]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
4247d8d25687814dd1b844ea5555feeb43854d99
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
280 if (!ext4_handle_has_enough_credits(handle, 3)) {
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
285 ext4_warning(inode->i_sb,
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 goto no_delete;
292 }
293 }
294
295 /*
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
302 */
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 return;
321 no_delete:
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
338 {
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
341
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
352
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 else {
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
367 */
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 }
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
378 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382 unsigned int line,
383 struct ext4_map_blocks *map)
384 {
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
391 return -EFSCORRUPTED;
392 }
393 return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398 {
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409 }
410
411 #define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420 {
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
431 down_read(&EXT4_I(inode)->i_data_sem);
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
439 up_read((&EXT4_I(inode)->i_data_sem));
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
462 *
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469 * based files
470 *
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
478 *
479 * It returns the error in case of allocation failure.
480 */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
483 {
484 struct extent_status es;
485 int retval;
486 int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
497
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 return -EFSCORRUPTED;
507
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532 #endif
533 goto found;
534 }
535
536 /*
537 * Try to see if we can get the block without requesting a new
538 * file system block.
539 */
540 down_read(&EXT4_I(inode)->i_data_sem);
541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
547 }
548 if (retval > 0) {
549 unsigned int status;
550
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
557 }
558
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 !(status & EXTENT_STATUS_WRITTEN) &&
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
571 up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579
580 /* If it is only a block(s) look up */
581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
590 */
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
599
600 /*
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
603 */
604 map->m_flags &= ~EXT4_MAP_FLAGS;
605
606 /*
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
611 */
612 down_write(&EXT4_I(inode)->i_data_sem);
613
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642
643 if (retval > 0) {
644 unsigned int status;
645
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
652 }
653
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
681 goto out_sem;
682 }
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 !(status & EXTENT_STATUS_WRITTEN) &&
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
692 if (ret < 0) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698 out_sem:
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
702 if (ret != 0)
703 return ret;
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
719 if (ret)
720 return ret;
721 }
722 }
723 return retval;
724 }
725
726 /*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
756 {
757 struct ext4_map_blocks map;
758 int ret = 0;
759
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
768 if (ret > 0) {
769 map_bh(bh, inode->i_sb, map.m_pblk);
770 ext4_update_bh_state(bh, map.m_flags);
771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 ret = 0;
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 }
777 return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782 {
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794 {
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
811 {
812 int dio_credits;
813 handle_t *handle;
814 int retries = 0;
815 int ret;
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
822 retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838 {
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848 * Get block function for AIO DIO writes when we create unwritten extent if
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855 int ret;
856
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
880 set_buffer_defer_completion(bh_result);
881 }
882
883 return ret;
884 }
885
886 /*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915 {
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930 return ret;
931 }
932
933
934 /*
935 * `handle' can be NULL if create is zero
936 */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 ext4_lblk_t block, int map_flags)
939 {
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 int err;
944
945 J_ASSERT(handle != NULL || create == 0);
946
947 map.m_lblk = block;
948 map.m_len = 1;
949 err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
953 if (err < 0)
954 return ERR_PTR(err);
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
962
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
980 }
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
984 if (unlikely(err))
985 goto errout;
986 } else
987 BUFFER_TRACE(bh, "not a new buffer");
988 return bh;
989 errout:
990 brelse(bh);
991 return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 ext4_lblk_t block, int map_flags)
996 {
997 struct buffer_head *bh;
998
999 bh = ext4_getblk(handle, inode, block, map_flags);
1000 if (IS_ERR(bh))
1001 return bh;
1002 if (!bh || buffer_uptodate(bh))
1003 return bh;
1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1009 return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
1019 {
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
1028 block_start = block_end, bh = next) {
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041 }
1042
1043 /*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067 int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
1069 {
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
1075 /*
1076 * __block_write_begin() could have dirtied some buffers. Clean
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
1079 * by __block_write_begin() isn't a real problem here as we clear
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
1085 BUFFER_TRACE(bh, "get write access");
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095 {
1096 unsigned from = pos & (PAGE_SIZE - 1);
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
1136 clean_bdev_bh_alias(bh);
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
1174 err = fscrypt_decrypt_page(page->mapping->host, page,
1175 PAGE_SIZE, 0, page->index);
1176 return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
1183 {
1184 struct inode *inode = mapping->host;
1185 int ret, needed_blocks;
1186 handle_t *handle;
1187 int retries = 0;
1188 struct page *page;
1189 pgoff_t index;
1190 unsigned from, to;
1191
1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 return -EIO;
1194
1195 trace_ext4_write_begin(inode, pos, len, flags);
1196 /*
1197 * Reserve one block more for addition to orphan list in case
1198 * we allocate blocks but write fails for some reason
1199 */
1200 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201 index = pos >> PAGE_SHIFT;
1202 from = pos & (PAGE_SIZE - 1);
1203 to = from + len;
1204
1205 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 flags, pagep);
1208 if (ret < 0)
1209 return ret;
1210 if (ret == 1)
1211 return 0;
1212 }
1213
1214 /*
1215 * grab_cache_page_write_begin() can take a long time if the
1216 * system is thrashing due to memory pressure, or if the page
1217 * is being written back. So grab it first before we start
1218 * the transaction handle. This also allows us to allocate
1219 * the page (if needed) without using GFP_NOFS.
1220 */
1221 retry_grab:
1222 page = grab_cache_page_write_begin(mapping, index, flags);
1223 if (!page)
1224 return -ENOMEM;
1225 unlock_page(page);
1226
1227 retry_journal:
1228 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229 if (IS_ERR(handle)) {
1230 put_page(page);
1231 return PTR_ERR(handle);
1232 }
1233
1234 lock_page(page);
1235 if (page->mapping != mapping) {
1236 /* The page got truncated from under us */
1237 unlock_page(page);
1238 put_page(page);
1239 ext4_journal_stop(handle);
1240 goto retry_grab;
1241 }
1242 /* In case writeback began while the page was unlocked */
1243 wait_for_stable_page(page);
1244
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 if (ext4_should_dioread_nolock(inode))
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block_unwritten);
1249 else
1250 ret = ext4_block_write_begin(page, pos, len,
1251 ext4_get_block);
1252 #else
1253 if (ext4_should_dioread_nolock(inode))
1254 ret = __block_write_begin(page, pos, len,
1255 ext4_get_block_unwritten);
1256 else
1257 ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259 if (!ret && ext4_should_journal_data(inode)) {
1260 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 from, to, NULL,
1262 do_journal_get_write_access);
1263 }
1264
1265 if (ret) {
1266 unlock_page(page);
1267 /*
1268 * __block_write_begin may have instantiated a few blocks
1269 * outside i_size. Trim these off again. Don't need
1270 * i_size_read because we hold i_mutex.
1271 *
1272 * Add inode to orphan list in case we crash before
1273 * truncate finishes
1274 */
1275 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276 ext4_orphan_add(handle, inode);
1277
1278 ext4_journal_stop(handle);
1279 if (pos + len > inode->i_size) {
1280 ext4_truncate_failed_write(inode);
1281 /*
1282 * If truncate failed early the inode might
1283 * still be on the orphan list; we need to
1284 * make sure the inode is removed from the
1285 * orphan list in that case.
1286 */
1287 if (inode->i_nlink)
1288 ext4_orphan_del(NULL, inode);
1289 }
1290
1291 if (ret == -ENOSPC &&
1292 ext4_should_retry_alloc(inode->i_sb, &retries))
1293 goto retry_journal;
1294 put_page(page);
1295 return ret;
1296 }
1297 *pagep = page;
1298 return ret;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304 int ret;
1305 if (!buffer_mapped(bh) || buffer_freed(bh))
1306 return 0;
1307 set_buffer_uptodate(bh);
1308 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 clear_buffer_meta(bh);
1310 clear_buffer_prio(bh);
1311 return ret;
1312 }
1313
1314 /*
1315 * We need to pick up the new inode size which generic_commit_write gave us
1316 * `file' can be NULL - eg, when called from page_symlink().
1317 *
1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1319 * buffers are managed internally.
1320 */
1321 static int ext4_write_end(struct file *file,
1322 struct address_space *mapping,
1323 loff_t pos, unsigned len, unsigned copied,
1324 struct page *page, void *fsdata)
1325 {
1326 handle_t *handle = ext4_journal_current_handle();
1327 struct inode *inode = mapping->host;
1328 loff_t old_size = inode->i_size;
1329 int ret = 0, ret2;
1330 int i_size_changed = 0;
1331
1332 trace_ext4_write_end(inode, pos, len, copied);
1333 if (ext4_has_inline_data(inode)) {
1334 ret = ext4_write_inline_data_end(inode, pos, len,
1335 copied, page);
1336 if (ret < 0) {
1337 unlock_page(page);
1338 put_page(page);
1339 goto errout;
1340 }
1341 copied = ret;
1342 } else
1343 copied = block_write_end(file, mapping, pos,
1344 len, copied, page, fsdata);
1345 /*
1346 * it's important to update i_size while still holding page lock:
1347 * page writeout could otherwise come in and zero beyond i_size.
1348 */
1349 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350 unlock_page(page);
1351 put_page(page);
1352
1353 if (old_size < pos)
1354 pagecache_isize_extended(inode, old_size, pos);
1355 /*
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1359 * filesystems.
1360 */
1361 if (i_size_changed)
1362 ext4_mark_inode_dirty(handle, inode);
1363
1364 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1368 */
1369 ext4_orphan_add(handle, inode);
1370 errout:
1371 ret2 = ext4_journal_stop(handle);
1372 if (!ret)
1373 ret = ret2;
1374
1375 if (pos + len > inode->i_size) {
1376 ext4_truncate_failed_write(inode);
1377 /*
1378 * If truncate failed early the inode might still be
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1381 */
1382 if (inode->i_nlink)
1383 ext4_orphan_del(NULL, inode);
1384 }
1385
1386 return ret ? ret : copied;
1387 }
1388
1389 /*
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1393 */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 struct page *page,
1396 unsigned from, unsigned to)
1397 {
1398 unsigned int block_start = 0, block_end;
1399 struct buffer_head *head, *bh;
1400
1401 bh = head = page_buffers(page);
1402 do {
1403 block_end = block_start + bh->b_size;
1404 if (buffer_new(bh)) {
1405 if (block_end > from && block_start < to) {
1406 if (!PageUptodate(page)) {
1407 unsigned start, size;
1408
1409 start = max(from, block_start);
1410 size = min(to, block_end) - start;
1411
1412 zero_user(page, start, size);
1413 write_end_fn(handle, bh);
1414 }
1415 clear_buffer_new(bh);
1416 }
1417 }
1418 block_start = block_end;
1419 bh = bh->b_this_page;
1420 } while (bh != head);
1421 }
1422
1423 static int ext4_journalled_write_end(struct file *file,
1424 struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned copied,
1426 struct page *page, void *fsdata)
1427 {
1428 handle_t *handle = ext4_journal_current_handle();
1429 struct inode *inode = mapping->host;
1430 loff_t old_size = inode->i_size;
1431 int ret = 0, ret2;
1432 int partial = 0;
1433 unsigned from, to;
1434 int size_changed = 0;
1435
1436 trace_ext4_journalled_write_end(inode, pos, len, copied);
1437 from = pos & (PAGE_SIZE - 1);
1438 to = from + len;
1439
1440 BUG_ON(!ext4_handle_valid(handle));
1441
1442 if (ext4_has_inline_data(inode)) {
1443 ret = ext4_write_inline_data_end(inode, pos, len,
1444 copied, page);
1445 if (ret < 0) {
1446 unlock_page(page);
1447 put_page(page);
1448 goto errout;
1449 }
1450 copied = ret;
1451 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1452 copied = 0;
1453 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 } else {
1455 if (unlikely(copied < len))
1456 ext4_journalled_zero_new_buffers(handle, page,
1457 from + copied, to);
1458 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459 from + copied, &partial,
1460 write_end_fn);
1461 if (!partial)
1462 SetPageUptodate(page);
1463 }
1464 size_changed = ext4_update_inode_size(inode, pos + copied);
1465 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467 unlock_page(page);
1468 put_page(page);
1469
1470 if (old_size < pos)
1471 pagecache_isize_extended(inode, old_size, pos);
1472
1473 if (size_changed) {
1474 ret2 = ext4_mark_inode_dirty(handle, inode);
1475 if (!ret)
1476 ret = ret2;
1477 }
1478
1479 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480 /* if we have allocated more blocks and copied
1481 * less. We will have blocks allocated outside
1482 * inode->i_size. So truncate them
1483 */
1484 ext4_orphan_add(handle, inode);
1485
1486 errout:
1487 ret2 = ext4_journal_stop(handle);
1488 if (!ret)
1489 ret = ret2;
1490 if (pos + len > inode->i_size) {
1491 ext4_truncate_failed_write(inode);
1492 /*
1493 * If truncate failed early the inode might still be
1494 * on the orphan list; we need to make sure the inode
1495 * is removed from the orphan list in that case.
1496 */
1497 if (inode->i_nlink)
1498 ext4_orphan_del(NULL, inode);
1499 }
1500
1501 return ret ? ret : copied;
1502 }
1503
1504 /*
1505 * Reserve space for a single cluster
1506 */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510 struct ext4_inode_info *ei = EXT4_I(inode);
1511 int ret;
1512
1513 /*
1514 * We will charge metadata quota at writeout time; this saves
1515 * us from metadata over-estimation, though we may go over by
1516 * a small amount in the end. Here we just reserve for data.
1517 */
1518 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 if (ret)
1520 return ret;
1521
1522 spin_lock(&ei->i_block_reservation_lock);
1523 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524 spin_unlock(&ei->i_block_reservation_lock);
1525 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526 return -ENOSPC;
1527 }
1528 ei->i_reserved_data_blocks++;
1529 trace_ext4_da_reserve_space(inode);
1530 spin_unlock(&ei->i_block_reservation_lock);
1531
1532 return 0; /* success */
1533 }
1534
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538 struct ext4_inode_info *ei = EXT4_I(inode);
1539
1540 if (!to_free)
1541 return; /* Nothing to release, exit */
1542
1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545 trace_ext4_da_release_space(inode, to_free);
1546 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547 /*
1548 * if there aren't enough reserved blocks, then the
1549 * counter is messed up somewhere. Since this
1550 * function is called from invalidate page, it's
1551 * harmless to return without any action.
1552 */
1553 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554 "ino %lu, to_free %d with only %d reserved "
1555 "data blocks", inode->i_ino, to_free,
1556 ei->i_reserved_data_blocks);
1557 WARN_ON(1);
1558 to_free = ei->i_reserved_data_blocks;
1559 }
1560 ei->i_reserved_data_blocks -= to_free;
1561
1562 /* update fs dirty data blocks counter */
1563 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564
1565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566
1567 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569
1570 static void ext4_da_page_release_reservation(struct page *page,
1571 unsigned int offset,
1572 unsigned int length)
1573 {
1574 int to_release = 0, contiguous_blks = 0;
1575 struct buffer_head *head, *bh;
1576 unsigned int curr_off = 0;
1577 struct inode *inode = page->mapping->host;
1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 unsigned int stop = offset + length;
1580 int num_clusters;
1581 ext4_fsblk_t lblk;
1582
1583 BUG_ON(stop > PAGE_SIZE || stop < length);
1584
1585 head = page_buffers(page);
1586 bh = head;
1587 do {
1588 unsigned int next_off = curr_off + bh->b_size;
1589
1590 if (next_off > stop)
1591 break;
1592
1593 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 to_release++;
1595 contiguous_blks++;
1596 clear_buffer_delay(bh);
1597 } else if (contiguous_blks) {
1598 lblk = page->index <<
1599 (PAGE_SHIFT - inode->i_blkbits);
1600 lblk += (curr_off >> inode->i_blkbits) -
1601 contiguous_blks;
1602 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 contiguous_blks = 0;
1604 }
1605 curr_off = next_off;
1606 } while ((bh = bh->b_this_page) != head);
1607
1608 if (contiguous_blks) {
1609 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612 }
1613
1614 /* If we have released all the blocks belonging to a cluster, then we
1615 * need to release the reserved space for that cluster. */
1616 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 while (num_clusters > 0) {
1618 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619 ((num_clusters - 1) << sbi->s_cluster_bits);
1620 if (sbi->s_cluster_ratio == 1 ||
1621 !ext4_find_delalloc_cluster(inode, lblk))
1622 ext4_da_release_space(inode, 1);
1623
1624 num_clusters--;
1625 }
1626 }
1627
1628 /*
1629 * Delayed allocation stuff
1630 */
1631
1632 struct mpage_da_data {
1633 struct inode *inode;
1634 struct writeback_control *wbc;
1635
1636 pgoff_t first_page; /* The first page to write */
1637 pgoff_t next_page; /* Current page to examine */
1638 pgoff_t last_page; /* Last page to examine */
1639 /*
1640 * Extent to map - this can be after first_page because that can be
1641 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 * is delalloc or unwritten.
1643 */
1644 struct ext4_map_blocks map;
1645 struct ext4_io_submit io_submit; /* IO submission data */
1646 };
1647
1648 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1649 bool invalidate)
1650 {
1651 int nr_pages, i;
1652 pgoff_t index, end;
1653 struct pagevec pvec;
1654 struct inode *inode = mpd->inode;
1655 struct address_space *mapping = inode->i_mapping;
1656
1657 /* This is necessary when next_page == 0. */
1658 if (mpd->first_page >= mpd->next_page)
1659 return;
1660
1661 index = mpd->first_page;
1662 end = mpd->next_page - 1;
1663 if (invalidate) {
1664 ext4_lblk_t start, last;
1665 start = index << (PAGE_SHIFT - inode->i_blkbits);
1666 last = end << (PAGE_SHIFT - inode->i_blkbits);
1667 ext4_es_remove_extent(inode, start, last - start + 1);
1668 }
1669
1670 pagevec_init(&pvec, 0);
1671 while (index <= end) {
1672 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1673 if (nr_pages == 0)
1674 break;
1675 for (i = 0; i < nr_pages; i++) {
1676 struct page *page = pvec.pages[i];
1677 if (page->index > end)
1678 break;
1679 BUG_ON(!PageLocked(page));
1680 BUG_ON(PageWriteback(page));
1681 if (invalidate) {
1682 if (page_mapped(page))
1683 clear_page_dirty_for_io(page);
1684 block_invalidatepage(page, 0, PAGE_SIZE);
1685 ClearPageUptodate(page);
1686 }
1687 unlock_page(page);
1688 }
1689 index = pvec.pages[nr_pages - 1]->index + 1;
1690 pagevec_release(&pvec);
1691 }
1692 }
1693
1694 static void ext4_print_free_blocks(struct inode *inode)
1695 {
1696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1697 struct super_block *sb = inode->i_sb;
1698 struct ext4_inode_info *ei = EXT4_I(inode);
1699
1700 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1701 EXT4_C2B(EXT4_SB(inode->i_sb),
1702 ext4_count_free_clusters(sb)));
1703 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1704 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1705 (long long) EXT4_C2B(EXT4_SB(sb),
1706 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1707 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1708 (long long) EXT4_C2B(EXT4_SB(sb),
1709 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1710 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1711 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1712 ei->i_reserved_data_blocks);
1713 return;
1714 }
1715
1716 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1717 {
1718 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1719 }
1720
1721 /*
1722 * This function is grabs code from the very beginning of
1723 * ext4_map_blocks, but assumes that the caller is from delayed write
1724 * time. This function looks up the requested blocks and sets the
1725 * buffer delay bit under the protection of i_data_sem.
1726 */
1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1728 struct ext4_map_blocks *map,
1729 struct buffer_head *bh)
1730 {
1731 struct extent_status es;
1732 int retval;
1733 sector_t invalid_block = ~((sector_t) 0xffff);
1734 #ifdef ES_AGGRESSIVE_TEST
1735 struct ext4_map_blocks orig_map;
1736
1737 memcpy(&orig_map, map, sizeof(*map));
1738 #endif
1739
1740 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1741 invalid_block = ~0;
1742
1743 map->m_flags = 0;
1744 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1745 "logical block %lu\n", inode->i_ino, map->m_len,
1746 (unsigned long) map->m_lblk);
1747
1748 /* Lookup extent status tree firstly */
1749 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1750 if (ext4_es_is_hole(&es)) {
1751 retval = 0;
1752 down_read(&EXT4_I(inode)->i_data_sem);
1753 goto add_delayed;
1754 }
1755
1756 /*
1757 * Delayed extent could be allocated by fallocate.
1758 * So we need to check it.
1759 */
1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_new(bh);
1763 set_buffer_delay(bh);
1764 return 0;
1765 }
1766
1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 retval = es.es_len - (iblock - es.es_lblk);
1769 if (retval > map->m_len)
1770 retval = map->m_len;
1771 map->m_len = retval;
1772 if (ext4_es_is_written(&es))
1773 map->m_flags |= EXT4_MAP_MAPPED;
1774 else if (ext4_es_is_unwritten(&es))
1775 map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 else
1777 BUG_ON(1);
1778
1779 #ifdef ES_AGGRESSIVE_TEST
1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782 return retval;
1783 }
1784
1785 /*
1786 * Try to see if we can get the block without requesting a new
1787 * file system block.
1788 */
1789 down_read(&EXT4_I(inode)->i_data_sem);
1790 if (ext4_has_inline_data(inode))
1791 retval = 0;
1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 else
1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797 add_delayed:
1798 if (retval == 0) {
1799 int ret;
1800 /*
1801 * XXX: __block_prepare_write() unmaps passed block,
1802 * is it OK?
1803 */
1804 /*
1805 * If the block was allocated from previously allocated cluster,
1806 * then we don't need to reserve it again. However we still need
1807 * to reserve metadata for every block we're going to write.
1808 */
1809 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1810 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1811 ret = ext4_da_reserve_space(inode);
1812 if (ret) {
1813 /* not enough space to reserve */
1814 retval = ret;
1815 goto out_unlock;
1816 }
1817 }
1818
1819 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820 ~0, EXTENT_STATUS_DELAYED);
1821 if (ret) {
1822 retval = ret;
1823 goto out_unlock;
1824 }
1825
1826 map_bh(bh, inode->i_sb, invalid_block);
1827 set_buffer_new(bh);
1828 set_buffer_delay(bh);
1829 } else if (retval > 0) {
1830 int ret;
1831 unsigned int status;
1832
1833 if (unlikely(retval != map->m_len)) {
1834 ext4_warning(inode->i_sb,
1835 "ES len assertion failed for inode "
1836 "%lu: retval %d != map->m_len %d",
1837 inode->i_ino, retval, map->m_len);
1838 WARN_ON(1);
1839 }
1840
1841 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1842 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1843 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1844 map->m_pblk, status);
1845 if (ret != 0)
1846 retval = ret;
1847 }
1848
1849 out_unlock:
1850 up_read((&EXT4_I(inode)->i_data_sem));
1851
1852 return retval;
1853 }
1854
1855 /*
1856 * This is a special get_block_t callback which is used by
1857 * ext4_da_write_begin(). It will either return mapped block or
1858 * reserve space for a single block.
1859 *
1860 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1861 * We also have b_blocknr = -1 and b_bdev initialized properly
1862 *
1863 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1864 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1865 * initialized properly.
1866 */
1867 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1868 struct buffer_head *bh, int create)
1869 {
1870 struct ext4_map_blocks map;
1871 int ret = 0;
1872
1873 BUG_ON(create == 0);
1874 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1875
1876 map.m_lblk = iblock;
1877 map.m_len = 1;
1878
1879 /*
1880 * first, we need to know whether the block is allocated already
1881 * preallocated blocks are unmapped but should treated
1882 * the same as allocated blocks.
1883 */
1884 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1885 if (ret <= 0)
1886 return ret;
1887
1888 map_bh(bh, inode->i_sb, map.m_pblk);
1889 ext4_update_bh_state(bh, map.m_flags);
1890
1891 if (buffer_unwritten(bh)) {
1892 /* A delayed write to unwritten bh should be marked
1893 * new and mapped. Mapped ensures that we don't do
1894 * get_block multiple times when we write to the same
1895 * offset and new ensures that we do proper zero out
1896 * for partial write.
1897 */
1898 set_buffer_new(bh);
1899 set_buffer_mapped(bh);
1900 }
1901 return 0;
1902 }
1903
1904 static int bget_one(handle_t *handle, struct buffer_head *bh)
1905 {
1906 get_bh(bh);
1907 return 0;
1908 }
1909
1910 static int bput_one(handle_t *handle, struct buffer_head *bh)
1911 {
1912 put_bh(bh);
1913 return 0;
1914 }
1915
1916 static int __ext4_journalled_writepage(struct page *page,
1917 unsigned int len)
1918 {
1919 struct address_space *mapping = page->mapping;
1920 struct inode *inode = mapping->host;
1921 struct buffer_head *page_bufs = NULL;
1922 handle_t *handle = NULL;
1923 int ret = 0, err = 0;
1924 int inline_data = ext4_has_inline_data(inode);
1925 struct buffer_head *inode_bh = NULL;
1926
1927 ClearPageChecked(page);
1928
1929 if (inline_data) {
1930 BUG_ON(page->index != 0);
1931 BUG_ON(len > ext4_get_max_inline_size(inode));
1932 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1933 if (inode_bh == NULL)
1934 goto out;
1935 } else {
1936 page_bufs = page_buffers(page);
1937 if (!page_bufs) {
1938 BUG();
1939 goto out;
1940 }
1941 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1942 NULL, bget_one);
1943 }
1944 /*
1945 * We need to release the page lock before we start the
1946 * journal, so grab a reference so the page won't disappear
1947 * out from under us.
1948 */
1949 get_page(page);
1950 unlock_page(page);
1951
1952 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1953 ext4_writepage_trans_blocks(inode));
1954 if (IS_ERR(handle)) {
1955 ret = PTR_ERR(handle);
1956 put_page(page);
1957 goto out_no_pagelock;
1958 }
1959 BUG_ON(!ext4_handle_valid(handle));
1960
1961 lock_page(page);
1962 put_page(page);
1963 if (page->mapping != mapping) {
1964 /* The page got truncated from under us */
1965 ext4_journal_stop(handle);
1966 ret = 0;
1967 goto out;
1968 }
1969
1970 if (inline_data) {
1971 BUFFER_TRACE(inode_bh, "get write access");
1972 ret = ext4_journal_get_write_access(handle, inode_bh);
1973
1974 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1975
1976 } else {
1977 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978 do_journal_get_write_access);
1979
1980 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1981 write_end_fn);
1982 }
1983 if (ret == 0)
1984 ret = err;
1985 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1986 err = ext4_journal_stop(handle);
1987 if (!ret)
1988 ret = err;
1989
1990 if (!ext4_has_inline_data(inode))
1991 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1992 NULL, bput_one);
1993 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1994 out:
1995 unlock_page(page);
1996 out_no_pagelock:
1997 brelse(inode_bh);
1998 return ret;
1999 }
2000
2001 /*
2002 * Note that we don't need to start a transaction unless we're journaling data
2003 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2004 * need to file the inode to the transaction's list in ordered mode because if
2005 * we are writing back data added by write(), the inode is already there and if
2006 * we are writing back data modified via mmap(), no one guarantees in which
2007 * transaction the data will hit the disk. In case we are journaling data, we
2008 * cannot start transaction directly because transaction start ranks above page
2009 * lock so we have to do some magic.
2010 *
2011 * This function can get called via...
2012 * - ext4_writepages after taking page lock (have journal handle)
2013 * - journal_submit_inode_data_buffers (no journal handle)
2014 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2015 * - grab_page_cache when doing write_begin (have journal handle)
2016 *
2017 * We don't do any block allocation in this function. If we have page with
2018 * multiple blocks we need to write those buffer_heads that are mapped. This
2019 * is important for mmaped based write. So if we do with blocksize 1K
2020 * truncate(f, 1024);
2021 * a = mmap(f, 0, 4096);
2022 * a[0] = 'a';
2023 * truncate(f, 4096);
2024 * we have in the page first buffer_head mapped via page_mkwrite call back
2025 * but other buffer_heads would be unmapped but dirty (dirty done via the
2026 * do_wp_page). So writepage should write the first block. If we modify
2027 * the mmap area beyond 1024 we will again get a page_fault and the
2028 * page_mkwrite callback will do the block allocation and mark the
2029 * buffer_heads mapped.
2030 *
2031 * We redirty the page if we have any buffer_heads that is either delay or
2032 * unwritten in the page.
2033 *
2034 * We can get recursively called as show below.
2035 *
2036 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2037 * ext4_writepage()
2038 *
2039 * But since we don't do any block allocation we should not deadlock.
2040 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2041 */
2042 static int ext4_writepage(struct page *page,
2043 struct writeback_control *wbc)
2044 {
2045 int ret = 0;
2046 loff_t size;
2047 unsigned int len;
2048 struct buffer_head *page_bufs = NULL;
2049 struct inode *inode = page->mapping->host;
2050 struct ext4_io_submit io_submit;
2051 bool keep_towrite = false;
2052
2053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2054 ext4_invalidatepage(page, 0, PAGE_SIZE);
2055 unlock_page(page);
2056 return -EIO;
2057 }
2058
2059 trace_ext4_writepage(page);
2060 size = i_size_read(inode);
2061 if (page->index == size >> PAGE_SHIFT)
2062 len = size & ~PAGE_MASK;
2063 else
2064 len = PAGE_SIZE;
2065
2066 page_bufs = page_buffers(page);
2067 /*
2068 * We cannot do block allocation or other extent handling in this
2069 * function. If there are buffers needing that, we have to redirty
2070 * the page. But we may reach here when we do a journal commit via
2071 * journal_submit_inode_data_buffers() and in that case we must write
2072 * allocated buffers to achieve data=ordered mode guarantees.
2073 *
2074 * Also, if there is only one buffer per page (the fs block
2075 * size == the page size), if one buffer needs block
2076 * allocation or needs to modify the extent tree to clear the
2077 * unwritten flag, we know that the page can't be written at
2078 * all, so we might as well refuse the write immediately.
2079 * Unfortunately if the block size != page size, we can't as
2080 * easily detect this case using ext4_walk_page_buffers(), but
2081 * for the extremely common case, this is an optimization that
2082 * skips a useless round trip through ext4_bio_write_page().
2083 */
2084 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2085 ext4_bh_delay_or_unwritten)) {
2086 redirty_page_for_writepage(wbc, page);
2087 if ((current->flags & PF_MEMALLOC) ||
2088 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2089 /*
2090 * For memory cleaning there's no point in writing only
2091 * some buffers. So just bail out. Warn if we came here
2092 * from direct reclaim.
2093 */
2094 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2095 == PF_MEMALLOC);
2096 unlock_page(page);
2097 return 0;
2098 }
2099 keep_towrite = true;
2100 }
2101
2102 if (PageChecked(page) && ext4_should_journal_data(inode))
2103 /*
2104 * It's mmapped pagecache. Add buffers and journal it. There
2105 * doesn't seem much point in redirtying the page here.
2106 */
2107 return __ext4_journalled_writepage(page, len);
2108
2109 ext4_io_submit_init(&io_submit, wbc);
2110 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2111 if (!io_submit.io_end) {
2112 redirty_page_for_writepage(wbc, page);
2113 unlock_page(page);
2114 return -ENOMEM;
2115 }
2116 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2117 ext4_io_submit(&io_submit);
2118 /* Drop io_end reference we got from init */
2119 ext4_put_io_end_defer(io_submit.io_end);
2120 return ret;
2121 }
2122
2123 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2124 {
2125 int len;
2126 loff_t size = i_size_read(mpd->inode);
2127 int err;
2128
2129 BUG_ON(page->index != mpd->first_page);
2130 if (page->index == size >> PAGE_SHIFT)
2131 len = size & ~PAGE_MASK;
2132 else
2133 len = PAGE_SIZE;
2134 clear_page_dirty_for_io(page);
2135 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2136 if (!err)
2137 mpd->wbc->nr_to_write--;
2138 mpd->first_page++;
2139
2140 return err;
2141 }
2142
2143 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2144
2145 /*
2146 * mballoc gives us at most this number of blocks...
2147 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2148 * The rest of mballoc seems to handle chunks up to full group size.
2149 */
2150 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2151
2152 /*
2153 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2154 *
2155 * @mpd - extent of blocks
2156 * @lblk - logical number of the block in the file
2157 * @bh - buffer head we want to add to the extent
2158 *
2159 * The function is used to collect contig. blocks in the same state. If the
2160 * buffer doesn't require mapping for writeback and we haven't started the
2161 * extent of buffers to map yet, the function returns 'true' immediately - the
2162 * caller can write the buffer right away. Otherwise the function returns true
2163 * if the block has been added to the extent, false if the block couldn't be
2164 * added.
2165 */
2166 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2167 struct buffer_head *bh)
2168 {
2169 struct ext4_map_blocks *map = &mpd->map;
2170
2171 /* Buffer that doesn't need mapping for writeback? */
2172 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2173 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2174 /* So far no extent to map => we write the buffer right away */
2175 if (map->m_len == 0)
2176 return true;
2177 return false;
2178 }
2179
2180 /* First block in the extent? */
2181 if (map->m_len == 0) {
2182 map->m_lblk = lblk;
2183 map->m_len = 1;
2184 map->m_flags = bh->b_state & BH_FLAGS;
2185 return true;
2186 }
2187
2188 /* Don't go larger than mballoc is willing to allocate */
2189 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2190 return false;
2191
2192 /* Can we merge the block to our big extent? */
2193 if (lblk == map->m_lblk + map->m_len &&
2194 (bh->b_state & BH_FLAGS) == map->m_flags) {
2195 map->m_len++;
2196 return true;
2197 }
2198 return false;
2199 }
2200
2201 /*
2202 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2203 *
2204 * @mpd - extent of blocks for mapping
2205 * @head - the first buffer in the page
2206 * @bh - buffer we should start processing from
2207 * @lblk - logical number of the block in the file corresponding to @bh
2208 *
2209 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2210 * the page for IO if all buffers in this page were mapped and there's no
2211 * accumulated extent of buffers to map or add buffers in the page to the
2212 * extent of buffers to map. The function returns 1 if the caller can continue
2213 * by processing the next page, 0 if it should stop adding buffers to the
2214 * extent to map because we cannot extend it anymore. It can also return value
2215 * < 0 in case of error during IO submission.
2216 */
2217 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2218 struct buffer_head *head,
2219 struct buffer_head *bh,
2220 ext4_lblk_t lblk)
2221 {
2222 struct inode *inode = mpd->inode;
2223 int err;
2224 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2225 >> inode->i_blkbits;
2226
2227 do {
2228 BUG_ON(buffer_locked(bh));
2229
2230 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231 /* Found extent to map? */
2232 if (mpd->map.m_len)
2233 return 0;
2234 /* Everything mapped so far and we hit EOF */
2235 break;
2236 }
2237 } while (lblk++, (bh = bh->b_this_page) != head);
2238 /* So far everything mapped? Submit the page for IO. */
2239 if (mpd->map.m_len == 0) {
2240 err = mpage_submit_page(mpd, head->b_page);
2241 if (err < 0)
2242 return err;
2243 }
2244 return lblk < blocks;
2245 }
2246
2247 /*
2248 * mpage_map_buffers - update buffers corresponding to changed extent and
2249 * submit fully mapped pages for IO
2250 *
2251 * @mpd - description of extent to map, on return next extent to map
2252 *
2253 * Scan buffers corresponding to changed extent (we expect corresponding pages
2254 * to be already locked) and update buffer state according to new extent state.
2255 * We map delalloc buffers to their physical location, clear unwritten bits,
2256 * and mark buffers as uninit when we perform writes to unwritten extents
2257 * and do extent conversion after IO is finished. If the last page is not fully
2258 * mapped, we update @map to the next extent in the last page that needs
2259 * mapping. Otherwise we submit the page for IO.
2260 */
2261 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2262 {
2263 struct pagevec pvec;
2264 int nr_pages, i;
2265 struct inode *inode = mpd->inode;
2266 struct buffer_head *head, *bh;
2267 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2268 pgoff_t start, end;
2269 ext4_lblk_t lblk;
2270 sector_t pblock;
2271 int err;
2272
2273 start = mpd->map.m_lblk >> bpp_bits;
2274 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2275 lblk = start << bpp_bits;
2276 pblock = mpd->map.m_pblk;
2277
2278 pagevec_init(&pvec, 0);
2279 while (start <= end) {
2280 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2281 PAGEVEC_SIZE);
2282 if (nr_pages == 0)
2283 break;
2284 for (i = 0; i < nr_pages; i++) {
2285 struct page *page = pvec.pages[i];
2286
2287 if (page->index > end)
2288 break;
2289 /* Up to 'end' pages must be contiguous */
2290 BUG_ON(page->index != start);
2291 bh = head = page_buffers(page);
2292 do {
2293 if (lblk < mpd->map.m_lblk)
2294 continue;
2295 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2296 /*
2297 * Buffer after end of mapped extent.
2298 * Find next buffer in the page to map.
2299 */
2300 mpd->map.m_len = 0;
2301 mpd->map.m_flags = 0;
2302 /*
2303 * FIXME: If dioread_nolock supports
2304 * blocksize < pagesize, we need to make
2305 * sure we add size mapped so far to
2306 * io_end->size as the following call
2307 * can submit the page for IO.
2308 */
2309 err = mpage_process_page_bufs(mpd, head,
2310 bh, lblk);
2311 pagevec_release(&pvec);
2312 if (err > 0)
2313 err = 0;
2314 return err;
2315 }
2316 if (buffer_delay(bh)) {
2317 clear_buffer_delay(bh);
2318 bh->b_blocknr = pblock++;
2319 }
2320 clear_buffer_unwritten(bh);
2321 } while (lblk++, (bh = bh->b_this_page) != head);
2322
2323 /*
2324 * FIXME: This is going to break if dioread_nolock
2325 * supports blocksize < pagesize as we will try to
2326 * convert potentially unmapped parts of inode.
2327 */
2328 mpd->io_submit.io_end->size += PAGE_SIZE;
2329 /* Page fully mapped - let IO run! */
2330 err = mpage_submit_page(mpd, page);
2331 if (err < 0) {
2332 pagevec_release(&pvec);
2333 return err;
2334 }
2335 start++;
2336 }
2337 pagevec_release(&pvec);
2338 }
2339 /* Extent fully mapped and matches with page boundary. We are done. */
2340 mpd->map.m_len = 0;
2341 mpd->map.m_flags = 0;
2342 return 0;
2343 }
2344
2345 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2346 {
2347 struct inode *inode = mpd->inode;
2348 struct ext4_map_blocks *map = &mpd->map;
2349 int get_blocks_flags;
2350 int err, dioread_nolock;
2351
2352 trace_ext4_da_write_pages_extent(inode, map);
2353 /*
2354 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355 * to convert an unwritten extent to be initialized (in the case
2356 * where we have written into one or more preallocated blocks). It is
2357 * possible that we're going to need more metadata blocks than
2358 * previously reserved. However we must not fail because we're in
2359 * writeback and there is nothing we can do about it so it might result
2360 * in data loss. So use reserved blocks to allocate metadata if
2361 * possible.
2362 *
2363 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2364 * the blocks in question are delalloc blocks. This indicates
2365 * that the blocks and quotas has already been checked when
2366 * the data was copied into the page cache.
2367 */
2368 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2369 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2370 EXT4_GET_BLOCKS_IO_SUBMIT;
2371 dioread_nolock = ext4_should_dioread_nolock(inode);
2372 if (dioread_nolock)
2373 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2374 if (map->m_flags & (1 << BH_Delay))
2375 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2376
2377 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2378 if (err < 0)
2379 return err;
2380 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2381 if (!mpd->io_submit.io_end->handle &&
2382 ext4_handle_valid(handle)) {
2383 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2384 handle->h_rsv_handle = NULL;
2385 }
2386 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2387 }
2388
2389 BUG_ON(map->m_len == 0);
2390 if (map->m_flags & EXT4_MAP_NEW) {
2391 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2392 map->m_len);
2393 }
2394 return 0;
2395 }
2396
2397 /*
2398 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2399 * mpd->len and submit pages underlying it for IO
2400 *
2401 * @handle - handle for journal operations
2402 * @mpd - extent to map
2403 * @give_up_on_write - we set this to true iff there is a fatal error and there
2404 * is no hope of writing the data. The caller should discard
2405 * dirty pages to avoid infinite loops.
2406 *
2407 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2408 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2409 * them to initialized or split the described range from larger unwritten
2410 * extent. Note that we need not map all the described range since allocation
2411 * can return less blocks or the range is covered by more unwritten extents. We
2412 * cannot map more because we are limited by reserved transaction credits. On
2413 * the other hand we always make sure that the last touched page is fully
2414 * mapped so that it can be written out (and thus forward progress is
2415 * guaranteed). After mapping we submit all mapped pages for IO.
2416 */
2417 static int mpage_map_and_submit_extent(handle_t *handle,
2418 struct mpage_da_data *mpd,
2419 bool *give_up_on_write)
2420 {
2421 struct inode *inode = mpd->inode;
2422 struct ext4_map_blocks *map = &mpd->map;
2423 int err;
2424 loff_t disksize;
2425 int progress = 0;
2426
2427 mpd->io_submit.io_end->offset =
2428 ((loff_t)map->m_lblk) << inode->i_blkbits;
2429 do {
2430 err = mpage_map_one_extent(handle, mpd);
2431 if (err < 0) {
2432 struct super_block *sb = inode->i_sb;
2433
2434 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2435 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2436 goto invalidate_dirty_pages;
2437 /*
2438 * Let the uper layers retry transient errors.
2439 * In the case of ENOSPC, if ext4_count_free_blocks()
2440 * is non-zero, a commit should free up blocks.
2441 */
2442 if ((err == -ENOMEM) ||
2443 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2444 if (progress)
2445 goto update_disksize;
2446 return err;
2447 }
2448 ext4_msg(sb, KERN_CRIT,
2449 "Delayed block allocation failed for "
2450 "inode %lu at logical offset %llu with"
2451 " max blocks %u with error %d",
2452 inode->i_ino,
2453 (unsigned long long)map->m_lblk,
2454 (unsigned)map->m_len, -err);
2455 ext4_msg(sb, KERN_CRIT,
2456 "This should not happen!! Data will "
2457 "be lost\n");
2458 if (err == -ENOSPC)
2459 ext4_print_free_blocks(inode);
2460 invalidate_dirty_pages:
2461 *give_up_on_write = true;
2462 return err;
2463 }
2464 progress = 1;
2465 /*
2466 * Update buffer state, submit mapped pages, and get us new
2467 * extent to map
2468 */
2469 err = mpage_map_and_submit_buffers(mpd);
2470 if (err < 0)
2471 goto update_disksize;
2472 } while (map->m_len);
2473
2474 update_disksize:
2475 /*
2476 * Update on-disk size after IO is submitted. Races with
2477 * truncate are avoided by checking i_size under i_data_sem.
2478 */
2479 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2480 if (disksize > EXT4_I(inode)->i_disksize) {
2481 int err2;
2482 loff_t i_size;
2483
2484 down_write(&EXT4_I(inode)->i_data_sem);
2485 i_size = i_size_read(inode);
2486 if (disksize > i_size)
2487 disksize = i_size;
2488 if (disksize > EXT4_I(inode)->i_disksize)
2489 EXT4_I(inode)->i_disksize = disksize;
2490 up_write(&EXT4_I(inode)->i_data_sem);
2491 err2 = ext4_mark_inode_dirty(handle, inode);
2492 if (err2)
2493 ext4_error(inode->i_sb,
2494 "Failed to mark inode %lu dirty",
2495 inode->i_ino);
2496 if (!err)
2497 err = err2;
2498 }
2499 return err;
2500 }
2501
2502 /*
2503 * Calculate the total number of credits to reserve for one writepages
2504 * iteration. This is called from ext4_writepages(). We map an extent of
2505 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507 * bpp - 1 blocks in bpp different extents.
2508 */
2509 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510 {
2511 int bpp = ext4_journal_blocks_per_page(inode);
2512
2513 return ext4_meta_trans_blocks(inode,
2514 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2515 }
2516
2517 /*
2518 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519 * and underlying extent to map
2520 *
2521 * @mpd - where to look for pages
2522 *
2523 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524 * IO immediately. When we find a page which isn't mapped we start accumulating
2525 * extent of buffers underlying these pages that needs mapping (formed by
2526 * either delayed or unwritten buffers). We also lock the pages containing
2527 * these buffers. The extent found is returned in @mpd structure (starting at
2528 * mpd->lblk with length mpd->len blocks).
2529 *
2530 * Note that this function can attach bios to one io_end structure which are
2531 * neither logically nor physically contiguous. Although it may seem as an
2532 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533 * case as we need to track IO to all buffers underlying a page in one io_end.
2534 */
2535 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2536 {
2537 struct address_space *mapping = mpd->inode->i_mapping;
2538 struct pagevec pvec;
2539 unsigned int nr_pages;
2540 long left = mpd->wbc->nr_to_write;
2541 pgoff_t index = mpd->first_page;
2542 pgoff_t end = mpd->last_page;
2543 int tag;
2544 int i, err = 0;
2545 int blkbits = mpd->inode->i_blkbits;
2546 ext4_lblk_t lblk;
2547 struct buffer_head *head;
2548
2549 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2550 tag = PAGECACHE_TAG_TOWRITE;
2551 else
2552 tag = PAGECACHE_TAG_DIRTY;
2553
2554 pagevec_init(&pvec, 0);
2555 mpd->map.m_len = 0;
2556 mpd->next_page = index;
2557 while (index <= end) {
2558 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2559 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2560 if (nr_pages == 0)
2561 goto out;
2562
2563 for (i = 0; i < nr_pages; i++) {
2564 struct page *page = pvec.pages[i];
2565
2566 /*
2567 * At this point, the page may be truncated or
2568 * invalidated (changing page->mapping to NULL), or
2569 * even swizzled back from swapper_space to tmpfs file
2570 * mapping. However, page->index will not change
2571 * because we have a reference on the page.
2572 */
2573 if (page->index > end)
2574 goto out;
2575
2576 /*
2577 * Accumulated enough dirty pages? This doesn't apply
2578 * to WB_SYNC_ALL mode. For integrity sync we have to
2579 * keep going because someone may be concurrently
2580 * dirtying pages, and we might have synced a lot of
2581 * newly appeared dirty pages, but have not synced all
2582 * of the old dirty pages.
2583 */
2584 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2585 goto out;
2586
2587 /* If we can't merge this page, we are done. */
2588 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2589 goto out;
2590
2591 lock_page(page);
2592 /*
2593 * If the page is no longer dirty, or its mapping no
2594 * longer corresponds to inode we are writing (which
2595 * means it has been truncated or invalidated), or the
2596 * page is already under writeback and we are not doing
2597 * a data integrity writeback, skip the page
2598 */
2599 if (!PageDirty(page) ||
2600 (PageWriteback(page) &&
2601 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2602 unlikely(page->mapping != mapping)) {
2603 unlock_page(page);
2604 continue;
2605 }
2606
2607 wait_on_page_writeback(page);
2608 BUG_ON(PageWriteback(page));
2609
2610 if (mpd->map.m_len == 0)
2611 mpd->first_page = page->index;
2612 mpd->next_page = page->index + 1;
2613 /* Add all dirty buffers to mpd */
2614 lblk = ((ext4_lblk_t)page->index) <<
2615 (PAGE_SHIFT - blkbits);
2616 head = page_buffers(page);
2617 err = mpage_process_page_bufs(mpd, head, head, lblk);
2618 if (err <= 0)
2619 goto out;
2620 err = 0;
2621 left--;
2622 }
2623 pagevec_release(&pvec);
2624 cond_resched();
2625 }
2626 return 0;
2627 out:
2628 pagevec_release(&pvec);
2629 return err;
2630 }
2631
2632 static int __writepage(struct page *page, struct writeback_control *wbc,
2633 void *data)
2634 {
2635 struct address_space *mapping = data;
2636 int ret = ext4_writepage(page, wbc);
2637 mapping_set_error(mapping, ret);
2638 return ret;
2639 }
2640
2641 static int ext4_writepages(struct address_space *mapping,
2642 struct writeback_control *wbc)
2643 {
2644 pgoff_t writeback_index = 0;
2645 long nr_to_write = wbc->nr_to_write;
2646 int range_whole = 0;
2647 int cycled = 1;
2648 handle_t *handle = NULL;
2649 struct mpage_da_data mpd;
2650 struct inode *inode = mapping->host;
2651 int needed_blocks, rsv_blocks = 0, ret = 0;
2652 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2653 bool done;
2654 struct blk_plug plug;
2655 bool give_up_on_write = false;
2656
2657 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2658 return -EIO;
2659
2660 percpu_down_read(&sbi->s_journal_flag_rwsem);
2661 trace_ext4_writepages(inode, wbc);
2662
2663 if (dax_mapping(mapping)) {
2664 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2665 wbc);
2666 goto out_writepages;
2667 }
2668
2669 /*
2670 * No pages to write? This is mainly a kludge to avoid starting
2671 * a transaction for special inodes like journal inode on last iput()
2672 * because that could violate lock ordering on umount
2673 */
2674 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2675 goto out_writepages;
2676
2677 if (ext4_should_journal_data(inode)) {
2678 struct blk_plug plug;
2679
2680 blk_start_plug(&plug);
2681 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2682 blk_finish_plug(&plug);
2683 goto out_writepages;
2684 }
2685
2686 /*
2687 * If the filesystem has aborted, it is read-only, so return
2688 * right away instead of dumping stack traces later on that
2689 * will obscure the real source of the problem. We test
2690 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2691 * the latter could be true if the filesystem is mounted
2692 * read-only, and in that case, ext4_writepages should
2693 * *never* be called, so if that ever happens, we would want
2694 * the stack trace.
2695 */
2696 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2697 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2698 ret = -EROFS;
2699 goto out_writepages;
2700 }
2701
2702 if (ext4_should_dioread_nolock(inode)) {
2703 /*
2704 * We may need to convert up to one extent per block in
2705 * the page and we may dirty the inode.
2706 */
2707 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2708 }
2709
2710 /*
2711 * If we have inline data and arrive here, it means that
2712 * we will soon create the block for the 1st page, so
2713 * we'd better clear the inline data here.
2714 */
2715 if (ext4_has_inline_data(inode)) {
2716 /* Just inode will be modified... */
2717 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2718 if (IS_ERR(handle)) {
2719 ret = PTR_ERR(handle);
2720 goto out_writepages;
2721 }
2722 BUG_ON(ext4_test_inode_state(inode,
2723 EXT4_STATE_MAY_INLINE_DATA));
2724 ext4_destroy_inline_data(handle, inode);
2725 ext4_journal_stop(handle);
2726 }
2727
2728 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2729 range_whole = 1;
2730
2731 if (wbc->range_cyclic) {
2732 writeback_index = mapping->writeback_index;
2733 if (writeback_index)
2734 cycled = 0;
2735 mpd.first_page = writeback_index;
2736 mpd.last_page = -1;
2737 } else {
2738 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2739 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2740 }
2741
2742 mpd.inode = inode;
2743 mpd.wbc = wbc;
2744 ext4_io_submit_init(&mpd.io_submit, wbc);
2745 retry:
2746 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2747 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2748 done = false;
2749 blk_start_plug(&plug);
2750 while (!done && mpd.first_page <= mpd.last_page) {
2751 /* For each extent of pages we use new io_end */
2752 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2753 if (!mpd.io_submit.io_end) {
2754 ret = -ENOMEM;
2755 break;
2756 }
2757
2758 /*
2759 * We have two constraints: We find one extent to map and we
2760 * must always write out whole page (makes a difference when
2761 * blocksize < pagesize) so that we don't block on IO when we
2762 * try to write out the rest of the page. Journalled mode is
2763 * not supported by delalloc.
2764 */
2765 BUG_ON(ext4_should_journal_data(inode));
2766 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2767
2768 /* start a new transaction */
2769 handle = ext4_journal_start_with_reserve(inode,
2770 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2771 if (IS_ERR(handle)) {
2772 ret = PTR_ERR(handle);
2773 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2774 "%ld pages, ino %lu; err %d", __func__,
2775 wbc->nr_to_write, inode->i_ino, ret);
2776 /* Release allocated io_end */
2777 ext4_put_io_end(mpd.io_submit.io_end);
2778 break;
2779 }
2780
2781 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2782 ret = mpage_prepare_extent_to_map(&mpd);
2783 if (!ret) {
2784 if (mpd.map.m_len)
2785 ret = mpage_map_and_submit_extent(handle, &mpd,
2786 &give_up_on_write);
2787 else {
2788 /*
2789 * We scanned the whole range (or exhausted
2790 * nr_to_write), submitted what was mapped and
2791 * didn't find anything needing mapping. We are
2792 * done.
2793 */
2794 done = true;
2795 }
2796 }
2797 /*
2798 * Caution: If the handle is synchronous,
2799 * ext4_journal_stop() can wait for transaction commit
2800 * to finish which may depend on writeback of pages to
2801 * complete or on page lock to be released. In that
2802 * case, we have to wait until after after we have
2803 * submitted all the IO, released page locks we hold,
2804 * and dropped io_end reference (for extent conversion
2805 * to be able to complete) before stopping the handle.
2806 */
2807 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2808 ext4_journal_stop(handle);
2809 handle = NULL;
2810 }
2811 /* Submit prepared bio */
2812 ext4_io_submit(&mpd.io_submit);
2813 /* Unlock pages we didn't use */
2814 mpage_release_unused_pages(&mpd, give_up_on_write);
2815 /*
2816 * Drop our io_end reference we got from init. We have
2817 * to be careful and use deferred io_end finishing if
2818 * we are still holding the transaction as we can
2819 * release the last reference to io_end which may end
2820 * up doing unwritten extent conversion.
2821 */
2822 if (handle) {
2823 ext4_put_io_end_defer(mpd.io_submit.io_end);
2824 ext4_journal_stop(handle);
2825 } else
2826 ext4_put_io_end(mpd.io_submit.io_end);
2827
2828 if (ret == -ENOSPC && sbi->s_journal) {
2829 /*
2830 * Commit the transaction which would
2831 * free blocks released in the transaction
2832 * and try again
2833 */
2834 jbd2_journal_force_commit_nested(sbi->s_journal);
2835 ret = 0;
2836 continue;
2837 }
2838 /* Fatal error - ENOMEM, EIO... */
2839 if (ret)
2840 break;
2841 }
2842 blk_finish_plug(&plug);
2843 if (!ret && !cycled && wbc->nr_to_write > 0) {
2844 cycled = 1;
2845 mpd.last_page = writeback_index - 1;
2846 mpd.first_page = 0;
2847 goto retry;
2848 }
2849
2850 /* Update index */
2851 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2852 /*
2853 * Set the writeback_index so that range_cyclic
2854 * mode will write it back later
2855 */
2856 mapping->writeback_index = mpd.first_page;
2857
2858 out_writepages:
2859 trace_ext4_writepages_result(inode, wbc, ret,
2860 nr_to_write - wbc->nr_to_write);
2861 percpu_up_read(&sbi->s_journal_flag_rwsem);
2862 return ret;
2863 }
2864
2865 static int ext4_nonda_switch(struct super_block *sb)
2866 {
2867 s64 free_clusters, dirty_clusters;
2868 struct ext4_sb_info *sbi = EXT4_SB(sb);
2869
2870 /*
2871 * switch to non delalloc mode if we are running low
2872 * on free block. The free block accounting via percpu
2873 * counters can get slightly wrong with percpu_counter_batch getting
2874 * accumulated on each CPU without updating global counters
2875 * Delalloc need an accurate free block accounting. So switch
2876 * to non delalloc when we are near to error range.
2877 */
2878 free_clusters =
2879 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2880 dirty_clusters =
2881 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2882 /*
2883 * Start pushing delalloc when 1/2 of free blocks are dirty.
2884 */
2885 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2886 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2887
2888 if (2 * free_clusters < 3 * dirty_clusters ||
2889 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2890 /*
2891 * free block count is less than 150% of dirty blocks
2892 * or free blocks is less than watermark
2893 */
2894 return 1;
2895 }
2896 return 0;
2897 }
2898
2899 /* We always reserve for an inode update; the superblock could be there too */
2900 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2901 {
2902 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2903 return 1;
2904
2905 if (pos + len <= 0x7fffffffULL)
2906 return 1;
2907
2908 /* We might need to update the superblock to set LARGE_FILE */
2909 return 2;
2910 }
2911
2912 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2913 loff_t pos, unsigned len, unsigned flags,
2914 struct page **pagep, void **fsdata)
2915 {
2916 int ret, retries = 0;
2917 struct page *page;
2918 pgoff_t index;
2919 struct inode *inode = mapping->host;
2920 handle_t *handle;
2921
2922 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2923 return -EIO;
2924
2925 index = pos >> PAGE_SHIFT;
2926
2927 if (ext4_nonda_switch(inode->i_sb) ||
2928 S_ISLNK(inode->i_mode)) {
2929 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2930 return ext4_write_begin(file, mapping, pos,
2931 len, flags, pagep, fsdata);
2932 }
2933 *fsdata = (void *)0;
2934 trace_ext4_da_write_begin(inode, pos, len, flags);
2935
2936 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2937 ret = ext4_da_write_inline_data_begin(mapping, inode,
2938 pos, len, flags,
2939 pagep, fsdata);
2940 if (ret < 0)
2941 return ret;
2942 if (ret == 1)
2943 return 0;
2944 }
2945
2946 /*
2947 * grab_cache_page_write_begin() can take a long time if the
2948 * system is thrashing due to memory pressure, or if the page
2949 * is being written back. So grab it first before we start
2950 * the transaction handle. This also allows us to allocate
2951 * the page (if needed) without using GFP_NOFS.
2952 */
2953 retry_grab:
2954 page = grab_cache_page_write_begin(mapping, index, flags);
2955 if (!page)
2956 return -ENOMEM;
2957 unlock_page(page);
2958
2959 /*
2960 * With delayed allocation, we don't log the i_disksize update
2961 * if there is delayed block allocation. But we still need
2962 * to journalling the i_disksize update if writes to the end
2963 * of file which has an already mapped buffer.
2964 */
2965 retry_journal:
2966 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2967 ext4_da_write_credits(inode, pos, len));
2968 if (IS_ERR(handle)) {
2969 put_page(page);
2970 return PTR_ERR(handle);
2971 }
2972
2973 lock_page(page);
2974 if (page->mapping != mapping) {
2975 /* The page got truncated from under us */
2976 unlock_page(page);
2977 put_page(page);
2978 ext4_journal_stop(handle);
2979 goto retry_grab;
2980 }
2981 /* In case writeback began while the page was unlocked */
2982 wait_for_stable_page(page);
2983
2984 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2985 ret = ext4_block_write_begin(page, pos, len,
2986 ext4_da_get_block_prep);
2987 #else
2988 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2989 #endif
2990 if (ret < 0) {
2991 unlock_page(page);
2992 ext4_journal_stop(handle);
2993 /*
2994 * block_write_begin may have instantiated a few blocks
2995 * outside i_size. Trim these off again. Don't need
2996 * i_size_read because we hold i_mutex.
2997 */
2998 if (pos + len > inode->i_size)
2999 ext4_truncate_failed_write(inode);
3000
3001 if (ret == -ENOSPC &&
3002 ext4_should_retry_alloc(inode->i_sb, &retries))
3003 goto retry_journal;
3004
3005 put_page(page);
3006 return ret;
3007 }
3008
3009 *pagep = page;
3010 return ret;
3011 }
3012
3013 /*
3014 * Check if we should update i_disksize
3015 * when write to the end of file but not require block allocation
3016 */
3017 static int ext4_da_should_update_i_disksize(struct page *page,
3018 unsigned long offset)
3019 {
3020 struct buffer_head *bh;
3021 struct inode *inode = page->mapping->host;
3022 unsigned int idx;
3023 int i;
3024
3025 bh = page_buffers(page);
3026 idx = offset >> inode->i_blkbits;
3027
3028 for (i = 0; i < idx; i++)
3029 bh = bh->b_this_page;
3030
3031 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3032 return 0;
3033 return 1;
3034 }
3035
3036 static int ext4_da_write_end(struct file *file,
3037 struct address_space *mapping,
3038 loff_t pos, unsigned len, unsigned copied,
3039 struct page *page, void *fsdata)
3040 {
3041 struct inode *inode = mapping->host;
3042 int ret = 0, ret2;
3043 handle_t *handle = ext4_journal_current_handle();
3044 loff_t new_i_size;
3045 unsigned long start, end;
3046 int write_mode = (int)(unsigned long)fsdata;
3047
3048 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3049 return ext4_write_end(file, mapping, pos,
3050 len, copied, page, fsdata);
3051
3052 trace_ext4_da_write_end(inode, pos, len, copied);
3053 start = pos & (PAGE_SIZE - 1);
3054 end = start + copied - 1;
3055
3056 /*
3057 * generic_write_end() will run mark_inode_dirty() if i_size
3058 * changes. So let's piggyback the i_disksize mark_inode_dirty
3059 * into that.
3060 */
3061 new_i_size = pos + copied;
3062 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3063 if (ext4_has_inline_data(inode) ||
3064 ext4_da_should_update_i_disksize(page, end)) {
3065 ext4_update_i_disksize(inode, new_i_size);
3066 /* We need to mark inode dirty even if
3067 * new_i_size is less that inode->i_size
3068 * bu greater than i_disksize.(hint delalloc)
3069 */
3070 ext4_mark_inode_dirty(handle, inode);
3071 }
3072 }
3073
3074 if (write_mode != CONVERT_INLINE_DATA &&
3075 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3076 ext4_has_inline_data(inode))
3077 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3078 page);
3079 else
3080 ret2 = generic_write_end(file, mapping, pos, len, copied,
3081 page, fsdata);
3082
3083 copied = ret2;
3084 if (ret2 < 0)
3085 ret = ret2;
3086 ret2 = ext4_journal_stop(handle);
3087 if (!ret)
3088 ret = ret2;
3089
3090 return ret ? ret : copied;
3091 }
3092
3093 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3094 unsigned int length)
3095 {
3096 /*
3097 * Drop reserved blocks
3098 */
3099 BUG_ON(!PageLocked(page));
3100 if (!page_has_buffers(page))
3101 goto out;
3102
3103 ext4_da_page_release_reservation(page, offset, length);
3104
3105 out:
3106 ext4_invalidatepage(page, offset, length);
3107
3108 return;
3109 }
3110
3111 /*
3112 * Force all delayed allocation blocks to be allocated for a given inode.
3113 */
3114 int ext4_alloc_da_blocks(struct inode *inode)
3115 {
3116 trace_ext4_alloc_da_blocks(inode);
3117
3118 if (!EXT4_I(inode)->i_reserved_data_blocks)
3119 return 0;
3120
3121 /*
3122 * We do something simple for now. The filemap_flush() will
3123 * also start triggering a write of the data blocks, which is
3124 * not strictly speaking necessary (and for users of
3125 * laptop_mode, not even desirable). However, to do otherwise
3126 * would require replicating code paths in:
3127 *
3128 * ext4_writepages() ->
3129 * write_cache_pages() ---> (via passed in callback function)
3130 * __mpage_da_writepage() -->
3131 * mpage_add_bh_to_extent()
3132 * mpage_da_map_blocks()
3133 *
3134 * The problem is that write_cache_pages(), located in
3135 * mm/page-writeback.c, marks pages clean in preparation for
3136 * doing I/O, which is not desirable if we're not planning on
3137 * doing I/O at all.
3138 *
3139 * We could call write_cache_pages(), and then redirty all of
3140 * the pages by calling redirty_page_for_writepage() but that
3141 * would be ugly in the extreme. So instead we would need to
3142 * replicate parts of the code in the above functions,
3143 * simplifying them because we wouldn't actually intend to
3144 * write out the pages, but rather only collect contiguous
3145 * logical block extents, call the multi-block allocator, and
3146 * then update the buffer heads with the block allocations.
3147 *
3148 * For now, though, we'll cheat by calling filemap_flush(),
3149 * which will map the blocks, and start the I/O, but not
3150 * actually wait for the I/O to complete.
3151 */
3152 return filemap_flush(inode->i_mapping);
3153 }
3154
3155 /*
3156 * bmap() is special. It gets used by applications such as lilo and by
3157 * the swapper to find the on-disk block of a specific piece of data.
3158 *
3159 * Naturally, this is dangerous if the block concerned is still in the
3160 * journal. If somebody makes a swapfile on an ext4 data-journaling
3161 * filesystem and enables swap, then they may get a nasty shock when the
3162 * data getting swapped to that swapfile suddenly gets overwritten by
3163 * the original zero's written out previously to the journal and
3164 * awaiting writeback in the kernel's buffer cache.
3165 *
3166 * So, if we see any bmap calls here on a modified, data-journaled file,
3167 * take extra steps to flush any blocks which might be in the cache.
3168 */
3169 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3170 {
3171 struct inode *inode = mapping->host;
3172 journal_t *journal;
3173 int err;
3174
3175 /*
3176 * We can get here for an inline file via the FIBMAP ioctl
3177 */
3178 if (ext4_has_inline_data(inode))
3179 return 0;
3180
3181 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3182 test_opt(inode->i_sb, DELALLOC)) {
3183 /*
3184 * With delalloc we want to sync the file
3185 * so that we can make sure we allocate
3186 * blocks for file
3187 */
3188 filemap_write_and_wait(mapping);
3189 }
3190
3191 if (EXT4_JOURNAL(inode) &&
3192 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3193 /*
3194 * This is a REALLY heavyweight approach, but the use of
3195 * bmap on dirty files is expected to be extremely rare:
3196 * only if we run lilo or swapon on a freshly made file
3197 * do we expect this to happen.
3198 *
3199 * (bmap requires CAP_SYS_RAWIO so this does not
3200 * represent an unprivileged user DOS attack --- we'd be
3201 * in trouble if mortal users could trigger this path at
3202 * will.)
3203 *
3204 * NB. EXT4_STATE_JDATA is not set on files other than
3205 * regular files. If somebody wants to bmap a directory
3206 * or symlink and gets confused because the buffer
3207 * hasn't yet been flushed to disk, they deserve
3208 * everything they get.
3209 */
3210
3211 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3212 journal = EXT4_JOURNAL(inode);
3213 jbd2_journal_lock_updates(journal);
3214 err = jbd2_journal_flush(journal);
3215 jbd2_journal_unlock_updates(journal);
3216
3217 if (err)
3218 return 0;
3219 }
3220
3221 return generic_block_bmap(mapping, block, ext4_get_block);
3222 }
3223
3224 static int ext4_readpage(struct file *file, struct page *page)
3225 {
3226 int ret = -EAGAIN;
3227 struct inode *inode = page->mapping->host;
3228
3229 trace_ext4_readpage(page);
3230
3231 if (ext4_has_inline_data(inode))
3232 ret = ext4_readpage_inline(inode, page);
3233
3234 if (ret == -EAGAIN)
3235 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3236
3237 return ret;
3238 }
3239
3240 static int
3241 ext4_readpages(struct file *file, struct address_space *mapping,
3242 struct list_head *pages, unsigned nr_pages)
3243 {
3244 struct inode *inode = mapping->host;
3245
3246 /* If the file has inline data, no need to do readpages. */
3247 if (ext4_has_inline_data(inode))
3248 return 0;
3249
3250 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3251 }
3252
3253 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3254 unsigned int length)
3255 {
3256 trace_ext4_invalidatepage(page, offset, length);
3257
3258 /* No journalling happens on data buffers when this function is used */
3259 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3260
3261 block_invalidatepage(page, offset, length);
3262 }
3263
3264 static int __ext4_journalled_invalidatepage(struct page *page,
3265 unsigned int offset,
3266 unsigned int length)
3267 {
3268 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3269
3270 trace_ext4_journalled_invalidatepage(page, offset, length);
3271
3272 /*
3273 * If it's a full truncate we just forget about the pending dirtying
3274 */
3275 if (offset == 0 && length == PAGE_SIZE)
3276 ClearPageChecked(page);
3277
3278 return jbd2_journal_invalidatepage(journal, page, offset, length);
3279 }
3280
3281 /* Wrapper for aops... */
3282 static void ext4_journalled_invalidatepage(struct page *page,
3283 unsigned int offset,
3284 unsigned int length)
3285 {
3286 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3287 }
3288
3289 static int ext4_releasepage(struct page *page, gfp_t wait)
3290 {
3291 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3292
3293 trace_ext4_releasepage(page);
3294
3295 /* Page has dirty journalled data -> cannot release */
3296 if (PageChecked(page))
3297 return 0;
3298 if (journal)
3299 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3300 else
3301 return try_to_free_buffers(page);
3302 }
3303
3304 #ifdef CONFIG_FS_DAX
3305 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3306 unsigned flags, struct iomap *iomap)
3307 {
3308 unsigned int blkbits = inode->i_blkbits;
3309 unsigned long first_block = offset >> blkbits;
3310 unsigned long last_block = (offset + length - 1) >> blkbits;
3311 struct ext4_map_blocks map;
3312 int ret;
3313
3314 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3315 return -ERANGE;
3316
3317 map.m_lblk = first_block;
3318 map.m_len = last_block - first_block + 1;
3319
3320 if (!(flags & IOMAP_WRITE)) {
3321 ret = ext4_map_blocks(NULL, inode, &map, 0);
3322 } else {
3323 int dio_credits;
3324 handle_t *handle;
3325 int retries = 0;
3326
3327 /* Trim mapping request to maximum we can map at once for DIO */
3328 if (map.m_len > DIO_MAX_BLOCKS)
3329 map.m_len = DIO_MAX_BLOCKS;
3330 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3331 retry:
3332 /*
3333 * Either we allocate blocks and then we don't get unwritten
3334 * extent so we have reserved enough credits, or the blocks
3335 * are already allocated and unwritten and in that case
3336 * extent conversion fits in the credits as well.
3337 */
3338 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3339 dio_credits);
3340 if (IS_ERR(handle))
3341 return PTR_ERR(handle);
3342
3343 ret = ext4_map_blocks(handle, inode, &map,
3344 EXT4_GET_BLOCKS_CREATE_ZERO);
3345 if (ret < 0) {
3346 ext4_journal_stop(handle);
3347 if (ret == -ENOSPC &&
3348 ext4_should_retry_alloc(inode->i_sb, &retries))
3349 goto retry;
3350 return ret;
3351 }
3352
3353 /*
3354 * If we added blocks beyond i_size, we need to make sure they
3355 * will get truncated if we crash before updating i_size in
3356 * ext4_iomap_end(). For faults we don't need to do that (and
3357 * even cannot because for orphan list operations inode_lock is
3358 * required) - if we happen to instantiate block beyond i_size,
3359 * it is because we race with truncate which has already added
3360 * the inode to the orphan list.
3361 */
3362 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3363 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3364 int err;
3365
3366 err = ext4_orphan_add(handle, inode);
3367 if (err < 0) {
3368 ext4_journal_stop(handle);
3369 return err;
3370 }
3371 }
3372 ext4_journal_stop(handle);
3373 }
3374
3375 iomap->flags = 0;
3376 iomap->bdev = inode->i_sb->s_bdev;
3377 iomap->offset = first_block << blkbits;
3378
3379 if (ret == 0) {
3380 iomap->type = IOMAP_HOLE;
3381 iomap->blkno = IOMAP_NULL_BLOCK;
3382 iomap->length = (u64)map.m_len << blkbits;
3383 } else {
3384 if (map.m_flags & EXT4_MAP_MAPPED) {
3385 iomap->type = IOMAP_MAPPED;
3386 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3387 iomap->type = IOMAP_UNWRITTEN;
3388 } else {
3389 WARN_ON_ONCE(1);
3390 return -EIO;
3391 }
3392 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3393 iomap->length = (u64)map.m_len << blkbits;
3394 }
3395
3396 if (map.m_flags & EXT4_MAP_NEW)
3397 iomap->flags |= IOMAP_F_NEW;
3398 return 0;
3399 }
3400
3401 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3402 ssize_t written, unsigned flags, struct iomap *iomap)
3403 {
3404 int ret = 0;
3405 handle_t *handle;
3406 int blkbits = inode->i_blkbits;
3407 bool truncate = false;
3408
3409 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3410 return 0;
3411
3412 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3413 if (IS_ERR(handle)) {
3414 ret = PTR_ERR(handle);
3415 goto orphan_del;
3416 }
3417 if (ext4_update_inode_size(inode, offset + written))
3418 ext4_mark_inode_dirty(handle, inode);
3419 /*
3420 * We may need to truncate allocated but not written blocks beyond EOF.
3421 */
3422 if (iomap->offset + iomap->length >
3423 ALIGN(inode->i_size, 1 << blkbits)) {
3424 ext4_lblk_t written_blk, end_blk;
3425
3426 written_blk = (offset + written) >> blkbits;
3427 end_blk = (offset + length) >> blkbits;
3428 if (written_blk < end_blk && ext4_can_truncate(inode))
3429 truncate = true;
3430 }
3431 /*
3432 * Remove inode from orphan list if we were extending a inode and
3433 * everything went fine.
3434 */
3435 if (!truncate && inode->i_nlink &&
3436 !list_empty(&EXT4_I(inode)->i_orphan))
3437 ext4_orphan_del(handle, inode);
3438 ext4_journal_stop(handle);
3439 if (truncate) {
3440 ext4_truncate_failed_write(inode);
3441 orphan_del:
3442 /*
3443 * If truncate failed early the inode might still be on the
3444 * orphan list; we need to make sure the inode is removed from
3445 * the orphan list in that case.
3446 */
3447 if (inode->i_nlink)
3448 ext4_orphan_del(NULL, inode);
3449 }
3450 return ret;
3451 }
3452
3453 const struct iomap_ops ext4_iomap_ops = {
3454 .iomap_begin = ext4_iomap_begin,
3455 .iomap_end = ext4_iomap_end,
3456 };
3457
3458 #endif
3459
3460 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3461 ssize_t size, void *private)
3462 {
3463 ext4_io_end_t *io_end = private;
3464
3465 /* if not async direct IO just return */
3466 if (!io_end)
3467 return 0;
3468
3469 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3470 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3471 io_end, io_end->inode->i_ino, iocb, offset, size);
3472
3473 /*
3474 * Error during AIO DIO. We cannot convert unwritten extents as the
3475 * data was not written. Just clear the unwritten flag and drop io_end.
3476 */
3477 if (size <= 0) {
3478 ext4_clear_io_unwritten_flag(io_end);
3479 size = 0;
3480 }
3481 io_end->offset = offset;
3482 io_end->size = size;
3483 ext4_put_io_end(io_end);
3484
3485 return 0;
3486 }
3487
3488 /*
3489 * Handling of direct IO writes.
3490 *
3491 * For ext4 extent files, ext4 will do direct-io write even to holes,
3492 * preallocated extents, and those write extend the file, no need to
3493 * fall back to buffered IO.
3494 *
3495 * For holes, we fallocate those blocks, mark them as unwritten
3496 * If those blocks were preallocated, we mark sure they are split, but
3497 * still keep the range to write as unwritten.
3498 *
3499 * The unwritten extents will be converted to written when DIO is completed.
3500 * For async direct IO, since the IO may still pending when return, we
3501 * set up an end_io call back function, which will do the conversion
3502 * when async direct IO completed.
3503 *
3504 * If the O_DIRECT write will extend the file then add this inode to the
3505 * orphan list. So recovery will truncate it back to the original size
3506 * if the machine crashes during the write.
3507 *
3508 */
3509 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3510 {
3511 struct file *file = iocb->ki_filp;
3512 struct inode *inode = file->f_mapping->host;
3513 struct ext4_inode_info *ei = EXT4_I(inode);
3514 ssize_t ret;
3515 loff_t offset = iocb->ki_pos;
3516 size_t count = iov_iter_count(iter);
3517 int overwrite = 0;
3518 get_block_t *get_block_func = NULL;
3519 int dio_flags = 0;
3520 loff_t final_size = offset + count;
3521 int orphan = 0;
3522 handle_t *handle;
3523
3524 if (final_size > inode->i_size) {
3525 /* Credits for sb + inode write */
3526 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3527 if (IS_ERR(handle)) {
3528 ret = PTR_ERR(handle);
3529 goto out;
3530 }
3531 ret = ext4_orphan_add(handle, inode);
3532 if (ret) {
3533 ext4_journal_stop(handle);
3534 goto out;
3535 }
3536 orphan = 1;
3537 ei->i_disksize = inode->i_size;
3538 ext4_journal_stop(handle);
3539 }
3540
3541 BUG_ON(iocb->private == NULL);
3542
3543 /*
3544 * Make all waiters for direct IO properly wait also for extent
3545 * conversion. This also disallows race between truncate() and
3546 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3547 */
3548 inode_dio_begin(inode);
3549
3550 /* If we do a overwrite dio, i_mutex locking can be released */
3551 overwrite = *((int *)iocb->private);
3552
3553 if (overwrite)
3554 inode_unlock(inode);
3555
3556 /*
3557 * For extent mapped files we could direct write to holes and fallocate.
3558 *
3559 * Allocated blocks to fill the hole are marked as unwritten to prevent
3560 * parallel buffered read to expose the stale data before DIO complete
3561 * the data IO.
3562 *
3563 * As to previously fallocated extents, ext4 get_block will just simply
3564 * mark the buffer mapped but still keep the extents unwritten.
3565 *
3566 * For non AIO case, we will convert those unwritten extents to written
3567 * after return back from blockdev_direct_IO. That way we save us from
3568 * allocating io_end structure and also the overhead of offloading
3569 * the extent convertion to a workqueue.
3570 *
3571 * For async DIO, the conversion needs to be deferred when the
3572 * IO is completed. The ext4 end_io callback function will be
3573 * called to take care of the conversion work. Here for async
3574 * case, we allocate an io_end structure to hook to the iocb.
3575 */
3576 iocb->private = NULL;
3577 if (overwrite)
3578 get_block_func = ext4_dio_get_block_overwrite;
3579 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3580 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3581 get_block_func = ext4_dio_get_block;
3582 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3583 } else if (is_sync_kiocb(iocb)) {
3584 get_block_func = ext4_dio_get_block_unwritten_sync;
3585 dio_flags = DIO_LOCKING;
3586 } else {
3587 get_block_func = ext4_dio_get_block_unwritten_async;
3588 dio_flags = DIO_LOCKING;
3589 }
3590 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3591 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3592 #endif
3593 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3594 get_block_func, ext4_end_io_dio, NULL,
3595 dio_flags);
3596
3597 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3598 EXT4_STATE_DIO_UNWRITTEN)) {
3599 int err;
3600 /*
3601 * for non AIO case, since the IO is already
3602 * completed, we could do the conversion right here
3603 */
3604 err = ext4_convert_unwritten_extents(NULL, inode,
3605 offset, ret);
3606 if (err < 0)
3607 ret = err;
3608 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3609 }
3610
3611 inode_dio_end(inode);
3612 /* take i_mutex locking again if we do a ovewrite dio */
3613 if (overwrite)
3614 inode_lock(inode);
3615
3616 if (ret < 0 && final_size > inode->i_size)
3617 ext4_truncate_failed_write(inode);
3618
3619 /* Handle extending of i_size after direct IO write */
3620 if (orphan) {
3621 int err;
3622
3623 /* Credits for sb + inode write */
3624 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3625 if (IS_ERR(handle)) {
3626 /* This is really bad luck. We've written the data
3627 * but cannot extend i_size. Bail out and pretend
3628 * the write failed... */
3629 ret = PTR_ERR(handle);
3630 if (inode->i_nlink)
3631 ext4_orphan_del(NULL, inode);
3632
3633 goto out;
3634 }
3635 if (inode->i_nlink)
3636 ext4_orphan_del(handle, inode);
3637 if (ret > 0) {
3638 loff_t end = offset + ret;
3639 if (end > inode->i_size) {
3640 ei->i_disksize = end;
3641 i_size_write(inode, end);
3642 /*
3643 * We're going to return a positive `ret'
3644 * here due to non-zero-length I/O, so there's
3645 * no way of reporting error returns from
3646 * ext4_mark_inode_dirty() to userspace. So
3647 * ignore it.
3648 */
3649 ext4_mark_inode_dirty(handle, inode);
3650 }
3651 }
3652 err = ext4_journal_stop(handle);
3653 if (ret == 0)
3654 ret = err;
3655 }
3656 out:
3657 return ret;
3658 }
3659
3660 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3661 {
3662 struct address_space *mapping = iocb->ki_filp->f_mapping;
3663 struct inode *inode = mapping->host;
3664 size_t count = iov_iter_count(iter);
3665 ssize_t ret;
3666
3667 /*
3668 * Shared inode_lock is enough for us - it protects against concurrent
3669 * writes & truncates and since we take care of writing back page cache,
3670 * we are protected against page writeback as well.
3671 */
3672 inode_lock_shared(inode);
3673 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3674 iocb->ki_pos + count);
3675 if (ret)
3676 goto out_unlock;
3677 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3678 iter, ext4_dio_get_block, NULL, NULL, 0);
3679 out_unlock:
3680 inode_unlock_shared(inode);
3681 return ret;
3682 }
3683
3684 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3685 {
3686 struct file *file = iocb->ki_filp;
3687 struct inode *inode = file->f_mapping->host;
3688 size_t count = iov_iter_count(iter);
3689 loff_t offset = iocb->ki_pos;
3690 ssize_t ret;
3691
3692 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3693 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3694 return 0;
3695 #endif
3696
3697 /*
3698 * If we are doing data journalling we don't support O_DIRECT
3699 */
3700 if (ext4_should_journal_data(inode))
3701 return 0;
3702
3703 /* Let buffer I/O handle the inline data case. */
3704 if (ext4_has_inline_data(inode))
3705 return 0;
3706
3707 /* DAX uses iomap path now */
3708 if (WARN_ON_ONCE(IS_DAX(inode)))
3709 return 0;
3710
3711 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3712 if (iov_iter_rw(iter) == READ)
3713 ret = ext4_direct_IO_read(iocb, iter);
3714 else
3715 ret = ext4_direct_IO_write(iocb, iter);
3716 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3717 return ret;
3718 }
3719
3720 /*
3721 * Pages can be marked dirty completely asynchronously from ext4's journalling
3722 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3723 * much here because ->set_page_dirty is called under VFS locks. The page is
3724 * not necessarily locked.
3725 *
3726 * We cannot just dirty the page and leave attached buffers clean, because the
3727 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3728 * or jbddirty because all the journalling code will explode.
3729 *
3730 * So what we do is to mark the page "pending dirty" and next time writepage
3731 * is called, propagate that into the buffers appropriately.
3732 */
3733 static int ext4_journalled_set_page_dirty(struct page *page)
3734 {
3735 SetPageChecked(page);
3736 return __set_page_dirty_nobuffers(page);
3737 }
3738
3739 static int ext4_set_page_dirty(struct page *page)
3740 {
3741 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3742 WARN_ON_ONCE(!page_has_buffers(page));
3743 return __set_page_dirty_buffers(page);
3744 }
3745
3746 static const struct address_space_operations ext4_aops = {
3747 .readpage = ext4_readpage,
3748 .readpages = ext4_readpages,
3749 .writepage = ext4_writepage,
3750 .writepages = ext4_writepages,
3751 .write_begin = ext4_write_begin,
3752 .write_end = ext4_write_end,
3753 .set_page_dirty = ext4_set_page_dirty,
3754 .bmap = ext4_bmap,
3755 .invalidatepage = ext4_invalidatepage,
3756 .releasepage = ext4_releasepage,
3757 .direct_IO = ext4_direct_IO,
3758 .migratepage = buffer_migrate_page,
3759 .is_partially_uptodate = block_is_partially_uptodate,
3760 .error_remove_page = generic_error_remove_page,
3761 };
3762
3763 static const struct address_space_operations ext4_journalled_aops = {
3764 .readpage = ext4_readpage,
3765 .readpages = ext4_readpages,
3766 .writepage = ext4_writepage,
3767 .writepages = ext4_writepages,
3768 .write_begin = ext4_write_begin,
3769 .write_end = ext4_journalled_write_end,
3770 .set_page_dirty = ext4_journalled_set_page_dirty,
3771 .bmap = ext4_bmap,
3772 .invalidatepage = ext4_journalled_invalidatepage,
3773 .releasepage = ext4_releasepage,
3774 .direct_IO = ext4_direct_IO,
3775 .is_partially_uptodate = block_is_partially_uptodate,
3776 .error_remove_page = generic_error_remove_page,
3777 };
3778
3779 static const struct address_space_operations ext4_da_aops = {
3780 .readpage = ext4_readpage,
3781 .readpages = ext4_readpages,
3782 .writepage = ext4_writepage,
3783 .writepages = ext4_writepages,
3784 .write_begin = ext4_da_write_begin,
3785 .write_end = ext4_da_write_end,
3786 .set_page_dirty = ext4_set_page_dirty,
3787 .bmap = ext4_bmap,
3788 .invalidatepage = ext4_da_invalidatepage,
3789 .releasepage = ext4_releasepage,
3790 .direct_IO = ext4_direct_IO,
3791 .migratepage = buffer_migrate_page,
3792 .is_partially_uptodate = block_is_partially_uptodate,
3793 .error_remove_page = generic_error_remove_page,
3794 };
3795
3796 void ext4_set_aops(struct inode *inode)
3797 {
3798 switch (ext4_inode_journal_mode(inode)) {
3799 case EXT4_INODE_ORDERED_DATA_MODE:
3800 case EXT4_INODE_WRITEBACK_DATA_MODE:
3801 break;
3802 case EXT4_INODE_JOURNAL_DATA_MODE:
3803 inode->i_mapping->a_ops = &ext4_journalled_aops;
3804 return;
3805 default:
3806 BUG();
3807 }
3808 if (test_opt(inode->i_sb, DELALLOC))
3809 inode->i_mapping->a_ops = &ext4_da_aops;
3810 else
3811 inode->i_mapping->a_ops = &ext4_aops;
3812 }
3813
3814 static int __ext4_block_zero_page_range(handle_t *handle,
3815 struct address_space *mapping, loff_t from, loff_t length)
3816 {
3817 ext4_fsblk_t index = from >> PAGE_SHIFT;
3818 unsigned offset = from & (PAGE_SIZE-1);
3819 unsigned blocksize, pos;
3820 ext4_lblk_t iblock;
3821 struct inode *inode = mapping->host;
3822 struct buffer_head *bh;
3823 struct page *page;
3824 int err = 0;
3825
3826 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3827 mapping_gfp_constraint(mapping, ~__GFP_FS));
3828 if (!page)
3829 return -ENOMEM;
3830
3831 blocksize = inode->i_sb->s_blocksize;
3832
3833 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3834
3835 if (!page_has_buffers(page))
3836 create_empty_buffers(page, blocksize, 0);
3837
3838 /* Find the buffer that contains "offset" */
3839 bh = page_buffers(page);
3840 pos = blocksize;
3841 while (offset >= pos) {
3842 bh = bh->b_this_page;
3843 iblock++;
3844 pos += blocksize;
3845 }
3846 if (buffer_freed(bh)) {
3847 BUFFER_TRACE(bh, "freed: skip");
3848 goto unlock;
3849 }
3850 if (!buffer_mapped(bh)) {
3851 BUFFER_TRACE(bh, "unmapped");
3852 ext4_get_block(inode, iblock, bh, 0);
3853 /* unmapped? It's a hole - nothing to do */
3854 if (!buffer_mapped(bh)) {
3855 BUFFER_TRACE(bh, "still unmapped");
3856 goto unlock;
3857 }
3858 }
3859
3860 /* Ok, it's mapped. Make sure it's up-to-date */
3861 if (PageUptodate(page))
3862 set_buffer_uptodate(bh);
3863
3864 if (!buffer_uptodate(bh)) {
3865 err = -EIO;
3866 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3867 wait_on_buffer(bh);
3868 /* Uhhuh. Read error. Complain and punt. */
3869 if (!buffer_uptodate(bh))
3870 goto unlock;
3871 if (S_ISREG(inode->i_mode) &&
3872 ext4_encrypted_inode(inode)) {
3873 /* We expect the key to be set. */
3874 BUG_ON(!fscrypt_has_encryption_key(inode));
3875 BUG_ON(blocksize != PAGE_SIZE);
3876 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3877 page, PAGE_SIZE, 0, page->index));
3878 }
3879 }
3880 if (ext4_should_journal_data(inode)) {
3881 BUFFER_TRACE(bh, "get write access");
3882 err = ext4_journal_get_write_access(handle, bh);
3883 if (err)
3884 goto unlock;
3885 }
3886 zero_user(page, offset, length);
3887 BUFFER_TRACE(bh, "zeroed end of block");
3888
3889 if (ext4_should_journal_data(inode)) {
3890 err = ext4_handle_dirty_metadata(handle, inode, bh);
3891 } else {
3892 err = 0;
3893 mark_buffer_dirty(bh);
3894 if (ext4_should_order_data(inode))
3895 err = ext4_jbd2_inode_add_write(handle, inode);
3896 }
3897
3898 unlock:
3899 unlock_page(page);
3900 put_page(page);
3901 return err;
3902 }
3903
3904 /*
3905 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3906 * starting from file offset 'from'. The range to be zero'd must
3907 * be contained with in one block. If the specified range exceeds
3908 * the end of the block it will be shortened to end of the block
3909 * that cooresponds to 'from'
3910 */
3911 static int ext4_block_zero_page_range(handle_t *handle,
3912 struct address_space *mapping, loff_t from, loff_t length)
3913 {
3914 struct inode *inode = mapping->host;
3915 unsigned offset = from & (PAGE_SIZE-1);
3916 unsigned blocksize = inode->i_sb->s_blocksize;
3917 unsigned max = blocksize - (offset & (blocksize - 1));
3918
3919 /*
3920 * correct length if it does not fall between
3921 * 'from' and the end of the block
3922 */
3923 if (length > max || length < 0)
3924 length = max;
3925
3926 if (IS_DAX(inode)) {
3927 return iomap_zero_range(inode, from, length, NULL,
3928 &ext4_iomap_ops);
3929 }
3930 return __ext4_block_zero_page_range(handle, mapping, from, length);
3931 }
3932
3933 /*
3934 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3935 * up to the end of the block which corresponds to `from'.
3936 * This required during truncate. We need to physically zero the tail end
3937 * of that block so it doesn't yield old data if the file is later grown.
3938 */
3939 static int ext4_block_truncate_page(handle_t *handle,
3940 struct address_space *mapping, loff_t from)
3941 {
3942 unsigned offset = from & (PAGE_SIZE-1);
3943 unsigned length;
3944 unsigned blocksize;
3945 struct inode *inode = mapping->host;
3946
3947 /* If we are processing an encrypted inode during orphan list handling */
3948 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3949 return 0;
3950
3951 blocksize = inode->i_sb->s_blocksize;
3952 length = blocksize - (offset & (blocksize - 1));
3953
3954 return ext4_block_zero_page_range(handle, mapping, from, length);
3955 }
3956
3957 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3958 loff_t lstart, loff_t length)
3959 {
3960 struct super_block *sb = inode->i_sb;
3961 struct address_space *mapping = inode->i_mapping;
3962 unsigned partial_start, partial_end;
3963 ext4_fsblk_t start, end;
3964 loff_t byte_end = (lstart + length - 1);
3965 int err = 0;
3966
3967 partial_start = lstart & (sb->s_blocksize - 1);
3968 partial_end = byte_end & (sb->s_blocksize - 1);
3969
3970 start = lstart >> sb->s_blocksize_bits;
3971 end = byte_end >> sb->s_blocksize_bits;
3972
3973 /* Handle partial zero within the single block */
3974 if (start == end &&
3975 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3976 err = ext4_block_zero_page_range(handle, mapping,
3977 lstart, length);
3978 return err;
3979 }
3980 /* Handle partial zero out on the start of the range */
3981 if (partial_start) {
3982 err = ext4_block_zero_page_range(handle, mapping,
3983 lstart, sb->s_blocksize);
3984 if (err)
3985 return err;
3986 }
3987 /* Handle partial zero out on the end of the range */
3988 if (partial_end != sb->s_blocksize - 1)
3989 err = ext4_block_zero_page_range(handle, mapping,
3990 byte_end - partial_end,
3991 partial_end + 1);
3992 return err;
3993 }
3994
3995 int ext4_can_truncate(struct inode *inode)
3996 {
3997 if (S_ISREG(inode->i_mode))
3998 return 1;
3999 if (S_ISDIR(inode->i_mode))
4000 return 1;
4001 if (S_ISLNK(inode->i_mode))
4002 return !ext4_inode_is_fast_symlink(inode);
4003 return 0;
4004 }
4005
4006 /*
4007 * We have to make sure i_disksize gets properly updated before we truncate
4008 * page cache due to hole punching or zero range. Otherwise i_disksize update
4009 * can get lost as it may have been postponed to submission of writeback but
4010 * that will never happen after we truncate page cache.
4011 */
4012 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4013 loff_t len)
4014 {
4015 handle_t *handle;
4016 loff_t size = i_size_read(inode);
4017
4018 WARN_ON(!inode_is_locked(inode));
4019 if (offset > size || offset + len < size)
4020 return 0;
4021
4022 if (EXT4_I(inode)->i_disksize >= size)
4023 return 0;
4024
4025 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4026 if (IS_ERR(handle))
4027 return PTR_ERR(handle);
4028 ext4_update_i_disksize(inode, size);
4029 ext4_mark_inode_dirty(handle, inode);
4030 ext4_journal_stop(handle);
4031
4032 return 0;
4033 }
4034
4035 /*
4036 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4037 * associated with the given offset and length
4038 *
4039 * @inode: File inode
4040 * @offset: The offset where the hole will begin
4041 * @len: The length of the hole
4042 *
4043 * Returns: 0 on success or negative on failure
4044 */
4045
4046 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4047 {
4048 struct super_block *sb = inode->i_sb;
4049 ext4_lblk_t first_block, stop_block;
4050 struct address_space *mapping = inode->i_mapping;
4051 loff_t first_block_offset, last_block_offset;
4052 handle_t *handle;
4053 unsigned int credits;
4054 int ret = 0;
4055
4056 if (!S_ISREG(inode->i_mode))
4057 return -EOPNOTSUPP;
4058
4059 trace_ext4_punch_hole(inode, offset, length, 0);
4060
4061 /*
4062 * Write out all dirty pages to avoid race conditions
4063 * Then release them.
4064 */
4065 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4066 ret = filemap_write_and_wait_range(mapping, offset,
4067 offset + length - 1);
4068 if (ret)
4069 return ret;
4070 }
4071
4072 inode_lock(inode);
4073
4074 /* No need to punch hole beyond i_size */
4075 if (offset >= inode->i_size)
4076 goto out_mutex;
4077
4078 /*
4079 * If the hole extends beyond i_size, set the hole
4080 * to end after the page that contains i_size
4081 */
4082 if (offset + length > inode->i_size) {
4083 length = inode->i_size +
4084 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4085 offset;
4086 }
4087
4088 if (offset & (sb->s_blocksize - 1) ||
4089 (offset + length) & (sb->s_blocksize - 1)) {
4090 /*
4091 * Attach jinode to inode for jbd2 if we do any zeroing of
4092 * partial block
4093 */
4094 ret = ext4_inode_attach_jinode(inode);
4095 if (ret < 0)
4096 goto out_mutex;
4097
4098 }
4099
4100 /* Wait all existing dio workers, newcomers will block on i_mutex */
4101 ext4_inode_block_unlocked_dio(inode);
4102 inode_dio_wait(inode);
4103
4104 /*
4105 * Prevent page faults from reinstantiating pages we have released from
4106 * page cache.
4107 */
4108 down_write(&EXT4_I(inode)->i_mmap_sem);
4109 first_block_offset = round_up(offset, sb->s_blocksize);
4110 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4111
4112 /* Now release the pages and zero block aligned part of pages*/
4113 if (last_block_offset > first_block_offset) {
4114 ret = ext4_update_disksize_before_punch(inode, offset, length);
4115 if (ret)
4116 goto out_dio;
4117 truncate_pagecache_range(inode, first_block_offset,
4118 last_block_offset);
4119 }
4120
4121 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122 credits = ext4_writepage_trans_blocks(inode);
4123 else
4124 credits = ext4_blocks_for_truncate(inode);
4125 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4126 if (IS_ERR(handle)) {
4127 ret = PTR_ERR(handle);
4128 ext4_std_error(sb, ret);
4129 goto out_dio;
4130 }
4131
4132 ret = ext4_zero_partial_blocks(handle, inode, offset,
4133 length);
4134 if (ret)
4135 goto out_stop;
4136
4137 first_block = (offset + sb->s_blocksize - 1) >>
4138 EXT4_BLOCK_SIZE_BITS(sb);
4139 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4140
4141 /* If there are no blocks to remove, return now */
4142 if (first_block >= stop_block)
4143 goto out_stop;
4144
4145 down_write(&EXT4_I(inode)->i_data_sem);
4146 ext4_discard_preallocations(inode);
4147
4148 ret = ext4_es_remove_extent(inode, first_block,
4149 stop_block - first_block);
4150 if (ret) {
4151 up_write(&EXT4_I(inode)->i_data_sem);
4152 goto out_stop;
4153 }
4154
4155 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4156 ret = ext4_ext_remove_space(inode, first_block,
4157 stop_block - 1);
4158 else
4159 ret = ext4_ind_remove_space(handle, inode, first_block,
4160 stop_block);
4161
4162 up_write(&EXT4_I(inode)->i_data_sem);
4163 if (IS_SYNC(inode))
4164 ext4_handle_sync(handle);
4165
4166 inode->i_mtime = inode->i_ctime = current_time(inode);
4167 ext4_mark_inode_dirty(handle, inode);
4168 out_stop:
4169 ext4_journal_stop(handle);
4170 out_dio:
4171 up_write(&EXT4_I(inode)->i_mmap_sem);
4172 ext4_inode_resume_unlocked_dio(inode);
4173 out_mutex:
4174 inode_unlock(inode);
4175 return ret;
4176 }
4177
4178 int ext4_inode_attach_jinode(struct inode *inode)
4179 {
4180 struct ext4_inode_info *ei = EXT4_I(inode);
4181 struct jbd2_inode *jinode;
4182
4183 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4184 return 0;
4185
4186 jinode = jbd2_alloc_inode(GFP_KERNEL);
4187 spin_lock(&inode->i_lock);
4188 if (!ei->jinode) {
4189 if (!jinode) {
4190 spin_unlock(&inode->i_lock);
4191 return -ENOMEM;
4192 }
4193 ei->jinode = jinode;
4194 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4195 jinode = NULL;
4196 }
4197 spin_unlock(&inode->i_lock);
4198 if (unlikely(jinode != NULL))
4199 jbd2_free_inode(jinode);
4200 return 0;
4201 }
4202
4203 /*
4204 * ext4_truncate()
4205 *
4206 * We block out ext4_get_block() block instantiations across the entire
4207 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4208 * simultaneously on behalf of the same inode.
4209 *
4210 * As we work through the truncate and commit bits of it to the journal there
4211 * is one core, guiding principle: the file's tree must always be consistent on
4212 * disk. We must be able to restart the truncate after a crash.
4213 *
4214 * The file's tree may be transiently inconsistent in memory (although it
4215 * probably isn't), but whenever we close off and commit a journal transaction,
4216 * the contents of (the filesystem + the journal) must be consistent and
4217 * restartable. It's pretty simple, really: bottom up, right to left (although
4218 * left-to-right works OK too).
4219 *
4220 * Note that at recovery time, journal replay occurs *before* the restart of
4221 * truncate against the orphan inode list.
4222 *
4223 * The committed inode has the new, desired i_size (which is the same as
4224 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4225 * that this inode's truncate did not complete and it will again call
4226 * ext4_truncate() to have another go. So there will be instantiated blocks
4227 * to the right of the truncation point in a crashed ext4 filesystem. But
4228 * that's fine - as long as they are linked from the inode, the post-crash
4229 * ext4_truncate() run will find them and release them.
4230 */
4231 int ext4_truncate(struct inode *inode)
4232 {
4233 struct ext4_inode_info *ei = EXT4_I(inode);
4234 unsigned int credits;
4235 int err = 0;
4236 handle_t *handle;
4237 struct address_space *mapping = inode->i_mapping;
4238
4239 /*
4240 * There is a possibility that we're either freeing the inode
4241 * or it's a completely new inode. In those cases we might not
4242 * have i_mutex locked because it's not necessary.
4243 */
4244 if (!(inode->i_state & (I_NEW|I_FREEING)))
4245 WARN_ON(!inode_is_locked(inode));
4246 trace_ext4_truncate_enter(inode);
4247
4248 if (!ext4_can_truncate(inode))
4249 return 0;
4250
4251 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4252
4253 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4254 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4255
4256 if (ext4_has_inline_data(inode)) {
4257 int has_inline = 1;
4258
4259 err = ext4_inline_data_truncate(inode, &has_inline);
4260 if (err)
4261 return err;
4262 if (has_inline)
4263 return 0;
4264 }
4265
4266 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4267 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4268 if (ext4_inode_attach_jinode(inode) < 0)
4269 return 0;
4270 }
4271
4272 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4273 credits = ext4_writepage_trans_blocks(inode);
4274 else
4275 credits = ext4_blocks_for_truncate(inode);
4276
4277 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4278 if (IS_ERR(handle))
4279 return PTR_ERR(handle);
4280
4281 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4282 ext4_block_truncate_page(handle, mapping, inode->i_size);
4283
4284 /*
4285 * We add the inode to the orphan list, so that if this
4286 * truncate spans multiple transactions, and we crash, we will
4287 * resume the truncate when the filesystem recovers. It also
4288 * marks the inode dirty, to catch the new size.
4289 *
4290 * Implication: the file must always be in a sane, consistent
4291 * truncatable state while each transaction commits.
4292 */
4293 err = ext4_orphan_add(handle, inode);
4294 if (err)
4295 goto out_stop;
4296
4297 down_write(&EXT4_I(inode)->i_data_sem);
4298
4299 ext4_discard_preallocations(inode);
4300
4301 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4302 err = ext4_ext_truncate(handle, inode);
4303 else
4304 ext4_ind_truncate(handle, inode);
4305
4306 up_write(&ei->i_data_sem);
4307 if (err)
4308 goto out_stop;
4309
4310 if (IS_SYNC(inode))
4311 ext4_handle_sync(handle);
4312
4313 out_stop:
4314 /*
4315 * If this was a simple ftruncate() and the file will remain alive,
4316 * then we need to clear up the orphan record which we created above.
4317 * However, if this was a real unlink then we were called by
4318 * ext4_evict_inode(), and we allow that function to clean up the
4319 * orphan info for us.
4320 */
4321 if (inode->i_nlink)
4322 ext4_orphan_del(handle, inode);
4323
4324 inode->i_mtime = inode->i_ctime = current_time(inode);
4325 ext4_mark_inode_dirty(handle, inode);
4326 ext4_journal_stop(handle);
4327
4328 trace_ext4_truncate_exit(inode);
4329 return err;
4330 }
4331
4332 /*
4333 * ext4_get_inode_loc returns with an extra refcount against the inode's
4334 * underlying buffer_head on success. If 'in_mem' is true, we have all
4335 * data in memory that is needed to recreate the on-disk version of this
4336 * inode.
4337 */
4338 static int __ext4_get_inode_loc(struct inode *inode,
4339 struct ext4_iloc *iloc, int in_mem)
4340 {
4341 struct ext4_group_desc *gdp;
4342 struct buffer_head *bh;
4343 struct super_block *sb = inode->i_sb;
4344 ext4_fsblk_t block;
4345 int inodes_per_block, inode_offset;
4346
4347 iloc->bh = NULL;
4348 if (!ext4_valid_inum(sb, inode->i_ino))
4349 return -EFSCORRUPTED;
4350
4351 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4352 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4353 if (!gdp)
4354 return -EIO;
4355
4356 /*
4357 * Figure out the offset within the block group inode table
4358 */
4359 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4360 inode_offset = ((inode->i_ino - 1) %
4361 EXT4_INODES_PER_GROUP(sb));
4362 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4363 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4364
4365 bh = sb_getblk(sb, block);
4366 if (unlikely(!bh))
4367 return -ENOMEM;
4368 if (!buffer_uptodate(bh)) {
4369 lock_buffer(bh);
4370
4371 /*
4372 * If the buffer has the write error flag, we have failed
4373 * to write out another inode in the same block. In this
4374 * case, we don't have to read the block because we may
4375 * read the old inode data successfully.
4376 */
4377 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4378 set_buffer_uptodate(bh);
4379
4380 if (buffer_uptodate(bh)) {
4381 /* someone brought it uptodate while we waited */
4382 unlock_buffer(bh);
4383 goto has_buffer;
4384 }
4385
4386 /*
4387 * If we have all information of the inode in memory and this
4388 * is the only valid inode in the block, we need not read the
4389 * block.
4390 */
4391 if (in_mem) {
4392 struct buffer_head *bitmap_bh;
4393 int i, start;
4394
4395 start = inode_offset & ~(inodes_per_block - 1);
4396
4397 /* Is the inode bitmap in cache? */
4398 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4399 if (unlikely(!bitmap_bh))
4400 goto make_io;
4401
4402 /*
4403 * If the inode bitmap isn't in cache then the
4404 * optimisation may end up performing two reads instead
4405 * of one, so skip it.
4406 */
4407 if (!buffer_uptodate(bitmap_bh)) {
4408 brelse(bitmap_bh);
4409 goto make_io;
4410 }
4411 for (i = start; i < start + inodes_per_block; i++) {
4412 if (i == inode_offset)
4413 continue;
4414 if (ext4_test_bit(i, bitmap_bh->b_data))
4415 break;
4416 }
4417 brelse(bitmap_bh);
4418 if (i == start + inodes_per_block) {
4419 /* all other inodes are free, so skip I/O */
4420 memset(bh->b_data, 0, bh->b_size);
4421 set_buffer_uptodate(bh);
4422 unlock_buffer(bh);
4423 goto has_buffer;
4424 }
4425 }
4426
4427 make_io:
4428 /*
4429 * If we need to do any I/O, try to pre-readahead extra
4430 * blocks from the inode table.
4431 */
4432 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4433 ext4_fsblk_t b, end, table;
4434 unsigned num;
4435 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4436
4437 table = ext4_inode_table(sb, gdp);
4438 /* s_inode_readahead_blks is always a power of 2 */
4439 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4440 if (table > b)
4441 b = table;
4442 end = b + ra_blks;
4443 num = EXT4_INODES_PER_GROUP(sb);
4444 if (ext4_has_group_desc_csum(sb))
4445 num -= ext4_itable_unused_count(sb, gdp);
4446 table += num / inodes_per_block;
4447 if (end > table)
4448 end = table;
4449 while (b <= end)
4450 sb_breadahead(sb, b++);
4451 }
4452
4453 /*
4454 * There are other valid inodes in the buffer, this inode
4455 * has in-inode xattrs, or we don't have this inode in memory.
4456 * Read the block from disk.
4457 */
4458 trace_ext4_load_inode(inode);
4459 get_bh(bh);
4460 bh->b_end_io = end_buffer_read_sync;
4461 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4462 wait_on_buffer(bh);
4463 if (!buffer_uptodate(bh)) {
4464 EXT4_ERROR_INODE_BLOCK(inode, block,
4465 "unable to read itable block");
4466 brelse(bh);
4467 return -EIO;
4468 }
4469 }
4470 has_buffer:
4471 iloc->bh = bh;
4472 return 0;
4473 }
4474
4475 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4476 {
4477 /* We have all inode data except xattrs in memory here. */
4478 return __ext4_get_inode_loc(inode, iloc,
4479 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4480 }
4481
4482 void ext4_set_inode_flags(struct inode *inode)
4483 {
4484 unsigned int flags = EXT4_I(inode)->i_flags;
4485 unsigned int new_fl = 0;
4486
4487 if (flags & EXT4_SYNC_FL)
4488 new_fl |= S_SYNC;
4489 if (flags & EXT4_APPEND_FL)
4490 new_fl |= S_APPEND;
4491 if (flags & EXT4_IMMUTABLE_FL)
4492 new_fl |= S_IMMUTABLE;
4493 if (flags & EXT4_NOATIME_FL)
4494 new_fl |= S_NOATIME;
4495 if (flags & EXT4_DIRSYNC_FL)
4496 new_fl |= S_DIRSYNC;
4497 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4498 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4499 !ext4_encrypted_inode(inode))
4500 new_fl |= S_DAX;
4501 inode_set_flags(inode, new_fl,
4502 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4503 }
4504
4505 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4506 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4507 {
4508 unsigned int vfs_fl;
4509 unsigned long old_fl, new_fl;
4510
4511 do {
4512 vfs_fl = ei->vfs_inode.i_flags;
4513 old_fl = ei->i_flags;
4514 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4515 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4516 EXT4_DIRSYNC_FL);
4517 if (vfs_fl & S_SYNC)
4518 new_fl |= EXT4_SYNC_FL;
4519 if (vfs_fl & S_APPEND)
4520 new_fl |= EXT4_APPEND_FL;
4521 if (vfs_fl & S_IMMUTABLE)
4522 new_fl |= EXT4_IMMUTABLE_FL;
4523 if (vfs_fl & S_NOATIME)
4524 new_fl |= EXT4_NOATIME_FL;
4525 if (vfs_fl & S_DIRSYNC)
4526 new_fl |= EXT4_DIRSYNC_FL;
4527 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4528 }
4529
4530 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4531 struct ext4_inode_info *ei)
4532 {
4533 blkcnt_t i_blocks ;
4534 struct inode *inode = &(ei->vfs_inode);
4535 struct super_block *sb = inode->i_sb;
4536
4537 if (ext4_has_feature_huge_file(sb)) {
4538 /* we are using combined 48 bit field */
4539 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4540 le32_to_cpu(raw_inode->i_blocks_lo);
4541 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4542 /* i_blocks represent file system block size */
4543 return i_blocks << (inode->i_blkbits - 9);
4544 } else {
4545 return i_blocks;
4546 }
4547 } else {
4548 return le32_to_cpu(raw_inode->i_blocks_lo);
4549 }
4550 }
4551
4552 static inline void ext4_iget_extra_inode(struct inode *inode,
4553 struct ext4_inode *raw_inode,
4554 struct ext4_inode_info *ei)
4555 {
4556 __le32 *magic = (void *)raw_inode +
4557 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4558 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4559 EXT4_INODE_SIZE(inode->i_sb) &&
4560 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4561 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4562 ext4_find_inline_data_nolock(inode);
4563 } else
4564 EXT4_I(inode)->i_inline_off = 0;
4565 }
4566
4567 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4568 {
4569 if (!ext4_has_feature_project(inode->i_sb))
4570 return -EOPNOTSUPP;
4571 *projid = EXT4_I(inode)->i_projid;
4572 return 0;
4573 }
4574
4575 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4576 {
4577 struct ext4_iloc iloc;
4578 struct ext4_inode *raw_inode;
4579 struct ext4_inode_info *ei;
4580 struct inode *inode;
4581 journal_t *journal = EXT4_SB(sb)->s_journal;
4582 long ret;
4583 loff_t size;
4584 int block;
4585 uid_t i_uid;
4586 gid_t i_gid;
4587 projid_t i_projid;
4588
4589 inode = iget_locked(sb, ino);
4590 if (!inode)
4591 return ERR_PTR(-ENOMEM);
4592 if (!(inode->i_state & I_NEW))
4593 return inode;
4594
4595 ei = EXT4_I(inode);
4596 iloc.bh = NULL;
4597
4598 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4599 if (ret < 0)
4600 goto bad_inode;
4601 raw_inode = ext4_raw_inode(&iloc);
4602
4603 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4604 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4605 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4606 EXT4_INODE_SIZE(inode->i_sb) ||
4607 (ei->i_extra_isize & 3)) {
4608 EXT4_ERROR_INODE(inode,
4609 "bad extra_isize %u (inode size %u)",
4610 ei->i_extra_isize,
4611 EXT4_INODE_SIZE(inode->i_sb));
4612 ret = -EFSCORRUPTED;
4613 goto bad_inode;
4614 }
4615 } else
4616 ei->i_extra_isize = 0;
4617
4618 /* Precompute checksum seed for inode metadata */
4619 if (ext4_has_metadata_csum(sb)) {
4620 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4621 __u32 csum;
4622 __le32 inum = cpu_to_le32(inode->i_ino);
4623 __le32 gen = raw_inode->i_generation;
4624 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4625 sizeof(inum));
4626 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4627 sizeof(gen));
4628 }
4629
4630 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4631 EXT4_ERROR_INODE(inode, "checksum invalid");
4632 ret = -EFSBADCRC;
4633 goto bad_inode;
4634 }
4635
4636 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4637 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4638 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4639 if (ext4_has_feature_project(sb) &&
4640 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4641 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4642 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4643 else
4644 i_projid = EXT4_DEF_PROJID;
4645
4646 if (!(test_opt(inode->i_sb, NO_UID32))) {
4647 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4648 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4649 }
4650 i_uid_write(inode, i_uid);
4651 i_gid_write(inode, i_gid);
4652 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4653 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4654
4655 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4656 ei->i_inline_off = 0;
4657 ei->i_dir_start_lookup = 0;
4658 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4659 /* We now have enough fields to check if the inode was active or not.
4660 * This is needed because nfsd might try to access dead inodes
4661 * the test is that same one that e2fsck uses
4662 * NeilBrown 1999oct15
4663 */
4664 if (inode->i_nlink == 0) {
4665 if ((inode->i_mode == 0 ||
4666 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4667 ino != EXT4_BOOT_LOADER_INO) {
4668 /* this inode is deleted */
4669 ret = -ESTALE;
4670 goto bad_inode;
4671 }
4672 /* The only unlinked inodes we let through here have
4673 * valid i_mode and are being read by the orphan
4674 * recovery code: that's fine, we're about to complete
4675 * the process of deleting those.
4676 * OR it is the EXT4_BOOT_LOADER_INO which is
4677 * not initialized on a new filesystem. */
4678 }
4679 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4680 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4681 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4682 if (ext4_has_feature_64bit(sb))
4683 ei->i_file_acl |=
4684 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4685 inode->i_size = ext4_isize(raw_inode);
4686 if ((size = i_size_read(inode)) < 0) {
4687 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4688 ret = -EFSCORRUPTED;
4689 goto bad_inode;
4690 }
4691 ei->i_disksize = inode->i_size;
4692 #ifdef CONFIG_QUOTA
4693 ei->i_reserved_quota = 0;
4694 #endif
4695 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4696 ei->i_block_group = iloc.block_group;
4697 ei->i_last_alloc_group = ~0;
4698 /*
4699 * NOTE! The in-memory inode i_data array is in little-endian order
4700 * even on big-endian machines: we do NOT byteswap the block numbers!
4701 */
4702 for (block = 0; block < EXT4_N_BLOCKS; block++)
4703 ei->i_data[block] = raw_inode->i_block[block];
4704 INIT_LIST_HEAD(&ei->i_orphan);
4705
4706 /*
4707 * Set transaction id's of transactions that have to be committed
4708 * to finish f[data]sync. We set them to currently running transaction
4709 * as we cannot be sure that the inode or some of its metadata isn't
4710 * part of the transaction - the inode could have been reclaimed and
4711 * now it is reread from disk.
4712 */
4713 if (journal) {
4714 transaction_t *transaction;
4715 tid_t tid;
4716
4717 read_lock(&journal->j_state_lock);
4718 if (journal->j_running_transaction)
4719 transaction = journal->j_running_transaction;
4720 else
4721 transaction = journal->j_committing_transaction;
4722 if (transaction)
4723 tid = transaction->t_tid;
4724 else
4725 tid = journal->j_commit_sequence;
4726 read_unlock(&journal->j_state_lock);
4727 ei->i_sync_tid = tid;
4728 ei->i_datasync_tid = tid;
4729 }
4730
4731 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4732 if (ei->i_extra_isize == 0) {
4733 /* The extra space is currently unused. Use it. */
4734 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4735 ei->i_extra_isize = sizeof(struct ext4_inode) -
4736 EXT4_GOOD_OLD_INODE_SIZE;
4737 } else {
4738 ext4_iget_extra_inode(inode, raw_inode, ei);
4739 }
4740 }
4741
4742 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4743 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4744 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4745 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4746
4747 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4748 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4749 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4750 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4751 inode->i_version |=
4752 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4753 }
4754 }
4755
4756 ret = 0;
4757 if (ei->i_file_acl &&
4758 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4759 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4760 ei->i_file_acl);
4761 ret = -EFSCORRUPTED;
4762 goto bad_inode;
4763 } else if (!ext4_has_inline_data(inode)) {
4764 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4765 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4766 (S_ISLNK(inode->i_mode) &&
4767 !ext4_inode_is_fast_symlink(inode))))
4768 /* Validate extent which is part of inode */
4769 ret = ext4_ext_check_inode(inode);
4770 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4771 (S_ISLNK(inode->i_mode) &&
4772 !ext4_inode_is_fast_symlink(inode))) {
4773 /* Validate block references which are part of inode */
4774 ret = ext4_ind_check_inode(inode);
4775 }
4776 }
4777 if (ret)
4778 goto bad_inode;
4779
4780 if (S_ISREG(inode->i_mode)) {
4781 inode->i_op = &ext4_file_inode_operations;
4782 inode->i_fop = &ext4_file_operations;
4783 ext4_set_aops(inode);
4784 } else if (S_ISDIR(inode->i_mode)) {
4785 inode->i_op = &ext4_dir_inode_operations;
4786 inode->i_fop = &ext4_dir_operations;
4787 } else if (S_ISLNK(inode->i_mode)) {
4788 if (ext4_encrypted_inode(inode)) {
4789 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4790 ext4_set_aops(inode);
4791 } else if (ext4_inode_is_fast_symlink(inode)) {
4792 inode->i_link = (char *)ei->i_data;
4793 inode->i_op = &ext4_fast_symlink_inode_operations;
4794 nd_terminate_link(ei->i_data, inode->i_size,
4795 sizeof(ei->i_data) - 1);
4796 } else {
4797 inode->i_op = &ext4_symlink_inode_operations;
4798 ext4_set_aops(inode);
4799 }
4800 inode_nohighmem(inode);
4801 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4802 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4803 inode->i_op = &ext4_special_inode_operations;
4804 if (raw_inode->i_block[0])
4805 init_special_inode(inode, inode->i_mode,
4806 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4807 else
4808 init_special_inode(inode, inode->i_mode,
4809 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4810 } else if (ino == EXT4_BOOT_LOADER_INO) {
4811 make_bad_inode(inode);
4812 } else {
4813 ret = -EFSCORRUPTED;
4814 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4815 goto bad_inode;
4816 }
4817 brelse(iloc.bh);
4818 ext4_set_inode_flags(inode);
4819 unlock_new_inode(inode);
4820 return inode;
4821
4822 bad_inode:
4823 brelse(iloc.bh);
4824 iget_failed(inode);
4825 return ERR_PTR(ret);
4826 }
4827
4828 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4829 {
4830 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4831 return ERR_PTR(-EFSCORRUPTED);
4832 return ext4_iget(sb, ino);
4833 }
4834
4835 static int ext4_inode_blocks_set(handle_t *handle,
4836 struct ext4_inode *raw_inode,
4837 struct ext4_inode_info *ei)
4838 {
4839 struct inode *inode = &(ei->vfs_inode);
4840 u64 i_blocks = inode->i_blocks;
4841 struct super_block *sb = inode->i_sb;
4842
4843 if (i_blocks <= ~0U) {
4844 /*
4845 * i_blocks can be represented in a 32 bit variable
4846 * as multiple of 512 bytes
4847 */
4848 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4849 raw_inode->i_blocks_high = 0;
4850 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4851 return 0;
4852 }
4853 if (!ext4_has_feature_huge_file(sb))
4854 return -EFBIG;
4855
4856 if (i_blocks <= 0xffffffffffffULL) {
4857 /*
4858 * i_blocks can be represented in a 48 bit variable
4859 * as multiple of 512 bytes
4860 */
4861 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4862 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4863 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4864 } else {
4865 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4866 /* i_block is stored in file system block size */
4867 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4868 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4869 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4870 }
4871 return 0;
4872 }
4873
4874 struct other_inode {
4875 unsigned long orig_ino;
4876 struct ext4_inode *raw_inode;
4877 };
4878
4879 static int other_inode_match(struct inode * inode, unsigned long ino,
4880 void *data)
4881 {
4882 struct other_inode *oi = (struct other_inode *) data;
4883
4884 if ((inode->i_ino != ino) ||
4885 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4886 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4887 ((inode->i_state & I_DIRTY_TIME) == 0))
4888 return 0;
4889 spin_lock(&inode->i_lock);
4890 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4891 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4892 (inode->i_state & I_DIRTY_TIME)) {
4893 struct ext4_inode_info *ei = EXT4_I(inode);
4894
4895 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4896 spin_unlock(&inode->i_lock);
4897
4898 spin_lock(&ei->i_raw_lock);
4899 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4900 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4901 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4902 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4903 spin_unlock(&ei->i_raw_lock);
4904 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4905 return -1;
4906 }
4907 spin_unlock(&inode->i_lock);
4908 return -1;
4909 }
4910
4911 /*
4912 * Opportunistically update the other time fields for other inodes in
4913 * the same inode table block.
4914 */
4915 static void ext4_update_other_inodes_time(struct super_block *sb,
4916 unsigned long orig_ino, char *buf)
4917 {
4918 struct other_inode oi;
4919 unsigned long ino;
4920 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4921 int inode_size = EXT4_INODE_SIZE(sb);
4922
4923 oi.orig_ino = orig_ino;
4924 /*
4925 * Calculate the first inode in the inode table block. Inode
4926 * numbers are one-based. That is, the first inode in a block
4927 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4928 */
4929 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4930 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4931 if (ino == orig_ino)
4932 continue;
4933 oi.raw_inode = (struct ext4_inode *) buf;
4934 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4935 }
4936 }
4937
4938 /*
4939 * Post the struct inode info into an on-disk inode location in the
4940 * buffer-cache. This gobbles the caller's reference to the
4941 * buffer_head in the inode location struct.
4942 *
4943 * The caller must have write access to iloc->bh.
4944 */
4945 static int ext4_do_update_inode(handle_t *handle,
4946 struct inode *inode,
4947 struct ext4_iloc *iloc)
4948 {
4949 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4950 struct ext4_inode_info *ei = EXT4_I(inode);
4951 struct buffer_head *bh = iloc->bh;
4952 struct super_block *sb = inode->i_sb;
4953 int err = 0, rc, block;
4954 int need_datasync = 0, set_large_file = 0;
4955 uid_t i_uid;
4956 gid_t i_gid;
4957 projid_t i_projid;
4958
4959 spin_lock(&ei->i_raw_lock);
4960
4961 /* For fields not tracked in the in-memory inode,
4962 * initialise them to zero for new inodes. */
4963 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4964 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4965
4966 ext4_get_inode_flags(ei);
4967 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4968 i_uid = i_uid_read(inode);
4969 i_gid = i_gid_read(inode);
4970 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4971 if (!(test_opt(inode->i_sb, NO_UID32))) {
4972 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4973 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4974 /*
4975 * Fix up interoperability with old kernels. Otherwise, old inodes get
4976 * re-used with the upper 16 bits of the uid/gid intact
4977 */
4978 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4979 raw_inode->i_uid_high = 0;
4980 raw_inode->i_gid_high = 0;
4981 } else {
4982 raw_inode->i_uid_high =
4983 cpu_to_le16(high_16_bits(i_uid));
4984 raw_inode->i_gid_high =
4985 cpu_to_le16(high_16_bits(i_gid));
4986 }
4987 } else {
4988 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4989 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4990 raw_inode->i_uid_high = 0;
4991 raw_inode->i_gid_high = 0;
4992 }
4993 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4994
4995 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4996 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4997 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4998 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4999
5000 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5001 if (err) {
5002 spin_unlock(&ei->i_raw_lock);
5003 goto out_brelse;
5004 }
5005 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5006 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5007 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5008 raw_inode->i_file_acl_high =
5009 cpu_to_le16(ei->i_file_acl >> 32);
5010 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5011 if (ei->i_disksize != ext4_isize(raw_inode)) {
5012 ext4_isize_set(raw_inode, ei->i_disksize);
5013 need_datasync = 1;
5014 }
5015 if (ei->i_disksize > 0x7fffffffULL) {
5016 if (!ext4_has_feature_large_file(sb) ||
5017 EXT4_SB(sb)->s_es->s_rev_level ==
5018 cpu_to_le32(EXT4_GOOD_OLD_REV))
5019 set_large_file = 1;
5020 }
5021 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5022 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5023 if (old_valid_dev(inode->i_rdev)) {
5024 raw_inode->i_block[0] =
5025 cpu_to_le32(old_encode_dev(inode->i_rdev));
5026 raw_inode->i_block[1] = 0;
5027 } else {
5028 raw_inode->i_block[0] = 0;
5029 raw_inode->i_block[1] =
5030 cpu_to_le32(new_encode_dev(inode->i_rdev));
5031 raw_inode->i_block[2] = 0;
5032 }
5033 } else if (!ext4_has_inline_data(inode)) {
5034 for (block = 0; block < EXT4_N_BLOCKS; block++)
5035 raw_inode->i_block[block] = ei->i_data[block];
5036 }
5037
5038 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5039 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5040 if (ei->i_extra_isize) {
5041 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5042 raw_inode->i_version_hi =
5043 cpu_to_le32(inode->i_version >> 32);
5044 raw_inode->i_extra_isize =
5045 cpu_to_le16(ei->i_extra_isize);
5046 }
5047 }
5048
5049 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5050 i_projid != EXT4_DEF_PROJID);
5051
5052 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5053 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5054 raw_inode->i_projid = cpu_to_le32(i_projid);
5055
5056 ext4_inode_csum_set(inode, raw_inode, ei);
5057 spin_unlock(&ei->i_raw_lock);
5058 if (inode->i_sb->s_flags & MS_LAZYTIME)
5059 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5060 bh->b_data);
5061
5062 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5063 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5064 if (!err)
5065 err = rc;
5066 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5067 if (set_large_file) {
5068 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5069 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5070 if (err)
5071 goto out_brelse;
5072 ext4_update_dynamic_rev(sb);
5073 ext4_set_feature_large_file(sb);
5074 ext4_handle_sync(handle);
5075 err = ext4_handle_dirty_super(handle, sb);
5076 }
5077 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5078 out_brelse:
5079 brelse(bh);
5080 ext4_std_error(inode->i_sb, err);
5081 return err;
5082 }
5083
5084 /*
5085 * ext4_write_inode()
5086 *
5087 * We are called from a few places:
5088 *
5089 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5090 * Here, there will be no transaction running. We wait for any running
5091 * transaction to commit.
5092 *
5093 * - Within flush work (sys_sync(), kupdate and such).
5094 * We wait on commit, if told to.
5095 *
5096 * - Within iput_final() -> write_inode_now()
5097 * We wait on commit, if told to.
5098 *
5099 * In all cases it is actually safe for us to return without doing anything,
5100 * because the inode has been copied into a raw inode buffer in
5101 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5102 * writeback.
5103 *
5104 * Note that we are absolutely dependent upon all inode dirtiers doing the
5105 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5106 * which we are interested.
5107 *
5108 * It would be a bug for them to not do this. The code:
5109 *
5110 * mark_inode_dirty(inode)
5111 * stuff();
5112 * inode->i_size = expr;
5113 *
5114 * is in error because write_inode() could occur while `stuff()' is running,
5115 * and the new i_size will be lost. Plus the inode will no longer be on the
5116 * superblock's dirty inode list.
5117 */
5118 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5119 {
5120 int err;
5121
5122 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5123 return 0;
5124
5125 if (EXT4_SB(inode->i_sb)->s_journal) {
5126 if (ext4_journal_current_handle()) {
5127 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5128 dump_stack();
5129 return -EIO;
5130 }
5131
5132 /*
5133 * No need to force transaction in WB_SYNC_NONE mode. Also
5134 * ext4_sync_fs() will force the commit after everything is
5135 * written.
5136 */
5137 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5138 return 0;
5139
5140 err = ext4_force_commit(inode->i_sb);
5141 } else {
5142 struct ext4_iloc iloc;
5143
5144 err = __ext4_get_inode_loc(inode, &iloc, 0);
5145 if (err)
5146 return err;
5147 /*
5148 * sync(2) will flush the whole buffer cache. No need to do
5149 * it here separately for each inode.
5150 */
5151 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5152 sync_dirty_buffer(iloc.bh);
5153 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5154 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5155 "IO error syncing inode");
5156 err = -EIO;
5157 }
5158 brelse(iloc.bh);
5159 }
5160 return err;
5161 }
5162
5163 /*
5164 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5165 * buffers that are attached to a page stradding i_size and are undergoing
5166 * commit. In that case we have to wait for commit to finish and try again.
5167 */
5168 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5169 {
5170 struct page *page;
5171 unsigned offset;
5172 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5173 tid_t commit_tid = 0;
5174 int ret;
5175
5176 offset = inode->i_size & (PAGE_SIZE - 1);
5177 /*
5178 * All buffers in the last page remain valid? Then there's nothing to
5179 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5180 * blocksize case
5181 */
5182 if (offset > PAGE_SIZE - i_blocksize(inode))
5183 return;
5184 while (1) {
5185 page = find_lock_page(inode->i_mapping,
5186 inode->i_size >> PAGE_SHIFT);
5187 if (!page)
5188 return;
5189 ret = __ext4_journalled_invalidatepage(page, offset,
5190 PAGE_SIZE - offset);
5191 unlock_page(page);
5192 put_page(page);
5193 if (ret != -EBUSY)
5194 return;
5195 commit_tid = 0;
5196 read_lock(&journal->j_state_lock);
5197 if (journal->j_committing_transaction)
5198 commit_tid = journal->j_committing_transaction->t_tid;
5199 read_unlock(&journal->j_state_lock);
5200 if (commit_tid)
5201 jbd2_log_wait_commit(journal, commit_tid);
5202 }
5203 }
5204
5205 /*
5206 * ext4_setattr()
5207 *
5208 * Called from notify_change.
5209 *
5210 * We want to trap VFS attempts to truncate the file as soon as
5211 * possible. In particular, we want to make sure that when the VFS
5212 * shrinks i_size, we put the inode on the orphan list and modify
5213 * i_disksize immediately, so that during the subsequent flushing of
5214 * dirty pages and freeing of disk blocks, we can guarantee that any
5215 * commit will leave the blocks being flushed in an unused state on
5216 * disk. (On recovery, the inode will get truncated and the blocks will
5217 * be freed, so we have a strong guarantee that no future commit will
5218 * leave these blocks visible to the user.)
5219 *
5220 * Another thing we have to assure is that if we are in ordered mode
5221 * and inode is still attached to the committing transaction, we must
5222 * we start writeout of all the dirty pages which are being truncated.
5223 * This way we are sure that all the data written in the previous
5224 * transaction are already on disk (truncate waits for pages under
5225 * writeback).
5226 *
5227 * Called with inode->i_mutex down.
5228 */
5229 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5230 {
5231 struct inode *inode = d_inode(dentry);
5232 int error, rc = 0;
5233 int orphan = 0;
5234 const unsigned int ia_valid = attr->ia_valid;
5235
5236 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5237 return -EIO;
5238
5239 error = setattr_prepare(dentry, attr);
5240 if (error)
5241 return error;
5242
5243 if (is_quota_modification(inode, attr)) {
5244 error = dquot_initialize(inode);
5245 if (error)
5246 return error;
5247 }
5248 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5249 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5250 handle_t *handle;
5251
5252 /* (user+group)*(old+new) structure, inode write (sb,
5253 * inode block, ? - but truncate inode update has it) */
5254 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5255 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5256 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5257 if (IS_ERR(handle)) {
5258 error = PTR_ERR(handle);
5259 goto err_out;
5260 }
5261 error = dquot_transfer(inode, attr);
5262 if (error) {
5263 ext4_journal_stop(handle);
5264 return error;
5265 }
5266 /* Update corresponding info in inode so that everything is in
5267 * one transaction */
5268 if (attr->ia_valid & ATTR_UID)
5269 inode->i_uid = attr->ia_uid;
5270 if (attr->ia_valid & ATTR_GID)
5271 inode->i_gid = attr->ia_gid;
5272 error = ext4_mark_inode_dirty(handle, inode);
5273 ext4_journal_stop(handle);
5274 }
5275
5276 if (attr->ia_valid & ATTR_SIZE) {
5277 handle_t *handle;
5278 loff_t oldsize = inode->i_size;
5279 int shrink = (attr->ia_size <= inode->i_size);
5280
5281 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5282 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5283
5284 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5285 return -EFBIG;
5286 }
5287 if (!S_ISREG(inode->i_mode))
5288 return -EINVAL;
5289
5290 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5291 inode_inc_iversion(inode);
5292
5293 if (ext4_should_order_data(inode) &&
5294 (attr->ia_size < inode->i_size)) {
5295 error = ext4_begin_ordered_truncate(inode,
5296 attr->ia_size);
5297 if (error)
5298 goto err_out;
5299 }
5300 if (attr->ia_size != inode->i_size) {
5301 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5302 if (IS_ERR(handle)) {
5303 error = PTR_ERR(handle);
5304 goto err_out;
5305 }
5306 if (ext4_handle_valid(handle) && shrink) {
5307 error = ext4_orphan_add(handle, inode);
5308 orphan = 1;
5309 }
5310 /*
5311 * Update c/mtime on truncate up, ext4_truncate() will
5312 * update c/mtime in shrink case below
5313 */
5314 if (!shrink) {
5315 inode->i_mtime = current_time(inode);
5316 inode->i_ctime = inode->i_mtime;
5317 }
5318 down_write(&EXT4_I(inode)->i_data_sem);
5319 EXT4_I(inode)->i_disksize = attr->ia_size;
5320 rc = ext4_mark_inode_dirty(handle, inode);
5321 if (!error)
5322 error = rc;
5323 /*
5324 * We have to update i_size under i_data_sem together
5325 * with i_disksize to avoid races with writeback code
5326 * running ext4_wb_update_i_disksize().
5327 */
5328 if (!error)
5329 i_size_write(inode, attr->ia_size);
5330 up_write(&EXT4_I(inode)->i_data_sem);
5331 ext4_journal_stop(handle);
5332 if (error) {
5333 if (orphan)
5334 ext4_orphan_del(NULL, inode);
5335 goto err_out;
5336 }
5337 }
5338 if (!shrink)
5339 pagecache_isize_extended(inode, oldsize, inode->i_size);
5340
5341 /*
5342 * Blocks are going to be removed from the inode. Wait
5343 * for dio in flight. Temporarily disable
5344 * dioread_nolock to prevent livelock.
5345 */
5346 if (orphan) {
5347 if (!ext4_should_journal_data(inode)) {
5348 ext4_inode_block_unlocked_dio(inode);
5349 inode_dio_wait(inode);
5350 ext4_inode_resume_unlocked_dio(inode);
5351 } else
5352 ext4_wait_for_tail_page_commit(inode);
5353 }
5354 down_write(&EXT4_I(inode)->i_mmap_sem);
5355 /*
5356 * Truncate pagecache after we've waited for commit
5357 * in data=journal mode to make pages freeable.
5358 */
5359 truncate_pagecache(inode, inode->i_size);
5360 if (shrink) {
5361 rc = ext4_truncate(inode);
5362 if (rc)
5363 error = rc;
5364 }
5365 up_write(&EXT4_I(inode)->i_mmap_sem);
5366 }
5367
5368 if (!error) {
5369 setattr_copy(inode, attr);
5370 mark_inode_dirty(inode);
5371 }
5372
5373 /*
5374 * If the call to ext4_truncate failed to get a transaction handle at
5375 * all, we need to clean up the in-core orphan list manually.
5376 */
5377 if (orphan && inode->i_nlink)
5378 ext4_orphan_del(NULL, inode);
5379
5380 if (!error && (ia_valid & ATTR_MODE))
5381 rc = posix_acl_chmod(inode, inode->i_mode);
5382
5383 err_out:
5384 ext4_std_error(inode->i_sb, error);
5385 if (!error)
5386 error = rc;
5387 return error;
5388 }
5389
5390 int ext4_getattr(const struct path *path, struct kstat *stat,
5391 u32 request_mask, unsigned int query_flags)
5392 {
5393 struct inode *inode;
5394 unsigned long long delalloc_blocks;
5395
5396 inode = d_inode(path->dentry);
5397 generic_fillattr(inode, stat);
5398
5399 /*
5400 * If there is inline data in the inode, the inode will normally not
5401 * have data blocks allocated (it may have an external xattr block).
5402 * Report at least one sector for such files, so tools like tar, rsync,
5403 * others don't incorrectly think the file is completely sparse.
5404 */
5405 if (unlikely(ext4_has_inline_data(inode)))
5406 stat->blocks += (stat->size + 511) >> 9;
5407
5408 /*
5409 * We can't update i_blocks if the block allocation is delayed
5410 * otherwise in the case of system crash before the real block
5411 * allocation is done, we will have i_blocks inconsistent with
5412 * on-disk file blocks.
5413 * We always keep i_blocks updated together with real
5414 * allocation. But to not confuse with user, stat
5415 * will return the blocks that include the delayed allocation
5416 * blocks for this file.
5417 */
5418 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5419 EXT4_I(inode)->i_reserved_data_blocks);
5420 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5421 return 0;
5422 }
5423
5424 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5425 int pextents)
5426 {
5427 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5428 return ext4_ind_trans_blocks(inode, lblocks);
5429 return ext4_ext_index_trans_blocks(inode, pextents);
5430 }
5431
5432 /*
5433 * Account for index blocks, block groups bitmaps and block group
5434 * descriptor blocks if modify datablocks and index blocks
5435 * worse case, the indexs blocks spread over different block groups
5436 *
5437 * If datablocks are discontiguous, they are possible to spread over
5438 * different block groups too. If they are contiguous, with flexbg,
5439 * they could still across block group boundary.
5440 *
5441 * Also account for superblock, inode, quota and xattr blocks
5442 */
5443 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5444 int pextents)
5445 {
5446 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5447 int gdpblocks;
5448 int idxblocks;
5449 int ret = 0;
5450
5451 /*
5452 * How many index blocks need to touch to map @lblocks logical blocks
5453 * to @pextents physical extents?
5454 */
5455 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5456
5457 ret = idxblocks;
5458
5459 /*
5460 * Now let's see how many group bitmaps and group descriptors need
5461 * to account
5462 */
5463 groups = idxblocks + pextents;
5464 gdpblocks = groups;
5465 if (groups > ngroups)
5466 groups = ngroups;
5467 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5468 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5469
5470 /* bitmaps and block group descriptor blocks */
5471 ret += groups + gdpblocks;
5472
5473 /* Blocks for super block, inode, quota and xattr blocks */
5474 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5475
5476 return ret;
5477 }
5478
5479 /*
5480 * Calculate the total number of credits to reserve to fit
5481 * the modification of a single pages into a single transaction,
5482 * which may include multiple chunks of block allocations.
5483 *
5484 * This could be called via ext4_write_begin()
5485 *
5486 * We need to consider the worse case, when
5487 * one new block per extent.
5488 */
5489 int ext4_writepage_trans_blocks(struct inode *inode)
5490 {
5491 int bpp = ext4_journal_blocks_per_page(inode);
5492 int ret;
5493
5494 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5495
5496 /* Account for data blocks for journalled mode */
5497 if (ext4_should_journal_data(inode))
5498 ret += bpp;
5499 return ret;
5500 }
5501
5502 /*
5503 * Calculate the journal credits for a chunk of data modification.
5504 *
5505 * This is called from DIO, fallocate or whoever calling
5506 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5507 *
5508 * journal buffers for data blocks are not included here, as DIO
5509 * and fallocate do no need to journal data buffers.
5510 */
5511 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5512 {
5513 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5514 }
5515
5516 /*
5517 * The caller must have previously called ext4_reserve_inode_write().
5518 * Give this, we know that the caller already has write access to iloc->bh.
5519 */
5520 int ext4_mark_iloc_dirty(handle_t *handle,
5521 struct inode *inode, struct ext4_iloc *iloc)
5522 {
5523 int err = 0;
5524
5525 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5526 return -EIO;
5527
5528 if (IS_I_VERSION(inode))
5529 inode_inc_iversion(inode);
5530
5531 /* the do_update_inode consumes one bh->b_count */
5532 get_bh(iloc->bh);
5533
5534 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5535 err = ext4_do_update_inode(handle, inode, iloc);
5536 put_bh(iloc->bh);
5537 return err;
5538 }
5539
5540 /*
5541 * On success, We end up with an outstanding reference count against
5542 * iloc->bh. This _must_ be cleaned up later.
5543 */
5544
5545 int
5546 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5547 struct ext4_iloc *iloc)
5548 {
5549 int err;
5550
5551 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5552 return -EIO;
5553
5554 err = ext4_get_inode_loc(inode, iloc);
5555 if (!err) {
5556 BUFFER_TRACE(iloc->bh, "get_write_access");
5557 err = ext4_journal_get_write_access(handle, iloc->bh);
5558 if (err) {
5559 brelse(iloc->bh);
5560 iloc->bh = NULL;
5561 }
5562 }
5563 ext4_std_error(inode->i_sb, err);
5564 return err;
5565 }
5566
5567 /*
5568 * Expand an inode by new_extra_isize bytes.
5569 * Returns 0 on success or negative error number on failure.
5570 */
5571 static int ext4_expand_extra_isize(struct inode *inode,
5572 unsigned int new_extra_isize,
5573 struct ext4_iloc iloc,
5574 handle_t *handle)
5575 {
5576 struct ext4_inode *raw_inode;
5577 struct ext4_xattr_ibody_header *header;
5578
5579 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5580 return 0;
5581
5582 raw_inode = ext4_raw_inode(&iloc);
5583
5584 header = IHDR(inode, raw_inode);
5585
5586 /* No extended attributes present */
5587 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5588 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5589 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5590 new_extra_isize);
5591 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5592 return 0;
5593 }
5594
5595 /* try to expand with EAs present */
5596 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5597 raw_inode, handle);
5598 }
5599
5600 /*
5601 * What we do here is to mark the in-core inode as clean with respect to inode
5602 * dirtiness (it may still be data-dirty).
5603 * This means that the in-core inode may be reaped by prune_icache
5604 * without having to perform any I/O. This is a very good thing,
5605 * because *any* task may call prune_icache - even ones which
5606 * have a transaction open against a different journal.
5607 *
5608 * Is this cheating? Not really. Sure, we haven't written the
5609 * inode out, but prune_icache isn't a user-visible syncing function.
5610 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5611 * we start and wait on commits.
5612 */
5613 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5614 {
5615 struct ext4_iloc iloc;
5616 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5617 static unsigned int mnt_count;
5618 int err, ret;
5619
5620 might_sleep();
5621 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5622 err = ext4_reserve_inode_write(handle, inode, &iloc);
5623 if (err)
5624 return err;
5625 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5626 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5627 /*
5628 * In nojournal mode, we can immediately attempt to expand
5629 * the inode. When journaled, we first need to obtain extra
5630 * buffer credits since we may write into the EA block
5631 * with this same handle. If journal_extend fails, then it will
5632 * only result in a minor loss of functionality for that inode.
5633 * If this is felt to be critical, then e2fsck should be run to
5634 * force a large enough s_min_extra_isize.
5635 */
5636 if (!ext4_handle_valid(handle) ||
5637 jbd2_journal_extend(handle,
5638 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5639 ret = ext4_expand_extra_isize(inode,
5640 sbi->s_want_extra_isize,
5641 iloc, handle);
5642 if (ret) {
5643 if (mnt_count !=
5644 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5645 ext4_warning(inode->i_sb,
5646 "Unable to expand inode %lu. Delete"
5647 " some EAs or run e2fsck.",
5648 inode->i_ino);
5649 mnt_count =
5650 le16_to_cpu(sbi->s_es->s_mnt_count);
5651 }
5652 }
5653 }
5654 }
5655 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5656 }
5657
5658 /*
5659 * ext4_dirty_inode() is called from __mark_inode_dirty()
5660 *
5661 * We're really interested in the case where a file is being extended.
5662 * i_size has been changed by generic_commit_write() and we thus need
5663 * to include the updated inode in the current transaction.
5664 *
5665 * Also, dquot_alloc_block() will always dirty the inode when blocks
5666 * are allocated to the file.
5667 *
5668 * If the inode is marked synchronous, we don't honour that here - doing
5669 * so would cause a commit on atime updates, which we don't bother doing.
5670 * We handle synchronous inodes at the highest possible level.
5671 *
5672 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5673 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5674 * to copy into the on-disk inode structure are the timestamp files.
5675 */
5676 void ext4_dirty_inode(struct inode *inode, int flags)
5677 {
5678 handle_t *handle;
5679
5680 if (flags == I_DIRTY_TIME)
5681 return;
5682 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5683 if (IS_ERR(handle))
5684 goto out;
5685
5686 ext4_mark_inode_dirty(handle, inode);
5687
5688 ext4_journal_stop(handle);
5689 out:
5690 return;
5691 }
5692
5693 #if 0
5694 /*
5695 * Bind an inode's backing buffer_head into this transaction, to prevent
5696 * it from being flushed to disk early. Unlike
5697 * ext4_reserve_inode_write, this leaves behind no bh reference and
5698 * returns no iloc structure, so the caller needs to repeat the iloc
5699 * lookup to mark the inode dirty later.
5700 */
5701 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5702 {
5703 struct ext4_iloc iloc;
5704
5705 int err = 0;
5706 if (handle) {
5707 err = ext4_get_inode_loc(inode, &iloc);
5708 if (!err) {
5709 BUFFER_TRACE(iloc.bh, "get_write_access");
5710 err = jbd2_journal_get_write_access(handle, iloc.bh);
5711 if (!err)
5712 err = ext4_handle_dirty_metadata(handle,
5713 NULL,
5714 iloc.bh);
5715 brelse(iloc.bh);
5716 }
5717 }
5718 ext4_std_error(inode->i_sb, err);
5719 return err;
5720 }
5721 #endif
5722
5723 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5724 {
5725 journal_t *journal;
5726 handle_t *handle;
5727 int err;
5728 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5729
5730 /*
5731 * We have to be very careful here: changing a data block's
5732 * journaling status dynamically is dangerous. If we write a
5733 * data block to the journal, change the status and then delete
5734 * that block, we risk forgetting to revoke the old log record
5735 * from the journal and so a subsequent replay can corrupt data.
5736 * So, first we make sure that the journal is empty and that
5737 * nobody is changing anything.
5738 */
5739
5740 journal = EXT4_JOURNAL(inode);
5741 if (!journal)
5742 return 0;
5743 if (is_journal_aborted(journal))
5744 return -EROFS;
5745
5746 /* Wait for all existing dio workers */
5747 ext4_inode_block_unlocked_dio(inode);
5748 inode_dio_wait(inode);
5749
5750 /*
5751 * Before flushing the journal and switching inode's aops, we have
5752 * to flush all dirty data the inode has. There can be outstanding
5753 * delayed allocations, there can be unwritten extents created by
5754 * fallocate or buffered writes in dioread_nolock mode covered by
5755 * dirty data which can be converted only after flushing the dirty
5756 * data (and journalled aops don't know how to handle these cases).
5757 */
5758 if (val) {
5759 down_write(&EXT4_I(inode)->i_mmap_sem);
5760 err = filemap_write_and_wait(inode->i_mapping);
5761 if (err < 0) {
5762 up_write(&EXT4_I(inode)->i_mmap_sem);
5763 ext4_inode_resume_unlocked_dio(inode);
5764 return err;
5765 }
5766 }
5767
5768 percpu_down_write(&sbi->s_journal_flag_rwsem);
5769 jbd2_journal_lock_updates(journal);
5770
5771 /*
5772 * OK, there are no updates running now, and all cached data is
5773 * synced to disk. We are now in a completely consistent state
5774 * which doesn't have anything in the journal, and we know that
5775 * no filesystem updates are running, so it is safe to modify
5776 * the inode's in-core data-journaling state flag now.
5777 */
5778
5779 if (val)
5780 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5781 else {
5782 err = jbd2_journal_flush(journal);
5783 if (err < 0) {
5784 jbd2_journal_unlock_updates(journal);
5785 percpu_up_write(&sbi->s_journal_flag_rwsem);
5786 ext4_inode_resume_unlocked_dio(inode);
5787 return err;
5788 }
5789 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5790 }
5791 ext4_set_aops(inode);
5792 /*
5793 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5794 * E.g. S_DAX may get cleared / set.
5795 */
5796 ext4_set_inode_flags(inode);
5797
5798 jbd2_journal_unlock_updates(journal);
5799 percpu_up_write(&sbi->s_journal_flag_rwsem);
5800
5801 if (val)
5802 up_write(&EXT4_I(inode)->i_mmap_sem);
5803 ext4_inode_resume_unlocked_dio(inode);
5804
5805 /* Finally we can mark the inode as dirty. */
5806
5807 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5808 if (IS_ERR(handle))
5809 return PTR_ERR(handle);
5810
5811 err = ext4_mark_inode_dirty(handle, inode);
5812 ext4_handle_sync(handle);
5813 ext4_journal_stop(handle);
5814 ext4_std_error(inode->i_sb, err);
5815
5816 return err;
5817 }
5818
5819 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5820 {
5821 return !buffer_mapped(bh);
5822 }
5823
5824 int ext4_page_mkwrite(struct vm_fault *vmf)
5825 {
5826 struct vm_area_struct *vma = vmf->vma;
5827 struct page *page = vmf->page;
5828 loff_t size;
5829 unsigned long len;
5830 int ret;
5831 struct file *file = vma->vm_file;
5832 struct inode *inode = file_inode(file);
5833 struct address_space *mapping = inode->i_mapping;
5834 handle_t *handle;
5835 get_block_t *get_block;
5836 int retries = 0;
5837
5838 sb_start_pagefault(inode->i_sb);
5839 file_update_time(vma->vm_file);
5840
5841 down_read(&EXT4_I(inode)->i_mmap_sem);
5842 /* Delalloc case is easy... */
5843 if (test_opt(inode->i_sb, DELALLOC) &&
5844 !ext4_should_journal_data(inode) &&
5845 !ext4_nonda_switch(inode->i_sb)) {
5846 do {
5847 ret = block_page_mkwrite(vma, vmf,
5848 ext4_da_get_block_prep);
5849 } while (ret == -ENOSPC &&
5850 ext4_should_retry_alloc(inode->i_sb, &retries));
5851 goto out_ret;
5852 }
5853
5854 lock_page(page);
5855 size = i_size_read(inode);
5856 /* Page got truncated from under us? */
5857 if (page->mapping != mapping || page_offset(page) > size) {
5858 unlock_page(page);
5859 ret = VM_FAULT_NOPAGE;
5860 goto out;
5861 }
5862
5863 if (page->index == size >> PAGE_SHIFT)
5864 len = size & ~PAGE_MASK;
5865 else
5866 len = PAGE_SIZE;
5867 /*
5868 * Return if we have all the buffers mapped. This avoids the need to do
5869 * journal_start/journal_stop which can block and take a long time
5870 */
5871 if (page_has_buffers(page)) {
5872 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5873 0, len, NULL,
5874 ext4_bh_unmapped)) {
5875 /* Wait so that we don't change page under IO */
5876 wait_for_stable_page(page);
5877 ret = VM_FAULT_LOCKED;
5878 goto out;
5879 }
5880 }
5881 unlock_page(page);
5882 /* OK, we need to fill the hole... */
5883 if (ext4_should_dioread_nolock(inode))
5884 get_block = ext4_get_block_unwritten;
5885 else
5886 get_block = ext4_get_block;
5887 retry_alloc:
5888 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5889 ext4_writepage_trans_blocks(inode));
5890 if (IS_ERR(handle)) {
5891 ret = VM_FAULT_SIGBUS;
5892 goto out;
5893 }
5894 ret = block_page_mkwrite(vma, vmf, get_block);
5895 if (!ret && ext4_should_journal_data(inode)) {
5896 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5897 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5898 unlock_page(page);
5899 ret = VM_FAULT_SIGBUS;
5900 ext4_journal_stop(handle);
5901 goto out;
5902 }
5903 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5904 }
5905 ext4_journal_stop(handle);
5906 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5907 goto retry_alloc;
5908 out_ret:
5909 ret = block_page_mkwrite_return(ret);
5910 out:
5911 up_read(&EXT4_I(inode)->i_mmap_sem);
5912 sb_end_pagefault(inode->i_sb);
5913 return ret;
5914 }
5915
5916 int ext4_filemap_fault(struct vm_fault *vmf)
5917 {
5918 struct inode *inode = file_inode(vmf->vma->vm_file);
5919 int err;
5920
5921 down_read(&EXT4_I(inode)->i_mmap_sem);
5922 err = filemap_fault(vmf);
5923 up_read(&EXT4_I(inode)->i_mmap_sem);
5924
5925 return err;
5926 }
5927
5928 /*
5929 * Find the first extent at or after @lblk in an inode that is not a hole.
5930 * Search for @map_len blocks at most. The extent is returned in @result.
5931 *
5932 * The function returns 1 if we found an extent. The function returns 0 in
5933 * case there is no extent at or after @lblk and in that case also sets
5934 * @result->es_len to 0. In case of error, the error code is returned.
5935 */
5936 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5937 unsigned int map_len, struct extent_status *result)
5938 {
5939 struct ext4_map_blocks map;
5940 struct extent_status es = {};
5941 int ret;
5942
5943 map.m_lblk = lblk;
5944 map.m_len = map_len;
5945
5946 /*
5947 * For non-extent based files this loop may iterate several times since
5948 * we do not determine full hole size.
5949 */
5950 while (map.m_len > 0) {
5951 ret = ext4_map_blocks(NULL, inode, &map, 0);
5952 if (ret < 0)
5953 return ret;
5954 /* There's extent covering m_lblk? Just return it. */
5955 if (ret > 0) {
5956 int status;
5957
5958 ext4_es_store_pblock(result, map.m_pblk);
5959 result->es_lblk = map.m_lblk;
5960 result->es_len = map.m_len;
5961 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5962 status = EXTENT_STATUS_UNWRITTEN;
5963 else
5964 status = EXTENT_STATUS_WRITTEN;
5965 ext4_es_store_status(result, status);
5966 return 1;
5967 }
5968 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5969 map.m_lblk + map.m_len - 1,
5970 &es);
5971 /* Is delalloc data before next block in extent tree? */
5972 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5973 ext4_lblk_t offset = 0;
5974
5975 if (es.es_lblk < lblk)
5976 offset = lblk - es.es_lblk;
5977 result->es_lblk = es.es_lblk + offset;
5978 ext4_es_store_pblock(result,
5979 ext4_es_pblock(&es) + offset);
5980 result->es_len = es.es_len - offset;
5981 ext4_es_store_status(result, ext4_es_status(&es));
5982
5983 return 1;
5984 }
5985 /* There's a hole at m_lblk, advance us after it */
5986 map.m_lblk += map.m_len;
5987 map_len -= map.m_len;
5988 map.m_len = map_len;
5989 cond_resched();
5990 }
5991 result->es_len = 0;
5992 return 0;
5993 }