index == size >> PAGE_SHIFT)
5964 len = size & ~PAGE_MASK;
5965 else
5966 len = PAGE_SIZE;
5967 /*
5968 * Return if we have all the buffers mapped. This avoids the need to do
5969 * journal_start/journal_stop which can block and take a long time
5970 */
5971 if (page_has_buffers(page)) {
5972 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5973 0, len, NULL,
5974 ext4_bh_unmapped)) {
5975 /* Wait so that we don't change page under IO */
5976 wait_for_stable_page(page);
5977 ret = VM_FAULT_LOCKED;
5978 goto out;
5979 }
5980 }
5981 unlock_page(page);
5982 /* OK, we need to fill the hole... */
5983 if (ext4_should_dioread_nolock(inode))
5984 get_block = ext4_get_block_unwritten;
5985 else
5986 get_block = ext4_get_block;
5987 retry_alloc:
5988 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5989 ext4_writepage_trans_blocks(inode));
5990 if (IS_ERR(handle)) {
5991 ret = VM_FAULT_SIGBUS;
5992 goto out;
5993 }
5994 ret = block_page_mkwrite(vma, vmf, get_block);
5995 if (!ret && ext4_should_journal_data(inode)) {
5996 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5997 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5998 unlock_page(page);
5999 ret = VM_FAULT_SIGBUS;
6000 ext4_journal_stop(handle);
6001 goto out;
6002 }
6003 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6004 }
6005 ext4_journal_stop(handle);
6006 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6007 goto retry_alloc;
6008 out_ret:
6009 ret = block_page_mkwrite_return(ret);
6010 out:
6011 up_read(&EXT4_I(inode)->i_mmap_sem);
6012 sb_end_pagefault(inode->i_sb);
6013 return ret;
6014 }
6015
6016 int ext4_filemap_fault(struct vm_fault *vmf)
6017 {
6018 struct inode *inode = file_inode(vmf->vma->vm_file);
6019 int err;
6020
6021 down_read(&EXT4_I(inode)->i_mmap_sem);
6022 err = filemap_fault(vmf);
6023 up_read(&EXT4_I(inode)->i_mmap_sem);
6024
6025 return err;
6026 }
6027
6028 /*
6029 * Find the first extent at or after @lblk in an inode that is not a hole.
6030 * Search for @map_len blocks at most. The extent is returned in @result.
6031 *
6032 * The function returns 1 if we found an extent. The function returns 0 in
6033 * case there is no extent at or after @lblk and in that case also sets
6034 * @result->es_len to 0. In case of error, the error code is returned.
6035 */
6036 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6037 unsigned int map_len, struct extent_status *result)
6038 {
6039 struct ext4_map_blocks map;
6040 struct extent_status es = {};
6041 int ret;
6042
6043 map.m_lblk = lblk;
6044 map.m_len = map_len;
6045
6046 /*
6047 * For non-extent based files this loop may iterate several times since
6048 * we do not determine full hole size.
6049 */
6050 while (map.m_len > 0) {
6051 ret = ext4_map_blocks(NULL, inode, &map, 0);
6052 if (ret < 0)
6053 return ret;
6054 /* There's extent covering m_lblk? Just return it. */
6055 if (ret > 0) {
6056 int status;
6057
6058 ext4_es_store_pblock(result, map.m_pblk);
6059 result->es_lblk = map.m_lblk;
6060 result->es_len = map.m_len;
6061 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6062 status = EXTENT_STATUS_UNWRITTEN;
6063 else
6064 status = EXTENT_STATUS_WRITTEN;
6065 ext4_es_store_status(result, status);
6066 return 1;
6067 }
6068 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6069 map.m_lblk + map.m_len - 1,
6070 &es);
6071 /* Is delalloc data before next block in extent tree? */
6072 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6073 ext4_lblk_t offset = 0;
6074
6075 if (es.es_lblk < lblk)
6076 offset = lblk - es.es_lblk;
6077 result->es_lblk = es.es_lblk + offset;
6078 ext4_es_store_pblock(result,
6079 ext4_es_pblock(&es) + offset);
6080 result->es_len = es.es_len - offset;
6081 ext4_es_store_status(result, ext4_es_status(&es));
6082
6083 return 1;
6084 }
6085 /* There's a hole at m_lblk, advance us after it */
6086 map.m_lblk += map.m_len;
6087 map_len -= map.m_len;
6088 map.m_len = map_len;
6089 cond_resched();
6090 }
6091 result->es_len = 0;
6092 return 0;
6093 }