]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
ext4: convert s_{dirty,free}blocks_counter to s_{dirty,free}clusters_counter
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54 {
55 trace_ext4_begin_ordered_truncate(inode, new_size);
56 /*
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
61 */
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78 * Test whether an inode is a fast symlink.
79 */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 (inode->i_sb->s_blocksize >> 9) : 0;
84
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
92 */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 int nblocks)
95 {
96 int ret;
97
98 /*
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
103 */
104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 jbd_debug(2, "restarting handle %p\n", handle);
106 up_write(&EXT4_I(inode)->i_data_sem);
107 ret = ext4_journal_restart(handle, nblocks);
108 down_write(&EXT4_I(inode)->i_data_sem);
109 ext4_discard_preallocations(inode);
110
111 return ret;
112 }
113
114 /*
115 * Called at the last iput() if i_nlink is zero.
116 */
117 void ext4_evict_inode(struct inode *inode)
118 {
119 handle_t *handle;
120 int err;
121
122 trace_ext4_evict_inode(inode);
123
124 ext4_ioend_wait(inode);
125
126 if (inode->i_nlink) {
127 /*
128 * When journalling data dirty buffers are tracked only in the
129 * journal. So although mm thinks everything is clean and
130 * ready for reaping the inode might still have some pages to
131 * write in the running transaction or waiting to be
132 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 * (via truncate_inode_pages()) to discard these buffers can
134 * cause data loss. Also even if we did not discard these
135 * buffers, we would have no way to find them after the inode
136 * is reaped and thus user could see stale data if he tries to
137 * read them before the transaction is checkpointed. So be
138 * careful and force everything to disk here... We use
139 * ei->i_datasync_tid to store the newest transaction
140 * containing inode's data.
141 *
142 * Note that directories do not have this problem because they
143 * don't use page cache.
144 */
145 if (ext4_should_journal_data(inode) &&
146 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
147 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
148 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149
150 jbd2_log_start_commit(journal, commit_tid);
151 jbd2_log_wait_commit(journal, commit_tid);
152 filemap_write_and_wait(&inode->i_data);
153 }
154 truncate_inode_pages(&inode->i_data, 0);
155 goto no_delete;
156 }
157
158 if (!is_bad_inode(inode))
159 dquot_initialize(inode);
160
161 if (ext4_should_order_data(inode))
162 ext4_begin_ordered_truncate(inode, 0);
163 truncate_inode_pages(&inode->i_data, 0);
164
165 if (is_bad_inode(inode))
166 goto no_delete;
167
168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169 if (IS_ERR(handle)) {
170 ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 /*
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
174 * cleaned up.
175 */
176 ext4_orphan_del(NULL, inode);
177 goto no_delete;
178 }
179
180 if (IS_SYNC(inode))
181 ext4_handle_sync(handle);
182 inode->i_size = 0;
183 err = ext4_mark_inode_dirty(handle, inode);
184 if (err) {
185 ext4_warning(inode->i_sb,
186 "couldn't mark inode dirty (err %d)", err);
187 goto stop_handle;
188 }
189 if (inode->i_blocks)
190 ext4_truncate(inode);
191
192 /*
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
197 */
198 if (!ext4_handle_has_enough_credits(handle, 3)) {
199 err = ext4_journal_extend(handle, 3);
200 if (err > 0)
201 err = ext4_journal_restart(handle, 3);
202 if (err != 0) {
203 ext4_warning(inode->i_sb,
204 "couldn't extend journal (err %d)", err);
205 stop_handle:
206 ext4_journal_stop(handle);
207 ext4_orphan_del(NULL, inode);
208 goto no_delete;
209 }
210 }
211
212 /*
213 * Kill off the orphan record which ext4_truncate created.
214 * AKPM: I think this can be inside the above `if'.
215 * Note that ext4_orphan_del() has to be able to cope with the
216 * deletion of a non-existent orphan - this is because we don't
217 * know if ext4_truncate() actually created an orphan record.
218 * (Well, we could do this if we need to, but heck - it works)
219 */
220 ext4_orphan_del(handle, inode);
221 EXT4_I(inode)->i_dtime = get_seconds();
222
223 /*
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
228 * fails.
229 */
230 if (ext4_mark_inode_dirty(handle, inode))
231 /* If that failed, just do the required in-core inode clear. */
232 ext4_clear_inode(inode);
233 else
234 ext4_free_inode(handle, inode);
235 ext4_journal_stop(handle);
236 return;
237 no_delete:
238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
239 }
240
241 #ifdef CONFIG_QUOTA
242 qsize_t *ext4_get_reserved_space(struct inode *inode)
243 {
244 return &EXT4_I(inode)->i_reserved_quota;
245 }
246 #endif
247
248 /*
249 * Calculate the number of metadata blocks need to reserve
250 * to allocate a block located at @lblock
251 */
252 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253 {
254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255 return ext4_ext_calc_metadata_amount(inode, lblock);
256
257 return ext4_ind_calc_metadata_amount(inode, lblock);
258 }
259
260 /*
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
263 */
264 void ext4_da_update_reserve_space(struct inode *inode,
265 int used, int quota_claim)
266 {
267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 struct ext4_inode_info *ei = EXT4_I(inode);
269
270 spin_lock(&ei->i_block_reservation_lock);
271 trace_ext4_da_update_reserve_space(inode, used);
272 if (unlikely(used > ei->i_reserved_data_blocks)) {
273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks\n",
275 __func__, inode->i_ino, used,
276 ei->i_reserved_data_blocks);
277 WARN_ON(1);
278 used = ei->i_reserved_data_blocks;
279 }
280
281 /* Update per-inode reservations */
282 ei->i_reserved_data_blocks -= used;
283 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
285 used + ei->i_allocated_meta_blocks);
286 ei->i_allocated_meta_blocks = 0;
287
288 if (ei->i_reserved_data_blocks == 0) {
289 /*
290 * We can release all of the reserved metadata blocks
291 * only when we have written all of the delayed
292 * allocation blocks.
293 */
294 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
295 ei->i_reserved_meta_blocks);
296 ei->i_reserved_meta_blocks = 0;
297 ei->i_da_metadata_calc_len = 0;
298 }
299 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300
301 /* Update quota subsystem for data blocks */
302 if (quota_claim)
303 dquot_claim_block(inode, used);
304 else {
305 /*
306 * We did fallocate with an offset that is already delayed
307 * allocated. So on delayed allocated writeback we should
308 * not re-claim the quota for fallocated blocks.
309 */
310 dquot_release_reservation_block(inode, used);
311 }
312
313 /*
314 * If we have done all the pending block allocations and if
315 * there aren't any writers on the inode, we can discard the
316 * inode's preallocations.
317 */
318 if ((ei->i_reserved_data_blocks == 0) &&
319 (atomic_read(&inode->i_writecount) == 0))
320 ext4_discard_preallocations(inode);
321 }
322
323 static int __check_block_validity(struct inode *inode, const char *func,
324 unsigned int line,
325 struct ext4_map_blocks *map)
326 {
327 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
328 map->m_len)) {
329 ext4_error_inode(inode, func, line, map->m_pblk,
330 "lblock %lu mapped to illegal pblock "
331 "(length %d)", (unsigned long) map->m_lblk,
332 map->m_len);
333 return -EIO;
334 }
335 return 0;
336 }
337
338 #define check_block_validity(inode, map) \
339 __check_block_validity((inode), __func__, __LINE__, (map))
340
341 /*
342 * Return the number of contiguous dirty pages in a given inode
343 * starting at page frame idx.
344 */
345 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
346 unsigned int max_pages)
347 {
348 struct address_space *mapping = inode->i_mapping;
349 pgoff_t index;
350 struct pagevec pvec;
351 pgoff_t num = 0;
352 int i, nr_pages, done = 0;
353
354 if (max_pages == 0)
355 return 0;
356 pagevec_init(&pvec, 0);
357 while (!done) {
358 index = idx;
359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
360 PAGECACHE_TAG_DIRTY,
361 (pgoff_t)PAGEVEC_SIZE);
362 if (nr_pages == 0)
363 break;
364 for (i = 0; i < nr_pages; i++) {
365 struct page *page = pvec.pages[i];
366 struct buffer_head *bh, *head;
367
368 lock_page(page);
369 if (unlikely(page->mapping != mapping) ||
370 !PageDirty(page) ||
371 PageWriteback(page) ||
372 page->index != idx) {
373 done = 1;
374 unlock_page(page);
375 break;
376 }
377 if (page_has_buffers(page)) {
378 bh = head = page_buffers(page);
379 do {
380 if (!buffer_delay(bh) &&
381 !buffer_unwritten(bh))
382 done = 1;
383 bh = bh->b_this_page;
384 } while (!done && (bh != head));
385 }
386 unlock_page(page);
387 if (done)
388 break;
389 idx++;
390 num++;
391 if (num >= max_pages) {
392 done = 1;
393 break;
394 }
395 }
396 pagevec_release(&pvec);
397 }
398 return num;
399 }
400
401 /*
402 * The ext4_map_blocks() function tries to look up the requested blocks,
403 * and returns if the blocks are already mapped.
404 *
405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406 * and store the allocated blocks in the result buffer head and mark it
407 * mapped.
408 *
409 * If file type is extents based, it will call ext4_ext_map_blocks(),
410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411 * based files
412 *
413 * On success, it returns the number of blocks being mapped or allocate.
414 * if create==0 and the blocks are pre-allocated and uninitialized block,
415 * the result buffer head is unmapped. If the create ==1, it will make sure
416 * the buffer head is mapped.
417 *
418 * It returns 0 if plain look up failed (blocks have not been allocated), in
419 * that casem, buffer head is unmapped
420 *
421 * It returns the error in case of allocation failure.
422 */
423 int ext4_map_blocks(handle_t *handle, struct inode *inode,
424 struct ext4_map_blocks *map, int flags)
425 {
426 int retval;
427
428 map->m_flags = 0;
429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 "logical block %lu\n", inode->i_ino, flags, map->m_len,
431 (unsigned long) map->m_lblk);
432 /*
433 * Try to see if we can get the block without requesting a new
434 * file system block.
435 */
436 down_read((&EXT4_I(inode)->i_data_sem));
437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 retval = ext4_ext_map_blocks(handle, inode, map, 0);
439 } else {
440 retval = ext4_ind_map_blocks(handle, inode, map, 0);
441 }
442 up_read((&EXT4_I(inode)->i_data_sem));
443
444 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445 int ret = check_block_validity(inode, map);
446 if (ret != 0)
447 return ret;
448 }
449
450 /* If it is only a block(s) look up */
451 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 return retval;
453
454 /*
455 * Returns if the blocks have already allocated
456 *
457 * Note that if blocks have been preallocated
458 * ext4_ext_get_block() returns th create = 0
459 * with buffer head unmapped.
460 */
461 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 return retval;
463
464 /*
465 * When we call get_blocks without the create flag, the
466 * BH_Unwritten flag could have gotten set if the blocks
467 * requested were part of a uninitialized extent. We need to
468 * clear this flag now that we are committed to convert all or
469 * part of the uninitialized extent to be an initialized
470 * extent. This is because we need to avoid the combination
471 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 * set on the buffer_head.
473 */
474 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
475
476 /*
477 * New blocks allocate and/or writing to uninitialized extent
478 * will possibly result in updating i_data, so we take
479 * the write lock of i_data_sem, and call get_blocks()
480 * with create == 1 flag.
481 */
482 down_write((&EXT4_I(inode)->i_data_sem));
483
484 /*
485 * if the caller is from delayed allocation writeout path
486 * we have already reserved fs blocks for allocation
487 * let the underlying get_block() function know to
488 * avoid double accounting
489 */
490 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
492 /*
493 * We need to check for EXT4 here because migrate
494 * could have changed the inode type in between
495 */
496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497 retval = ext4_ext_map_blocks(handle, inode, map, flags);
498 } else {
499 retval = ext4_ind_map_blocks(handle, inode, map, flags);
500
501 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
502 /*
503 * We allocated new blocks which will result in
504 * i_data's format changing. Force the migrate
505 * to fail by clearing migrate flags
506 */
507 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508 }
509
510 /*
511 * Update reserved blocks/metadata blocks after successful
512 * block allocation which had been deferred till now. We don't
513 * support fallocate for non extent files. So we can update
514 * reserve space here.
515 */
516 if ((retval > 0) &&
517 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 ext4_da_update_reserve_space(inode, retval, 1);
519 }
520 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
522
523 up_write((&EXT4_I(inode)->i_data_sem));
524 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525 int ret = check_block_validity(inode, map);
526 if (ret != 0)
527 return ret;
528 }
529 return retval;
530 }
531
532 /* Maximum number of blocks we map for direct IO at once. */
533 #define DIO_MAX_BLOCKS 4096
534
535 static int _ext4_get_block(struct inode *inode, sector_t iblock,
536 struct buffer_head *bh, int flags)
537 {
538 handle_t *handle = ext4_journal_current_handle();
539 struct ext4_map_blocks map;
540 int ret = 0, started = 0;
541 int dio_credits;
542
543 map.m_lblk = iblock;
544 map.m_len = bh->b_size >> inode->i_blkbits;
545
546 if (flags && !handle) {
547 /* Direct IO write... */
548 if (map.m_len > DIO_MAX_BLOCKS)
549 map.m_len = DIO_MAX_BLOCKS;
550 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551 handle = ext4_journal_start(inode, dio_credits);
552 if (IS_ERR(handle)) {
553 ret = PTR_ERR(handle);
554 return ret;
555 }
556 started = 1;
557 }
558
559 ret = ext4_map_blocks(handle, inode, &map, flags);
560 if (ret > 0) {
561 map_bh(bh, inode->i_sb, map.m_pblk);
562 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
563 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
564 ret = 0;
565 }
566 if (started)
567 ext4_journal_stop(handle);
568 return ret;
569 }
570
571 int ext4_get_block(struct inode *inode, sector_t iblock,
572 struct buffer_head *bh, int create)
573 {
574 return _ext4_get_block(inode, iblock, bh,
575 create ? EXT4_GET_BLOCKS_CREATE : 0);
576 }
577
578 /*
579 * `handle' can be NULL if create is zero
580 */
581 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
582 ext4_lblk_t block, int create, int *errp)
583 {
584 struct ext4_map_blocks map;
585 struct buffer_head *bh;
586 int fatal = 0, err;
587
588 J_ASSERT(handle != NULL || create == 0);
589
590 map.m_lblk = block;
591 map.m_len = 1;
592 err = ext4_map_blocks(handle, inode, &map,
593 create ? EXT4_GET_BLOCKS_CREATE : 0);
594
595 if (err < 0)
596 *errp = err;
597 if (err <= 0)
598 return NULL;
599 *errp = 0;
600
601 bh = sb_getblk(inode->i_sb, map.m_pblk);
602 if (!bh) {
603 *errp = -EIO;
604 return NULL;
605 }
606 if (map.m_flags & EXT4_MAP_NEW) {
607 J_ASSERT(create != 0);
608 J_ASSERT(handle != NULL);
609
610 /*
611 * Now that we do not always journal data, we should
612 * keep in mind whether this should always journal the
613 * new buffer as metadata. For now, regular file
614 * writes use ext4_get_block instead, so it's not a
615 * problem.
616 */
617 lock_buffer(bh);
618 BUFFER_TRACE(bh, "call get_create_access");
619 fatal = ext4_journal_get_create_access(handle, bh);
620 if (!fatal && !buffer_uptodate(bh)) {
621 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
622 set_buffer_uptodate(bh);
623 }
624 unlock_buffer(bh);
625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
626 err = ext4_handle_dirty_metadata(handle, inode, bh);
627 if (!fatal)
628 fatal = err;
629 } else {
630 BUFFER_TRACE(bh, "not a new buffer");
631 }
632 if (fatal) {
633 *errp = fatal;
634 brelse(bh);
635 bh = NULL;
636 }
637 return bh;
638 }
639
640 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
641 ext4_lblk_t block, int create, int *err)
642 {
643 struct buffer_head *bh;
644
645 bh = ext4_getblk(handle, inode, block, create, err);
646 if (!bh)
647 return bh;
648 if (buffer_uptodate(bh))
649 return bh;
650 ll_rw_block(READ_META, 1, &bh);
651 wait_on_buffer(bh);
652 if (buffer_uptodate(bh))
653 return bh;
654 put_bh(bh);
655 *err = -EIO;
656 return NULL;
657 }
658
659 static int walk_page_buffers(handle_t *handle,
660 struct buffer_head *head,
661 unsigned from,
662 unsigned to,
663 int *partial,
664 int (*fn)(handle_t *handle,
665 struct buffer_head *bh))
666 {
667 struct buffer_head *bh;
668 unsigned block_start, block_end;
669 unsigned blocksize = head->b_size;
670 int err, ret = 0;
671 struct buffer_head *next;
672
673 for (bh = head, block_start = 0;
674 ret == 0 && (bh != head || !block_start);
675 block_start = block_end, bh = next) {
676 next = bh->b_this_page;
677 block_end = block_start + blocksize;
678 if (block_end <= from || block_start >= to) {
679 if (partial && !buffer_uptodate(bh))
680 *partial = 1;
681 continue;
682 }
683 err = (*fn)(handle, bh);
684 if (!ret)
685 ret = err;
686 }
687 return ret;
688 }
689
690 /*
691 * To preserve ordering, it is essential that the hole instantiation and
692 * the data write be encapsulated in a single transaction. We cannot
693 * close off a transaction and start a new one between the ext4_get_block()
694 * and the commit_write(). So doing the jbd2_journal_start at the start of
695 * prepare_write() is the right place.
696 *
697 * Also, this function can nest inside ext4_writepage() ->
698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 * has generated enough buffer credits to do the whole page. So we won't
700 * block on the journal in that case, which is good, because the caller may
701 * be PF_MEMALLOC.
702 *
703 * By accident, ext4 can be reentered when a transaction is open via
704 * quota file writes. If we were to commit the transaction while thus
705 * reentered, there can be a deadlock - we would be holding a quota
706 * lock, and the commit would never complete if another thread had a
707 * transaction open and was blocking on the quota lock - a ranking
708 * violation.
709 *
710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 * will _not_ run commit under these circumstances because handle->h_ref
712 * is elevated. We'll still have enough credits for the tiny quotafile
713 * write.
714 */
715 static int do_journal_get_write_access(handle_t *handle,
716 struct buffer_head *bh)
717 {
718 int dirty = buffer_dirty(bh);
719 int ret;
720
721 if (!buffer_mapped(bh) || buffer_freed(bh))
722 return 0;
723 /*
724 * __block_write_begin() could have dirtied some buffers. Clean
725 * the dirty bit as jbd2_journal_get_write_access() could complain
726 * otherwise about fs integrity issues. Setting of the dirty bit
727 * by __block_write_begin() isn't a real problem here as we clear
728 * the bit before releasing a page lock and thus writeback cannot
729 * ever write the buffer.
730 */
731 if (dirty)
732 clear_buffer_dirty(bh);
733 ret = ext4_journal_get_write_access(handle, bh);
734 if (!ret && dirty)
735 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 return ret;
737 }
738
739 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
740 struct buffer_head *bh_result, int create);
741 static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 loff_t pos, unsigned len, unsigned flags,
743 struct page **pagep, void **fsdata)
744 {
745 struct inode *inode = mapping->host;
746 int ret, needed_blocks;
747 handle_t *handle;
748 int retries = 0;
749 struct page *page;
750 pgoff_t index;
751 unsigned from, to;
752
753 trace_ext4_write_begin(inode, pos, len, flags);
754 /*
755 * Reserve one block more for addition to orphan list in case
756 * we allocate blocks but write fails for some reason
757 */
758 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759 index = pos >> PAGE_CACHE_SHIFT;
760 from = pos & (PAGE_CACHE_SIZE - 1);
761 to = from + len;
762
763 retry:
764 handle = ext4_journal_start(inode, needed_blocks);
765 if (IS_ERR(handle)) {
766 ret = PTR_ERR(handle);
767 goto out;
768 }
769
770 /* We cannot recurse into the filesystem as the transaction is already
771 * started */
772 flags |= AOP_FLAG_NOFS;
773
774 page = grab_cache_page_write_begin(mapping, index, flags);
775 if (!page) {
776 ext4_journal_stop(handle);
777 ret = -ENOMEM;
778 goto out;
779 }
780 *pagep = page;
781
782 if (ext4_should_dioread_nolock(inode))
783 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784 else
785 ret = __block_write_begin(page, pos, len, ext4_get_block);
786
787 if (!ret && ext4_should_journal_data(inode)) {
788 ret = walk_page_buffers(handle, page_buffers(page),
789 from, to, NULL, do_journal_get_write_access);
790 }
791
792 if (ret) {
793 unlock_page(page);
794 page_cache_release(page);
795 /*
796 * __block_write_begin may have instantiated a few blocks
797 * outside i_size. Trim these off again. Don't need
798 * i_size_read because we hold i_mutex.
799 *
800 * Add inode to orphan list in case we crash before
801 * truncate finishes
802 */
803 if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 ext4_orphan_add(handle, inode);
805
806 ext4_journal_stop(handle);
807 if (pos + len > inode->i_size) {
808 ext4_truncate_failed_write(inode);
809 /*
810 * If truncate failed early the inode might
811 * still be on the orphan list; we need to
812 * make sure the inode is removed from the
813 * orphan list in that case.
814 */
815 if (inode->i_nlink)
816 ext4_orphan_del(NULL, inode);
817 }
818 }
819
820 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821 goto retry;
822 out:
823 return ret;
824 }
825
826 /* For write_end() in data=journal mode */
827 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
828 {
829 if (!buffer_mapped(bh) || buffer_freed(bh))
830 return 0;
831 set_buffer_uptodate(bh);
832 return ext4_handle_dirty_metadata(handle, NULL, bh);
833 }
834
835 static int ext4_generic_write_end(struct file *file,
836 struct address_space *mapping,
837 loff_t pos, unsigned len, unsigned copied,
838 struct page *page, void *fsdata)
839 {
840 int i_size_changed = 0;
841 struct inode *inode = mapping->host;
842 handle_t *handle = ext4_journal_current_handle();
843
844 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
845
846 /*
847 * No need to use i_size_read() here, the i_size
848 * cannot change under us because we hold i_mutex.
849 *
850 * But it's important to update i_size while still holding page lock:
851 * page writeout could otherwise come in and zero beyond i_size.
852 */
853 if (pos + copied > inode->i_size) {
854 i_size_write(inode, pos + copied);
855 i_size_changed = 1;
856 }
857
858 if (pos + copied > EXT4_I(inode)->i_disksize) {
859 /* We need to mark inode dirty even if
860 * new_i_size is less that inode->i_size
861 * bu greater than i_disksize.(hint delalloc)
862 */
863 ext4_update_i_disksize(inode, (pos + copied));
864 i_size_changed = 1;
865 }
866 unlock_page(page);
867 page_cache_release(page);
868
869 /*
870 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 * makes the holding time of page lock longer. Second, it forces lock
872 * ordering of page lock and transaction start for journaling
873 * filesystems.
874 */
875 if (i_size_changed)
876 ext4_mark_inode_dirty(handle, inode);
877
878 return copied;
879 }
880
881 /*
882 * We need to pick up the new inode size which generic_commit_write gave us
883 * `file' can be NULL - eg, when called from page_symlink().
884 *
885 * ext4 never places buffers on inode->i_mapping->private_list. metadata
886 * buffers are managed internally.
887 */
888 static int ext4_ordered_write_end(struct file *file,
889 struct address_space *mapping,
890 loff_t pos, unsigned len, unsigned copied,
891 struct page *page, void *fsdata)
892 {
893 handle_t *handle = ext4_journal_current_handle();
894 struct inode *inode = mapping->host;
895 int ret = 0, ret2;
896
897 trace_ext4_ordered_write_end(inode, pos, len, copied);
898 ret = ext4_jbd2_file_inode(handle, inode);
899
900 if (ret == 0) {
901 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
902 page, fsdata);
903 copied = ret2;
904 if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 /* if we have allocated more blocks and copied
906 * less. We will have blocks allocated outside
907 * inode->i_size. So truncate them
908 */
909 ext4_orphan_add(handle, inode);
910 if (ret2 < 0)
911 ret = ret2;
912 }
913 ret2 = ext4_journal_stop(handle);
914 if (!ret)
915 ret = ret2;
916
917 if (pos + len > inode->i_size) {
918 ext4_truncate_failed_write(inode);
919 /*
920 * If truncate failed early the inode might still be
921 * on the orphan list; we need to make sure the inode
922 * is removed from the orphan list in that case.
923 */
924 if (inode->i_nlink)
925 ext4_orphan_del(NULL, inode);
926 }
927
928
929 return ret ? ret : copied;
930 }
931
932 static int ext4_writeback_write_end(struct file *file,
933 struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned copied,
935 struct page *page, void *fsdata)
936 {
937 handle_t *handle = ext4_journal_current_handle();
938 struct inode *inode = mapping->host;
939 int ret = 0, ret2;
940
941 trace_ext4_writeback_write_end(inode, pos, len, copied);
942 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
943 page, fsdata);
944 copied = ret2;
945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 /* if we have allocated more blocks and copied
947 * less. We will have blocks allocated outside
948 * inode->i_size. So truncate them
949 */
950 ext4_orphan_add(handle, inode);
951
952 if (ret2 < 0)
953 ret = ret2;
954
955 ret2 = ext4_journal_stop(handle);
956 if (!ret)
957 ret = ret2;
958
959 if (pos + len > inode->i_size) {
960 ext4_truncate_failed_write(inode);
961 /*
962 * If truncate failed early the inode might still be
963 * on the orphan list; we need to make sure the inode
964 * is removed from the orphan list in that case.
965 */
966 if (inode->i_nlink)
967 ext4_orphan_del(NULL, inode);
968 }
969
970 return ret ? ret : copied;
971 }
972
973 static int ext4_journalled_write_end(struct file *file,
974 struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned copied,
976 struct page *page, void *fsdata)
977 {
978 handle_t *handle = ext4_journal_current_handle();
979 struct inode *inode = mapping->host;
980 int ret = 0, ret2;
981 int partial = 0;
982 unsigned from, to;
983 loff_t new_i_size;
984
985 trace_ext4_journalled_write_end(inode, pos, len, copied);
986 from = pos & (PAGE_CACHE_SIZE - 1);
987 to = from + len;
988
989 BUG_ON(!ext4_handle_valid(handle));
990
991 if (copied < len) {
992 if (!PageUptodate(page))
993 copied = 0;
994 page_zero_new_buffers(page, from+copied, to);
995 }
996
997 ret = walk_page_buffers(handle, page_buffers(page), from,
998 to, &partial, write_end_fn);
999 if (!partial)
1000 SetPageUptodate(page);
1001 new_i_size = pos + copied;
1002 if (new_i_size > inode->i_size)
1003 i_size_write(inode, pos+copied);
1004 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 if (new_i_size > EXT4_I(inode)->i_disksize) {
1007 ext4_update_i_disksize(inode, new_i_size);
1008 ret2 = ext4_mark_inode_dirty(handle, inode);
1009 if (!ret)
1010 ret = ret2;
1011 }
1012
1013 unlock_page(page);
1014 page_cache_release(page);
1015 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 /* if we have allocated more blocks and copied
1017 * less. We will have blocks allocated outside
1018 * inode->i_size. So truncate them
1019 */
1020 ext4_orphan_add(handle, inode);
1021
1022 ret2 = ext4_journal_stop(handle);
1023 if (!ret)
1024 ret = ret2;
1025 if (pos + len > inode->i_size) {
1026 ext4_truncate_failed_write(inode);
1027 /*
1028 * If truncate failed early the inode might still be
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1031 */
1032 if (inode->i_nlink)
1033 ext4_orphan_del(NULL, inode);
1034 }
1035
1036 return ret ? ret : copied;
1037 }
1038
1039 /*
1040 * Reserve a single block located at lblock
1041 */
1042 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043 {
1044 int retries = 0;
1045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046 struct ext4_inode_info *ei = EXT4_I(inode);
1047 unsigned long md_needed;
1048 int ret;
1049
1050 /*
1051 * recalculate the amount of metadata blocks to reserve
1052 * in order to allocate nrblocks
1053 * worse case is one extent per block
1054 */
1055 repeat:
1056 spin_lock(&ei->i_block_reservation_lock);
1057 md_needed = ext4_calc_metadata_amount(inode, lblock);
1058 trace_ext4_da_reserve_space(inode, md_needed);
1059 spin_unlock(&ei->i_block_reservation_lock);
1060
1061 /*
1062 * We will charge metadata quota at writeout time; this saves
1063 * us from metadata over-estimation, though we may go over by
1064 * a small amount in the end. Here we just reserve for data.
1065 */
1066 ret = dquot_reserve_block(inode, 1);
1067 if (ret)
1068 return ret;
1069 /*
1070 * We do still charge estimated metadata to the sb though;
1071 * we cannot afford to run out of free blocks.
1072 */
1073 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1074 dquot_release_reservation_block(inode, 1);
1075 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1076 yield();
1077 goto repeat;
1078 }
1079 return -ENOSPC;
1080 }
1081 spin_lock(&ei->i_block_reservation_lock);
1082 ei->i_reserved_data_blocks++;
1083 ei->i_reserved_meta_blocks += md_needed;
1084 spin_unlock(&ei->i_block_reservation_lock);
1085
1086 return 0; /* success */
1087 }
1088
1089 static void ext4_da_release_space(struct inode *inode, int to_free)
1090 {
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 struct ext4_inode_info *ei = EXT4_I(inode);
1093
1094 if (!to_free)
1095 return; /* Nothing to release, exit */
1096
1097 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1098
1099 trace_ext4_da_release_space(inode, to_free);
1100 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1101 /*
1102 * if there aren't enough reserved blocks, then the
1103 * counter is messed up somewhere. Since this
1104 * function is called from invalidate page, it's
1105 * harmless to return without any action.
1106 */
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1108 "ino %lu, to_free %d with only %d reserved "
1109 "data blocks\n", inode->i_ino, to_free,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 to_free = ei->i_reserved_data_blocks;
1113 }
1114 ei->i_reserved_data_blocks -= to_free;
1115
1116 if (ei->i_reserved_data_blocks == 0) {
1117 /*
1118 * We can release all of the reserved metadata blocks
1119 * only when we have written all of the delayed
1120 * allocation blocks.
1121 */
1122 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1123 ei->i_reserved_meta_blocks);
1124 ei->i_reserved_meta_blocks = 0;
1125 ei->i_da_metadata_calc_len = 0;
1126 }
1127
1128 /* update fs dirty data blocks counter */
1129 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1130
1131 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1132
1133 dquot_release_reservation_block(inode, to_free);
1134 }
1135
1136 static void ext4_da_page_release_reservation(struct page *page,
1137 unsigned long offset)
1138 {
1139 int to_release = 0;
1140 struct buffer_head *head, *bh;
1141 unsigned int curr_off = 0;
1142
1143 head = page_buffers(page);
1144 bh = head;
1145 do {
1146 unsigned int next_off = curr_off + bh->b_size;
1147
1148 if ((offset <= curr_off) && (buffer_delay(bh))) {
1149 to_release++;
1150 clear_buffer_delay(bh);
1151 }
1152 curr_off = next_off;
1153 } while ((bh = bh->b_this_page) != head);
1154 ext4_da_release_space(page->mapping->host, to_release);
1155 }
1156
1157 /*
1158 * Delayed allocation stuff
1159 */
1160
1161 /*
1162 * mpage_da_submit_io - walks through extent of pages and try to write
1163 * them with writepage() call back
1164 *
1165 * @mpd->inode: inode
1166 * @mpd->first_page: first page of the extent
1167 * @mpd->next_page: page after the last page of the extent
1168 *
1169 * By the time mpage_da_submit_io() is called we expect all blocks
1170 * to be allocated. this may be wrong if allocation failed.
1171 *
1172 * As pages are already locked by write_cache_pages(), we can't use it
1173 */
1174 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1175 struct ext4_map_blocks *map)
1176 {
1177 struct pagevec pvec;
1178 unsigned long index, end;
1179 int ret = 0, err, nr_pages, i;
1180 struct inode *inode = mpd->inode;
1181 struct address_space *mapping = inode->i_mapping;
1182 loff_t size = i_size_read(inode);
1183 unsigned int len, block_start;
1184 struct buffer_head *bh, *page_bufs = NULL;
1185 int journal_data = ext4_should_journal_data(inode);
1186 sector_t pblock = 0, cur_logical = 0;
1187 struct ext4_io_submit io_submit;
1188
1189 BUG_ON(mpd->next_page <= mpd->first_page);
1190 memset(&io_submit, 0, sizeof(io_submit));
1191 /*
1192 * We need to start from the first_page to the next_page - 1
1193 * to make sure we also write the mapped dirty buffer_heads.
1194 * If we look at mpd->b_blocknr we would only be looking
1195 * at the currently mapped buffer_heads.
1196 */
1197 index = mpd->first_page;
1198 end = mpd->next_page - 1;
1199
1200 pagevec_init(&pvec, 0);
1201 while (index <= end) {
1202 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1203 if (nr_pages == 0)
1204 break;
1205 for (i = 0; i < nr_pages; i++) {
1206 int commit_write = 0, skip_page = 0;
1207 struct page *page = pvec.pages[i];
1208
1209 index = page->index;
1210 if (index > end)
1211 break;
1212
1213 if (index == size >> PAGE_CACHE_SHIFT)
1214 len = size & ~PAGE_CACHE_MASK;
1215 else
1216 len = PAGE_CACHE_SIZE;
1217 if (map) {
1218 cur_logical = index << (PAGE_CACHE_SHIFT -
1219 inode->i_blkbits);
1220 pblock = map->m_pblk + (cur_logical -
1221 map->m_lblk);
1222 }
1223 index++;
1224
1225 BUG_ON(!PageLocked(page));
1226 BUG_ON(PageWriteback(page));
1227
1228 /*
1229 * If the page does not have buffers (for
1230 * whatever reason), try to create them using
1231 * __block_write_begin. If this fails,
1232 * skip the page and move on.
1233 */
1234 if (!page_has_buffers(page)) {
1235 if (__block_write_begin(page, 0, len,
1236 noalloc_get_block_write)) {
1237 skip_page:
1238 unlock_page(page);
1239 continue;
1240 }
1241 commit_write = 1;
1242 }
1243
1244 bh = page_bufs = page_buffers(page);
1245 block_start = 0;
1246 do {
1247 if (!bh)
1248 goto skip_page;
1249 if (map && (cur_logical >= map->m_lblk) &&
1250 (cur_logical <= (map->m_lblk +
1251 (map->m_len - 1)))) {
1252 if (buffer_delay(bh)) {
1253 clear_buffer_delay(bh);
1254 bh->b_blocknr = pblock;
1255 }
1256 if (buffer_unwritten(bh) ||
1257 buffer_mapped(bh))
1258 BUG_ON(bh->b_blocknr != pblock);
1259 if (map->m_flags & EXT4_MAP_UNINIT)
1260 set_buffer_uninit(bh);
1261 clear_buffer_unwritten(bh);
1262 }
1263
1264 /* skip page if block allocation undone */
1265 if (buffer_delay(bh) || buffer_unwritten(bh))
1266 skip_page = 1;
1267 bh = bh->b_this_page;
1268 block_start += bh->b_size;
1269 cur_logical++;
1270 pblock++;
1271 } while (bh != page_bufs);
1272
1273 if (skip_page)
1274 goto skip_page;
1275
1276 if (commit_write)
1277 /* mark the buffer_heads as dirty & uptodate */
1278 block_commit_write(page, 0, len);
1279
1280 clear_page_dirty_for_io(page);
1281 /*
1282 * Delalloc doesn't support data journalling,
1283 * but eventually maybe we'll lift this
1284 * restriction.
1285 */
1286 if (unlikely(journal_data && PageChecked(page)))
1287 err = __ext4_journalled_writepage(page, len);
1288 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1289 err = ext4_bio_write_page(&io_submit, page,
1290 len, mpd->wbc);
1291 else if (buffer_uninit(page_bufs)) {
1292 ext4_set_bh_endio(page_bufs, inode);
1293 err = block_write_full_page_endio(page,
1294 noalloc_get_block_write,
1295 mpd->wbc, ext4_end_io_buffer_write);
1296 } else
1297 err = block_write_full_page(page,
1298 noalloc_get_block_write, mpd->wbc);
1299
1300 if (!err)
1301 mpd->pages_written++;
1302 /*
1303 * In error case, we have to continue because
1304 * remaining pages are still locked
1305 */
1306 if (ret == 0)
1307 ret = err;
1308 }
1309 pagevec_release(&pvec);
1310 }
1311 ext4_io_submit(&io_submit);
1312 return ret;
1313 }
1314
1315 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1316 {
1317 int nr_pages, i;
1318 pgoff_t index, end;
1319 struct pagevec pvec;
1320 struct inode *inode = mpd->inode;
1321 struct address_space *mapping = inode->i_mapping;
1322
1323 index = mpd->first_page;
1324 end = mpd->next_page - 1;
1325 while (index <= end) {
1326 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1327 if (nr_pages == 0)
1328 break;
1329 for (i = 0; i < nr_pages; i++) {
1330 struct page *page = pvec.pages[i];
1331 if (page->index > end)
1332 break;
1333 BUG_ON(!PageLocked(page));
1334 BUG_ON(PageWriteback(page));
1335 block_invalidatepage(page, 0);
1336 ClearPageUptodate(page);
1337 unlock_page(page);
1338 }
1339 index = pvec.pages[nr_pages - 1]->index + 1;
1340 pagevec_release(&pvec);
1341 }
1342 return;
1343 }
1344
1345 static void ext4_print_free_blocks(struct inode *inode)
1346 {
1347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1348 printk(KERN_CRIT "Total free blocks count %lld\n",
1349 ext4_count_free_blocks(inode->i_sb));
1350 printk(KERN_CRIT "Free/Dirty block details\n");
1351 printk(KERN_CRIT "free_blocks=%lld\n",
1352 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1353 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1354 printk(KERN_CRIT "dirty_blocks=%lld\n",
1355 (long long) percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1356 printk(KERN_CRIT "Block reservation details\n");
1357 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1358 EXT4_I(inode)->i_reserved_data_blocks);
1359 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1360 EXT4_I(inode)->i_reserved_meta_blocks);
1361 return;
1362 }
1363
1364 /*
1365 * mpage_da_map_and_submit - go through given space, map them
1366 * if necessary, and then submit them for I/O
1367 *
1368 * @mpd - bh describing space
1369 *
1370 * The function skips space we know is already mapped to disk blocks.
1371 *
1372 */
1373 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1374 {
1375 int err, blks, get_blocks_flags;
1376 struct ext4_map_blocks map, *mapp = NULL;
1377 sector_t next = mpd->b_blocknr;
1378 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1379 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1380 handle_t *handle = NULL;
1381
1382 /*
1383 * If the blocks are mapped already, or we couldn't accumulate
1384 * any blocks, then proceed immediately to the submission stage.
1385 */
1386 if ((mpd->b_size == 0) ||
1387 ((mpd->b_state & (1 << BH_Mapped)) &&
1388 !(mpd->b_state & (1 << BH_Delay)) &&
1389 !(mpd->b_state & (1 << BH_Unwritten))))
1390 goto submit_io;
1391
1392 handle = ext4_journal_current_handle();
1393 BUG_ON(!handle);
1394
1395 /*
1396 * Call ext4_map_blocks() to allocate any delayed allocation
1397 * blocks, or to convert an uninitialized extent to be
1398 * initialized (in the case where we have written into
1399 * one or more preallocated blocks).
1400 *
1401 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1402 * indicate that we are on the delayed allocation path. This
1403 * affects functions in many different parts of the allocation
1404 * call path. This flag exists primarily because we don't
1405 * want to change *many* call functions, so ext4_map_blocks()
1406 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1407 * inode's allocation semaphore is taken.
1408 *
1409 * If the blocks in questions were delalloc blocks, set
1410 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1411 * variables are updated after the blocks have been allocated.
1412 */
1413 map.m_lblk = next;
1414 map.m_len = max_blocks;
1415 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1416 if (ext4_should_dioread_nolock(mpd->inode))
1417 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1418 if (mpd->b_state & (1 << BH_Delay))
1419 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1420
1421 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1422 if (blks < 0) {
1423 struct super_block *sb = mpd->inode->i_sb;
1424
1425 err = blks;
1426 /*
1427 * If get block returns EAGAIN or ENOSPC and there
1428 * appears to be free blocks we will just let
1429 * mpage_da_submit_io() unlock all of the pages.
1430 */
1431 if (err == -EAGAIN)
1432 goto submit_io;
1433
1434 if (err == -ENOSPC &&
1435 ext4_count_free_blocks(sb)) {
1436 mpd->retval = err;
1437 goto submit_io;
1438 }
1439
1440 /*
1441 * get block failure will cause us to loop in
1442 * writepages, because a_ops->writepage won't be able
1443 * to make progress. The page will be redirtied by
1444 * writepage and writepages will again try to write
1445 * the same.
1446 */
1447 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1448 ext4_msg(sb, KERN_CRIT,
1449 "delayed block allocation failed for inode %lu "
1450 "at logical offset %llu with max blocks %zd "
1451 "with error %d", mpd->inode->i_ino,
1452 (unsigned long long) next,
1453 mpd->b_size >> mpd->inode->i_blkbits, err);
1454 ext4_msg(sb, KERN_CRIT,
1455 "This should not happen!! Data will be lost\n");
1456 if (err == -ENOSPC)
1457 ext4_print_free_blocks(mpd->inode);
1458 }
1459 /* invalidate all the pages */
1460 ext4_da_block_invalidatepages(mpd);
1461
1462 /* Mark this page range as having been completed */
1463 mpd->io_done = 1;
1464 return;
1465 }
1466 BUG_ON(blks == 0);
1467
1468 mapp = &map;
1469 if (map.m_flags & EXT4_MAP_NEW) {
1470 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1471 int i;
1472
1473 for (i = 0; i < map.m_len; i++)
1474 unmap_underlying_metadata(bdev, map.m_pblk + i);
1475
1476 if (ext4_should_order_data(mpd->inode)) {
1477 err = ext4_jbd2_file_inode(handle, mpd->inode);
1478 if (err)
1479 /* Only if the journal is aborted */
1480 return;
1481 }
1482 }
1483
1484 /*
1485 * Update on-disk size along with block allocation.
1486 */
1487 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1488 if (disksize > i_size_read(mpd->inode))
1489 disksize = i_size_read(mpd->inode);
1490 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1491 ext4_update_i_disksize(mpd->inode, disksize);
1492 err = ext4_mark_inode_dirty(handle, mpd->inode);
1493 if (err)
1494 ext4_error(mpd->inode->i_sb,
1495 "Failed to mark inode %lu dirty",
1496 mpd->inode->i_ino);
1497 }
1498
1499 submit_io:
1500 mpage_da_submit_io(mpd, mapp);
1501 mpd->io_done = 1;
1502 }
1503
1504 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1505 (1 << BH_Delay) | (1 << BH_Unwritten))
1506
1507 /*
1508 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1509 *
1510 * @mpd->lbh - extent of blocks
1511 * @logical - logical number of the block in the file
1512 * @bh - bh of the block (used to access block's state)
1513 *
1514 * the function is used to collect contig. blocks in same state
1515 */
1516 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1517 sector_t logical, size_t b_size,
1518 unsigned long b_state)
1519 {
1520 sector_t next;
1521 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1522
1523 /*
1524 * XXX Don't go larger than mballoc is willing to allocate
1525 * This is a stopgap solution. We eventually need to fold
1526 * mpage_da_submit_io() into this function and then call
1527 * ext4_map_blocks() multiple times in a loop
1528 */
1529 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1530 goto flush_it;
1531
1532 /* check if thereserved journal credits might overflow */
1533 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1534 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1535 /*
1536 * With non-extent format we are limited by the journal
1537 * credit available. Total credit needed to insert
1538 * nrblocks contiguous blocks is dependent on the
1539 * nrblocks. So limit nrblocks.
1540 */
1541 goto flush_it;
1542 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1543 EXT4_MAX_TRANS_DATA) {
1544 /*
1545 * Adding the new buffer_head would make it cross the
1546 * allowed limit for which we have journal credit
1547 * reserved. So limit the new bh->b_size
1548 */
1549 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1550 mpd->inode->i_blkbits;
1551 /* we will do mpage_da_submit_io in the next loop */
1552 }
1553 }
1554 /*
1555 * First block in the extent
1556 */
1557 if (mpd->b_size == 0) {
1558 mpd->b_blocknr = logical;
1559 mpd->b_size = b_size;
1560 mpd->b_state = b_state & BH_FLAGS;
1561 return;
1562 }
1563
1564 next = mpd->b_blocknr + nrblocks;
1565 /*
1566 * Can we merge the block to our big extent?
1567 */
1568 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1569 mpd->b_size += b_size;
1570 return;
1571 }
1572
1573 flush_it:
1574 /*
1575 * We couldn't merge the block to our extent, so we
1576 * need to flush current extent and start new one
1577 */
1578 mpage_da_map_and_submit(mpd);
1579 return;
1580 }
1581
1582 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1583 {
1584 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1585 }
1586
1587 /*
1588 * This is a special get_blocks_t callback which is used by
1589 * ext4_da_write_begin(). It will either return mapped block or
1590 * reserve space for a single block.
1591 *
1592 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1593 * We also have b_blocknr = -1 and b_bdev initialized properly
1594 *
1595 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1596 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1597 * initialized properly.
1598 */
1599 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1600 struct buffer_head *bh, int create)
1601 {
1602 struct ext4_map_blocks map;
1603 int ret = 0;
1604 sector_t invalid_block = ~((sector_t) 0xffff);
1605
1606 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1607 invalid_block = ~0;
1608
1609 BUG_ON(create == 0);
1610 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1611
1612 map.m_lblk = iblock;
1613 map.m_len = 1;
1614
1615 /*
1616 * first, we need to know whether the block is allocated already
1617 * preallocated blocks are unmapped but should treated
1618 * the same as allocated blocks.
1619 */
1620 ret = ext4_map_blocks(NULL, inode, &map, 0);
1621 if (ret < 0)
1622 return ret;
1623 if (ret == 0) {
1624 if (buffer_delay(bh))
1625 return 0; /* Not sure this could or should happen */
1626 /*
1627 * XXX: __block_write_begin() unmaps passed block, is it OK?
1628 */
1629 ret = ext4_da_reserve_space(inode, iblock);
1630 if (ret)
1631 /* not enough space to reserve */
1632 return ret;
1633
1634 map_bh(bh, inode->i_sb, invalid_block);
1635 set_buffer_new(bh);
1636 set_buffer_delay(bh);
1637 return 0;
1638 }
1639
1640 map_bh(bh, inode->i_sb, map.m_pblk);
1641 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1642
1643 if (buffer_unwritten(bh)) {
1644 /* A delayed write to unwritten bh should be marked
1645 * new and mapped. Mapped ensures that we don't do
1646 * get_block multiple times when we write to the same
1647 * offset and new ensures that we do proper zero out
1648 * for partial write.
1649 */
1650 set_buffer_new(bh);
1651 set_buffer_mapped(bh);
1652 }
1653 return 0;
1654 }
1655
1656 /*
1657 * This function is used as a standard get_block_t calback function
1658 * when there is no desire to allocate any blocks. It is used as a
1659 * callback function for block_write_begin() and block_write_full_page().
1660 * These functions should only try to map a single block at a time.
1661 *
1662 * Since this function doesn't do block allocations even if the caller
1663 * requests it by passing in create=1, it is critically important that
1664 * any caller checks to make sure that any buffer heads are returned
1665 * by this function are either all already mapped or marked for
1666 * delayed allocation before calling block_write_full_page(). Otherwise,
1667 * b_blocknr could be left unitialized, and the page write functions will
1668 * be taken by surprise.
1669 */
1670 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1671 struct buffer_head *bh_result, int create)
1672 {
1673 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1674 return _ext4_get_block(inode, iblock, bh_result, 0);
1675 }
1676
1677 static int bget_one(handle_t *handle, struct buffer_head *bh)
1678 {
1679 get_bh(bh);
1680 return 0;
1681 }
1682
1683 static int bput_one(handle_t *handle, struct buffer_head *bh)
1684 {
1685 put_bh(bh);
1686 return 0;
1687 }
1688
1689 static int __ext4_journalled_writepage(struct page *page,
1690 unsigned int len)
1691 {
1692 struct address_space *mapping = page->mapping;
1693 struct inode *inode = mapping->host;
1694 struct buffer_head *page_bufs;
1695 handle_t *handle = NULL;
1696 int ret = 0;
1697 int err;
1698
1699 ClearPageChecked(page);
1700 page_bufs = page_buffers(page);
1701 BUG_ON(!page_bufs);
1702 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1703 /* As soon as we unlock the page, it can go away, but we have
1704 * references to buffers so we are safe */
1705 unlock_page(page);
1706
1707 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1708 if (IS_ERR(handle)) {
1709 ret = PTR_ERR(handle);
1710 goto out;
1711 }
1712
1713 BUG_ON(!ext4_handle_valid(handle));
1714
1715 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1716 do_journal_get_write_access);
1717
1718 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1719 write_end_fn);
1720 if (ret == 0)
1721 ret = err;
1722 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1723 err = ext4_journal_stop(handle);
1724 if (!ret)
1725 ret = err;
1726
1727 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1728 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1729 out:
1730 return ret;
1731 }
1732
1733 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1734 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1735
1736 /*
1737 * Note that we don't need to start a transaction unless we're journaling data
1738 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1739 * need to file the inode to the transaction's list in ordered mode because if
1740 * we are writing back data added by write(), the inode is already there and if
1741 * we are writing back data modified via mmap(), no one guarantees in which
1742 * transaction the data will hit the disk. In case we are journaling data, we
1743 * cannot start transaction directly because transaction start ranks above page
1744 * lock so we have to do some magic.
1745 *
1746 * This function can get called via...
1747 * - ext4_da_writepages after taking page lock (have journal handle)
1748 * - journal_submit_inode_data_buffers (no journal handle)
1749 * - shrink_page_list via pdflush (no journal handle)
1750 * - grab_page_cache when doing write_begin (have journal handle)
1751 *
1752 * We don't do any block allocation in this function. If we have page with
1753 * multiple blocks we need to write those buffer_heads that are mapped. This
1754 * is important for mmaped based write. So if we do with blocksize 1K
1755 * truncate(f, 1024);
1756 * a = mmap(f, 0, 4096);
1757 * a[0] = 'a';
1758 * truncate(f, 4096);
1759 * we have in the page first buffer_head mapped via page_mkwrite call back
1760 * but other bufer_heads would be unmapped but dirty(dirty done via the
1761 * do_wp_page). So writepage should write the first block. If we modify
1762 * the mmap area beyond 1024 we will again get a page_fault and the
1763 * page_mkwrite callback will do the block allocation and mark the
1764 * buffer_heads mapped.
1765 *
1766 * We redirty the page if we have any buffer_heads that is either delay or
1767 * unwritten in the page.
1768 *
1769 * We can get recursively called as show below.
1770 *
1771 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1772 * ext4_writepage()
1773 *
1774 * But since we don't do any block allocation we should not deadlock.
1775 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1776 */
1777 static int ext4_writepage(struct page *page,
1778 struct writeback_control *wbc)
1779 {
1780 int ret = 0, commit_write = 0;
1781 loff_t size;
1782 unsigned int len;
1783 struct buffer_head *page_bufs = NULL;
1784 struct inode *inode = page->mapping->host;
1785
1786 trace_ext4_writepage(page);
1787 size = i_size_read(inode);
1788 if (page->index == size >> PAGE_CACHE_SHIFT)
1789 len = size & ~PAGE_CACHE_MASK;
1790 else
1791 len = PAGE_CACHE_SIZE;
1792
1793 /*
1794 * If the page does not have buffers (for whatever reason),
1795 * try to create them using __block_write_begin. If this
1796 * fails, redirty the page and move on.
1797 */
1798 if (!page_has_buffers(page)) {
1799 if (__block_write_begin(page, 0, len,
1800 noalloc_get_block_write)) {
1801 redirty_page:
1802 redirty_page_for_writepage(wbc, page);
1803 unlock_page(page);
1804 return 0;
1805 }
1806 commit_write = 1;
1807 }
1808 page_bufs = page_buffers(page);
1809 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1810 ext4_bh_delay_or_unwritten)) {
1811 /*
1812 * We don't want to do block allocation, so redirty
1813 * the page and return. We may reach here when we do
1814 * a journal commit via journal_submit_inode_data_buffers.
1815 * We can also reach here via shrink_page_list
1816 */
1817 goto redirty_page;
1818 }
1819 if (commit_write)
1820 /* now mark the buffer_heads as dirty and uptodate */
1821 block_commit_write(page, 0, len);
1822
1823 if (PageChecked(page) && ext4_should_journal_data(inode))
1824 /*
1825 * It's mmapped pagecache. Add buffers and journal it. There
1826 * doesn't seem much point in redirtying the page here.
1827 */
1828 return __ext4_journalled_writepage(page, len);
1829
1830 if (buffer_uninit(page_bufs)) {
1831 ext4_set_bh_endio(page_bufs, inode);
1832 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1833 wbc, ext4_end_io_buffer_write);
1834 } else
1835 ret = block_write_full_page(page, noalloc_get_block_write,
1836 wbc);
1837
1838 return ret;
1839 }
1840
1841 /*
1842 * This is called via ext4_da_writepages() to
1843 * calculate the total number of credits to reserve to fit
1844 * a single extent allocation into a single transaction,
1845 * ext4_da_writpeages() will loop calling this before
1846 * the block allocation.
1847 */
1848
1849 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1850 {
1851 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1852
1853 /*
1854 * With non-extent format the journal credit needed to
1855 * insert nrblocks contiguous block is dependent on
1856 * number of contiguous block. So we will limit
1857 * number of contiguous block to a sane value
1858 */
1859 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1860 (max_blocks > EXT4_MAX_TRANS_DATA))
1861 max_blocks = EXT4_MAX_TRANS_DATA;
1862
1863 return ext4_chunk_trans_blocks(inode, max_blocks);
1864 }
1865
1866 /*
1867 * write_cache_pages_da - walk the list of dirty pages of the given
1868 * address space and accumulate pages that need writing, and call
1869 * mpage_da_map_and_submit to map a single contiguous memory region
1870 * and then write them.
1871 */
1872 static int write_cache_pages_da(struct address_space *mapping,
1873 struct writeback_control *wbc,
1874 struct mpage_da_data *mpd,
1875 pgoff_t *done_index)
1876 {
1877 struct buffer_head *bh, *head;
1878 struct inode *inode = mapping->host;
1879 struct pagevec pvec;
1880 unsigned int nr_pages;
1881 sector_t logical;
1882 pgoff_t index, end;
1883 long nr_to_write = wbc->nr_to_write;
1884 int i, tag, ret = 0;
1885
1886 memset(mpd, 0, sizeof(struct mpage_da_data));
1887 mpd->wbc = wbc;
1888 mpd->inode = inode;
1889 pagevec_init(&pvec, 0);
1890 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1891 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1892
1893 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1894 tag = PAGECACHE_TAG_TOWRITE;
1895 else
1896 tag = PAGECACHE_TAG_DIRTY;
1897
1898 *done_index = index;
1899 while (index <= end) {
1900 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1901 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1902 if (nr_pages == 0)
1903 return 0;
1904
1905 for (i = 0; i < nr_pages; i++) {
1906 struct page *page = pvec.pages[i];
1907
1908 /*
1909 * At this point, the page may be truncated or
1910 * invalidated (changing page->mapping to NULL), or
1911 * even swizzled back from swapper_space to tmpfs file
1912 * mapping. However, page->index will not change
1913 * because we have a reference on the page.
1914 */
1915 if (page->index > end)
1916 goto out;
1917
1918 *done_index = page->index + 1;
1919
1920 /*
1921 * If we can't merge this page, and we have
1922 * accumulated an contiguous region, write it
1923 */
1924 if ((mpd->next_page != page->index) &&
1925 (mpd->next_page != mpd->first_page)) {
1926 mpage_da_map_and_submit(mpd);
1927 goto ret_extent_tail;
1928 }
1929
1930 lock_page(page);
1931
1932 /*
1933 * If the page is no longer dirty, or its
1934 * mapping no longer corresponds to inode we
1935 * are writing (which means it has been
1936 * truncated or invalidated), or the page is
1937 * already under writeback and we are not
1938 * doing a data integrity writeback, skip the page
1939 */
1940 if (!PageDirty(page) ||
1941 (PageWriteback(page) &&
1942 (wbc->sync_mode == WB_SYNC_NONE)) ||
1943 unlikely(page->mapping != mapping)) {
1944 unlock_page(page);
1945 continue;
1946 }
1947
1948 wait_on_page_writeback(page);
1949 BUG_ON(PageWriteback(page));
1950
1951 if (mpd->next_page != page->index)
1952 mpd->first_page = page->index;
1953 mpd->next_page = page->index + 1;
1954 logical = (sector_t) page->index <<
1955 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1956
1957 if (!page_has_buffers(page)) {
1958 mpage_add_bh_to_extent(mpd, logical,
1959 PAGE_CACHE_SIZE,
1960 (1 << BH_Dirty) | (1 << BH_Uptodate));
1961 if (mpd->io_done)
1962 goto ret_extent_tail;
1963 } else {
1964 /*
1965 * Page with regular buffer heads,
1966 * just add all dirty ones
1967 */
1968 head = page_buffers(page);
1969 bh = head;
1970 do {
1971 BUG_ON(buffer_locked(bh));
1972 /*
1973 * We need to try to allocate
1974 * unmapped blocks in the same page.
1975 * Otherwise we won't make progress
1976 * with the page in ext4_writepage
1977 */
1978 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
1979 mpage_add_bh_to_extent(mpd, logical,
1980 bh->b_size,
1981 bh->b_state);
1982 if (mpd->io_done)
1983 goto ret_extent_tail;
1984 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
1985 /*
1986 * mapped dirty buffer. We need
1987 * to update the b_state
1988 * because we look at b_state
1989 * in mpage_da_map_blocks. We
1990 * don't update b_size because
1991 * if we find an unmapped
1992 * buffer_head later we need to
1993 * use the b_state flag of that
1994 * buffer_head.
1995 */
1996 if (mpd->b_size == 0)
1997 mpd->b_state = bh->b_state & BH_FLAGS;
1998 }
1999 logical++;
2000 } while ((bh = bh->b_this_page) != head);
2001 }
2002
2003 if (nr_to_write > 0) {
2004 nr_to_write--;
2005 if (nr_to_write == 0 &&
2006 wbc->sync_mode == WB_SYNC_NONE)
2007 /*
2008 * We stop writing back only if we are
2009 * not doing integrity sync. In case of
2010 * integrity sync we have to keep going
2011 * because someone may be concurrently
2012 * dirtying pages, and we might have
2013 * synced a lot of newly appeared dirty
2014 * pages, but have not synced all of the
2015 * old dirty pages.
2016 */
2017 goto out;
2018 }
2019 }
2020 pagevec_release(&pvec);
2021 cond_resched();
2022 }
2023 return 0;
2024 ret_extent_tail:
2025 ret = MPAGE_DA_EXTENT_TAIL;
2026 out:
2027 pagevec_release(&pvec);
2028 cond_resched();
2029 return ret;
2030 }
2031
2032
2033 static int ext4_da_writepages(struct address_space *mapping,
2034 struct writeback_control *wbc)
2035 {
2036 pgoff_t index;
2037 int range_whole = 0;
2038 handle_t *handle = NULL;
2039 struct mpage_da_data mpd;
2040 struct inode *inode = mapping->host;
2041 int pages_written = 0;
2042 unsigned int max_pages;
2043 int range_cyclic, cycled = 1, io_done = 0;
2044 int needed_blocks, ret = 0;
2045 long desired_nr_to_write, nr_to_writebump = 0;
2046 loff_t range_start = wbc->range_start;
2047 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2048 pgoff_t done_index = 0;
2049 pgoff_t end;
2050
2051 trace_ext4_da_writepages(inode, wbc);
2052
2053 /*
2054 * No pages to write? This is mainly a kludge to avoid starting
2055 * a transaction for special inodes like journal inode on last iput()
2056 * because that could violate lock ordering on umount
2057 */
2058 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2059 return 0;
2060
2061 /*
2062 * If the filesystem has aborted, it is read-only, so return
2063 * right away instead of dumping stack traces later on that
2064 * will obscure the real source of the problem. We test
2065 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2066 * the latter could be true if the filesystem is mounted
2067 * read-only, and in that case, ext4_da_writepages should
2068 * *never* be called, so if that ever happens, we would want
2069 * the stack trace.
2070 */
2071 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2072 return -EROFS;
2073
2074 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2075 range_whole = 1;
2076
2077 range_cyclic = wbc->range_cyclic;
2078 if (wbc->range_cyclic) {
2079 index = mapping->writeback_index;
2080 if (index)
2081 cycled = 0;
2082 wbc->range_start = index << PAGE_CACHE_SHIFT;
2083 wbc->range_end = LLONG_MAX;
2084 wbc->range_cyclic = 0;
2085 end = -1;
2086 } else {
2087 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2088 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2089 }
2090
2091 /*
2092 * This works around two forms of stupidity. The first is in
2093 * the writeback code, which caps the maximum number of pages
2094 * written to be 1024 pages. This is wrong on multiple
2095 * levels; different architectues have a different page size,
2096 * which changes the maximum amount of data which gets
2097 * written. Secondly, 4 megabytes is way too small. XFS
2098 * forces this value to be 16 megabytes by multiplying
2099 * nr_to_write parameter by four, and then relies on its
2100 * allocator to allocate larger extents to make them
2101 * contiguous. Unfortunately this brings us to the second
2102 * stupidity, which is that ext4's mballoc code only allocates
2103 * at most 2048 blocks. So we force contiguous writes up to
2104 * the number of dirty blocks in the inode, or
2105 * sbi->max_writeback_mb_bump whichever is smaller.
2106 */
2107 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2108 if (!range_cyclic && range_whole) {
2109 if (wbc->nr_to_write == LONG_MAX)
2110 desired_nr_to_write = wbc->nr_to_write;
2111 else
2112 desired_nr_to_write = wbc->nr_to_write * 8;
2113 } else
2114 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2115 max_pages);
2116 if (desired_nr_to_write > max_pages)
2117 desired_nr_to_write = max_pages;
2118
2119 if (wbc->nr_to_write < desired_nr_to_write) {
2120 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2121 wbc->nr_to_write = desired_nr_to_write;
2122 }
2123
2124 retry:
2125 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2126 tag_pages_for_writeback(mapping, index, end);
2127
2128 while (!ret && wbc->nr_to_write > 0) {
2129
2130 /*
2131 * we insert one extent at a time. So we need
2132 * credit needed for single extent allocation.
2133 * journalled mode is currently not supported
2134 * by delalloc
2135 */
2136 BUG_ON(ext4_should_journal_data(inode));
2137 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2138
2139 /* start a new transaction*/
2140 handle = ext4_journal_start(inode, needed_blocks);
2141 if (IS_ERR(handle)) {
2142 ret = PTR_ERR(handle);
2143 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2144 "%ld pages, ino %lu; err %d", __func__,
2145 wbc->nr_to_write, inode->i_ino, ret);
2146 goto out_writepages;
2147 }
2148
2149 /*
2150 * Now call write_cache_pages_da() to find the next
2151 * contiguous region of logical blocks that need
2152 * blocks to be allocated by ext4 and submit them.
2153 */
2154 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2155 /*
2156 * If we have a contiguous extent of pages and we
2157 * haven't done the I/O yet, map the blocks and submit
2158 * them for I/O.
2159 */
2160 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2161 mpage_da_map_and_submit(&mpd);
2162 ret = MPAGE_DA_EXTENT_TAIL;
2163 }
2164 trace_ext4_da_write_pages(inode, &mpd);
2165 wbc->nr_to_write -= mpd.pages_written;
2166
2167 ext4_journal_stop(handle);
2168
2169 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2170 /* commit the transaction which would
2171 * free blocks released in the transaction
2172 * and try again
2173 */
2174 jbd2_journal_force_commit_nested(sbi->s_journal);
2175 ret = 0;
2176 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2177 /*
2178 * got one extent now try with
2179 * rest of the pages
2180 */
2181 pages_written += mpd.pages_written;
2182 ret = 0;
2183 io_done = 1;
2184 } else if (wbc->nr_to_write)
2185 /*
2186 * There is no more writeout needed
2187 * or we requested for a noblocking writeout
2188 * and we found the device congested
2189 */
2190 break;
2191 }
2192 if (!io_done && !cycled) {
2193 cycled = 1;
2194 index = 0;
2195 wbc->range_start = index << PAGE_CACHE_SHIFT;
2196 wbc->range_end = mapping->writeback_index - 1;
2197 goto retry;
2198 }
2199
2200 /* Update index */
2201 wbc->range_cyclic = range_cyclic;
2202 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2203 /*
2204 * set the writeback_index so that range_cyclic
2205 * mode will write it back later
2206 */
2207 mapping->writeback_index = done_index;
2208
2209 out_writepages:
2210 wbc->nr_to_write -= nr_to_writebump;
2211 wbc->range_start = range_start;
2212 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2213 return ret;
2214 }
2215
2216 #define FALL_BACK_TO_NONDELALLOC 1
2217 static int ext4_nonda_switch(struct super_block *sb)
2218 {
2219 s64 free_blocks, dirty_blocks;
2220 struct ext4_sb_info *sbi = EXT4_SB(sb);
2221
2222 /*
2223 * switch to non delalloc mode if we are running low
2224 * on free block. The free block accounting via percpu
2225 * counters can get slightly wrong with percpu_counter_batch getting
2226 * accumulated on each CPU without updating global counters
2227 * Delalloc need an accurate free block accounting. So switch
2228 * to non delalloc when we are near to error range.
2229 */
2230 free_blocks = EXT4_C2B(sbi,
2231 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2232 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2233 if (2 * free_blocks < 3 * dirty_blocks ||
2234 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2235 /*
2236 * free block count is less than 150% of dirty blocks
2237 * or free blocks is less than watermark
2238 */
2239 return 1;
2240 }
2241 /*
2242 * Even if we don't switch but are nearing capacity,
2243 * start pushing delalloc when 1/2 of free blocks are dirty.
2244 */
2245 if (free_blocks < 2 * dirty_blocks)
2246 writeback_inodes_sb_if_idle(sb);
2247
2248 return 0;
2249 }
2250
2251 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2252 loff_t pos, unsigned len, unsigned flags,
2253 struct page **pagep, void **fsdata)
2254 {
2255 int ret, retries = 0;
2256 struct page *page;
2257 pgoff_t index;
2258 struct inode *inode = mapping->host;
2259 handle_t *handle;
2260 loff_t page_len;
2261
2262 index = pos >> PAGE_CACHE_SHIFT;
2263
2264 if (ext4_nonda_switch(inode->i_sb)) {
2265 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2266 return ext4_write_begin(file, mapping, pos,
2267 len, flags, pagep, fsdata);
2268 }
2269 *fsdata = (void *)0;
2270 trace_ext4_da_write_begin(inode, pos, len, flags);
2271 retry:
2272 /*
2273 * With delayed allocation, we don't log the i_disksize update
2274 * if there is delayed block allocation. But we still need
2275 * to journalling the i_disksize update if writes to the end
2276 * of file which has an already mapped buffer.
2277 */
2278 handle = ext4_journal_start(inode, 1);
2279 if (IS_ERR(handle)) {
2280 ret = PTR_ERR(handle);
2281 goto out;
2282 }
2283 /* We cannot recurse into the filesystem as the transaction is already
2284 * started */
2285 flags |= AOP_FLAG_NOFS;
2286
2287 page = grab_cache_page_write_begin(mapping, index, flags);
2288 if (!page) {
2289 ext4_journal_stop(handle);
2290 ret = -ENOMEM;
2291 goto out;
2292 }
2293 *pagep = page;
2294
2295 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2296 if (ret < 0) {
2297 unlock_page(page);
2298 ext4_journal_stop(handle);
2299 page_cache_release(page);
2300 /*
2301 * block_write_begin may have instantiated a few blocks
2302 * outside i_size. Trim these off again. Don't need
2303 * i_size_read because we hold i_mutex.
2304 */
2305 if (pos + len > inode->i_size)
2306 ext4_truncate_failed_write(inode);
2307 } else {
2308 page_len = pos & (PAGE_CACHE_SIZE - 1);
2309 if (page_len > 0) {
2310 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2311 inode, page, pos - page_len, page_len,
2312 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2313 }
2314 }
2315
2316 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2317 goto retry;
2318 out:
2319 return ret;
2320 }
2321
2322 /*
2323 * Check if we should update i_disksize
2324 * when write to the end of file but not require block allocation
2325 */
2326 static int ext4_da_should_update_i_disksize(struct page *page,
2327 unsigned long offset)
2328 {
2329 struct buffer_head *bh;
2330 struct inode *inode = page->mapping->host;
2331 unsigned int idx;
2332 int i;
2333
2334 bh = page_buffers(page);
2335 idx = offset >> inode->i_blkbits;
2336
2337 for (i = 0; i < idx; i++)
2338 bh = bh->b_this_page;
2339
2340 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2341 return 0;
2342 return 1;
2343 }
2344
2345 static int ext4_da_write_end(struct file *file,
2346 struct address_space *mapping,
2347 loff_t pos, unsigned len, unsigned copied,
2348 struct page *page, void *fsdata)
2349 {
2350 struct inode *inode = mapping->host;
2351 int ret = 0, ret2;
2352 handle_t *handle = ext4_journal_current_handle();
2353 loff_t new_i_size;
2354 unsigned long start, end;
2355 int write_mode = (int)(unsigned long)fsdata;
2356 loff_t page_len;
2357
2358 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2359 if (ext4_should_order_data(inode)) {
2360 return ext4_ordered_write_end(file, mapping, pos,
2361 len, copied, page, fsdata);
2362 } else if (ext4_should_writeback_data(inode)) {
2363 return ext4_writeback_write_end(file, mapping, pos,
2364 len, copied, page, fsdata);
2365 } else {
2366 BUG();
2367 }
2368 }
2369
2370 trace_ext4_da_write_end(inode, pos, len, copied);
2371 start = pos & (PAGE_CACHE_SIZE - 1);
2372 end = start + copied - 1;
2373
2374 /*
2375 * generic_write_end() will run mark_inode_dirty() if i_size
2376 * changes. So let's piggyback the i_disksize mark_inode_dirty
2377 * into that.
2378 */
2379
2380 new_i_size = pos + copied;
2381 if (new_i_size > EXT4_I(inode)->i_disksize) {
2382 if (ext4_da_should_update_i_disksize(page, end)) {
2383 down_write(&EXT4_I(inode)->i_data_sem);
2384 if (new_i_size > EXT4_I(inode)->i_disksize) {
2385 /*
2386 * Updating i_disksize when extending file
2387 * without needing block allocation
2388 */
2389 if (ext4_should_order_data(inode))
2390 ret = ext4_jbd2_file_inode(handle,
2391 inode);
2392
2393 EXT4_I(inode)->i_disksize = new_i_size;
2394 }
2395 up_write(&EXT4_I(inode)->i_data_sem);
2396 /* We need to mark inode dirty even if
2397 * new_i_size is less that inode->i_size
2398 * bu greater than i_disksize.(hint delalloc)
2399 */
2400 ext4_mark_inode_dirty(handle, inode);
2401 }
2402 }
2403 ret2 = generic_write_end(file, mapping, pos, len, copied,
2404 page, fsdata);
2405
2406 page_len = PAGE_CACHE_SIZE -
2407 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2408
2409 if (page_len > 0) {
2410 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2411 inode, page, pos + copied - 1, page_len,
2412 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2413 }
2414
2415 copied = ret2;
2416 if (ret2 < 0)
2417 ret = ret2;
2418 ret2 = ext4_journal_stop(handle);
2419 if (!ret)
2420 ret = ret2;
2421
2422 return ret ? ret : copied;
2423 }
2424
2425 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2426 {
2427 /*
2428 * Drop reserved blocks
2429 */
2430 BUG_ON(!PageLocked(page));
2431 if (!page_has_buffers(page))
2432 goto out;
2433
2434 ext4_da_page_release_reservation(page, offset);
2435
2436 out:
2437 ext4_invalidatepage(page, offset);
2438
2439 return;
2440 }
2441
2442 /*
2443 * Force all delayed allocation blocks to be allocated for a given inode.
2444 */
2445 int ext4_alloc_da_blocks(struct inode *inode)
2446 {
2447 trace_ext4_alloc_da_blocks(inode);
2448
2449 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2450 !EXT4_I(inode)->i_reserved_meta_blocks)
2451 return 0;
2452
2453 /*
2454 * We do something simple for now. The filemap_flush() will
2455 * also start triggering a write of the data blocks, which is
2456 * not strictly speaking necessary (and for users of
2457 * laptop_mode, not even desirable). However, to do otherwise
2458 * would require replicating code paths in:
2459 *
2460 * ext4_da_writepages() ->
2461 * write_cache_pages() ---> (via passed in callback function)
2462 * __mpage_da_writepage() -->
2463 * mpage_add_bh_to_extent()
2464 * mpage_da_map_blocks()
2465 *
2466 * The problem is that write_cache_pages(), located in
2467 * mm/page-writeback.c, marks pages clean in preparation for
2468 * doing I/O, which is not desirable if we're not planning on
2469 * doing I/O at all.
2470 *
2471 * We could call write_cache_pages(), and then redirty all of
2472 * the pages by calling redirty_page_for_writepage() but that
2473 * would be ugly in the extreme. So instead we would need to
2474 * replicate parts of the code in the above functions,
2475 * simplifying them because we wouldn't actually intend to
2476 * write out the pages, but rather only collect contiguous
2477 * logical block extents, call the multi-block allocator, and
2478 * then update the buffer heads with the block allocations.
2479 *
2480 * For now, though, we'll cheat by calling filemap_flush(),
2481 * which will map the blocks, and start the I/O, but not
2482 * actually wait for the I/O to complete.
2483 */
2484 return filemap_flush(inode->i_mapping);
2485 }
2486
2487 /*
2488 * bmap() is special. It gets used by applications such as lilo and by
2489 * the swapper to find the on-disk block of a specific piece of data.
2490 *
2491 * Naturally, this is dangerous if the block concerned is still in the
2492 * journal. If somebody makes a swapfile on an ext4 data-journaling
2493 * filesystem and enables swap, then they may get a nasty shock when the
2494 * data getting swapped to that swapfile suddenly gets overwritten by
2495 * the original zero's written out previously to the journal and
2496 * awaiting writeback in the kernel's buffer cache.
2497 *
2498 * So, if we see any bmap calls here on a modified, data-journaled file,
2499 * take extra steps to flush any blocks which might be in the cache.
2500 */
2501 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2502 {
2503 struct inode *inode = mapping->host;
2504 journal_t *journal;
2505 int err;
2506
2507 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2508 test_opt(inode->i_sb, DELALLOC)) {
2509 /*
2510 * With delalloc we want to sync the file
2511 * so that we can make sure we allocate
2512 * blocks for file
2513 */
2514 filemap_write_and_wait(mapping);
2515 }
2516
2517 if (EXT4_JOURNAL(inode) &&
2518 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2519 /*
2520 * This is a REALLY heavyweight approach, but the use of
2521 * bmap on dirty files is expected to be extremely rare:
2522 * only if we run lilo or swapon on a freshly made file
2523 * do we expect this to happen.
2524 *
2525 * (bmap requires CAP_SYS_RAWIO so this does not
2526 * represent an unprivileged user DOS attack --- we'd be
2527 * in trouble if mortal users could trigger this path at
2528 * will.)
2529 *
2530 * NB. EXT4_STATE_JDATA is not set on files other than
2531 * regular files. If somebody wants to bmap a directory
2532 * or symlink and gets confused because the buffer
2533 * hasn't yet been flushed to disk, they deserve
2534 * everything they get.
2535 */
2536
2537 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2538 journal = EXT4_JOURNAL(inode);
2539 jbd2_journal_lock_updates(journal);
2540 err = jbd2_journal_flush(journal);
2541 jbd2_journal_unlock_updates(journal);
2542
2543 if (err)
2544 return 0;
2545 }
2546
2547 return generic_block_bmap(mapping, block, ext4_get_block);
2548 }
2549
2550 static int ext4_readpage(struct file *file, struct page *page)
2551 {
2552 trace_ext4_readpage(page);
2553 return mpage_readpage(page, ext4_get_block);
2554 }
2555
2556 static int
2557 ext4_readpages(struct file *file, struct address_space *mapping,
2558 struct list_head *pages, unsigned nr_pages)
2559 {
2560 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2561 }
2562
2563 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2564 {
2565 struct buffer_head *head, *bh;
2566 unsigned int curr_off = 0;
2567
2568 if (!page_has_buffers(page))
2569 return;
2570 head = bh = page_buffers(page);
2571 do {
2572 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2573 && bh->b_private) {
2574 ext4_free_io_end(bh->b_private);
2575 bh->b_private = NULL;
2576 bh->b_end_io = NULL;
2577 }
2578 curr_off = curr_off + bh->b_size;
2579 bh = bh->b_this_page;
2580 } while (bh != head);
2581 }
2582
2583 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2584 {
2585 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2586
2587 trace_ext4_invalidatepage(page, offset);
2588
2589 /*
2590 * free any io_end structure allocated for buffers to be discarded
2591 */
2592 if (ext4_should_dioread_nolock(page->mapping->host))
2593 ext4_invalidatepage_free_endio(page, offset);
2594 /*
2595 * If it's a full truncate we just forget about the pending dirtying
2596 */
2597 if (offset == 0)
2598 ClearPageChecked(page);
2599
2600 if (journal)
2601 jbd2_journal_invalidatepage(journal, page, offset);
2602 else
2603 block_invalidatepage(page, offset);
2604 }
2605
2606 static int ext4_releasepage(struct page *page, gfp_t wait)
2607 {
2608 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2609
2610 trace_ext4_releasepage(page);
2611
2612 WARN_ON(PageChecked(page));
2613 if (!page_has_buffers(page))
2614 return 0;
2615 if (journal)
2616 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2617 else
2618 return try_to_free_buffers(page);
2619 }
2620
2621 /*
2622 * ext4_get_block used when preparing for a DIO write or buffer write.
2623 * We allocate an uinitialized extent if blocks haven't been allocated.
2624 * The extent will be converted to initialized after the IO is complete.
2625 */
2626 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2627 struct buffer_head *bh_result, int create)
2628 {
2629 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2630 inode->i_ino, create);
2631 return _ext4_get_block(inode, iblock, bh_result,
2632 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2633 }
2634
2635 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2636 ssize_t size, void *private, int ret,
2637 bool is_async)
2638 {
2639 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2640 ext4_io_end_t *io_end = iocb->private;
2641 struct workqueue_struct *wq;
2642 unsigned long flags;
2643 struct ext4_inode_info *ei;
2644
2645 /* if not async direct IO or dio with 0 bytes write, just return */
2646 if (!io_end || !size)
2647 goto out;
2648
2649 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2650 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2651 iocb->private, io_end->inode->i_ino, iocb, offset,
2652 size);
2653
2654 /* if not aio dio with unwritten extents, just free io and return */
2655 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2656 ext4_free_io_end(io_end);
2657 iocb->private = NULL;
2658 out:
2659 if (is_async)
2660 aio_complete(iocb, ret, 0);
2661 inode_dio_done(inode);
2662 return;
2663 }
2664
2665 io_end->offset = offset;
2666 io_end->size = size;
2667 if (is_async) {
2668 io_end->iocb = iocb;
2669 io_end->result = ret;
2670 }
2671 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2672
2673 /* Add the io_end to per-inode completed aio dio list*/
2674 ei = EXT4_I(io_end->inode);
2675 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2676 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2677 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2678
2679 /* queue the work to convert unwritten extents to written */
2680 queue_work(wq, &io_end->work);
2681 iocb->private = NULL;
2682
2683 /* XXX: probably should move into the real I/O completion handler */
2684 inode_dio_done(inode);
2685 }
2686
2687 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2688 {
2689 ext4_io_end_t *io_end = bh->b_private;
2690 struct workqueue_struct *wq;
2691 struct inode *inode;
2692 unsigned long flags;
2693
2694 if (!test_clear_buffer_uninit(bh) || !io_end)
2695 goto out;
2696
2697 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2698 printk("sb umounted, discard end_io request for inode %lu\n",
2699 io_end->inode->i_ino);
2700 ext4_free_io_end(io_end);
2701 goto out;
2702 }
2703
2704 /*
2705 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2706 * but being more careful is always safe for the future change.
2707 */
2708 inode = io_end->inode;
2709 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2710 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2711 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2712 }
2713
2714 /* Add the io_end to per-inode completed io list*/
2715 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2716 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2717 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2718
2719 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2720 /* queue the work to convert unwritten extents to written */
2721 queue_work(wq, &io_end->work);
2722 out:
2723 bh->b_private = NULL;
2724 bh->b_end_io = NULL;
2725 clear_buffer_uninit(bh);
2726 end_buffer_async_write(bh, uptodate);
2727 }
2728
2729 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2730 {
2731 ext4_io_end_t *io_end;
2732 struct page *page = bh->b_page;
2733 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2734 size_t size = bh->b_size;
2735
2736 retry:
2737 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2738 if (!io_end) {
2739 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2740 schedule();
2741 goto retry;
2742 }
2743 io_end->offset = offset;
2744 io_end->size = size;
2745 /*
2746 * We need to hold a reference to the page to make sure it
2747 * doesn't get evicted before ext4_end_io_work() has a chance
2748 * to convert the extent from written to unwritten.
2749 */
2750 io_end->page = page;
2751 get_page(io_end->page);
2752
2753 bh->b_private = io_end;
2754 bh->b_end_io = ext4_end_io_buffer_write;
2755 return 0;
2756 }
2757
2758 /*
2759 * For ext4 extent files, ext4 will do direct-io write to holes,
2760 * preallocated extents, and those write extend the file, no need to
2761 * fall back to buffered IO.
2762 *
2763 * For holes, we fallocate those blocks, mark them as uninitialized
2764 * If those blocks were preallocated, we mark sure they are splited, but
2765 * still keep the range to write as uninitialized.
2766 *
2767 * The unwrritten extents will be converted to written when DIO is completed.
2768 * For async direct IO, since the IO may still pending when return, we
2769 * set up an end_io call back function, which will do the conversion
2770 * when async direct IO completed.
2771 *
2772 * If the O_DIRECT write will extend the file then add this inode to the
2773 * orphan list. So recovery will truncate it back to the original size
2774 * if the machine crashes during the write.
2775 *
2776 */
2777 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2778 const struct iovec *iov, loff_t offset,
2779 unsigned long nr_segs)
2780 {
2781 struct file *file = iocb->ki_filp;
2782 struct inode *inode = file->f_mapping->host;
2783 ssize_t ret;
2784 size_t count = iov_length(iov, nr_segs);
2785
2786 loff_t final_size = offset + count;
2787 if (rw == WRITE && final_size <= inode->i_size) {
2788 /*
2789 * We could direct write to holes and fallocate.
2790 *
2791 * Allocated blocks to fill the hole are marked as uninitialized
2792 * to prevent parallel buffered read to expose the stale data
2793 * before DIO complete the data IO.
2794 *
2795 * As to previously fallocated extents, ext4 get_block
2796 * will just simply mark the buffer mapped but still
2797 * keep the extents uninitialized.
2798 *
2799 * for non AIO case, we will convert those unwritten extents
2800 * to written after return back from blockdev_direct_IO.
2801 *
2802 * for async DIO, the conversion needs to be defered when
2803 * the IO is completed. The ext4 end_io callback function
2804 * will be called to take care of the conversion work.
2805 * Here for async case, we allocate an io_end structure to
2806 * hook to the iocb.
2807 */
2808 iocb->private = NULL;
2809 EXT4_I(inode)->cur_aio_dio = NULL;
2810 if (!is_sync_kiocb(iocb)) {
2811 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2812 if (!iocb->private)
2813 return -ENOMEM;
2814 /*
2815 * we save the io structure for current async
2816 * direct IO, so that later ext4_map_blocks()
2817 * could flag the io structure whether there
2818 * is a unwritten extents needs to be converted
2819 * when IO is completed.
2820 */
2821 EXT4_I(inode)->cur_aio_dio = iocb->private;
2822 }
2823
2824 ret = __blockdev_direct_IO(rw, iocb, inode,
2825 inode->i_sb->s_bdev, iov,
2826 offset, nr_segs,
2827 ext4_get_block_write,
2828 ext4_end_io_dio,
2829 NULL,
2830 DIO_LOCKING | DIO_SKIP_HOLES);
2831 if (iocb->private)
2832 EXT4_I(inode)->cur_aio_dio = NULL;
2833 /*
2834 * The io_end structure takes a reference to the inode,
2835 * that structure needs to be destroyed and the
2836 * reference to the inode need to be dropped, when IO is
2837 * complete, even with 0 byte write, or failed.
2838 *
2839 * In the successful AIO DIO case, the io_end structure will be
2840 * desctroyed and the reference to the inode will be dropped
2841 * after the end_io call back function is called.
2842 *
2843 * In the case there is 0 byte write, or error case, since
2844 * VFS direct IO won't invoke the end_io call back function,
2845 * we need to free the end_io structure here.
2846 */
2847 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2848 ext4_free_io_end(iocb->private);
2849 iocb->private = NULL;
2850 } else if (ret > 0 && ext4_test_inode_state(inode,
2851 EXT4_STATE_DIO_UNWRITTEN)) {
2852 int err;
2853 /*
2854 * for non AIO case, since the IO is already
2855 * completed, we could do the conversion right here
2856 */
2857 err = ext4_convert_unwritten_extents(inode,
2858 offset, ret);
2859 if (err < 0)
2860 ret = err;
2861 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2862 }
2863 return ret;
2864 }
2865
2866 /* for write the the end of file case, we fall back to old way */
2867 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2868 }
2869
2870 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2871 const struct iovec *iov, loff_t offset,
2872 unsigned long nr_segs)
2873 {
2874 struct file *file = iocb->ki_filp;
2875 struct inode *inode = file->f_mapping->host;
2876 ssize_t ret;
2877
2878 /*
2879 * If we are doing data journalling we don't support O_DIRECT
2880 */
2881 if (ext4_should_journal_data(inode))
2882 return 0;
2883
2884 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2885 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2886 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2887 else
2888 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2889 trace_ext4_direct_IO_exit(inode, offset,
2890 iov_length(iov, nr_segs), rw, ret);
2891 return ret;
2892 }
2893
2894 /*
2895 * Pages can be marked dirty completely asynchronously from ext4's journalling
2896 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2897 * much here because ->set_page_dirty is called under VFS locks. The page is
2898 * not necessarily locked.
2899 *
2900 * We cannot just dirty the page and leave attached buffers clean, because the
2901 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2902 * or jbddirty because all the journalling code will explode.
2903 *
2904 * So what we do is to mark the page "pending dirty" and next time writepage
2905 * is called, propagate that into the buffers appropriately.
2906 */
2907 static int ext4_journalled_set_page_dirty(struct page *page)
2908 {
2909 SetPageChecked(page);
2910 return __set_page_dirty_nobuffers(page);
2911 }
2912
2913 static const struct address_space_operations ext4_ordered_aops = {
2914 .readpage = ext4_readpage,
2915 .readpages = ext4_readpages,
2916 .writepage = ext4_writepage,
2917 .write_begin = ext4_write_begin,
2918 .write_end = ext4_ordered_write_end,
2919 .bmap = ext4_bmap,
2920 .invalidatepage = ext4_invalidatepage,
2921 .releasepage = ext4_releasepage,
2922 .direct_IO = ext4_direct_IO,
2923 .migratepage = buffer_migrate_page,
2924 .is_partially_uptodate = block_is_partially_uptodate,
2925 .error_remove_page = generic_error_remove_page,
2926 };
2927
2928 static const struct address_space_operations ext4_writeback_aops = {
2929 .readpage = ext4_readpage,
2930 .readpages = ext4_readpages,
2931 .writepage = ext4_writepage,
2932 .write_begin = ext4_write_begin,
2933 .write_end = ext4_writeback_write_end,
2934 .bmap = ext4_bmap,
2935 .invalidatepage = ext4_invalidatepage,
2936 .releasepage = ext4_releasepage,
2937 .direct_IO = ext4_direct_IO,
2938 .migratepage = buffer_migrate_page,
2939 .is_partially_uptodate = block_is_partially_uptodate,
2940 .error_remove_page = generic_error_remove_page,
2941 };
2942
2943 static const struct address_space_operations ext4_journalled_aops = {
2944 .readpage = ext4_readpage,
2945 .readpages = ext4_readpages,
2946 .writepage = ext4_writepage,
2947 .write_begin = ext4_write_begin,
2948 .write_end = ext4_journalled_write_end,
2949 .set_page_dirty = ext4_journalled_set_page_dirty,
2950 .bmap = ext4_bmap,
2951 .invalidatepage = ext4_invalidatepage,
2952 .releasepage = ext4_releasepage,
2953 .direct_IO = ext4_direct_IO,
2954 .is_partially_uptodate = block_is_partially_uptodate,
2955 .error_remove_page = generic_error_remove_page,
2956 };
2957
2958 static const struct address_space_operations ext4_da_aops = {
2959 .readpage = ext4_readpage,
2960 .readpages = ext4_readpages,
2961 .writepage = ext4_writepage,
2962 .writepages = ext4_da_writepages,
2963 .write_begin = ext4_da_write_begin,
2964 .write_end = ext4_da_write_end,
2965 .bmap = ext4_bmap,
2966 .invalidatepage = ext4_da_invalidatepage,
2967 .releasepage = ext4_releasepage,
2968 .direct_IO = ext4_direct_IO,
2969 .migratepage = buffer_migrate_page,
2970 .is_partially_uptodate = block_is_partially_uptodate,
2971 .error_remove_page = generic_error_remove_page,
2972 };
2973
2974 void ext4_set_aops(struct inode *inode)
2975 {
2976 if (ext4_should_order_data(inode) &&
2977 test_opt(inode->i_sb, DELALLOC))
2978 inode->i_mapping->a_ops = &ext4_da_aops;
2979 else if (ext4_should_order_data(inode))
2980 inode->i_mapping->a_ops = &ext4_ordered_aops;
2981 else if (ext4_should_writeback_data(inode) &&
2982 test_opt(inode->i_sb, DELALLOC))
2983 inode->i_mapping->a_ops = &ext4_da_aops;
2984 else if (ext4_should_writeback_data(inode))
2985 inode->i_mapping->a_ops = &ext4_writeback_aops;
2986 else
2987 inode->i_mapping->a_ops = &ext4_journalled_aops;
2988 }
2989
2990
2991 /*
2992 * ext4_discard_partial_page_buffers()
2993 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
2994 * This function finds and locks the page containing the offset
2995 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
2996 * Calling functions that already have the page locked should call
2997 * ext4_discard_partial_page_buffers_no_lock directly.
2998 */
2999 int ext4_discard_partial_page_buffers(handle_t *handle,
3000 struct address_space *mapping, loff_t from,
3001 loff_t length, int flags)
3002 {
3003 struct inode *inode = mapping->host;
3004 struct page *page;
3005 int err = 0;
3006
3007 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3008 mapping_gfp_mask(mapping) & ~__GFP_FS);
3009 if (!page)
3010 return -EINVAL;
3011
3012 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3013 from, length, flags);
3014
3015 unlock_page(page);
3016 page_cache_release(page);
3017 return err;
3018 }
3019
3020 /*
3021 * ext4_discard_partial_page_buffers_no_lock()
3022 * Zeros a page range of length 'length' starting from offset 'from'.
3023 * Buffer heads that correspond to the block aligned regions of the
3024 * zeroed range will be unmapped. Unblock aligned regions
3025 * will have the corresponding buffer head mapped if needed so that
3026 * that region of the page can be updated with the partial zero out.
3027 *
3028 * This function assumes that the page has already been locked. The
3029 * The range to be discarded must be contained with in the given page.
3030 * If the specified range exceeds the end of the page it will be shortened
3031 * to the end of the page that corresponds to 'from'. This function is
3032 * appropriate for updating a page and it buffer heads to be unmapped and
3033 * zeroed for blocks that have been either released, or are going to be
3034 * released.
3035 *
3036 * handle: The journal handle
3037 * inode: The files inode
3038 * page: A locked page that contains the offset "from"
3039 * from: The starting byte offset (from the begining of the file)
3040 * to begin discarding
3041 * len: The length of bytes to discard
3042 * flags: Optional flags that may be used:
3043 *
3044 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3045 * Only zero the regions of the page whose buffer heads
3046 * have already been unmapped. This flag is appropriate
3047 * for updateing the contents of a page whose blocks may
3048 * have already been released, and we only want to zero
3049 * out the regions that correspond to those released blocks.
3050 *
3051 * Returns zero on sucess or negative on failure.
3052 */
3053 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3054 struct inode *inode, struct page *page, loff_t from,
3055 loff_t length, int flags)
3056 {
3057 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3058 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3059 unsigned int blocksize, max, pos;
3060 unsigned int end_of_block, range_to_discard;
3061 ext4_lblk_t iblock;
3062 struct buffer_head *bh;
3063 int err = 0;
3064
3065 blocksize = inode->i_sb->s_blocksize;
3066 max = PAGE_CACHE_SIZE - offset;
3067
3068 if (index != page->index)
3069 return -EINVAL;
3070
3071 /*
3072 * correct length if it does not fall between
3073 * 'from' and the end of the page
3074 */
3075 if (length > max || length < 0)
3076 length = max;
3077
3078 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3079
3080 if (!page_has_buffers(page)) {
3081 /*
3082 * If the range to be discarded covers a partial block
3083 * we need to get the page buffers. This is because
3084 * partial blocks cannot be released and the page needs
3085 * to be updated with the contents of the block before
3086 * we write the zeros on top of it.
3087 */
3088 if (!(from & (blocksize - 1)) ||
3089 !((from + length) & (blocksize - 1))) {
3090 create_empty_buffers(page, blocksize, 0);
3091 } else {
3092 /*
3093 * If there are no partial blocks,
3094 * there is nothing to update,
3095 * so we can return now
3096 */
3097 return 0;
3098 }
3099 }
3100
3101 /* Find the buffer that contains "offset" */
3102 bh = page_buffers(page);
3103 pos = blocksize;
3104 while (offset >= pos) {
3105 bh = bh->b_this_page;
3106 iblock++;
3107 pos += blocksize;
3108 }
3109
3110 pos = offset;
3111 while (pos < offset + length) {
3112 err = 0;
3113
3114 /* The length of space left to zero and unmap */
3115 range_to_discard = offset + length - pos;
3116
3117 /* The length of space until the end of the block */
3118 end_of_block = blocksize - (pos & (blocksize-1));
3119
3120 /*
3121 * Do not unmap or zero past end of block
3122 * for this buffer head
3123 */
3124 if (range_to_discard > end_of_block)
3125 range_to_discard = end_of_block;
3126
3127
3128 /*
3129 * Skip this buffer head if we are only zeroing unampped
3130 * regions of the page
3131 */
3132 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3133 buffer_mapped(bh))
3134 goto next;
3135
3136 /* If the range is block aligned, unmap */
3137 if (range_to_discard == blocksize) {
3138 clear_buffer_dirty(bh);
3139 bh->b_bdev = NULL;
3140 clear_buffer_mapped(bh);
3141 clear_buffer_req(bh);
3142 clear_buffer_new(bh);
3143 clear_buffer_delay(bh);
3144 clear_buffer_unwritten(bh);
3145 clear_buffer_uptodate(bh);
3146 zero_user(page, pos, range_to_discard);
3147 BUFFER_TRACE(bh, "Buffer discarded");
3148 goto next;
3149 }
3150
3151 /*
3152 * If this block is not completely contained in the range
3153 * to be discarded, then it is not going to be released. Because
3154 * we need to keep this block, we need to make sure this part
3155 * of the page is uptodate before we modify it by writeing
3156 * partial zeros on it.
3157 */
3158 if (!buffer_mapped(bh)) {
3159 /*
3160 * Buffer head must be mapped before we can read
3161 * from the block
3162 */
3163 BUFFER_TRACE(bh, "unmapped");
3164 ext4_get_block(inode, iblock, bh, 0);
3165 /* unmapped? It's a hole - nothing to do */
3166 if (!buffer_mapped(bh)) {
3167 BUFFER_TRACE(bh, "still unmapped");
3168 goto next;
3169 }
3170 }
3171
3172 /* Ok, it's mapped. Make sure it's up-to-date */
3173 if (PageUptodate(page))
3174 set_buffer_uptodate(bh);
3175
3176 if (!buffer_uptodate(bh)) {
3177 err = -EIO;
3178 ll_rw_block(READ, 1, &bh);
3179 wait_on_buffer(bh);
3180 /* Uhhuh. Read error. Complain and punt.*/
3181 if (!buffer_uptodate(bh))
3182 goto next;
3183 }
3184
3185 if (ext4_should_journal_data(inode)) {
3186 BUFFER_TRACE(bh, "get write access");
3187 err = ext4_journal_get_write_access(handle, bh);
3188 if (err)
3189 goto next;
3190 }
3191
3192 zero_user(page, pos, range_to_discard);
3193
3194 err = 0;
3195 if (ext4_should_journal_data(inode)) {
3196 err = ext4_handle_dirty_metadata(handle, inode, bh);
3197 } else
3198 mark_buffer_dirty(bh);
3199
3200 BUFFER_TRACE(bh, "Partial buffer zeroed");
3201 next:
3202 bh = bh->b_this_page;
3203 iblock++;
3204 pos += range_to_discard;
3205 }
3206
3207 return err;
3208 }
3209
3210 /*
3211 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3212 * up to the end of the block which corresponds to `from'.
3213 * This required during truncate. We need to physically zero the tail end
3214 * of that block so it doesn't yield old data if the file is later grown.
3215 */
3216 int ext4_block_truncate_page(handle_t *handle,
3217 struct address_space *mapping, loff_t from)
3218 {
3219 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3220 unsigned length;
3221 unsigned blocksize;
3222 struct inode *inode = mapping->host;
3223
3224 blocksize = inode->i_sb->s_blocksize;
3225 length = blocksize - (offset & (blocksize - 1));
3226
3227 return ext4_block_zero_page_range(handle, mapping, from, length);
3228 }
3229
3230 /*
3231 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3232 * starting from file offset 'from'. The range to be zero'd must
3233 * be contained with in one block. If the specified range exceeds
3234 * the end of the block it will be shortened to end of the block
3235 * that cooresponds to 'from'
3236 */
3237 int ext4_block_zero_page_range(handle_t *handle,
3238 struct address_space *mapping, loff_t from, loff_t length)
3239 {
3240 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3241 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3242 unsigned blocksize, max, pos;
3243 ext4_lblk_t iblock;
3244 struct inode *inode = mapping->host;
3245 struct buffer_head *bh;
3246 struct page *page;
3247 int err = 0;
3248
3249 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3250 mapping_gfp_mask(mapping) & ~__GFP_FS);
3251 if (!page)
3252 return -EINVAL;
3253
3254 blocksize = inode->i_sb->s_blocksize;
3255 max = blocksize - (offset & (blocksize - 1));
3256
3257 /*
3258 * correct length if it does not fall between
3259 * 'from' and the end of the block
3260 */
3261 if (length > max || length < 0)
3262 length = max;
3263
3264 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3265
3266 if (!page_has_buffers(page))
3267 create_empty_buffers(page, blocksize, 0);
3268
3269 /* Find the buffer that contains "offset" */
3270 bh = page_buffers(page);
3271 pos = blocksize;
3272 while (offset >= pos) {
3273 bh = bh->b_this_page;
3274 iblock++;
3275 pos += blocksize;
3276 }
3277
3278 err = 0;
3279 if (buffer_freed(bh)) {
3280 BUFFER_TRACE(bh, "freed: skip");
3281 goto unlock;
3282 }
3283
3284 if (!buffer_mapped(bh)) {
3285 BUFFER_TRACE(bh, "unmapped");
3286 ext4_get_block(inode, iblock, bh, 0);
3287 /* unmapped? It's a hole - nothing to do */
3288 if (!buffer_mapped(bh)) {
3289 BUFFER_TRACE(bh, "still unmapped");
3290 goto unlock;
3291 }
3292 }
3293
3294 /* Ok, it's mapped. Make sure it's up-to-date */
3295 if (PageUptodate(page))
3296 set_buffer_uptodate(bh);
3297
3298 if (!buffer_uptodate(bh)) {
3299 err = -EIO;
3300 ll_rw_block(READ, 1, &bh);
3301 wait_on_buffer(bh);
3302 /* Uhhuh. Read error. Complain and punt. */
3303 if (!buffer_uptodate(bh))
3304 goto unlock;
3305 }
3306
3307 if (ext4_should_journal_data(inode)) {
3308 BUFFER_TRACE(bh, "get write access");
3309 err = ext4_journal_get_write_access(handle, bh);
3310 if (err)
3311 goto unlock;
3312 }
3313
3314 zero_user(page, offset, length);
3315
3316 BUFFER_TRACE(bh, "zeroed end of block");
3317
3318 err = 0;
3319 if (ext4_should_journal_data(inode)) {
3320 err = ext4_handle_dirty_metadata(handle, inode, bh);
3321 } else
3322 mark_buffer_dirty(bh);
3323
3324 unlock:
3325 unlock_page(page);
3326 page_cache_release(page);
3327 return err;
3328 }
3329
3330 int ext4_can_truncate(struct inode *inode)
3331 {
3332 if (S_ISREG(inode->i_mode))
3333 return 1;
3334 if (S_ISDIR(inode->i_mode))
3335 return 1;
3336 if (S_ISLNK(inode->i_mode))
3337 return !ext4_inode_is_fast_symlink(inode);
3338 return 0;
3339 }
3340
3341 /*
3342 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3343 * associated with the given offset and length
3344 *
3345 * @inode: File inode
3346 * @offset: The offset where the hole will begin
3347 * @len: The length of the hole
3348 *
3349 * Returns: 0 on sucess or negative on failure
3350 */
3351
3352 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3353 {
3354 struct inode *inode = file->f_path.dentry->d_inode;
3355 if (!S_ISREG(inode->i_mode))
3356 return -ENOTSUPP;
3357
3358 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3359 /* TODO: Add support for non extent hole punching */
3360 return -ENOTSUPP;
3361 }
3362
3363 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3364 /* TODO: Add support for bigalloc file systems */
3365 return -ENOTSUPP;
3366 }
3367
3368 return ext4_ext_punch_hole(file, offset, length);
3369 }
3370
3371 /*
3372 * ext4_truncate()
3373 *
3374 * We block out ext4_get_block() block instantiations across the entire
3375 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3376 * simultaneously on behalf of the same inode.
3377 *
3378 * As we work through the truncate and commmit bits of it to the journal there
3379 * is one core, guiding principle: the file's tree must always be consistent on
3380 * disk. We must be able to restart the truncate after a crash.
3381 *
3382 * The file's tree may be transiently inconsistent in memory (although it
3383 * probably isn't), but whenever we close off and commit a journal transaction,
3384 * the contents of (the filesystem + the journal) must be consistent and
3385 * restartable. It's pretty simple, really: bottom up, right to left (although
3386 * left-to-right works OK too).
3387 *
3388 * Note that at recovery time, journal replay occurs *before* the restart of
3389 * truncate against the orphan inode list.
3390 *
3391 * The committed inode has the new, desired i_size (which is the same as
3392 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3393 * that this inode's truncate did not complete and it will again call
3394 * ext4_truncate() to have another go. So there will be instantiated blocks
3395 * to the right of the truncation point in a crashed ext4 filesystem. But
3396 * that's fine - as long as they are linked from the inode, the post-crash
3397 * ext4_truncate() run will find them and release them.
3398 */
3399 void ext4_truncate(struct inode *inode)
3400 {
3401 trace_ext4_truncate_enter(inode);
3402
3403 if (!ext4_can_truncate(inode))
3404 return;
3405
3406 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3407
3408 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3409 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3410
3411 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3412 ext4_ext_truncate(inode);
3413 else
3414 ext4_ind_truncate(inode);
3415
3416 trace_ext4_truncate_exit(inode);
3417 }
3418
3419 /*
3420 * ext4_get_inode_loc returns with an extra refcount against the inode's
3421 * underlying buffer_head on success. If 'in_mem' is true, we have all
3422 * data in memory that is needed to recreate the on-disk version of this
3423 * inode.
3424 */
3425 static int __ext4_get_inode_loc(struct inode *inode,
3426 struct ext4_iloc *iloc, int in_mem)
3427 {
3428 struct ext4_group_desc *gdp;
3429 struct buffer_head *bh;
3430 struct super_block *sb = inode->i_sb;
3431 ext4_fsblk_t block;
3432 int inodes_per_block, inode_offset;
3433
3434 iloc->bh = NULL;
3435 if (!ext4_valid_inum(sb, inode->i_ino))
3436 return -EIO;
3437
3438 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3439 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3440 if (!gdp)
3441 return -EIO;
3442
3443 /*
3444 * Figure out the offset within the block group inode table
3445 */
3446 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3447 inode_offset = ((inode->i_ino - 1) %
3448 EXT4_INODES_PER_GROUP(sb));
3449 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3450 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3451
3452 bh = sb_getblk(sb, block);
3453 if (!bh) {
3454 EXT4_ERROR_INODE_BLOCK(inode, block,
3455 "unable to read itable block");
3456 return -EIO;
3457 }
3458 if (!buffer_uptodate(bh)) {
3459 lock_buffer(bh);
3460
3461 /*
3462 * If the buffer has the write error flag, we have failed
3463 * to write out another inode in the same block. In this
3464 * case, we don't have to read the block because we may
3465 * read the old inode data successfully.
3466 */
3467 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3468 set_buffer_uptodate(bh);
3469
3470 if (buffer_uptodate(bh)) {
3471 /* someone brought it uptodate while we waited */
3472 unlock_buffer(bh);
3473 goto has_buffer;
3474 }
3475
3476 /*
3477 * If we have all information of the inode in memory and this
3478 * is the only valid inode in the block, we need not read the
3479 * block.
3480 */
3481 if (in_mem) {
3482 struct buffer_head *bitmap_bh;
3483 int i, start;
3484
3485 start = inode_offset & ~(inodes_per_block - 1);
3486
3487 /* Is the inode bitmap in cache? */
3488 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3489 if (!bitmap_bh)
3490 goto make_io;
3491
3492 /*
3493 * If the inode bitmap isn't in cache then the
3494 * optimisation may end up performing two reads instead
3495 * of one, so skip it.
3496 */
3497 if (!buffer_uptodate(bitmap_bh)) {
3498 brelse(bitmap_bh);
3499 goto make_io;
3500 }
3501 for (i = start; i < start + inodes_per_block; i++) {
3502 if (i == inode_offset)
3503 continue;
3504 if (ext4_test_bit(i, bitmap_bh->b_data))
3505 break;
3506 }
3507 brelse(bitmap_bh);
3508 if (i == start + inodes_per_block) {
3509 /* all other inodes are free, so skip I/O */
3510 memset(bh->b_data, 0, bh->b_size);
3511 set_buffer_uptodate(bh);
3512 unlock_buffer(bh);
3513 goto has_buffer;
3514 }
3515 }
3516
3517 make_io:
3518 /*
3519 * If we need to do any I/O, try to pre-readahead extra
3520 * blocks from the inode table.
3521 */
3522 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3523 ext4_fsblk_t b, end, table;
3524 unsigned num;
3525
3526 table = ext4_inode_table(sb, gdp);
3527 /* s_inode_readahead_blks is always a power of 2 */
3528 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3529 if (table > b)
3530 b = table;
3531 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3532 num = EXT4_INODES_PER_GROUP(sb);
3533 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3534 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3535 num -= ext4_itable_unused_count(sb, gdp);
3536 table += num / inodes_per_block;
3537 if (end > table)
3538 end = table;
3539 while (b <= end)
3540 sb_breadahead(sb, b++);
3541 }
3542
3543 /*
3544 * There are other valid inodes in the buffer, this inode
3545 * has in-inode xattrs, or we don't have this inode in memory.
3546 * Read the block from disk.
3547 */
3548 trace_ext4_load_inode(inode);
3549 get_bh(bh);
3550 bh->b_end_io = end_buffer_read_sync;
3551 submit_bh(READ_META, bh);
3552 wait_on_buffer(bh);
3553 if (!buffer_uptodate(bh)) {
3554 EXT4_ERROR_INODE_BLOCK(inode, block,
3555 "unable to read itable block");
3556 brelse(bh);
3557 return -EIO;
3558 }
3559 }
3560 has_buffer:
3561 iloc->bh = bh;
3562 return 0;
3563 }
3564
3565 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3566 {
3567 /* We have all inode data except xattrs in memory here. */
3568 return __ext4_get_inode_loc(inode, iloc,
3569 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3570 }
3571
3572 void ext4_set_inode_flags(struct inode *inode)
3573 {
3574 unsigned int flags = EXT4_I(inode)->i_flags;
3575
3576 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3577 if (flags & EXT4_SYNC_FL)
3578 inode->i_flags |= S_SYNC;
3579 if (flags & EXT4_APPEND_FL)
3580 inode->i_flags |= S_APPEND;
3581 if (flags & EXT4_IMMUTABLE_FL)
3582 inode->i_flags |= S_IMMUTABLE;
3583 if (flags & EXT4_NOATIME_FL)
3584 inode->i_flags |= S_NOATIME;
3585 if (flags & EXT4_DIRSYNC_FL)
3586 inode->i_flags |= S_DIRSYNC;
3587 }
3588
3589 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3590 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3591 {
3592 unsigned int vfs_fl;
3593 unsigned long old_fl, new_fl;
3594
3595 do {
3596 vfs_fl = ei->vfs_inode.i_flags;
3597 old_fl = ei->i_flags;
3598 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3599 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3600 EXT4_DIRSYNC_FL);
3601 if (vfs_fl & S_SYNC)
3602 new_fl |= EXT4_SYNC_FL;
3603 if (vfs_fl & S_APPEND)
3604 new_fl |= EXT4_APPEND_FL;
3605 if (vfs_fl & S_IMMUTABLE)
3606 new_fl |= EXT4_IMMUTABLE_FL;
3607 if (vfs_fl & S_NOATIME)
3608 new_fl |= EXT4_NOATIME_FL;
3609 if (vfs_fl & S_DIRSYNC)
3610 new_fl |= EXT4_DIRSYNC_FL;
3611 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3612 }
3613
3614 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3615 struct ext4_inode_info *ei)
3616 {
3617 blkcnt_t i_blocks ;
3618 struct inode *inode = &(ei->vfs_inode);
3619 struct super_block *sb = inode->i_sb;
3620
3621 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3622 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3623 /* we are using combined 48 bit field */
3624 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3625 le32_to_cpu(raw_inode->i_blocks_lo);
3626 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3627 /* i_blocks represent file system block size */
3628 return i_blocks << (inode->i_blkbits - 9);
3629 } else {
3630 return i_blocks;
3631 }
3632 } else {
3633 return le32_to_cpu(raw_inode->i_blocks_lo);
3634 }
3635 }
3636
3637 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3638 {
3639 struct ext4_iloc iloc;
3640 struct ext4_inode *raw_inode;
3641 struct ext4_inode_info *ei;
3642 struct inode *inode;
3643 journal_t *journal = EXT4_SB(sb)->s_journal;
3644 long ret;
3645 int block;
3646
3647 inode = iget_locked(sb, ino);
3648 if (!inode)
3649 return ERR_PTR(-ENOMEM);
3650 if (!(inode->i_state & I_NEW))
3651 return inode;
3652
3653 ei = EXT4_I(inode);
3654 iloc.bh = NULL;
3655
3656 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3657 if (ret < 0)
3658 goto bad_inode;
3659 raw_inode = ext4_raw_inode(&iloc);
3660 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3661 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3662 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3663 if (!(test_opt(inode->i_sb, NO_UID32))) {
3664 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3665 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3666 }
3667 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3668
3669 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3670 ei->i_dir_start_lookup = 0;
3671 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3672 /* We now have enough fields to check if the inode was active or not.
3673 * This is needed because nfsd might try to access dead inodes
3674 * the test is that same one that e2fsck uses
3675 * NeilBrown 1999oct15
3676 */
3677 if (inode->i_nlink == 0) {
3678 if (inode->i_mode == 0 ||
3679 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3680 /* this inode is deleted */
3681 ret = -ESTALE;
3682 goto bad_inode;
3683 }
3684 /* The only unlinked inodes we let through here have
3685 * valid i_mode and are being read by the orphan
3686 * recovery code: that's fine, we're about to complete
3687 * the process of deleting those. */
3688 }
3689 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3690 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3691 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3692 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3693 ei->i_file_acl |=
3694 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3695 inode->i_size = ext4_isize(raw_inode);
3696 ei->i_disksize = inode->i_size;
3697 #ifdef CONFIG_QUOTA
3698 ei->i_reserved_quota = 0;
3699 #endif
3700 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3701 ei->i_block_group = iloc.block_group;
3702 ei->i_last_alloc_group = ~0;
3703 /*
3704 * NOTE! The in-memory inode i_data array is in little-endian order
3705 * even on big-endian machines: we do NOT byteswap the block numbers!
3706 */
3707 for (block = 0; block < EXT4_N_BLOCKS; block++)
3708 ei->i_data[block] = raw_inode->i_block[block];
3709 INIT_LIST_HEAD(&ei->i_orphan);
3710
3711 /*
3712 * Set transaction id's of transactions that have to be committed
3713 * to finish f[data]sync. We set them to currently running transaction
3714 * as we cannot be sure that the inode or some of its metadata isn't
3715 * part of the transaction - the inode could have been reclaimed and
3716 * now it is reread from disk.
3717 */
3718 if (journal) {
3719 transaction_t *transaction;
3720 tid_t tid;
3721
3722 read_lock(&journal->j_state_lock);
3723 if (journal->j_running_transaction)
3724 transaction = journal->j_running_transaction;
3725 else
3726 transaction = journal->j_committing_transaction;
3727 if (transaction)
3728 tid = transaction->t_tid;
3729 else
3730 tid = journal->j_commit_sequence;
3731 read_unlock(&journal->j_state_lock);
3732 ei->i_sync_tid = tid;
3733 ei->i_datasync_tid = tid;
3734 }
3735
3736 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3737 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3738 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3739 EXT4_INODE_SIZE(inode->i_sb)) {
3740 ret = -EIO;
3741 goto bad_inode;
3742 }
3743 if (ei->i_extra_isize == 0) {
3744 /* The extra space is currently unused. Use it. */
3745 ei->i_extra_isize = sizeof(struct ext4_inode) -
3746 EXT4_GOOD_OLD_INODE_SIZE;
3747 } else {
3748 __le32 *magic = (void *)raw_inode +
3749 EXT4_GOOD_OLD_INODE_SIZE +
3750 ei->i_extra_isize;
3751 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3752 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3753 }
3754 } else
3755 ei->i_extra_isize = 0;
3756
3757 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3758 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3759 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3760 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3761
3762 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3763 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3764 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3765 inode->i_version |=
3766 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3767 }
3768
3769 ret = 0;
3770 if (ei->i_file_acl &&
3771 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3772 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3773 ei->i_file_acl);
3774 ret = -EIO;
3775 goto bad_inode;
3776 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3777 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3778 (S_ISLNK(inode->i_mode) &&
3779 !ext4_inode_is_fast_symlink(inode)))
3780 /* Validate extent which is part of inode */
3781 ret = ext4_ext_check_inode(inode);
3782 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3783 (S_ISLNK(inode->i_mode) &&
3784 !ext4_inode_is_fast_symlink(inode))) {
3785 /* Validate block references which are part of inode */
3786 ret = ext4_ind_check_inode(inode);
3787 }
3788 if (ret)
3789 goto bad_inode;
3790
3791 if (S_ISREG(inode->i_mode)) {
3792 inode->i_op = &ext4_file_inode_operations;
3793 inode->i_fop = &ext4_file_operations;
3794 ext4_set_aops(inode);
3795 } else if (S_ISDIR(inode->i_mode)) {
3796 inode->i_op = &ext4_dir_inode_operations;
3797 inode->i_fop = &ext4_dir_operations;
3798 } else if (S_ISLNK(inode->i_mode)) {
3799 if (ext4_inode_is_fast_symlink(inode)) {
3800 inode->i_op = &ext4_fast_symlink_inode_operations;
3801 nd_terminate_link(ei->i_data, inode->i_size,
3802 sizeof(ei->i_data) - 1);
3803 } else {
3804 inode->i_op = &ext4_symlink_inode_operations;
3805 ext4_set_aops(inode);
3806 }
3807 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3808 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3809 inode->i_op = &ext4_special_inode_operations;
3810 if (raw_inode->i_block[0])
3811 init_special_inode(inode, inode->i_mode,
3812 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3813 else
3814 init_special_inode(inode, inode->i_mode,
3815 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3816 } else {
3817 ret = -EIO;
3818 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3819 goto bad_inode;
3820 }
3821 brelse(iloc.bh);
3822 ext4_set_inode_flags(inode);
3823 unlock_new_inode(inode);
3824 return inode;
3825
3826 bad_inode:
3827 brelse(iloc.bh);
3828 iget_failed(inode);
3829 return ERR_PTR(ret);
3830 }
3831
3832 static int ext4_inode_blocks_set(handle_t *handle,
3833 struct ext4_inode *raw_inode,
3834 struct ext4_inode_info *ei)
3835 {
3836 struct inode *inode = &(ei->vfs_inode);
3837 u64 i_blocks = inode->i_blocks;
3838 struct super_block *sb = inode->i_sb;
3839
3840 if (i_blocks <= ~0U) {
3841 /*
3842 * i_blocks can be represnted in a 32 bit variable
3843 * as multiple of 512 bytes
3844 */
3845 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3846 raw_inode->i_blocks_high = 0;
3847 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3848 return 0;
3849 }
3850 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3851 return -EFBIG;
3852
3853 if (i_blocks <= 0xffffffffffffULL) {
3854 /*
3855 * i_blocks can be represented in a 48 bit variable
3856 * as multiple of 512 bytes
3857 */
3858 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3859 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3860 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3861 } else {
3862 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3863 /* i_block is stored in file system block size */
3864 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3865 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3866 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3867 }
3868 return 0;
3869 }
3870
3871 /*
3872 * Post the struct inode info into an on-disk inode location in the
3873 * buffer-cache. This gobbles the caller's reference to the
3874 * buffer_head in the inode location struct.
3875 *
3876 * The caller must have write access to iloc->bh.
3877 */
3878 static int ext4_do_update_inode(handle_t *handle,
3879 struct inode *inode,
3880 struct ext4_iloc *iloc)
3881 {
3882 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3883 struct ext4_inode_info *ei = EXT4_I(inode);
3884 struct buffer_head *bh = iloc->bh;
3885 int err = 0, rc, block;
3886
3887 /* For fields not not tracking in the in-memory inode,
3888 * initialise them to zero for new inodes. */
3889 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3890 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3891
3892 ext4_get_inode_flags(ei);
3893 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3894 if (!(test_opt(inode->i_sb, NO_UID32))) {
3895 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3896 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3897 /*
3898 * Fix up interoperability with old kernels. Otherwise, old inodes get
3899 * re-used with the upper 16 bits of the uid/gid intact
3900 */
3901 if (!ei->i_dtime) {
3902 raw_inode->i_uid_high =
3903 cpu_to_le16(high_16_bits(inode->i_uid));
3904 raw_inode->i_gid_high =
3905 cpu_to_le16(high_16_bits(inode->i_gid));
3906 } else {
3907 raw_inode->i_uid_high = 0;
3908 raw_inode->i_gid_high = 0;
3909 }
3910 } else {
3911 raw_inode->i_uid_low =
3912 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3913 raw_inode->i_gid_low =
3914 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3915 raw_inode->i_uid_high = 0;
3916 raw_inode->i_gid_high = 0;
3917 }
3918 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3919
3920 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3921 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3922 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3923 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3924
3925 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3926 goto out_brelse;
3927 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3928 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3929 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3930 cpu_to_le32(EXT4_OS_HURD))
3931 raw_inode->i_file_acl_high =
3932 cpu_to_le16(ei->i_file_acl >> 32);
3933 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3934 ext4_isize_set(raw_inode, ei->i_disksize);
3935 if (ei->i_disksize > 0x7fffffffULL) {
3936 struct super_block *sb = inode->i_sb;
3937 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3938 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3939 EXT4_SB(sb)->s_es->s_rev_level ==
3940 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3941 /* If this is the first large file
3942 * created, add a flag to the superblock.
3943 */
3944 err = ext4_journal_get_write_access(handle,
3945 EXT4_SB(sb)->s_sbh);
3946 if (err)
3947 goto out_brelse;
3948 ext4_update_dynamic_rev(sb);
3949 EXT4_SET_RO_COMPAT_FEATURE(sb,
3950 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3951 sb->s_dirt = 1;
3952 ext4_handle_sync(handle);
3953 err = ext4_handle_dirty_metadata(handle, NULL,
3954 EXT4_SB(sb)->s_sbh);
3955 }
3956 }
3957 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3958 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3959 if (old_valid_dev(inode->i_rdev)) {
3960 raw_inode->i_block[0] =
3961 cpu_to_le32(old_encode_dev(inode->i_rdev));
3962 raw_inode->i_block[1] = 0;
3963 } else {
3964 raw_inode->i_block[0] = 0;
3965 raw_inode->i_block[1] =
3966 cpu_to_le32(new_encode_dev(inode->i_rdev));
3967 raw_inode->i_block[2] = 0;
3968 }
3969 } else
3970 for (block = 0; block < EXT4_N_BLOCKS; block++)
3971 raw_inode->i_block[block] = ei->i_data[block];
3972
3973 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3974 if (ei->i_extra_isize) {
3975 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3976 raw_inode->i_version_hi =
3977 cpu_to_le32(inode->i_version >> 32);
3978 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3979 }
3980
3981 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3982 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
3983 if (!err)
3984 err = rc;
3985 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
3986
3987 ext4_update_inode_fsync_trans(handle, inode, 0);
3988 out_brelse:
3989 brelse(bh);
3990 ext4_std_error(inode->i_sb, err);
3991 return err;
3992 }
3993
3994 /*
3995 * ext4_write_inode()
3996 *
3997 * We are called from a few places:
3998 *
3999 * - Within generic_file_write() for O_SYNC files.
4000 * Here, there will be no transaction running. We wait for any running
4001 * trasnaction to commit.
4002 *
4003 * - Within sys_sync(), kupdate and such.
4004 * We wait on commit, if tol to.
4005 *
4006 * - Within prune_icache() (PF_MEMALLOC == true)
4007 * Here we simply return. We can't afford to block kswapd on the
4008 * journal commit.
4009 *
4010 * In all cases it is actually safe for us to return without doing anything,
4011 * because the inode has been copied into a raw inode buffer in
4012 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4013 * knfsd.
4014 *
4015 * Note that we are absolutely dependent upon all inode dirtiers doing the
4016 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4017 * which we are interested.
4018 *
4019 * It would be a bug for them to not do this. The code:
4020 *
4021 * mark_inode_dirty(inode)
4022 * stuff();
4023 * inode->i_size = expr;
4024 *
4025 * is in error because a kswapd-driven write_inode() could occur while
4026 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4027 * will no longer be on the superblock's dirty inode list.
4028 */
4029 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4030 {
4031 int err;
4032
4033 if (current->flags & PF_MEMALLOC)
4034 return 0;
4035
4036 if (EXT4_SB(inode->i_sb)->s_journal) {
4037 if (ext4_journal_current_handle()) {
4038 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4039 dump_stack();
4040 return -EIO;
4041 }
4042
4043 if (wbc->sync_mode != WB_SYNC_ALL)
4044 return 0;
4045
4046 err = ext4_force_commit(inode->i_sb);
4047 } else {
4048 struct ext4_iloc iloc;
4049
4050 err = __ext4_get_inode_loc(inode, &iloc, 0);
4051 if (err)
4052 return err;
4053 if (wbc->sync_mode == WB_SYNC_ALL)
4054 sync_dirty_buffer(iloc.bh);
4055 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4056 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4057 "IO error syncing inode");
4058 err = -EIO;
4059 }
4060 brelse(iloc.bh);
4061 }
4062 return err;
4063 }
4064
4065 /*
4066 * ext4_setattr()
4067 *
4068 * Called from notify_change.
4069 *
4070 * We want to trap VFS attempts to truncate the file as soon as
4071 * possible. In particular, we want to make sure that when the VFS
4072 * shrinks i_size, we put the inode on the orphan list and modify
4073 * i_disksize immediately, so that during the subsequent flushing of
4074 * dirty pages and freeing of disk blocks, we can guarantee that any
4075 * commit will leave the blocks being flushed in an unused state on
4076 * disk. (On recovery, the inode will get truncated and the blocks will
4077 * be freed, so we have a strong guarantee that no future commit will
4078 * leave these blocks visible to the user.)
4079 *
4080 * Another thing we have to assure is that if we are in ordered mode
4081 * and inode is still attached to the committing transaction, we must
4082 * we start writeout of all the dirty pages which are being truncated.
4083 * This way we are sure that all the data written in the previous
4084 * transaction are already on disk (truncate waits for pages under
4085 * writeback).
4086 *
4087 * Called with inode->i_mutex down.
4088 */
4089 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4090 {
4091 struct inode *inode = dentry->d_inode;
4092 int error, rc = 0;
4093 int orphan = 0;
4094 const unsigned int ia_valid = attr->ia_valid;
4095
4096 error = inode_change_ok(inode, attr);
4097 if (error)
4098 return error;
4099
4100 if (is_quota_modification(inode, attr))
4101 dquot_initialize(inode);
4102 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4103 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4104 handle_t *handle;
4105
4106 /* (user+group)*(old+new) structure, inode write (sb,
4107 * inode block, ? - but truncate inode update has it) */
4108 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4109 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4110 if (IS_ERR(handle)) {
4111 error = PTR_ERR(handle);
4112 goto err_out;
4113 }
4114 error = dquot_transfer(inode, attr);
4115 if (error) {
4116 ext4_journal_stop(handle);
4117 return error;
4118 }
4119 /* Update corresponding info in inode so that everything is in
4120 * one transaction */
4121 if (attr->ia_valid & ATTR_UID)
4122 inode->i_uid = attr->ia_uid;
4123 if (attr->ia_valid & ATTR_GID)
4124 inode->i_gid = attr->ia_gid;
4125 error = ext4_mark_inode_dirty(handle, inode);
4126 ext4_journal_stop(handle);
4127 }
4128
4129 if (attr->ia_valid & ATTR_SIZE) {
4130 inode_dio_wait(inode);
4131
4132 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4133 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4134
4135 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4136 return -EFBIG;
4137 }
4138 }
4139
4140 if (S_ISREG(inode->i_mode) &&
4141 attr->ia_valid & ATTR_SIZE &&
4142 (attr->ia_size < inode->i_size)) {
4143 handle_t *handle;
4144
4145 handle = ext4_journal_start(inode, 3);
4146 if (IS_ERR(handle)) {
4147 error = PTR_ERR(handle);
4148 goto err_out;
4149 }
4150 if (ext4_handle_valid(handle)) {
4151 error = ext4_orphan_add(handle, inode);
4152 orphan = 1;
4153 }
4154 EXT4_I(inode)->i_disksize = attr->ia_size;
4155 rc = ext4_mark_inode_dirty(handle, inode);
4156 if (!error)
4157 error = rc;
4158 ext4_journal_stop(handle);
4159
4160 if (ext4_should_order_data(inode)) {
4161 error = ext4_begin_ordered_truncate(inode,
4162 attr->ia_size);
4163 if (error) {
4164 /* Do as much error cleanup as possible */
4165 handle = ext4_journal_start(inode, 3);
4166 if (IS_ERR(handle)) {
4167 ext4_orphan_del(NULL, inode);
4168 goto err_out;
4169 }
4170 ext4_orphan_del(handle, inode);
4171 orphan = 0;
4172 ext4_journal_stop(handle);
4173 goto err_out;
4174 }
4175 }
4176 }
4177
4178 if (attr->ia_valid & ATTR_SIZE) {
4179 if (attr->ia_size != i_size_read(inode)) {
4180 truncate_setsize(inode, attr->ia_size);
4181 ext4_truncate(inode);
4182 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4183 ext4_truncate(inode);
4184 }
4185
4186 if (!rc) {
4187 setattr_copy(inode, attr);
4188 mark_inode_dirty(inode);
4189 }
4190
4191 /*
4192 * If the call to ext4_truncate failed to get a transaction handle at
4193 * all, we need to clean up the in-core orphan list manually.
4194 */
4195 if (orphan && inode->i_nlink)
4196 ext4_orphan_del(NULL, inode);
4197
4198 if (!rc && (ia_valid & ATTR_MODE))
4199 rc = ext4_acl_chmod(inode);
4200
4201 err_out:
4202 ext4_std_error(inode->i_sb, error);
4203 if (!error)
4204 error = rc;
4205 return error;
4206 }
4207
4208 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4209 struct kstat *stat)
4210 {
4211 struct inode *inode;
4212 unsigned long delalloc_blocks;
4213
4214 inode = dentry->d_inode;
4215 generic_fillattr(inode, stat);
4216
4217 /*
4218 * We can't update i_blocks if the block allocation is delayed
4219 * otherwise in the case of system crash before the real block
4220 * allocation is done, we will have i_blocks inconsistent with
4221 * on-disk file blocks.
4222 * We always keep i_blocks updated together with real
4223 * allocation. But to not confuse with user, stat
4224 * will return the blocks that include the delayed allocation
4225 * blocks for this file.
4226 */
4227 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4228
4229 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4230 return 0;
4231 }
4232
4233 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4234 {
4235 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4236 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4237 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4238 }
4239
4240 /*
4241 * Account for index blocks, block groups bitmaps and block group
4242 * descriptor blocks if modify datablocks and index blocks
4243 * worse case, the indexs blocks spread over different block groups
4244 *
4245 * If datablocks are discontiguous, they are possible to spread over
4246 * different block groups too. If they are contiuguous, with flexbg,
4247 * they could still across block group boundary.
4248 *
4249 * Also account for superblock, inode, quota and xattr blocks
4250 */
4251 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4252 {
4253 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4254 int gdpblocks;
4255 int idxblocks;
4256 int ret = 0;
4257
4258 /*
4259 * How many index blocks need to touch to modify nrblocks?
4260 * The "Chunk" flag indicating whether the nrblocks is
4261 * physically contiguous on disk
4262 *
4263 * For Direct IO and fallocate, they calls get_block to allocate
4264 * one single extent at a time, so they could set the "Chunk" flag
4265 */
4266 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4267
4268 ret = idxblocks;
4269
4270 /*
4271 * Now let's see how many group bitmaps and group descriptors need
4272 * to account
4273 */
4274 groups = idxblocks;
4275 if (chunk)
4276 groups += 1;
4277 else
4278 groups += nrblocks;
4279
4280 gdpblocks = groups;
4281 if (groups > ngroups)
4282 groups = ngroups;
4283 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4284 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4285
4286 /* bitmaps and block group descriptor blocks */
4287 ret += groups + gdpblocks;
4288
4289 /* Blocks for super block, inode, quota and xattr blocks */
4290 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4291
4292 return ret;
4293 }
4294
4295 /*
4296 * Calculate the total number of credits to reserve to fit
4297 * the modification of a single pages into a single transaction,
4298 * which may include multiple chunks of block allocations.
4299 *
4300 * This could be called via ext4_write_begin()
4301 *
4302 * We need to consider the worse case, when
4303 * one new block per extent.
4304 */
4305 int ext4_writepage_trans_blocks(struct inode *inode)
4306 {
4307 int bpp = ext4_journal_blocks_per_page(inode);
4308 int ret;
4309
4310 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4311
4312 /* Account for data blocks for journalled mode */
4313 if (ext4_should_journal_data(inode))
4314 ret += bpp;
4315 return ret;
4316 }
4317
4318 /*
4319 * Calculate the journal credits for a chunk of data modification.
4320 *
4321 * This is called from DIO, fallocate or whoever calling
4322 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4323 *
4324 * journal buffers for data blocks are not included here, as DIO
4325 * and fallocate do no need to journal data buffers.
4326 */
4327 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4328 {
4329 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4330 }
4331
4332 /*
4333 * The caller must have previously called ext4_reserve_inode_write().
4334 * Give this, we know that the caller already has write access to iloc->bh.
4335 */
4336 int ext4_mark_iloc_dirty(handle_t *handle,
4337 struct inode *inode, struct ext4_iloc *iloc)
4338 {
4339 int err = 0;
4340
4341 if (test_opt(inode->i_sb, I_VERSION))
4342 inode_inc_iversion(inode);
4343
4344 /* the do_update_inode consumes one bh->b_count */
4345 get_bh(iloc->bh);
4346
4347 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4348 err = ext4_do_update_inode(handle, inode, iloc);
4349 put_bh(iloc->bh);
4350 return err;
4351 }
4352
4353 /*
4354 * On success, We end up with an outstanding reference count against
4355 * iloc->bh. This _must_ be cleaned up later.
4356 */
4357
4358 int
4359 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4360 struct ext4_iloc *iloc)
4361 {
4362 int err;
4363
4364 err = ext4_get_inode_loc(inode, iloc);
4365 if (!err) {
4366 BUFFER_TRACE(iloc->bh, "get_write_access");
4367 err = ext4_journal_get_write_access(handle, iloc->bh);
4368 if (err) {
4369 brelse(iloc->bh);
4370 iloc->bh = NULL;
4371 }
4372 }
4373 ext4_std_error(inode->i_sb, err);
4374 return err;
4375 }
4376
4377 /*
4378 * Expand an inode by new_extra_isize bytes.
4379 * Returns 0 on success or negative error number on failure.
4380 */
4381 static int ext4_expand_extra_isize(struct inode *inode,
4382 unsigned int new_extra_isize,
4383 struct ext4_iloc iloc,
4384 handle_t *handle)
4385 {
4386 struct ext4_inode *raw_inode;
4387 struct ext4_xattr_ibody_header *header;
4388
4389 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4390 return 0;
4391
4392 raw_inode = ext4_raw_inode(&iloc);
4393
4394 header = IHDR(inode, raw_inode);
4395
4396 /* No extended attributes present */
4397 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4398 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4399 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4400 new_extra_isize);
4401 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4402 return 0;
4403 }
4404
4405 /* try to expand with EAs present */
4406 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4407 raw_inode, handle);
4408 }
4409
4410 /*
4411 * What we do here is to mark the in-core inode as clean with respect to inode
4412 * dirtiness (it may still be data-dirty).
4413 * This means that the in-core inode may be reaped by prune_icache
4414 * without having to perform any I/O. This is a very good thing,
4415 * because *any* task may call prune_icache - even ones which
4416 * have a transaction open against a different journal.
4417 *
4418 * Is this cheating? Not really. Sure, we haven't written the
4419 * inode out, but prune_icache isn't a user-visible syncing function.
4420 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4421 * we start and wait on commits.
4422 *
4423 * Is this efficient/effective? Well, we're being nice to the system
4424 * by cleaning up our inodes proactively so they can be reaped
4425 * without I/O. But we are potentially leaving up to five seconds'
4426 * worth of inodes floating about which prune_icache wants us to
4427 * write out. One way to fix that would be to get prune_icache()
4428 * to do a write_super() to free up some memory. It has the desired
4429 * effect.
4430 */
4431 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4432 {
4433 struct ext4_iloc iloc;
4434 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4435 static unsigned int mnt_count;
4436 int err, ret;
4437
4438 might_sleep();
4439 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4440 err = ext4_reserve_inode_write(handle, inode, &iloc);
4441 if (ext4_handle_valid(handle) &&
4442 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4443 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4444 /*
4445 * We need extra buffer credits since we may write into EA block
4446 * with this same handle. If journal_extend fails, then it will
4447 * only result in a minor loss of functionality for that inode.
4448 * If this is felt to be critical, then e2fsck should be run to
4449 * force a large enough s_min_extra_isize.
4450 */
4451 if ((jbd2_journal_extend(handle,
4452 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4453 ret = ext4_expand_extra_isize(inode,
4454 sbi->s_want_extra_isize,
4455 iloc, handle);
4456 if (ret) {
4457 ext4_set_inode_state(inode,
4458 EXT4_STATE_NO_EXPAND);
4459 if (mnt_count !=
4460 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4461 ext4_warning(inode->i_sb,
4462 "Unable to expand inode %lu. Delete"
4463 " some EAs or run e2fsck.",
4464 inode->i_ino);
4465 mnt_count =
4466 le16_to_cpu(sbi->s_es->s_mnt_count);
4467 }
4468 }
4469 }
4470 }
4471 if (!err)
4472 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4473 return err;
4474 }
4475
4476 /*
4477 * ext4_dirty_inode() is called from __mark_inode_dirty()
4478 *
4479 * We're really interested in the case where a file is being extended.
4480 * i_size has been changed by generic_commit_write() and we thus need
4481 * to include the updated inode in the current transaction.
4482 *
4483 * Also, dquot_alloc_block() will always dirty the inode when blocks
4484 * are allocated to the file.
4485 *
4486 * If the inode is marked synchronous, we don't honour that here - doing
4487 * so would cause a commit on atime updates, which we don't bother doing.
4488 * We handle synchronous inodes at the highest possible level.
4489 */
4490 void ext4_dirty_inode(struct inode *inode, int flags)
4491 {
4492 handle_t *handle;
4493
4494 handle = ext4_journal_start(inode, 2);
4495 if (IS_ERR(handle))
4496 goto out;
4497
4498 ext4_mark_inode_dirty(handle, inode);
4499
4500 ext4_journal_stop(handle);
4501 out:
4502 return;
4503 }
4504
4505 #if 0
4506 /*
4507 * Bind an inode's backing buffer_head into this transaction, to prevent
4508 * it from being flushed to disk early. Unlike
4509 * ext4_reserve_inode_write, this leaves behind no bh reference and
4510 * returns no iloc structure, so the caller needs to repeat the iloc
4511 * lookup to mark the inode dirty later.
4512 */
4513 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4514 {
4515 struct ext4_iloc iloc;
4516
4517 int err = 0;
4518 if (handle) {
4519 err = ext4_get_inode_loc(inode, &iloc);
4520 if (!err) {
4521 BUFFER_TRACE(iloc.bh, "get_write_access");
4522 err = jbd2_journal_get_write_access(handle, iloc.bh);
4523 if (!err)
4524 err = ext4_handle_dirty_metadata(handle,
4525 NULL,
4526 iloc.bh);
4527 brelse(iloc.bh);
4528 }
4529 }
4530 ext4_std_error(inode->i_sb, err);
4531 return err;
4532 }
4533 #endif
4534
4535 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4536 {
4537 journal_t *journal;
4538 handle_t *handle;
4539 int err;
4540
4541 /*
4542 * We have to be very careful here: changing a data block's
4543 * journaling status dynamically is dangerous. If we write a
4544 * data block to the journal, change the status and then delete
4545 * that block, we risk forgetting to revoke the old log record
4546 * from the journal and so a subsequent replay can corrupt data.
4547 * So, first we make sure that the journal is empty and that
4548 * nobody is changing anything.
4549 */
4550
4551 journal = EXT4_JOURNAL(inode);
4552 if (!journal)
4553 return 0;
4554 if (is_journal_aborted(journal))
4555 return -EROFS;
4556
4557 jbd2_journal_lock_updates(journal);
4558 jbd2_journal_flush(journal);
4559
4560 /*
4561 * OK, there are no updates running now, and all cached data is
4562 * synced to disk. We are now in a completely consistent state
4563 * which doesn't have anything in the journal, and we know that
4564 * no filesystem updates are running, so it is safe to modify
4565 * the inode's in-core data-journaling state flag now.
4566 */
4567
4568 if (val)
4569 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4570 else
4571 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4572 ext4_set_aops(inode);
4573
4574 jbd2_journal_unlock_updates(journal);
4575
4576 /* Finally we can mark the inode as dirty. */
4577
4578 handle = ext4_journal_start(inode, 1);
4579 if (IS_ERR(handle))
4580 return PTR_ERR(handle);
4581
4582 err = ext4_mark_inode_dirty(handle, inode);
4583 ext4_handle_sync(handle);
4584 ext4_journal_stop(handle);
4585 ext4_std_error(inode->i_sb, err);
4586
4587 return err;
4588 }
4589
4590 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4591 {
4592 return !buffer_mapped(bh);
4593 }
4594
4595 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4596 {
4597 struct page *page = vmf->page;
4598 loff_t size;
4599 unsigned long len;
4600 int ret;
4601 struct file *file = vma->vm_file;
4602 struct inode *inode = file->f_path.dentry->d_inode;
4603 struct address_space *mapping = inode->i_mapping;
4604 handle_t *handle;
4605 get_block_t *get_block;
4606 int retries = 0;
4607
4608 /*
4609 * This check is racy but catches the common case. We rely on
4610 * __block_page_mkwrite() to do a reliable check.
4611 */
4612 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4613 /* Delalloc case is easy... */
4614 if (test_opt(inode->i_sb, DELALLOC) &&
4615 !ext4_should_journal_data(inode) &&
4616 !ext4_nonda_switch(inode->i_sb)) {
4617 do {
4618 ret = __block_page_mkwrite(vma, vmf,
4619 ext4_da_get_block_prep);
4620 } while (ret == -ENOSPC &&
4621 ext4_should_retry_alloc(inode->i_sb, &retries));
4622 goto out_ret;
4623 }
4624
4625 lock_page(page);
4626 size = i_size_read(inode);
4627 /* Page got truncated from under us? */
4628 if (page->mapping != mapping || page_offset(page) > size) {
4629 unlock_page(page);
4630 ret = VM_FAULT_NOPAGE;
4631 goto out;
4632 }
4633
4634 if (page->index == size >> PAGE_CACHE_SHIFT)
4635 len = size & ~PAGE_CACHE_MASK;
4636 else
4637 len = PAGE_CACHE_SIZE;
4638 /*
4639 * Return if we have all the buffers mapped. This avoids the need to do
4640 * journal_start/journal_stop which can block and take a long time
4641 */
4642 if (page_has_buffers(page)) {
4643 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4644 ext4_bh_unmapped)) {
4645 /* Wait so that we don't change page under IO */
4646 wait_on_page_writeback(page);
4647 ret = VM_FAULT_LOCKED;
4648 goto out;
4649 }
4650 }
4651 unlock_page(page);
4652 /* OK, we need to fill the hole... */
4653 if (ext4_should_dioread_nolock(inode))
4654 get_block = ext4_get_block_write;
4655 else
4656 get_block = ext4_get_block;
4657 retry_alloc:
4658 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4659 if (IS_ERR(handle)) {
4660 ret = VM_FAULT_SIGBUS;
4661 goto out;
4662 }
4663 ret = __block_page_mkwrite(vma, vmf, get_block);
4664 if (!ret && ext4_should_journal_data(inode)) {
4665 if (walk_page_buffers(handle, page_buffers(page), 0,
4666 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4667 unlock_page(page);
4668 ret = VM_FAULT_SIGBUS;
4669 goto out;
4670 }
4671 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4672 }
4673 ext4_journal_stop(handle);
4674 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4675 goto retry_alloc;
4676 out_ret:
4677 ret = block_page_mkwrite_return(ret);
4678 out:
4679 return ret;
4680 }