]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/ext4/inode.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146 /*
147 * Test whether an inode is a fast symlink.
148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166 * Restart the transaction associated with *handle. This does a commit,
167 * so before we call here everything must be consistently dirtied against
168 * this transaction.
169 */
170 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
171 int nblocks)
172 {
173 int ret;
174
175 /*
176 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
177 * moment, get_block can be called only for blocks inside i_size since
178 * page cache has been already dropped and writes are blocked by
179 * i_mutex. So we can safely drop the i_data_sem here.
180 */
181 BUG_ON(EXT4_JOURNAL(inode) == NULL);
182 jbd_debug(2, "restarting handle %p\n", handle);
183 up_write(&EXT4_I(inode)->i_data_sem);
184 ret = ext4_journal_restart(handle, nblocks);
185 down_write(&EXT4_I(inode)->i_data_sem);
186 ext4_discard_preallocations(inode);
187
188 return ret;
189 }
190
191 /*
192 * Called at the last iput() if i_nlink is zero.
193 */
194 void ext4_evict_inode(struct inode *inode)
195 {
196 handle_t *handle;
197 int err;
198 int extra_credits = 3;
199 struct ext4_xattr_inode_array *ea_inode_array = NULL;
200
201 trace_ext4_evict_inode(inode);
202
203 if (inode->i_nlink) {
204 /*
205 * When journalling data dirty buffers are tracked only in the
206 * journal. So although mm thinks everything is clean and
207 * ready for reaping the inode might still have some pages to
208 * write in the running transaction or waiting to be
209 * checkpointed. Thus calling jbd2_journal_invalidatepage()
210 * (via truncate_inode_pages()) to discard these buffers can
211 * cause data loss. Also even if we did not discard these
212 * buffers, we would have no way to find them after the inode
213 * is reaped and thus user could see stale data if he tries to
214 * read them before the transaction is checkpointed. So be
215 * careful and force everything to disk here... We use
216 * ei->i_datasync_tid to store the newest transaction
217 * containing inode's data.
218 *
219 * Note that directories do not have this problem because they
220 * don't use page cache.
221 */
222 if (inode->i_ino != EXT4_JOURNAL_INO &&
223 ext4_should_journal_data(inode) &&
224 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
225 inode->i_data.nrpages) {
226 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
227 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
228
229 jbd2_complete_transaction(journal, commit_tid);
230 filemap_write_and_wait(&inode->i_data);
231 }
232 truncate_inode_pages_final(&inode->i_data);
233
234 goto no_delete;
235 }
236
237 if (is_bad_inode(inode))
238 goto no_delete;
239 dquot_initialize(inode);
240
241 if (ext4_should_order_data(inode))
242 ext4_begin_ordered_truncate(inode, 0);
243 truncate_inode_pages_final(&inode->i_data);
244
245 /*
246 * Protect us against freezing - iput() caller didn't have to have any
247 * protection against it
248 */
249 sb_start_intwrite(inode->i_sb);
250
251 if (!IS_NOQUOTA(inode))
252 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
253
254 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
255 ext4_blocks_for_truncate(inode)+extra_credits);
256 if (IS_ERR(handle)) {
257 ext4_std_error(inode->i_sb, PTR_ERR(handle));
258 /*
259 * If we're going to skip the normal cleanup, we still need to
260 * make sure that the in-core orphan linked list is properly
261 * cleaned up.
262 */
263 ext4_orphan_del(NULL, inode);
264 sb_end_intwrite(inode->i_sb);
265 goto no_delete;
266 }
267
268 if (IS_SYNC(inode))
269 ext4_handle_sync(handle);
270
271 /*
272 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 * special handling of symlinks here because i_size is used to
274 * determine whether ext4_inode_info->i_data contains symlink data or
275 * block mappings. Setting i_size to 0 will remove its fast symlink
276 * status. Erase i_data so that it becomes a valid empty block map.
277 */
278 if (ext4_inode_is_fast_symlink(inode))
279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 inode->i_size = 0;
281 err = ext4_mark_inode_dirty(handle, inode);
282 if (err) {
283 ext4_warning(inode->i_sb,
284 "couldn't mark inode dirty (err %d)", err);
285 goto stop_handle;
286 }
287 if (inode->i_blocks) {
288 err = ext4_truncate(inode);
289 if (err) {
290 ext4_error(inode->i_sb,
291 "couldn't truncate inode %lu (err %d)",
292 inode->i_ino, err);
293 goto stop_handle;
294 }
295 }
296
297 /* Remove xattr references. */
298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 extra_credits);
300 if (err) {
301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303 ext4_journal_stop(handle);
304 ext4_orphan_del(NULL, inode);
305 sb_end_intwrite(inode->i_sb);
306 ext4_xattr_inode_array_free(ea_inode_array);
307 goto no_delete;
308 }
309
310 /*
311 * Kill off the orphan record which ext4_truncate created.
312 * AKPM: I think this can be inside the above `if'.
313 * Note that ext4_orphan_del() has to be able to cope with the
314 * deletion of a non-existent orphan - this is because we don't
315 * know if ext4_truncate() actually created an orphan record.
316 * (Well, we could do this if we need to, but heck - it works)
317 */
318 ext4_orphan_del(handle, inode);
319 EXT4_I(inode)->i_dtime = get_seconds();
320
321 /*
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
326 * fails.
327 */
328 if (ext4_mark_inode_dirty(handle, inode))
329 /* If that failed, just do the required in-core inode clear. */
330 ext4_clear_inode(inode);
331 else
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
336 return;
337 no_delete:
338 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
339 }
340
341 #ifdef CONFIG_QUOTA
342 qsize_t *ext4_get_reserved_space(struct inode *inode)
343 {
344 return &EXT4_I(inode)->i_reserved_quota;
345 }
346 #endif
347
348 /*
349 * Called with i_data_sem down, which is important since we can call
350 * ext4_discard_preallocations() from here.
351 */
352 void ext4_da_update_reserve_space(struct inode *inode,
353 int used, int quota_claim)
354 {
355 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
356 struct ext4_inode_info *ei = EXT4_I(inode);
357
358 spin_lock(&ei->i_block_reservation_lock);
359 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
360 if (unlikely(used > ei->i_reserved_data_blocks)) {
361 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
362 "with only %d reserved data blocks",
363 __func__, inode->i_ino, used,
364 ei->i_reserved_data_blocks);
365 WARN_ON(1);
366 used = ei->i_reserved_data_blocks;
367 }
368
369 /* Update per-inode reservations */
370 ei->i_reserved_data_blocks -= used;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
372
373 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
374
375 /* Update quota subsystem for data blocks */
376 if (quota_claim)
377 dquot_claim_block(inode, EXT4_C2B(sbi, used));
378 else {
379 /*
380 * We did fallocate with an offset that is already delayed
381 * allocated. So on delayed allocated writeback we should
382 * not re-claim the quota for fallocated blocks.
383 */
384 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
385 }
386
387 /*
388 * If we have done all the pending block allocations and if
389 * there aren't any writers on the inode, we can discard the
390 * inode's preallocations.
391 */
392 if ((ei->i_reserved_data_blocks == 0) &&
393 (atomic_read(&inode->i_writecount) == 0))
394 ext4_discard_preallocations(inode);
395 }
396
397 static int __check_block_validity(struct inode *inode, const char *func,
398 unsigned int line,
399 struct ext4_map_blocks *map)
400 {
401 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
402 map->m_len)) {
403 ext4_error_inode(inode, func, line, map->m_pblk,
404 "lblock %lu mapped to illegal pblock "
405 "(length %d)", (unsigned long) map->m_lblk,
406 map->m_len);
407 return -EFSCORRUPTED;
408 }
409 return 0;
410 }
411
412 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
413 ext4_lblk_t len)
414 {
415 int ret;
416
417 if (ext4_encrypted_inode(inode))
418 return fscrypt_zeroout_range(inode, lblk, pblk, len);
419
420 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
421 if (ret > 0)
422 ret = 0;
423
424 return ret;
425 }
426
427 #define check_block_validity(inode, map) \
428 __check_block_validity((inode), __func__, __LINE__, (map))
429
430 #ifdef ES_AGGRESSIVE_TEST
431 static void ext4_map_blocks_es_recheck(handle_t *handle,
432 struct inode *inode,
433 struct ext4_map_blocks *es_map,
434 struct ext4_map_blocks *map,
435 int flags)
436 {
437 int retval;
438
439 map->m_flags = 0;
440 /*
441 * There is a race window that the result is not the same.
442 * e.g. xfstests #223 when dioread_nolock enables. The reason
443 * is that we lookup a block mapping in extent status tree with
444 * out taking i_data_sem. So at the time the unwritten extent
445 * could be converted.
446 */
447 down_read(&EXT4_I(inode)->i_data_sem);
448 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
449 retval = ext4_ext_map_blocks(handle, inode, map, flags &
450 EXT4_GET_BLOCKS_KEEP_SIZE);
451 } else {
452 retval = ext4_ind_map_blocks(handle, inode, map, flags &
453 EXT4_GET_BLOCKS_KEEP_SIZE);
454 }
455 up_read((&EXT4_I(inode)->i_data_sem));
456
457 /*
458 * We don't check m_len because extent will be collpased in status
459 * tree. So the m_len might not equal.
460 */
461 if (es_map->m_lblk != map->m_lblk ||
462 es_map->m_flags != map->m_flags ||
463 es_map->m_pblk != map->m_pblk) {
464 printk("ES cache assertion failed for inode: %lu "
465 "es_cached ex [%d/%d/%llu/%x] != "
466 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
467 inode->i_ino, es_map->m_lblk, es_map->m_len,
468 es_map->m_pblk, es_map->m_flags, map->m_lblk,
469 map->m_len, map->m_pblk, map->m_flags,
470 retval, flags);
471 }
472 }
473 #endif /* ES_AGGRESSIVE_TEST */
474
475 /*
476 * The ext4_map_blocks() function tries to look up the requested blocks,
477 * and returns if the blocks are already mapped.
478 *
479 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
480 * and store the allocated blocks in the result buffer head and mark it
481 * mapped.
482 *
483 * If file type is extents based, it will call ext4_ext_map_blocks(),
484 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
485 * based files
486 *
487 * On success, it returns the number of blocks being mapped or allocated. if
488 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
489 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
490 *
491 * It returns 0 if plain look up failed (blocks have not been allocated), in
492 * that case, @map is returned as unmapped but we still do fill map->m_len to
493 * indicate the length of a hole starting at map->m_lblk.
494 *
495 * It returns the error in case of allocation failure.
496 */
497 int ext4_map_blocks(handle_t *handle, struct inode *inode,
498 struct ext4_map_blocks *map, int flags)
499 {
500 struct extent_status es;
501 int retval;
502 int ret = 0;
503 #ifdef ES_AGGRESSIVE_TEST
504 struct ext4_map_blocks orig_map;
505
506 memcpy(&orig_map, map, sizeof(*map));
507 #endif
508
509 map->m_flags = 0;
510 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511 "logical block %lu\n", inode->i_ino, flags, map->m_len,
512 (unsigned long) map->m_lblk);
513
514 /*
515 * ext4_map_blocks returns an int, and m_len is an unsigned int
516 */
517 if (unlikely(map->m_len > INT_MAX))
518 map->m_len = INT_MAX;
519
520 /* We can handle the block number less than EXT_MAX_BLOCKS */
521 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
522 return -EFSCORRUPTED;
523
524 /* Lookup extent status tree firstly */
525 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
526 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
527 map->m_pblk = ext4_es_pblock(&es) +
528 map->m_lblk - es.es_lblk;
529 map->m_flags |= ext4_es_is_written(&es) ?
530 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
531 retval = es.es_len - (map->m_lblk - es.es_lblk);
532 if (retval > map->m_len)
533 retval = map->m_len;
534 map->m_len = retval;
535 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
536 map->m_pblk = 0;
537 retval = es.es_len - (map->m_lblk - es.es_lblk);
538 if (retval > map->m_len)
539 retval = map->m_len;
540 map->m_len = retval;
541 retval = 0;
542 } else {
543 BUG_ON(1);
544 }
545 #ifdef ES_AGGRESSIVE_TEST
546 ext4_map_blocks_es_recheck(handle, inode, map,
547 &orig_map, flags);
548 #endif
549 goto found;
550 }
551
552 /*
553 * Try to see if we can get the block without requesting a new
554 * file system block.
555 */
556 down_read(&EXT4_I(inode)->i_data_sem);
557 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
558 retval = ext4_ext_map_blocks(handle, inode, map, flags &
559 EXT4_GET_BLOCKS_KEEP_SIZE);
560 } else {
561 retval = ext4_ind_map_blocks(handle, inode, map, flags &
562 EXT4_GET_BLOCKS_KEEP_SIZE);
563 }
564 if (retval > 0) {
565 unsigned int status;
566
567 if (unlikely(retval != map->m_len)) {
568 ext4_warning(inode->i_sb,
569 "ES len assertion failed for inode "
570 "%lu: retval %d != map->m_len %d",
571 inode->i_ino, retval, map->m_len);
572 WARN_ON(1);
573 }
574
575 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
576 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
577 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
578 !(status & EXTENT_STATUS_WRITTEN) &&
579 ext4_find_delalloc_range(inode, map->m_lblk,
580 map->m_lblk + map->m_len - 1))
581 status |= EXTENT_STATUS_DELAYED;
582 ret = ext4_es_insert_extent(inode, map->m_lblk,
583 map->m_len, map->m_pblk, status);
584 if (ret < 0)
585 retval = ret;
586 }
587 up_read((&EXT4_I(inode)->i_data_sem));
588
589 found:
590 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
591 ret = check_block_validity(inode, map);
592 if (ret != 0)
593 return ret;
594 }
595
596 /* If it is only a block(s) look up */
597 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
598 return retval;
599
600 /*
601 * Returns if the blocks have already allocated
602 *
603 * Note that if blocks have been preallocated
604 * ext4_ext_get_block() returns the create = 0
605 * with buffer head unmapped.
606 */
607 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
608 /*
609 * If we need to convert extent to unwritten
610 * we continue and do the actual work in
611 * ext4_ext_map_blocks()
612 */
613 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
614 return retval;
615
616 /*
617 * Here we clear m_flags because after allocating an new extent,
618 * it will be set again.
619 */
620 map->m_flags &= ~EXT4_MAP_FLAGS;
621
622 /*
623 * New blocks allocate and/or writing to unwritten extent
624 * will possibly result in updating i_data, so we take
625 * the write lock of i_data_sem, and call get_block()
626 * with create == 1 flag.
627 */
628 down_write(&EXT4_I(inode)->i_data_sem);
629
630 /*
631 * We need to check for EXT4 here because migrate
632 * could have changed the inode type in between
633 */
634 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
635 retval = ext4_ext_map_blocks(handle, inode, map, flags);
636 } else {
637 retval = ext4_ind_map_blocks(handle, inode, map, flags);
638
639 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
640 /*
641 * We allocated new blocks which will result in
642 * i_data's format changing. Force the migrate
643 * to fail by clearing migrate flags
644 */
645 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
646 }
647
648 /*
649 * Update reserved blocks/metadata blocks after successful
650 * block allocation which had been deferred till now. We don't
651 * support fallocate for non extent files. So we can update
652 * reserve space here.
653 */
654 if ((retval > 0) &&
655 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
656 ext4_da_update_reserve_space(inode, retval, 1);
657 }
658
659 if (retval > 0) {
660 unsigned int status;
661
662 if (unlikely(retval != map->m_len)) {
663 ext4_warning(inode->i_sb,
664 "ES len assertion failed for inode "
665 "%lu: retval %d != map->m_len %d",
666 inode->i_ino, retval, map->m_len);
667 WARN_ON(1);
668 }
669
670 /*
671 * We have to zeroout blocks before inserting them into extent
672 * status tree. Otherwise someone could look them up there and
673 * use them before they are really zeroed. We also have to
674 * unmap metadata before zeroing as otherwise writeback can
675 * overwrite zeros with stale data from block device.
676 */
677 if (flags & EXT4_GET_BLOCKS_ZERO &&
678 map->m_flags & EXT4_MAP_MAPPED &&
679 map->m_flags & EXT4_MAP_NEW) {
680 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
681 map->m_len);
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
684 if (ret) {
685 retval = ret;
686 goto out_sem;
687 }
688 }
689
690 /*
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
693 */
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
695 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
696 if (ext4_es_is_written(&es))
697 goto out_sem;
698 }
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
702 !(status & EXTENT_STATUS_WRITTEN) &&
703 ext4_find_delalloc_range(inode, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
708 if (ret < 0) {
709 retval = ret;
710 goto out_sem;
711 }
712 }
713
714 out_sem:
715 up_write((&EXT4_I(inode)->i_data_sem));
716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
717 ret = check_block_validity(inode, map);
718 if (ret != 0)
719 return ret;
720
721 /*
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
724 * ordered data list.
725 */
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
729 !ext4_is_quota_file(inode) &&
730 ext4_should_order_data(inode)) {
731 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
732 ret = ext4_jbd2_inode_add_wait(handle, inode);
733 else
734 ret = ext4_jbd2_inode_add_write(handle, inode);
735 if (ret)
736 return ret;
737 }
738 }
739 return retval;
740 }
741
742 /*
743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
744 * we have to be careful as someone else may be manipulating b_state as well.
745 */
746 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
747 {
748 unsigned long old_state;
749 unsigned long new_state;
750
751 flags &= EXT4_MAP_FLAGS;
752
753 /* Dummy buffer_head? Set non-atomically. */
754 if (!bh->b_page) {
755 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
756 return;
757 }
758 /*
759 * Someone else may be modifying b_state. Be careful! This is ugly but
760 * once we get rid of using bh as a container for mapping information
761 * to pass to / from get_block functions, this can go away.
762 */
763 do {
764 old_state = READ_ONCE(bh->b_state);
765 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
766 } while (unlikely(
767 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
768 }
769
770 static int _ext4_get_block(struct inode *inode, sector_t iblock,
771 struct buffer_head *bh, int flags)
772 {
773 struct ext4_map_blocks map;
774 int ret = 0;
775
776 if (ext4_has_inline_data(inode))
777 return -ERANGE;
778
779 map.m_lblk = iblock;
780 map.m_len = bh->b_size >> inode->i_blkbits;
781
782 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
783 flags);
784 if (ret > 0) {
785 map_bh(bh, inode->i_sb, map.m_pblk);
786 ext4_update_bh_state(bh, map.m_flags);
787 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
788 ret = 0;
789 } else if (ret == 0) {
790 /* hole case, need to fill in bh->b_size */
791 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792 }
793 return ret;
794 }
795
796 int ext4_get_block(struct inode *inode, sector_t iblock,
797 struct buffer_head *bh, int create)
798 {
799 return _ext4_get_block(inode, iblock, bh,
800 create ? EXT4_GET_BLOCKS_CREATE : 0);
801 }
802
803 /*
804 * Get block function used when preparing for buffered write if we require
805 * creating an unwritten extent if blocks haven't been allocated. The extent
806 * will be converted to written after the IO is complete.
807 */
808 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
809 struct buffer_head *bh_result, int create)
810 {
811 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
812 inode->i_ino, create);
813 return _ext4_get_block(inode, iblock, bh_result,
814 EXT4_GET_BLOCKS_IO_CREATE_EXT);
815 }
816
817 /* Maximum number of blocks we map for direct IO at once. */
818 #define DIO_MAX_BLOCKS 4096
819
820 /*
821 * Get blocks function for the cases that need to start a transaction -
822 * generally difference cases of direct IO and DAX IO. It also handles retries
823 * in case of ENOSPC.
824 */
825 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
826 struct buffer_head *bh_result, int flags)
827 {
828 int dio_credits;
829 handle_t *handle;
830 int retries = 0;
831 int ret;
832
833 /* Trim mapping request to maximum we can map at once for DIO */
834 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
835 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
836 dio_credits = ext4_chunk_trans_blocks(inode,
837 bh_result->b_size >> inode->i_blkbits);
838 retry:
839 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
840 if (IS_ERR(handle))
841 return PTR_ERR(handle);
842
843 ret = _ext4_get_block(inode, iblock, bh_result, flags);
844 ext4_journal_stop(handle);
845
846 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
847 goto retry;
848 return ret;
849 }
850
851 /* Get block function for DIO reads and writes to inodes without extents */
852 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
853 struct buffer_head *bh, int create)
854 {
855 /* We don't expect handle for direct IO */
856 WARN_ON_ONCE(ext4_journal_current_handle());
857
858 if (!create)
859 return _ext4_get_block(inode, iblock, bh, 0);
860 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
861 }
862
863 /*
864 * Get block function for AIO DIO writes when we create unwritten extent if
865 * blocks are not allocated yet. The extent will be converted to written
866 * after IO is complete.
867 */
868 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
869 sector_t iblock, struct buffer_head *bh_result, int create)
870 {
871 int ret;
872
873 /* We don't expect handle for direct IO */
874 WARN_ON_ONCE(ext4_journal_current_handle());
875
876 ret = ext4_get_block_trans(inode, iblock, bh_result,
877 EXT4_GET_BLOCKS_IO_CREATE_EXT);
878
879 /*
880 * When doing DIO using unwritten extents, we need io_end to convert
881 * unwritten extents to written on IO completion. We allocate io_end
882 * once we spot unwritten extent and store it in b_private. Generic
883 * DIO code keeps b_private set and furthermore passes the value to
884 * our completion callback in 'private' argument.
885 */
886 if (!ret && buffer_unwritten(bh_result)) {
887 if (!bh_result->b_private) {
888 ext4_io_end_t *io_end;
889
890 io_end = ext4_init_io_end(inode, GFP_KERNEL);
891 if (!io_end)
892 return -ENOMEM;
893 bh_result->b_private = io_end;
894 ext4_set_io_unwritten_flag(inode, io_end);
895 }
896 set_buffer_defer_completion(bh_result);
897 }
898
899 return ret;
900 }
901
902 /*
903 * Get block function for non-AIO DIO writes when we create unwritten extent if
904 * blocks are not allocated yet. The extent will be converted to written
905 * after IO is complete by ext4_direct_IO_write().
906 */
907 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
908 sector_t iblock, struct buffer_head *bh_result, int create)
909 {
910 int ret;
911
912 /* We don't expect handle for direct IO */
913 WARN_ON_ONCE(ext4_journal_current_handle());
914
915 ret = ext4_get_block_trans(inode, iblock, bh_result,
916 EXT4_GET_BLOCKS_IO_CREATE_EXT);
917
918 /*
919 * Mark inode as having pending DIO writes to unwritten extents.
920 * ext4_direct_IO_write() checks this flag and converts extents to
921 * written.
922 */
923 if (!ret && buffer_unwritten(bh_result))
924 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
925
926 return ret;
927 }
928
929 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
930 struct buffer_head *bh_result, int create)
931 {
932 int ret;
933
934 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
935 inode->i_ino, create);
936 /* We don't expect handle for direct IO */
937 WARN_ON_ONCE(ext4_journal_current_handle());
938
939 ret = _ext4_get_block(inode, iblock, bh_result, 0);
940 /*
941 * Blocks should have been preallocated! ext4_file_write_iter() checks
942 * that.
943 */
944 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
945
946 return ret;
947 }
948
949
950 /*
951 * `handle' can be NULL if create is zero
952 */
953 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
954 ext4_lblk_t block, int map_flags)
955 {
956 struct ext4_map_blocks map;
957 struct buffer_head *bh;
958 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
959 int err;
960
961 J_ASSERT(handle != NULL || create == 0);
962
963 map.m_lblk = block;
964 map.m_len = 1;
965 err = ext4_map_blocks(handle, inode, &map, map_flags);
966
967 if (err == 0)
968 return create ? ERR_PTR(-ENOSPC) : NULL;
969 if (err < 0)
970 return ERR_PTR(err);
971
972 bh = sb_getblk(inode->i_sb, map.m_pblk);
973 if (unlikely(!bh))
974 return ERR_PTR(-ENOMEM);
975 if (map.m_flags & EXT4_MAP_NEW) {
976 J_ASSERT(create != 0);
977 J_ASSERT(handle != NULL);
978
979 /*
980 * Now that we do not always journal data, we should
981 * keep in mind whether this should always journal the
982 * new buffer as metadata. For now, regular file
983 * writes use ext4_get_block instead, so it's not a
984 * problem.
985 */
986 lock_buffer(bh);
987 BUFFER_TRACE(bh, "call get_create_access");
988 err = ext4_journal_get_create_access(handle, bh);
989 if (unlikely(err)) {
990 unlock_buffer(bh);
991 goto errout;
992 }
993 if (!buffer_uptodate(bh)) {
994 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
995 set_buffer_uptodate(bh);
996 }
997 unlock_buffer(bh);
998 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
999 err = ext4_handle_dirty_metadata(handle, inode, bh);
1000 if (unlikely(err))
1001 goto errout;
1002 } else
1003 BUFFER_TRACE(bh, "not a new buffer");
1004 return bh;
1005 errout:
1006 brelse(bh);
1007 return ERR_PTR(err);
1008 }
1009
1010 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1011 ext4_lblk_t block, int map_flags)
1012 {
1013 struct buffer_head *bh;
1014
1015 bh = ext4_getblk(handle, inode, block, map_flags);
1016 if (IS_ERR(bh))
1017 return bh;
1018 if (!bh || buffer_uptodate(bh))
1019 return bh;
1020 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1021 wait_on_buffer(bh);
1022 if (buffer_uptodate(bh))
1023 return bh;
1024 put_bh(bh);
1025 return ERR_PTR(-EIO);
1026 }
1027
1028 /* Read a contiguous batch of blocks. */
1029 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1030 bool wait, struct buffer_head **bhs)
1031 {
1032 int i, err;
1033
1034 for (i = 0; i < bh_count; i++) {
1035 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1036 if (IS_ERR(bhs[i])) {
1037 err = PTR_ERR(bhs[i]);
1038 bh_count = i;
1039 goto out_brelse;
1040 }
1041 }
1042
1043 for (i = 0; i < bh_count; i++)
1044 /* Note that NULL bhs[i] is valid because of holes. */
1045 if (bhs[i] && !buffer_uptodate(bhs[i]))
1046 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1047 &bhs[i]);
1048
1049 if (!wait)
1050 return 0;
1051
1052 for (i = 0; i < bh_count; i++)
1053 if (bhs[i])
1054 wait_on_buffer(bhs[i]);
1055
1056 for (i = 0; i < bh_count; i++) {
1057 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1058 err = -EIO;
1059 goto out_brelse;
1060 }
1061 }
1062 return 0;
1063
1064 out_brelse:
1065 for (i = 0; i < bh_count; i++) {
1066 brelse(bhs[i]);
1067 bhs[i] = NULL;
1068 }
1069 return err;
1070 }
1071
1072 int ext4_walk_page_buffers(handle_t *handle,
1073 struct buffer_head *head,
1074 unsigned from,
1075 unsigned to,
1076 int *partial,
1077 int (*fn)(handle_t *handle,
1078 struct buffer_head *bh))
1079 {
1080 struct buffer_head *bh;
1081 unsigned block_start, block_end;
1082 unsigned blocksize = head->b_size;
1083 int err, ret = 0;
1084 struct buffer_head *next;
1085
1086 for (bh = head, block_start = 0;
1087 ret == 0 && (bh != head || !block_start);
1088 block_start = block_end, bh = next) {
1089 next = bh->b_this_page;
1090 block_end = block_start + blocksize;
1091 if (block_end <= from || block_start >= to) {
1092 if (partial && !buffer_uptodate(bh))
1093 *partial = 1;
1094 continue;
1095 }
1096 err = (*fn)(handle, bh);
1097 if (!ret)
1098 ret = err;
1099 }
1100 return ret;
1101 }
1102
1103 /*
1104 * To preserve ordering, it is essential that the hole instantiation and
1105 * the data write be encapsulated in a single transaction. We cannot
1106 * close off a transaction and start a new one between the ext4_get_block()
1107 * and the commit_write(). So doing the jbd2_journal_start at the start of
1108 * prepare_write() is the right place.
1109 *
1110 * Also, this function can nest inside ext4_writepage(). In that case, we
1111 * *know* that ext4_writepage() has generated enough buffer credits to do the
1112 * whole page. So we won't block on the journal in that case, which is good,
1113 * because the caller may be PF_MEMALLOC.
1114 *
1115 * By accident, ext4 can be reentered when a transaction is open via
1116 * quota file writes. If we were to commit the transaction while thus
1117 * reentered, there can be a deadlock - we would be holding a quota
1118 * lock, and the commit would never complete if another thread had a
1119 * transaction open and was blocking on the quota lock - a ranking
1120 * violation.
1121 *
1122 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1123 * will _not_ run commit under these circumstances because handle->h_ref
1124 * is elevated. We'll still have enough credits for the tiny quotafile
1125 * write.
1126 */
1127 int do_journal_get_write_access(handle_t *handle,
1128 struct buffer_head *bh)
1129 {
1130 int dirty = buffer_dirty(bh);
1131 int ret;
1132
1133 if (!buffer_mapped(bh) || buffer_freed(bh))
1134 return 0;
1135 /*
1136 * __block_write_begin() could have dirtied some buffers. Clean
1137 * the dirty bit as jbd2_journal_get_write_access() could complain
1138 * otherwise about fs integrity issues. Setting of the dirty bit
1139 * by __block_write_begin() isn't a real problem here as we clear
1140 * the bit before releasing a page lock and thus writeback cannot
1141 * ever write the buffer.
1142 */
1143 if (dirty)
1144 clear_buffer_dirty(bh);
1145 BUFFER_TRACE(bh, "get write access");
1146 ret = ext4_journal_get_write_access(handle, bh);
1147 if (!ret && dirty)
1148 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1149 return ret;
1150 }
1151
1152 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1153 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1154 get_block_t *get_block)
1155 {
1156 unsigned from = pos & (PAGE_SIZE - 1);
1157 unsigned to = from + len;
1158 struct inode *inode = page->mapping->host;
1159 unsigned block_start, block_end;
1160 sector_t block;
1161 int err = 0;
1162 unsigned blocksize = inode->i_sb->s_blocksize;
1163 unsigned bbits;
1164 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1165 bool decrypt = false;
1166
1167 BUG_ON(!PageLocked(page));
1168 BUG_ON(from > PAGE_SIZE);
1169 BUG_ON(to > PAGE_SIZE);
1170 BUG_ON(from > to);
1171
1172 if (!page_has_buffers(page))
1173 create_empty_buffers(page, blocksize, 0);
1174 head = page_buffers(page);
1175 bbits = ilog2(blocksize);
1176 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1177
1178 for (bh = head, block_start = 0; bh != head || !block_start;
1179 block++, block_start = block_end, bh = bh->b_this_page) {
1180 block_end = block_start + blocksize;
1181 if (block_end <= from || block_start >= to) {
1182 if (PageUptodate(page)) {
1183 if (!buffer_uptodate(bh))
1184 set_buffer_uptodate(bh);
1185 }
1186 continue;
1187 }
1188 if (buffer_new(bh))
1189 clear_buffer_new(bh);
1190 if (!buffer_mapped(bh)) {
1191 WARN_ON(bh->b_size != blocksize);
1192 err = get_block(inode, block, bh, 1);
1193 if (err)
1194 break;
1195 if (buffer_new(bh)) {
1196 clean_bdev_bh_alias(bh);
1197 if (PageUptodate(page)) {
1198 clear_buffer_new(bh);
1199 set_buffer_uptodate(bh);
1200 mark_buffer_dirty(bh);
1201 continue;
1202 }
1203 if (block_end > to || block_start < from)
1204 zero_user_segments(page, to, block_end,
1205 block_start, from);
1206 continue;
1207 }
1208 }
1209 if (PageUptodate(page)) {
1210 if (!buffer_uptodate(bh))
1211 set_buffer_uptodate(bh);
1212 continue;
1213 }
1214 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1215 !buffer_unwritten(bh) &&
1216 (block_start < from || block_end > to)) {
1217 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1218 *wait_bh++ = bh;
1219 decrypt = ext4_encrypted_inode(inode) &&
1220 S_ISREG(inode->i_mode);
1221 }
1222 }
1223 /*
1224 * If we issued read requests, let them complete.
1225 */
1226 while (wait_bh > wait) {
1227 wait_on_buffer(*--wait_bh);
1228 if (!buffer_uptodate(*wait_bh))
1229 err = -EIO;
1230 }
1231 if (unlikely(err))
1232 page_zero_new_buffers(page, from, to);
1233 else if (decrypt)
1234 err = fscrypt_decrypt_page(page->mapping->host, page,
1235 PAGE_SIZE, 0, page->index);
1236 return err;
1237 }
1238 #endif
1239
1240 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1241 loff_t pos, unsigned len, unsigned flags,
1242 struct page **pagep, void **fsdata)
1243 {
1244 struct inode *inode = mapping->host;
1245 int ret, needed_blocks;
1246 handle_t *handle;
1247 int retries = 0;
1248 struct page *page;
1249 pgoff_t index;
1250 unsigned from, to;
1251
1252 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1253 return -EIO;
1254
1255 trace_ext4_write_begin(inode, pos, len, flags);
1256 /*
1257 * Reserve one block more for addition to orphan list in case
1258 * we allocate blocks but write fails for some reason
1259 */
1260 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1261 index = pos >> PAGE_SHIFT;
1262 from = pos & (PAGE_SIZE - 1);
1263 to = from + len;
1264
1265 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1266 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1267 flags, pagep);
1268 if (ret < 0)
1269 return ret;
1270 if (ret == 1)
1271 return 0;
1272 }
1273
1274 /*
1275 * grab_cache_page_write_begin() can take a long time if the
1276 * system is thrashing due to memory pressure, or if the page
1277 * is being written back. So grab it first before we start
1278 * the transaction handle. This also allows us to allocate
1279 * the page (if needed) without using GFP_NOFS.
1280 */
1281 retry_grab:
1282 page = grab_cache_page_write_begin(mapping, index, flags);
1283 if (!page)
1284 return -ENOMEM;
1285 unlock_page(page);
1286
1287 retry_journal:
1288 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1289 if (IS_ERR(handle)) {
1290 put_page(page);
1291 return PTR_ERR(handle);
1292 }
1293
1294 lock_page(page);
1295 if (page->mapping != mapping) {
1296 /* The page got truncated from under us */
1297 unlock_page(page);
1298 put_page(page);
1299 ext4_journal_stop(handle);
1300 goto retry_grab;
1301 }
1302 /* In case writeback began while the page was unlocked */
1303 wait_for_stable_page(page);
1304
1305 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1306 if (ext4_should_dioread_nolock(inode))
1307 ret = ext4_block_write_begin(page, pos, len,
1308 ext4_get_block_unwritten);
1309 else
1310 ret = ext4_block_write_begin(page, pos, len,
1311 ext4_get_block);
1312 #else
1313 if (ext4_should_dioread_nolock(inode))
1314 ret = __block_write_begin(page, pos, len,
1315 ext4_get_block_unwritten);
1316 else
1317 ret = __block_write_begin(page, pos, len, ext4_get_block);
1318 #endif
1319 if (!ret && ext4_should_journal_data(inode)) {
1320 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1321 from, to, NULL,
1322 do_journal_get_write_access);
1323 }
1324
1325 if (ret) {
1326 unlock_page(page);
1327 /*
1328 * __block_write_begin may have instantiated a few blocks
1329 * outside i_size. Trim these off again. Don't need
1330 * i_size_read because we hold i_mutex.
1331 *
1332 * Add inode to orphan list in case we crash before
1333 * truncate finishes
1334 */
1335 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1336 ext4_orphan_add(handle, inode);
1337
1338 ext4_journal_stop(handle);
1339 if (pos + len > inode->i_size) {
1340 ext4_truncate_failed_write(inode);
1341 /*
1342 * If truncate failed early the inode might
1343 * still be on the orphan list; we need to
1344 * make sure the inode is removed from the
1345 * orphan list in that case.
1346 */
1347 if (inode->i_nlink)
1348 ext4_orphan_del(NULL, inode);
1349 }
1350
1351 if (ret == -ENOSPC &&
1352 ext4_should_retry_alloc(inode->i_sb, &retries))
1353 goto retry_journal;
1354 put_page(page);
1355 return ret;
1356 }
1357 *pagep = page;
1358 return ret;
1359 }
1360
1361 /* For write_end() in data=journal mode */
1362 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1363 {
1364 int ret;
1365 if (!buffer_mapped(bh) || buffer_freed(bh))
1366 return 0;
1367 set_buffer_uptodate(bh);
1368 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1369 clear_buffer_meta(bh);
1370 clear_buffer_prio(bh);
1371 return ret;
1372 }
1373
1374 /*
1375 * We need to pick up the new inode size which generic_commit_write gave us
1376 * `file' can be NULL - eg, when called from page_symlink().
1377 *
1378 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1379 * buffers are managed internally.
1380 */
1381 static int ext4_write_end(struct file *file,
1382 struct address_space *mapping,
1383 loff_t pos, unsigned len, unsigned copied,
1384 struct page *page, void *fsdata)
1385 {
1386 handle_t *handle = ext4_journal_current_handle();
1387 struct inode *inode = mapping->host;
1388 loff_t old_size = inode->i_size;
1389 int ret = 0, ret2;
1390 int i_size_changed = 0;
1391
1392 trace_ext4_write_end(inode, pos, len, copied);
1393 if (ext4_has_inline_data(inode)) {
1394 ret = ext4_write_inline_data_end(inode, pos, len,
1395 copied, page);
1396 if (ret < 0) {
1397 unlock_page(page);
1398 put_page(page);
1399 goto errout;
1400 }
1401 copied = ret;
1402 } else
1403 copied = block_write_end(file, mapping, pos,
1404 len, copied, page, fsdata);
1405 /*
1406 * it's important to update i_size while still holding page lock:
1407 * page writeout could otherwise come in and zero beyond i_size.
1408 */
1409 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1410 unlock_page(page);
1411 put_page(page);
1412
1413 if (old_size < pos)
1414 pagecache_isize_extended(inode, old_size, pos);
1415 /*
1416 * Don't mark the inode dirty under page lock. First, it unnecessarily
1417 * makes the holding time of page lock longer. Second, it forces lock
1418 * ordering of page lock and transaction start for journaling
1419 * filesystems.
1420 */
1421 if (i_size_changed)
1422 ext4_mark_inode_dirty(handle, inode);
1423
1424 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1425 /* if we have allocated more blocks and copied
1426 * less. We will have blocks allocated outside
1427 * inode->i_size. So truncate them
1428 */
1429 ext4_orphan_add(handle, inode);
1430 errout:
1431 ret2 = ext4_journal_stop(handle);
1432 if (!ret)
1433 ret = ret2;
1434
1435 if (pos + len > inode->i_size) {
1436 ext4_truncate_failed_write(inode);
1437 /*
1438 * If truncate failed early the inode might still be
1439 * on the orphan list; we need to make sure the inode
1440 * is removed from the orphan list in that case.
1441 */
1442 if (inode->i_nlink)
1443 ext4_orphan_del(NULL, inode);
1444 }
1445
1446 return ret ? ret : copied;
1447 }
1448
1449 /*
1450 * This is a private version of page_zero_new_buffers() which doesn't
1451 * set the buffer to be dirty, since in data=journalled mode we need
1452 * to call ext4_handle_dirty_metadata() instead.
1453 */
1454 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1455 struct page *page,
1456 unsigned from, unsigned to)
1457 {
1458 unsigned int block_start = 0, block_end;
1459 struct buffer_head *head, *bh;
1460
1461 bh = head = page_buffers(page);
1462 do {
1463 block_end = block_start + bh->b_size;
1464 if (buffer_new(bh)) {
1465 if (block_end > from && block_start < to) {
1466 if (!PageUptodate(page)) {
1467 unsigned start, size;
1468
1469 start = max(from, block_start);
1470 size = min(to, block_end) - start;
1471
1472 zero_user(page, start, size);
1473 write_end_fn(handle, bh);
1474 }
1475 clear_buffer_new(bh);
1476 }
1477 }
1478 block_start = block_end;
1479 bh = bh->b_this_page;
1480 } while (bh != head);
1481 }
1482
1483 static int ext4_journalled_write_end(struct file *file,
1484 struct address_space *mapping,
1485 loff_t pos, unsigned len, unsigned copied,
1486 struct page *page, void *fsdata)
1487 {
1488 handle_t *handle = ext4_journal_current_handle();
1489 struct inode *inode = mapping->host;
1490 loff_t old_size = inode->i_size;
1491 int ret = 0, ret2;
1492 int partial = 0;
1493 unsigned from, to;
1494 int size_changed = 0;
1495
1496 trace_ext4_journalled_write_end(inode, pos, len, copied);
1497 from = pos & (PAGE_SIZE - 1);
1498 to = from + len;
1499
1500 BUG_ON(!ext4_handle_valid(handle));
1501
1502 if (ext4_has_inline_data(inode)) {
1503 ret = ext4_write_inline_data_end(inode, pos, len,
1504 copied, page);
1505 if (ret < 0) {
1506 unlock_page(page);
1507 put_page(page);
1508 goto errout;
1509 }
1510 copied = ret;
1511 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1512 copied = 0;
1513 ext4_journalled_zero_new_buffers(handle, page, from, to);
1514 } else {
1515 if (unlikely(copied < len))
1516 ext4_journalled_zero_new_buffers(handle, page,
1517 from + copied, to);
1518 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1519 from + copied, &partial,
1520 write_end_fn);
1521 if (!partial)
1522 SetPageUptodate(page);
1523 }
1524 size_changed = ext4_update_inode_size(inode, pos + copied);
1525 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1526 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1527 unlock_page(page);
1528 put_page(page);
1529
1530 if (old_size < pos)
1531 pagecache_isize_extended(inode, old_size, pos);
1532
1533 if (size_changed) {
1534 ret2 = ext4_mark_inode_dirty(handle, inode);
1535 if (!ret)
1536 ret = ret2;
1537 }
1538
1539 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1540 /* if we have allocated more blocks and copied
1541 * less. We will have blocks allocated outside
1542 * inode->i_size. So truncate them
1543 */
1544 ext4_orphan_add(handle, inode);
1545
1546 errout:
1547 ret2 = ext4_journal_stop(handle);
1548 if (!ret)
1549 ret = ret2;
1550 if (pos + len > inode->i_size) {
1551 ext4_truncate_failed_write(inode);
1552 /*
1553 * If truncate failed early the inode might still be
1554 * on the orphan list; we need to make sure the inode
1555 * is removed from the orphan list in that case.
1556 */
1557 if (inode->i_nlink)
1558 ext4_orphan_del(NULL, inode);
1559 }
1560
1561 return ret ? ret : copied;
1562 }
1563
1564 /*
1565 * Reserve space for a single cluster
1566 */
1567 static int ext4_da_reserve_space(struct inode *inode)
1568 {
1569 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1570 struct ext4_inode_info *ei = EXT4_I(inode);
1571 int ret;
1572
1573 /*
1574 * We will charge metadata quota at writeout time; this saves
1575 * us from metadata over-estimation, though we may go over by
1576 * a small amount in the end. Here we just reserve for data.
1577 */
1578 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1579 if (ret)
1580 return ret;
1581
1582 spin_lock(&ei->i_block_reservation_lock);
1583 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1584 spin_unlock(&ei->i_block_reservation_lock);
1585 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1586 return -ENOSPC;
1587 }
1588 ei->i_reserved_data_blocks++;
1589 trace_ext4_da_reserve_space(inode);
1590 spin_unlock(&ei->i_block_reservation_lock);
1591
1592 return 0; /* success */
1593 }
1594
1595 static void ext4_da_release_space(struct inode *inode, int to_free)
1596 {
1597 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1598 struct ext4_inode_info *ei = EXT4_I(inode);
1599
1600 if (!to_free)
1601 return; /* Nothing to release, exit */
1602
1603 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1604
1605 trace_ext4_da_release_space(inode, to_free);
1606 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1607 /*
1608 * if there aren't enough reserved blocks, then the
1609 * counter is messed up somewhere. Since this
1610 * function is called from invalidate page, it's
1611 * harmless to return without any action.
1612 */
1613 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1614 "ino %lu, to_free %d with only %d reserved "
1615 "data blocks", inode->i_ino, to_free,
1616 ei->i_reserved_data_blocks);
1617 WARN_ON(1);
1618 to_free = ei->i_reserved_data_blocks;
1619 }
1620 ei->i_reserved_data_blocks -= to_free;
1621
1622 /* update fs dirty data blocks counter */
1623 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1624
1625 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1626
1627 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1628 }
1629
1630 static void ext4_da_page_release_reservation(struct page *page,
1631 unsigned int offset,
1632 unsigned int length)
1633 {
1634 int to_release = 0, contiguous_blks = 0;
1635 struct buffer_head *head, *bh;
1636 unsigned int curr_off = 0;
1637 struct inode *inode = page->mapping->host;
1638 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1639 unsigned int stop = offset + length;
1640 int num_clusters;
1641 ext4_fsblk_t lblk;
1642
1643 BUG_ON(stop > PAGE_SIZE || stop < length);
1644
1645 head = page_buffers(page);
1646 bh = head;
1647 do {
1648 unsigned int next_off = curr_off + bh->b_size;
1649
1650 if (next_off > stop)
1651 break;
1652
1653 if ((offset <= curr_off) && (buffer_delay(bh))) {
1654 to_release++;
1655 contiguous_blks++;
1656 clear_buffer_delay(bh);
1657 } else if (contiguous_blks) {
1658 lblk = page->index <<
1659 (PAGE_SHIFT - inode->i_blkbits);
1660 lblk += (curr_off >> inode->i_blkbits) -
1661 contiguous_blks;
1662 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663 contiguous_blks = 0;
1664 }
1665 curr_off = next_off;
1666 } while ((bh = bh->b_this_page) != head);
1667
1668 if (contiguous_blks) {
1669 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1670 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1671 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1672 }
1673
1674 /* If we have released all the blocks belonging to a cluster, then we
1675 * need to release the reserved space for that cluster. */
1676 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1677 while (num_clusters > 0) {
1678 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1679 ((num_clusters - 1) << sbi->s_cluster_bits);
1680 if (sbi->s_cluster_ratio == 1 ||
1681 !ext4_find_delalloc_cluster(inode, lblk))
1682 ext4_da_release_space(inode, 1);
1683
1684 num_clusters--;
1685 }
1686 }
1687
1688 /*
1689 * Delayed allocation stuff
1690 */
1691
1692 struct mpage_da_data {
1693 struct inode *inode;
1694 struct writeback_control *wbc;
1695
1696 pgoff_t first_page; /* The first page to write */
1697 pgoff_t next_page; /* Current page to examine */
1698 pgoff_t last_page; /* Last page to examine */
1699 /*
1700 * Extent to map - this can be after first_page because that can be
1701 * fully mapped. We somewhat abuse m_flags to store whether the extent
1702 * is delalloc or unwritten.
1703 */
1704 struct ext4_map_blocks map;
1705 struct ext4_io_submit io_submit; /* IO submission data */
1706 unsigned int do_map:1;
1707 };
1708
1709 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1710 bool invalidate)
1711 {
1712 int nr_pages, i;
1713 pgoff_t index, end;
1714 struct pagevec pvec;
1715 struct inode *inode = mpd->inode;
1716 struct address_space *mapping = inode->i_mapping;
1717
1718 /* This is necessary when next_page == 0. */
1719 if (mpd->first_page >= mpd->next_page)
1720 return;
1721
1722 index = mpd->first_page;
1723 end = mpd->next_page - 1;
1724 if (invalidate) {
1725 ext4_lblk_t start, last;
1726 start = index << (PAGE_SHIFT - inode->i_blkbits);
1727 last = end << (PAGE_SHIFT - inode->i_blkbits);
1728 ext4_es_remove_extent(inode, start, last - start + 1);
1729 }
1730
1731 pagevec_init(&pvec);
1732 while (index <= end) {
1733 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1734 if (nr_pages == 0)
1735 break;
1736 for (i = 0; i < nr_pages; i++) {
1737 struct page *page = pvec.pages[i];
1738
1739 BUG_ON(!PageLocked(page));
1740 BUG_ON(PageWriteback(page));
1741 if (invalidate) {
1742 if (page_mapped(page))
1743 clear_page_dirty_for_io(page);
1744 block_invalidatepage(page, 0, PAGE_SIZE);
1745 ClearPageUptodate(page);
1746 }
1747 unlock_page(page);
1748 }
1749 pagevec_release(&pvec);
1750 }
1751 }
1752
1753 static void ext4_print_free_blocks(struct inode *inode)
1754 {
1755 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1756 struct super_block *sb = inode->i_sb;
1757 struct ext4_inode_info *ei = EXT4_I(inode);
1758
1759 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1760 EXT4_C2B(EXT4_SB(inode->i_sb),
1761 ext4_count_free_clusters(sb)));
1762 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1763 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1764 (long long) EXT4_C2B(EXT4_SB(sb),
1765 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1766 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1767 (long long) EXT4_C2B(EXT4_SB(sb),
1768 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1769 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1770 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1771 ei->i_reserved_data_blocks);
1772 return;
1773 }
1774
1775 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1776 {
1777 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1778 }
1779
1780 /*
1781 * This function is grabs code from the very beginning of
1782 * ext4_map_blocks, but assumes that the caller is from delayed write
1783 * time. This function looks up the requested blocks and sets the
1784 * buffer delay bit under the protection of i_data_sem.
1785 */
1786 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1787 struct ext4_map_blocks *map,
1788 struct buffer_head *bh)
1789 {
1790 struct extent_status es;
1791 int retval;
1792 sector_t invalid_block = ~((sector_t) 0xffff);
1793 #ifdef ES_AGGRESSIVE_TEST
1794 struct ext4_map_blocks orig_map;
1795
1796 memcpy(&orig_map, map, sizeof(*map));
1797 #endif
1798
1799 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1800 invalid_block = ~0;
1801
1802 map->m_flags = 0;
1803 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1804 "logical block %lu\n", inode->i_ino, map->m_len,
1805 (unsigned long) map->m_lblk);
1806
1807 /* Lookup extent status tree firstly */
1808 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1809 if (ext4_es_is_hole(&es)) {
1810 retval = 0;
1811 down_read(&EXT4_I(inode)->i_data_sem);
1812 goto add_delayed;
1813 }
1814
1815 /*
1816 * Delayed extent could be allocated by fallocate.
1817 * So we need to check it.
1818 */
1819 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1820 map_bh(bh, inode->i_sb, invalid_block);
1821 set_buffer_new(bh);
1822 set_buffer_delay(bh);
1823 return 0;
1824 }
1825
1826 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1827 retval = es.es_len - (iblock - es.es_lblk);
1828 if (retval > map->m_len)
1829 retval = map->m_len;
1830 map->m_len = retval;
1831 if (ext4_es_is_written(&es))
1832 map->m_flags |= EXT4_MAP_MAPPED;
1833 else if (ext4_es_is_unwritten(&es))
1834 map->m_flags |= EXT4_MAP_UNWRITTEN;
1835 else
1836 BUG_ON(1);
1837
1838 #ifdef ES_AGGRESSIVE_TEST
1839 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1840 #endif
1841 return retval;
1842 }
1843
1844 /*
1845 * Try to see if we can get the block without requesting a new
1846 * file system block.
1847 */
1848 down_read(&EXT4_I(inode)->i_data_sem);
1849 if (ext4_has_inline_data(inode))
1850 retval = 0;
1851 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1852 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1853 else
1854 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1855
1856 add_delayed:
1857 if (retval == 0) {
1858 int ret;
1859 /*
1860 * XXX: __block_prepare_write() unmaps passed block,
1861 * is it OK?
1862 */
1863 /*
1864 * If the block was allocated from previously allocated cluster,
1865 * then we don't need to reserve it again. However we still need
1866 * to reserve metadata for every block we're going to write.
1867 */
1868 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1869 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1870 ret = ext4_da_reserve_space(inode);
1871 if (ret) {
1872 /* not enough space to reserve */
1873 retval = ret;
1874 goto out_unlock;
1875 }
1876 }
1877
1878 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1879 ~0, EXTENT_STATUS_DELAYED);
1880 if (ret) {
1881 retval = ret;
1882 goto out_unlock;
1883 }
1884
1885 map_bh(bh, inode->i_sb, invalid_block);
1886 set_buffer_new(bh);
1887 set_buffer_delay(bh);
1888 } else if (retval > 0) {
1889 int ret;
1890 unsigned int status;
1891
1892 if (unlikely(retval != map->m_len)) {
1893 ext4_warning(inode->i_sb,
1894 "ES len assertion failed for inode "
1895 "%lu: retval %d != map->m_len %d",
1896 inode->i_ino, retval, map->m_len);
1897 WARN_ON(1);
1898 }
1899
1900 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1901 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1902 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1903 map->m_pblk, status);
1904 if (ret != 0)
1905 retval = ret;
1906 }
1907
1908 out_unlock:
1909 up_read((&EXT4_I(inode)->i_data_sem));
1910
1911 return retval;
1912 }
1913
1914 /*
1915 * This is a special get_block_t callback which is used by
1916 * ext4_da_write_begin(). It will either return mapped block or
1917 * reserve space for a single block.
1918 *
1919 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1920 * We also have b_blocknr = -1 and b_bdev initialized properly
1921 *
1922 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1923 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1924 * initialized properly.
1925 */
1926 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1927 struct buffer_head *bh, int create)
1928 {
1929 struct ext4_map_blocks map;
1930 int ret = 0;
1931
1932 BUG_ON(create == 0);
1933 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1934
1935 map.m_lblk = iblock;
1936 map.m_len = 1;
1937
1938 /*
1939 * first, we need to know whether the block is allocated already
1940 * preallocated blocks are unmapped but should treated
1941 * the same as allocated blocks.
1942 */
1943 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1944 if (ret <= 0)
1945 return ret;
1946
1947 map_bh(bh, inode->i_sb, map.m_pblk);
1948 ext4_update_bh_state(bh, map.m_flags);
1949
1950 if (buffer_unwritten(bh)) {
1951 /* A delayed write to unwritten bh should be marked
1952 * new and mapped. Mapped ensures that we don't do
1953 * get_block multiple times when we write to the same
1954 * offset and new ensures that we do proper zero out
1955 * for partial write.
1956 */
1957 set_buffer_new(bh);
1958 set_buffer_mapped(bh);
1959 }
1960 return 0;
1961 }
1962
1963 static int bget_one(handle_t *handle, struct buffer_head *bh)
1964 {
1965 get_bh(bh);
1966 return 0;
1967 }
1968
1969 static int bput_one(handle_t *handle, struct buffer_head *bh)
1970 {
1971 put_bh(bh);
1972 return 0;
1973 }
1974
1975 static int __ext4_journalled_writepage(struct page *page,
1976 unsigned int len)
1977 {
1978 struct address_space *mapping = page->mapping;
1979 struct inode *inode = mapping->host;
1980 struct buffer_head *page_bufs = NULL;
1981 handle_t *handle = NULL;
1982 int ret = 0, err = 0;
1983 int inline_data = ext4_has_inline_data(inode);
1984 struct buffer_head *inode_bh = NULL;
1985
1986 ClearPageChecked(page);
1987
1988 if (inline_data) {
1989 BUG_ON(page->index != 0);
1990 BUG_ON(len > ext4_get_max_inline_size(inode));
1991 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1992 if (inode_bh == NULL)
1993 goto out;
1994 } else {
1995 page_bufs = page_buffers(page);
1996 if (!page_bufs) {
1997 BUG();
1998 goto out;
1999 }
2000 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2001 NULL, bget_one);
2002 }
2003 /*
2004 * We need to release the page lock before we start the
2005 * journal, so grab a reference so the page won't disappear
2006 * out from under us.
2007 */
2008 get_page(page);
2009 unlock_page(page);
2010
2011 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2012 ext4_writepage_trans_blocks(inode));
2013 if (IS_ERR(handle)) {
2014 ret = PTR_ERR(handle);
2015 put_page(page);
2016 goto out_no_pagelock;
2017 }
2018 BUG_ON(!ext4_handle_valid(handle));
2019
2020 lock_page(page);
2021 put_page(page);
2022 if (page->mapping != mapping) {
2023 /* The page got truncated from under us */
2024 ext4_journal_stop(handle);
2025 ret = 0;
2026 goto out;
2027 }
2028
2029 if (inline_data) {
2030 BUFFER_TRACE(inode_bh, "get write access");
2031 ret = ext4_journal_get_write_access(handle, inode_bh);
2032
2033 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2034
2035 } else {
2036 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2037 do_journal_get_write_access);
2038
2039 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2040 write_end_fn);
2041 }
2042 if (ret == 0)
2043 ret = err;
2044 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2045 err = ext4_journal_stop(handle);
2046 if (!ret)
2047 ret = err;
2048
2049 if (!ext4_has_inline_data(inode))
2050 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2051 NULL, bput_one);
2052 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2053 out:
2054 unlock_page(page);
2055 out_no_pagelock:
2056 brelse(inode_bh);
2057 return ret;
2058 }
2059
2060 /*
2061 * Note that we don't need to start a transaction unless we're journaling data
2062 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2063 * need to file the inode to the transaction's list in ordered mode because if
2064 * we are writing back data added by write(), the inode is already there and if
2065 * we are writing back data modified via mmap(), no one guarantees in which
2066 * transaction the data will hit the disk. In case we are journaling data, we
2067 * cannot start transaction directly because transaction start ranks above page
2068 * lock so we have to do some magic.
2069 *
2070 * This function can get called via...
2071 * - ext4_writepages after taking page lock (have journal handle)
2072 * - journal_submit_inode_data_buffers (no journal handle)
2073 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2074 * - grab_page_cache when doing write_begin (have journal handle)
2075 *
2076 * We don't do any block allocation in this function. If we have page with
2077 * multiple blocks we need to write those buffer_heads that are mapped. This
2078 * is important for mmaped based write. So if we do with blocksize 1K
2079 * truncate(f, 1024);
2080 * a = mmap(f, 0, 4096);
2081 * a[0] = 'a';
2082 * truncate(f, 4096);
2083 * we have in the page first buffer_head mapped via page_mkwrite call back
2084 * but other buffer_heads would be unmapped but dirty (dirty done via the
2085 * do_wp_page). So writepage should write the first block. If we modify
2086 * the mmap area beyond 1024 we will again get a page_fault and the
2087 * page_mkwrite callback will do the block allocation and mark the
2088 * buffer_heads mapped.
2089 *
2090 * We redirty the page if we have any buffer_heads that is either delay or
2091 * unwritten in the page.
2092 *
2093 * We can get recursively called as show below.
2094 *
2095 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2096 * ext4_writepage()
2097 *
2098 * But since we don't do any block allocation we should not deadlock.
2099 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2100 */
2101 static int ext4_writepage(struct page *page,
2102 struct writeback_control *wbc)
2103 {
2104 int ret = 0;
2105 loff_t size;
2106 unsigned int len;
2107 struct buffer_head *page_bufs = NULL;
2108 struct inode *inode = page->mapping->host;
2109 struct ext4_io_submit io_submit;
2110 bool keep_towrite = false;
2111
2112 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2113 ext4_invalidatepage(page, 0, PAGE_SIZE);
2114 unlock_page(page);
2115 return -EIO;
2116 }
2117
2118 trace_ext4_writepage(page);
2119 size = i_size_read(inode);
2120 if (page->index == size >> PAGE_SHIFT)
2121 len = size & ~PAGE_MASK;
2122 else
2123 len = PAGE_SIZE;
2124
2125 page_bufs = page_buffers(page);
2126 /*
2127 * We cannot do block allocation or other extent handling in this
2128 * function. If there are buffers needing that, we have to redirty
2129 * the page. But we may reach here when we do a journal commit via
2130 * journal_submit_inode_data_buffers() and in that case we must write
2131 * allocated buffers to achieve data=ordered mode guarantees.
2132 *
2133 * Also, if there is only one buffer per page (the fs block
2134 * size == the page size), if one buffer needs block
2135 * allocation or needs to modify the extent tree to clear the
2136 * unwritten flag, we know that the page can't be written at
2137 * all, so we might as well refuse the write immediately.
2138 * Unfortunately if the block size != page size, we can't as
2139 * easily detect this case using ext4_walk_page_buffers(), but
2140 * for the extremely common case, this is an optimization that
2141 * skips a useless round trip through ext4_bio_write_page().
2142 */
2143 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2144 ext4_bh_delay_or_unwritten)) {
2145 redirty_page_for_writepage(wbc, page);
2146 if ((current->flags & PF_MEMALLOC) ||
2147 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2148 /*
2149 * For memory cleaning there's no point in writing only
2150 * some buffers. So just bail out. Warn if we came here
2151 * from direct reclaim.
2152 */
2153 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2154 == PF_MEMALLOC);
2155 unlock_page(page);
2156 return 0;
2157 }
2158 keep_towrite = true;
2159 }
2160
2161 if (PageChecked(page) && ext4_should_journal_data(inode))
2162 /*
2163 * It's mmapped pagecache. Add buffers and journal it. There
2164 * doesn't seem much point in redirtying the page here.
2165 */
2166 return __ext4_journalled_writepage(page, len);
2167
2168 ext4_io_submit_init(&io_submit, wbc);
2169 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2170 if (!io_submit.io_end) {
2171 redirty_page_for_writepage(wbc, page);
2172 unlock_page(page);
2173 return -ENOMEM;
2174 }
2175 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2176 ext4_io_submit(&io_submit);
2177 /* Drop io_end reference we got from init */
2178 ext4_put_io_end_defer(io_submit.io_end);
2179 return ret;
2180 }
2181
2182 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2183 {
2184 int len;
2185 loff_t size;
2186 int err;
2187
2188 BUG_ON(page->index != mpd->first_page);
2189 clear_page_dirty_for_io(page);
2190 /*
2191 * We have to be very careful here! Nothing protects writeback path
2192 * against i_size changes and the page can be writeably mapped into
2193 * page tables. So an application can be growing i_size and writing
2194 * data through mmap while writeback runs. clear_page_dirty_for_io()
2195 * write-protects our page in page tables and the page cannot get
2196 * written to again until we release page lock. So only after
2197 * clear_page_dirty_for_io() we are safe to sample i_size for
2198 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2199 * on the barrier provided by TestClearPageDirty in
2200 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2201 * after page tables are updated.
2202 */
2203 size = i_size_read(mpd->inode);
2204 if (page->index == size >> PAGE_SHIFT)
2205 len = size & ~PAGE_MASK;
2206 else
2207 len = PAGE_SIZE;
2208 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2209 if (!err)
2210 mpd->wbc->nr_to_write--;
2211 mpd->first_page++;
2212
2213 return err;
2214 }
2215
2216 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2217
2218 /*
2219 * mballoc gives us at most this number of blocks...
2220 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2221 * The rest of mballoc seems to handle chunks up to full group size.
2222 */
2223 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2224
2225 /*
2226 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2227 *
2228 * @mpd - extent of blocks
2229 * @lblk - logical number of the block in the file
2230 * @bh - buffer head we want to add to the extent
2231 *
2232 * The function is used to collect contig. blocks in the same state. If the
2233 * buffer doesn't require mapping for writeback and we haven't started the
2234 * extent of buffers to map yet, the function returns 'true' immediately - the
2235 * caller can write the buffer right away. Otherwise the function returns true
2236 * if the block has been added to the extent, false if the block couldn't be
2237 * added.
2238 */
2239 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2240 struct buffer_head *bh)
2241 {
2242 struct ext4_map_blocks *map = &mpd->map;
2243
2244 /* Buffer that doesn't need mapping for writeback? */
2245 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2246 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2247 /* So far no extent to map => we write the buffer right away */
2248 if (map->m_len == 0)
2249 return true;
2250 return false;
2251 }
2252
2253 /* First block in the extent? */
2254 if (map->m_len == 0) {
2255 /* We cannot map unless handle is started... */
2256 if (!mpd->do_map)
2257 return false;
2258 map->m_lblk = lblk;
2259 map->m_len = 1;
2260 map->m_flags = bh->b_state & BH_FLAGS;
2261 return true;
2262 }
2263
2264 /* Don't go larger than mballoc is willing to allocate */
2265 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2266 return false;
2267
2268 /* Can we merge the block to our big extent? */
2269 if (lblk == map->m_lblk + map->m_len &&
2270 (bh->b_state & BH_FLAGS) == map->m_flags) {
2271 map->m_len++;
2272 return true;
2273 }
2274 return false;
2275 }
2276
2277 /*
2278 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2279 *
2280 * @mpd - extent of blocks for mapping
2281 * @head - the first buffer in the page
2282 * @bh - buffer we should start processing from
2283 * @lblk - logical number of the block in the file corresponding to @bh
2284 *
2285 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2286 * the page for IO if all buffers in this page were mapped and there's no
2287 * accumulated extent of buffers to map or add buffers in the page to the
2288 * extent of buffers to map. The function returns 1 if the caller can continue
2289 * by processing the next page, 0 if it should stop adding buffers to the
2290 * extent to map because we cannot extend it anymore. It can also return value
2291 * < 0 in case of error during IO submission.
2292 */
2293 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2294 struct buffer_head *head,
2295 struct buffer_head *bh,
2296 ext4_lblk_t lblk)
2297 {
2298 struct inode *inode = mpd->inode;
2299 int err;
2300 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2301 >> inode->i_blkbits;
2302
2303 do {
2304 BUG_ON(buffer_locked(bh));
2305
2306 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2307 /* Found extent to map? */
2308 if (mpd->map.m_len)
2309 return 0;
2310 /* Buffer needs mapping and handle is not started? */
2311 if (!mpd->do_map)
2312 return 0;
2313 /* Everything mapped so far and we hit EOF */
2314 break;
2315 }
2316 } while (lblk++, (bh = bh->b_this_page) != head);
2317 /* So far everything mapped? Submit the page for IO. */
2318 if (mpd->map.m_len == 0) {
2319 err = mpage_submit_page(mpd, head->b_page);
2320 if (err < 0)
2321 return err;
2322 }
2323 return lblk < blocks;
2324 }
2325
2326 /*
2327 * mpage_map_buffers - update buffers corresponding to changed extent and
2328 * submit fully mapped pages for IO
2329 *
2330 * @mpd - description of extent to map, on return next extent to map
2331 *
2332 * Scan buffers corresponding to changed extent (we expect corresponding pages
2333 * to be already locked) and update buffer state according to new extent state.
2334 * We map delalloc buffers to their physical location, clear unwritten bits,
2335 * and mark buffers as uninit when we perform writes to unwritten extents
2336 * and do extent conversion after IO is finished. If the last page is not fully
2337 * mapped, we update @map to the next extent in the last page that needs
2338 * mapping. Otherwise we submit the page for IO.
2339 */
2340 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2341 {
2342 struct pagevec pvec;
2343 int nr_pages, i;
2344 struct inode *inode = mpd->inode;
2345 struct buffer_head *head, *bh;
2346 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2347 pgoff_t start, end;
2348 ext4_lblk_t lblk;
2349 sector_t pblock;
2350 int err;
2351
2352 start = mpd->map.m_lblk >> bpp_bits;
2353 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2354 lblk = start << bpp_bits;
2355 pblock = mpd->map.m_pblk;
2356
2357 pagevec_init(&pvec);
2358 while (start <= end) {
2359 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2360 &start, end);
2361 if (nr_pages == 0)
2362 break;
2363 for (i = 0; i < nr_pages; i++) {
2364 struct page *page = pvec.pages[i];
2365
2366 bh = head = page_buffers(page);
2367 do {
2368 if (lblk < mpd->map.m_lblk)
2369 continue;
2370 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2371 /*
2372 * Buffer after end of mapped extent.
2373 * Find next buffer in the page to map.
2374 */
2375 mpd->map.m_len = 0;
2376 mpd->map.m_flags = 0;
2377 /*
2378 * FIXME: If dioread_nolock supports
2379 * blocksize < pagesize, we need to make
2380 * sure we add size mapped so far to
2381 * io_end->size as the following call
2382 * can submit the page for IO.
2383 */
2384 err = mpage_process_page_bufs(mpd, head,
2385 bh, lblk);
2386 pagevec_release(&pvec);
2387 if (err > 0)
2388 err = 0;
2389 return err;
2390 }
2391 if (buffer_delay(bh)) {
2392 clear_buffer_delay(bh);
2393 bh->b_blocknr = pblock++;
2394 }
2395 clear_buffer_unwritten(bh);
2396 } while (lblk++, (bh = bh->b_this_page) != head);
2397
2398 /*
2399 * FIXME: This is going to break if dioread_nolock
2400 * supports blocksize < pagesize as we will try to
2401 * convert potentially unmapped parts of inode.
2402 */
2403 mpd->io_submit.io_end->size += PAGE_SIZE;
2404 /* Page fully mapped - let IO run! */
2405 err = mpage_submit_page(mpd, page);
2406 if (err < 0) {
2407 pagevec_release(&pvec);
2408 return err;
2409 }
2410 }
2411 pagevec_release(&pvec);
2412 }
2413 /* Extent fully mapped and matches with page boundary. We are done. */
2414 mpd->map.m_len = 0;
2415 mpd->map.m_flags = 0;
2416 return 0;
2417 }
2418
2419 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2420 {
2421 struct inode *inode = mpd->inode;
2422 struct ext4_map_blocks *map = &mpd->map;
2423 int get_blocks_flags;
2424 int err, dioread_nolock;
2425
2426 trace_ext4_da_write_pages_extent(inode, map);
2427 /*
2428 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2429 * to convert an unwritten extent to be initialized (in the case
2430 * where we have written into one or more preallocated blocks). It is
2431 * possible that we're going to need more metadata blocks than
2432 * previously reserved. However we must not fail because we're in
2433 * writeback and there is nothing we can do about it so it might result
2434 * in data loss. So use reserved blocks to allocate metadata if
2435 * possible.
2436 *
2437 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2438 * the blocks in question are delalloc blocks. This indicates
2439 * that the blocks and quotas has already been checked when
2440 * the data was copied into the page cache.
2441 */
2442 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2443 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2444 EXT4_GET_BLOCKS_IO_SUBMIT;
2445 dioread_nolock = ext4_should_dioread_nolock(inode);
2446 if (dioread_nolock)
2447 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2448 if (map->m_flags & (1 << BH_Delay))
2449 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2450
2451 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2452 if (err < 0)
2453 return err;
2454 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2455 if (!mpd->io_submit.io_end->handle &&
2456 ext4_handle_valid(handle)) {
2457 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2458 handle->h_rsv_handle = NULL;
2459 }
2460 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2461 }
2462
2463 BUG_ON(map->m_len == 0);
2464 if (map->m_flags & EXT4_MAP_NEW) {
2465 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2466 map->m_len);
2467 }
2468 return 0;
2469 }
2470
2471 /*
2472 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2473 * mpd->len and submit pages underlying it for IO
2474 *
2475 * @handle - handle for journal operations
2476 * @mpd - extent to map
2477 * @give_up_on_write - we set this to true iff there is a fatal error and there
2478 * is no hope of writing the data. The caller should discard
2479 * dirty pages to avoid infinite loops.
2480 *
2481 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2482 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2483 * them to initialized or split the described range from larger unwritten
2484 * extent. Note that we need not map all the described range since allocation
2485 * can return less blocks or the range is covered by more unwritten extents. We
2486 * cannot map more because we are limited by reserved transaction credits. On
2487 * the other hand we always make sure that the last touched page is fully
2488 * mapped so that it can be written out (and thus forward progress is
2489 * guaranteed). After mapping we submit all mapped pages for IO.
2490 */
2491 static int mpage_map_and_submit_extent(handle_t *handle,
2492 struct mpage_da_data *mpd,
2493 bool *give_up_on_write)
2494 {
2495 struct inode *inode = mpd->inode;
2496 struct ext4_map_blocks *map = &mpd->map;
2497 int err;
2498 loff_t disksize;
2499 int progress = 0;
2500
2501 mpd->io_submit.io_end->offset =
2502 ((loff_t)map->m_lblk) << inode->i_blkbits;
2503 do {
2504 err = mpage_map_one_extent(handle, mpd);
2505 if (err < 0) {
2506 struct super_block *sb = inode->i_sb;
2507
2508 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2509 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2510 goto invalidate_dirty_pages;
2511 /*
2512 * Let the uper layers retry transient errors.
2513 * In the case of ENOSPC, if ext4_count_free_blocks()
2514 * is non-zero, a commit should free up blocks.
2515 */
2516 if ((err == -ENOMEM) ||
2517 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2518 if (progress)
2519 goto update_disksize;
2520 return err;
2521 }
2522 ext4_msg(sb, KERN_CRIT,
2523 "Delayed block allocation failed for "
2524 "inode %lu at logical offset %llu with"
2525 " max blocks %u with error %d",
2526 inode->i_ino,
2527 (unsigned long long)map->m_lblk,
2528 (unsigned)map->m_len, -err);
2529 ext4_msg(sb, KERN_CRIT,
2530 "This should not happen!! Data will "
2531 "be lost\n");
2532 if (err == -ENOSPC)
2533 ext4_print_free_blocks(inode);
2534 invalidate_dirty_pages:
2535 *give_up_on_write = true;
2536 return err;
2537 }
2538 progress = 1;
2539 /*
2540 * Update buffer state, submit mapped pages, and get us new
2541 * extent to map
2542 */
2543 err = mpage_map_and_submit_buffers(mpd);
2544 if (err < 0)
2545 goto update_disksize;
2546 } while (map->m_len);
2547
2548 update_disksize:
2549 /*
2550 * Update on-disk size after IO is submitted. Races with
2551 * truncate are avoided by checking i_size under i_data_sem.
2552 */
2553 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2554 if (disksize > EXT4_I(inode)->i_disksize) {
2555 int err2;
2556 loff_t i_size;
2557
2558 down_write(&EXT4_I(inode)->i_data_sem);
2559 i_size = i_size_read(inode);
2560 if (disksize > i_size)
2561 disksize = i_size;
2562 if (disksize > EXT4_I(inode)->i_disksize)
2563 EXT4_I(inode)->i_disksize = disksize;
2564 up_write(&EXT4_I(inode)->i_data_sem);
2565 err2 = ext4_mark_inode_dirty(handle, inode);
2566 if (err2)
2567 ext4_error(inode->i_sb,
2568 "Failed to mark inode %lu dirty",
2569 inode->i_ino);
2570 if (!err)
2571 err = err2;
2572 }
2573 return err;
2574 }
2575
2576 /*
2577 * Calculate the total number of credits to reserve for one writepages
2578 * iteration. This is called from ext4_writepages(). We map an extent of
2579 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2580 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2581 * bpp - 1 blocks in bpp different extents.
2582 */
2583 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2584 {
2585 int bpp = ext4_journal_blocks_per_page(inode);
2586
2587 return ext4_meta_trans_blocks(inode,
2588 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2589 }
2590
2591 /*
2592 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2593 * and underlying extent to map
2594 *
2595 * @mpd - where to look for pages
2596 *
2597 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2598 * IO immediately. When we find a page which isn't mapped we start accumulating
2599 * extent of buffers underlying these pages that needs mapping (formed by
2600 * either delayed or unwritten buffers). We also lock the pages containing
2601 * these buffers. The extent found is returned in @mpd structure (starting at
2602 * mpd->lblk with length mpd->len blocks).
2603 *
2604 * Note that this function can attach bios to one io_end structure which are
2605 * neither logically nor physically contiguous. Although it may seem as an
2606 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2607 * case as we need to track IO to all buffers underlying a page in one io_end.
2608 */
2609 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2610 {
2611 struct address_space *mapping = mpd->inode->i_mapping;
2612 struct pagevec pvec;
2613 unsigned int nr_pages;
2614 long left = mpd->wbc->nr_to_write;
2615 pgoff_t index = mpd->first_page;
2616 pgoff_t end = mpd->last_page;
2617 int tag;
2618 int i, err = 0;
2619 int blkbits = mpd->inode->i_blkbits;
2620 ext4_lblk_t lblk;
2621 struct buffer_head *head;
2622
2623 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2624 tag = PAGECACHE_TAG_TOWRITE;
2625 else
2626 tag = PAGECACHE_TAG_DIRTY;
2627
2628 pagevec_init(&pvec);
2629 mpd->map.m_len = 0;
2630 mpd->next_page = index;
2631 while (index <= end) {
2632 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2633 tag);
2634 if (nr_pages == 0)
2635 goto out;
2636
2637 for (i = 0; i < nr_pages; i++) {
2638 struct page *page = pvec.pages[i];
2639
2640 /*
2641 * Accumulated enough dirty pages? This doesn't apply
2642 * to WB_SYNC_ALL mode. For integrity sync we have to
2643 * keep going because someone may be concurrently
2644 * dirtying pages, and we might have synced a lot of
2645 * newly appeared dirty pages, but have not synced all
2646 * of the old dirty pages.
2647 */
2648 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2649 goto out;
2650
2651 /* If we can't merge this page, we are done. */
2652 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2653 goto out;
2654
2655 lock_page(page);
2656 /*
2657 * If the page is no longer dirty, or its mapping no
2658 * longer corresponds to inode we are writing (which
2659 * means it has been truncated or invalidated), or the
2660 * page is already under writeback and we are not doing
2661 * a data integrity writeback, skip the page
2662 */
2663 if (!PageDirty(page) ||
2664 (PageWriteback(page) &&
2665 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2666 unlikely(page->mapping != mapping)) {
2667 unlock_page(page);
2668 continue;
2669 }
2670
2671 wait_on_page_writeback(page);
2672 BUG_ON(PageWriteback(page));
2673
2674 if (mpd->map.m_len == 0)
2675 mpd->first_page = page->index;
2676 mpd->next_page = page->index + 1;
2677 /* Add all dirty buffers to mpd */
2678 lblk = ((ext4_lblk_t)page->index) <<
2679 (PAGE_SHIFT - blkbits);
2680 head = page_buffers(page);
2681 err = mpage_process_page_bufs(mpd, head, head, lblk);
2682 if (err <= 0)
2683 goto out;
2684 err = 0;
2685 left--;
2686 }
2687 pagevec_release(&pvec);
2688 cond_resched();
2689 }
2690 return 0;
2691 out:
2692 pagevec_release(&pvec);
2693 return err;
2694 }
2695
2696 static int __writepage(struct page *page, struct writeback_control *wbc,
2697 void *data)
2698 {
2699 struct address_space *mapping = data;
2700 int ret = ext4_writepage(page, wbc);
2701 mapping_set_error(mapping, ret);
2702 return ret;
2703 }
2704
2705 static int ext4_writepages(struct address_space *mapping,
2706 struct writeback_control *wbc)
2707 {
2708 pgoff_t writeback_index = 0;
2709 long nr_to_write = wbc->nr_to_write;
2710 int range_whole = 0;
2711 int cycled = 1;
2712 handle_t *handle = NULL;
2713 struct mpage_da_data mpd;
2714 struct inode *inode = mapping->host;
2715 int needed_blocks, rsv_blocks = 0, ret = 0;
2716 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2717 bool done;
2718 struct blk_plug plug;
2719 bool give_up_on_write = false;
2720
2721 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2722 return -EIO;
2723
2724 percpu_down_read(&sbi->s_journal_flag_rwsem);
2725 trace_ext4_writepages(inode, wbc);
2726
2727 if (dax_mapping(mapping)) {
2728 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2729 wbc);
2730 goto out_writepages;
2731 }
2732
2733 /*
2734 * No pages to write? This is mainly a kludge to avoid starting
2735 * a transaction for special inodes like journal inode on last iput()
2736 * because that could violate lock ordering on umount
2737 */
2738 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2739 goto out_writepages;
2740
2741 if (ext4_should_journal_data(inode)) {
2742 struct blk_plug plug;
2743
2744 blk_start_plug(&plug);
2745 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2746 blk_finish_plug(&plug);
2747 goto out_writepages;
2748 }
2749
2750 /*
2751 * If the filesystem has aborted, it is read-only, so return
2752 * right away instead of dumping stack traces later on that
2753 * will obscure the real source of the problem. We test
2754 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2755 * the latter could be true if the filesystem is mounted
2756 * read-only, and in that case, ext4_writepages should
2757 * *never* be called, so if that ever happens, we would want
2758 * the stack trace.
2759 */
2760 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2761 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2762 ret = -EROFS;
2763 goto out_writepages;
2764 }
2765
2766 if (ext4_should_dioread_nolock(inode)) {
2767 /*
2768 * We may need to convert up to one extent per block in
2769 * the page and we may dirty the inode.
2770 */
2771 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2772 }
2773
2774 /*
2775 * If we have inline data and arrive here, it means that
2776 * we will soon create the block for the 1st page, so
2777 * we'd better clear the inline data here.
2778 */
2779 if (ext4_has_inline_data(inode)) {
2780 /* Just inode will be modified... */
2781 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2782 if (IS_ERR(handle)) {
2783 ret = PTR_ERR(handle);
2784 goto out_writepages;
2785 }
2786 BUG_ON(ext4_test_inode_state(inode,
2787 EXT4_STATE_MAY_INLINE_DATA));
2788 ext4_destroy_inline_data(handle, inode);
2789 ext4_journal_stop(handle);
2790 }
2791
2792 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2793 range_whole = 1;
2794
2795 if (wbc->range_cyclic) {
2796 writeback_index = mapping->writeback_index;
2797 if (writeback_index)
2798 cycled = 0;
2799 mpd.first_page = writeback_index;
2800 mpd.last_page = -1;
2801 } else {
2802 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2803 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2804 }
2805
2806 mpd.inode = inode;
2807 mpd.wbc = wbc;
2808 ext4_io_submit_init(&mpd.io_submit, wbc);
2809 retry:
2810 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2811 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2812 done = false;
2813 blk_start_plug(&plug);
2814
2815 /*
2816 * First writeback pages that don't need mapping - we can avoid
2817 * starting a transaction unnecessarily and also avoid being blocked
2818 * in the block layer on device congestion while having transaction
2819 * started.
2820 */
2821 mpd.do_map = 0;
2822 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2823 if (!mpd.io_submit.io_end) {
2824 ret = -ENOMEM;
2825 goto unplug;
2826 }
2827 ret = mpage_prepare_extent_to_map(&mpd);
2828 /* Submit prepared bio */
2829 ext4_io_submit(&mpd.io_submit);
2830 ext4_put_io_end_defer(mpd.io_submit.io_end);
2831 mpd.io_submit.io_end = NULL;
2832 /* Unlock pages we didn't use */
2833 mpage_release_unused_pages(&mpd, false);
2834 if (ret < 0)
2835 goto unplug;
2836
2837 while (!done && mpd.first_page <= mpd.last_page) {
2838 /* For each extent of pages we use new io_end */
2839 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2840 if (!mpd.io_submit.io_end) {
2841 ret = -ENOMEM;
2842 break;
2843 }
2844
2845 /*
2846 * We have two constraints: We find one extent to map and we
2847 * must always write out whole page (makes a difference when
2848 * blocksize < pagesize) so that we don't block on IO when we
2849 * try to write out the rest of the page. Journalled mode is
2850 * not supported by delalloc.
2851 */
2852 BUG_ON(ext4_should_journal_data(inode));
2853 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2854
2855 /* start a new transaction */
2856 handle = ext4_journal_start_with_reserve(inode,
2857 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2858 if (IS_ERR(handle)) {
2859 ret = PTR_ERR(handle);
2860 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2861 "%ld pages, ino %lu; err %d", __func__,
2862 wbc->nr_to_write, inode->i_ino, ret);
2863 /* Release allocated io_end */
2864 ext4_put_io_end(mpd.io_submit.io_end);
2865 mpd.io_submit.io_end = NULL;
2866 break;
2867 }
2868 mpd.do_map = 1;
2869
2870 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2871 ret = mpage_prepare_extent_to_map(&mpd);
2872 if (!ret) {
2873 if (mpd.map.m_len)
2874 ret = mpage_map_and_submit_extent(handle, &mpd,
2875 &give_up_on_write);
2876 else {
2877 /*
2878 * We scanned the whole range (or exhausted
2879 * nr_to_write), submitted what was mapped and
2880 * didn't find anything needing mapping. We are
2881 * done.
2882 */
2883 done = true;
2884 }
2885 }
2886 /*
2887 * Caution: If the handle is synchronous,
2888 * ext4_journal_stop() can wait for transaction commit
2889 * to finish which may depend on writeback of pages to
2890 * complete or on page lock to be released. In that
2891 * case, we have to wait until after after we have
2892 * submitted all the IO, released page locks we hold,
2893 * and dropped io_end reference (for extent conversion
2894 * to be able to complete) before stopping the handle.
2895 */
2896 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2897 ext4_journal_stop(handle);
2898 handle = NULL;
2899 mpd.do_map = 0;
2900 }
2901 /* Submit prepared bio */
2902 ext4_io_submit(&mpd.io_submit);
2903 /* Unlock pages we didn't use */
2904 mpage_release_unused_pages(&mpd, give_up_on_write);
2905 /*
2906 * Drop our io_end reference we got from init. We have
2907 * to be careful and use deferred io_end finishing if
2908 * we are still holding the transaction as we can
2909 * release the last reference to io_end which may end
2910 * up doing unwritten extent conversion.
2911 */
2912 if (handle) {
2913 ext4_put_io_end_defer(mpd.io_submit.io_end);
2914 ext4_journal_stop(handle);
2915 } else
2916 ext4_put_io_end(mpd.io_submit.io_end);
2917 mpd.io_submit.io_end = NULL;
2918
2919 if (ret == -ENOSPC && sbi->s_journal) {
2920 /*
2921 * Commit the transaction which would
2922 * free blocks released in the transaction
2923 * and try again
2924 */
2925 jbd2_journal_force_commit_nested(sbi->s_journal);
2926 ret = 0;
2927 continue;
2928 }
2929 /* Fatal error - ENOMEM, EIO... */
2930 if (ret)
2931 break;
2932 }
2933 unplug:
2934 blk_finish_plug(&plug);
2935 if (!ret && !cycled && wbc->nr_to_write > 0) {
2936 cycled = 1;
2937 mpd.last_page = writeback_index - 1;
2938 mpd.first_page = 0;
2939 goto retry;
2940 }
2941
2942 /* Update index */
2943 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2944 /*
2945 * Set the writeback_index so that range_cyclic
2946 * mode will write it back later
2947 */
2948 mapping->writeback_index = mpd.first_page;
2949
2950 out_writepages:
2951 trace_ext4_writepages_result(inode, wbc, ret,
2952 nr_to_write - wbc->nr_to_write);
2953 percpu_up_read(&sbi->s_journal_flag_rwsem);
2954 return ret;
2955 }
2956
2957 static int ext4_nonda_switch(struct super_block *sb)
2958 {
2959 s64 free_clusters, dirty_clusters;
2960 struct ext4_sb_info *sbi = EXT4_SB(sb);
2961
2962 /*
2963 * switch to non delalloc mode if we are running low
2964 * on free block. The free block accounting via percpu
2965 * counters can get slightly wrong with percpu_counter_batch getting
2966 * accumulated on each CPU without updating global counters
2967 * Delalloc need an accurate free block accounting. So switch
2968 * to non delalloc when we are near to error range.
2969 */
2970 free_clusters =
2971 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2972 dirty_clusters =
2973 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2974 /*
2975 * Start pushing delalloc when 1/2 of free blocks are dirty.
2976 */
2977 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2978 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2979
2980 if (2 * free_clusters < 3 * dirty_clusters ||
2981 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2982 /*
2983 * free block count is less than 150% of dirty blocks
2984 * or free blocks is less than watermark
2985 */
2986 return 1;
2987 }
2988 return 0;
2989 }
2990
2991 /* We always reserve for an inode update; the superblock could be there too */
2992 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2993 {
2994 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2995 return 1;
2996
2997 if (pos + len <= 0x7fffffffULL)
2998 return 1;
2999
3000 /* We might need to update the superblock to set LARGE_FILE */
3001 return 2;
3002 }
3003
3004 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3005 loff_t pos, unsigned len, unsigned flags,
3006 struct page **pagep, void **fsdata)
3007 {
3008 int ret, retries = 0;
3009 struct page *page;
3010 pgoff_t index;
3011 struct inode *inode = mapping->host;
3012 handle_t *handle;
3013
3014 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3015 return -EIO;
3016
3017 index = pos >> PAGE_SHIFT;
3018
3019 if (ext4_nonda_switch(inode->i_sb) ||
3020 S_ISLNK(inode->i_mode)) {
3021 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3022 return ext4_write_begin(file, mapping, pos,
3023 len, flags, pagep, fsdata);
3024 }
3025 *fsdata = (void *)0;
3026 trace_ext4_da_write_begin(inode, pos, len, flags);
3027
3028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3029 ret = ext4_da_write_inline_data_begin(mapping, inode,
3030 pos, len, flags,
3031 pagep, fsdata);
3032 if (ret < 0)
3033 return ret;
3034 if (ret == 1)
3035 return 0;
3036 }
3037
3038 /*
3039 * grab_cache_page_write_begin() can take a long time if the
3040 * system is thrashing due to memory pressure, or if the page
3041 * is being written back. So grab it first before we start
3042 * the transaction handle. This also allows us to allocate
3043 * the page (if needed) without using GFP_NOFS.
3044 */
3045 retry_grab:
3046 page = grab_cache_page_write_begin(mapping, index, flags);
3047 if (!page)
3048 return -ENOMEM;
3049 unlock_page(page);
3050
3051 /*
3052 * With delayed allocation, we don't log the i_disksize update
3053 * if there is delayed block allocation. But we still need
3054 * to journalling the i_disksize update if writes to the end
3055 * of file which has an already mapped buffer.
3056 */
3057 retry_journal:
3058 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3059 ext4_da_write_credits(inode, pos, len));
3060 if (IS_ERR(handle)) {
3061 put_page(page);
3062 return PTR_ERR(handle);
3063 }
3064
3065 lock_page(page);
3066 if (page->mapping != mapping) {
3067 /* The page got truncated from under us */
3068 unlock_page(page);
3069 put_page(page);
3070 ext4_journal_stop(handle);
3071 goto retry_grab;
3072 }
3073 /* In case writeback began while the page was unlocked */
3074 wait_for_stable_page(page);
3075
3076 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3077 ret = ext4_block_write_begin(page, pos, len,
3078 ext4_da_get_block_prep);
3079 #else
3080 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3081 #endif
3082 if (ret < 0) {
3083 unlock_page(page);
3084 ext4_journal_stop(handle);
3085 /*
3086 * block_write_begin may have instantiated a few blocks
3087 * outside i_size. Trim these off again. Don't need
3088 * i_size_read because we hold i_mutex.
3089 */
3090 if (pos + len > inode->i_size)
3091 ext4_truncate_failed_write(inode);
3092
3093 if (ret == -ENOSPC &&
3094 ext4_should_retry_alloc(inode->i_sb, &retries))
3095 goto retry_journal;
3096
3097 put_page(page);
3098 return ret;
3099 }
3100
3101 *pagep = page;
3102 return ret;
3103 }
3104
3105 /*
3106 * Check if we should update i_disksize
3107 * when write to the end of file but not require block allocation
3108 */
3109 static int ext4_da_should_update_i_disksize(struct page *page,
3110 unsigned long offset)
3111 {
3112 struct buffer_head *bh;
3113 struct inode *inode = page->mapping->host;
3114 unsigned int idx;
3115 int i;
3116
3117 bh = page_buffers(page);
3118 idx = offset >> inode->i_blkbits;
3119
3120 for (i = 0; i < idx; i++)
3121 bh = bh->b_this_page;
3122
3123 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3124 return 0;
3125 return 1;
3126 }
3127
3128 static int ext4_da_write_end(struct file *file,
3129 struct address_space *mapping,
3130 loff_t pos, unsigned len, unsigned copied,
3131 struct page *page, void *fsdata)
3132 {
3133 struct inode *inode = mapping->host;
3134 int ret = 0, ret2;
3135 handle_t *handle = ext4_journal_current_handle();
3136 loff_t new_i_size;
3137 unsigned long start, end;
3138 int write_mode = (int)(unsigned long)fsdata;
3139
3140 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 return ext4_write_end(file, mapping, pos,
3142 len, copied, page, fsdata);
3143
3144 trace_ext4_da_write_end(inode, pos, len, copied);
3145 start = pos & (PAGE_SIZE - 1);
3146 end = start + copied - 1;
3147
3148 /*
3149 * generic_write_end() will run mark_inode_dirty() if i_size
3150 * changes. So let's piggyback the i_disksize mark_inode_dirty
3151 * into that.
3152 */
3153 new_i_size = pos + copied;
3154 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3155 if (ext4_has_inline_data(inode) ||
3156 ext4_da_should_update_i_disksize(page, end)) {
3157 ext4_update_i_disksize(inode, new_i_size);
3158 /* We need to mark inode dirty even if
3159 * new_i_size is less that inode->i_size
3160 * bu greater than i_disksize.(hint delalloc)
3161 */
3162 ext4_mark_inode_dirty(handle, inode);
3163 }
3164 }
3165
3166 if (write_mode != CONVERT_INLINE_DATA &&
3167 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3168 ext4_has_inline_data(inode))
3169 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3170 page);
3171 else
3172 ret2 = generic_write_end(file, mapping, pos, len, copied,
3173 page, fsdata);
3174
3175 copied = ret2;
3176 if (ret2 < 0)
3177 ret = ret2;
3178 ret2 = ext4_journal_stop(handle);
3179 if (!ret)
3180 ret = ret2;
3181
3182 return ret ? ret : copied;
3183 }
3184
3185 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3186 unsigned int length)
3187 {
3188 /*
3189 * Drop reserved blocks
3190 */
3191 BUG_ON(!PageLocked(page));
3192 if (!page_has_buffers(page))
3193 goto out;
3194
3195 ext4_da_page_release_reservation(page, offset, length);
3196
3197 out:
3198 ext4_invalidatepage(page, offset, length);
3199
3200 return;
3201 }
3202
3203 /*
3204 * Force all delayed allocation blocks to be allocated for a given inode.
3205 */
3206 int ext4_alloc_da_blocks(struct inode *inode)
3207 {
3208 trace_ext4_alloc_da_blocks(inode);
3209
3210 if (!EXT4_I(inode)->i_reserved_data_blocks)
3211 return 0;
3212
3213 /*
3214 * We do something simple for now. The filemap_flush() will
3215 * also start triggering a write of the data blocks, which is
3216 * not strictly speaking necessary (and for users of
3217 * laptop_mode, not even desirable). However, to do otherwise
3218 * would require replicating code paths in:
3219 *
3220 * ext4_writepages() ->
3221 * write_cache_pages() ---> (via passed in callback function)
3222 * __mpage_da_writepage() -->
3223 * mpage_add_bh_to_extent()
3224 * mpage_da_map_blocks()
3225 *
3226 * The problem is that write_cache_pages(), located in
3227 * mm/page-writeback.c, marks pages clean in preparation for
3228 * doing I/O, which is not desirable if we're not planning on
3229 * doing I/O at all.
3230 *
3231 * We could call write_cache_pages(), and then redirty all of
3232 * the pages by calling redirty_page_for_writepage() but that
3233 * would be ugly in the extreme. So instead we would need to
3234 * replicate parts of the code in the above functions,
3235 * simplifying them because we wouldn't actually intend to
3236 * write out the pages, but rather only collect contiguous
3237 * logical block extents, call the multi-block allocator, and
3238 * then update the buffer heads with the block allocations.
3239 *
3240 * For now, though, we'll cheat by calling filemap_flush(),
3241 * which will map the blocks, and start the I/O, but not
3242 * actually wait for the I/O to complete.
3243 */
3244 return filemap_flush(inode->i_mapping);
3245 }
3246
3247 /*
3248 * bmap() is special. It gets used by applications such as lilo and by
3249 * the swapper to find the on-disk block of a specific piece of data.
3250 *
3251 * Naturally, this is dangerous if the block concerned is still in the
3252 * journal. If somebody makes a swapfile on an ext4 data-journaling
3253 * filesystem and enables swap, then they may get a nasty shock when the
3254 * data getting swapped to that swapfile suddenly gets overwritten by
3255 * the original zero's written out previously to the journal and
3256 * awaiting writeback in the kernel's buffer cache.
3257 *
3258 * So, if we see any bmap calls here on a modified, data-journaled file,
3259 * take extra steps to flush any blocks which might be in the cache.
3260 */
3261 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3262 {
3263 struct inode *inode = mapping->host;
3264 journal_t *journal;
3265 int err;
3266
3267 /*
3268 * We can get here for an inline file via the FIBMAP ioctl
3269 */
3270 if (ext4_has_inline_data(inode))
3271 return 0;
3272
3273 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3274 test_opt(inode->i_sb, DELALLOC)) {
3275 /*
3276 * With delalloc we want to sync the file
3277 * so that we can make sure we allocate
3278 * blocks for file
3279 */
3280 filemap_write_and_wait(mapping);
3281 }
3282
3283 if (EXT4_JOURNAL(inode) &&
3284 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3285 /*
3286 * This is a REALLY heavyweight approach, but the use of
3287 * bmap on dirty files is expected to be extremely rare:
3288 * only if we run lilo or swapon on a freshly made file
3289 * do we expect this to happen.
3290 *
3291 * (bmap requires CAP_SYS_RAWIO so this does not
3292 * represent an unprivileged user DOS attack --- we'd be
3293 * in trouble if mortal users could trigger this path at
3294 * will.)
3295 *
3296 * NB. EXT4_STATE_JDATA is not set on files other than
3297 * regular files. If somebody wants to bmap a directory
3298 * or symlink and gets confused because the buffer
3299 * hasn't yet been flushed to disk, they deserve
3300 * everything they get.
3301 */
3302
3303 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3304 journal = EXT4_JOURNAL(inode);
3305 jbd2_journal_lock_updates(journal);
3306 err = jbd2_journal_flush(journal);
3307 jbd2_journal_unlock_updates(journal);
3308
3309 if (err)
3310 return 0;
3311 }
3312
3313 return generic_block_bmap(mapping, block, ext4_get_block);
3314 }
3315
3316 static int ext4_readpage(struct file *file, struct page *page)
3317 {
3318 int ret = -EAGAIN;
3319 struct inode *inode = page->mapping->host;
3320
3321 trace_ext4_readpage(page);
3322
3323 if (ext4_has_inline_data(inode))
3324 ret = ext4_readpage_inline(inode, page);
3325
3326 if (ret == -EAGAIN)
3327 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3328
3329 return ret;
3330 }
3331
3332 static int
3333 ext4_readpages(struct file *file, struct address_space *mapping,
3334 struct list_head *pages, unsigned nr_pages)
3335 {
3336 struct inode *inode = mapping->host;
3337
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3340 return 0;
3341
3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3343 }
3344
3345 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
3347 {
3348 trace_ext4_invalidatepage(page, offset, length);
3349
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353 block_invalidatepage(page, offset, length);
3354 }
3355
3356 static int __ext4_journalled_invalidatepage(struct page *page,
3357 unsigned int offset,
3358 unsigned int length)
3359 {
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362 trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364 /*
3365 * If it's a full truncate we just forget about the pending dirtying
3366 */
3367 if (offset == 0 && length == PAGE_SIZE)
3368 ClearPageChecked(page);
3369
3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
3371 }
3372
3373 /* Wrapper for aops... */
3374 static void ext4_journalled_invalidatepage(struct page *page,
3375 unsigned int offset,
3376 unsigned int length)
3377 {
3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379 }
3380
3381 static int ext4_releasepage(struct page *page, gfp_t wait)
3382 {
3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385 trace_ext4_releasepage(page);
3386
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
3389 return 0;
3390 if (journal)
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 else
3393 return try_to_free_buffers(page);
3394 }
3395
3396 static bool ext4_inode_datasync_dirty(struct inode *inode)
3397 {
3398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400 if (journal)
3401 return !jbd2_transaction_committed(journal,
3402 EXT4_I(inode)->i_datasync_tid);
3403 /* Any metadata buffers to write? */
3404 if (!list_empty(&inode->i_mapping->private_list))
3405 return true;
3406 return inode->i_state & I_DIRTY_DATASYNC;
3407 }
3408
3409 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410 unsigned flags, struct iomap *iomap)
3411 {
3412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413 unsigned int blkbits = inode->i_blkbits;
3414 unsigned long first_block = offset >> blkbits;
3415 unsigned long last_block = (offset + length - 1) >> blkbits;
3416 struct ext4_map_blocks map;
3417 bool delalloc = false;
3418 int ret;
3419
3420
3421 if (flags & IOMAP_REPORT) {
3422 if (ext4_has_inline_data(inode)) {
3423 ret = ext4_inline_data_iomap(inode, iomap);
3424 if (ret != -EAGAIN) {
3425 if (ret == 0 && offset >= iomap->length)
3426 ret = -ENOENT;
3427 return ret;
3428 }
3429 }
3430 } else {
3431 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432 return -ERANGE;
3433 }
3434
3435 map.m_lblk = first_block;
3436 map.m_len = last_block - first_block + 1;
3437
3438 if (flags & IOMAP_REPORT) {
3439 ret = ext4_map_blocks(NULL, inode, &map, 0);
3440 if (ret < 0)
3441 return ret;
3442
3443 if (ret == 0) {
3444 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3445 struct extent_status es;
3446
3447 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3448
3449 if (!es.es_len || es.es_lblk > end) {
3450 /* entire range is a hole */
3451 } else if (es.es_lblk > map.m_lblk) {
3452 /* range starts with a hole */
3453 map.m_len = es.es_lblk - map.m_lblk;
3454 } else {
3455 ext4_lblk_t offs = 0;
3456
3457 if (es.es_lblk < map.m_lblk)
3458 offs = map.m_lblk - es.es_lblk;
3459 map.m_lblk = es.es_lblk + offs;
3460 map.m_len = es.es_len - offs;
3461 delalloc = true;
3462 }
3463 }
3464 } else if (flags & IOMAP_WRITE) {
3465 int dio_credits;
3466 handle_t *handle;
3467 int retries = 0;
3468
3469 /* Trim mapping request to maximum we can map at once for DIO */
3470 if (map.m_len > DIO_MAX_BLOCKS)
3471 map.m_len = DIO_MAX_BLOCKS;
3472 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3473 retry:
3474 /*
3475 * Either we allocate blocks and then we don't get unwritten
3476 * extent so we have reserved enough credits, or the blocks
3477 * are already allocated and unwritten and in that case
3478 * extent conversion fits in the credits as well.
3479 */
3480 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3481 dio_credits);
3482 if (IS_ERR(handle))
3483 return PTR_ERR(handle);
3484
3485 ret = ext4_map_blocks(handle, inode, &map,
3486 EXT4_GET_BLOCKS_CREATE_ZERO);
3487 if (ret < 0) {
3488 ext4_journal_stop(handle);
3489 if (ret == -ENOSPC &&
3490 ext4_should_retry_alloc(inode->i_sb, &retries))
3491 goto retry;
3492 return ret;
3493 }
3494
3495 /*
3496 * If we added blocks beyond i_size, we need to make sure they
3497 * will get truncated if we crash before updating i_size in
3498 * ext4_iomap_end(). For faults we don't need to do that (and
3499 * even cannot because for orphan list operations inode_lock is
3500 * required) - if we happen to instantiate block beyond i_size,
3501 * it is because we race with truncate which has already added
3502 * the inode to the orphan list.
3503 */
3504 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3505 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3506 int err;
3507
3508 err = ext4_orphan_add(handle, inode);
3509 if (err < 0) {
3510 ext4_journal_stop(handle);
3511 return err;
3512 }
3513 }
3514 ext4_journal_stop(handle);
3515 } else {
3516 ret = ext4_map_blocks(NULL, inode, &map, 0);
3517 if (ret < 0)
3518 return ret;
3519 }
3520
3521 iomap->flags = 0;
3522 if (ext4_inode_datasync_dirty(inode))
3523 iomap->flags |= IOMAP_F_DIRTY;
3524 iomap->bdev = inode->i_sb->s_bdev;
3525 iomap->dax_dev = sbi->s_daxdev;
3526 iomap->offset = first_block << blkbits;
3527 iomap->length = (u64)map.m_len << blkbits;
3528
3529 if (ret == 0) {
3530 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3531 iomap->addr = IOMAP_NULL_ADDR;
3532 } else {
3533 if (map.m_flags & EXT4_MAP_MAPPED) {
3534 iomap->type = IOMAP_MAPPED;
3535 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3536 iomap->type = IOMAP_UNWRITTEN;
3537 } else {
3538 WARN_ON_ONCE(1);
3539 return -EIO;
3540 }
3541 iomap->addr = (u64)map.m_pblk << blkbits;
3542 }
3543
3544 if (map.m_flags & EXT4_MAP_NEW)
3545 iomap->flags |= IOMAP_F_NEW;
3546
3547 return 0;
3548 }
3549
3550 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3551 ssize_t written, unsigned flags, struct iomap *iomap)
3552 {
3553 int ret = 0;
3554 handle_t *handle;
3555 int blkbits = inode->i_blkbits;
3556 bool truncate = false;
3557
3558 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3559 return 0;
3560
3561 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3562 if (IS_ERR(handle)) {
3563 ret = PTR_ERR(handle);
3564 goto orphan_del;
3565 }
3566 if (ext4_update_inode_size(inode, offset + written))
3567 ext4_mark_inode_dirty(handle, inode);
3568 /*
3569 * We may need to truncate allocated but not written blocks beyond EOF.
3570 */
3571 if (iomap->offset + iomap->length >
3572 ALIGN(inode->i_size, 1 << blkbits)) {
3573 ext4_lblk_t written_blk, end_blk;
3574
3575 written_blk = (offset + written) >> blkbits;
3576 end_blk = (offset + length) >> blkbits;
3577 if (written_blk < end_blk && ext4_can_truncate(inode))
3578 truncate = true;
3579 }
3580 /*
3581 * Remove inode from orphan list if we were extending a inode and
3582 * everything went fine.
3583 */
3584 if (!truncate && inode->i_nlink &&
3585 !list_empty(&EXT4_I(inode)->i_orphan))
3586 ext4_orphan_del(handle, inode);
3587 ext4_journal_stop(handle);
3588 if (truncate) {
3589 ext4_truncate_failed_write(inode);
3590 orphan_del:
3591 /*
3592 * If truncate failed early the inode might still be on the
3593 * orphan list; we need to make sure the inode is removed from
3594 * the orphan list in that case.
3595 */
3596 if (inode->i_nlink)
3597 ext4_orphan_del(NULL, inode);
3598 }
3599 return ret;
3600 }
3601
3602 const struct iomap_ops ext4_iomap_ops = {
3603 .iomap_begin = ext4_iomap_begin,
3604 .iomap_end = ext4_iomap_end,
3605 };
3606
3607 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3608 ssize_t size, void *private)
3609 {
3610 ext4_io_end_t *io_end = private;
3611
3612 /* if not async direct IO just return */
3613 if (!io_end)
3614 return 0;
3615
3616 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3617 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3618 io_end, io_end->inode->i_ino, iocb, offset, size);
3619
3620 /*
3621 * Error during AIO DIO. We cannot convert unwritten extents as the
3622 * data was not written. Just clear the unwritten flag and drop io_end.
3623 */
3624 if (size <= 0) {
3625 ext4_clear_io_unwritten_flag(io_end);
3626 size = 0;
3627 }
3628 io_end->offset = offset;
3629 io_end->size = size;
3630 ext4_put_io_end(io_end);
3631
3632 return 0;
3633 }
3634
3635 /*
3636 * Handling of direct IO writes.
3637 *
3638 * For ext4 extent files, ext4 will do direct-io write even to holes,
3639 * preallocated extents, and those write extend the file, no need to
3640 * fall back to buffered IO.
3641 *
3642 * For holes, we fallocate those blocks, mark them as unwritten
3643 * If those blocks were preallocated, we mark sure they are split, but
3644 * still keep the range to write as unwritten.
3645 *
3646 * The unwritten extents will be converted to written when DIO is completed.
3647 * For async direct IO, since the IO may still pending when return, we
3648 * set up an end_io call back function, which will do the conversion
3649 * when async direct IO completed.
3650 *
3651 * If the O_DIRECT write will extend the file then add this inode to the
3652 * orphan list. So recovery will truncate it back to the original size
3653 * if the machine crashes during the write.
3654 *
3655 */
3656 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3657 {
3658 struct file *file = iocb->ki_filp;
3659 struct inode *inode = file->f_mapping->host;
3660 struct ext4_inode_info *ei = EXT4_I(inode);
3661 ssize_t ret;
3662 loff_t offset = iocb->ki_pos;
3663 size_t count = iov_iter_count(iter);
3664 int overwrite = 0;
3665 get_block_t *get_block_func = NULL;
3666 int dio_flags = 0;
3667 loff_t final_size = offset + count;
3668 int orphan = 0;
3669 handle_t *handle;
3670
3671 if (final_size > inode->i_size) {
3672 /* Credits for sb + inode write */
3673 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3674 if (IS_ERR(handle)) {
3675 ret = PTR_ERR(handle);
3676 goto out;
3677 }
3678 ret = ext4_orphan_add(handle, inode);
3679 if (ret) {
3680 ext4_journal_stop(handle);
3681 goto out;
3682 }
3683 orphan = 1;
3684 ei->i_disksize = inode->i_size;
3685 ext4_journal_stop(handle);
3686 }
3687
3688 BUG_ON(iocb->private == NULL);
3689
3690 /*
3691 * Make all waiters for direct IO properly wait also for extent
3692 * conversion. This also disallows race between truncate() and
3693 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3694 */
3695 inode_dio_begin(inode);
3696
3697 /* If we do a overwrite dio, i_mutex locking can be released */
3698 overwrite = *((int *)iocb->private);
3699
3700 if (overwrite)
3701 inode_unlock(inode);
3702
3703 /*
3704 * For extent mapped files we could direct write to holes and fallocate.
3705 *
3706 * Allocated blocks to fill the hole are marked as unwritten to prevent
3707 * parallel buffered read to expose the stale data before DIO complete
3708 * the data IO.
3709 *
3710 * As to previously fallocated extents, ext4 get_block will just simply
3711 * mark the buffer mapped but still keep the extents unwritten.
3712 *
3713 * For non AIO case, we will convert those unwritten extents to written
3714 * after return back from blockdev_direct_IO. That way we save us from
3715 * allocating io_end structure and also the overhead of offloading
3716 * the extent convertion to a workqueue.
3717 *
3718 * For async DIO, the conversion needs to be deferred when the
3719 * IO is completed. The ext4 end_io callback function will be
3720 * called to take care of the conversion work. Here for async
3721 * case, we allocate an io_end structure to hook to the iocb.
3722 */
3723 iocb->private = NULL;
3724 if (overwrite)
3725 get_block_func = ext4_dio_get_block_overwrite;
3726 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3727 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3728 get_block_func = ext4_dio_get_block;
3729 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3730 } else if (is_sync_kiocb(iocb)) {
3731 get_block_func = ext4_dio_get_block_unwritten_sync;
3732 dio_flags = DIO_LOCKING;
3733 } else {
3734 get_block_func = ext4_dio_get_block_unwritten_async;
3735 dio_flags = DIO_LOCKING;
3736 }
3737 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3738 get_block_func, ext4_end_io_dio, NULL,
3739 dio_flags);
3740
3741 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3742 EXT4_STATE_DIO_UNWRITTEN)) {
3743 int err;
3744 /*
3745 * for non AIO case, since the IO is already
3746 * completed, we could do the conversion right here
3747 */
3748 err = ext4_convert_unwritten_extents(NULL, inode,
3749 offset, ret);
3750 if (err < 0)
3751 ret = err;
3752 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3753 }
3754
3755 inode_dio_end(inode);
3756 /* take i_mutex locking again if we do a ovewrite dio */
3757 if (overwrite)
3758 inode_lock(inode);
3759
3760 if (ret < 0 && final_size > inode->i_size)
3761 ext4_truncate_failed_write(inode);
3762
3763 /* Handle extending of i_size after direct IO write */
3764 if (orphan) {
3765 int err;
3766
3767 /* Credits for sb + inode write */
3768 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3769 if (IS_ERR(handle)) {
3770 /* This is really bad luck. We've written the data
3771 * but cannot extend i_size. Bail out and pretend
3772 * the write failed... */
3773 ret = PTR_ERR(handle);
3774 if (inode->i_nlink)
3775 ext4_orphan_del(NULL, inode);
3776
3777 goto out;
3778 }
3779 if (inode->i_nlink)
3780 ext4_orphan_del(handle, inode);
3781 if (ret > 0) {
3782 loff_t end = offset + ret;
3783 if (end > inode->i_size) {
3784 ei->i_disksize = end;
3785 i_size_write(inode, end);
3786 /*
3787 * We're going to return a positive `ret'
3788 * here due to non-zero-length I/O, so there's
3789 * no way of reporting error returns from
3790 * ext4_mark_inode_dirty() to userspace. So
3791 * ignore it.
3792 */
3793 ext4_mark_inode_dirty(handle, inode);
3794 }
3795 }
3796 err = ext4_journal_stop(handle);
3797 if (ret == 0)
3798 ret = err;
3799 }
3800 out:
3801 return ret;
3802 }
3803
3804 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3805 {
3806 struct address_space *mapping = iocb->ki_filp->f_mapping;
3807 struct inode *inode = mapping->host;
3808 size_t count = iov_iter_count(iter);
3809 ssize_t ret;
3810
3811 /*
3812 * Shared inode_lock is enough for us - it protects against concurrent
3813 * writes & truncates and since we take care of writing back page cache,
3814 * we are protected against page writeback as well.
3815 */
3816 inode_lock_shared(inode);
3817 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3818 iocb->ki_pos + count - 1);
3819 if (ret)
3820 goto out_unlock;
3821 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3822 iter, ext4_dio_get_block, NULL, NULL, 0);
3823 out_unlock:
3824 inode_unlock_shared(inode);
3825 return ret;
3826 }
3827
3828 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3829 {
3830 struct file *file = iocb->ki_filp;
3831 struct inode *inode = file->f_mapping->host;
3832 size_t count = iov_iter_count(iter);
3833 loff_t offset = iocb->ki_pos;
3834 ssize_t ret;
3835
3836 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3837 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3838 return 0;
3839 #endif
3840
3841 /*
3842 * If we are doing data journalling we don't support O_DIRECT
3843 */
3844 if (ext4_should_journal_data(inode))
3845 return 0;
3846
3847 /* Let buffer I/O handle the inline data case. */
3848 if (ext4_has_inline_data(inode))
3849 return 0;
3850
3851 /* DAX uses iomap path now */
3852 if (WARN_ON_ONCE(IS_DAX(inode)))
3853 return 0;
3854
3855 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3856 if (iov_iter_rw(iter) == READ)
3857 ret = ext4_direct_IO_read(iocb, iter);
3858 else
3859 ret = ext4_direct_IO_write(iocb, iter);
3860 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3861 return ret;
3862 }
3863
3864 /*
3865 * Pages can be marked dirty completely asynchronously from ext4's journalling
3866 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3867 * much here because ->set_page_dirty is called under VFS locks. The page is
3868 * not necessarily locked.
3869 *
3870 * We cannot just dirty the page and leave attached buffers clean, because the
3871 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3872 * or jbddirty because all the journalling code will explode.
3873 *
3874 * So what we do is to mark the page "pending dirty" and next time writepage
3875 * is called, propagate that into the buffers appropriately.
3876 */
3877 static int ext4_journalled_set_page_dirty(struct page *page)
3878 {
3879 SetPageChecked(page);
3880 return __set_page_dirty_nobuffers(page);
3881 }
3882
3883 static int ext4_set_page_dirty(struct page *page)
3884 {
3885 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3886 WARN_ON_ONCE(!page_has_buffers(page));
3887 return __set_page_dirty_buffers(page);
3888 }
3889
3890 static const struct address_space_operations ext4_aops = {
3891 .readpage = ext4_readpage,
3892 .readpages = ext4_readpages,
3893 .writepage = ext4_writepage,
3894 .writepages = ext4_writepages,
3895 .write_begin = ext4_write_begin,
3896 .write_end = ext4_write_end,
3897 .set_page_dirty = ext4_set_page_dirty,
3898 .bmap = ext4_bmap,
3899 .invalidatepage = ext4_invalidatepage,
3900 .releasepage = ext4_releasepage,
3901 .direct_IO = ext4_direct_IO,
3902 .migratepage = buffer_migrate_page,
3903 .is_partially_uptodate = block_is_partially_uptodate,
3904 .error_remove_page = generic_error_remove_page,
3905 };
3906
3907 static const struct address_space_operations ext4_journalled_aops = {
3908 .readpage = ext4_readpage,
3909 .readpages = ext4_readpages,
3910 .writepage = ext4_writepage,
3911 .writepages = ext4_writepages,
3912 .write_begin = ext4_write_begin,
3913 .write_end = ext4_journalled_write_end,
3914 .set_page_dirty = ext4_journalled_set_page_dirty,
3915 .bmap = ext4_bmap,
3916 .invalidatepage = ext4_journalled_invalidatepage,
3917 .releasepage = ext4_releasepage,
3918 .direct_IO = ext4_direct_IO,
3919 .is_partially_uptodate = block_is_partially_uptodate,
3920 .error_remove_page = generic_error_remove_page,
3921 };
3922
3923 static const struct address_space_operations ext4_da_aops = {
3924 .readpage = ext4_readpage,
3925 .readpages = ext4_readpages,
3926 .writepage = ext4_writepage,
3927 .writepages = ext4_writepages,
3928 .write_begin = ext4_da_write_begin,
3929 .write_end = ext4_da_write_end,
3930 .set_page_dirty = ext4_set_page_dirty,
3931 .bmap = ext4_bmap,
3932 .invalidatepage = ext4_da_invalidatepage,
3933 .releasepage = ext4_releasepage,
3934 .direct_IO = ext4_direct_IO,
3935 .migratepage = buffer_migrate_page,
3936 .is_partially_uptodate = block_is_partially_uptodate,
3937 .error_remove_page = generic_error_remove_page,
3938 };
3939
3940 void ext4_set_aops(struct inode *inode)
3941 {
3942 switch (ext4_inode_journal_mode(inode)) {
3943 case EXT4_INODE_ORDERED_DATA_MODE:
3944 case EXT4_INODE_WRITEBACK_DATA_MODE:
3945 break;
3946 case EXT4_INODE_JOURNAL_DATA_MODE:
3947 inode->i_mapping->a_ops = &ext4_journalled_aops;
3948 return;
3949 default:
3950 BUG();
3951 }
3952 if (test_opt(inode->i_sb, DELALLOC))
3953 inode->i_mapping->a_ops = &ext4_da_aops;
3954 else
3955 inode->i_mapping->a_ops = &ext4_aops;
3956 }
3957
3958 static int __ext4_block_zero_page_range(handle_t *handle,
3959 struct address_space *mapping, loff_t from, loff_t length)
3960 {
3961 ext4_fsblk_t index = from >> PAGE_SHIFT;
3962 unsigned offset = from & (PAGE_SIZE-1);
3963 unsigned blocksize, pos;
3964 ext4_lblk_t iblock;
3965 struct inode *inode = mapping->host;
3966 struct buffer_head *bh;
3967 struct page *page;
3968 int err = 0;
3969
3970 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3971 mapping_gfp_constraint(mapping, ~__GFP_FS));
3972 if (!page)
3973 return -ENOMEM;
3974
3975 blocksize = inode->i_sb->s_blocksize;
3976
3977 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3978
3979 if (!page_has_buffers(page))
3980 create_empty_buffers(page, blocksize, 0);
3981
3982 /* Find the buffer that contains "offset" */
3983 bh = page_buffers(page);
3984 pos = blocksize;
3985 while (offset >= pos) {
3986 bh = bh->b_this_page;
3987 iblock++;
3988 pos += blocksize;
3989 }
3990 if (buffer_freed(bh)) {
3991 BUFFER_TRACE(bh, "freed: skip");
3992 goto unlock;
3993 }
3994 if (!buffer_mapped(bh)) {
3995 BUFFER_TRACE(bh, "unmapped");
3996 ext4_get_block(inode, iblock, bh, 0);
3997 /* unmapped? It's a hole - nothing to do */
3998 if (!buffer_mapped(bh)) {
3999 BUFFER_TRACE(bh, "still unmapped");
4000 goto unlock;
4001 }
4002 }
4003
4004 /* Ok, it's mapped. Make sure it's up-to-date */
4005 if (PageUptodate(page))
4006 set_buffer_uptodate(bh);
4007
4008 if (!buffer_uptodate(bh)) {
4009 err = -EIO;
4010 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4011 wait_on_buffer(bh);
4012 /* Uhhuh. Read error. Complain and punt. */
4013 if (!buffer_uptodate(bh))
4014 goto unlock;
4015 if (S_ISREG(inode->i_mode) &&
4016 ext4_encrypted_inode(inode)) {
4017 /* We expect the key to be set. */
4018 BUG_ON(!fscrypt_has_encryption_key(inode));
4019 BUG_ON(blocksize != PAGE_SIZE);
4020 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4021 page, PAGE_SIZE, 0, page->index));
4022 }
4023 }
4024 if (ext4_should_journal_data(inode)) {
4025 BUFFER_TRACE(bh, "get write access");
4026 err = ext4_journal_get_write_access(handle, bh);
4027 if (err)
4028 goto unlock;
4029 }
4030 zero_user(page, offset, length);
4031 BUFFER_TRACE(bh, "zeroed end of block");
4032
4033 if (ext4_should_journal_data(inode)) {
4034 err = ext4_handle_dirty_metadata(handle, inode, bh);
4035 } else {
4036 err = 0;
4037 mark_buffer_dirty(bh);
4038 if (ext4_should_order_data(inode))
4039 err = ext4_jbd2_inode_add_write(handle, inode);
4040 }
4041
4042 unlock:
4043 unlock_page(page);
4044 put_page(page);
4045 return err;
4046 }
4047
4048 /*
4049 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4050 * starting from file offset 'from'. The range to be zero'd must
4051 * be contained with in one block. If the specified range exceeds
4052 * the end of the block it will be shortened to end of the block
4053 * that cooresponds to 'from'
4054 */
4055 static int ext4_block_zero_page_range(handle_t *handle,
4056 struct address_space *mapping, loff_t from, loff_t length)
4057 {
4058 struct inode *inode = mapping->host;
4059 unsigned offset = from & (PAGE_SIZE-1);
4060 unsigned blocksize = inode->i_sb->s_blocksize;
4061 unsigned max = blocksize - (offset & (blocksize - 1));
4062
4063 /*
4064 * correct length if it does not fall between
4065 * 'from' and the end of the block
4066 */
4067 if (length > max || length < 0)
4068 length = max;
4069
4070 if (IS_DAX(inode)) {
4071 return iomap_zero_range(inode, from, length, NULL,
4072 &ext4_iomap_ops);
4073 }
4074 return __ext4_block_zero_page_range(handle, mapping, from, length);
4075 }
4076
4077 /*
4078 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4079 * up to the end of the block which corresponds to `from'.
4080 * This required during truncate. We need to physically zero the tail end
4081 * of that block so it doesn't yield old data if the file is later grown.
4082 */
4083 static int ext4_block_truncate_page(handle_t *handle,
4084 struct address_space *mapping, loff_t from)
4085 {
4086 unsigned offset = from & (PAGE_SIZE-1);
4087 unsigned length;
4088 unsigned blocksize;
4089 struct inode *inode = mapping->host;
4090
4091 /* If we are processing an encrypted inode during orphan list handling */
4092 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4093 return 0;
4094
4095 blocksize = inode->i_sb->s_blocksize;
4096 length = blocksize - (offset & (blocksize - 1));
4097
4098 return ext4_block_zero_page_range(handle, mapping, from, length);
4099 }
4100
4101 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4102 loff_t lstart, loff_t length)
4103 {
4104 struct super_block *sb = inode->i_sb;
4105 struct address_space *mapping = inode->i_mapping;
4106 unsigned partial_start, partial_end;
4107 ext4_fsblk_t start, end;
4108 loff_t byte_end = (lstart + length - 1);
4109 int err = 0;
4110
4111 partial_start = lstart & (sb->s_blocksize - 1);
4112 partial_end = byte_end & (sb->s_blocksize - 1);
4113
4114 start = lstart >> sb->s_blocksize_bits;
4115 end = byte_end >> sb->s_blocksize_bits;
4116
4117 /* Handle partial zero within the single block */
4118 if (start == end &&
4119 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4120 err = ext4_block_zero_page_range(handle, mapping,
4121 lstart, length);
4122 return err;
4123 }
4124 /* Handle partial zero out on the start of the range */
4125 if (partial_start) {
4126 err = ext4_block_zero_page_range(handle, mapping,
4127 lstart, sb->s_blocksize);
4128 if (err)
4129 return err;
4130 }
4131 /* Handle partial zero out on the end of the range */
4132 if (partial_end != sb->s_blocksize - 1)
4133 err = ext4_block_zero_page_range(handle, mapping,
4134 byte_end - partial_end,
4135 partial_end + 1);
4136 return err;
4137 }
4138
4139 int ext4_can_truncate(struct inode *inode)
4140 {
4141 if (S_ISREG(inode->i_mode))
4142 return 1;
4143 if (S_ISDIR(inode->i_mode))
4144 return 1;
4145 if (S_ISLNK(inode->i_mode))
4146 return !ext4_inode_is_fast_symlink(inode);
4147 return 0;
4148 }
4149
4150 /*
4151 * We have to make sure i_disksize gets properly updated before we truncate
4152 * page cache due to hole punching or zero range. Otherwise i_disksize update
4153 * can get lost as it may have been postponed to submission of writeback but
4154 * that will never happen after we truncate page cache.
4155 */
4156 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4157 loff_t len)
4158 {
4159 handle_t *handle;
4160 loff_t size = i_size_read(inode);
4161
4162 WARN_ON(!inode_is_locked(inode));
4163 if (offset > size || offset + len < size)
4164 return 0;
4165
4166 if (EXT4_I(inode)->i_disksize >= size)
4167 return 0;
4168
4169 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4170 if (IS_ERR(handle))
4171 return PTR_ERR(handle);
4172 ext4_update_i_disksize(inode, size);
4173 ext4_mark_inode_dirty(handle, inode);
4174 ext4_journal_stop(handle);
4175
4176 return 0;
4177 }
4178
4179 /*
4180 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4181 * associated with the given offset and length
4182 *
4183 * @inode: File inode
4184 * @offset: The offset where the hole will begin
4185 * @len: The length of the hole
4186 *
4187 * Returns: 0 on success or negative on failure
4188 */
4189
4190 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4191 {
4192 struct super_block *sb = inode->i_sb;
4193 ext4_lblk_t first_block, stop_block;
4194 struct address_space *mapping = inode->i_mapping;
4195 loff_t first_block_offset, last_block_offset;
4196 handle_t *handle;
4197 unsigned int credits;
4198 int ret = 0;
4199
4200 if (!S_ISREG(inode->i_mode))
4201 return -EOPNOTSUPP;
4202
4203 trace_ext4_punch_hole(inode, offset, length, 0);
4204
4205 /*
4206 * Write out all dirty pages to avoid race conditions
4207 * Then release them.
4208 */
4209 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4210 ret = filemap_write_and_wait_range(mapping, offset,
4211 offset + length - 1);
4212 if (ret)
4213 return ret;
4214 }
4215
4216 inode_lock(inode);
4217
4218 /* No need to punch hole beyond i_size */
4219 if (offset >= inode->i_size)
4220 goto out_mutex;
4221
4222 /*
4223 * If the hole extends beyond i_size, set the hole
4224 * to end after the page that contains i_size
4225 */
4226 if (offset + length > inode->i_size) {
4227 length = inode->i_size +
4228 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4229 offset;
4230 }
4231
4232 if (offset & (sb->s_blocksize - 1) ||
4233 (offset + length) & (sb->s_blocksize - 1)) {
4234 /*
4235 * Attach jinode to inode for jbd2 if we do any zeroing of
4236 * partial block
4237 */
4238 ret = ext4_inode_attach_jinode(inode);
4239 if (ret < 0)
4240 goto out_mutex;
4241
4242 }
4243
4244 /* Wait all existing dio workers, newcomers will block on i_mutex */
4245 ext4_inode_block_unlocked_dio(inode);
4246 inode_dio_wait(inode);
4247
4248 /*
4249 * Prevent page faults from reinstantiating pages we have released from
4250 * page cache.
4251 */
4252 down_write(&EXT4_I(inode)->i_mmap_sem);
4253 first_block_offset = round_up(offset, sb->s_blocksize);
4254 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4255
4256 /* Now release the pages and zero block aligned part of pages*/
4257 if (last_block_offset > first_block_offset) {
4258 ret = ext4_update_disksize_before_punch(inode, offset, length);
4259 if (ret)
4260 goto out_dio;
4261 truncate_pagecache_range(inode, first_block_offset,
4262 last_block_offset);
4263 }
4264
4265 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266 credits = ext4_writepage_trans_blocks(inode);
4267 else
4268 credits = ext4_blocks_for_truncate(inode);
4269 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4270 if (IS_ERR(handle)) {
4271 ret = PTR_ERR(handle);
4272 ext4_std_error(sb, ret);
4273 goto out_dio;
4274 }
4275
4276 ret = ext4_zero_partial_blocks(handle, inode, offset,
4277 length);
4278 if (ret)
4279 goto out_stop;
4280
4281 first_block = (offset + sb->s_blocksize - 1) >>
4282 EXT4_BLOCK_SIZE_BITS(sb);
4283 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4284
4285 /* If there are no blocks to remove, return now */
4286 if (first_block >= stop_block)
4287 goto out_stop;
4288
4289 down_write(&EXT4_I(inode)->i_data_sem);
4290 ext4_discard_preallocations(inode);
4291
4292 ret = ext4_es_remove_extent(inode, first_block,
4293 stop_block - first_block);
4294 if (ret) {
4295 up_write(&EXT4_I(inode)->i_data_sem);
4296 goto out_stop;
4297 }
4298
4299 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4300 ret = ext4_ext_remove_space(inode, first_block,
4301 stop_block - 1);
4302 else
4303 ret = ext4_ind_remove_space(handle, inode, first_block,
4304 stop_block);
4305
4306 up_write(&EXT4_I(inode)->i_data_sem);
4307 if (IS_SYNC(inode))
4308 ext4_handle_sync(handle);
4309
4310 inode->i_mtime = inode->i_ctime = current_time(inode);
4311 ext4_mark_inode_dirty(handle, inode);
4312 if (ret >= 0)
4313 ext4_update_inode_fsync_trans(handle, inode, 1);
4314 out_stop:
4315 ext4_journal_stop(handle);
4316 out_dio:
4317 up_write(&EXT4_I(inode)->i_mmap_sem);
4318 ext4_inode_resume_unlocked_dio(inode);
4319 out_mutex:
4320 inode_unlock(inode);
4321 return ret;
4322 }
4323
4324 int ext4_inode_attach_jinode(struct inode *inode)
4325 {
4326 struct ext4_inode_info *ei = EXT4_I(inode);
4327 struct jbd2_inode *jinode;
4328
4329 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4330 return 0;
4331
4332 jinode = jbd2_alloc_inode(GFP_KERNEL);
4333 spin_lock(&inode->i_lock);
4334 if (!ei->jinode) {
4335 if (!jinode) {
4336 spin_unlock(&inode->i_lock);
4337 return -ENOMEM;
4338 }
4339 ei->jinode = jinode;
4340 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4341 jinode = NULL;
4342 }
4343 spin_unlock(&inode->i_lock);
4344 if (unlikely(jinode != NULL))
4345 jbd2_free_inode(jinode);
4346 return 0;
4347 }
4348
4349 /*
4350 * ext4_truncate()
4351 *
4352 * We block out ext4_get_block() block instantiations across the entire
4353 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4354 * simultaneously on behalf of the same inode.
4355 *
4356 * As we work through the truncate and commit bits of it to the journal there
4357 * is one core, guiding principle: the file's tree must always be consistent on
4358 * disk. We must be able to restart the truncate after a crash.
4359 *
4360 * The file's tree may be transiently inconsistent in memory (although it
4361 * probably isn't), but whenever we close off and commit a journal transaction,
4362 * the contents of (the filesystem + the journal) must be consistent and
4363 * restartable. It's pretty simple, really: bottom up, right to left (although
4364 * left-to-right works OK too).
4365 *
4366 * Note that at recovery time, journal replay occurs *before* the restart of
4367 * truncate against the orphan inode list.
4368 *
4369 * The committed inode has the new, desired i_size (which is the same as
4370 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4371 * that this inode's truncate did not complete and it will again call
4372 * ext4_truncate() to have another go. So there will be instantiated blocks
4373 * to the right of the truncation point in a crashed ext4 filesystem. But
4374 * that's fine - as long as they are linked from the inode, the post-crash
4375 * ext4_truncate() run will find them and release them.
4376 */
4377 int ext4_truncate(struct inode *inode)
4378 {
4379 struct ext4_inode_info *ei = EXT4_I(inode);
4380 unsigned int credits;
4381 int err = 0;
4382 handle_t *handle;
4383 struct address_space *mapping = inode->i_mapping;
4384
4385 /*
4386 * There is a possibility that we're either freeing the inode
4387 * or it's a completely new inode. In those cases we might not
4388 * have i_mutex locked because it's not necessary.
4389 */
4390 if (!(inode->i_state & (I_NEW|I_FREEING)))
4391 WARN_ON(!inode_is_locked(inode));
4392 trace_ext4_truncate_enter(inode);
4393
4394 if (!ext4_can_truncate(inode))
4395 return 0;
4396
4397 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4398
4399 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4400 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4401
4402 if (ext4_has_inline_data(inode)) {
4403 int has_inline = 1;
4404
4405 err = ext4_inline_data_truncate(inode, &has_inline);
4406 if (err)
4407 return err;
4408 if (has_inline)
4409 return 0;
4410 }
4411
4412 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4413 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4414 if (ext4_inode_attach_jinode(inode) < 0)
4415 return 0;
4416 }
4417
4418 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4419 credits = ext4_writepage_trans_blocks(inode);
4420 else
4421 credits = ext4_blocks_for_truncate(inode);
4422
4423 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4424 if (IS_ERR(handle))
4425 return PTR_ERR(handle);
4426
4427 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4428 ext4_block_truncate_page(handle, mapping, inode->i_size);
4429
4430 /*
4431 * We add the inode to the orphan list, so that if this
4432 * truncate spans multiple transactions, and we crash, we will
4433 * resume the truncate when the filesystem recovers. It also
4434 * marks the inode dirty, to catch the new size.
4435 *
4436 * Implication: the file must always be in a sane, consistent
4437 * truncatable state while each transaction commits.
4438 */
4439 err = ext4_orphan_add(handle, inode);
4440 if (err)
4441 goto out_stop;
4442
4443 down_write(&EXT4_I(inode)->i_data_sem);
4444
4445 ext4_discard_preallocations(inode);
4446
4447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4448 err = ext4_ext_truncate(handle, inode);
4449 else
4450 ext4_ind_truncate(handle, inode);
4451
4452 up_write(&ei->i_data_sem);
4453 if (err)
4454 goto out_stop;
4455
4456 if (IS_SYNC(inode))
4457 ext4_handle_sync(handle);
4458
4459 out_stop:
4460 /*
4461 * If this was a simple ftruncate() and the file will remain alive,
4462 * then we need to clear up the orphan record which we created above.
4463 * However, if this was a real unlink then we were called by
4464 * ext4_evict_inode(), and we allow that function to clean up the
4465 * orphan info for us.
4466 */
4467 if (inode->i_nlink)
4468 ext4_orphan_del(handle, inode);
4469
4470 inode->i_mtime = inode->i_ctime = current_time(inode);
4471 ext4_mark_inode_dirty(handle, inode);
4472 ext4_journal_stop(handle);
4473
4474 trace_ext4_truncate_exit(inode);
4475 return err;
4476 }
4477
4478 /*
4479 * ext4_get_inode_loc returns with an extra refcount against the inode's
4480 * underlying buffer_head on success. If 'in_mem' is true, we have all
4481 * data in memory that is needed to recreate the on-disk version of this
4482 * inode.
4483 */
4484 static int __ext4_get_inode_loc(struct inode *inode,
4485 struct ext4_iloc *iloc, int in_mem)
4486 {
4487 struct ext4_group_desc *gdp;
4488 struct buffer_head *bh;
4489 struct super_block *sb = inode->i_sb;
4490 ext4_fsblk_t block;
4491 int inodes_per_block, inode_offset;
4492
4493 iloc->bh = NULL;
4494 if (!ext4_valid_inum(sb, inode->i_ino))
4495 return -EFSCORRUPTED;
4496
4497 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4498 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4499 if (!gdp)
4500 return -EIO;
4501
4502 /*
4503 * Figure out the offset within the block group inode table
4504 */
4505 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4506 inode_offset = ((inode->i_ino - 1) %
4507 EXT4_INODES_PER_GROUP(sb));
4508 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4509 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4510
4511 bh = sb_getblk(sb, block);
4512 if (unlikely(!bh))
4513 return -ENOMEM;
4514 if (!buffer_uptodate(bh)) {
4515 lock_buffer(bh);
4516
4517 /*
4518 * If the buffer has the write error flag, we have failed
4519 * to write out another inode in the same block. In this
4520 * case, we don't have to read the block because we may
4521 * read the old inode data successfully.
4522 */
4523 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4524 set_buffer_uptodate(bh);
4525
4526 if (buffer_uptodate(bh)) {
4527 /* someone brought it uptodate while we waited */
4528 unlock_buffer(bh);
4529 goto has_buffer;
4530 }
4531
4532 /*
4533 * If we have all information of the inode in memory and this
4534 * is the only valid inode in the block, we need not read the
4535 * block.
4536 */
4537 if (in_mem) {
4538 struct buffer_head *bitmap_bh;
4539 int i, start;
4540
4541 start = inode_offset & ~(inodes_per_block - 1);
4542
4543 /* Is the inode bitmap in cache? */
4544 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4545 if (unlikely(!bitmap_bh))
4546 goto make_io;
4547
4548 /*
4549 * If the inode bitmap isn't in cache then the
4550 * optimisation may end up performing two reads instead
4551 * of one, so skip it.
4552 */
4553 if (!buffer_uptodate(bitmap_bh)) {
4554 brelse(bitmap_bh);
4555 goto make_io;
4556 }
4557 for (i = start; i < start + inodes_per_block; i++) {
4558 if (i == inode_offset)
4559 continue;
4560 if (ext4_test_bit(i, bitmap_bh->b_data))
4561 break;
4562 }
4563 brelse(bitmap_bh);
4564 if (i == start + inodes_per_block) {
4565 /* all other inodes are free, so skip I/O */
4566 memset(bh->b_data, 0, bh->b_size);
4567 set_buffer_uptodate(bh);
4568 unlock_buffer(bh);
4569 goto has_buffer;
4570 }
4571 }
4572
4573 make_io:
4574 /*
4575 * If we need to do any I/O, try to pre-readahead extra
4576 * blocks from the inode table.
4577 */
4578 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4579 ext4_fsblk_t b, end, table;
4580 unsigned num;
4581 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4582
4583 table = ext4_inode_table(sb, gdp);
4584 /* s_inode_readahead_blks is always a power of 2 */
4585 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4586 if (table > b)
4587 b = table;
4588 end = b + ra_blks;
4589 num = EXT4_INODES_PER_GROUP(sb);
4590 if (ext4_has_group_desc_csum(sb))
4591 num -= ext4_itable_unused_count(sb, gdp);
4592 table += num / inodes_per_block;
4593 if (end > table)
4594 end = table;
4595 while (b <= end)
4596 sb_breadahead(sb, b++);
4597 }
4598
4599 /*
4600 * There are other valid inodes in the buffer, this inode
4601 * has in-inode xattrs, or we don't have this inode in memory.
4602 * Read the block from disk.
4603 */
4604 trace_ext4_load_inode(inode);
4605 get_bh(bh);
4606 bh->b_end_io = end_buffer_read_sync;
4607 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4608 wait_on_buffer(bh);
4609 if (!buffer_uptodate(bh)) {
4610 EXT4_ERROR_INODE_BLOCK(inode, block,
4611 "unable to read itable block");
4612 brelse(bh);
4613 return -EIO;
4614 }
4615 }
4616 has_buffer:
4617 iloc->bh = bh;
4618 return 0;
4619 }
4620
4621 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4622 {
4623 /* We have all inode data except xattrs in memory here. */
4624 return __ext4_get_inode_loc(inode, iloc,
4625 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4626 }
4627
4628 static bool ext4_should_use_dax(struct inode *inode)
4629 {
4630 if (!test_opt(inode->i_sb, DAX))
4631 return false;
4632 if (!S_ISREG(inode->i_mode))
4633 return false;
4634 if (ext4_should_journal_data(inode))
4635 return false;
4636 if (ext4_has_inline_data(inode))
4637 return false;
4638 if (ext4_encrypted_inode(inode))
4639 return false;
4640 return true;
4641 }
4642
4643 void ext4_set_inode_flags(struct inode *inode)
4644 {
4645 unsigned int flags = EXT4_I(inode)->i_flags;
4646 unsigned int new_fl = 0;
4647
4648 if (flags & EXT4_SYNC_FL)
4649 new_fl |= S_SYNC;
4650 if (flags & EXT4_APPEND_FL)
4651 new_fl |= S_APPEND;
4652 if (flags & EXT4_IMMUTABLE_FL)
4653 new_fl |= S_IMMUTABLE;
4654 if (flags & EXT4_NOATIME_FL)
4655 new_fl |= S_NOATIME;
4656 if (flags & EXT4_DIRSYNC_FL)
4657 new_fl |= S_DIRSYNC;
4658 if (ext4_should_use_dax(inode))
4659 new_fl |= S_DAX;
4660 if (flags & EXT4_ENCRYPT_FL)
4661 new_fl |= S_ENCRYPTED;
4662 inode_set_flags(inode, new_fl,
4663 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4664 S_ENCRYPTED);
4665 }
4666
4667 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4668 struct ext4_inode_info *ei)
4669 {
4670 blkcnt_t i_blocks ;
4671 struct inode *inode = &(ei->vfs_inode);
4672 struct super_block *sb = inode->i_sb;
4673
4674 if (ext4_has_feature_huge_file(sb)) {
4675 /* we are using combined 48 bit field */
4676 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4677 le32_to_cpu(raw_inode->i_blocks_lo);
4678 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4679 /* i_blocks represent file system block size */
4680 return i_blocks << (inode->i_blkbits - 9);
4681 } else {
4682 return i_blocks;
4683 }
4684 } else {
4685 return le32_to_cpu(raw_inode->i_blocks_lo);
4686 }
4687 }
4688
4689 static inline void ext4_iget_extra_inode(struct inode *inode,
4690 struct ext4_inode *raw_inode,
4691 struct ext4_inode_info *ei)
4692 {
4693 __le32 *magic = (void *)raw_inode +
4694 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4695 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4696 EXT4_INODE_SIZE(inode->i_sb) &&
4697 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4698 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4699 ext4_find_inline_data_nolock(inode);
4700 } else
4701 EXT4_I(inode)->i_inline_off = 0;
4702 }
4703
4704 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4705 {
4706 if (!ext4_has_feature_project(inode->i_sb))
4707 return -EOPNOTSUPP;
4708 *projid = EXT4_I(inode)->i_projid;
4709 return 0;
4710 }
4711
4712 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4713 {
4714 struct ext4_iloc iloc;
4715 struct ext4_inode *raw_inode;
4716 struct ext4_inode_info *ei;
4717 struct inode *inode;
4718 journal_t *journal = EXT4_SB(sb)->s_journal;
4719 long ret;
4720 loff_t size;
4721 int block;
4722 uid_t i_uid;
4723 gid_t i_gid;
4724 projid_t i_projid;
4725
4726 inode = iget_locked(sb, ino);
4727 if (!inode)
4728 return ERR_PTR(-ENOMEM);
4729 if (!(inode->i_state & I_NEW))
4730 return inode;
4731
4732 ei = EXT4_I(inode);
4733 iloc.bh = NULL;
4734
4735 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4736 if (ret < 0)
4737 goto bad_inode;
4738 raw_inode = ext4_raw_inode(&iloc);
4739
4740 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4741 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4742 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4743 EXT4_INODE_SIZE(inode->i_sb) ||
4744 (ei->i_extra_isize & 3)) {
4745 EXT4_ERROR_INODE(inode,
4746 "bad extra_isize %u (inode size %u)",
4747 ei->i_extra_isize,
4748 EXT4_INODE_SIZE(inode->i_sb));
4749 ret = -EFSCORRUPTED;
4750 goto bad_inode;
4751 }
4752 } else
4753 ei->i_extra_isize = 0;
4754
4755 /* Precompute checksum seed for inode metadata */
4756 if (ext4_has_metadata_csum(sb)) {
4757 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4758 __u32 csum;
4759 __le32 inum = cpu_to_le32(inode->i_ino);
4760 __le32 gen = raw_inode->i_generation;
4761 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4762 sizeof(inum));
4763 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4764 sizeof(gen));
4765 }
4766
4767 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4768 EXT4_ERROR_INODE(inode, "checksum invalid");
4769 ret = -EFSBADCRC;
4770 goto bad_inode;
4771 }
4772
4773 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4774 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4775 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4776 if (ext4_has_feature_project(sb) &&
4777 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4778 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4779 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4780 else
4781 i_projid = EXT4_DEF_PROJID;
4782
4783 if (!(test_opt(inode->i_sb, NO_UID32))) {
4784 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4785 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4786 }
4787 i_uid_write(inode, i_uid);
4788 i_gid_write(inode, i_gid);
4789 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4790 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4791
4792 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4793 ei->i_inline_off = 0;
4794 ei->i_dir_start_lookup = 0;
4795 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4796 /* We now have enough fields to check if the inode was active or not.
4797 * This is needed because nfsd might try to access dead inodes
4798 * the test is that same one that e2fsck uses
4799 * NeilBrown 1999oct15
4800 */
4801 if (inode->i_nlink == 0) {
4802 if ((inode->i_mode == 0 ||
4803 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4804 ino != EXT4_BOOT_LOADER_INO) {
4805 /* this inode is deleted */
4806 ret = -ESTALE;
4807 goto bad_inode;
4808 }
4809 /* The only unlinked inodes we let through here have
4810 * valid i_mode and are being read by the orphan
4811 * recovery code: that's fine, we're about to complete
4812 * the process of deleting those.
4813 * OR it is the EXT4_BOOT_LOADER_INO which is
4814 * not initialized on a new filesystem. */
4815 }
4816 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4817 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4818 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4819 if (ext4_has_feature_64bit(sb))
4820 ei->i_file_acl |=
4821 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4822 inode->i_size = ext4_isize(sb, raw_inode);
4823 if ((size = i_size_read(inode)) < 0) {
4824 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4825 ret = -EFSCORRUPTED;
4826 goto bad_inode;
4827 }
4828 ei->i_disksize = inode->i_size;
4829 #ifdef CONFIG_QUOTA
4830 ei->i_reserved_quota = 0;
4831 #endif
4832 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4833 ei->i_block_group = iloc.block_group;
4834 ei->i_last_alloc_group = ~0;
4835 /*
4836 * NOTE! The in-memory inode i_data array is in little-endian order
4837 * even on big-endian machines: we do NOT byteswap the block numbers!
4838 */
4839 for (block = 0; block < EXT4_N_BLOCKS; block++)
4840 ei->i_data[block] = raw_inode->i_block[block];
4841 INIT_LIST_HEAD(&ei->i_orphan);
4842
4843 /*
4844 * Set transaction id's of transactions that have to be committed
4845 * to finish f[data]sync. We set them to currently running transaction
4846 * as we cannot be sure that the inode or some of its metadata isn't
4847 * part of the transaction - the inode could have been reclaimed and
4848 * now it is reread from disk.
4849 */
4850 if (journal) {
4851 transaction_t *transaction;
4852 tid_t tid;
4853
4854 read_lock(&journal->j_state_lock);
4855 if (journal->j_running_transaction)
4856 transaction = journal->j_running_transaction;
4857 else
4858 transaction = journal->j_committing_transaction;
4859 if (transaction)
4860 tid = transaction->t_tid;
4861 else
4862 tid = journal->j_commit_sequence;
4863 read_unlock(&journal->j_state_lock);
4864 ei->i_sync_tid = tid;
4865 ei->i_datasync_tid = tid;
4866 }
4867
4868 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4869 if (ei->i_extra_isize == 0) {
4870 /* The extra space is currently unused. Use it. */
4871 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4872 ei->i_extra_isize = sizeof(struct ext4_inode) -
4873 EXT4_GOOD_OLD_INODE_SIZE;
4874 } else {
4875 ext4_iget_extra_inode(inode, raw_inode, ei);
4876 }
4877 }
4878
4879 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4880 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4881 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4882 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4883
4884 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4885 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4886 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4887 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4888 inode->i_version |=
4889 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4890 }
4891 }
4892
4893 ret = 0;
4894 if (ei->i_file_acl &&
4895 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4896 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4897 ei->i_file_acl);
4898 ret = -EFSCORRUPTED;
4899 goto bad_inode;
4900 } else if (!ext4_has_inline_data(inode)) {
4901 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4902 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4903 (S_ISLNK(inode->i_mode) &&
4904 !ext4_inode_is_fast_symlink(inode))))
4905 /* Validate extent which is part of inode */
4906 ret = ext4_ext_check_inode(inode);
4907 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4908 (S_ISLNK(inode->i_mode) &&
4909 !ext4_inode_is_fast_symlink(inode))) {
4910 /* Validate block references which are part of inode */
4911 ret = ext4_ind_check_inode(inode);
4912 }
4913 }
4914 if (ret)
4915 goto bad_inode;
4916
4917 if (S_ISREG(inode->i_mode)) {
4918 inode->i_op = &ext4_file_inode_operations;
4919 inode->i_fop = &ext4_file_operations;
4920 ext4_set_aops(inode);
4921 } else if (S_ISDIR(inode->i_mode)) {
4922 inode->i_op = &ext4_dir_inode_operations;
4923 inode->i_fop = &ext4_dir_operations;
4924 } else if (S_ISLNK(inode->i_mode)) {
4925 if (ext4_encrypted_inode(inode)) {
4926 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4927 ext4_set_aops(inode);
4928 } else if (ext4_inode_is_fast_symlink(inode)) {
4929 inode->i_link = (char *)ei->i_data;
4930 inode->i_op = &ext4_fast_symlink_inode_operations;
4931 nd_terminate_link(ei->i_data, inode->i_size,
4932 sizeof(ei->i_data) - 1);
4933 } else {
4934 inode->i_op = &ext4_symlink_inode_operations;
4935 ext4_set_aops(inode);
4936 }
4937 inode_nohighmem(inode);
4938 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4939 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4940 inode->i_op = &ext4_special_inode_operations;
4941 if (raw_inode->i_block[0])
4942 init_special_inode(inode, inode->i_mode,
4943 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4944 else
4945 init_special_inode(inode, inode->i_mode,
4946 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4947 } else if (ino == EXT4_BOOT_LOADER_INO) {
4948 make_bad_inode(inode);
4949 } else {
4950 ret = -EFSCORRUPTED;
4951 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4952 goto bad_inode;
4953 }
4954 brelse(iloc.bh);
4955 ext4_set_inode_flags(inode);
4956
4957 unlock_new_inode(inode);
4958 return inode;
4959
4960 bad_inode:
4961 brelse(iloc.bh);
4962 iget_failed(inode);
4963 return ERR_PTR(ret);
4964 }
4965
4966 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4967 {
4968 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4969 return ERR_PTR(-EFSCORRUPTED);
4970 return ext4_iget(sb, ino);
4971 }
4972
4973 static int ext4_inode_blocks_set(handle_t *handle,
4974 struct ext4_inode *raw_inode,
4975 struct ext4_inode_info *ei)
4976 {
4977 struct inode *inode = &(ei->vfs_inode);
4978 u64 i_blocks = inode->i_blocks;
4979 struct super_block *sb = inode->i_sb;
4980
4981 if (i_blocks <= ~0U) {
4982 /*
4983 * i_blocks can be represented in a 32 bit variable
4984 * as multiple of 512 bytes
4985 */
4986 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4987 raw_inode->i_blocks_high = 0;
4988 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4989 return 0;
4990 }
4991 if (!ext4_has_feature_huge_file(sb))
4992 return -EFBIG;
4993
4994 if (i_blocks <= 0xffffffffffffULL) {
4995 /*
4996 * i_blocks can be represented in a 48 bit variable
4997 * as multiple of 512 bytes
4998 */
4999 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5000 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5001 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5002 } else {
5003 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5004 /* i_block is stored in file system block size */
5005 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5006 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5007 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5008 }
5009 return 0;
5010 }
5011
5012 struct other_inode {
5013 unsigned long orig_ino;
5014 struct ext4_inode *raw_inode;
5015 };
5016
5017 static int other_inode_match(struct inode * inode, unsigned long ino,
5018 void *data)
5019 {
5020 struct other_inode *oi = (struct other_inode *) data;
5021
5022 if ((inode->i_ino != ino) ||
5023 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5024 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5025 ((inode->i_state & I_DIRTY_TIME) == 0))
5026 return 0;
5027 spin_lock(&inode->i_lock);
5028 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5029 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5030 (inode->i_state & I_DIRTY_TIME)) {
5031 struct ext4_inode_info *ei = EXT4_I(inode);
5032
5033 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5034 spin_unlock(&inode->i_lock);
5035
5036 spin_lock(&ei->i_raw_lock);
5037 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5038 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5039 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5040 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5041 spin_unlock(&ei->i_raw_lock);
5042 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5043 return -1;
5044 }
5045 spin_unlock(&inode->i_lock);
5046 return -1;
5047 }
5048
5049 /*
5050 * Opportunistically update the other time fields for other inodes in
5051 * the same inode table block.
5052 */
5053 static void ext4_update_other_inodes_time(struct super_block *sb,
5054 unsigned long orig_ino, char *buf)
5055 {
5056 struct other_inode oi;
5057 unsigned long ino;
5058 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5059 int inode_size = EXT4_INODE_SIZE(sb);
5060
5061 oi.orig_ino = orig_ino;
5062 /*
5063 * Calculate the first inode in the inode table block. Inode
5064 * numbers are one-based. That is, the first inode in a block
5065 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5066 */
5067 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5068 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5069 if (ino == orig_ino)
5070 continue;
5071 oi.raw_inode = (struct ext4_inode *) buf;
5072 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5073 }
5074 }
5075
5076 /*
5077 * Post the struct inode info into an on-disk inode location in the
5078 * buffer-cache. This gobbles the caller's reference to the
5079 * buffer_head in the inode location struct.
5080 *
5081 * The caller must have write access to iloc->bh.
5082 */
5083 static int ext4_do_update_inode(handle_t *handle,
5084 struct inode *inode,
5085 struct ext4_iloc *iloc)
5086 {
5087 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5088 struct ext4_inode_info *ei = EXT4_I(inode);
5089 struct buffer_head *bh = iloc->bh;
5090 struct super_block *sb = inode->i_sb;
5091 int err = 0, rc, block;
5092 int need_datasync = 0, set_large_file = 0;
5093 uid_t i_uid;
5094 gid_t i_gid;
5095 projid_t i_projid;
5096
5097 spin_lock(&ei->i_raw_lock);
5098
5099 /* For fields not tracked in the in-memory inode,
5100 * initialise them to zero for new inodes. */
5101 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5102 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5103
5104 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5105 i_uid = i_uid_read(inode);
5106 i_gid = i_gid_read(inode);
5107 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5108 if (!(test_opt(inode->i_sb, NO_UID32))) {
5109 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5110 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5111 /*
5112 * Fix up interoperability with old kernels. Otherwise, old inodes get
5113 * re-used with the upper 16 bits of the uid/gid intact
5114 */
5115 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5116 raw_inode->i_uid_high = 0;
5117 raw_inode->i_gid_high = 0;
5118 } else {
5119 raw_inode->i_uid_high =
5120 cpu_to_le16(high_16_bits(i_uid));
5121 raw_inode->i_gid_high =
5122 cpu_to_le16(high_16_bits(i_gid));
5123 }
5124 } else {
5125 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5126 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5127 raw_inode->i_uid_high = 0;
5128 raw_inode->i_gid_high = 0;
5129 }
5130 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5131
5132 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5133 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5134 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5135 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5136
5137 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5138 if (err) {
5139 spin_unlock(&ei->i_raw_lock);
5140 goto out_brelse;
5141 }
5142 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5143 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5144 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5145 raw_inode->i_file_acl_high =
5146 cpu_to_le16(ei->i_file_acl >> 32);
5147 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5148 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5149 ext4_isize_set(raw_inode, ei->i_disksize);
5150 need_datasync = 1;
5151 }
5152 if (ei->i_disksize > 0x7fffffffULL) {
5153 if (!ext4_has_feature_large_file(sb) ||
5154 EXT4_SB(sb)->s_es->s_rev_level ==
5155 cpu_to_le32(EXT4_GOOD_OLD_REV))
5156 set_large_file = 1;
5157 }
5158 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5159 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5160 if (old_valid_dev(inode->i_rdev)) {
5161 raw_inode->i_block[0] =
5162 cpu_to_le32(old_encode_dev(inode->i_rdev));
5163 raw_inode->i_block[1] = 0;
5164 } else {
5165 raw_inode->i_block[0] = 0;
5166 raw_inode->i_block[1] =
5167 cpu_to_le32(new_encode_dev(inode->i_rdev));
5168 raw_inode->i_block[2] = 0;
5169 }
5170 } else if (!ext4_has_inline_data(inode)) {
5171 for (block = 0; block < EXT4_N_BLOCKS; block++)
5172 raw_inode->i_block[block] = ei->i_data[block];
5173 }
5174
5175 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5176 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5177 if (ei->i_extra_isize) {
5178 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5179 raw_inode->i_version_hi =
5180 cpu_to_le32(inode->i_version >> 32);
5181 raw_inode->i_extra_isize =
5182 cpu_to_le16(ei->i_extra_isize);
5183 }
5184 }
5185
5186 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5187 i_projid != EXT4_DEF_PROJID);
5188
5189 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5190 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5191 raw_inode->i_projid = cpu_to_le32(i_projid);
5192
5193 ext4_inode_csum_set(inode, raw_inode, ei);
5194 spin_unlock(&ei->i_raw_lock);
5195 if (inode->i_sb->s_flags & SB_LAZYTIME)
5196 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5197 bh->b_data);
5198
5199 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5200 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5201 if (!err)
5202 err = rc;
5203 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5204 if (set_large_file) {
5205 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5206 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5207 if (err)
5208 goto out_brelse;
5209 ext4_update_dynamic_rev(sb);
5210 ext4_set_feature_large_file(sb);
5211 ext4_handle_sync(handle);
5212 err = ext4_handle_dirty_super(handle, sb);
5213 }
5214 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5215 out_brelse:
5216 brelse(bh);
5217 ext4_std_error(inode->i_sb, err);
5218 return err;
5219 }
5220
5221 /*
5222 * ext4_write_inode()
5223 *
5224 * We are called from a few places:
5225 *
5226 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5227 * Here, there will be no transaction running. We wait for any running
5228 * transaction to commit.
5229 *
5230 * - Within flush work (sys_sync(), kupdate and such).
5231 * We wait on commit, if told to.
5232 *
5233 * - Within iput_final() -> write_inode_now()
5234 * We wait on commit, if told to.
5235 *
5236 * In all cases it is actually safe for us to return without doing anything,
5237 * because the inode has been copied into a raw inode buffer in
5238 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5239 * writeback.
5240 *
5241 * Note that we are absolutely dependent upon all inode dirtiers doing the
5242 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5243 * which we are interested.
5244 *
5245 * It would be a bug for them to not do this. The code:
5246 *
5247 * mark_inode_dirty(inode)
5248 * stuff();
5249 * inode->i_size = expr;
5250 *
5251 * is in error because write_inode() could occur while `stuff()' is running,
5252 * and the new i_size will be lost. Plus the inode will no longer be on the
5253 * superblock's dirty inode list.
5254 */
5255 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5256 {
5257 int err;
5258
5259 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5260 return 0;
5261
5262 if (EXT4_SB(inode->i_sb)->s_journal) {
5263 if (ext4_journal_current_handle()) {
5264 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5265 dump_stack();
5266 return -EIO;
5267 }
5268
5269 /*
5270 * No need to force transaction in WB_SYNC_NONE mode. Also
5271 * ext4_sync_fs() will force the commit after everything is
5272 * written.
5273 */
5274 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5275 return 0;
5276
5277 err = ext4_force_commit(inode->i_sb);
5278 } else {
5279 struct ext4_iloc iloc;
5280
5281 err = __ext4_get_inode_loc(inode, &iloc, 0);
5282 if (err)
5283 return err;
5284 /*
5285 * sync(2) will flush the whole buffer cache. No need to do
5286 * it here separately for each inode.
5287 */
5288 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5289 sync_dirty_buffer(iloc.bh);
5290 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5291 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5292 "IO error syncing inode");
5293 err = -EIO;
5294 }
5295 brelse(iloc.bh);
5296 }
5297 return err;
5298 }
5299
5300 /*
5301 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5302 * buffers that are attached to a page stradding i_size and are undergoing
5303 * commit. In that case we have to wait for commit to finish and try again.
5304 */
5305 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5306 {
5307 struct page *page;
5308 unsigned offset;
5309 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5310 tid_t commit_tid = 0;
5311 int ret;
5312
5313 offset = inode->i_size & (PAGE_SIZE - 1);
5314 /*
5315 * All buffers in the last page remain valid? Then there's nothing to
5316 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5317 * blocksize case
5318 */
5319 if (offset > PAGE_SIZE - i_blocksize(inode))
5320 return;
5321 while (1) {
5322 page = find_lock_page(inode->i_mapping,
5323 inode->i_size >> PAGE_SHIFT);
5324 if (!page)
5325 return;
5326 ret = __ext4_journalled_invalidatepage(page, offset,
5327 PAGE_SIZE - offset);
5328 unlock_page(page);
5329 put_page(page);
5330 if (ret != -EBUSY)
5331 return;
5332 commit_tid = 0;
5333 read_lock(&journal->j_state_lock);
5334 if (journal->j_committing_transaction)
5335 commit_tid = journal->j_committing_transaction->t_tid;
5336 read_unlock(&journal->j_state_lock);
5337 if (commit_tid)
5338 jbd2_log_wait_commit(journal, commit_tid);
5339 }
5340 }
5341
5342 /*
5343 * ext4_setattr()
5344 *
5345 * Called from notify_change.
5346 *
5347 * We want to trap VFS attempts to truncate the file as soon as
5348 * possible. In particular, we want to make sure that when the VFS
5349 * shrinks i_size, we put the inode on the orphan list and modify
5350 * i_disksize immediately, so that during the subsequent flushing of
5351 * dirty pages and freeing of disk blocks, we can guarantee that any
5352 * commit will leave the blocks being flushed in an unused state on
5353 * disk. (On recovery, the inode will get truncated and the blocks will
5354 * be freed, so we have a strong guarantee that no future commit will
5355 * leave these blocks visible to the user.)
5356 *
5357 * Another thing we have to assure is that if we are in ordered mode
5358 * and inode is still attached to the committing transaction, we must
5359 * we start writeout of all the dirty pages which are being truncated.
5360 * This way we are sure that all the data written in the previous
5361 * transaction are already on disk (truncate waits for pages under
5362 * writeback).
5363 *
5364 * Called with inode->i_mutex down.
5365 */
5366 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5367 {
5368 struct inode *inode = d_inode(dentry);
5369 int error, rc = 0;
5370 int orphan = 0;
5371 const unsigned int ia_valid = attr->ia_valid;
5372
5373 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5374 return -EIO;
5375
5376 error = setattr_prepare(dentry, attr);
5377 if (error)
5378 return error;
5379
5380 error = fscrypt_prepare_setattr(dentry, attr);
5381 if (error)
5382 return error;
5383
5384 if (is_quota_modification(inode, attr)) {
5385 error = dquot_initialize(inode);
5386 if (error)
5387 return error;
5388 }
5389 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5390 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5391 handle_t *handle;
5392
5393 /* (user+group)*(old+new) structure, inode write (sb,
5394 * inode block, ? - but truncate inode update has it) */
5395 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5396 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5397 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5398 if (IS_ERR(handle)) {
5399 error = PTR_ERR(handle);
5400 goto err_out;
5401 }
5402
5403 /* dquot_transfer() calls back ext4_get_inode_usage() which
5404 * counts xattr inode references.
5405 */
5406 down_read(&EXT4_I(inode)->xattr_sem);
5407 error = dquot_transfer(inode, attr);
5408 up_read(&EXT4_I(inode)->xattr_sem);
5409
5410 if (error) {
5411 ext4_journal_stop(handle);
5412 return error;
5413 }
5414 /* Update corresponding info in inode so that everything is in
5415 * one transaction */
5416 if (attr->ia_valid & ATTR_UID)
5417 inode->i_uid = attr->ia_uid;
5418 if (attr->ia_valid & ATTR_GID)
5419 inode->i_gid = attr->ia_gid;
5420 error = ext4_mark_inode_dirty(handle, inode);
5421 ext4_journal_stop(handle);
5422 }
5423
5424 if (attr->ia_valid & ATTR_SIZE) {
5425 handle_t *handle;
5426 loff_t oldsize = inode->i_size;
5427 int shrink = (attr->ia_size <= inode->i_size);
5428
5429 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5431
5432 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5433 return -EFBIG;
5434 }
5435 if (!S_ISREG(inode->i_mode))
5436 return -EINVAL;
5437
5438 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5439 inode_inc_iversion(inode);
5440
5441 if (ext4_should_order_data(inode) &&
5442 (attr->ia_size < inode->i_size)) {
5443 error = ext4_begin_ordered_truncate(inode,
5444 attr->ia_size);
5445 if (error)
5446 goto err_out;
5447 }
5448 if (attr->ia_size != inode->i_size) {
5449 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5450 if (IS_ERR(handle)) {
5451 error = PTR_ERR(handle);
5452 goto err_out;
5453 }
5454 if (ext4_handle_valid(handle) && shrink) {
5455 error = ext4_orphan_add(handle, inode);
5456 orphan = 1;
5457 }
5458 /*
5459 * Update c/mtime on truncate up, ext4_truncate() will
5460 * update c/mtime in shrink case below
5461 */
5462 if (!shrink) {
5463 inode->i_mtime = current_time(inode);
5464 inode->i_ctime = inode->i_mtime;
5465 }
5466 down_write(&EXT4_I(inode)->i_data_sem);
5467 EXT4_I(inode)->i_disksize = attr->ia_size;
5468 rc = ext4_mark_inode_dirty(handle, inode);
5469 if (!error)
5470 error = rc;
5471 /*
5472 * We have to update i_size under i_data_sem together
5473 * with i_disksize to avoid races with writeback code
5474 * running ext4_wb_update_i_disksize().
5475 */
5476 if (!error)
5477 i_size_write(inode, attr->ia_size);
5478 up_write(&EXT4_I(inode)->i_data_sem);
5479 ext4_journal_stop(handle);
5480 if (error) {
5481 if (orphan)
5482 ext4_orphan_del(NULL, inode);
5483 goto err_out;
5484 }
5485 }
5486 if (!shrink)
5487 pagecache_isize_extended(inode, oldsize, inode->i_size);
5488
5489 /*
5490 * Blocks are going to be removed from the inode. Wait
5491 * for dio in flight. Temporarily disable
5492 * dioread_nolock to prevent livelock.
5493 */
5494 if (orphan) {
5495 if (!ext4_should_journal_data(inode)) {
5496 ext4_inode_block_unlocked_dio(inode);
5497 inode_dio_wait(inode);
5498 ext4_inode_resume_unlocked_dio(inode);
5499 } else
5500 ext4_wait_for_tail_page_commit(inode);
5501 }
5502 down_write(&EXT4_I(inode)->i_mmap_sem);
5503 /*
5504 * Truncate pagecache after we've waited for commit
5505 * in data=journal mode to make pages freeable.
5506 */
5507 truncate_pagecache(inode, inode->i_size);
5508 if (shrink) {
5509 rc = ext4_truncate(inode);
5510 if (rc)
5511 error = rc;
5512 }
5513 up_write(&EXT4_I(inode)->i_mmap_sem);
5514 }
5515
5516 if (!error) {
5517 setattr_copy(inode, attr);
5518 mark_inode_dirty(inode);
5519 }
5520
5521 /*
5522 * If the call to ext4_truncate failed to get a transaction handle at
5523 * all, we need to clean up the in-core orphan list manually.
5524 */
5525 if (orphan && inode->i_nlink)
5526 ext4_orphan_del(NULL, inode);
5527
5528 if (!error && (ia_valid & ATTR_MODE))
5529 rc = posix_acl_chmod(inode, inode->i_mode);
5530
5531 err_out:
5532 ext4_std_error(inode->i_sb, error);
5533 if (!error)
5534 error = rc;
5535 return error;
5536 }
5537
5538 int ext4_getattr(const struct path *path, struct kstat *stat,
5539 u32 request_mask, unsigned int query_flags)
5540 {
5541 struct inode *inode = d_inode(path->dentry);
5542 struct ext4_inode *raw_inode;
5543 struct ext4_inode_info *ei = EXT4_I(inode);
5544 unsigned int flags;
5545
5546 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5547 stat->result_mask |= STATX_BTIME;
5548 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5549 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5550 }
5551
5552 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5553 if (flags & EXT4_APPEND_FL)
5554 stat->attributes |= STATX_ATTR_APPEND;
5555 if (flags & EXT4_COMPR_FL)
5556 stat->attributes |= STATX_ATTR_COMPRESSED;
5557 if (flags & EXT4_ENCRYPT_FL)
5558 stat->attributes |= STATX_ATTR_ENCRYPTED;
5559 if (flags & EXT4_IMMUTABLE_FL)
5560 stat->attributes |= STATX_ATTR_IMMUTABLE;
5561 if (flags & EXT4_NODUMP_FL)
5562 stat->attributes |= STATX_ATTR_NODUMP;
5563
5564 stat->attributes_mask |= (STATX_ATTR_APPEND |
5565 STATX_ATTR_COMPRESSED |
5566 STATX_ATTR_ENCRYPTED |
5567 STATX_ATTR_IMMUTABLE |
5568 STATX_ATTR_NODUMP);
5569
5570 generic_fillattr(inode, stat);
5571 return 0;
5572 }
5573
5574 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5575 u32 request_mask, unsigned int query_flags)
5576 {
5577 struct inode *inode = d_inode(path->dentry);
5578 u64 delalloc_blocks;
5579
5580 ext4_getattr(path, stat, request_mask, query_flags);
5581
5582 /*
5583 * If there is inline data in the inode, the inode will normally not
5584 * have data blocks allocated (it may have an external xattr block).
5585 * Report at least one sector for such files, so tools like tar, rsync,
5586 * others don't incorrectly think the file is completely sparse.
5587 */
5588 if (unlikely(ext4_has_inline_data(inode)))
5589 stat->blocks += (stat->size + 511) >> 9;
5590
5591 /*
5592 * We can't update i_blocks if the block allocation is delayed
5593 * otherwise in the case of system crash before the real block
5594 * allocation is done, we will have i_blocks inconsistent with
5595 * on-disk file blocks.
5596 * We always keep i_blocks updated together with real
5597 * allocation. But to not confuse with user, stat
5598 * will return the blocks that include the delayed allocation
5599 * blocks for this file.
5600 */
5601 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5602 EXT4_I(inode)->i_reserved_data_blocks);
5603 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5604 return 0;
5605 }
5606
5607 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5608 int pextents)
5609 {
5610 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5611 return ext4_ind_trans_blocks(inode, lblocks);
5612 return ext4_ext_index_trans_blocks(inode, pextents);
5613 }
5614
5615 /*
5616 * Account for index blocks, block groups bitmaps and block group
5617 * descriptor blocks if modify datablocks and index blocks
5618 * worse case, the indexs blocks spread over different block groups
5619 *
5620 * If datablocks are discontiguous, they are possible to spread over
5621 * different block groups too. If they are contiguous, with flexbg,
5622 * they could still across block group boundary.
5623 *
5624 * Also account for superblock, inode, quota and xattr blocks
5625 */
5626 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5627 int pextents)
5628 {
5629 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5630 int gdpblocks;
5631 int idxblocks;
5632 int ret = 0;
5633
5634 /*
5635 * How many index blocks need to touch to map @lblocks logical blocks
5636 * to @pextents physical extents?
5637 */
5638 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5639
5640 ret = idxblocks;
5641
5642 /*
5643 * Now let's see how many group bitmaps and group descriptors need
5644 * to account
5645 */
5646 groups = idxblocks + pextents;
5647 gdpblocks = groups;
5648 if (groups > ngroups)
5649 groups = ngroups;
5650 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5651 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5652
5653 /* bitmaps and block group descriptor blocks */
5654 ret += groups + gdpblocks;
5655
5656 /* Blocks for super block, inode, quota and xattr blocks */
5657 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5658
5659 return ret;
5660 }
5661
5662 /*
5663 * Calculate the total number of credits to reserve to fit
5664 * the modification of a single pages into a single transaction,
5665 * which may include multiple chunks of block allocations.
5666 *
5667 * This could be called via ext4_write_begin()
5668 *
5669 * We need to consider the worse case, when
5670 * one new block per extent.
5671 */
5672 int ext4_writepage_trans_blocks(struct inode *inode)
5673 {
5674 int bpp = ext4_journal_blocks_per_page(inode);
5675 int ret;
5676
5677 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5678
5679 /* Account for data blocks for journalled mode */
5680 if (ext4_should_journal_data(inode))
5681 ret += bpp;
5682 return ret;
5683 }
5684
5685 /*
5686 * Calculate the journal credits for a chunk of data modification.
5687 *
5688 * This is called from DIO, fallocate or whoever calling
5689 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5690 *
5691 * journal buffers for data blocks are not included here, as DIO
5692 * and fallocate do no need to journal data buffers.
5693 */
5694 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5695 {
5696 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5697 }
5698
5699 /*
5700 * The caller must have previously called ext4_reserve_inode_write().
5701 * Give this, we know that the caller already has write access to iloc->bh.
5702 */
5703 int ext4_mark_iloc_dirty(handle_t *handle,
5704 struct inode *inode, struct ext4_iloc *iloc)
5705 {
5706 int err = 0;
5707
5708 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5709 return -EIO;
5710
5711 if (IS_I_VERSION(inode))
5712 inode_inc_iversion(inode);
5713
5714 /* the do_update_inode consumes one bh->b_count */
5715 get_bh(iloc->bh);
5716
5717 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5718 err = ext4_do_update_inode(handle, inode, iloc);
5719 put_bh(iloc->bh);
5720 return err;
5721 }
5722
5723 /*
5724 * On success, We end up with an outstanding reference count against
5725 * iloc->bh. This _must_ be cleaned up later.
5726 */
5727
5728 int
5729 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5730 struct ext4_iloc *iloc)
5731 {
5732 int err;
5733
5734 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5735 return -EIO;
5736
5737 err = ext4_get_inode_loc(inode, iloc);
5738 if (!err) {
5739 BUFFER_TRACE(iloc->bh, "get_write_access");
5740 err = ext4_journal_get_write_access(handle, iloc->bh);
5741 if (err) {
5742 brelse(iloc->bh);
5743 iloc->bh = NULL;
5744 }
5745 }
5746 ext4_std_error(inode->i_sb, err);
5747 return err;
5748 }
5749
5750 static int __ext4_expand_extra_isize(struct inode *inode,
5751 unsigned int new_extra_isize,
5752 struct ext4_iloc *iloc,
5753 handle_t *handle, int *no_expand)
5754 {
5755 struct ext4_inode *raw_inode;
5756 struct ext4_xattr_ibody_header *header;
5757 int error;
5758
5759 raw_inode = ext4_raw_inode(iloc);
5760
5761 header = IHDR(inode, raw_inode);
5762
5763 /* No extended attributes present */
5764 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5765 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5766 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5767 EXT4_I(inode)->i_extra_isize, 0,
5768 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5769 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5770 return 0;
5771 }
5772
5773 /* try to expand with EAs present */
5774 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5775 raw_inode, handle);
5776 if (error) {
5777 /*
5778 * Inode size expansion failed; don't try again
5779 */
5780 *no_expand = 1;
5781 }
5782
5783 return error;
5784 }
5785
5786 /*
5787 * Expand an inode by new_extra_isize bytes.
5788 * Returns 0 on success or negative error number on failure.
5789 */
5790 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5791 unsigned int new_extra_isize,
5792 struct ext4_iloc iloc,
5793 handle_t *handle)
5794 {
5795 int no_expand;
5796 int error;
5797
5798 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5799 return -EOVERFLOW;
5800
5801 /*
5802 * In nojournal mode, we can immediately attempt to expand
5803 * the inode. When journaled, we first need to obtain extra
5804 * buffer credits since we may write into the EA block
5805 * with this same handle. If journal_extend fails, then it will
5806 * only result in a minor loss of functionality for that inode.
5807 * If this is felt to be critical, then e2fsck should be run to
5808 * force a large enough s_min_extra_isize.
5809 */
5810 if (ext4_handle_valid(handle) &&
5811 jbd2_journal_extend(handle,
5812 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5813 return -ENOSPC;
5814
5815 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5816 return -EBUSY;
5817
5818 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5819 handle, &no_expand);
5820 ext4_write_unlock_xattr(inode, &no_expand);
5821
5822 return error;
5823 }
5824
5825 int ext4_expand_extra_isize(struct inode *inode,
5826 unsigned int new_extra_isize,
5827 struct ext4_iloc *iloc)
5828 {
5829 handle_t *handle;
5830 int no_expand;
5831 int error, rc;
5832
5833 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5834 brelse(iloc->bh);
5835 return -EOVERFLOW;
5836 }
5837
5838 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5839 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5840 if (IS_ERR(handle)) {
5841 error = PTR_ERR(handle);
5842 brelse(iloc->bh);
5843 return error;
5844 }
5845
5846 ext4_write_lock_xattr(inode, &no_expand);
5847
5848 BUFFER_TRACE(iloc.bh, "get_write_access");
5849 error = ext4_journal_get_write_access(handle, iloc->bh);
5850 if (error) {
5851 brelse(iloc->bh);
5852 goto out_stop;
5853 }
5854
5855 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5856 handle, &no_expand);
5857
5858 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5859 if (!error)
5860 error = rc;
5861
5862 ext4_write_unlock_xattr(inode, &no_expand);
5863 out_stop:
5864 ext4_journal_stop(handle);
5865 return error;
5866 }
5867
5868 /*
5869 * What we do here is to mark the in-core inode as clean with respect to inode
5870 * dirtiness (it may still be data-dirty).
5871 * This means that the in-core inode may be reaped by prune_icache
5872 * without having to perform any I/O. This is a very good thing,
5873 * because *any* task may call prune_icache - even ones which
5874 * have a transaction open against a different journal.
5875 *
5876 * Is this cheating? Not really. Sure, we haven't written the
5877 * inode out, but prune_icache isn't a user-visible syncing function.
5878 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5879 * we start and wait on commits.
5880 */
5881 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5882 {
5883 struct ext4_iloc iloc;
5884 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5885 int err;
5886
5887 might_sleep();
5888 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5889 err = ext4_reserve_inode_write(handle, inode, &iloc);
5890 if (err)
5891 return err;
5892
5893 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5894 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5895 iloc, handle);
5896
5897 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5898 }
5899
5900 /*
5901 * ext4_dirty_inode() is called from __mark_inode_dirty()
5902 *
5903 * We're really interested in the case where a file is being extended.
5904 * i_size has been changed by generic_commit_write() and we thus need
5905 * to include the updated inode in the current transaction.
5906 *
5907 * Also, dquot_alloc_block() will always dirty the inode when blocks
5908 * are allocated to the file.
5909 *
5910 * If the inode is marked synchronous, we don't honour that here - doing
5911 * so would cause a commit on atime updates, which we don't bother doing.
5912 * We handle synchronous inodes at the highest possible level.
5913 *
5914 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5915 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5916 * to copy into the on-disk inode structure are the timestamp files.
5917 */
5918 void ext4_dirty_inode(struct inode *inode, int flags)
5919 {
5920 handle_t *handle;
5921
5922 if (flags == I_DIRTY_TIME)
5923 return;
5924 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5925 if (IS_ERR(handle))
5926 goto out;
5927
5928 ext4_mark_inode_dirty(handle, inode);
5929
5930 ext4_journal_stop(handle);
5931 out:
5932 return;
5933 }
5934
5935 #if 0
5936 /*
5937 * Bind an inode's backing buffer_head into this transaction, to prevent
5938 * it from being flushed to disk early. Unlike
5939 * ext4_reserve_inode_write, this leaves behind no bh reference and
5940 * returns no iloc structure, so the caller needs to repeat the iloc
5941 * lookup to mark the inode dirty later.
5942 */
5943 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5944 {
5945 struct ext4_iloc iloc;
5946
5947 int err = 0;
5948 if (handle) {
5949 err = ext4_get_inode_loc(inode, &iloc);
5950 if (!err) {
5951 BUFFER_TRACE(iloc.bh, "get_write_access");
5952 err = jbd2_journal_get_write_access(handle, iloc.bh);
5953 if (!err)
5954 err = ext4_handle_dirty_metadata(handle,
5955 NULL,
5956 iloc.bh);
5957 brelse(iloc.bh);
5958 }
5959 }
5960 ext4_std_error(inode->i_sb, err);
5961 return err;
5962 }
5963 #endif
5964
5965 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5966 {
5967 journal_t *journal;
5968 handle_t *handle;
5969 int err;
5970 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5971
5972 /*
5973 * We have to be very careful here: changing a data block's
5974 * journaling status dynamically is dangerous. If we write a
5975 * data block to the journal, change the status and then delete
5976 * that block, we risk forgetting to revoke the old log record
5977 * from the journal and so a subsequent replay can corrupt data.
5978 * So, first we make sure that the journal is empty and that
5979 * nobody is changing anything.
5980 */
5981
5982 journal = EXT4_JOURNAL(inode);
5983 if (!journal)
5984 return 0;
5985 if (is_journal_aborted(journal))
5986 return -EROFS;
5987
5988 /* Wait for all existing dio workers */
5989 ext4_inode_block_unlocked_dio(inode);
5990 inode_dio_wait(inode);
5991
5992 /*
5993 * Before flushing the journal and switching inode's aops, we have
5994 * to flush all dirty data the inode has. There can be outstanding
5995 * delayed allocations, there can be unwritten extents created by
5996 * fallocate or buffered writes in dioread_nolock mode covered by
5997 * dirty data which can be converted only after flushing the dirty
5998 * data (and journalled aops don't know how to handle these cases).
5999 */
6000 if (val) {
6001 down_write(&EXT4_I(inode)->i_mmap_sem);
6002 err = filemap_write_and_wait(inode->i_mapping);
6003 if (err < 0) {
6004 up_write(&EXT4_I(inode)->i_mmap_sem);
6005 ext4_inode_resume_unlocked_dio(inode);
6006 return err;
6007 }
6008 }
6009
6010 percpu_down_write(&sbi->s_journal_flag_rwsem);
6011 jbd2_journal_lock_updates(journal);
6012
6013 /*
6014 * OK, there are no updates running now, and all cached data is
6015 * synced to disk. We are now in a completely consistent state
6016 * which doesn't have anything in the journal, and we know that
6017 * no filesystem updates are running, so it is safe to modify
6018 * the inode's in-core data-journaling state flag now.
6019 */
6020
6021 if (val)
6022 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6023 else {
6024 err = jbd2_journal_flush(journal);
6025 if (err < 0) {
6026 jbd2_journal_unlock_updates(journal);
6027 percpu_up_write(&sbi->s_journal_flag_rwsem);
6028 ext4_inode_resume_unlocked_dio(inode);
6029 return err;
6030 }
6031 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6032 }
6033 ext4_set_aops(inode);
6034
6035 jbd2_journal_unlock_updates(journal);
6036 percpu_up_write(&sbi->s_journal_flag_rwsem);
6037
6038 if (val)
6039 up_write(&EXT4_I(inode)->i_mmap_sem);
6040 ext4_inode_resume_unlocked_dio(inode);
6041
6042 /* Finally we can mark the inode as dirty. */
6043
6044 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6045 if (IS_ERR(handle))
6046 return PTR_ERR(handle);
6047
6048 err = ext4_mark_inode_dirty(handle, inode);
6049 ext4_handle_sync(handle);
6050 ext4_journal_stop(handle);
6051 ext4_std_error(inode->i_sb, err);
6052
6053 return err;
6054 }
6055
6056 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6057 {
6058 return !buffer_mapped(bh);
6059 }
6060
6061 int ext4_page_mkwrite(struct vm_fault *vmf)
6062 {
6063 struct vm_area_struct *vma = vmf->vma;
6064 struct page *page = vmf->page;
6065 loff_t size;
6066 unsigned long len;
6067 int ret;
6068 struct file *file = vma->vm_file;
6069 struct inode *inode = file_inode(file);
6070 struct address_space *mapping = inode->i_mapping;
6071 handle_t *handle;
6072 get_block_t *get_block;
6073 int retries = 0;
6074
6075 sb_start_pagefault(inode->i_sb);
6076 file_update_time(vma->vm_file);
6077
6078 down_read(&EXT4_I(inode)->i_mmap_sem);
6079
6080 ret = ext4_convert_inline_data(inode);
6081 if (ret)
6082 goto out_ret;
6083
6084 /* Delalloc case is easy... */
6085 if (test_opt(inode->i_sb, DELALLOC) &&
6086 !ext4_should_journal_data(inode) &&
6087 !ext4_nonda_switch(inode->i_sb)) {
6088 do {
6089 ret = block_page_mkwrite(vma, vmf,
6090 ext4_da_get_block_prep);
6091 } while (ret == -ENOSPC &&
6092 ext4_should_retry_alloc(inode->i_sb, &retries));
6093 goto out_ret;
6094 }
6095
6096 lock_page(page);
6097 size = i_size_read(inode);
6098 /* Page got truncated from under us? */
6099 if (page->mapping != mapping || page_offset(page) > size) {
6100 unlock_page(page);
6101 ret = VM_FAULT_NOPAGE;
6102 goto out;
6103 }
6104
6105 if (page->index == size >> PAGE_SHIFT)
6106 len = size & ~PAGE_MASK;
6107 else
6108 len = PAGE_SIZE;
6109 /*
6110 * Return if we have all the buffers mapped. This avoids the need to do
6111 * journal_start/journal_stop which can block and take a long time
6112 */
6113 if (page_has_buffers(page)) {
6114 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6115 0, len, NULL,
6116 ext4_bh_unmapped)) {
6117 /* Wait so that we don't change page under IO */
6118 wait_for_stable_page(page);
6119 ret = VM_FAULT_LOCKED;
6120 goto out;
6121 }
6122 }
6123 unlock_page(page);
6124 /* OK, we need to fill the hole... */
6125 if (ext4_should_dioread_nolock(inode))
6126 get_block = ext4_get_block_unwritten;
6127 else
6128 get_block = ext4_get_block;
6129 retry_alloc:
6130 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6131 ext4_writepage_trans_blocks(inode));
6132 if (IS_ERR(handle)) {
6133 ret = VM_FAULT_SIGBUS;
6134 goto out;
6135 }
6136 ret = block_page_mkwrite(vma, vmf, get_block);
6137 if (!ret && ext4_should_journal_data(inode)) {
6138 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6139 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6140 unlock_page(page);
6141 ret = VM_FAULT_SIGBUS;
6142 ext4_journal_stop(handle);
6143 goto out;
6144 }
6145 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6146 }
6147 ext4_journal_stop(handle);
6148 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6149 goto retry_alloc;
6150 out_ret:
6151 ret = block_page_mkwrite_return(ret);
6152 out:
6153 up_read(&EXT4_I(inode)->i_mmap_sem);
6154 sb_end_pagefault(inode->i_sb);
6155 return ret;
6156 }
6157
6158 int ext4_filemap_fault(struct vm_fault *vmf)
6159 {
6160 struct inode *inode = file_inode(vmf->vma->vm_file);
6161 int err;
6162
6163 down_read(&EXT4_I(inode)->i_mmap_sem);
6164 err = filemap_fault(vmf);
6165 up_read(&EXT4_I(inode)->i_mmap_sem);
6166
6167 return err;
6168 }