]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
ext4: Use bitops to read/modify EXT4_I(inode)->i_state
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53 {
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
58 }
59
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
62 /*
63 * Test whether an inode is a fast symlink.
64 */
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
66 {
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71 }
72
73 /*
74 * Work out how many blocks we need to proceed with the next chunk of a
75 * truncate transaction.
76 */
77 static unsigned long blocks_for_truncate(struct inode *inode)
78 {
79 ext4_lblk_t needed;
80
81 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
82
83 /* Give ourselves just enough room to cope with inodes in which
84 * i_blocks is corrupt: we've seen disk corruptions in the past
85 * which resulted in random data in an inode which looked enough
86 * like a regular file for ext4 to try to delete it. Things
87 * will go a bit crazy if that happens, but at least we should
88 * try not to panic the whole kernel. */
89 if (needed < 2)
90 needed = 2;
91
92 /* But we need to bound the transaction so we don't overflow the
93 * journal. */
94 if (needed > EXT4_MAX_TRANS_DATA)
95 needed = EXT4_MAX_TRANS_DATA;
96
97 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
98 }
99
100 /*
101 * Truncate transactions can be complex and absolutely huge. So we need to
102 * be able to restart the transaction at a conventient checkpoint to make
103 * sure we don't overflow the journal.
104 *
105 * start_transaction gets us a new handle for a truncate transaction,
106 * and extend_transaction tries to extend the existing one a bit. If
107 * extend fails, we need to propagate the failure up and restart the
108 * transaction in the top-level truncate loop. --sct
109 */
110 static handle_t *start_transaction(struct inode *inode)
111 {
112 handle_t *result;
113
114 result = ext4_journal_start(inode, blocks_for_truncate(inode));
115 if (!IS_ERR(result))
116 return result;
117
118 ext4_std_error(inode->i_sb, PTR_ERR(result));
119 return result;
120 }
121
122 /*
123 * Try to extend this transaction for the purposes of truncation.
124 *
125 * Returns 0 if we managed to create more room. If we can't create more
126 * room, and the transaction must be restarted we return 1.
127 */
128 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
129 {
130 if (!ext4_handle_valid(handle))
131 return 0;
132 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
133 return 0;
134 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
135 return 0;
136 return 1;
137 }
138
139 /*
140 * Restart the transaction associated with *handle. This does a commit,
141 * so before we call here everything must be consistently dirtied against
142 * this transaction.
143 */
144 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
145 int nblocks)
146 {
147 int ret;
148
149 /*
150 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
151 * moment, get_block can be called only for blocks inside i_size since
152 * page cache has been already dropped and writes are blocked by
153 * i_mutex. So we can safely drop the i_data_sem here.
154 */
155 BUG_ON(EXT4_JOURNAL(inode) == NULL);
156 jbd_debug(2, "restarting handle %p\n", handle);
157 up_write(&EXT4_I(inode)->i_data_sem);
158 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
159 down_write(&EXT4_I(inode)->i_data_sem);
160 ext4_discard_preallocations(inode);
161
162 return ret;
163 }
164
165 /*
166 * Called at the last iput() if i_nlink is zero.
167 */
168 void ext4_delete_inode(struct inode *inode)
169 {
170 handle_t *handle;
171 int err;
172
173 if (ext4_should_order_data(inode))
174 ext4_begin_ordered_truncate(inode, 0);
175 truncate_inode_pages(&inode->i_data, 0);
176
177 if (is_bad_inode(inode))
178 goto no_delete;
179
180 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
181 if (IS_ERR(handle)) {
182 ext4_std_error(inode->i_sb, PTR_ERR(handle));
183 /*
184 * If we're going to skip the normal cleanup, we still need to
185 * make sure that the in-core orphan linked list is properly
186 * cleaned up.
187 */
188 ext4_orphan_del(NULL, inode);
189 goto no_delete;
190 }
191
192 if (IS_SYNC(inode))
193 ext4_handle_sync(handle);
194 inode->i_size = 0;
195 err = ext4_mark_inode_dirty(handle, inode);
196 if (err) {
197 ext4_warning(inode->i_sb, __func__,
198 "couldn't mark inode dirty (err %d)", err);
199 goto stop_handle;
200 }
201 if (inode->i_blocks)
202 ext4_truncate(inode);
203
204 /*
205 * ext4_ext_truncate() doesn't reserve any slop when it
206 * restarts journal transactions; therefore there may not be
207 * enough credits left in the handle to remove the inode from
208 * the orphan list and set the dtime field.
209 */
210 if (!ext4_handle_has_enough_credits(handle, 3)) {
211 err = ext4_journal_extend(handle, 3);
212 if (err > 0)
213 err = ext4_journal_restart(handle, 3);
214 if (err != 0) {
215 ext4_warning(inode->i_sb, __func__,
216 "couldn't extend journal (err %d)", err);
217 stop_handle:
218 ext4_journal_stop(handle);
219 goto no_delete;
220 }
221 }
222
223 /*
224 * Kill off the orphan record which ext4_truncate created.
225 * AKPM: I think this can be inside the above `if'.
226 * Note that ext4_orphan_del() has to be able to cope with the
227 * deletion of a non-existent orphan - this is because we don't
228 * know if ext4_truncate() actually created an orphan record.
229 * (Well, we could do this if we need to, but heck - it works)
230 */
231 ext4_orphan_del(handle, inode);
232 EXT4_I(inode)->i_dtime = get_seconds();
233
234 /*
235 * One subtle ordering requirement: if anything has gone wrong
236 * (transaction abort, IO errors, whatever), then we can still
237 * do these next steps (the fs will already have been marked as
238 * having errors), but we can't free the inode if the mark_dirty
239 * fails.
240 */
241 if (ext4_mark_inode_dirty(handle, inode))
242 /* If that failed, just do the required in-core inode clear. */
243 clear_inode(inode);
244 else
245 ext4_free_inode(handle, inode);
246 ext4_journal_stop(handle);
247 return;
248 no_delete:
249 clear_inode(inode); /* We must guarantee clearing of inode... */
250 }
251
252 typedef struct {
253 __le32 *p;
254 __le32 key;
255 struct buffer_head *bh;
256 } Indirect;
257
258 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
259 {
260 p->key = *(p->p = v);
261 p->bh = bh;
262 }
263
264 /**
265 * ext4_block_to_path - parse the block number into array of offsets
266 * @inode: inode in question (we are only interested in its superblock)
267 * @i_block: block number to be parsed
268 * @offsets: array to store the offsets in
269 * @boundary: set this non-zero if the referred-to block is likely to be
270 * followed (on disk) by an indirect block.
271 *
272 * To store the locations of file's data ext4 uses a data structure common
273 * for UNIX filesystems - tree of pointers anchored in the inode, with
274 * data blocks at leaves and indirect blocks in intermediate nodes.
275 * This function translates the block number into path in that tree -
276 * return value is the path length and @offsets[n] is the offset of
277 * pointer to (n+1)th node in the nth one. If @block is out of range
278 * (negative or too large) warning is printed and zero returned.
279 *
280 * Note: function doesn't find node addresses, so no IO is needed. All
281 * we need to know is the capacity of indirect blocks (taken from the
282 * inode->i_sb).
283 */
284
285 /*
286 * Portability note: the last comparison (check that we fit into triple
287 * indirect block) is spelled differently, because otherwise on an
288 * architecture with 32-bit longs and 8Kb pages we might get into trouble
289 * if our filesystem had 8Kb blocks. We might use long long, but that would
290 * kill us on x86. Oh, well, at least the sign propagation does not matter -
291 * i_block would have to be negative in the very beginning, so we would not
292 * get there at all.
293 */
294
295 static int ext4_block_to_path(struct inode *inode,
296 ext4_lblk_t i_block,
297 ext4_lblk_t offsets[4], int *boundary)
298 {
299 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
300 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
301 const long direct_blocks = EXT4_NDIR_BLOCKS,
302 indirect_blocks = ptrs,
303 double_blocks = (1 << (ptrs_bits * 2));
304 int n = 0;
305 int final = 0;
306
307 if (i_block < direct_blocks) {
308 offsets[n++] = i_block;
309 final = direct_blocks;
310 } else if ((i_block -= direct_blocks) < indirect_blocks) {
311 offsets[n++] = EXT4_IND_BLOCK;
312 offsets[n++] = i_block;
313 final = ptrs;
314 } else if ((i_block -= indirect_blocks) < double_blocks) {
315 offsets[n++] = EXT4_DIND_BLOCK;
316 offsets[n++] = i_block >> ptrs_bits;
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
320 offsets[n++] = EXT4_TIND_BLOCK;
321 offsets[n++] = i_block >> (ptrs_bits * 2);
322 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
323 offsets[n++] = i_block & (ptrs - 1);
324 final = ptrs;
325 } else {
326 ext4_warning(inode->i_sb, "ext4_block_to_path",
327 "block %lu > max in inode %lu",
328 i_block + direct_blocks +
329 indirect_blocks + double_blocks, inode->i_ino);
330 }
331 if (boundary)
332 *boundary = final - 1 - (i_block & (ptrs - 1));
333 return n;
334 }
335
336 static int __ext4_check_blockref(const char *function, struct inode *inode,
337 __le32 *p, unsigned int max)
338 {
339 __le32 *bref = p;
340 unsigned int blk;
341
342 while (bref < p+max) {
343 blk = le32_to_cpu(*bref++);
344 if (blk &&
345 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
346 blk, 1))) {
347 ext4_error(inode->i_sb, function,
348 "invalid block reference %u "
349 "in inode #%lu", blk, inode->i_ino);
350 return -EIO;
351 }
352 }
353 return 0;
354 }
355
356
357 #define ext4_check_indirect_blockref(inode, bh) \
358 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
359 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
360
361 #define ext4_check_inode_blockref(inode) \
362 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
363 EXT4_NDIR_BLOCKS)
364
365 /**
366 * ext4_get_branch - read the chain of indirect blocks leading to data
367 * @inode: inode in question
368 * @depth: depth of the chain (1 - direct pointer, etc.)
369 * @offsets: offsets of pointers in inode/indirect blocks
370 * @chain: place to store the result
371 * @err: here we store the error value
372 *
373 * Function fills the array of triples <key, p, bh> and returns %NULL
374 * if everything went OK or the pointer to the last filled triple
375 * (incomplete one) otherwise. Upon the return chain[i].key contains
376 * the number of (i+1)-th block in the chain (as it is stored in memory,
377 * i.e. little-endian 32-bit), chain[i].p contains the address of that
378 * number (it points into struct inode for i==0 and into the bh->b_data
379 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
380 * block for i>0 and NULL for i==0. In other words, it holds the block
381 * numbers of the chain, addresses they were taken from (and where we can
382 * verify that chain did not change) and buffer_heads hosting these
383 * numbers.
384 *
385 * Function stops when it stumbles upon zero pointer (absent block)
386 * (pointer to last triple returned, *@err == 0)
387 * or when it gets an IO error reading an indirect block
388 * (ditto, *@err == -EIO)
389 * or when it reads all @depth-1 indirect blocks successfully and finds
390 * the whole chain, all way to the data (returns %NULL, *err == 0).
391 *
392 * Need to be called with
393 * down_read(&EXT4_I(inode)->i_data_sem)
394 */
395 static Indirect *ext4_get_branch(struct inode *inode, int depth,
396 ext4_lblk_t *offsets,
397 Indirect chain[4], int *err)
398 {
399 struct super_block *sb = inode->i_sb;
400 Indirect *p = chain;
401 struct buffer_head *bh;
402
403 *err = 0;
404 /* i_data is not going away, no lock needed */
405 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
406 if (!p->key)
407 goto no_block;
408 while (--depth) {
409 bh = sb_getblk(sb, le32_to_cpu(p->key));
410 if (unlikely(!bh))
411 goto failure;
412
413 if (!bh_uptodate_or_lock(bh)) {
414 if (bh_submit_read(bh) < 0) {
415 put_bh(bh);
416 goto failure;
417 }
418 /* validate block references */
419 if (ext4_check_indirect_blockref(inode, bh)) {
420 put_bh(bh);
421 goto failure;
422 }
423 }
424
425 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
426 /* Reader: end */
427 if (!p->key)
428 goto no_block;
429 }
430 return NULL;
431
432 failure:
433 *err = -EIO;
434 no_block:
435 return p;
436 }
437
438 /**
439 * ext4_find_near - find a place for allocation with sufficient locality
440 * @inode: owner
441 * @ind: descriptor of indirect block.
442 *
443 * This function returns the preferred place for block allocation.
444 * It is used when heuristic for sequential allocation fails.
445 * Rules are:
446 * + if there is a block to the left of our position - allocate near it.
447 * + if pointer will live in indirect block - allocate near that block.
448 * + if pointer will live in inode - allocate in the same
449 * cylinder group.
450 *
451 * In the latter case we colour the starting block by the callers PID to
452 * prevent it from clashing with concurrent allocations for a different inode
453 * in the same block group. The PID is used here so that functionally related
454 * files will be close-by on-disk.
455 *
456 * Caller must make sure that @ind is valid and will stay that way.
457 */
458 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
459 {
460 struct ext4_inode_info *ei = EXT4_I(inode);
461 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
462 __le32 *p;
463 ext4_fsblk_t bg_start;
464 ext4_fsblk_t last_block;
465 ext4_grpblk_t colour;
466 ext4_group_t block_group;
467 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
468
469 /* Try to find previous block */
470 for (p = ind->p - 1; p >= start; p--) {
471 if (*p)
472 return le32_to_cpu(*p);
473 }
474
475 /* No such thing, so let's try location of indirect block */
476 if (ind->bh)
477 return ind->bh->b_blocknr;
478
479 /*
480 * It is going to be referred to from the inode itself? OK, just put it
481 * into the same cylinder group then.
482 */
483 block_group = ei->i_block_group;
484 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
485 block_group &= ~(flex_size-1);
486 if (S_ISREG(inode->i_mode))
487 block_group++;
488 }
489 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
490 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
491
492 /*
493 * If we are doing delayed allocation, we don't need take
494 * colour into account.
495 */
496 if (test_opt(inode->i_sb, DELALLOC))
497 return bg_start;
498
499 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
500 colour = (current->pid % 16) *
501 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
502 else
503 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
504 return bg_start + colour;
505 }
506
507 /**
508 * ext4_find_goal - find a preferred place for allocation.
509 * @inode: owner
510 * @block: block we want
511 * @partial: pointer to the last triple within a chain
512 *
513 * Normally this function find the preferred place for block allocation,
514 * returns it.
515 * Because this is only used for non-extent files, we limit the block nr
516 * to 32 bits.
517 */
518 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
519 Indirect *partial)
520 {
521 ext4_fsblk_t goal;
522
523 /*
524 * XXX need to get goal block from mballoc's data structures
525 */
526
527 goal = ext4_find_near(inode, partial);
528 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
529 return goal;
530 }
531
532 /**
533 * ext4_blks_to_allocate: Look up the block map and count the number
534 * of direct blocks need to be allocated for the given branch.
535 *
536 * @branch: chain of indirect blocks
537 * @k: number of blocks need for indirect blocks
538 * @blks: number of data blocks to be mapped.
539 * @blocks_to_boundary: the offset in the indirect block
540 *
541 * return the total number of blocks to be allocate, including the
542 * direct and indirect blocks.
543 */
544 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
545 int blocks_to_boundary)
546 {
547 unsigned int count = 0;
548
549 /*
550 * Simple case, [t,d]Indirect block(s) has not allocated yet
551 * then it's clear blocks on that path have not allocated
552 */
553 if (k > 0) {
554 /* right now we don't handle cross boundary allocation */
555 if (blks < blocks_to_boundary + 1)
556 count += blks;
557 else
558 count += blocks_to_boundary + 1;
559 return count;
560 }
561
562 count++;
563 while (count < blks && count <= blocks_to_boundary &&
564 le32_to_cpu(*(branch[0].p + count)) == 0) {
565 count++;
566 }
567 return count;
568 }
569
570 /**
571 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
572 * @indirect_blks: the number of blocks need to allocate for indirect
573 * blocks
574 *
575 * @new_blocks: on return it will store the new block numbers for
576 * the indirect blocks(if needed) and the first direct block,
577 * @blks: on return it will store the total number of allocated
578 * direct blocks
579 */
580 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
581 ext4_lblk_t iblock, ext4_fsblk_t goal,
582 int indirect_blks, int blks,
583 ext4_fsblk_t new_blocks[4], int *err)
584 {
585 struct ext4_allocation_request ar;
586 int target, i;
587 unsigned long count = 0, blk_allocated = 0;
588 int index = 0;
589 ext4_fsblk_t current_block = 0;
590 int ret = 0;
591
592 /*
593 * Here we try to allocate the requested multiple blocks at once,
594 * on a best-effort basis.
595 * To build a branch, we should allocate blocks for
596 * the indirect blocks(if not allocated yet), and at least
597 * the first direct block of this branch. That's the
598 * minimum number of blocks need to allocate(required)
599 */
600 /* first we try to allocate the indirect blocks */
601 target = indirect_blks;
602 while (target > 0) {
603 count = target;
604 /* allocating blocks for indirect blocks and direct blocks */
605 current_block = ext4_new_meta_blocks(handle, inode,
606 goal, &count, err);
607 if (*err)
608 goto failed_out;
609
610 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
611
612 target -= count;
613 /* allocate blocks for indirect blocks */
614 while (index < indirect_blks && count) {
615 new_blocks[index++] = current_block++;
616 count--;
617 }
618 if (count > 0) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 printk(KERN_INFO "%s returned more blocks than "
625 "requested\n", __func__);
626 WARN_ON(1);
627 break;
628 }
629 }
630
631 target = blks - count ;
632 blk_allocated = count;
633 if (!target)
634 goto allocated;
635 /* Now allocate data blocks */
636 memset(&ar, 0, sizeof(ar));
637 ar.inode = inode;
638 ar.goal = goal;
639 ar.len = target;
640 ar.logical = iblock;
641 if (S_ISREG(inode->i_mode))
642 /* enable in-core preallocation only for regular files */
643 ar.flags = EXT4_MB_HINT_DATA;
644
645 current_block = ext4_mb_new_blocks(handle, &ar, err);
646 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
647
648 if (*err && (target == blks)) {
649 /*
650 * if the allocation failed and we didn't allocate
651 * any blocks before
652 */
653 goto failed_out;
654 }
655 if (!*err) {
656 if (target == blks) {
657 /*
658 * save the new block number
659 * for the first direct block
660 */
661 new_blocks[index] = current_block;
662 }
663 blk_allocated += ar.len;
664 }
665 allocated:
666 /* total number of blocks allocated for direct blocks */
667 ret = blk_allocated;
668 *err = 0;
669 return ret;
670 failed_out:
671 for (i = 0; i < index; i++)
672 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
673 return ret;
674 }
675
676 /**
677 * ext4_alloc_branch - allocate and set up a chain of blocks.
678 * @inode: owner
679 * @indirect_blks: number of allocated indirect blocks
680 * @blks: number of allocated direct blocks
681 * @offsets: offsets (in the blocks) to store the pointers to next.
682 * @branch: place to store the chain in.
683 *
684 * This function allocates blocks, zeroes out all but the last one,
685 * links them into chain and (if we are synchronous) writes them to disk.
686 * In other words, it prepares a branch that can be spliced onto the
687 * inode. It stores the information about that chain in the branch[], in
688 * the same format as ext4_get_branch() would do. We are calling it after
689 * we had read the existing part of chain and partial points to the last
690 * triple of that (one with zero ->key). Upon the exit we have the same
691 * picture as after the successful ext4_get_block(), except that in one
692 * place chain is disconnected - *branch->p is still zero (we did not
693 * set the last link), but branch->key contains the number that should
694 * be placed into *branch->p to fill that gap.
695 *
696 * If allocation fails we free all blocks we've allocated (and forget
697 * their buffer_heads) and return the error value the from failed
698 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
699 * as described above and return 0.
700 */
701 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
702 ext4_lblk_t iblock, int indirect_blks,
703 int *blks, ext4_fsblk_t goal,
704 ext4_lblk_t *offsets, Indirect *branch)
705 {
706 int blocksize = inode->i_sb->s_blocksize;
707 int i, n = 0;
708 int err = 0;
709 struct buffer_head *bh;
710 int num;
711 ext4_fsblk_t new_blocks[4];
712 ext4_fsblk_t current_block;
713
714 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
715 *blks, new_blocks, &err);
716 if (err)
717 return err;
718
719 branch[0].key = cpu_to_le32(new_blocks[0]);
720 /*
721 * metadata blocks and data blocks are allocated.
722 */
723 for (n = 1; n <= indirect_blks; n++) {
724 /*
725 * Get buffer_head for parent block, zero it out
726 * and set the pointer to new one, then send
727 * parent to disk.
728 */
729 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
730 branch[n].bh = bh;
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 err = ext4_journal_get_create_access(handle, bh);
734 if (err) {
735 /* Don't brelse(bh) here; it's done in
736 * ext4_journal_forget() below */
737 unlock_buffer(bh);
738 goto failed;
739 }
740
741 memset(bh->b_data, 0, blocksize);
742 branch[n].p = (__le32 *) bh->b_data + offsets[n];
743 branch[n].key = cpu_to_le32(new_blocks[n]);
744 *branch[n].p = branch[n].key;
745 if (n == indirect_blks) {
746 current_block = new_blocks[n];
747 /*
748 * End of chain, update the last new metablock of
749 * the chain to point to the new allocated
750 * data blocks numbers
751 */
752 for (i = 1; i < num; i++)
753 *(branch[n].p + i) = cpu_to_le32(++current_block);
754 }
755 BUFFER_TRACE(bh, "marking uptodate");
756 set_buffer_uptodate(bh);
757 unlock_buffer(bh);
758
759 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
760 err = ext4_handle_dirty_metadata(handle, inode, bh);
761 if (err)
762 goto failed;
763 }
764 *blks = num;
765 return err;
766 failed:
767 /* Allocation failed, free what we already allocated */
768 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
769 for (i = 1; i <= n ; i++) {
770 /*
771 * branch[i].bh is newly allocated, so there is no
772 * need to revoke the block, which is why we don't
773 * need to set EXT4_FREE_BLOCKS_METADATA.
774 */
775 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
776 EXT4_FREE_BLOCKS_FORGET);
777 }
778 for (i = n+1; i < indirect_blks; i++)
779 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
780
781 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
782
783 return err;
784 }
785
786 /**
787 * ext4_splice_branch - splice the allocated branch onto inode.
788 * @inode: owner
789 * @block: (logical) number of block we are adding
790 * @chain: chain of indirect blocks (with a missing link - see
791 * ext4_alloc_branch)
792 * @where: location of missing link
793 * @num: number of indirect blocks we are adding
794 * @blks: number of direct blocks we are adding
795 *
796 * This function fills the missing link and does all housekeeping needed in
797 * inode (->i_blocks, etc.). In case of success we end up with the full
798 * chain to new block and return 0.
799 */
800 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
801 ext4_lblk_t block, Indirect *where, int num,
802 int blks)
803 {
804 int i;
805 int err = 0;
806 ext4_fsblk_t current_block;
807
808 /*
809 * If we're splicing into a [td]indirect block (as opposed to the
810 * inode) then we need to get write access to the [td]indirect block
811 * before the splice.
812 */
813 if (where->bh) {
814 BUFFER_TRACE(where->bh, "get_write_access");
815 err = ext4_journal_get_write_access(handle, where->bh);
816 if (err)
817 goto err_out;
818 }
819 /* That's it */
820
821 *where->p = where->key;
822
823 /*
824 * Update the host buffer_head or inode to point to more just allocated
825 * direct blocks blocks
826 */
827 if (num == 0 && blks > 1) {
828 current_block = le32_to_cpu(where->key) + 1;
829 for (i = 1; i < blks; i++)
830 *(where->p + i) = cpu_to_le32(current_block++);
831 }
832
833 /* We are done with atomic stuff, now do the rest of housekeeping */
834 /* had we spliced it onto indirect block? */
835 if (where->bh) {
836 /*
837 * If we spliced it onto an indirect block, we haven't
838 * altered the inode. Note however that if it is being spliced
839 * onto an indirect block at the very end of the file (the
840 * file is growing) then we *will* alter the inode to reflect
841 * the new i_size. But that is not done here - it is done in
842 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
843 */
844 jbd_debug(5, "splicing indirect only\n");
845 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
846 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
847 if (err)
848 goto err_out;
849 } else {
850 /*
851 * OK, we spliced it into the inode itself on a direct block.
852 */
853 ext4_mark_inode_dirty(handle, inode);
854 jbd_debug(5, "splicing direct\n");
855 }
856 return err;
857
858 err_out:
859 for (i = 1; i <= num; i++) {
860 /*
861 * branch[i].bh is newly allocated, so there is no
862 * need to revoke the block, which is why we don't
863 * need to set EXT4_FREE_BLOCKS_METADATA.
864 */
865 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
866 EXT4_FREE_BLOCKS_FORGET);
867 }
868 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
869 blks, 0);
870
871 return err;
872 }
873
874 /*
875 * The ext4_ind_get_blocks() function handles non-extents inodes
876 * (i.e., using the traditional indirect/double-indirect i_blocks
877 * scheme) for ext4_get_blocks().
878 *
879 * Allocation strategy is simple: if we have to allocate something, we will
880 * have to go the whole way to leaf. So let's do it before attaching anything
881 * to tree, set linkage between the newborn blocks, write them if sync is
882 * required, recheck the path, free and repeat if check fails, otherwise
883 * set the last missing link (that will protect us from any truncate-generated
884 * removals - all blocks on the path are immune now) and possibly force the
885 * write on the parent block.
886 * That has a nice additional property: no special recovery from the failed
887 * allocations is needed - we simply release blocks and do not touch anything
888 * reachable from inode.
889 *
890 * `handle' can be NULL if create == 0.
891 *
892 * return > 0, # of blocks mapped or allocated.
893 * return = 0, if plain lookup failed.
894 * return < 0, error case.
895 *
896 * The ext4_ind_get_blocks() function should be called with
897 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
898 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
899 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
900 * blocks.
901 */
902 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
903 ext4_lblk_t iblock, unsigned int maxblocks,
904 struct buffer_head *bh_result,
905 int flags)
906 {
907 int err = -EIO;
908 ext4_lblk_t offsets[4];
909 Indirect chain[4];
910 Indirect *partial;
911 ext4_fsblk_t goal;
912 int indirect_blks;
913 int blocks_to_boundary = 0;
914 int depth;
915 int count = 0;
916 ext4_fsblk_t first_block = 0;
917
918 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
919 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
920 depth = ext4_block_to_path(inode, iblock, offsets,
921 &blocks_to_boundary);
922
923 if (depth == 0)
924 goto out;
925
926 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
927
928 /* Simplest case - block found, no allocation needed */
929 if (!partial) {
930 first_block = le32_to_cpu(chain[depth - 1].key);
931 clear_buffer_new(bh_result);
932 count++;
933 /*map more blocks*/
934 while (count < maxblocks && count <= blocks_to_boundary) {
935 ext4_fsblk_t blk;
936
937 blk = le32_to_cpu(*(chain[depth-1].p + count));
938
939 if (blk == first_block + count)
940 count++;
941 else
942 break;
943 }
944 goto got_it;
945 }
946
947 /* Next simple case - plain lookup or failed read of indirect block */
948 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
949 goto cleanup;
950
951 /*
952 * Okay, we need to do block allocation.
953 */
954 goal = ext4_find_goal(inode, iblock, partial);
955
956 /* the number of blocks need to allocate for [d,t]indirect blocks */
957 indirect_blks = (chain + depth) - partial - 1;
958
959 /*
960 * Next look up the indirect map to count the totoal number of
961 * direct blocks to allocate for this branch.
962 */
963 count = ext4_blks_to_allocate(partial, indirect_blks,
964 maxblocks, blocks_to_boundary);
965 /*
966 * Block out ext4_truncate while we alter the tree
967 */
968 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
969 &count, goal,
970 offsets + (partial - chain), partial);
971
972 /*
973 * The ext4_splice_branch call will free and forget any buffers
974 * on the new chain if there is a failure, but that risks using
975 * up transaction credits, especially for bitmaps where the
976 * credits cannot be returned. Can we handle this somehow? We
977 * may need to return -EAGAIN upwards in the worst case. --sct
978 */
979 if (!err)
980 err = ext4_splice_branch(handle, inode, iblock,
981 partial, indirect_blks, count);
982 if (err)
983 goto cleanup;
984
985 set_buffer_new(bh_result);
986
987 ext4_update_inode_fsync_trans(handle, inode, 1);
988 got_it:
989 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
990 if (count > blocks_to_boundary)
991 set_buffer_boundary(bh_result);
992 err = count;
993 /* Clean up and exit */
994 partial = chain + depth - 1; /* the whole chain */
995 cleanup:
996 while (partial > chain) {
997 BUFFER_TRACE(partial->bh, "call brelse");
998 brelse(partial->bh);
999 partial--;
1000 }
1001 BUFFER_TRACE(bh_result, "returned");
1002 out:
1003 return err;
1004 }
1005
1006 #ifdef CONFIG_QUOTA
1007 qsize_t *ext4_get_reserved_space(struct inode *inode)
1008 {
1009 return &EXT4_I(inode)->i_reserved_quota;
1010 }
1011 #endif
1012
1013 /*
1014 * Calculate the number of metadata blocks need to reserve
1015 * to allocate a new block at @lblocks for non extent file based file
1016 */
1017 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1018 sector_t lblock)
1019 {
1020 struct ext4_inode_info *ei = EXT4_I(inode);
1021 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1022 int blk_bits;
1023
1024 if (lblock < EXT4_NDIR_BLOCKS)
1025 return 0;
1026
1027 lblock -= EXT4_NDIR_BLOCKS;
1028
1029 if (ei->i_da_metadata_calc_len &&
1030 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1031 ei->i_da_metadata_calc_len++;
1032 return 0;
1033 }
1034 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1035 ei->i_da_metadata_calc_len = 1;
1036 blk_bits = roundup_pow_of_two(lblock + 1);
1037 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1038 }
1039
1040 /*
1041 * Calculate the number of metadata blocks need to reserve
1042 * to allocate a block located at @lblock
1043 */
1044 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1045 {
1046 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1047 return ext4_ext_calc_metadata_amount(inode, lblock);
1048
1049 return ext4_indirect_calc_metadata_amount(inode, lblock);
1050 }
1051
1052 /*
1053 * Called with i_data_sem down, which is important since we can call
1054 * ext4_discard_preallocations() from here.
1055 */
1056 void ext4_da_update_reserve_space(struct inode *inode,
1057 int used, int quota_claim)
1058 {
1059 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1060 struct ext4_inode_info *ei = EXT4_I(inode);
1061 int mdb_free = 0, allocated_meta_blocks = 0;
1062
1063 spin_lock(&ei->i_block_reservation_lock);
1064 trace_ext4_da_update_reserve_space(inode, used);
1065 if (unlikely(used > ei->i_reserved_data_blocks)) {
1066 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1067 "with only %d reserved data blocks\n",
1068 __func__, inode->i_ino, used,
1069 ei->i_reserved_data_blocks);
1070 WARN_ON(1);
1071 used = ei->i_reserved_data_blocks;
1072 }
1073
1074 /* Update per-inode reservations */
1075 ei->i_reserved_data_blocks -= used;
1076 used += ei->i_allocated_meta_blocks;
1077 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1078 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1079 ei->i_allocated_meta_blocks = 0;
1080 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1081
1082 if (ei->i_reserved_data_blocks == 0) {
1083 /*
1084 * We can release all of the reserved metadata blocks
1085 * only when we have written all of the delayed
1086 * allocation blocks.
1087 */
1088 mdb_free = ei->i_reserved_meta_blocks;
1089 ei->i_reserved_meta_blocks = 0;
1090 ei->i_da_metadata_calc_len = 0;
1091 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1092 }
1093 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1094
1095 /* Update quota subsystem */
1096 if (quota_claim) {
1097 vfs_dq_claim_block(inode, used);
1098 if (mdb_free)
1099 vfs_dq_release_reservation_block(inode, mdb_free);
1100 } else {
1101 /*
1102 * We did fallocate with an offset that is already delayed
1103 * allocated. So on delayed allocated writeback we should
1104 * not update the quota for allocated blocks. But then
1105 * converting an fallocate region to initialized region would
1106 * have caused a metadata allocation. So claim quota for
1107 * that
1108 */
1109 if (allocated_meta_blocks)
1110 vfs_dq_claim_block(inode, allocated_meta_blocks);
1111 vfs_dq_release_reservation_block(inode, mdb_free + used);
1112 }
1113
1114 /*
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1118 */
1119 if ((ei->i_reserved_data_blocks == 0) &&
1120 (atomic_read(&inode->i_writecount) == 0))
1121 ext4_discard_preallocations(inode);
1122 }
1123
1124 static int check_block_validity(struct inode *inode, const char *msg,
1125 sector_t logical, sector_t phys, int len)
1126 {
1127 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1128 ext4_error(inode->i_sb, msg,
1129 "inode #%lu logical block %llu mapped to %llu "
1130 "(size %d)", inode->i_ino,
1131 (unsigned long long) logical,
1132 (unsigned long long) phys, len);
1133 return -EIO;
1134 }
1135 return 0;
1136 }
1137
1138 /*
1139 * Return the number of contiguous dirty pages in a given inode
1140 * starting at page frame idx.
1141 */
1142 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1143 unsigned int max_pages)
1144 {
1145 struct address_space *mapping = inode->i_mapping;
1146 pgoff_t index;
1147 struct pagevec pvec;
1148 pgoff_t num = 0;
1149 int i, nr_pages, done = 0;
1150
1151 if (max_pages == 0)
1152 return 0;
1153 pagevec_init(&pvec, 0);
1154 while (!done) {
1155 index = idx;
1156 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1157 PAGECACHE_TAG_DIRTY,
1158 (pgoff_t)PAGEVEC_SIZE);
1159 if (nr_pages == 0)
1160 break;
1161 for (i = 0; i < nr_pages; i++) {
1162 struct page *page = pvec.pages[i];
1163 struct buffer_head *bh, *head;
1164
1165 lock_page(page);
1166 if (unlikely(page->mapping != mapping) ||
1167 !PageDirty(page) ||
1168 PageWriteback(page) ||
1169 page->index != idx) {
1170 done = 1;
1171 unlock_page(page);
1172 break;
1173 }
1174 if (page_has_buffers(page)) {
1175 bh = head = page_buffers(page);
1176 do {
1177 if (!buffer_delay(bh) &&
1178 !buffer_unwritten(bh))
1179 done = 1;
1180 bh = bh->b_this_page;
1181 } while (!done && (bh != head));
1182 }
1183 unlock_page(page);
1184 if (done)
1185 break;
1186 idx++;
1187 num++;
1188 if (num >= max_pages)
1189 break;
1190 }
1191 pagevec_release(&pvec);
1192 }
1193 return num;
1194 }
1195
1196 /*
1197 * The ext4_get_blocks() function tries to look up the requested blocks,
1198 * and returns if the blocks are already mapped.
1199 *
1200 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1201 * and store the allocated blocks in the result buffer head and mark it
1202 * mapped.
1203 *
1204 * If file type is extents based, it will call ext4_ext_get_blocks(),
1205 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1206 * based files
1207 *
1208 * On success, it returns the number of blocks being mapped or allocate.
1209 * if create==0 and the blocks are pre-allocated and uninitialized block,
1210 * the result buffer head is unmapped. If the create ==1, it will make sure
1211 * the buffer head is mapped.
1212 *
1213 * It returns 0 if plain look up failed (blocks have not been allocated), in
1214 * that casem, buffer head is unmapped
1215 *
1216 * It returns the error in case of allocation failure.
1217 */
1218 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1219 unsigned int max_blocks, struct buffer_head *bh,
1220 int flags)
1221 {
1222 int retval;
1223
1224 clear_buffer_mapped(bh);
1225 clear_buffer_unwritten(bh);
1226
1227 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1228 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1229 (unsigned long)block);
1230 /*
1231 * Try to see if we can get the block without requesting a new
1232 * file system block.
1233 */
1234 down_read((&EXT4_I(inode)->i_data_sem));
1235 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1236 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1237 bh, 0);
1238 } else {
1239 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1240 bh, 0);
1241 }
1242 up_read((&EXT4_I(inode)->i_data_sem));
1243
1244 if (retval > 0 && buffer_mapped(bh)) {
1245 int ret = check_block_validity(inode, "file system corruption",
1246 block, bh->b_blocknr, retval);
1247 if (ret != 0)
1248 return ret;
1249 }
1250
1251 /* If it is only a block(s) look up */
1252 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1253 return retval;
1254
1255 /*
1256 * Returns if the blocks have already allocated
1257 *
1258 * Note that if blocks have been preallocated
1259 * ext4_ext_get_block() returns th create = 0
1260 * with buffer head unmapped.
1261 */
1262 if (retval > 0 && buffer_mapped(bh))
1263 return retval;
1264
1265 /*
1266 * When we call get_blocks without the create flag, the
1267 * BH_Unwritten flag could have gotten set if the blocks
1268 * requested were part of a uninitialized extent. We need to
1269 * clear this flag now that we are committed to convert all or
1270 * part of the uninitialized extent to be an initialized
1271 * extent. This is because we need to avoid the combination
1272 * of BH_Unwritten and BH_Mapped flags being simultaneously
1273 * set on the buffer_head.
1274 */
1275 clear_buffer_unwritten(bh);
1276
1277 /*
1278 * New blocks allocate and/or writing to uninitialized extent
1279 * will possibly result in updating i_data, so we take
1280 * the write lock of i_data_sem, and call get_blocks()
1281 * with create == 1 flag.
1282 */
1283 down_write((&EXT4_I(inode)->i_data_sem));
1284
1285 /*
1286 * if the caller is from delayed allocation writeout path
1287 * we have already reserved fs blocks for allocation
1288 * let the underlying get_block() function know to
1289 * avoid double accounting
1290 */
1291 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1292 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1293 /*
1294 * We need to check for EXT4 here because migrate
1295 * could have changed the inode type in between
1296 */
1297 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1298 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1299 bh, flags);
1300 } else {
1301 retval = ext4_ind_get_blocks(handle, inode, block,
1302 max_blocks, bh, flags);
1303
1304 if (retval > 0 && buffer_new(bh)) {
1305 /*
1306 * We allocated new blocks which will result in
1307 * i_data's format changing. Force the migrate
1308 * to fail by clearing migrate flags
1309 */
1310 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1311 }
1312
1313 /*
1314 * Update reserved blocks/metadata blocks after successful
1315 * block allocation which had been deferred till now. We don't
1316 * support fallocate for non extent files. So we can update
1317 * reserve space here.
1318 */
1319 if ((retval > 0) &&
1320 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1321 ext4_da_update_reserve_space(inode, retval, 1);
1322 }
1323 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1324 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1325
1326 up_write((&EXT4_I(inode)->i_data_sem));
1327 if (retval > 0 && buffer_mapped(bh)) {
1328 int ret = check_block_validity(inode, "file system "
1329 "corruption after allocation",
1330 block, bh->b_blocknr, retval);
1331 if (ret != 0)
1332 return ret;
1333 }
1334 return retval;
1335 }
1336
1337 /* Maximum number of blocks we map for direct IO at once. */
1338 #define DIO_MAX_BLOCKS 4096
1339
1340 int ext4_get_block(struct inode *inode, sector_t iblock,
1341 struct buffer_head *bh_result, int create)
1342 {
1343 handle_t *handle = ext4_journal_current_handle();
1344 int ret = 0, started = 0;
1345 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1346 int dio_credits;
1347
1348 if (create && !handle) {
1349 /* Direct IO write... */
1350 if (max_blocks > DIO_MAX_BLOCKS)
1351 max_blocks = DIO_MAX_BLOCKS;
1352 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1353 handle = ext4_journal_start(inode, dio_credits);
1354 if (IS_ERR(handle)) {
1355 ret = PTR_ERR(handle);
1356 goto out;
1357 }
1358 started = 1;
1359 }
1360
1361 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1362 create ? EXT4_GET_BLOCKS_CREATE : 0);
1363 if (ret > 0) {
1364 bh_result->b_size = (ret << inode->i_blkbits);
1365 ret = 0;
1366 }
1367 if (started)
1368 ext4_journal_stop(handle);
1369 out:
1370 return ret;
1371 }
1372
1373 /*
1374 * `handle' can be NULL if create is zero
1375 */
1376 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1377 ext4_lblk_t block, int create, int *errp)
1378 {
1379 struct buffer_head dummy;
1380 int fatal = 0, err;
1381 int flags = 0;
1382
1383 J_ASSERT(handle != NULL || create == 0);
1384
1385 dummy.b_state = 0;
1386 dummy.b_blocknr = -1000;
1387 buffer_trace_init(&dummy.b_history);
1388 if (create)
1389 flags |= EXT4_GET_BLOCKS_CREATE;
1390 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1391 /*
1392 * ext4_get_blocks() returns number of blocks mapped. 0 in
1393 * case of a HOLE.
1394 */
1395 if (err > 0) {
1396 if (err > 1)
1397 WARN_ON(1);
1398 err = 0;
1399 }
1400 *errp = err;
1401 if (!err && buffer_mapped(&dummy)) {
1402 struct buffer_head *bh;
1403 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1404 if (!bh) {
1405 *errp = -EIO;
1406 goto err;
1407 }
1408 if (buffer_new(&dummy)) {
1409 J_ASSERT(create != 0);
1410 J_ASSERT(handle != NULL);
1411
1412 /*
1413 * Now that we do not always journal data, we should
1414 * keep in mind whether this should always journal the
1415 * new buffer as metadata. For now, regular file
1416 * writes use ext4_get_block instead, so it's not a
1417 * problem.
1418 */
1419 lock_buffer(bh);
1420 BUFFER_TRACE(bh, "call get_create_access");
1421 fatal = ext4_journal_get_create_access(handle, bh);
1422 if (!fatal && !buffer_uptodate(bh)) {
1423 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1424 set_buffer_uptodate(bh);
1425 }
1426 unlock_buffer(bh);
1427 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1428 err = ext4_handle_dirty_metadata(handle, inode, bh);
1429 if (!fatal)
1430 fatal = err;
1431 } else {
1432 BUFFER_TRACE(bh, "not a new buffer");
1433 }
1434 if (fatal) {
1435 *errp = fatal;
1436 brelse(bh);
1437 bh = NULL;
1438 }
1439 return bh;
1440 }
1441 err:
1442 return NULL;
1443 }
1444
1445 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1446 ext4_lblk_t block, int create, int *err)
1447 {
1448 struct buffer_head *bh;
1449
1450 bh = ext4_getblk(handle, inode, block, create, err);
1451 if (!bh)
1452 return bh;
1453 if (buffer_uptodate(bh))
1454 return bh;
1455 ll_rw_block(READ_META, 1, &bh);
1456 wait_on_buffer(bh);
1457 if (buffer_uptodate(bh))
1458 return bh;
1459 put_bh(bh);
1460 *err = -EIO;
1461 return NULL;
1462 }
1463
1464 static int walk_page_buffers(handle_t *handle,
1465 struct buffer_head *head,
1466 unsigned from,
1467 unsigned to,
1468 int *partial,
1469 int (*fn)(handle_t *handle,
1470 struct buffer_head *bh))
1471 {
1472 struct buffer_head *bh;
1473 unsigned block_start, block_end;
1474 unsigned blocksize = head->b_size;
1475 int err, ret = 0;
1476 struct buffer_head *next;
1477
1478 for (bh = head, block_start = 0;
1479 ret == 0 && (bh != head || !block_start);
1480 block_start = block_end, bh = next) {
1481 next = bh->b_this_page;
1482 block_end = block_start + blocksize;
1483 if (block_end <= from || block_start >= to) {
1484 if (partial && !buffer_uptodate(bh))
1485 *partial = 1;
1486 continue;
1487 }
1488 err = (*fn)(handle, bh);
1489 if (!ret)
1490 ret = err;
1491 }
1492 return ret;
1493 }
1494
1495 /*
1496 * To preserve ordering, it is essential that the hole instantiation and
1497 * the data write be encapsulated in a single transaction. We cannot
1498 * close off a transaction and start a new one between the ext4_get_block()
1499 * and the commit_write(). So doing the jbd2_journal_start at the start of
1500 * prepare_write() is the right place.
1501 *
1502 * Also, this function can nest inside ext4_writepage() ->
1503 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1504 * has generated enough buffer credits to do the whole page. So we won't
1505 * block on the journal in that case, which is good, because the caller may
1506 * be PF_MEMALLOC.
1507 *
1508 * By accident, ext4 can be reentered when a transaction is open via
1509 * quota file writes. If we were to commit the transaction while thus
1510 * reentered, there can be a deadlock - we would be holding a quota
1511 * lock, and the commit would never complete if another thread had a
1512 * transaction open and was blocking on the quota lock - a ranking
1513 * violation.
1514 *
1515 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1516 * will _not_ run commit under these circumstances because handle->h_ref
1517 * is elevated. We'll still have enough credits for the tiny quotafile
1518 * write.
1519 */
1520 static int do_journal_get_write_access(handle_t *handle,
1521 struct buffer_head *bh)
1522 {
1523 if (!buffer_mapped(bh) || buffer_freed(bh))
1524 return 0;
1525 return ext4_journal_get_write_access(handle, bh);
1526 }
1527
1528 /*
1529 * Truncate blocks that were not used by write. We have to truncate the
1530 * pagecache as well so that corresponding buffers get properly unmapped.
1531 */
1532 static void ext4_truncate_failed_write(struct inode *inode)
1533 {
1534 truncate_inode_pages(inode->i_mapping, inode->i_size);
1535 ext4_truncate(inode);
1536 }
1537
1538 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1539 loff_t pos, unsigned len, unsigned flags,
1540 struct page **pagep, void **fsdata)
1541 {
1542 struct inode *inode = mapping->host;
1543 int ret, needed_blocks;
1544 handle_t *handle;
1545 int retries = 0;
1546 struct page *page;
1547 pgoff_t index;
1548 unsigned from, to;
1549
1550 trace_ext4_write_begin(inode, pos, len, flags);
1551 /*
1552 * Reserve one block more for addition to orphan list in case
1553 * we allocate blocks but write fails for some reason
1554 */
1555 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1556 index = pos >> PAGE_CACHE_SHIFT;
1557 from = pos & (PAGE_CACHE_SIZE - 1);
1558 to = from + len;
1559
1560 retry:
1561 handle = ext4_journal_start(inode, needed_blocks);
1562 if (IS_ERR(handle)) {
1563 ret = PTR_ERR(handle);
1564 goto out;
1565 }
1566
1567 /* We cannot recurse into the filesystem as the transaction is already
1568 * started */
1569 flags |= AOP_FLAG_NOFS;
1570
1571 page = grab_cache_page_write_begin(mapping, index, flags);
1572 if (!page) {
1573 ext4_journal_stop(handle);
1574 ret = -ENOMEM;
1575 goto out;
1576 }
1577 *pagep = page;
1578
1579 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1580 ext4_get_block);
1581
1582 if (!ret && ext4_should_journal_data(inode)) {
1583 ret = walk_page_buffers(handle, page_buffers(page),
1584 from, to, NULL, do_journal_get_write_access);
1585 }
1586
1587 if (ret) {
1588 unlock_page(page);
1589 page_cache_release(page);
1590 /*
1591 * block_write_begin may have instantiated a few blocks
1592 * outside i_size. Trim these off again. Don't need
1593 * i_size_read because we hold i_mutex.
1594 *
1595 * Add inode to orphan list in case we crash before
1596 * truncate finishes
1597 */
1598 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1599 ext4_orphan_add(handle, inode);
1600
1601 ext4_journal_stop(handle);
1602 if (pos + len > inode->i_size) {
1603 ext4_truncate_failed_write(inode);
1604 /*
1605 * If truncate failed early the inode might
1606 * still be on the orphan list; we need to
1607 * make sure the inode is removed from the
1608 * orphan list in that case.
1609 */
1610 if (inode->i_nlink)
1611 ext4_orphan_del(NULL, inode);
1612 }
1613 }
1614
1615 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1616 goto retry;
1617 out:
1618 return ret;
1619 }
1620
1621 /* For write_end() in data=journal mode */
1622 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1623 {
1624 if (!buffer_mapped(bh) || buffer_freed(bh))
1625 return 0;
1626 set_buffer_uptodate(bh);
1627 return ext4_handle_dirty_metadata(handle, NULL, bh);
1628 }
1629
1630 static int ext4_generic_write_end(struct file *file,
1631 struct address_space *mapping,
1632 loff_t pos, unsigned len, unsigned copied,
1633 struct page *page, void *fsdata)
1634 {
1635 int i_size_changed = 0;
1636 struct inode *inode = mapping->host;
1637 handle_t *handle = ext4_journal_current_handle();
1638
1639 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1640
1641 /*
1642 * No need to use i_size_read() here, the i_size
1643 * cannot change under us because we hold i_mutex.
1644 *
1645 * But it's important to update i_size while still holding page lock:
1646 * page writeout could otherwise come in and zero beyond i_size.
1647 */
1648 if (pos + copied > inode->i_size) {
1649 i_size_write(inode, pos + copied);
1650 i_size_changed = 1;
1651 }
1652
1653 if (pos + copied > EXT4_I(inode)->i_disksize) {
1654 /* We need to mark inode dirty even if
1655 * new_i_size is less that inode->i_size
1656 * bu greater than i_disksize.(hint delalloc)
1657 */
1658 ext4_update_i_disksize(inode, (pos + copied));
1659 i_size_changed = 1;
1660 }
1661 unlock_page(page);
1662 page_cache_release(page);
1663
1664 /*
1665 * Don't mark the inode dirty under page lock. First, it unnecessarily
1666 * makes the holding time of page lock longer. Second, it forces lock
1667 * ordering of page lock and transaction start for journaling
1668 * filesystems.
1669 */
1670 if (i_size_changed)
1671 ext4_mark_inode_dirty(handle, inode);
1672
1673 return copied;
1674 }
1675
1676 /*
1677 * We need to pick up the new inode size which generic_commit_write gave us
1678 * `file' can be NULL - eg, when called from page_symlink().
1679 *
1680 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1681 * buffers are managed internally.
1682 */
1683 static int ext4_ordered_write_end(struct file *file,
1684 struct address_space *mapping,
1685 loff_t pos, unsigned len, unsigned copied,
1686 struct page *page, void *fsdata)
1687 {
1688 handle_t *handle = ext4_journal_current_handle();
1689 struct inode *inode = mapping->host;
1690 int ret = 0, ret2;
1691
1692 trace_ext4_ordered_write_end(inode, pos, len, copied);
1693 ret = ext4_jbd2_file_inode(handle, inode);
1694
1695 if (ret == 0) {
1696 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1697 page, fsdata);
1698 copied = ret2;
1699 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1700 /* if we have allocated more blocks and copied
1701 * less. We will have blocks allocated outside
1702 * inode->i_size. So truncate them
1703 */
1704 ext4_orphan_add(handle, inode);
1705 if (ret2 < 0)
1706 ret = ret2;
1707 }
1708 ret2 = ext4_journal_stop(handle);
1709 if (!ret)
1710 ret = ret2;
1711
1712 if (pos + len > inode->i_size) {
1713 ext4_truncate_failed_write(inode);
1714 /*
1715 * If truncate failed early the inode might still be
1716 * on the orphan list; we need to make sure the inode
1717 * is removed from the orphan list in that case.
1718 */
1719 if (inode->i_nlink)
1720 ext4_orphan_del(NULL, inode);
1721 }
1722
1723
1724 return ret ? ret : copied;
1725 }
1726
1727 static int ext4_writeback_write_end(struct file *file,
1728 struct address_space *mapping,
1729 loff_t pos, unsigned len, unsigned copied,
1730 struct page *page, void *fsdata)
1731 {
1732 handle_t *handle = ext4_journal_current_handle();
1733 struct inode *inode = mapping->host;
1734 int ret = 0, ret2;
1735
1736 trace_ext4_writeback_write_end(inode, pos, len, copied);
1737 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1738 page, fsdata);
1739 copied = ret2;
1740 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1741 /* if we have allocated more blocks and copied
1742 * less. We will have blocks allocated outside
1743 * inode->i_size. So truncate them
1744 */
1745 ext4_orphan_add(handle, inode);
1746
1747 if (ret2 < 0)
1748 ret = ret2;
1749
1750 ret2 = ext4_journal_stop(handle);
1751 if (!ret)
1752 ret = ret2;
1753
1754 if (pos + len > inode->i_size) {
1755 ext4_truncate_failed_write(inode);
1756 /*
1757 * If truncate failed early the inode might still be
1758 * on the orphan list; we need to make sure the inode
1759 * is removed from the orphan list in that case.
1760 */
1761 if (inode->i_nlink)
1762 ext4_orphan_del(NULL, inode);
1763 }
1764
1765 return ret ? ret : copied;
1766 }
1767
1768 static int ext4_journalled_write_end(struct file *file,
1769 struct address_space *mapping,
1770 loff_t pos, unsigned len, unsigned copied,
1771 struct page *page, void *fsdata)
1772 {
1773 handle_t *handle = ext4_journal_current_handle();
1774 struct inode *inode = mapping->host;
1775 int ret = 0, ret2;
1776 int partial = 0;
1777 unsigned from, to;
1778 loff_t new_i_size;
1779
1780 trace_ext4_journalled_write_end(inode, pos, len, copied);
1781 from = pos & (PAGE_CACHE_SIZE - 1);
1782 to = from + len;
1783
1784 if (copied < len) {
1785 if (!PageUptodate(page))
1786 copied = 0;
1787 page_zero_new_buffers(page, from+copied, to);
1788 }
1789
1790 ret = walk_page_buffers(handle, page_buffers(page), from,
1791 to, &partial, write_end_fn);
1792 if (!partial)
1793 SetPageUptodate(page);
1794 new_i_size = pos + copied;
1795 if (new_i_size > inode->i_size)
1796 i_size_write(inode, pos+copied);
1797 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1798 if (new_i_size > EXT4_I(inode)->i_disksize) {
1799 ext4_update_i_disksize(inode, new_i_size);
1800 ret2 = ext4_mark_inode_dirty(handle, inode);
1801 if (!ret)
1802 ret = ret2;
1803 }
1804
1805 unlock_page(page);
1806 page_cache_release(page);
1807 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1808 /* if we have allocated more blocks and copied
1809 * less. We will have blocks allocated outside
1810 * inode->i_size. So truncate them
1811 */
1812 ext4_orphan_add(handle, inode);
1813
1814 ret2 = ext4_journal_stop(handle);
1815 if (!ret)
1816 ret = ret2;
1817 if (pos + len > inode->i_size) {
1818 ext4_truncate_failed_write(inode);
1819 /*
1820 * If truncate failed early the inode might still be
1821 * on the orphan list; we need to make sure the inode
1822 * is removed from the orphan list in that case.
1823 */
1824 if (inode->i_nlink)
1825 ext4_orphan_del(NULL, inode);
1826 }
1827
1828 return ret ? ret : copied;
1829 }
1830
1831 /*
1832 * Reserve a single block located at lblock
1833 */
1834 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1835 {
1836 int retries = 0;
1837 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1838 struct ext4_inode_info *ei = EXT4_I(inode);
1839 unsigned long md_needed, md_reserved;
1840
1841 /*
1842 * recalculate the amount of metadata blocks to reserve
1843 * in order to allocate nrblocks
1844 * worse case is one extent per block
1845 */
1846 repeat:
1847 spin_lock(&ei->i_block_reservation_lock);
1848 md_reserved = ei->i_reserved_meta_blocks;
1849 md_needed = ext4_calc_metadata_amount(inode, lblock);
1850 trace_ext4_da_reserve_space(inode, md_needed);
1851 spin_unlock(&ei->i_block_reservation_lock);
1852
1853 /*
1854 * Make quota reservation here to prevent quota overflow
1855 * later. Real quota accounting is done at pages writeout
1856 * time.
1857 */
1858 if (vfs_dq_reserve_block(inode, md_needed + 1))
1859 return -EDQUOT;
1860
1861 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1862 vfs_dq_release_reservation_block(inode, md_needed + 1);
1863 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1864 yield();
1865 goto repeat;
1866 }
1867 return -ENOSPC;
1868 }
1869 spin_lock(&ei->i_block_reservation_lock);
1870 ei->i_reserved_data_blocks++;
1871 ei->i_reserved_meta_blocks += md_needed;
1872 spin_unlock(&ei->i_block_reservation_lock);
1873
1874 return 0; /* success */
1875 }
1876
1877 static void ext4_da_release_space(struct inode *inode, int to_free)
1878 {
1879 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1880 struct ext4_inode_info *ei = EXT4_I(inode);
1881
1882 if (!to_free)
1883 return; /* Nothing to release, exit */
1884
1885 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1886
1887 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1888 /*
1889 * if there aren't enough reserved blocks, then the
1890 * counter is messed up somewhere. Since this
1891 * function is called from invalidate page, it's
1892 * harmless to return without any action.
1893 */
1894 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1895 "ino %lu, to_free %d with only %d reserved "
1896 "data blocks\n", inode->i_ino, to_free,
1897 ei->i_reserved_data_blocks);
1898 WARN_ON(1);
1899 to_free = ei->i_reserved_data_blocks;
1900 }
1901 ei->i_reserved_data_blocks -= to_free;
1902
1903 if (ei->i_reserved_data_blocks == 0) {
1904 /*
1905 * We can release all of the reserved metadata blocks
1906 * only when we have written all of the delayed
1907 * allocation blocks.
1908 */
1909 to_free += ei->i_reserved_meta_blocks;
1910 ei->i_reserved_meta_blocks = 0;
1911 ei->i_da_metadata_calc_len = 0;
1912 }
1913
1914 /* update fs dirty blocks counter */
1915 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1916
1917 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1918
1919 vfs_dq_release_reservation_block(inode, to_free);
1920 }
1921
1922 static void ext4_da_page_release_reservation(struct page *page,
1923 unsigned long offset)
1924 {
1925 int to_release = 0;
1926 struct buffer_head *head, *bh;
1927 unsigned int curr_off = 0;
1928
1929 head = page_buffers(page);
1930 bh = head;
1931 do {
1932 unsigned int next_off = curr_off + bh->b_size;
1933
1934 if ((offset <= curr_off) && (buffer_delay(bh))) {
1935 to_release++;
1936 clear_buffer_delay(bh);
1937 }
1938 curr_off = next_off;
1939 } while ((bh = bh->b_this_page) != head);
1940 ext4_da_release_space(page->mapping->host, to_release);
1941 }
1942
1943 /*
1944 * Delayed allocation stuff
1945 */
1946
1947 /*
1948 * mpage_da_submit_io - walks through extent of pages and try to write
1949 * them with writepage() call back
1950 *
1951 * @mpd->inode: inode
1952 * @mpd->first_page: first page of the extent
1953 * @mpd->next_page: page after the last page of the extent
1954 *
1955 * By the time mpage_da_submit_io() is called we expect all blocks
1956 * to be allocated. this may be wrong if allocation failed.
1957 *
1958 * As pages are already locked by write_cache_pages(), we can't use it
1959 */
1960 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1961 {
1962 long pages_skipped;
1963 struct pagevec pvec;
1964 unsigned long index, end;
1965 int ret = 0, err, nr_pages, i;
1966 struct inode *inode = mpd->inode;
1967 struct address_space *mapping = inode->i_mapping;
1968
1969 BUG_ON(mpd->next_page <= mpd->first_page);
1970 /*
1971 * We need to start from the first_page to the next_page - 1
1972 * to make sure we also write the mapped dirty buffer_heads.
1973 * If we look at mpd->b_blocknr we would only be looking
1974 * at the currently mapped buffer_heads.
1975 */
1976 index = mpd->first_page;
1977 end = mpd->next_page - 1;
1978
1979 pagevec_init(&pvec, 0);
1980 while (index <= end) {
1981 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1982 if (nr_pages == 0)
1983 break;
1984 for (i = 0; i < nr_pages; i++) {
1985 struct page *page = pvec.pages[i];
1986
1987 index = page->index;
1988 if (index > end)
1989 break;
1990 index++;
1991
1992 BUG_ON(!PageLocked(page));
1993 BUG_ON(PageWriteback(page));
1994
1995 pages_skipped = mpd->wbc->pages_skipped;
1996 err = mapping->a_ops->writepage(page, mpd->wbc);
1997 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1998 /*
1999 * have successfully written the page
2000 * without skipping the same
2001 */
2002 mpd->pages_written++;
2003 /*
2004 * In error case, we have to continue because
2005 * remaining pages are still locked
2006 * XXX: unlock and re-dirty them?
2007 */
2008 if (ret == 0)
2009 ret = err;
2010 }
2011 pagevec_release(&pvec);
2012 }
2013 return ret;
2014 }
2015
2016 /*
2017 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2018 *
2019 * @mpd->inode - inode to walk through
2020 * @exbh->b_blocknr - first block on a disk
2021 * @exbh->b_size - amount of space in bytes
2022 * @logical - first logical block to start assignment with
2023 *
2024 * the function goes through all passed space and put actual disk
2025 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2026 */
2027 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2028 struct buffer_head *exbh)
2029 {
2030 struct inode *inode = mpd->inode;
2031 struct address_space *mapping = inode->i_mapping;
2032 int blocks = exbh->b_size >> inode->i_blkbits;
2033 sector_t pblock = exbh->b_blocknr, cur_logical;
2034 struct buffer_head *head, *bh;
2035 pgoff_t index, end;
2036 struct pagevec pvec;
2037 int nr_pages, i;
2038
2039 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2040 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2041 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042
2043 pagevec_init(&pvec, 0);
2044
2045 while (index <= end) {
2046 /* XXX: optimize tail */
2047 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2048 if (nr_pages == 0)
2049 break;
2050 for (i = 0; i < nr_pages; i++) {
2051 struct page *page = pvec.pages[i];
2052
2053 index = page->index;
2054 if (index > end)
2055 break;
2056 index++;
2057
2058 BUG_ON(!PageLocked(page));
2059 BUG_ON(PageWriteback(page));
2060 BUG_ON(!page_has_buffers(page));
2061
2062 bh = page_buffers(page);
2063 head = bh;
2064
2065 /* skip blocks out of the range */
2066 do {
2067 if (cur_logical >= logical)
2068 break;
2069 cur_logical++;
2070 } while ((bh = bh->b_this_page) != head);
2071
2072 do {
2073 if (cur_logical >= logical + blocks)
2074 break;
2075
2076 if (buffer_delay(bh) ||
2077 buffer_unwritten(bh)) {
2078
2079 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2080
2081 if (buffer_delay(bh)) {
2082 clear_buffer_delay(bh);
2083 bh->b_blocknr = pblock;
2084 } else {
2085 /*
2086 * unwritten already should have
2087 * blocknr assigned. Verify that
2088 */
2089 clear_buffer_unwritten(bh);
2090 BUG_ON(bh->b_blocknr != pblock);
2091 }
2092
2093 } else if (buffer_mapped(bh))
2094 BUG_ON(bh->b_blocknr != pblock);
2095
2096 cur_logical++;
2097 pblock++;
2098 } while ((bh = bh->b_this_page) != head);
2099 }
2100 pagevec_release(&pvec);
2101 }
2102 }
2103
2104
2105 /*
2106 * __unmap_underlying_blocks - just a helper function to unmap
2107 * set of blocks described by @bh
2108 */
2109 static inline void __unmap_underlying_blocks(struct inode *inode,
2110 struct buffer_head *bh)
2111 {
2112 struct block_device *bdev = inode->i_sb->s_bdev;
2113 int blocks, i;
2114
2115 blocks = bh->b_size >> inode->i_blkbits;
2116 for (i = 0; i < blocks; i++)
2117 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2118 }
2119
2120 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2121 sector_t logical, long blk_cnt)
2122 {
2123 int nr_pages, i;
2124 pgoff_t index, end;
2125 struct pagevec pvec;
2126 struct inode *inode = mpd->inode;
2127 struct address_space *mapping = inode->i_mapping;
2128
2129 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2130 end = (logical + blk_cnt - 1) >>
2131 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132 while (index <= end) {
2133 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2134 if (nr_pages == 0)
2135 break;
2136 for (i = 0; i < nr_pages; i++) {
2137 struct page *page = pvec.pages[i];
2138 index = page->index;
2139 if (index > end)
2140 break;
2141 index++;
2142
2143 BUG_ON(!PageLocked(page));
2144 BUG_ON(PageWriteback(page));
2145 block_invalidatepage(page, 0);
2146 ClearPageUptodate(page);
2147 unlock_page(page);
2148 }
2149 }
2150 return;
2151 }
2152
2153 static void ext4_print_free_blocks(struct inode *inode)
2154 {
2155 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2156 printk(KERN_CRIT "Total free blocks count %lld\n",
2157 ext4_count_free_blocks(inode->i_sb));
2158 printk(KERN_CRIT "Free/Dirty block details\n");
2159 printk(KERN_CRIT "free_blocks=%lld\n",
2160 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2161 printk(KERN_CRIT "dirty_blocks=%lld\n",
2162 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2163 printk(KERN_CRIT "Block reservation details\n");
2164 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2165 EXT4_I(inode)->i_reserved_data_blocks);
2166 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2167 EXT4_I(inode)->i_reserved_meta_blocks);
2168 return;
2169 }
2170
2171 /*
2172 * mpage_da_map_blocks - go through given space
2173 *
2174 * @mpd - bh describing space
2175 *
2176 * The function skips space we know is already mapped to disk blocks.
2177 *
2178 */
2179 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2180 {
2181 int err, blks, get_blocks_flags;
2182 struct buffer_head new;
2183 sector_t next = mpd->b_blocknr;
2184 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2185 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2186 handle_t *handle = NULL;
2187
2188 /*
2189 * We consider only non-mapped and non-allocated blocks
2190 */
2191 if ((mpd->b_state & (1 << BH_Mapped)) &&
2192 !(mpd->b_state & (1 << BH_Delay)) &&
2193 !(mpd->b_state & (1 << BH_Unwritten)))
2194 return 0;
2195
2196 /*
2197 * If we didn't accumulate anything to write simply return
2198 */
2199 if (!mpd->b_size)
2200 return 0;
2201
2202 handle = ext4_journal_current_handle();
2203 BUG_ON(!handle);
2204
2205 /*
2206 * Call ext4_get_blocks() to allocate any delayed allocation
2207 * blocks, or to convert an uninitialized extent to be
2208 * initialized (in the case where we have written into
2209 * one or more preallocated blocks).
2210 *
2211 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2212 * indicate that we are on the delayed allocation path. This
2213 * affects functions in many different parts of the allocation
2214 * call path. This flag exists primarily because we don't
2215 * want to change *many* call functions, so ext4_get_blocks()
2216 * will set the magic i_delalloc_reserved_flag once the
2217 * inode's allocation semaphore is taken.
2218 *
2219 * If the blocks in questions were delalloc blocks, set
2220 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2221 * variables are updated after the blocks have been allocated.
2222 */
2223 new.b_state = 0;
2224 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2225 if (mpd->b_state & (1 << BH_Delay))
2226 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2227
2228 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2229 &new, get_blocks_flags);
2230 if (blks < 0) {
2231 err = blks;
2232 /*
2233 * If get block returns with error we simply
2234 * return. Later writepage will redirty the page and
2235 * writepages will find the dirty page again
2236 */
2237 if (err == -EAGAIN)
2238 return 0;
2239
2240 if (err == -ENOSPC &&
2241 ext4_count_free_blocks(mpd->inode->i_sb)) {
2242 mpd->retval = err;
2243 return 0;
2244 }
2245
2246 /*
2247 * get block failure will cause us to loop in
2248 * writepages, because a_ops->writepage won't be able
2249 * to make progress. The page will be redirtied by
2250 * writepage and writepages will again try to write
2251 * the same.
2252 */
2253 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2254 "delayed block allocation failed for inode %lu at "
2255 "logical offset %llu with max blocks %zd with "
2256 "error %d\n", mpd->inode->i_ino,
2257 (unsigned long long) next,
2258 mpd->b_size >> mpd->inode->i_blkbits, err);
2259 printk(KERN_CRIT "This should not happen!! "
2260 "Data will be lost\n");
2261 if (err == -ENOSPC) {
2262 ext4_print_free_blocks(mpd->inode);
2263 }
2264 /* invalidate all the pages */
2265 ext4_da_block_invalidatepages(mpd, next,
2266 mpd->b_size >> mpd->inode->i_blkbits);
2267 return err;
2268 }
2269 BUG_ON(blks == 0);
2270
2271 new.b_size = (blks << mpd->inode->i_blkbits);
2272
2273 if (buffer_new(&new))
2274 __unmap_underlying_blocks(mpd->inode, &new);
2275
2276 /*
2277 * If blocks are delayed marked, we need to
2278 * put actual blocknr and drop delayed bit
2279 */
2280 if ((mpd->b_state & (1 << BH_Delay)) ||
2281 (mpd->b_state & (1 << BH_Unwritten)))
2282 mpage_put_bnr_to_bhs(mpd, next, &new);
2283
2284 if (ext4_should_order_data(mpd->inode)) {
2285 err = ext4_jbd2_file_inode(handle, mpd->inode);
2286 if (err)
2287 return err;
2288 }
2289
2290 /*
2291 * Update on-disk size along with block allocation.
2292 */
2293 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2294 if (disksize > i_size_read(mpd->inode))
2295 disksize = i_size_read(mpd->inode);
2296 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2297 ext4_update_i_disksize(mpd->inode, disksize);
2298 return ext4_mark_inode_dirty(handle, mpd->inode);
2299 }
2300
2301 return 0;
2302 }
2303
2304 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2305 (1 << BH_Delay) | (1 << BH_Unwritten))
2306
2307 /*
2308 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2309 *
2310 * @mpd->lbh - extent of blocks
2311 * @logical - logical number of the block in the file
2312 * @bh - bh of the block (used to access block's state)
2313 *
2314 * the function is used to collect contig. blocks in same state
2315 */
2316 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2317 sector_t logical, size_t b_size,
2318 unsigned long b_state)
2319 {
2320 sector_t next;
2321 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2322
2323 /* check if thereserved journal credits might overflow */
2324 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2325 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2326 /*
2327 * With non-extent format we are limited by the journal
2328 * credit available. Total credit needed to insert
2329 * nrblocks contiguous blocks is dependent on the
2330 * nrblocks. So limit nrblocks.
2331 */
2332 goto flush_it;
2333 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2334 EXT4_MAX_TRANS_DATA) {
2335 /*
2336 * Adding the new buffer_head would make it cross the
2337 * allowed limit for which we have journal credit
2338 * reserved. So limit the new bh->b_size
2339 */
2340 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2341 mpd->inode->i_blkbits;
2342 /* we will do mpage_da_submit_io in the next loop */
2343 }
2344 }
2345 /*
2346 * First block in the extent
2347 */
2348 if (mpd->b_size == 0) {
2349 mpd->b_blocknr = logical;
2350 mpd->b_size = b_size;
2351 mpd->b_state = b_state & BH_FLAGS;
2352 return;
2353 }
2354
2355 next = mpd->b_blocknr + nrblocks;
2356 /*
2357 * Can we merge the block to our big extent?
2358 */
2359 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2360 mpd->b_size += b_size;
2361 return;
2362 }
2363
2364 flush_it:
2365 /*
2366 * We couldn't merge the block to our extent, so we
2367 * need to flush current extent and start new one
2368 */
2369 if (mpage_da_map_blocks(mpd) == 0)
2370 mpage_da_submit_io(mpd);
2371 mpd->io_done = 1;
2372 return;
2373 }
2374
2375 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2376 {
2377 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2378 }
2379
2380 /*
2381 * __mpage_da_writepage - finds extent of pages and blocks
2382 *
2383 * @page: page to consider
2384 * @wbc: not used, we just follow rules
2385 * @data: context
2386 *
2387 * The function finds extents of pages and scan them for all blocks.
2388 */
2389 static int __mpage_da_writepage(struct page *page,
2390 struct writeback_control *wbc, void *data)
2391 {
2392 struct mpage_da_data *mpd = data;
2393 struct inode *inode = mpd->inode;
2394 struct buffer_head *bh, *head;
2395 sector_t logical;
2396
2397 if (mpd->io_done) {
2398 /*
2399 * Rest of the page in the page_vec
2400 * redirty then and skip then. We will
2401 * try to write them again after
2402 * starting a new transaction
2403 */
2404 redirty_page_for_writepage(wbc, page);
2405 unlock_page(page);
2406 return MPAGE_DA_EXTENT_TAIL;
2407 }
2408 /*
2409 * Can we merge this page to current extent?
2410 */
2411 if (mpd->next_page != page->index) {
2412 /*
2413 * Nope, we can't. So, we map non-allocated blocks
2414 * and start IO on them using writepage()
2415 */
2416 if (mpd->next_page != mpd->first_page) {
2417 if (mpage_da_map_blocks(mpd) == 0)
2418 mpage_da_submit_io(mpd);
2419 /*
2420 * skip rest of the page in the page_vec
2421 */
2422 mpd->io_done = 1;
2423 redirty_page_for_writepage(wbc, page);
2424 unlock_page(page);
2425 return MPAGE_DA_EXTENT_TAIL;
2426 }
2427
2428 /*
2429 * Start next extent of pages ...
2430 */
2431 mpd->first_page = page->index;
2432
2433 /*
2434 * ... and blocks
2435 */
2436 mpd->b_size = 0;
2437 mpd->b_state = 0;
2438 mpd->b_blocknr = 0;
2439 }
2440
2441 mpd->next_page = page->index + 1;
2442 logical = (sector_t) page->index <<
2443 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2444
2445 if (!page_has_buffers(page)) {
2446 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2447 (1 << BH_Dirty) | (1 << BH_Uptodate));
2448 if (mpd->io_done)
2449 return MPAGE_DA_EXTENT_TAIL;
2450 } else {
2451 /*
2452 * Page with regular buffer heads, just add all dirty ones
2453 */
2454 head = page_buffers(page);
2455 bh = head;
2456 do {
2457 BUG_ON(buffer_locked(bh));
2458 /*
2459 * We need to try to allocate
2460 * unmapped blocks in the same page.
2461 * Otherwise we won't make progress
2462 * with the page in ext4_writepage
2463 */
2464 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2465 mpage_add_bh_to_extent(mpd, logical,
2466 bh->b_size,
2467 bh->b_state);
2468 if (mpd->io_done)
2469 return MPAGE_DA_EXTENT_TAIL;
2470 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2471 /*
2472 * mapped dirty buffer. We need to update
2473 * the b_state because we look at
2474 * b_state in mpage_da_map_blocks. We don't
2475 * update b_size because if we find an
2476 * unmapped buffer_head later we need to
2477 * use the b_state flag of that buffer_head.
2478 */
2479 if (mpd->b_size == 0)
2480 mpd->b_state = bh->b_state & BH_FLAGS;
2481 }
2482 logical++;
2483 } while ((bh = bh->b_this_page) != head);
2484 }
2485
2486 return 0;
2487 }
2488
2489 /*
2490 * This is a special get_blocks_t callback which is used by
2491 * ext4_da_write_begin(). It will either return mapped block or
2492 * reserve space for a single block.
2493 *
2494 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2495 * We also have b_blocknr = -1 and b_bdev initialized properly
2496 *
2497 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2498 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2499 * initialized properly.
2500 */
2501 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2502 struct buffer_head *bh_result, int create)
2503 {
2504 int ret = 0;
2505 sector_t invalid_block = ~((sector_t) 0xffff);
2506
2507 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2508 invalid_block = ~0;
2509
2510 BUG_ON(create == 0);
2511 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2512
2513 /*
2514 * first, we need to know whether the block is allocated already
2515 * preallocated blocks are unmapped but should treated
2516 * the same as allocated blocks.
2517 */
2518 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2519 if ((ret == 0) && !buffer_delay(bh_result)) {
2520 /* the block isn't (pre)allocated yet, let's reserve space */
2521 /*
2522 * XXX: __block_prepare_write() unmaps passed block,
2523 * is it OK?
2524 */
2525 ret = ext4_da_reserve_space(inode, iblock);
2526 if (ret)
2527 /* not enough space to reserve */
2528 return ret;
2529
2530 map_bh(bh_result, inode->i_sb, invalid_block);
2531 set_buffer_new(bh_result);
2532 set_buffer_delay(bh_result);
2533 } else if (ret > 0) {
2534 bh_result->b_size = (ret << inode->i_blkbits);
2535 if (buffer_unwritten(bh_result)) {
2536 /* A delayed write to unwritten bh should
2537 * be marked new and mapped. Mapped ensures
2538 * that we don't do get_block multiple times
2539 * when we write to the same offset and new
2540 * ensures that we do proper zero out for
2541 * partial write.
2542 */
2543 set_buffer_new(bh_result);
2544 set_buffer_mapped(bh_result);
2545 }
2546 ret = 0;
2547 }
2548
2549 return ret;
2550 }
2551
2552 /*
2553 * This function is used as a standard get_block_t calback function
2554 * when there is no desire to allocate any blocks. It is used as a
2555 * callback function for block_prepare_write(), nobh_writepage(), and
2556 * block_write_full_page(). These functions should only try to map a
2557 * single block at a time.
2558 *
2559 * Since this function doesn't do block allocations even if the caller
2560 * requests it by passing in create=1, it is critically important that
2561 * any caller checks to make sure that any buffer heads are returned
2562 * by this function are either all already mapped or marked for
2563 * delayed allocation before calling nobh_writepage() or
2564 * block_write_full_page(). Otherwise, b_blocknr could be left
2565 * unitialized, and the page write functions will be taken by
2566 * surprise.
2567 */
2568 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2569 struct buffer_head *bh_result, int create)
2570 {
2571 int ret = 0;
2572 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2573
2574 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2575
2576 /*
2577 * we don't want to do block allocation in writepage
2578 * so call get_block_wrap with create = 0
2579 */
2580 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2581 if (ret > 0) {
2582 bh_result->b_size = (ret << inode->i_blkbits);
2583 ret = 0;
2584 }
2585 return ret;
2586 }
2587
2588 static int bget_one(handle_t *handle, struct buffer_head *bh)
2589 {
2590 get_bh(bh);
2591 return 0;
2592 }
2593
2594 static int bput_one(handle_t *handle, struct buffer_head *bh)
2595 {
2596 put_bh(bh);
2597 return 0;
2598 }
2599
2600 static int __ext4_journalled_writepage(struct page *page,
2601 unsigned int len)
2602 {
2603 struct address_space *mapping = page->mapping;
2604 struct inode *inode = mapping->host;
2605 struct buffer_head *page_bufs;
2606 handle_t *handle = NULL;
2607 int ret = 0;
2608 int err;
2609
2610 page_bufs = page_buffers(page);
2611 BUG_ON(!page_bufs);
2612 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2613 /* As soon as we unlock the page, it can go away, but we have
2614 * references to buffers so we are safe */
2615 unlock_page(page);
2616
2617 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2618 if (IS_ERR(handle)) {
2619 ret = PTR_ERR(handle);
2620 goto out;
2621 }
2622
2623 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2624 do_journal_get_write_access);
2625
2626 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2627 write_end_fn);
2628 if (ret == 0)
2629 ret = err;
2630 err = ext4_journal_stop(handle);
2631 if (!ret)
2632 ret = err;
2633
2634 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2635 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2636 out:
2637 return ret;
2638 }
2639
2640 /*
2641 * Note that we don't need to start a transaction unless we're journaling data
2642 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2643 * need to file the inode to the transaction's list in ordered mode because if
2644 * we are writing back data added by write(), the inode is already there and if
2645 * we are writing back data modified via mmap(), noone guarantees in which
2646 * transaction the data will hit the disk. In case we are journaling data, we
2647 * cannot start transaction directly because transaction start ranks above page
2648 * lock so we have to do some magic.
2649 *
2650 * This function can get called via...
2651 * - ext4_da_writepages after taking page lock (have journal handle)
2652 * - journal_submit_inode_data_buffers (no journal handle)
2653 * - shrink_page_list via pdflush (no journal handle)
2654 * - grab_page_cache when doing write_begin (have journal handle)
2655 *
2656 * We don't do any block allocation in this function. If we have page with
2657 * multiple blocks we need to write those buffer_heads that are mapped. This
2658 * is important for mmaped based write. So if we do with blocksize 1K
2659 * truncate(f, 1024);
2660 * a = mmap(f, 0, 4096);
2661 * a[0] = 'a';
2662 * truncate(f, 4096);
2663 * we have in the page first buffer_head mapped via page_mkwrite call back
2664 * but other bufer_heads would be unmapped but dirty(dirty done via the
2665 * do_wp_page). So writepage should write the first block. If we modify
2666 * the mmap area beyond 1024 we will again get a page_fault and the
2667 * page_mkwrite callback will do the block allocation and mark the
2668 * buffer_heads mapped.
2669 *
2670 * We redirty the page if we have any buffer_heads that is either delay or
2671 * unwritten in the page.
2672 *
2673 * We can get recursively called as show below.
2674 *
2675 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2676 * ext4_writepage()
2677 *
2678 * But since we don't do any block allocation we should not deadlock.
2679 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2680 */
2681 static int ext4_writepage(struct page *page,
2682 struct writeback_control *wbc)
2683 {
2684 int ret = 0;
2685 loff_t size;
2686 unsigned int len;
2687 struct buffer_head *page_bufs;
2688 struct inode *inode = page->mapping->host;
2689
2690 trace_ext4_writepage(inode, page);
2691 size = i_size_read(inode);
2692 if (page->index == size >> PAGE_CACHE_SHIFT)
2693 len = size & ~PAGE_CACHE_MASK;
2694 else
2695 len = PAGE_CACHE_SIZE;
2696
2697 if (page_has_buffers(page)) {
2698 page_bufs = page_buffers(page);
2699 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2700 ext4_bh_delay_or_unwritten)) {
2701 /*
2702 * We don't want to do block allocation
2703 * So redirty the page and return
2704 * We may reach here when we do a journal commit
2705 * via journal_submit_inode_data_buffers.
2706 * If we don't have mapping block we just ignore
2707 * them. We can also reach here via shrink_page_list
2708 */
2709 redirty_page_for_writepage(wbc, page);
2710 unlock_page(page);
2711 return 0;
2712 }
2713 } else {
2714 /*
2715 * The test for page_has_buffers() is subtle:
2716 * We know the page is dirty but it lost buffers. That means
2717 * that at some moment in time after write_begin()/write_end()
2718 * has been called all buffers have been clean and thus they
2719 * must have been written at least once. So they are all
2720 * mapped and we can happily proceed with mapping them
2721 * and writing the page.
2722 *
2723 * Try to initialize the buffer_heads and check whether
2724 * all are mapped and non delay. We don't want to
2725 * do block allocation here.
2726 */
2727 ret = block_prepare_write(page, 0, len,
2728 noalloc_get_block_write);
2729 if (!ret) {
2730 page_bufs = page_buffers(page);
2731 /* check whether all are mapped and non delay */
2732 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2733 ext4_bh_delay_or_unwritten)) {
2734 redirty_page_for_writepage(wbc, page);
2735 unlock_page(page);
2736 return 0;
2737 }
2738 } else {
2739 /*
2740 * We can't do block allocation here
2741 * so just redity the page and unlock
2742 * and return
2743 */
2744 redirty_page_for_writepage(wbc, page);
2745 unlock_page(page);
2746 return 0;
2747 }
2748 /* now mark the buffer_heads as dirty and uptodate */
2749 block_commit_write(page, 0, len);
2750 }
2751
2752 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2753 /*
2754 * It's mmapped pagecache. Add buffers and journal it. There
2755 * doesn't seem much point in redirtying the page here.
2756 */
2757 ClearPageChecked(page);
2758 return __ext4_journalled_writepage(page, len);
2759 }
2760
2761 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2762 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2763 else
2764 ret = block_write_full_page(page, noalloc_get_block_write,
2765 wbc);
2766
2767 return ret;
2768 }
2769
2770 /*
2771 * This is called via ext4_da_writepages() to
2772 * calulate the total number of credits to reserve to fit
2773 * a single extent allocation into a single transaction,
2774 * ext4_da_writpeages() will loop calling this before
2775 * the block allocation.
2776 */
2777
2778 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2779 {
2780 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2781
2782 /*
2783 * With non-extent format the journal credit needed to
2784 * insert nrblocks contiguous block is dependent on
2785 * number of contiguous block. So we will limit
2786 * number of contiguous block to a sane value
2787 */
2788 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2789 (max_blocks > EXT4_MAX_TRANS_DATA))
2790 max_blocks = EXT4_MAX_TRANS_DATA;
2791
2792 return ext4_chunk_trans_blocks(inode, max_blocks);
2793 }
2794
2795 static int ext4_da_writepages(struct address_space *mapping,
2796 struct writeback_control *wbc)
2797 {
2798 pgoff_t index;
2799 int range_whole = 0;
2800 handle_t *handle = NULL;
2801 struct mpage_da_data mpd;
2802 struct inode *inode = mapping->host;
2803 int no_nrwrite_index_update;
2804 int pages_written = 0;
2805 long pages_skipped;
2806 unsigned int max_pages;
2807 int range_cyclic, cycled = 1, io_done = 0;
2808 int needed_blocks, ret = 0;
2809 long desired_nr_to_write, nr_to_writebump = 0;
2810 loff_t range_start = wbc->range_start;
2811 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2812
2813 trace_ext4_da_writepages(inode, wbc);
2814
2815 /*
2816 * No pages to write? This is mainly a kludge to avoid starting
2817 * a transaction for special inodes like journal inode on last iput()
2818 * because that could violate lock ordering on umount
2819 */
2820 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2821 return 0;
2822
2823 /*
2824 * If the filesystem has aborted, it is read-only, so return
2825 * right away instead of dumping stack traces later on that
2826 * will obscure the real source of the problem. We test
2827 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2828 * the latter could be true if the filesystem is mounted
2829 * read-only, and in that case, ext4_da_writepages should
2830 * *never* be called, so if that ever happens, we would want
2831 * the stack trace.
2832 */
2833 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2834 return -EROFS;
2835
2836 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2837 range_whole = 1;
2838
2839 range_cyclic = wbc->range_cyclic;
2840 if (wbc->range_cyclic) {
2841 index = mapping->writeback_index;
2842 if (index)
2843 cycled = 0;
2844 wbc->range_start = index << PAGE_CACHE_SHIFT;
2845 wbc->range_end = LLONG_MAX;
2846 wbc->range_cyclic = 0;
2847 } else
2848 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2849
2850 /*
2851 * This works around two forms of stupidity. The first is in
2852 * the writeback code, which caps the maximum number of pages
2853 * written to be 1024 pages. This is wrong on multiple
2854 * levels; different architectues have a different page size,
2855 * which changes the maximum amount of data which gets
2856 * written. Secondly, 4 megabytes is way too small. XFS
2857 * forces this value to be 16 megabytes by multiplying
2858 * nr_to_write parameter by four, and then relies on its
2859 * allocator to allocate larger extents to make them
2860 * contiguous. Unfortunately this brings us to the second
2861 * stupidity, which is that ext4's mballoc code only allocates
2862 * at most 2048 blocks. So we force contiguous writes up to
2863 * the number of dirty blocks in the inode, or
2864 * sbi->max_writeback_mb_bump whichever is smaller.
2865 */
2866 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2867 if (!range_cyclic && range_whole)
2868 desired_nr_to_write = wbc->nr_to_write * 8;
2869 else
2870 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2871 max_pages);
2872 if (desired_nr_to_write > max_pages)
2873 desired_nr_to_write = max_pages;
2874
2875 if (wbc->nr_to_write < desired_nr_to_write) {
2876 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2877 wbc->nr_to_write = desired_nr_to_write;
2878 }
2879
2880 mpd.wbc = wbc;
2881 mpd.inode = mapping->host;
2882
2883 /*
2884 * we don't want write_cache_pages to update
2885 * nr_to_write and writeback_index
2886 */
2887 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2888 wbc->no_nrwrite_index_update = 1;
2889 pages_skipped = wbc->pages_skipped;
2890
2891 retry:
2892 while (!ret && wbc->nr_to_write > 0) {
2893
2894 /*
2895 * we insert one extent at a time. So we need
2896 * credit needed for single extent allocation.
2897 * journalled mode is currently not supported
2898 * by delalloc
2899 */
2900 BUG_ON(ext4_should_journal_data(inode));
2901 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2902
2903 /* start a new transaction*/
2904 handle = ext4_journal_start(inode, needed_blocks);
2905 if (IS_ERR(handle)) {
2906 ret = PTR_ERR(handle);
2907 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2908 "%ld pages, ino %lu; err %d\n", __func__,
2909 wbc->nr_to_write, inode->i_ino, ret);
2910 goto out_writepages;
2911 }
2912
2913 /*
2914 * Now call __mpage_da_writepage to find the next
2915 * contiguous region of logical blocks that need
2916 * blocks to be allocated by ext4. We don't actually
2917 * submit the blocks for I/O here, even though
2918 * write_cache_pages thinks it will, and will set the
2919 * pages as clean for write before calling
2920 * __mpage_da_writepage().
2921 */
2922 mpd.b_size = 0;
2923 mpd.b_state = 0;
2924 mpd.b_blocknr = 0;
2925 mpd.first_page = 0;
2926 mpd.next_page = 0;
2927 mpd.io_done = 0;
2928 mpd.pages_written = 0;
2929 mpd.retval = 0;
2930 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2931 &mpd);
2932 /*
2933 * If we have a contiguous extent of pages and we
2934 * haven't done the I/O yet, map the blocks and submit
2935 * them for I/O.
2936 */
2937 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2938 if (mpage_da_map_blocks(&mpd) == 0)
2939 mpage_da_submit_io(&mpd);
2940 mpd.io_done = 1;
2941 ret = MPAGE_DA_EXTENT_TAIL;
2942 }
2943 trace_ext4_da_write_pages(inode, &mpd);
2944 wbc->nr_to_write -= mpd.pages_written;
2945
2946 ext4_journal_stop(handle);
2947
2948 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2949 /* commit the transaction which would
2950 * free blocks released in the transaction
2951 * and try again
2952 */
2953 jbd2_journal_force_commit_nested(sbi->s_journal);
2954 wbc->pages_skipped = pages_skipped;
2955 ret = 0;
2956 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2957 /*
2958 * got one extent now try with
2959 * rest of the pages
2960 */
2961 pages_written += mpd.pages_written;
2962 wbc->pages_skipped = pages_skipped;
2963 ret = 0;
2964 io_done = 1;
2965 } else if (wbc->nr_to_write)
2966 /*
2967 * There is no more writeout needed
2968 * or we requested for a noblocking writeout
2969 * and we found the device congested
2970 */
2971 break;
2972 }
2973 if (!io_done && !cycled) {
2974 cycled = 1;
2975 index = 0;
2976 wbc->range_start = index << PAGE_CACHE_SHIFT;
2977 wbc->range_end = mapping->writeback_index - 1;
2978 goto retry;
2979 }
2980 if (pages_skipped != wbc->pages_skipped)
2981 ext4_msg(inode->i_sb, KERN_CRIT,
2982 "This should not happen leaving %s "
2983 "with nr_to_write = %ld ret = %d\n",
2984 __func__, wbc->nr_to_write, ret);
2985
2986 /* Update index */
2987 index += pages_written;
2988 wbc->range_cyclic = range_cyclic;
2989 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2990 /*
2991 * set the writeback_index so that range_cyclic
2992 * mode will write it back later
2993 */
2994 mapping->writeback_index = index;
2995
2996 out_writepages:
2997 if (!no_nrwrite_index_update)
2998 wbc->no_nrwrite_index_update = 0;
2999 wbc->nr_to_write -= nr_to_writebump;
3000 wbc->range_start = range_start;
3001 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3002 return ret;
3003 }
3004
3005 #define FALL_BACK_TO_NONDELALLOC 1
3006 static int ext4_nonda_switch(struct super_block *sb)
3007 {
3008 s64 free_blocks, dirty_blocks;
3009 struct ext4_sb_info *sbi = EXT4_SB(sb);
3010
3011 /*
3012 * switch to non delalloc mode if we are running low
3013 * on free block. The free block accounting via percpu
3014 * counters can get slightly wrong with percpu_counter_batch getting
3015 * accumulated on each CPU without updating global counters
3016 * Delalloc need an accurate free block accounting. So switch
3017 * to non delalloc when we are near to error range.
3018 */
3019 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3020 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3021 if (2 * free_blocks < 3 * dirty_blocks ||
3022 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3023 /*
3024 * free block count is less than 150% of dirty blocks
3025 * or free blocks is less than watermark
3026 */
3027 return 1;
3028 }
3029 /*
3030 * Even if we don't switch but are nearing capacity,
3031 * start pushing delalloc when 1/2 of free blocks are dirty.
3032 */
3033 if (free_blocks < 2 * dirty_blocks)
3034 writeback_inodes_sb_if_idle(sb);
3035
3036 return 0;
3037 }
3038
3039 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3040 loff_t pos, unsigned len, unsigned flags,
3041 struct page **pagep, void **fsdata)
3042 {
3043 int ret, retries = 0, quota_retries = 0;
3044 struct page *page;
3045 pgoff_t index;
3046 unsigned from, to;
3047 struct inode *inode = mapping->host;
3048 handle_t *handle;
3049
3050 index = pos >> PAGE_CACHE_SHIFT;
3051 from = pos & (PAGE_CACHE_SIZE - 1);
3052 to = from + len;
3053
3054 if (ext4_nonda_switch(inode->i_sb)) {
3055 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3056 return ext4_write_begin(file, mapping, pos,
3057 len, flags, pagep, fsdata);
3058 }
3059 *fsdata = (void *)0;
3060 trace_ext4_da_write_begin(inode, pos, len, flags);
3061 retry:
3062 /*
3063 * With delayed allocation, we don't log the i_disksize update
3064 * if there is delayed block allocation. But we still need
3065 * to journalling the i_disksize update if writes to the end
3066 * of file which has an already mapped buffer.
3067 */
3068 handle = ext4_journal_start(inode, 1);
3069 if (IS_ERR(handle)) {
3070 ret = PTR_ERR(handle);
3071 goto out;
3072 }
3073 /* We cannot recurse into the filesystem as the transaction is already
3074 * started */
3075 flags |= AOP_FLAG_NOFS;
3076
3077 page = grab_cache_page_write_begin(mapping, index, flags);
3078 if (!page) {
3079 ext4_journal_stop(handle);
3080 ret = -ENOMEM;
3081 goto out;
3082 }
3083 *pagep = page;
3084
3085 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3086 ext4_da_get_block_prep);
3087 if (ret < 0) {
3088 unlock_page(page);
3089 ext4_journal_stop(handle);
3090 page_cache_release(page);
3091 /*
3092 * block_write_begin may have instantiated a few blocks
3093 * outside i_size. Trim these off again. Don't need
3094 * i_size_read because we hold i_mutex.
3095 */
3096 if (pos + len > inode->i_size)
3097 ext4_truncate_failed_write(inode);
3098 }
3099
3100 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3101 goto retry;
3102
3103 if ((ret == -EDQUOT) &&
3104 EXT4_I(inode)->i_reserved_meta_blocks &&
3105 (quota_retries++ < 3)) {
3106 /*
3107 * Since we often over-estimate the number of meta
3108 * data blocks required, we may sometimes get a
3109 * spurios out of quota error even though there would
3110 * be enough space once we write the data blocks and
3111 * find out how many meta data blocks were _really_
3112 * required. So try forcing the inode write to see if
3113 * that helps.
3114 */
3115 write_inode_now(inode, (quota_retries == 3));
3116 goto retry;
3117 }
3118 out:
3119 return ret;
3120 }
3121
3122 /*
3123 * Check if we should update i_disksize
3124 * when write to the end of file but not require block allocation
3125 */
3126 static int ext4_da_should_update_i_disksize(struct page *page,
3127 unsigned long offset)
3128 {
3129 struct buffer_head *bh;
3130 struct inode *inode = page->mapping->host;
3131 unsigned int idx;
3132 int i;
3133
3134 bh = page_buffers(page);
3135 idx = offset >> inode->i_blkbits;
3136
3137 for (i = 0; i < idx; i++)
3138 bh = bh->b_this_page;
3139
3140 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3141 return 0;
3142 return 1;
3143 }
3144
3145 static int ext4_da_write_end(struct file *file,
3146 struct address_space *mapping,
3147 loff_t pos, unsigned len, unsigned copied,
3148 struct page *page, void *fsdata)
3149 {
3150 struct inode *inode = mapping->host;
3151 int ret = 0, ret2;
3152 handle_t *handle = ext4_journal_current_handle();
3153 loff_t new_i_size;
3154 unsigned long start, end;
3155 int write_mode = (int)(unsigned long)fsdata;
3156
3157 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3158 if (ext4_should_order_data(inode)) {
3159 return ext4_ordered_write_end(file, mapping, pos,
3160 len, copied, page, fsdata);
3161 } else if (ext4_should_writeback_data(inode)) {
3162 return ext4_writeback_write_end(file, mapping, pos,
3163 len, copied, page, fsdata);
3164 } else {
3165 BUG();
3166 }
3167 }
3168
3169 trace_ext4_da_write_end(inode, pos, len, copied);
3170 start = pos & (PAGE_CACHE_SIZE - 1);
3171 end = start + copied - 1;
3172
3173 /*
3174 * generic_write_end() will run mark_inode_dirty() if i_size
3175 * changes. So let's piggyback the i_disksize mark_inode_dirty
3176 * into that.
3177 */
3178
3179 new_i_size = pos + copied;
3180 if (new_i_size > EXT4_I(inode)->i_disksize) {
3181 if (ext4_da_should_update_i_disksize(page, end)) {
3182 down_write(&EXT4_I(inode)->i_data_sem);
3183 if (new_i_size > EXT4_I(inode)->i_disksize) {
3184 /*
3185 * Updating i_disksize when extending file
3186 * without needing block allocation
3187 */
3188 if (ext4_should_order_data(inode))
3189 ret = ext4_jbd2_file_inode(handle,
3190 inode);
3191
3192 EXT4_I(inode)->i_disksize = new_i_size;
3193 }
3194 up_write(&EXT4_I(inode)->i_data_sem);
3195 /* We need to mark inode dirty even if
3196 * new_i_size is less that inode->i_size
3197 * bu greater than i_disksize.(hint delalloc)
3198 */
3199 ext4_mark_inode_dirty(handle, inode);
3200 }
3201 }
3202 ret2 = generic_write_end(file, mapping, pos, len, copied,
3203 page, fsdata);
3204 copied = ret2;
3205 if (ret2 < 0)
3206 ret = ret2;
3207 ret2 = ext4_journal_stop(handle);
3208 if (!ret)
3209 ret = ret2;
3210
3211 return ret ? ret : copied;
3212 }
3213
3214 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3215 {
3216 /*
3217 * Drop reserved blocks
3218 */
3219 BUG_ON(!PageLocked(page));
3220 if (!page_has_buffers(page))
3221 goto out;
3222
3223 ext4_da_page_release_reservation(page, offset);
3224
3225 out:
3226 ext4_invalidatepage(page, offset);
3227
3228 return;
3229 }
3230
3231 /*
3232 * Force all delayed allocation blocks to be allocated for a given inode.
3233 */
3234 int ext4_alloc_da_blocks(struct inode *inode)
3235 {
3236 trace_ext4_alloc_da_blocks(inode);
3237
3238 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3239 !EXT4_I(inode)->i_reserved_meta_blocks)
3240 return 0;
3241
3242 /*
3243 * We do something simple for now. The filemap_flush() will
3244 * also start triggering a write of the data blocks, which is
3245 * not strictly speaking necessary (and for users of
3246 * laptop_mode, not even desirable). However, to do otherwise
3247 * would require replicating code paths in:
3248 *
3249 * ext4_da_writepages() ->
3250 * write_cache_pages() ---> (via passed in callback function)
3251 * __mpage_da_writepage() -->
3252 * mpage_add_bh_to_extent()
3253 * mpage_da_map_blocks()
3254 *
3255 * The problem is that write_cache_pages(), located in
3256 * mm/page-writeback.c, marks pages clean in preparation for
3257 * doing I/O, which is not desirable if we're not planning on
3258 * doing I/O at all.
3259 *
3260 * We could call write_cache_pages(), and then redirty all of
3261 * the pages by calling redirty_page_for_writeback() but that
3262 * would be ugly in the extreme. So instead we would need to
3263 * replicate parts of the code in the above functions,
3264 * simplifying them becuase we wouldn't actually intend to
3265 * write out the pages, but rather only collect contiguous
3266 * logical block extents, call the multi-block allocator, and
3267 * then update the buffer heads with the block allocations.
3268 *
3269 * For now, though, we'll cheat by calling filemap_flush(),
3270 * which will map the blocks, and start the I/O, but not
3271 * actually wait for the I/O to complete.
3272 */
3273 return filemap_flush(inode->i_mapping);
3274 }
3275
3276 /*
3277 * bmap() is special. It gets used by applications such as lilo and by
3278 * the swapper to find the on-disk block of a specific piece of data.
3279 *
3280 * Naturally, this is dangerous if the block concerned is still in the
3281 * journal. If somebody makes a swapfile on an ext4 data-journaling
3282 * filesystem and enables swap, then they may get a nasty shock when the
3283 * data getting swapped to that swapfile suddenly gets overwritten by
3284 * the original zero's written out previously to the journal and
3285 * awaiting writeback in the kernel's buffer cache.
3286 *
3287 * So, if we see any bmap calls here on a modified, data-journaled file,
3288 * take extra steps to flush any blocks which might be in the cache.
3289 */
3290 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3291 {
3292 struct inode *inode = mapping->host;
3293 journal_t *journal;
3294 int err;
3295
3296 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3297 test_opt(inode->i_sb, DELALLOC)) {
3298 /*
3299 * With delalloc we want to sync the file
3300 * so that we can make sure we allocate
3301 * blocks for file
3302 */
3303 filemap_write_and_wait(mapping);
3304 }
3305
3306 if (EXT4_JOURNAL(inode) &&
3307 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3308 /*
3309 * This is a REALLY heavyweight approach, but the use of
3310 * bmap on dirty files is expected to be extremely rare:
3311 * only if we run lilo or swapon on a freshly made file
3312 * do we expect this to happen.
3313 *
3314 * (bmap requires CAP_SYS_RAWIO so this does not
3315 * represent an unprivileged user DOS attack --- we'd be
3316 * in trouble if mortal users could trigger this path at
3317 * will.)
3318 *
3319 * NB. EXT4_STATE_JDATA is not set on files other than
3320 * regular files. If somebody wants to bmap a directory
3321 * or symlink and gets confused because the buffer
3322 * hasn't yet been flushed to disk, they deserve
3323 * everything they get.
3324 */
3325
3326 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3327 journal = EXT4_JOURNAL(inode);
3328 jbd2_journal_lock_updates(journal);
3329 err = jbd2_journal_flush(journal);
3330 jbd2_journal_unlock_updates(journal);
3331
3332 if (err)
3333 return 0;
3334 }
3335
3336 return generic_block_bmap(mapping, block, ext4_get_block);
3337 }
3338
3339 static int ext4_readpage(struct file *file, struct page *page)
3340 {
3341 return mpage_readpage(page, ext4_get_block);
3342 }
3343
3344 static int
3345 ext4_readpages(struct file *file, struct address_space *mapping,
3346 struct list_head *pages, unsigned nr_pages)
3347 {
3348 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3349 }
3350
3351 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3352 {
3353 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3354
3355 /*
3356 * If it's a full truncate we just forget about the pending dirtying
3357 */
3358 if (offset == 0)
3359 ClearPageChecked(page);
3360
3361 if (journal)
3362 jbd2_journal_invalidatepage(journal, page, offset);
3363 else
3364 block_invalidatepage(page, offset);
3365 }
3366
3367 static int ext4_releasepage(struct page *page, gfp_t wait)
3368 {
3369 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3370
3371 WARN_ON(PageChecked(page));
3372 if (!page_has_buffers(page))
3373 return 0;
3374 if (journal)
3375 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3376 else
3377 return try_to_free_buffers(page);
3378 }
3379
3380 /*
3381 * O_DIRECT for ext3 (or indirect map) based files
3382 *
3383 * If the O_DIRECT write will extend the file then add this inode to the
3384 * orphan list. So recovery will truncate it back to the original size
3385 * if the machine crashes during the write.
3386 *
3387 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3388 * crashes then stale disk data _may_ be exposed inside the file. But current
3389 * VFS code falls back into buffered path in that case so we are safe.
3390 */
3391 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3392 const struct iovec *iov, loff_t offset,
3393 unsigned long nr_segs)
3394 {
3395 struct file *file = iocb->ki_filp;
3396 struct inode *inode = file->f_mapping->host;
3397 struct ext4_inode_info *ei = EXT4_I(inode);
3398 handle_t *handle;
3399 ssize_t ret;
3400 int orphan = 0;
3401 size_t count = iov_length(iov, nr_segs);
3402 int retries = 0;
3403
3404 if (rw == WRITE) {
3405 loff_t final_size = offset + count;
3406
3407 if (final_size > inode->i_size) {
3408 /* Credits for sb + inode write */
3409 handle = ext4_journal_start(inode, 2);
3410 if (IS_ERR(handle)) {
3411 ret = PTR_ERR(handle);
3412 goto out;
3413 }
3414 ret = ext4_orphan_add(handle, inode);
3415 if (ret) {
3416 ext4_journal_stop(handle);
3417 goto out;
3418 }
3419 orphan = 1;
3420 ei->i_disksize = inode->i_size;
3421 ext4_journal_stop(handle);
3422 }
3423 }
3424
3425 retry:
3426 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3427 offset, nr_segs,
3428 ext4_get_block, NULL);
3429 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3430 goto retry;
3431
3432 if (orphan) {
3433 int err;
3434
3435 /* Credits for sb + inode write */
3436 handle = ext4_journal_start(inode, 2);
3437 if (IS_ERR(handle)) {
3438 /* This is really bad luck. We've written the data
3439 * but cannot extend i_size. Bail out and pretend
3440 * the write failed... */
3441 ret = PTR_ERR(handle);
3442 goto out;
3443 }
3444 if (inode->i_nlink)
3445 ext4_orphan_del(handle, inode);
3446 if (ret > 0) {
3447 loff_t end = offset + ret;
3448 if (end > inode->i_size) {
3449 ei->i_disksize = end;
3450 i_size_write(inode, end);
3451 /*
3452 * We're going to return a positive `ret'
3453 * here due to non-zero-length I/O, so there's
3454 * no way of reporting error returns from
3455 * ext4_mark_inode_dirty() to userspace. So
3456 * ignore it.
3457 */
3458 ext4_mark_inode_dirty(handle, inode);
3459 }
3460 }
3461 err = ext4_journal_stop(handle);
3462 if (ret == 0)
3463 ret = err;
3464 }
3465 out:
3466 return ret;
3467 }
3468
3469 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3470 struct buffer_head *bh_result, int create)
3471 {
3472 handle_t *handle = NULL;
3473 int ret = 0;
3474 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3475 int dio_credits;
3476
3477 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3478 inode->i_ino, create);
3479 /*
3480 * DIO VFS code passes create = 0 flag for write to
3481 * the middle of file. It does this to avoid block
3482 * allocation for holes, to prevent expose stale data
3483 * out when there is parallel buffered read (which does
3484 * not hold the i_mutex lock) while direct IO write has
3485 * not completed. DIO request on holes finally falls back
3486 * to buffered IO for this reason.
3487 *
3488 * For ext4 extent based file, since we support fallocate,
3489 * new allocated extent as uninitialized, for holes, we
3490 * could fallocate blocks for holes, thus parallel
3491 * buffered IO read will zero out the page when read on
3492 * a hole while parallel DIO write to the hole has not completed.
3493 *
3494 * when we come here, we know it's a direct IO write to
3495 * to the middle of file (<i_size)
3496 * so it's safe to override the create flag from VFS.
3497 */
3498 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3499
3500 if (max_blocks > DIO_MAX_BLOCKS)
3501 max_blocks = DIO_MAX_BLOCKS;
3502 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3503 handle = ext4_journal_start(inode, dio_credits);
3504 if (IS_ERR(handle)) {
3505 ret = PTR_ERR(handle);
3506 goto out;
3507 }
3508 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3509 create);
3510 if (ret > 0) {
3511 bh_result->b_size = (ret << inode->i_blkbits);
3512 ret = 0;
3513 }
3514 ext4_journal_stop(handle);
3515 out:
3516 return ret;
3517 }
3518
3519 static void ext4_free_io_end(ext4_io_end_t *io)
3520 {
3521 BUG_ON(!io);
3522 iput(io->inode);
3523 kfree(io);
3524 }
3525 static void dump_aio_dio_list(struct inode * inode)
3526 {
3527 #ifdef EXT4_DEBUG
3528 struct list_head *cur, *before, *after;
3529 ext4_io_end_t *io, *io0, *io1;
3530
3531 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3532 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3533 return;
3534 }
3535
3536 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3537 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3538 cur = &io->list;
3539 before = cur->prev;
3540 io0 = container_of(before, ext4_io_end_t, list);
3541 after = cur->next;
3542 io1 = container_of(after, ext4_io_end_t, list);
3543
3544 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3545 io, inode->i_ino, io0, io1);
3546 }
3547 #endif
3548 }
3549
3550 /*
3551 * check a range of space and convert unwritten extents to written.
3552 */
3553 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3554 {
3555 struct inode *inode = io->inode;
3556 loff_t offset = io->offset;
3557 ssize_t size = io->size;
3558 int ret = 0;
3559
3560 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3561 "list->prev 0x%p\n",
3562 io, inode->i_ino, io->list.next, io->list.prev);
3563
3564 if (list_empty(&io->list))
3565 return ret;
3566
3567 if (io->flag != DIO_AIO_UNWRITTEN)
3568 return ret;
3569
3570 if (offset + size <= i_size_read(inode))
3571 ret = ext4_convert_unwritten_extents(inode, offset, size);
3572
3573 if (ret < 0) {
3574 printk(KERN_EMERG "%s: failed to convert unwritten"
3575 "extents to written extents, error is %d"
3576 " io is still on inode %lu aio dio list\n",
3577 __func__, ret, inode->i_ino);
3578 return ret;
3579 }
3580
3581 /* clear the DIO AIO unwritten flag */
3582 io->flag = 0;
3583 return ret;
3584 }
3585 /*
3586 * work on completed aio dio IO, to convert unwritten extents to extents
3587 */
3588 static void ext4_end_aio_dio_work(struct work_struct *work)
3589 {
3590 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3591 struct inode *inode = io->inode;
3592 int ret = 0;
3593
3594 mutex_lock(&inode->i_mutex);
3595 ret = ext4_end_aio_dio_nolock(io);
3596 if (ret >= 0) {
3597 if (!list_empty(&io->list))
3598 list_del_init(&io->list);
3599 ext4_free_io_end(io);
3600 }
3601 mutex_unlock(&inode->i_mutex);
3602 }
3603 /*
3604 * This function is called from ext4_sync_file().
3605 *
3606 * When AIO DIO IO is completed, the work to convert unwritten
3607 * extents to written is queued on workqueue but may not get immediately
3608 * scheduled. When fsync is called, we need to ensure the
3609 * conversion is complete before fsync returns.
3610 * The inode keeps track of a list of completed AIO from DIO path
3611 * that might needs to do the conversion. This function walks through
3612 * the list and convert the related unwritten extents to written.
3613 */
3614 int flush_aio_dio_completed_IO(struct inode *inode)
3615 {
3616 ext4_io_end_t *io;
3617 int ret = 0;
3618 int ret2 = 0;
3619
3620 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3621 return ret;
3622
3623 dump_aio_dio_list(inode);
3624 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3625 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3626 ext4_io_end_t, list);
3627 /*
3628 * Calling ext4_end_aio_dio_nolock() to convert completed
3629 * IO to written.
3630 *
3631 * When ext4_sync_file() is called, run_queue() may already
3632 * about to flush the work corresponding to this io structure.
3633 * It will be upset if it founds the io structure related
3634 * to the work-to-be schedule is freed.
3635 *
3636 * Thus we need to keep the io structure still valid here after
3637 * convertion finished. The io structure has a flag to
3638 * avoid double converting from both fsync and background work
3639 * queue work.
3640 */
3641 ret = ext4_end_aio_dio_nolock(io);
3642 if (ret < 0)
3643 ret2 = ret;
3644 else
3645 list_del_init(&io->list);
3646 }
3647 return (ret2 < 0) ? ret2 : 0;
3648 }
3649
3650 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3651 {
3652 ext4_io_end_t *io = NULL;
3653
3654 io = kmalloc(sizeof(*io), GFP_NOFS);
3655
3656 if (io) {
3657 igrab(inode);
3658 io->inode = inode;
3659 io->flag = 0;
3660 io->offset = 0;
3661 io->size = 0;
3662 io->error = 0;
3663 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3664 INIT_LIST_HEAD(&io->list);
3665 }
3666
3667 return io;
3668 }
3669
3670 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3671 ssize_t size, void *private)
3672 {
3673 ext4_io_end_t *io_end = iocb->private;
3674 struct workqueue_struct *wq;
3675
3676 /* if not async direct IO or dio with 0 bytes write, just return */
3677 if (!io_end || !size)
3678 return;
3679
3680 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3681 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3682 iocb->private, io_end->inode->i_ino, iocb, offset,
3683 size);
3684
3685 /* if not aio dio with unwritten extents, just free io and return */
3686 if (io_end->flag != DIO_AIO_UNWRITTEN){
3687 ext4_free_io_end(io_end);
3688 iocb->private = NULL;
3689 return;
3690 }
3691
3692 io_end->offset = offset;
3693 io_end->size = size;
3694 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3695
3696 /* queue the work to convert unwritten extents to written */
3697 queue_work(wq, &io_end->work);
3698
3699 /* Add the io_end to per-inode completed aio dio list*/
3700 list_add_tail(&io_end->list,
3701 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3702 iocb->private = NULL;
3703 }
3704 /*
3705 * For ext4 extent files, ext4 will do direct-io write to holes,
3706 * preallocated extents, and those write extend the file, no need to
3707 * fall back to buffered IO.
3708 *
3709 * For holes, we fallocate those blocks, mark them as unintialized
3710 * If those blocks were preallocated, we mark sure they are splited, but
3711 * still keep the range to write as unintialized.
3712 *
3713 * The unwrritten extents will be converted to written when DIO is completed.
3714 * For async direct IO, since the IO may still pending when return, we
3715 * set up an end_io call back function, which will do the convertion
3716 * when async direct IO completed.
3717 *
3718 * If the O_DIRECT write will extend the file then add this inode to the
3719 * orphan list. So recovery will truncate it back to the original size
3720 * if the machine crashes during the write.
3721 *
3722 */
3723 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3724 const struct iovec *iov, loff_t offset,
3725 unsigned long nr_segs)
3726 {
3727 struct file *file = iocb->ki_filp;
3728 struct inode *inode = file->f_mapping->host;
3729 ssize_t ret;
3730 size_t count = iov_length(iov, nr_segs);
3731
3732 loff_t final_size = offset + count;
3733 if (rw == WRITE && final_size <= inode->i_size) {
3734 /*
3735 * We could direct write to holes and fallocate.
3736 *
3737 * Allocated blocks to fill the hole are marked as uninitialized
3738 * to prevent paralel buffered read to expose the stale data
3739 * before DIO complete the data IO.
3740 *
3741 * As to previously fallocated extents, ext4 get_block
3742 * will just simply mark the buffer mapped but still
3743 * keep the extents uninitialized.
3744 *
3745 * for non AIO case, we will convert those unwritten extents
3746 * to written after return back from blockdev_direct_IO.
3747 *
3748 * for async DIO, the conversion needs to be defered when
3749 * the IO is completed. The ext4 end_io callback function
3750 * will be called to take care of the conversion work.
3751 * Here for async case, we allocate an io_end structure to
3752 * hook to the iocb.
3753 */
3754 iocb->private = NULL;
3755 EXT4_I(inode)->cur_aio_dio = NULL;
3756 if (!is_sync_kiocb(iocb)) {
3757 iocb->private = ext4_init_io_end(inode);
3758 if (!iocb->private)
3759 return -ENOMEM;
3760 /*
3761 * we save the io structure for current async
3762 * direct IO, so that later ext4_get_blocks()
3763 * could flag the io structure whether there
3764 * is a unwritten extents needs to be converted
3765 * when IO is completed.
3766 */
3767 EXT4_I(inode)->cur_aio_dio = iocb->private;
3768 }
3769
3770 ret = blockdev_direct_IO(rw, iocb, inode,
3771 inode->i_sb->s_bdev, iov,
3772 offset, nr_segs,
3773 ext4_get_block_dio_write,
3774 ext4_end_io_dio);
3775 if (iocb->private)
3776 EXT4_I(inode)->cur_aio_dio = NULL;
3777 /*
3778 * The io_end structure takes a reference to the inode,
3779 * that structure needs to be destroyed and the
3780 * reference to the inode need to be dropped, when IO is
3781 * complete, even with 0 byte write, or failed.
3782 *
3783 * In the successful AIO DIO case, the io_end structure will be
3784 * desctroyed and the reference to the inode will be dropped
3785 * after the end_io call back function is called.
3786 *
3787 * In the case there is 0 byte write, or error case, since
3788 * VFS direct IO won't invoke the end_io call back function,
3789 * we need to free the end_io structure here.
3790 */
3791 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3792 ext4_free_io_end(iocb->private);
3793 iocb->private = NULL;
3794 } else if (ret > 0 && ext4_test_inode_state(inode,
3795 EXT4_STATE_DIO_UNWRITTEN)) {
3796 int err;
3797 /*
3798 * for non AIO case, since the IO is already
3799 * completed, we could do the convertion right here
3800 */
3801 err = ext4_convert_unwritten_extents(inode,
3802 offset, ret);
3803 if (err < 0)
3804 ret = err;
3805 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3806 }
3807 return ret;
3808 }
3809
3810 /* for write the the end of file case, we fall back to old way */
3811 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3812 }
3813
3814 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3815 const struct iovec *iov, loff_t offset,
3816 unsigned long nr_segs)
3817 {
3818 struct file *file = iocb->ki_filp;
3819 struct inode *inode = file->f_mapping->host;
3820
3821 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3822 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3823
3824 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3825 }
3826
3827 /*
3828 * Pages can be marked dirty completely asynchronously from ext4's journalling
3829 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3830 * much here because ->set_page_dirty is called under VFS locks. The page is
3831 * not necessarily locked.
3832 *
3833 * We cannot just dirty the page and leave attached buffers clean, because the
3834 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3835 * or jbddirty because all the journalling code will explode.
3836 *
3837 * So what we do is to mark the page "pending dirty" and next time writepage
3838 * is called, propagate that into the buffers appropriately.
3839 */
3840 static int ext4_journalled_set_page_dirty(struct page *page)
3841 {
3842 SetPageChecked(page);
3843 return __set_page_dirty_nobuffers(page);
3844 }
3845
3846 static const struct address_space_operations ext4_ordered_aops = {
3847 .readpage = ext4_readpage,
3848 .readpages = ext4_readpages,
3849 .writepage = ext4_writepage,
3850 .sync_page = block_sync_page,
3851 .write_begin = ext4_write_begin,
3852 .write_end = ext4_ordered_write_end,
3853 .bmap = ext4_bmap,
3854 .invalidatepage = ext4_invalidatepage,
3855 .releasepage = ext4_releasepage,
3856 .direct_IO = ext4_direct_IO,
3857 .migratepage = buffer_migrate_page,
3858 .is_partially_uptodate = block_is_partially_uptodate,
3859 .error_remove_page = generic_error_remove_page,
3860 };
3861
3862 static const struct address_space_operations ext4_writeback_aops = {
3863 .readpage = ext4_readpage,
3864 .readpages = ext4_readpages,
3865 .writepage = ext4_writepage,
3866 .sync_page = block_sync_page,
3867 .write_begin = ext4_write_begin,
3868 .write_end = ext4_writeback_write_end,
3869 .bmap = ext4_bmap,
3870 .invalidatepage = ext4_invalidatepage,
3871 .releasepage = ext4_releasepage,
3872 .direct_IO = ext4_direct_IO,
3873 .migratepage = buffer_migrate_page,
3874 .is_partially_uptodate = block_is_partially_uptodate,
3875 .error_remove_page = generic_error_remove_page,
3876 };
3877
3878 static const struct address_space_operations ext4_journalled_aops = {
3879 .readpage = ext4_readpage,
3880 .readpages = ext4_readpages,
3881 .writepage = ext4_writepage,
3882 .sync_page = block_sync_page,
3883 .write_begin = ext4_write_begin,
3884 .write_end = ext4_journalled_write_end,
3885 .set_page_dirty = ext4_journalled_set_page_dirty,
3886 .bmap = ext4_bmap,
3887 .invalidatepage = ext4_invalidatepage,
3888 .releasepage = ext4_releasepage,
3889 .is_partially_uptodate = block_is_partially_uptodate,
3890 .error_remove_page = generic_error_remove_page,
3891 };
3892
3893 static const struct address_space_operations ext4_da_aops = {
3894 .readpage = ext4_readpage,
3895 .readpages = ext4_readpages,
3896 .writepage = ext4_writepage,
3897 .writepages = ext4_da_writepages,
3898 .sync_page = block_sync_page,
3899 .write_begin = ext4_da_write_begin,
3900 .write_end = ext4_da_write_end,
3901 .bmap = ext4_bmap,
3902 .invalidatepage = ext4_da_invalidatepage,
3903 .releasepage = ext4_releasepage,
3904 .direct_IO = ext4_direct_IO,
3905 .migratepage = buffer_migrate_page,
3906 .is_partially_uptodate = block_is_partially_uptodate,
3907 .error_remove_page = generic_error_remove_page,
3908 };
3909
3910 void ext4_set_aops(struct inode *inode)
3911 {
3912 if (ext4_should_order_data(inode) &&
3913 test_opt(inode->i_sb, DELALLOC))
3914 inode->i_mapping->a_ops = &ext4_da_aops;
3915 else if (ext4_should_order_data(inode))
3916 inode->i_mapping->a_ops = &ext4_ordered_aops;
3917 else if (ext4_should_writeback_data(inode) &&
3918 test_opt(inode->i_sb, DELALLOC))
3919 inode->i_mapping->a_ops = &ext4_da_aops;
3920 else if (ext4_should_writeback_data(inode))
3921 inode->i_mapping->a_ops = &ext4_writeback_aops;
3922 else
3923 inode->i_mapping->a_ops = &ext4_journalled_aops;
3924 }
3925
3926 /*
3927 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3928 * up to the end of the block which corresponds to `from'.
3929 * This required during truncate. We need to physically zero the tail end
3930 * of that block so it doesn't yield old data if the file is later grown.
3931 */
3932 int ext4_block_truncate_page(handle_t *handle,
3933 struct address_space *mapping, loff_t from)
3934 {
3935 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3936 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3937 unsigned blocksize, length, pos;
3938 ext4_lblk_t iblock;
3939 struct inode *inode = mapping->host;
3940 struct buffer_head *bh;
3941 struct page *page;
3942 int err = 0;
3943
3944 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3945 mapping_gfp_mask(mapping) & ~__GFP_FS);
3946 if (!page)
3947 return -EINVAL;
3948
3949 blocksize = inode->i_sb->s_blocksize;
3950 length = blocksize - (offset & (blocksize - 1));
3951 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3952
3953 /*
3954 * For "nobh" option, we can only work if we don't need to
3955 * read-in the page - otherwise we create buffers to do the IO.
3956 */
3957 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3958 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3959 zero_user(page, offset, length);
3960 set_page_dirty(page);
3961 goto unlock;
3962 }
3963
3964 if (!page_has_buffers(page))
3965 create_empty_buffers(page, blocksize, 0);
3966
3967 /* Find the buffer that contains "offset" */
3968 bh = page_buffers(page);
3969 pos = blocksize;
3970 while (offset >= pos) {
3971 bh = bh->b_this_page;
3972 iblock++;
3973 pos += blocksize;
3974 }
3975
3976 err = 0;
3977 if (buffer_freed(bh)) {
3978 BUFFER_TRACE(bh, "freed: skip");
3979 goto unlock;
3980 }
3981
3982 if (!buffer_mapped(bh)) {
3983 BUFFER_TRACE(bh, "unmapped");
3984 ext4_get_block(inode, iblock, bh, 0);
3985 /* unmapped? It's a hole - nothing to do */
3986 if (!buffer_mapped(bh)) {
3987 BUFFER_TRACE(bh, "still unmapped");
3988 goto unlock;
3989 }
3990 }
3991
3992 /* Ok, it's mapped. Make sure it's up-to-date */
3993 if (PageUptodate(page))
3994 set_buffer_uptodate(bh);
3995
3996 if (!buffer_uptodate(bh)) {
3997 err = -EIO;
3998 ll_rw_block(READ, 1, &bh);
3999 wait_on_buffer(bh);
4000 /* Uhhuh. Read error. Complain and punt. */
4001 if (!buffer_uptodate(bh))
4002 goto unlock;
4003 }
4004
4005 if (ext4_should_journal_data(inode)) {
4006 BUFFER_TRACE(bh, "get write access");
4007 err = ext4_journal_get_write_access(handle, bh);
4008 if (err)
4009 goto unlock;
4010 }
4011
4012 zero_user(page, offset, length);
4013
4014 BUFFER_TRACE(bh, "zeroed end of block");
4015
4016 err = 0;
4017 if (ext4_should_journal_data(inode)) {
4018 err = ext4_handle_dirty_metadata(handle, inode, bh);
4019 } else {
4020 if (ext4_should_order_data(inode))
4021 err = ext4_jbd2_file_inode(handle, inode);
4022 mark_buffer_dirty(bh);
4023 }
4024
4025 unlock:
4026 unlock_page(page);
4027 page_cache_release(page);
4028 return err;
4029 }
4030
4031 /*
4032 * Probably it should be a library function... search for first non-zero word
4033 * or memcmp with zero_page, whatever is better for particular architecture.
4034 * Linus?
4035 */
4036 static inline int all_zeroes(__le32 *p, __le32 *q)
4037 {
4038 while (p < q)
4039 if (*p++)
4040 return 0;
4041 return 1;
4042 }
4043
4044 /**
4045 * ext4_find_shared - find the indirect blocks for partial truncation.
4046 * @inode: inode in question
4047 * @depth: depth of the affected branch
4048 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4049 * @chain: place to store the pointers to partial indirect blocks
4050 * @top: place to the (detached) top of branch
4051 *
4052 * This is a helper function used by ext4_truncate().
4053 *
4054 * When we do truncate() we may have to clean the ends of several
4055 * indirect blocks but leave the blocks themselves alive. Block is
4056 * partially truncated if some data below the new i_size is refered
4057 * from it (and it is on the path to the first completely truncated
4058 * data block, indeed). We have to free the top of that path along
4059 * with everything to the right of the path. Since no allocation
4060 * past the truncation point is possible until ext4_truncate()
4061 * finishes, we may safely do the latter, but top of branch may
4062 * require special attention - pageout below the truncation point
4063 * might try to populate it.
4064 *
4065 * We atomically detach the top of branch from the tree, store the
4066 * block number of its root in *@top, pointers to buffer_heads of
4067 * partially truncated blocks - in @chain[].bh and pointers to
4068 * their last elements that should not be removed - in
4069 * @chain[].p. Return value is the pointer to last filled element
4070 * of @chain.
4071 *
4072 * The work left to caller to do the actual freeing of subtrees:
4073 * a) free the subtree starting from *@top
4074 * b) free the subtrees whose roots are stored in
4075 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4076 * c) free the subtrees growing from the inode past the @chain[0].
4077 * (no partially truncated stuff there). */
4078
4079 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4080 ext4_lblk_t offsets[4], Indirect chain[4],
4081 __le32 *top)
4082 {
4083 Indirect *partial, *p;
4084 int k, err;
4085
4086 *top = 0;
4087 /* Make k index the deepest non-null offset + 1 */
4088 for (k = depth; k > 1 && !offsets[k-1]; k--)
4089 ;
4090 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4091 /* Writer: pointers */
4092 if (!partial)
4093 partial = chain + k-1;
4094 /*
4095 * If the branch acquired continuation since we've looked at it -
4096 * fine, it should all survive and (new) top doesn't belong to us.
4097 */
4098 if (!partial->key && *partial->p)
4099 /* Writer: end */
4100 goto no_top;
4101 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4102 ;
4103 /*
4104 * OK, we've found the last block that must survive. The rest of our
4105 * branch should be detached before unlocking. However, if that rest
4106 * of branch is all ours and does not grow immediately from the inode
4107 * it's easier to cheat and just decrement partial->p.
4108 */
4109 if (p == chain + k - 1 && p > chain) {
4110 p->p--;
4111 } else {
4112 *top = *p->p;
4113 /* Nope, don't do this in ext4. Must leave the tree intact */
4114 #if 0
4115 *p->p = 0;
4116 #endif
4117 }
4118 /* Writer: end */
4119
4120 while (partial > p) {
4121 brelse(partial->bh);
4122 partial--;
4123 }
4124 no_top:
4125 return partial;
4126 }
4127
4128 /*
4129 * Zero a number of block pointers in either an inode or an indirect block.
4130 * If we restart the transaction we must again get write access to the
4131 * indirect block for further modification.
4132 *
4133 * We release `count' blocks on disk, but (last - first) may be greater
4134 * than `count' because there can be holes in there.
4135 */
4136 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4137 struct buffer_head *bh,
4138 ext4_fsblk_t block_to_free,
4139 unsigned long count, __le32 *first,
4140 __le32 *last)
4141 {
4142 __le32 *p;
4143 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4144
4145 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4146 flags |= EXT4_FREE_BLOCKS_METADATA;
4147
4148 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4149 count)) {
4150 ext4_error(inode->i_sb, __func__, "inode #%lu: "
4151 "attempt to clear blocks %llu len %lu, invalid",
4152 inode->i_ino, (unsigned long long) block_to_free,
4153 count);
4154 return 1;
4155 }
4156
4157 if (try_to_extend_transaction(handle, inode)) {
4158 if (bh) {
4159 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4160 ext4_handle_dirty_metadata(handle, inode, bh);
4161 }
4162 ext4_mark_inode_dirty(handle, inode);
4163 ext4_truncate_restart_trans(handle, inode,
4164 blocks_for_truncate(inode));
4165 if (bh) {
4166 BUFFER_TRACE(bh, "retaking write access");
4167 ext4_journal_get_write_access(handle, bh);
4168 }
4169 }
4170
4171 for (p = first; p < last; p++)
4172 *p = 0;
4173
4174 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4175 return 0;
4176 }
4177
4178 /**
4179 * ext4_free_data - free a list of data blocks
4180 * @handle: handle for this transaction
4181 * @inode: inode we are dealing with
4182 * @this_bh: indirect buffer_head which contains *@first and *@last
4183 * @first: array of block numbers
4184 * @last: points immediately past the end of array
4185 *
4186 * We are freeing all blocks refered from that array (numbers are stored as
4187 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4188 *
4189 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4190 * blocks are contiguous then releasing them at one time will only affect one
4191 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4192 * actually use a lot of journal space.
4193 *
4194 * @this_bh will be %NULL if @first and @last point into the inode's direct
4195 * block pointers.
4196 */
4197 static void ext4_free_data(handle_t *handle, struct inode *inode,
4198 struct buffer_head *this_bh,
4199 __le32 *first, __le32 *last)
4200 {
4201 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4202 unsigned long count = 0; /* Number of blocks in the run */
4203 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4204 corresponding to
4205 block_to_free */
4206 ext4_fsblk_t nr; /* Current block # */
4207 __le32 *p; /* Pointer into inode/ind
4208 for current block */
4209 int err;
4210
4211 if (this_bh) { /* For indirect block */
4212 BUFFER_TRACE(this_bh, "get_write_access");
4213 err = ext4_journal_get_write_access(handle, this_bh);
4214 /* Important: if we can't update the indirect pointers
4215 * to the blocks, we can't free them. */
4216 if (err)
4217 return;
4218 }
4219
4220 for (p = first; p < last; p++) {
4221 nr = le32_to_cpu(*p);
4222 if (nr) {
4223 /* accumulate blocks to free if they're contiguous */
4224 if (count == 0) {
4225 block_to_free = nr;
4226 block_to_free_p = p;
4227 count = 1;
4228 } else if (nr == block_to_free + count) {
4229 count++;
4230 } else {
4231 if (ext4_clear_blocks(handle, inode, this_bh,
4232 block_to_free, count,
4233 block_to_free_p, p))
4234 break;
4235 block_to_free = nr;
4236 block_to_free_p = p;
4237 count = 1;
4238 }
4239 }
4240 }
4241
4242 if (count > 0)
4243 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4244 count, block_to_free_p, p);
4245
4246 if (this_bh) {
4247 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4248
4249 /*
4250 * The buffer head should have an attached journal head at this
4251 * point. However, if the data is corrupted and an indirect
4252 * block pointed to itself, it would have been detached when
4253 * the block was cleared. Check for this instead of OOPSing.
4254 */
4255 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4256 ext4_handle_dirty_metadata(handle, inode, this_bh);
4257 else
4258 ext4_error(inode->i_sb, __func__,
4259 "circular indirect block detected, "
4260 "inode=%lu, block=%llu",
4261 inode->i_ino,
4262 (unsigned long long) this_bh->b_blocknr);
4263 }
4264 }
4265
4266 /**
4267 * ext4_free_branches - free an array of branches
4268 * @handle: JBD handle for this transaction
4269 * @inode: inode we are dealing with
4270 * @parent_bh: the buffer_head which contains *@first and *@last
4271 * @first: array of block numbers
4272 * @last: pointer immediately past the end of array
4273 * @depth: depth of the branches to free
4274 *
4275 * We are freeing all blocks refered from these branches (numbers are
4276 * stored as little-endian 32-bit) and updating @inode->i_blocks
4277 * appropriately.
4278 */
4279 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4280 struct buffer_head *parent_bh,
4281 __le32 *first, __le32 *last, int depth)
4282 {
4283 ext4_fsblk_t nr;
4284 __le32 *p;
4285
4286 if (ext4_handle_is_aborted(handle))
4287 return;
4288
4289 if (depth--) {
4290 struct buffer_head *bh;
4291 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4292 p = last;
4293 while (--p >= first) {
4294 nr = le32_to_cpu(*p);
4295 if (!nr)
4296 continue; /* A hole */
4297
4298 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4299 nr, 1)) {
4300 ext4_error(inode->i_sb, __func__,
4301 "indirect mapped block in inode "
4302 "#%lu invalid (level %d, blk #%lu)",
4303 inode->i_ino, depth,
4304 (unsigned long) nr);
4305 break;
4306 }
4307
4308 /* Go read the buffer for the next level down */
4309 bh = sb_bread(inode->i_sb, nr);
4310
4311 /*
4312 * A read failure? Report error and clear slot
4313 * (should be rare).
4314 */
4315 if (!bh) {
4316 ext4_error(inode->i_sb, "ext4_free_branches",
4317 "Read failure, inode=%lu, block=%llu",
4318 inode->i_ino, nr);
4319 continue;
4320 }
4321
4322 /* This zaps the entire block. Bottom up. */
4323 BUFFER_TRACE(bh, "free child branches");
4324 ext4_free_branches(handle, inode, bh,
4325 (__le32 *) bh->b_data,
4326 (__le32 *) bh->b_data + addr_per_block,
4327 depth);
4328
4329 /*
4330 * We've probably journalled the indirect block several
4331 * times during the truncate. But it's no longer
4332 * needed and we now drop it from the transaction via
4333 * jbd2_journal_revoke().
4334 *
4335 * That's easy if it's exclusively part of this
4336 * transaction. But if it's part of the committing
4337 * transaction then jbd2_journal_forget() will simply
4338 * brelse() it. That means that if the underlying
4339 * block is reallocated in ext4_get_block(),
4340 * unmap_underlying_metadata() will find this block
4341 * and will try to get rid of it. damn, damn.
4342 *
4343 * If this block has already been committed to the
4344 * journal, a revoke record will be written. And
4345 * revoke records must be emitted *before* clearing
4346 * this block's bit in the bitmaps.
4347 */
4348 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4349
4350 /*
4351 * Everything below this this pointer has been
4352 * released. Now let this top-of-subtree go.
4353 *
4354 * We want the freeing of this indirect block to be
4355 * atomic in the journal with the updating of the
4356 * bitmap block which owns it. So make some room in
4357 * the journal.
4358 *
4359 * We zero the parent pointer *after* freeing its
4360 * pointee in the bitmaps, so if extend_transaction()
4361 * for some reason fails to put the bitmap changes and
4362 * the release into the same transaction, recovery
4363 * will merely complain about releasing a free block,
4364 * rather than leaking blocks.
4365 */
4366 if (ext4_handle_is_aborted(handle))
4367 return;
4368 if (try_to_extend_transaction(handle, inode)) {
4369 ext4_mark_inode_dirty(handle, inode);
4370 ext4_truncate_restart_trans(handle, inode,
4371 blocks_for_truncate(inode));
4372 }
4373
4374 ext4_free_blocks(handle, inode, 0, nr, 1,
4375 EXT4_FREE_BLOCKS_METADATA);
4376
4377 if (parent_bh) {
4378 /*
4379 * The block which we have just freed is
4380 * pointed to by an indirect block: journal it
4381 */
4382 BUFFER_TRACE(parent_bh, "get_write_access");
4383 if (!ext4_journal_get_write_access(handle,
4384 parent_bh)){
4385 *p = 0;
4386 BUFFER_TRACE(parent_bh,
4387 "call ext4_handle_dirty_metadata");
4388 ext4_handle_dirty_metadata(handle,
4389 inode,
4390 parent_bh);
4391 }
4392 }
4393 }
4394 } else {
4395 /* We have reached the bottom of the tree. */
4396 BUFFER_TRACE(parent_bh, "free data blocks");
4397 ext4_free_data(handle, inode, parent_bh, first, last);
4398 }
4399 }
4400
4401 int ext4_can_truncate(struct inode *inode)
4402 {
4403 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4404 return 0;
4405 if (S_ISREG(inode->i_mode))
4406 return 1;
4407 if (S_ISDIR(inode->i_mode))
4408 return 1;
4409 if (S_ISLNK(inode->i_mode))
4410 return !ext4_inode_is_fast_symlink(inode);
4411 return 0;
4412 }
4413
4414 /*
4415 * ext4_truncate()
4416 *
4417 * We block out ext4_get_block() block instantiations across the entire
4418 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4419 * simultaneously on behalf of the same inode.
4420 *
4421 * As we work through the truncate and commmit bits of it to the journal there
4422 * is one core, guiding principle: the file's tree must always be consistent on
4423 * disk. We must be able to restart the truncate after a crash.
4424 *
4425 * The file's tree may be transiently inconsistent in memory (although it
4426 * probably isn't), but whenever we close off and commit a journal transaction,
4427 * the contents of (the filesystem + the journal) must be consistent and
4428 * restartable. It's pretty simple, really: bottom up, right to left (although
4429 * left-to-right works OK too).
4430 *
4431 * Note that at recovery time, journal replay occurs *before* the restart of
4432 * truncate against the orphan inode list.
4433 *
4434 * The committed inode has the new, desired i_size (which is the same as
4435 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4436 * that this inode's truncate did not complete and it will again call
4437 * ext4_truncate() to have another go. So there will be instantiated blocks
4438 * to the right of the truncation point in a crashed ext4 filesystem. But
4439 * that's fine - as long as they are linked from the inode, the post-crash
4440 * ext4_truncate() run will find them and release them.
4441 */
4442 void ext4_truncate(struct inode *inode)
4443 {
4444 handle_t *handle;
4445 struct ext4_inode_info *ei = EXT4_I(inode);
4446 __le32 *i_data = ei->i_data;
4447 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4448 struct address_space *mapping = inode->i_mapping;
4449 ext4_lblk_t offsets[4];
4450 Indirect chain[4];
4451 Indirect *partial;
4452 __le32 nr = 0;
4453 int n;
4454 ext4_lblk_t last_block;
4455 unsigned blocksize = inode->i_sb->s_blocksize;
4456
4457 if (!ext4_can_truncate(inode))
4458 return;
4459
4460 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4461 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4462
4463 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4464 ext4_ext_truncate(inode);
4465 return;
4466 }
4467
4468 handle = start_transaction(inode);
4469 if (IS_ERR(handle))
4470 return; /* AKPM: return what? */
4471
4472 last_block = (inode->i_size + blocksize-1)
4473 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4474
4475 if (inode->i_size & (blocksize - 1))
4476 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4477 goto out_stop;
4478
4479 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4480 if (n == 0)
4481 goto out_stop; /* error */
4482
4483 /*
4484 * OK. This truncate is going to happen. We add the inode to the
4485 * orphan list, so that if this truncate spans multiple transactions,
4486 * and we crash, we will resume the truncate when the filesystem
4487 * recovers. It also marks the inode dirty, to catch the new size.
4488 *
4489 * Implication: the file must always be in a sane, consistent
4490 * truncatable state while each transaction commits.
4491 */
4492 if (ext4_orphan_add(handle, inode))
4493 goto out_stop;
4494
4495 /*
4496 * From here we block out all ext4_get_block() callers who want to
4497 * modify the block allocation tree.
4498 */
4499 down_write(&ei->i_data_sem);
4500
4501 ext4_discard_preallocations(inode);
4502
4503 /*
4504 * The orphan list entry will now protect us from any crash which
4505 * occurs before the truncate completes, so it is now safe to propagate
4506 * the new, shorter inode size (held for now in i_size) into the
4507 * on-disk inode. We do this via i_disksize, which is the value which
4508 * ext4 *really* writes onto the disk inode.
4509 */
4510 ei->i_disksize = inode->i_size;
4511
4512 if (n == 1) { /* direct blocks */
4513 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4514 i_data + EXT4_NDIR_BLOCKS);
4515 goto do_indirects;
4516 }
4517
4518 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4519 /* Kill the top of shared branch (not detached) */
4520 if (nr) {
4521 if (partial == chain) {
4522 /* Shared branch grows from the inode */
4523 ext4_free_branches(handle, inode, NULL,
4524 &nr, &nr+1, (chain+n-1) - partial);
4525 *partial->p = 0;
4526 /*
4527 * We mark the inode dirty prior to restart,
4528 * and prior to stop. No need for it here.
4529 */
4530 } else {
4531 /* Shared branch grows from an indirect block */
4532 BUFFER_TRACE(partial->bh, "get_write_access");
4533 ext4_free_branches(handle, inode, partial->bh,
4534 partial->p,
4535 partial->p+1, (chain+n-1) - partial);
4536 }
4537 }
4538 /* Clear the ends of indirect blocks on the shared branch */
4539 while (partial > chain) {
4540 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4541 (__le32*)partial->bh->b_data+addr_per_block,
4542 (chain+n-1) - partial);
4543 BUFFER_TRACE(partial->bh, "call brelse");
4544 brelse(partial->bh);
4545 partial--;
4546 }
4547 do_indirects:
4548 /* Kill the remaining (whole) subtrees */
4549 switch (offsets[0]) {
4550 default:
4551 nr = i_data[EXT4_IND_BLOCK];
4552 if (nr) {
4553 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4554 i_data[EXT4_IND_BLOCK] = 0;
4555 }
4556 case EXT4_IND_BLOCK:
4557 nr = i_data[EXT4_DIND_BLOCK];
4558 if (nr) {
4559 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4560 i_data[EXT4_DIND_BLOCK] = 0;
4561 }
4562 case EXT4_DIND_BLOCK:
4563 nr = i_data[EXT4_TIND_BLOCK];
4564 if (nr) {
4565 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4566 i_data[EXT4_TIND_BLOCK] = 0;
4567 }
4568 case EXT4_TIND_BLOCK:
4569 ;
4570 }
4571
4572 up_write(&ei->i_data_sem);
4573 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4574 ext4_mark_inode_dirty(handle, inode);
4575
4576 /*
4577 * In a multi-transaction truncate, we only make the final transaction
4578 * synchronous
4579 */
4580 if (IS_SYNC(inode))
4581 ext4_handle_sync(handle);
4582 out_stop:
4583 /*
4584 * If this was a simple ftruncate(), and the file will remain alive
4585 * then we need to clear up the orphan record which we created above.
4586 * However, if this was a real unlink then we were called by
4587 * ext4_delete_inode(), and we allow that function to clean up the
4588 * orphan info for us.
4589 */
4590 if (inode->i_nlink)
4591 ext4_orphan_del(handle, inode);
4592
4593 ext4_journal_stop(handle);
4594 }
4595
4596 /*
4597 * ext4_get_inode_loc returns with an extra refcount against the inode's
4598 * underlying buffer_head on success. If 'in_mem' is true, we have all
4599 * data in memory that is needed to recreate the on-disk version of this
4600 * inode.
4601 */
4602 static int __ext4_get_inode_loc(struct inode *inode,
4603 struct ext4_iloc *iloc, int in_mem)
4604 {
4605 struct ext4_group_desc *gdp;
4606 struct buffer_head *bh;
4607 struct super_block *sb = inode->i_sb;
4608 ext4_fsblk_t block;
4609 int inodes_per_block, inode_offset;
4610
4611 iloc->bh = NULL;
4612 if (!ext4_valid_inum(sb, inode->i_ino))
4613 return -EIO;
4614
4615 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4616 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4617 if (!gdp)
4618 return -EIO;
4619
4620 /*
4621 * Figure out the offset within the block group inode table
4622 */
4623 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4624 inode_offset = ((inode->i_ino - 1) %
4625 EXT4_INODES_PER_GROUP(sb));
4626 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4627 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4628
4629 bh = sb_getblk(sb, block);
4630 if (!bh) {
4631 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4632 "inode block - inode=%lu, block=%llu",
4633 inode->i_ino, block);
4634 return -EIO;
4635 }
4636 if (!buffer_uptodate(bh)) {
4637 lock_buffer(bh);
4638
4639 /*
4640 * If the buffer has the write error flag, we have failed
4641 * to write out another inode in the same block. In this
4642 * case, we don't have to read the block because we may
4643 * read the old inode data successfully.
4644 */
4645 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4646 set_buffer_uptodate(bh);
4647
4648 if (buffer_uptodate(bh)) {
4649 /* someone brought it uptodate while we waited */
4650 unlock_buffer(bh);
4651 goto has_buffer;
4652 }
4653
4654 /*
4655 * If we have all information of the inode in memory and this
4656 * is the only valid inode in the block, we need not read the
4657 * block.
4658 */
4659 if (in_mem) {
4660 struct buffer_head *bitmap_bh;
4661 int i, start;
4662
4663 start = inode_offset & ~(inodes_per_block - 1);
4664
4665 /* Is the inode bitmap in cache? */
4666 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4667 if (!bitmap_bh)
4668 goto make_io;
4669
4670 /*
4671 * If the inode bitmap isn't in cache then the
4672 * optimisation may end up performing two reads instead
4673 * of one, so skip it.
4674 */
4675 if (!buffer_uptodate(bitmap_bh)) {
4676 brelse(bitmap_bh);
4677 goto make_io;
4678 }
4679 for (i = start; i < start + inodes_per_block; i++) {
4680 if (i == inode_offset)
4681 continue;
4682 if (ext4_test_bit(i, bitmap_bh->b_data))
4683 break;
4684 }
4685 brelse(bitmap_bh);
4686 if (i == start + inodes_per_block) {
4687 /* all other inodes are free, so skip I/O */
4688 memset(bh->b_data, 0, bh->b_size);
4689 set_buffer_uptodate(bh);
4690 unlock_buffer(bh);
4691 goto has_buffer;
4692 }
4693 }
4694
4695 make_io:
4696 /*
4697 * If we need to do any I/O, try to pre-readahead extra
4698 * blocks from the inode table.
4699 */
4700 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4701 ext4_fsblk_t b, end, table;
4702 unsigned num;
4703
4704 table = ext4_inode_table(sb, gdp);
4705 /* s_inode_readahead_blks is always a power of 2 */
4706 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4707 if (table > b)
4708 b = table;
4709 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4710 num = EXT4_INODES_PER_GROUP(sb);
4711 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4712 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4713 num -= ext4_itable_unused_count(sb, gdp);
4714 table += num / inodes_per_block;
4715 if (end > table)
4716 end = table;
4717 while (b <= end)
4718 sb_breadahead(sb, b++);
4719 }
4720
4721 /*
4722 * There are other valid inodes in the buffer, this inode
4723 * has in-inode xattrs, or we don't have this inode in memory.
4724 * Read the block from disk.
4725 */
4726 get_bh(bh);
4727 bh->b_end_io = end_buffer_read_sync;
4728 submit_bh(READ_META, bh);
4729 wait_on_buffer(bh);
4730 if (!buffer_uptodate(bh)) {
4731 ext4_error(sb, __func__,
4732 "unable to read inode block - inode=%lu, "
4733 "block=%llu", inode->i_ino, block);
4734 brelse(bh);
4735 return -EIO;
4736 }
4737 }
4738 has_buffer:
4739 iloc->bh = bh;
4740 return 0;
4741 }
4742
4743 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4744 {
4745 /* We have all inode data except xattrs in memory here. */
4746 return __ext4_get_inode_loc(inode, iloc,
4747 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4748 }
4749
4750 void ext4_set_inode_flags(struct inode *inode)
4751 {
4752 unsigned int flags = EXT4_I(inode)->i_flags;
4753
4754 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4755 if (flags & EXT4_SYNC_FL)
4756 inode->i_flags |= S_SYNC;
4757 if (flags & EXT4_APPEND_FL)
4758 inode->i_flags |= S_APPEND;
4759 if (flags & EXT4_IMMUTABLE_FL)
4760 inode->i_flags |= S_IMMUTABLE;
4761 if (flags & EXT4_NOATIME_FL)
4762 inode->i_flags |= S_NOATIME;
4763 if (flags & EXT4_DIRSYNC_FL)
4764 inode->i_flags |= S_DIRSYNC;
4765 }
4766
4767 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4768 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4769 {
4770 unsigned int flags = ei->vfs_inode.i_flags;
4771
4772 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4773 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4774 if (flags & S_SYNC)
4775 ei->i_flags |= EXT4_SYNC_FL;
4776 if (flags & S_APPEND)
4777 ei->i_flags |= EXT4_APPEND_FL;
4778 if (flags & S_IMMUTABLE)
4779 ei->i_flags |= EXT4_IMMUTABLE_FL;
4780 if (flags & S_NOATIME)
4781 ei->i_flags |= EXT4_NOATIME_FL;
4782 if (flags & S_DIRSYNC)
4783 ei->i_flags |= EXT4_DIRSYNC_FL;
4784 }
4785
4786 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4787 struct ext4_inode_info *ei)
4788 {
4789 blkcnt_t i_blocks ;
4790 struct inode *inode = &(ei->vfs_inode);
4791 struct super_block *sb = inode->i_sb;
4792
4793 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4794 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4795 /* we are using combined 48 bit field */
4796 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4797 le32_to_cpu(raw_inode->i_blocks_lo);
4798 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4799 /* i_blocks represent file system block size */
4800 return i_blocks << (inode->i_blkbits - 9);
4801 } else {
4802 return i_blocks;
4803 }
4804 } else {
4805 return le32_to_cpu(raw_inode->i_blocks_lo);
4806 }
4807 }
4808
4809 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4810 {
4811 struct ext4_iloc iloc;
4812 struct ext4_inode *raw_inode;
4813 struct ext4_inode_info *ei;
4814 struct inode *inode;
4815 journal_t *journal = EXT4_SB(sb)->s_journal;
4816 long ret;
4817 int block;
4818
4819 inode = iget_locked(sb, ino);
4820 if (!inode)
4821 return ERR_PTR(-ENOMEM);
4822 if (!(inode->i_state & I_NEW))
4823 return inode;
4824
4825 ei = EXT4_I(inode);
4826 iloc.bh = 0;
4827
4828 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4829 if (ret < 0)
4830 goto bad_inode;
4831 raw_inode = ext4_raw_inode(&iloc);
4832 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4833 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4834 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4835 if (!(test_opt(inode->i_sb, NO_UID32))) {
4836 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4837 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4838 }
4839 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4840
4841 ei->i_state_flags = 0;
4842 ei->i_dir_start_lookup = 0;
4843 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4844 /* We now have enough fields to check if the inode was active or not.
4845 * This is needed because nfsd might try to access dead inodes
4846 * the test is that same one that e2fsck uses
4847 * NeilBrown 1999oct15
4848 */
4849 if (inode->i_nlink == 0) {
4850 if (inode->i_mode == 0 ||
4851 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4852 /* this inode is deleted */
4853 ret = -ESTALE;
4854 goto bad_inode;
4855 }
4856 /* The only unlinked inodes we let through here have
4857 * valid i_mode and are being read by the orphan
4858 * recovery code: that's fine, we're about to complete
4859 * the process of deleting those. */
4860 }
4861 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4862 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4863 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4864 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4865 ei->i_file_acl |=
4866 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4867 inode->i_size = ext4_isize(raw_inode);
4868 ei->i_disksize = inode->i_size;
4869 #ifdef CONFIG_QUOTA
4870 ei->i_reserved_quota = 0;
4871 #endif
4872 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4873 ei->i_block_group = iloc.block_group;
4874 ei->i_last_alloc_group = ~0;
4875 /*
4876 * NOTE! The in-memory inode i_data array is in little-endian order
4877 * even on big-endian machines: we do NOT byteswap the block numbers!
4878 */
4879 for (block = 0; block < EXT4_N_BLOCKS; block++)
4880 ei->i_data[block] = raw_inode->i_block[block];
4881 INIT_LIST_HEAD(&ei->i_orphan);
4882
4883 /*
4884 * Set transaction id's of transactions that have to be committed
4885 * to finish f[data]sync. We set them to currently running transaction
4886 * as we cannot be sure that the inode or some of its metadata isn't
4887 * part of the transaction - the inode could have been reclaimed and
4888 * now it is reread from disk.
4889 */
4890 if (journal) {
4891 transaction_t *transaction;
4892 tid_t tid;
4893
4894 spin_lock(&journal->j_state_lock);
4895 if (journal->j_running_transaction)
4896 transaction = journal->j_running_transaction;
4897 else
4898 transaction = journal->j_committing_transaction;
4899 if (transaction)
4900 tid = transaction->t_tid;
4901 else
4902 tid = journal->j_commit_sequence;
4903 spin_unlock(&journal->j_state_lock);
4904 ei->i_sync_tid = tid;
4905 ei->i_datasync_tid = tid;
4906 }
4907
4908 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4909 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4910 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4911 EXT4_INODE_SIZE(inode->i_sb)) {
4912 ret = -EIO;
4913 goto bad_inode;
4914 }
4915 if (ei->i_extra_isize == 0) {
4916 /* The extra space is currently unused. Use it. */
4917 ei->i_extra_isize = sizeof(struct ext4_inode) -
4918 EXT4_GOOD_OLD_INODE_SIZE;
4919 } else {
4920 __le32 *magic = (void *)raw_inode +
4921 EXT4_GOOD_OLD_INODE_SIZE +
4922 ei->i_extra_isize;
4923 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4924 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4925 }
4926 } else
4927 ei->i_extra_isize = 0;
4928
4929 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4930 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4931 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4932 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4933
4934 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4935 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4936 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4937 inode->i_version |=
4938 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4939 }
4940
4941 ret = 0;
4942 if (ei->i_file_acl &&
4943 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4944 ext4_error(sb, __func__,
4945 "bad extended attribute block %llu in inode #%lu",
4946 ei->i_file_acl, inode->i_ino);
4947 ret = -EIO;
4948 goto bad_inode;
4949 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4950 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4951 (S_ISLNK(inode->i_mode) &&
4952 !ext4_inode_is_fast_symlink(inode)))
4953 /* Validate extent which is part of inode */
4954 ret = ext4_ext_check_inode(inode);
4955 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4956 (S_ISLNK(inode->i_mode) &&
4957 !ext4_inode_is_fast_symlink(inode))) {
4958 /* Validate block references which are part of inode */
4959 ret = ext4_check_inode_blockref(inode);
4960 }
4961 if (ret)
4962 goto bad_inode;
4963
4964 if (S_ISREG(inode->i_mode)) {
4965 inode->i_op = &ext4_file_inode_operations;
4966 inode->i_fop = &ext4_file_operations;
4967 ext4_set_aops(inode);
4968 } else if (S_ISDIR(inode->i_mode)) {
4969 inode->i_op = &ext4_dir_inode_operations;
4970 inode->i_fop = &ext4_dir_operations;
4971 } else if (S_ISLNK(inode->i_mode)) {
4972 if (ext4_inode_is_fast_symlink(inode)) {
4973 inode->i_op = &ext4_fast_symlink_inode_operations;
4974 nd_terminate_link(ei->i_data, inode->i_size,
4975 sizeof(ei->i_data) - 1);
4976 } else {
4977 inode->i_op = &ext4_symlink_inode_operations;
4978 ext4_set_aops(inode);
4979 }
4980 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4981 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4982 inode->i_op = &ext4_special_inode_operations;
4983 if (raw_inode->i_block[0])
4984 init_special_inode(inode, inode->i_mode,
4985 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4986 else
4987 init_special_inode(inode, inode->i_mode,
4988 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4989 } else {
4990 ret = -EIO;
4991 ext4_error(inode->i_sb, __func__,
4992 "bogus i_mode (%o) for inode=%lu",
4993 inode->i_mode, inode->i_ino);
4994 goto bad_inode;
4995 }
4996 brelse(iloc.bh);
4997 ext4_set_inode_flags(inode);
4998 unlock_new_inode(inode);
4999 return inode;
5000
5001 bad_inode:
5002 brelse(iloc.bh);
5003 iget_failed(inode);
5004 return ERR_PTR(ret);
5005 }
5006
5007 static int ext4_inode_blocks_set(handle_t *handle,
5008 struct ext4_inode *raw_inode,
5009 struct ext4_inode_info *ei)
5010 {
5011 struct inode *inode = &(ei->vfs_inode);
5012 u64 i_blocks = inode->i_blocks;
5013 struct super_block *sb = inode->i_sb;
5014
5015 if (i_blocks <= ~0U) {
5016 /*
5017 * i_blocks can be represnted in a 32 bit variable
5018 * as multiple of 512 bytes
5019 */
5020 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5021 raw_inode->i_blocks_high = 0;
5022 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5023 return 0;
5024 }
5025 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5026 return -EFBIG;
5027
5028 if (i_blocks <= 0xffffffffffffULL) {
5029 /*
5030 * i_blocks can be represented in a 48 bit variable
5031 * as multiple of 512 bytes
5032 */
5033 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5034 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5035 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5036 } else {
5037 ei->i_flags |= EXT4_HUGE_FILE_FL;
5038 /* i_block is stored in file system block size */
5039 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5040 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5041 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5042 }
5043 return 0;
5044 }
5045
5046 /*
5047 * Post the struct inode info into an on-disk inode location in the
5048 * buffer-cache. This gobbles the caller's reference to the
5049 * buffer_head in the inode location struct.
5050 *
5051 * The caller must have write access to iloc->bh.
5052 */
5053 static int ext4_do_update_inode(handle_t *handle,
5054 struct inode *inode,
5055 struct ext4_iloc *iloc)
5056 {
5057 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5058 struct ext4_inode_info *ei = EXT4_I(inode);
5059 struct buffer_head *bh = iloc->bh;
5060 int err = 0, rc, block;
5061
5062 /* For fields not not tracking in the in-memory inode,
5063 * initialise them to zero for new inodes. */
5064 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5065 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5066
5067 ext4_get_inode_flags(ei);
5068 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5069 if (!(test_opt(inode->i_sb, NO_UID32))) {
5070 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5071 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5072 /*
5073 * Fix up interoperability with old kernels. Otherwise, old inodes get
5074 * re-used with the upper 16 bits of the uid/gid intact
5075 */
5076 if (!ei->i_dtime) {
5077 raw_inode->i_uid_high =
5078 cpu_to_le16(high_16_bits(inode->i_uid));
5079 raw_inode->i_gid_high =
5080 cpu_to_le16(high_16_bits(inode->i_gid));
5081 } else {
5082 raw_inode->i_uid_high = 0;
5083 raw_inode->i_gid_high = 0;
5084 }
5085 } else {
5086 raw_inode->i_uid_low =
5087 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5088 raw_inode->i_gid_low =
5089 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5090 raw_inode->i_uid_high = 0;
5091 raw_inode->i_gid_high = 0;
5092 }
5093 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5094
5095 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5096 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5097 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5098 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5099
5100 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5101 goto out_brelse;
5102 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5103 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5105 cpu_to_le32(EXT4_OS_HURD))
5106 raw_inode->i_file_acl_high =
5107 cpu_to_le16(ei->i_file_acl >> 32);
5108 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5109 ext4_isize_set(raw_inode, ei->i_disksize);
5110 if (ei->i_disksize > 0x7fffffffULL) {
5111 struct super_block *sb = inode->i_sb;
5112 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5113 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5114 EXT4_SB(sb)->s_es->s_rev_level ==
5115 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5116 /* If this is the first large file
5117 * created, add a flag to the superblock.
5118 */
5119 err = ext4_journal_get_write_access(handle,
5120 EXT4_SB(sb)->s_sbh);
5121 if (err)
5122 goto out_brelse;
5123 ext4_update_dynamic_rev(sb);
5124 EXT4_SET_RO_COMPAT_FEATURE(sb,
5125 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5126 sb->s_dirt = 1;
5127 ext4_handle_sync(handle);
5128 err = ext4_handle_dirty_metadata(handle, inode,
5129 EXT4_SB(sb)->s_sbh);
5130 }
5131 }
5132 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5133 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5134 if (old_valid_dev(inode->i_rdev)) {
5135 raw_inode->i_block[0] =
5136 cpu_to_le32(old_encode_dev(inode->i_rdev));
5137 raw_inode->i_block[1] = 0;
5138 } else {
5139 raw_inode->i_block[0] = 0;
5140 raw_inode->i_block[1] =
5141 cpu_to_le32(new_encode_dev(inode->i_rdev));
5142 raw_inode->i_block[2] = 0;
5143 }
5144 } else
5145 for (block = 0; block < EXT4_N_BLOCKS; block++)
5146 raw_inode->i_block[block] = ei->i_data[block];
5147
5148 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5149 if (ei->i_extra_isize) {
5150 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5151 raw_inode->i_version_hi =
5152 cpu_to_le32(inode->i_version >> 32);
5153 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5154 }
5155
5156 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5157 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5158 if (!err)
5159 err = rc;
5160 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5161
5162 ext4_update_inode_fsync_trans(handle, inode, 0);
5163 out_brelse:
5164 brelse(bh);
5165 ext4_std_error(inode->i_sb, err);
5166 return err;
5167 }
5168
5169 /*
5170 * ext4_write_inode()
5171 *
5172 * We are called from a few places:
5173 *
5174 * - Within generic_file_write() for O_SYNC files.
5175 * Here, there will be no transaction running. We wait for any running
5176 * trasnaction to commit.
5177 *
5178 * - Within sys_sync(), kupdate and such.
5179 * We wait on commit, if tol to.
5180 *
5181 * - Within prune_icache() (PF_MEMALLOC == true)
5182 * Here we simply return. We can't afford to block kswapd on the
5183 * journal commit.
5184 *
5185 * In all cases it is actually safe for us to return without doing anything,
5186 * because the inode has been copied into a raw inode buffer in
5187 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5188 * knfsd.
5189 *
5190 * Note that we are absolutely dependent upon all inode dirtiers doing the
5191 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5192 * which we are interested.
5193 *
5194 * It would be a bug for them to not do this. The code:
5195 *
5196 * mark_inode_dirty(inode)
5197 * stuff();
5198 * inode->i_size = expr;
5199 *
5200 * is in error because a kswapd-driven write_inode() could occur while
5201 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5202 * will no longer be on the superblock's dirty inode list.
5203 */
5204 int ext4_write_inode(struct inode *inode, int wait)
5205 {
5206 int err;
5207
5208 if (current->flags & PF_MEMALLOC)
5209 return 0;
5210
5211 if (EXT4_SB(inode->i_sb)->s_journal) {
5212 if (ext4_journal_current_handle()) {
5213 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5214 dump_stack();
5215 return -EIO;
5216 }
5217
5218 if (!wait)
5219 return 0;
5220
5221 err = ext4_force_commit(inode->i_sb);
5222 } else {
5223 struct ext4_iloc iloc;
5224
5225 err = ext4_get_inode_loc(inode, &iloc);
5226 if (err)
5227 return err;
5228 if (wait)
5229 sync_dirty_buffer(iloc.bh);
5230 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5231 ext4_error(inode->i_sb, __func__,
5232 "IO error syncing inode, "
5233 "inode=%lu, block=%llu",
5234 inode->i_ino,
5235 (unsigned long long)iloc.bh->b_blocknr);
5236 err = -EIO;
5237 }
5238 }
5239 return err;
5240 }
5241
5242 /*
5243 * ext4_setattr()
5244 *
5245 * Called from notify_change.
5246 *
5247 * We want to trap VFS attempts to truncate the file as soon as
5248 * possible. In particular, we want to make sure that when the VFS
5249 * shrinks i_size, we put the inode on the orphan list and modify
5250 * i_disksize immediately, so that during the subsequent flushing of
5251 * dirty pages and freeing of disk blocks, we can guarantee that any
5252 * commit will leave the blocks being flushed in an unused state on
5253 * disk. (On recovery, the inode will get truncated and the blocks will
5254 * be freed, so we have a strong guarantee that no future commit will
5255 * leave these blocks visible to the user.)
5256 *
5257 * Another thing we have to assure is that if we are in ordered mode
5258 * and inode is still attached to the committing transaction, we must
5259 * we start writeout of all the dirty pages which are being truncated.
5260 * This way we are sure that all the data written in the previous
5261 * transaction are already on disk (truncate waits for pages under
5262 * writeback).
5263 *
5264 * Called with inode->i_mutex down.
5265 */
5266 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5267 {
5268 struct inode *inode = dentry->d_inode;
5269 int error, rc = 0;
5270 const unsigned int ia_valid = attr->ia_valid;
5271
5272 error = inode_change_ok(inode, attr);
5273 if (error)
5274 return error;
5275
5276 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5277 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5278 handle_t *handle;
5279
5280 /* (user+group)*(old+new) structure, inode write (sb,
5281 * inode block, ? - but truncate inode update has it) */
5282 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5283 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5284 if (IS_ERR(handle)) {
5285 error = PTR_ERR(handle);
5286 goto err_out;
5287 }
5288 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5289 if (error) {
5290 ext4_journal_stop(handle);
5291 return error;
5292 }
5293 /* Update corresponding info in inode so that everything is in
5294 * one transaction */
5295 if (attr->ia_valid & ATTR_UID)
5296 inode->i_uid = attr->ia_uid;
5297 if (attr->ia_valid & ATTR_GID)
5298 inode->i_gid = attr->ia_gid;
5299 error = ext4_mark_inode_dirty(handle, inode);
5300 ext4_journal_stop(handle);
5301 }
5302
5303 if (attr->ia_valid & ATTR_SIZE) {
5304 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5305 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5306
5307 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5308 error = -EFBIG;
5309 goto err_out;
5310 }
5311 }
5312 }
5313
5314 if (S_ISREG(inode->i_mode) &&
5315 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5316 handle_t *handle;
5317
5318 handle = ext4_journal_start(inode, 3);
5319 if (IS_ERR(handle)) {
5320 error = PTR_ERR(handle);
5321 goto err_out;
5322 }
5323
5324 error = ext4_orphan_add(handle, inode);
5325 EXT4_I(inode)->i_disksize = attr->ia_size;
5326 rc = ext4_mark_inode_dirty(handle, inode);
5327 if (!error)
5328 error = rc;
5329 ext4_journal_stop(handle);
5330
5331 if (ext4_should_order_data(inode)) {
5332 error = ext4_begin_ordered_truncate(inode,
5333 attr->ia_size);
5334 if (error) {
5335 /* Do as much error cleanup as possible */
5336 handle = ext4_journal_start(inode, 3);
5337 if (IS_ERR(handle)) {
5338 ext4_orphan_del(NULL, inode);
5339 goto err_out;
5340 }
5341 ext4_orphan_del(handle, inode);
5342 ext4_journal_stop(handle);
5343 goto err_out;
5344 }
5345 }
5346 }
5347
5348 rc = inode_setattr(inode, attr);
5349
5350 /* If inode_setattr's call to ext4_truncate failed to get a
5351 * transaction handle at all, we need to clean up the in-core
5352 * orphan list manually. */
5353 if (inode->i_nlink)
5354 ext4_orphan_del(NULL, inode);
5355
5356 if (!rc && (ia_valid & ATTR_MODE))
5357 rc = ext4_acl_chmod(inode);
5358
5359 err_out:
5360 ext4_std_error(inode->i_sb, error);
5361 if (!error)
5362 error = rc;
5363 return error;
5364 }
5365
5366 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5367 struct kstat *stat)
5368 {
5369 struct inode *inode;
5370 unsigned long delalloc_blocks;
5371
5372 inode = dentry->d_inode;
5373 generic_fillattr(inode, stat);
5374
5375 /*
5376 * We can't update i_blocks if the block allocation is delayed
5377 * otherwise in the case of system crash before the real block
5378 * allocation is done, we will have i_blocks inconsistent with
5379 * on-disk file blocks.
5380 * We always keep i_blocks updated together with real
5381 * allocation. But to not confuse with user, stat
5382 * will return the blocks that include the delayed allocation
5383 * blocks for this file.
5384 */
5385 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5386 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5387 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5388
5389 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5390 return 0;
5391 }
5392
5393 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5394 int chunk)
5395 {
5396 int indirects;
5397
5398 /* if nrblocks are contiguous */
5399 if (chunk) {
5400 /*
5401 * With N contiguous data blocks, it need at most
5402 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5403 * 2 dindirect blocks
5404 * 1 tindirect block
5405 */
5406 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5407 return indirects + 3;
5408 }
5409 /*
5410 * if nrblocks are not contiguous, worse case, each block touch
5411 * a indirect block, and each indirect block touch a double indirect
5412 * block, plus a triple indirect block
5413 */
5414 indirects = nrblocks * 2 + 1;
5415 return indirects;
5416 }
5417
5418 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5419 {
5420 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5421 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5422 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5423 }
5424
5425 /*
5426 * Account for index blocks, block groups bitmaps and block group
5427 * descriptor blocks if modify datablocks and index blocks
5428 * worse case, the indexs blocks spread over different block groups
5429 *
5430 * If datablocks are discontiguous, they are possible to spread over
5431 * different block groups too. If they are contiuguous, with flexbg,
5432 * they could still across block group boundary.
5433 *
5434 * Also account for superblock, inode, quota and xattr blocks
5435 */
5436 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5437 {
5438 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5439 int gdpblocks;
5440 int idxblocks;
5441 int ret = 0;
5442
5443 /*
5444 * How many index blocks need to touch to modify nrblocks?
5445 * The "Chunk" flag indicating whether the nrblocks is
5446 * physically contiguous on disk
5447 *
5448 * For Direct IO and fallocate, they calls get_block to allocate
5449 * one single extent at a time, so they could set the "Chunk" flag
5450 */
5451 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5452
5453 ret = idxblocks;
5454
5455 /*
5456 * Now let's see how many group bitmaps and group descriptors need
5457 * to account
5458 */
5459 groups = idxblocks;
5460 if (chunk)
5461 groups += 1;
5462 else
5463 groups += nrblocks;
5464
5465 gdpblocks = groups;
5466 if (groups > ngroups)
5467 groups = ngroups;
5468 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5469 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5470
5471 /* bitmaps and block group descriptor blocks */
5472 ret += groups + gdpblocks;
5473
5474 /* Blocks for super block, inode, quota and xattr blocks */
5475 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5476
5477 return ret;
5478 }
5479
5480 /*
5481 * Calulate the total number of credits to reserve to fit
5482 * the modification of a single pages into a single transaction,
5483 * which may include multiple chunks of block allocations.
5484 *
5485 * This could be called via ext4_write_begin()
5486 *
5487 * We need to consider the worse case, when
5488 * one new block per extent.
5489 */
5490 int ext4_writepage_trans_blocks(struct inode *inode)
5491 {
5492 int bpp = ext4_journal_blocks_per_page(inode);
5493 int ret;
5494
5495 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5496
5497 /* Account for data blocks for journalled mode */
5498 if (ext4_should_journal_data(inode))
5499 ret += bpp;
5500 return ret;
5501 }
5502
5503 /*
5504 * Calculate the journal credits for a chunk of data modification.
5505 *
5506 * This is called from DIO, fallocate or whoever calling
5507 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5508 *
5509 * journal buffers for data blocks are not included here, as DIO
5510 * and fallocate do no need to journal data buffers.
5511 */
5512 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5513 {
5514 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5515 }
5516
5517 /*
5518 * The caller must have previously called ext4_reserve_inode_write().
5519 * Give this, we know that the caller already has write access to iloc->bh.
5520 */
5521 int ext4_mark_iloc_dirty(handle_t *handle,
5522 struct inode *inode, struct ext4_iloc *iloc)
5523 {
5524 int err = 0;
5525
5526 if (test_opt(inode->i_sb, I_VERSION))
5527 inode_inc_iversion(inode);
5528
5529 /* the do_update_inode consumes one bh->b_count */
5530 get_bh(iloc->bh);
5531
5532 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5533 err = ext4_do_update_inode(handle, inode, iloc);
5534 put_bh(iloc->bh);
5535 return err;
5536 }
5537
5538 /*
5539 * On success, We end up with an outstanding reference count against
5540 * iloc->bh. This _must_ be cleaned up later.
5541 */
5542
5543 int
5544 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5545 struct ext4_iloc *iloc)
5546 {
5547 int err;
5548
5549 err = ext4_get_inode_loc(inode, iloc);
5550 if (!err) {
5551 BUFFER_TRACE(iloc->bh, "get_write_access");
5552 err = ext4_journal_get_write_access(handle, iloc->bh);
5553 if (err) {
5554 brelse(iloc->bh);
5555 iloc->bh = NULL;
5556 }
5557 }
5558 ext4_std_error(inode->i_sb, err);
5559 return err;
5560 }
5561
5562 /*
5563 * Expand an inode by new_extra_isize bytes.
5564 * Returns 0 on success or negative error number on failure.
5565 */
5566 static int ext4_expand_extra_isize(struct inode *inode,
5567 unsigned int new_extra_isize,
5568 struct ext4_iloc iloc,
5569 handle_t *handle)
5570 {
5571 struct ext4_inode *raw_inode;
5572 struct ext4_xattr_ibody_header *header;
5573 struct ext4_xattr_entry *entry;
5574
5575 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5576 return 0;
5577
5578 raw_inode = ext4_raw_inode(&iloc);
5579
5580 header = IHDR(inode, raw_inode);
5581 entry = IFIRST(header);
5582
5583 /* No extended attributes present */
5584 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5585 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5586 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5587 new_extra_isize);
5588 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5589 return 0;
5590 }
5591
5592 /* try to expand with EAs present */
5593 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5594 raw_inode, handle);
5595 }
5596
5597 /*
5598 * What we do here is to mark the in-core inode as clean with respect to inode
5599 * dirtiness (it may still be data-dirty).
5600 * This means that the in-core inode may be reaped by prune_icache
5601 * without having to perform any I/O. This is a very good thing,
5602 * because *any* task may call prune_icache - even ones which
5603 * have a transaction open against a different journal.
5604 *
5605 * Is this cheating? Not really. Sure, we haven't written the
5606 * inode out, but prune_icache isn't a user-visible syncing function.
5607 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5608 * we start and wait on commits.
5609 *
5610 * Is this efficient/effective? Well, we're being nice to the system
5611 * by cleaning up our inodes proactively so they can be reaped
5612 * without I/O. But we are potentially leaving up to five seconds'
5613 * worth of inodes floating about which prune_icache wants us to
5614 * write out. One way to fix that would be to get prune_icache()
5615 * to do a write_super() to free up some memory. It has the desired
5616 * effect.
5617 */
5618 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5619 {
5620 struct ext4_iloc iloc;
5621 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5622 static unsigned int mnt_count;
5623 int err, ret;
5624
5625 might_sleep();
5626 err = ext4_reserve_inode_write(handle, inode, &iloc);
5627 if (ext4_handle_valid(handle) &&
5628 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5629 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5630 /*
5631 * We need extra buffer credits since we may write into EA block
5632 * with this same handle. If journal_extend fails, then it will
5633 * only result in a minor loss of functionality for that inode.
5634 * If this is felt to be critical, then e2fsck should be run to
5635 * force a large enough s_min_extra_isize.
5636 */
5637 if ((jbd2_journal_extend(handle,
5638 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5639 ret = ext4_expand_extra_isize(inode,
5640 sbi->s_want_extra_isize,
5641 iloc, handle);
5642 if (ret) {
5643 ext4_set_inode_state(inode,
5644 EXT4_STATE_NO_EXPAND);
5645 if (mnt_count !=
5646 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5647 ext4_warning(inode->i_sb, __func__,
5648 "Unable to expand inode %lu. Delete"
5649 " some EAs or run e2fsck.",
5650 inode->i_ino);
5651 mnt_count =
5652 le16_to_cpu(sbi->s_es->s_mnt_count);
5653 }
5654 }
5655 }
5656 }
5657 if (!err)
5658 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5659 return err;
5660 }
5661
5662 /*
5663 * ext4_dirty_inode() is called from __mark_inode_dirty()
5664 *
5665 * We're really interested in the case where a file is being extended.
5666 * i_size has been changed by generic_commit_write() and we thus need
5667 * to include the updated inode in the current transaction.
5668 *
5669 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5670 * are allocated to the file.
5671 *
5672 * If the inode is marked synchronous, we don't honour that here - doing
5673 * so would cause a commit on atime updates, which we don't bother doing.
5674 * We handle synchronous inodes at the highest possible level.
5675 */
5676 void ext4_dirty_inode(struct inode *inode)
5677 {
5678 handle_t *handle;
5679
5680 handle = ext4_journal_start(inode, 2);
5681 if (IS_ERR(handle))
5682 goto out;
5683
5684 ext4_mark_inode_dirty(handle, inode);
5685
5686 ext4_journal_stop(handle);
5687 out:
5688 return;
5689 }
5690
5691 #if 0
5692 /*
5693 * Bind an inode's backing buffer_head into this transaction, to prevent
5694 * it from being flushed to disk early. Unlike
5695 * ext4_reserve_inode_write, this leaves behind no bh reference and
5696 * returns no iloc structure, so the caller needs to repeat the iloc
5697 * lookup to mark the inode dirty later.
5698 */
5699 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5700 {
5701 struct ext4_iloc iloc;
5702
5703 int err = 0;
5704 if (handle) {
5705 err = ext4_get_inode_loc(inode, &iloc);
5706 if (!err) {
5707 BUFFER_TRACE(iloc.bh, "get_write_access");
5708 err = jbd2_journal_get_write_access(handle, iloc.bh);
5709 if (!err)
5710 err = ext4_handle_dirty_metadata(handle,
5711 inode,
5712 iloc.bh);
5713 brelse(iloc.bh);
5714 }
5715 }
5716 ext4_std_error(inode->i_sb, err);
5717 return err;
5718 }
5719 #endif
5720
5721 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5722 {
5723 journal_t *journal;
5724 handle_t *handle;
5725 int err;
5726
5727 /*
5728 * We have to be very careful here: changing a data block's
5729 * journaling status dynamically is dangerous. If we write a
5730 * data block to the journal, change the status and then delete
5731 * that block, we risk forgetting to revoke the old log record
5732 * from the journal and so a subsequent replay can corrupt data.
5733 * So, first we make sure that the journal is empty and that
5734 * nobody is changing anything.
5735 */
5736
5737 journal = EXT4_JOURNAL(inode);
5738 if (!journal)
5739 return 0;
5740 if (is_journal_aborted(journal))
5741 return -EROFS;
5742
5743 jbd2_journal_lock_updates(journal);
5744 jbd2_journal_flush(journal);
5745
5746 /*
5747 * OK, there are no updates running now, and all cached data is
5748 * synced to disk. We are now in a completely consistent state
5749 * which doesn't have anything in the journal, and we know that
5750 * no filesystem updates are running, so it is safe to modify
5751 * the inode's in-core data-journaling state flag now.
5752 */
5753
5754 if (val)
5755 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5756 else
5757 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5758 ext4_set_aops(inode);
5759
5760 jbd2_journal_unlock_updates(journal);
5761
5762 /* Finally we can mark the inode as dirty. */
5763
5764 handle = ext4_journal_start(inode, 1);
5765 if (IS_ERR(handle))
5766 return PTR_ERR(handle);
5767
5768 err = ext4_mark_inode_dirty(handle, inode);
5769 ext4_handle_sync(handle);
5770 ext4_journal_stop(handle);
5771 ext4_std_error(inode->i_sb, err);
5772
5773 return err;
5774 }
5775
5776 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5777 {
5778 return !buffer_mapped(bh);
5779 }
5780
5781 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5782 {
5783 struct page *page = vmf->page;
5784 loff_t size;
5785 unsigned long len;
5786 int ret = -EINVAL;
5787 void *fsdata;
5788 struct file *file = vma->vm_file;
5789 struct inode *inode = file->f_path.dentry->d_inode;
5790 struct address_space *mapping = inode->i_mapping;
5791
5792 /*
5793 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5794 * get i_mutex because we are already holding mmap_sem.
5795 */
5796 down_read(&inode->i_alloc_sem);
5797 size = i_size_read(inode);
5798 if (page->mapping != mapping || size <= page_offset(page)
5799 || !PageUptodate(page)) {
5800 /* page got truncated from under us? */
5801 goto out_unlock;
5802 }
5803 ret = 0;
5804 if (PageMappedToDisk(page))
5805 goto out_unlock;
5806
5807 if (page->index == size >> PAGE_CACHE_SHIFT)
5808 len = size & ~PAGE_CACHE_MASK;
5809 else
5810 len = PAGE_CACHE_SIZE;
5811
5812 lock_page(page);
5813 /*
5814 * return if we have all the buffers mapped. This avoid
5815 * the need to call write_begin/write_end which does a
5816 * journal_start/journal_stop which can block and take
5817 * long time
5818 */
5819 if (page_has_buffers(page)) {
5820 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5821 ext4_bh_unmapped)) {
5822 unlock_page(page);
5823 goto out_unlock;
5824 }
5825 }
5826 unlock_page(page);
5827 /*
5828 * OK, we need to fill the hole... Do write_begin write_end
5829 * to do block allocation/reservation.We are not holding
5830 * inode.i__mutex here. That allow * parallel write_begin,
5831 * write_end call. lock_page prevent this from happening
5832 * on the same page though
5833 */
5834 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5835 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5836 if (ret < 0)
5837 goto out_unlock;
5838 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5839 len, len, page, fsdata);
5840 if (ret < 0)
5841 goto out_unlock;
5842 ret = 0;
5843 out_unlock:
5844 if (ret)
5845 ret = VM_FAULT_SIGBUS;
5846 up_read(&inode->i_alloc_sem);
5847 return ret;
5848 }