]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
280 if (!ext4_handle_has_enough_credits(handle, 3)) {
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
285 ext4_warning(inode->i_sb,
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 goto no_delete;
292 }
293 }
294
295 /*
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
302 */
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 return;
321 no_delete:
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
338 {
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
341
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
352
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 else {
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
367 */
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 }
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
378 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382 unsigned int line,
383 struct ext4_map_blocks *map)
384 {
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
391 return -EFSCORRUPTED;
392 }
393 return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398 {
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409 }
410
411 #define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420 {
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
431 down_read(&EXT4_I(inode)->i_data_sem);
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
439 up_read((&EXT4_I(inode)->i_data_sem));
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
462 *
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469 * based files
470 *
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
478 *
479 * It returns the error in case of allocation failure.
480 */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
483 {
484 struct extent_status es;
485 int retval;
486 int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
497
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 return -EFSCORRUPTED;
507
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532 #endif
533 goto found;
534 }
535
536 /*
537 * Try to see if we can get the block without requesting a new
538 * file system block.
539 */
540 down_read(&EXT4_I(inode)->i_data_sem);
541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
547 }
548 if (retval > 0) {
549 unsigned int status;
550
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
557 }
558
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 !(status & EXTENT_STATUS_WRITTEN) &&
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
571 up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579
580 /* If it is only a block(s) look up */
581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
590 */
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
599
600 /*
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
603 */
604 map->m_flags &= ~EXT4_MAP_FLAGS;
605
606 /*
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
611 */
612 down_write(&EXT4_I(inode)->i_data_sem);
613
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642
643 if (retval > 0) {
644 unsigned int status;
645
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
652 }
653
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
681 goto out_sem;
682 }
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 !(status & EXTENT_STATUS_WRITTEN) &&
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
692 if (ret < 0) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698 out_sem:
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
702 if (ret != 0)
703 return ret;
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
719 if (ret)
720 return ret;
721 }
722 }
723 return retval;
724 }
725
726 /*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
756 {
757 struct ext4_map_blocks map;
758 int ret = 0;
759
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
768 if (ret > 0) {
769 map_bh(bh, inode->i_sb, map.m_pblk);
770 ext4_update_bh_state(bh, map.m_flags);
771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 ret = 0;
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 }
777 return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782 {
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794 {
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
811 {
812 int dio_credits;
813 handle_t *handle;
814 int retries = 0;
815 int ret;
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
822 retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838 {
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848 * Get block function for AIO DIO writes when we create unwritten extent if
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855 int ret;
856
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
880 set_buffer_defer_completion(bh_result);
881 }
882
883 return ret;
884 }
885
886 /*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915 {
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930 return ret;
931 }
932
933
934 /*
935 * `handle' can be NULL if create is zero
936 */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 ext4_lblk_t block, int map_flags)
939 {
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 int err;
944
945 J_ASSERT(handle != NULL || create == 0);
946
947 map.m_lblk = block;
948 map.m_len = 1;
949 err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
953 if (err < 0)
954 return ERR_PTR(err);
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
962
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
980 }
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
984 if (unlikely(err))
985 goto errout;
986 } else
987 BUFFER_TRACE(bh, "not a new buffer");
988 return bh;
989 errout:
990 brelse(bh);
991 return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 ext4_lblk_t block, int map_flags)
996 {
997 struct buffer_head *bh;
998
999 bh = ext4_getblk(handle, inode, block, map_flags);
1000 if (IS_ERR(bh))
1001 return bh;
1002 if (!bh || buffer_uptodate(bh))
1003 return bh;
1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1009 return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
1019 {
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
1028 block_start = block_end, bh = next) {
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041 }
1042
1043 /*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067 int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
1069 {
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
1075 /*
1076 * __block_write_begin() could have dirtied some buffers. Clean
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
1079 * by __block_write_begin() isn't a real problem here as we clear
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
1085 BUFFER_TRACE(bh, "get write access");
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095 {
1096 unsigned from = pos & (PAGE_SIZE - 1);
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
1136 clean_bdev_bh_alias(bh);
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
1174 err = fscrypt_decrypt_page(page->mapping->host, page,
1175 PAGE_SIZE, 0, page->index);
1176 return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
1183 {
1184 struct inode *inode = mapping->host;
1185 int ret, needed_blocks;
1186 handle_t *handle;
1187 int retries = 0;
1188 struct page *page;
1189 pgoff_t index;
1190 unsigned from, to;
1191
1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 return -EIO;
1194
1195 trace_ext4_write_begin(inode, pos, len, flags);
1196 /*
1197 * Reserve one block more for addition to orphan list in case
1198 * we allocate blocks but write fails for some reason
1199 */
1200 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201 index = pos >> PAGE_SHIFT;
1202 from = pos & (PAGE_SIZE - 1);
1203 to = from + len;
1204
1205 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 flags, pagep);
1208 if (ret < 0)
1209 return ret;
1210 if (ret == 1)
1211 return 0;
1212 }
1213
1214 /*
1215 * grab_cache_page_write_begin() can take a long time if the
1216 * system is thrashing due to memory pressure, or if the page
1217 * is being written back. So grab it first before we start
1218 * the transaction handle. This also allows us to allocate
1219 * the page (if needed) without using GFP_NOFS.
1220 */
1221 retry_grab:
1222 page = grab_cache_page_write_begin(mapping, index, flags);
1223 if (!page)
1224 return -ENOMEM;
1225 unlock_page(page);
1226
1227 retry_journal:
1228 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229 if (IS_ERR(handle)) {
1230 put_page(page);
1231 return PTR_ERR(handle);
1232 }
1233
1234 lock_page(page);
1235 if (page->mapping != mapping) {
1236 /* The page got truncated from under us */
1237 unlock_page(page);
1238 put_page(page);
1239 ext4_journal_stop(handle);
1240 goto retry_grab;
1241 }
1242 /* In case writeback began while the page was unlocked */
1243 wait_for_stable_page(page);
1244
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 if (ext4_should_dioread_nolock(inode))
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block_unwritten);
1249 else
1250 ret = ext4_block_write_begin(page, pos, len,
1251 ext4_get_block);
1252 #else
1253 if (ext4_should_dioread_nolock(inode))
1254 ret = __block_write_begin(page, pos, len,
1255 ext4_get_block_unwritten);
1256 else
1257 ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259 if (!ret && ext4_should_journal_data(inode)) {
1260 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 from, to, NULL,
1262 do_journal_get_write_access);
1263 }
1264
1265 if (ret) {
1266 unlock_page(page);
1267 /*
1268 * __block_write_begin may have instantiated a few blocks
1269 * outside i_size. Trim these off again. Don't need
1270 * i_size_read because we hold i_mutex.
1271 *
1272 * Add inode to orphan list in case we crash before
1273 * truncate finishes
1274 */
1275 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276 ext4_orphan_add(handle, inode);
1277
1278 ext4_journal_stop(handle);
1279 if (pos + len > inode->i_size) {
1280 ext4_truncate_failed_write(inode);
1281 /*
1282 * If truncate failed early the inode might
1283 * still be on the orphan list; we need to
1284 * make sure the inode is removed from the
1285 * orphan list in that case.
1286 */
1287 if (inode->i_nlink)
1288 ext4_orphan_del(NULL, inode);
1289 }
1290
1291 if (ret == -ENOSPC &&
1292 ext4_should_retry_alloc(inode->i_sb, &retries))
1293 goto retry_journal;
1294 put_page(page);
1295 return ret;
1296 }
1297 *pagep = page;
1298 return ret;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304 int ret;
1305 if (!buffer_mapped(bh) || buffer_freed(bh))
1306 return 0;
1307 set_buffer_uptodate(bh);
1308 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 clear_buffer_meta(bh);
1310 clear_buffer_prio(bh);
1311 return ret;
1312 }
1313
1314 /*
1315 * We need to pick up the new inode size which generic_commit_write gave us
1316 * `file' can be NULL - eg, when called from page_symlink().
1317 *
1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1319 * buffers are managed internally.
1320 */
1321 static int ext4_write_end(struct file *file,
1322 struct address_space *mapping,
1323 loff_t pos, unsigned len, unsigned copied,
1324 struct page *page, void *fsdata)
1325 {
1326 handle_t *handle = ext4_journal_current_handle();
1327 struct inode *inode = mapping->host;
1328 loff_t old_size = inode->i_size;
1329 int ret = 0, ret2;
1330 int i_size_changed = 0;
1331
1332 trace_ext4_write_end(inode, pos, len, copied);
1333 if (ext4_has_inline_data(inode)) {
1334 ret = ext4_write_inline_data_end(inode, pos, len,
1335 copied, page);
1336 if (ret < 0) {
1337 unlock_page(page);
1338 put_page(page);
1339 goto errout;
1340 }
1341 copied = ret;
1342 } else
1343 copied = block_write_end(file, mapping, pos,
1344 len, copied, page, fsdata);
1345 /*
1346 * it's important to update i_size while still holding page lock:
1347 * page writeout could otherwise come in and zero beyond i_size.
1348 */
1349 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350 unlock_page(page);
1351 put_page(page);
1352
1353 if (old_size < pos)
1354 pagecache_isize_extended(inode, old_size, pos);
1355 /*
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1359 * filesystems.
1360 */
1361 if (i_size_changed)
1362 ext4_mark_inode_dirty(handle, inode);
1363
1364 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1368 */
1369 ext4_orphan_add(handle, inode);
1370 errout:
1371 ret2 = ext4_journal_stop(handle);
1372 if (!ret)
1373 ret = ret2;
1374
1375 if (pos + len > inode->i_size) {
1376 ext4_truncate_failed_write(inode);
1377 /*
1378 * If truncate failed early the inode might still be
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1381 */
1382 if (inode->i_nlink)
1383 ext4_orphan_del(NULL, inode);
1384 }
1385
1386 return ret ? ret : copied;
1387 }
1388
1389 /*
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1393 */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 struct page *page,
1396 unsigned from, unsigned to)
1397 {
1398 unsigned int block_start = 0, block_end;
1399 struct buffer_head *head, *bh;
1400
1401 bh = head = page_buffers(page);
1402 do {
1403 block_end = block_start + bh->b_size;
1404 if (buffer_new(bh)) {
1405 if (block_end > from && block_start < to) {
1406 if (!PageUptodate(page)) {
1407 unsigned start, size;
1408
1409 start = max(from, block_start);
1410 size = min(to, block_end) - start;
1411
1412 zero_user(page, start, size);
1413 write_end_fn(handle, bh);
1414 }
1415 clear_buffer_new(bh);
1416 }
1417 }
1418 block_start = block_end;
1419 bh = bh->b_this_page;
1420 } while (bh != head);
1421 }
1422
1423 static int ext4_journalled_write_end(struct file *file,
1424 struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned copied,
1426 struct page *page, void *fsdata)
1427 {
1428 handle_t *handle = ext4_journal_current_handle();
1429 struct inode *inode = mapping->host;
1430 loff_t old_size = inode->i_size;
1431 int ret = 0, ret2;
1432 int partial = 0;
1433 unsigned from, to;
1434 int size_changed = 0;
1435
1436 trace_ext4_journalled_write_end(inode, pos, len, copied);
1437 from = pos & (PAGE_SIZE - 1);
1438 to = from + len;
1439
1440 BUG_ON(!ext4_handle_valid(handle));
1441
1442 if (ext4_has_inline_data(inode)) {
1443 ret = ext4_write_inline_data_end(inode, pos, len,
1444 copied, page);
1445 if (ret < 0) {
1446 unlock_page(page);
1447 put_page(page);
1448 goto errout;
1449 }
1450 copied = ret;
1451 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1452 copied = 0;
1453 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 } else {
1455 if (unlikely(copied < len))
1456 ext4_journalled_zero_new_buffers(handle, page,
1457 from + copied, to);
1458 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459 from + copied, &partial,
1460 write_end_fn);
1461 if (!partial)
1462 SetPageUptodate(page);
1463 }
1464 size_changed = ext4_update_inode_size(inode, pos + copied);
1465 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467 unlock_page(page);
1468 put_page(page);
1469
1470 if (old_size < pos)
1471 pagecache_isize_extended(inode, old_size, pos);
1472
1473 if (size_changed) {
1474 ret2 = ext4_mark_inode_dirty(handle, inode);
1475 if (!ret)
1476 ret = ret2;
1477 }
1478
1479 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480 /* if we have allocated more blocks and copied
1481 * less. We will have blocks allocated outside
1482 * inode->i_size. So truncate them
1483 */
1484 ext4_orphan_add(handle, inode);
1485
1486 errout:
1487 ret2 = ext4_journal_stop(handle);
1488 if (!ret)
1489 ret = ret2;
1490 if (pos + len > inode->i_size) {
1491 ext4_truncate_failed_write(inode);
1492 /*
1493 * If truncate failed early the inode might still be
1494 * on the orphan list; we need to make sure the inode
1495 * is removed from the orphan list in that case.
1496 */
1497 if (inode->i_nlink)
1498 ext4_orphan_del(NULL, inode);
1499 }
1500
1501 return ret ? ret : copied;
1502 }
1503
1504 /*
1505 * Reserve space for a single cluster
1506 */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510 struct ext4_inode_info *ei = EXT4_I(inode);
1511 int ret;
1512
1513 /*
1514 * We will charge metadata quota at writeout time; this saves
1515 * us from metadata over-estimation, though we may go over by
1516 * a small amount in the end. Here we just reserve for data.
1517 */
1518 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 if (ret)
1520 return ret;
1521
1522 spin_lock(&ei->i_block_reservation_lock);
1523 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524 spin_unlock(&ei->i_block_reservation_lock);
1525 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526 return -ENOSPC;
1527 }
1528 ei->i_reserved_data_blocks++;
1529 trace_ext4_da_reserve_space(inode);
1530 spin_unlock(&ei->i_block_reservation_lock);
1531
1532 return 0; /* success */
1533 }
1534
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538 struct ext4_inode_info *ei = EXT4_I(inode);
1539
1540 if (!to_free)
1541 return; /* Nothing to release, exit */
1542
1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545 trace_ext4_da_release_space(inode, to_free);
1546 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547 /*
1548 * if there aren't enough reserved blocks, then the
1549 * counter is messed up somewhere. Since this
1550 * function is called from invalidate page, it's
1551 * harmless to return without any action.
1552 */
1553 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554 "ino %lu, to_free %d with only %d reserved "
1555 "data blocks", inode->i_ino, to_free,
1556 ei->i_reserved_data_blocks);
1557 WARN_ON(1);
1558 to_free = ei->i_reserved_data_blocks;
1559 }
1560 ei->i_reserved_data_blocks -= to_free;
1561
1562 /* update fs dirty data blocks counter */
1563 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564
1565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566
1567 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569
1570 static void ext4_da_page_release_reservation(struct page *page,
1571 unsigned int offset,
1572 unsigned int length)
1573 {
1574 int to_release = 0, contiguous_blks = 0;
1575 struct buffer_head *head, *bh;
1576 unsigned int curr_off = 0;
1577 struct inode *inode = page->mapping->host;
1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 unsigned int stop = offset + length;
1580 int num_clusters;
1581 ext4_fsblk_t lblk;
1582
1583 BUG_ON(stop > PAGE_SIZE || stop < length);
1584
1585 head = page_buffers(page);
1586 bh = head;
1587 do {
1588 unsigned int next_off = curr_off + bh->b_size;
1589
1590 if (next_off > stop)
1591 break;
1592
1593 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 to_release++;
1595 contiguous_blks++;
1596 clear_buffer_delay(bh);
1597 } else if (contiguous_blks) {
1598 lblk = page->index <<
1599 (PAGE_SHIFT - inode->i_blkbits);
1600 lblk += (curr_off >> inode->i_blkbits) -
1601 contiguous_blks;
1602 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 contiguous_blks = 0;
1604 }
1605 curr_off = next_off;
1606 } while ((bh = bh->b_this_page) != head);
1607
1608 if (contiguous_blks) {
1609 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612 }
1613
1614 /* If we have released all the blocks belonging to a cluster, then we
1615 * need to release the reserved space for that cluster. */
1616 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 while (num_clusters > 0) {
1618 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619 ((num_clusters - 1) << sbi->s_cluster_bits);
1620 if (sbi->s_cluster_ratio == 1 ||
1621 !ext4_find_delalloc_cluster(inode, lblk))
1622 ext4_da_release_space(inode, 1);
1623
1624 num_clusters--;
1625 }
1626 }
1627
1628 /*
1629 * Delayed allocation stuff
1630 */
1631
1632 struct mpage_da_data {
1633 struct inode *inode;
1634 struct writeback_control *wbc;
1635
1636 pgoff_t first_page; /* The first page to write */
1637 pgoff_t next_page; /* Current page to examine */
1638 pgoff_t last_page; /* Last page to examine */
1639 /*
1640 * Extent to map - this can be after first_page because that can be
1641 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 * is delalloc or unwritten.
1643 */
1644 struct ext4_map_blocks map;
1645 struct ext4_io_submit io_submit; /* IO submission data */
1646 unsigned int do_map:1;
1647 };
1648
1649 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1650 bool invalidate)
1651 {
1652 int nr_pages, i;
1653 pgoff_t index, end;
1654 struct pagevec pvec;
1655 struct inode *inode = mpd->inode;
1656 struct address_space *mapping = inode->i_mapping;
1657
1658 /* This is necessary when next_page == 0. */
1659 if (mpd->first_page >= mpd->next_page)
1660 return;
1661
1662 index = mpd->first_page;
1663 end = mpd->next_page - 1;
1664 if (invalidate) {
1665 ext4_lblk_t start, last;
1666 start = index << (PAGE_SHIFT - inode->i_blkbits);
1667 last = end << (PAGE_SHIFT - inode->i_blkbits);
1668 ext4_es_remove_extent(inode, start, last - start + 1);
1669 }
1670
1671 pagevec_init(&pvec, 0);
1672 while (index <= end) {
1673 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1674 if (nr_pages == 0)
1675 break;
1676 for (i = 0; i < nr_pages; i++) {
1677 struct page *page = pvec.pages[i];
1678 if (page->index > end)
1679 break;
1680 BUG_ON(!PageLocked(page));
1681 BUG_ON(PageWriteback(page));
1682 if (invalidate) {
1683 if (page_mapped(page))
1684 clear_page_dirty_for_io(page);
1685 block_invalidatepage(page, 0, PAGE_SIZE);
1686 ClearPageUptodate(page);
1687 }
1688 unlock_page(page);
1689 }
1690 index = pvec.pages[nr_pages - 1]->index + 1;
1691 pagevec_release(&pvec);
1692 }
1693 }
1694
1695 static void ext4_print_free_blocks(struct inode *inode)
1696 {
1697 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1698 struct super_block *sb = inode->i_sb;
1699 struct ext4_inode_info *ei = EXT4_I(inode);
1700
1701 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1702 EXT4_C2B(EXT4_SB(inode->i_sb),
1703 ext4_count_free_clusters(sb)));
1704 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1705 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1706 (long long) EXT4_C2B(EXT4_SB(sb),
1707 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1708 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1709 (long long) EXT4_C2B(EXT4_SB(sb),
1710 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1711 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1712 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1713 ei->i_reserved_data_blocks);
1714 return;
1715 }
1716
1717 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1718 {
1719 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1720 }
1721
1722 /*
1723 * This function is grabs code from the very beginning of
1724 * ext4_map_blocks, but assumes that the caller is from delayed write
1725 * time. This function looks up the requested blocks and sets the
1726 * buffer delay bit under the protection of i_data_sem.
1727 */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 struct ext4_map_blocks *map,
1730 struct buffer_head *bh)
1731 {
1732 struct extent_status es;
1733 int retval;
1734 sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736 struct ext4_map_blocks orig_map;
1737
1738 memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740
1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 invalid_block = ~0;
1743
1744 map->m_flags = 0;
1745 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1746 "logical block %lu\n", inode->i_ino, map->m_len,
1747 (unsigned long) map->m_lblk);
1748
1749 /* Lookup extent status tree firstly */
1750 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1751 if (ext4_es_is_hole(&es)) {
1752 retval = 0;
1753 down_read(&EXT4_I(inode)->i_data_sem);
1754 goto add_delayed;
1755 }
1756
1757 /*
1758 * Delayed extent could be allocated by fallocate.
1759 * So we need to check it.
1760 */
1761 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762 map_bh(bh, inode->i_sb, invalid_block);
1763 set_buffer_new(bh);
1764 set_buffer_delay(bh);
1765 return 0;
1766 }
1767
1768 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769 retval = es.es_len - (iblock - es.es_lblk);
1770 if (retval > map->m_len)
1771 retval = map->m_len;
1772 map->m_len = retval;
1773 if (ext4_es_is_written(&es))
1774 map->m_flags |= EXT4_MAP_MAPPED;
1775 else if (ext4_es_is_unwritten(&es))
1776 map->m_flags |= EXT4_MAP_UNWRITTEN;
1777 else
1778 BUG_ON(1);
1779
1780 #ifdef ES_AGGRESSIVE_TEST
1781 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782 #endif
1783 return retval;
1784 }
1785
1786 /*
1787 * Try to see if we can get the block without requesting a new
1788 * file system block.
1789 */
1790 down_read(&EXT4_I(inode)->i_data_sem);
1791 if (ext4_has_inline_data(inode))
1792 retval = 0;
1793 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795 else
1796 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797
1798 add_delayed:
1799 if (retval == 0) {
1800 int ret;
1801 /*
1802 * XXX: __block_prepare_write() unmaps passed block,
1803 * is it OK?
1804 */
1805 /*
1806 * If the block was allocated from previously allocated cluster,
1807 * then we don't need to reserve it again. However we still need
1808 * to reserve metadata for every block we're going to write.
1809 */
1810 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1811 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1812 ret = ext4_da_reserve_space(inode);
1813 if (ret) {
1814 /* not enough space to reserve */
1815 retval = ret;
1816 goto out_unlock;
1817 }
1818 }
1819
1820 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1821 ~0, EXTENT_STATUS_DELAYED);
1822 if (ret) {
1823 retval = ret;
1824 goto out_unlock;
1825 }
1826
1827 map_bh(bh, inode->i_sb, invalid_block);
1828 set_buffer_new(bh);
1829 set_buffer_delay(bh);
1830 } else if (retval > 0) {
1831 int ret;
1832 unsigned int status;
1833
1834 if (unlikely(retval != map->m_len)) {
1835 ext4_warning(inode->i_sb,
1836 "ES len assertion failed for inode "
1837 "%lu: retval %d != map->m_len %d",
1838 inode->i_ino, retval, map->m_len);
1839 WARN_ON(1);
1840 }
1841
1842 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1843 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1844 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1845 map->m_pblk, status);
1846 if (ret != 0)
1847 retval = ret;
1848 }
1849
1850 out_unlock:
1851 up_read((&EXT4_I(inode)->i_data_sem));
1852
1853 return retval;
1854 }
1855
1856 /*
1857 * This is a special get_block_t callback which is used by
1858 * ext4_da_write_begin(). It will either return mapped block or
1859 * reserve space for a single block.
1860 *
1861 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1862 * We also have b_blocknr = -1 and b_bdev initialized properly
1863 *
1864 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1865 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1866 * initialized properly.
1867 */
1868 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1869 struct buffer_head *bh, int create)
1870 {
1871 struct ext4_map_blocks map;
1872 int ret = 0;
1873
1874 BUG_ON(create == 0);
1875 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1876
1877 map.m_lblk = iblock;
1878 map.m_len = 1;
1879
1880 /*
1881 * first, we need to know whether the block is allocated already
1882 * preallocated blocks are unmapped but should treated
1883 * the same as allocated blocks.
1884 */
1885 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1886 if (ret <= 0)
1887 return ret;
1888
1889 map_bh(bh, inode->i_sb, map.m_pblk);
1890 ext4_update_bh_state(bh, map.m_flags);
1891
1892 if (buffer_unwritten(bh)) {
1893 /* A delayed write to unwritten bh should be marked
1894 * new and mapped. Mapped ensures that we don't do
1895 * get_block multiple times when we write to the same
1896 * offset and new ensures that we do proper zero out
1897 * for partial write.
1898 */
1899 set_buffer_new(bh);
1900 set_buffer_mapped(bh);
1901 }
1902 return 0;
1903 }
1904
1905 static int bget_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907 get_bh(bh);
1908 return 0;
1909 }
1910
1911 static int bput_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913 put_bh(bh);
1914 return 0;
1915 }
1916
1917 static int __ext4_journalled_writepage(struct page *page,
1918 unsigned int len)
1919 {
1920 struct address_space *mapping = page->mapping;
1921 struct inode *inode = mapping->host;
1922 struct buffer_head *page_bufs = NULL;
1923 handle_t *handle = NULL;
1924 int ret = 0, err = 0;
1925 int inline_data = ext4_has_inline_data(inode);
1926 struct buffer_head *inode_bh = NULL;
1927
1928 ClearPageChecked(page);
1929
1930 if (inline_data) {
1931 BUG_ON(page->index != 0);
1932 BUG_ON(len > ext4_get_max_inline_size(inode));
1933 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1934 if (inode_bh == NULL)
1935 goto out;
1936 } else {
1937 page_bufs = page_buffers(page);
1938 if (!page_bufs) {
1939 BUG();
1940 goto out;
1941 }
1942 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1943 NULL, bget_one);
1944 }
1945 /*
1946 * We need to release the page lock before we start the
1947 * journal, so grab a reference so the page won't disappear
1948 * out from under us.
1949 */
1950 get_page(page);
1951 unlock_page(page);
1952
1953 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1954 ext4_writepage_trans_blocks(inode));
1955 if (IS_ERR(handle)) {
1956 ret = PTR_ERR(handle);
1957 put_page(page);
1958 goto out_no_pagelock;
1959 }
1960 BUG_ON(!ext4_handle_valid(handle));
1961
1962 lock_page(page);
1963 put_page(page);
1964 if (page->mapping != mapping) {
1965 /* The page got truncated from under us */
1966 ext4_journal_stop(handle);
1967 ret = 0;
1968 goto out;
1969 }
1970
1971 if (inline_data) {
1972 BUFFER_TRACE(inode_bh, "get write access");
1973 ret = ext4_journal_get_write_access(handle, inode_bh);
1974
1975 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1976
1977 } else {
1978 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1979 do_journal_get_write_access);
1980
1981 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982 write_end_fn);
1983 }
1984 if (ret == 0)
1985 ret = err;
1986 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1987 err = ext4_journal_stop(handle);
1988 if (!ret)
1989 ret = err;
1990
1991 if (!ext4_has_inline_data(inode))
1992 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1993 NULL, bput_one);
1994 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1995 out:
1996 unlock_page(page);
1997 out_no_pagelock:
1998 brelse(inode_bh);
1999 return ret;
2000 }
2001
2002 /*
2003 * Note that we don't need to start a transaction unless we're journaling data
2004 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2005 * need to file the inode to the transaction's list in ordered mode because if
2006 * we are writing back data added by write(), the inode is already there and if
2007 * we are writing back data modified via mmap(), no one guarantees in which
2008 * transaction the data will hit the disk. In case we are journaling data, we
2009 * cannot start transaction directly because transaction start ranks above page
2010 * lock so we have to do some magic.
2011 *
2012 * This function can get called via...
2013 * - ext4_writepages after taking page lock (have journal handle)
2014 * - journal_submit_inode_data_buffers (no journal handle)
2015 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2016 * - grab_page_cache when doing write_begin (have journal handle)
2017 *
2018 * We don't do any block allocation in this function. If we have page with
2019 * multiple blocks we need to write those buffer_heads that are mapped. This
2020 * is important for mmaped based write. So if we do with blocksize 1K
2021 * truncate(f, 1024);
2022 * a = mmap(f, 0, 4096);
2023 * a[0] = 'a';
2024 * truncate(f, 4096);
2025 * we have in the page first buffer_head mapped via page_mkwrite call back
2026 * but other buffer_heads would be unmapped but dirty (dirty done via the
2027 * do_wp_page). So writepage should write the first block. If we modify
2028 * the mmap area beyond 1024 we will again get a page_fault and the
2029 * page_mkwrite callback will do the block allocation and mark the
2030 * buffer_heads mapped.
2031 *
2032 * We redirty the page if we have any buffer_heads that is either delay or
2033 * unwritten in the page.
2034 *
2035 * We can get recursively called as show below.
2036 *
2037 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2038 * ext4_writepage()
2039 *
2040 * But since we don't do any block allocation we should not deadlock.
2041 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2042 */
2043 static int ext4_writepage(struct page *page,
2044 struct writeback_control *wbc)
2045 {
2046 int ret = 0;
2047 loff_t size;
2048 unsigned int len;
2049 struct buffer_head *page_bufs = NULL;
2050 struct inode *inode = page->mapping->host;
2051 struct ext4_io_submit io_submit;
2052 bool keep_towrite = false;
2053
2054 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2055 ext4_invalidatepage(page, 0, PAGE_SIZE);
2056 unlock_page(page);
2057 return -EIO;
2058 }
2059
2060 trace_ext4_writepage(page);
2061 size = i_size_read(inode);
2062 if (page->index == size >> PAGE_SHIFT)
2063 len = size & ~PAGE_MASK;
2064 else
2065 len = PAGE_SIZE;
2066
2067 page_bufs = page_buffers(page);
2068 /*
2069 * We cannot do block allocation or other extent handling in this
2070 * function. If there are buffers needing that, we have to redirty
2071 * the page. But we may reach here when we do a journal commit via
2072 * journal_submit_inode_data_buffers() and in that case we must write
2073 * allocated buffers to achieve data=ordered mode guarantees.
2074 *
2075 * Also, if there is only one buffer per page (the fs block
2076 * size == the page size), if one buffer needs block
2077 * allocation or needs to modify the extent tree to clear the
2078 * unwritten flag, we know that the page can't be written at
2079 * all, so we might as well refuse the write immediately.
2080 * Unfortunately if the block size != page size, we can't as
2081 * easily detect this case using ext4_walk_page_buffers(), but
2082 * for the extremely common case, this is an optimization that
2083 * skips a useless round trip through ext4_bio_write_page().
2084 */
2085 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2086 ext4_bh_delay_or_unwritten)) {
2087 redirty_page_for_writepage(wbc, page);
2088 if ((current->flags & PF_MEMALLOC) ||
2089 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2090 /*
2091 * For memory cleaning there's no point in writing only
2092 * some buffers. So just bail out. Warn if we came here
2093 * from direct reclaim.
2094 */
2095 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096 == PF_MEMALLOC);
2097 unlock_page(page);
2098 return 0;
2099 }
2100 keep_towrite = true;
2101 }
2102
2103 if (PageChecked(page) && ext4_should_journal_data(inode))
2104 /*
2105 * It's mmapped pagecache. Add buffers and journal it. There
2106 * doesn't seem much point in redirtying the page here.
2107 */
2108 return __ext4_journalled_writepage(page, len);
2109
2110 ext4_io_submit_init(&io_submit, wbc);
2111 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2112 if (!io_submit.io_end) {
2113 redirty_page_for_writepage(wbc, page);
2114 unlock_page(page);
2115 return -ENOMEM;
2116 }
2117 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2118 ext4_io_submit(&io_submit);
2119 /* Drop io_end reference we got from init */
2120 ext4_put_io_end_defer(io_submit.io_end);
2121 return ret;
2122 }
2123
2124 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2125 {
2126 int len;
2127 loff_t size = i_size_read(mpd->inode);
2128 int err;
2129
2130 BUG_ON(page->index != mpd->first_page);
2131 if (page->index == size >> PAGE_SHIFT)
2132 len = size & ~PAGE_MASK;
2133 else
2134 len = PAGE_SIZE;
2135 clear_page_dirty_for_io(page);
2136 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2137 if (!err)
2138 mpd->wbc->nr_to_write--;
2139 mpd->first_page++;
2140
2141 return err;
2142 }
2143
2144 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2145
2146 /*
2147 * mballoc gives us at most this number of blocks...
2148 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2149 * The rest of mballoc seems to handle chunks up to full group size.
2150 */
2151 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2152
2153 /*
2154 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2155 *
2156 * @mpd - extent of blocks
2157 * @lblk - logical number of the block in the file
2158 * @bh - buffer head we want to add to the extent
2159 *
2160 * The function is used to collect contig. blocks in the same state. If the
2161 * buffer doesn't require mapping for writeback and we haven't started the
2162 * extent of buffers to map yet, the function returns 'true' immediately - the
2163 * caller can write the buffer right away. Otherwise the function returns true
2164 * if the block has been added to the extent, false if the block couldn't be
2165 * added.
2166 */
2167 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2168 struct buffer_head *bh)
2169 {
2170 struct ext4_map_blocks *map = &mpd->map;
2171
2172 /* Buffer that doesn't need mapping for writeback? */
2173 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2174 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2175 /* So far no extent to map => we write the buffer right away */
2176 if (map->m_len == 0)
2177 return true;
2178 return false;
2179 }
2180
2181 /* First block in the extent? */
2182 if (map->m_len == 0) {
2183 /* We cannot map unless handle is started... */
2184 if (!mpd->do_map)
2185 return false;
2186 map->m_lblk = lblk;
2187 map->m_len = 1;
2188 map->m_flags = bh->b_state & BH_FLAGS;
2189 return true;
2190 }
2191
2192 /* Don't go larger than mballoc is willing to allocate */
2193 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2194 return false;
2195
2196 /* Can we merge the block to our big extent? */
2197 if (lblk == map->m_lblk + map->m_len &&
2198 (bh->b_state & BH_FLAGS) == map->m_flags) {
2199 map->m_len++;
2200 return true;
2201 }
2202 return false;
2203 }
2204
2205 /*
2206 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2207 *
2208 * @mpd - extent of blocks for mapping
2209 * @head - the first buffer in the page
2210 * @bh - buffer we should start processing from
2211 * @lblk - logical number of the block in the file corresponding to @bh
2212 *
2213 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2214 * the page for IO if all buffers in this page were mapped and there's no
2215 * accumulated extent of buffers to map or add buffers in the page to the
2216 * extent of buffers to map. The function returns 1 if the caller can continue
2217 * by processing the next page, 0 if it should stop adding buffers to the
2218 * extent to map because we cannot extend it anymore. It can also return value
2219 * < 0 in case of error during IO submission.
2220 */
2221 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2222 struct buffer_head *head,
2223 struct buffer_head *bh,
2224 ext4_lblk_t lblk)
2225 {
2226 struct inode *inode = mpd->inode;
2227 int err;
2228 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2229 >> inode->i_blkbits;
2230
2231 do {
2232 BUG_ON(buffer_locked(bh));
2233
2234 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2235 /* Found extent to map? */
2236 if (mpd->map.m_len)
2237 return 0;
2238 /* Buffer needs mapping and handle is not started? */
2239 if (!mpd->do_map)
2240 return 0;
2241 /* Everything mapped so far and we hit EOF */
2242 break;
2243 }
2244 } while (lblk++, (bh = bh->b_this_page) != head);
2245 /* So far everything mapped? Submit the page for IO. */
2246 if (mpd->map.m_len == 0) {
2247 err = mpage_submit_page(mpd, head->b_page);
2248 if (err < 0)
2249 return err;
2250 }
2251 return lblk < blocks;
2252 }
2253
2254 /*
2255 * mpage_map_buffers - update buffers corresponding to changed extent and
2256 * submit fully mapped pages for IO
2257 *
2258 * @mpd - description of extent to map, on return next extent to map
2259 *
2260 * Scan buffers corresponding to changed extent (we expect corresponding pages
2261 * to be already locked) and update buffer state according to new extent state.
2262 * We map delalloc buffers to their physical location, clear unwritten bits,
2263 * and mark buffers as uninit when we perform writes to unwritten extents
2264 * and do extent conversion after IO is finished. If the last page is not fully
2265 * mapped, we update @map to the next extent in the last page that needs
2266 * mapping. Otherwise we submit the page for IO.
2267 */
2268 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2269 {
2270 struct pagevec pvec;
2271 int nr_pages, i;
2272 struct inode *inode = mpd->inode;
2273 struct buffer_head *head, *bh;
2274 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2275 pgoff_t start, end;
2276 ext4_lblk_t lblk;
2277 sector_t pblock;
2278 int err;
2279
2280 start = mpd->map.m_lblk >> bpp_bits;
2281 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2282 lblk = start << bpp_bits;
2283 pblock = mpd->map.m_pblk;
2284
2285 pagevec_init(&pvec, 0);
2286 while (start <= end) {
2287 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2288 PAGEVEC_SIZE);
2289 if (nr_pages == 0)
2290 break;
2291 for (i = 0; i < nr_pages; i++) {
2292 struct page *page = pvec.pages[i];
2293
2294 if (page->index > end)
2295 break;
2296 /* Up to 'end' pages must be contiguous */
2297 BUG_ON(page->index != start);
2298 bh = head = page_buffers(page);
2299 do {
2300 if (lblk < mpd->map.m_lblk)
2301 continue;
2302 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2303 /*
2304 * Buffer after end of mapped extent.
2305 * Find next buffer in the page to map.
2306 */
2307 mpd->map.m_len = 0;
2308 mpd->map.m_flags = 0;
2309 /*
2310 * FIXME: If dioread_nolock supports
2311 * blocksize < pagesize, we need to make
2312 * sure we add size mapped so far to
2313 * io_end->size as the following call
2314 * can submit the page for IO.
2315 */
2316 err = mpage_process_page_bufs(mpd, head,
2317 bh, lblk);
2318 pagevec_release(&pvec);
2319 if (err > 0)
2320 err = 0;
2321 return err;
2322 }
2323 if (buffer_delay(bh)) {
2324 clear_buffer_delay(bh);
2325 bh->b_blocknr = pblock++;
2326 }
2327 clear_buffer_unwritten(bh);
2328 } while (lblk++, (bh = bh->b_this_page) != head);
2329
2330 /*
2331 * FIXME: This is going to break if dioread_nolock
2332 * supports blocksize < pagesize as we will try to
2333 * convert potentially unmapped parts of inode.
2334 */
2335 mpd->io_submit.io_end->size += PAGE_SIZE;
2336 /* Page fully mapped - let IO run! */
2337 err = mpage_submit_page(mpd, page);
2338 if (err < 0) {
2339 pagevec_release(&pvec);
2340 return err;
2341 }
2342 start++;
2343 }
2344 pagevec_release(&pvec);
2345 }
2346 /* Extent fully mapped and matches with page boundary. We are done. */
2347 mpd->map.m_len = 0;
2348 mpd->map.m_flags = 0;
2349 return 0;
2350 }
2351
2352 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2353 {
2354 struct inode *inode = mpd->inode;
2355 struct ext4_map_blocks *map = &mpd->map;
2356 int get_blocks_flags;
2357 int err, dioread_nolock;
2358
2359 trace_ext4_da_write_pages_extent(inode, map);
2360 /*
2361 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2362 * to convert an unwritten extent to be initialized (in the case
2363 * where we have written into one or more preallocated blocks). It is
2364 * possible that we're going to need more metadata blocks than
2365 * previously reserved. However we must not fail because we're in
2366 * writeback and there is nothing we can do about it so it might result
2367 * in data loss. So use reserved blocks to allocate metadata if
2368 * possible.
2369 *
2370 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2371 * the blocks in question are delalloc blocks. This indicates
2372 * that the blocks and quotas has already been checked when
2373 * the data was copied into the page cache.
2374 */
2375 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2376 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2377 EXT4_GET_BLOCKS_IO_SUBMIT;
2378 dioread_nolock = ext4_should_dioread_nolock(inode);
2379 if (dioread_nolock)
2380 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2381 if (map->m_flags & (1 << BH_Delay))
2382 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2383
2384 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2385 if (err < 0)
2386 return err;
2387 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2388 if (!mpd->io_submit.io_end->handle &&
2389 ext4_handle_valid(handle)) {
2390 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2391 handle->h_rsv_handle = NULL;
2392 }
2393 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2394 }
2395
2396 BUG_ON(map->m_len == 0);
2397 if (map->m_flags & EXT4_MAP_NEW) {
2398 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2399 map->m_len);
2400 }
2401 return 0;
2402 }
2403
2404 /*
2405 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2406 * mpd->len and submit pages underlying it for IO
2407 *
2408 * @handle - handle for journal operations
2409 * @mpd - extent to map
2410 * @give_up_on_write - we set this to true iff there is a fatal error and there
2411 * is no hope of writing the data. The caller should discard
2412 * dirty pages to avoid infinite loops.
2413 *
2414 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2415 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2416 * them to initialized or split the described range from larger unwritten
2417 * extent. Note that we need not map all the described range since allocation
2418 * can return less blocks or the range is covered by more unwritten extents. We
2419 * cannot map more because we are limited by reserved transaction credits. On
2420 * the other hand we always make sure that the last touched page is fully
2421 * mapped so that it can be written out (and thus forward progress is
2422 * guaranteed). After mapping we submit all mapped pages for IO.
2423 */
2424 static int mpage_map_and_submit_extent(handle_t *handle,
2425 struct mpage_da_data *mpd,
2426 bool *give_up_on_write)
2427 {
2428 struct inode *inode = mpd->inode;
2429 struct ext4_map_blocks *map = &mpd->map;
2430 int err;
2431 loff_t disksize;
2432 int progress = 0;
2433
2434 mpd->io_submit.io_end->offset =
2435 ((loff_t)map->m_lblk) << inode->i_blkbits;
2436 do {
2437 err = mpage_map_one_extent(handle, mpd);
2438 if (err < 0) {
2439 struct super_block *sb = inode->i_sb;
2440
2441 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2442 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2443 goto invalidate_dirty_pages;
2444 /*
2445 * Let the uper layers retry transient errors.
2446 * In the case of ENOSPC, if ext4_count_free_blocks()
2447 * is non-zero, a commit should free up blocks.
2448 */
2449 if ((err == -ENOMEM) ||
2450 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2451 if (progress)
2452 goto update_disksize;
2453 return err;
2454 }
2455 ext4_msg(sb, KERN_CRIT,
2456 "Delayed block allocation failed for "
2457 "inode %lu at logical offset %llu with"
2458 " max blocks %u with error %d",
2459 inode->i_ino,
2460 (unsigned long long)map->m_lblk,
2461 (unsigned)map->m_len, -err);
2462 ext4_msg(sb, KERN_CRIT,
2463 "This should not happen!! Data will "
2464 "be lost\n");
2465 if (err == -ENOSPC)
2466 ext4_print_free_blocks(inode);
2467 invalidate_dirty_pages:
2468 *give_up_on_write = true;
2469 return err;
2470 }
2471 progress = 1;
2472 /*
2473 * Update buffer state, submit mapped pages, and get us new
2474 * extent to map
2475 */
2476 err = mpage_map_and_submit_buffers(mpd);
2477 if (err < 0)
2478 goto update_disksize;
2479 } while (map->m_len);
2480
2481 update_disksize:
2482 /*
2483 * Update on-disk size after IO is submitted. Races with
2484 * truncate are avoided by checking i_size under i_data_sem.
2485 */
2486 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2487 if (disksize > EXT4_I(inode)->i_disksize) {
2488 int err2;
2489 loff_t i_size;
2490
2491 down_write(&EXT4_I(inode)->i_data_sem);
2492 i_size = i_size_read(inode);
2493 if (disksize > i_size)
2494 disksize = i_size;
2495 if (disksize > EXT4_I(inode)->i_disksize)
2496 EXT4_I(inode)->i_disksize = disksize;
2497 up_write(&EXT4_I(inode)->i_data_sem);
2498 err2 = ext4_mark_inode_dirty(handle, inode);
2499 if (err2)
2500 ext4_error(inode->i_sb,
2501 "Failed to mark inode %lu dirty",
2502 inode->i_ino);
2503 if (!err)
2504 err = err2;
2505 }
2506 return err;
2507 }
2508
2509 /*
2510 * Calculate the total number of credits to reserve for one writepages
2511 * iteration. This is called from ext4_writepages(). We map an extent of
2512 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2513 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2514 * bpp - 1 blocks in bpp different extents.
2515 */
2516 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517 {
2518 int bpp = ext4_journal_blocks_per_page(inode);
2519
2520 return ext4_meta_trans_blocks(inode,
2521 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2522 }
2523
2524 /*
2525 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2526 * and underlying extent to map
2527 *
2528 * @mpd - where to look for pages
2529 *
2530 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2531 * IO immediately. When we find a page which isn't mapped we start accumulating
2532 * extent of buffers underlying these pages that needs mapping (formed by
2533 * either delayed or unwritten buffers). We also lock the pages containing
2534 * these buffers. The extent found is returned in @mpd structure (starting at
2535 * mpd->lblk with length mpd->len blocks).
2536 *
2537 * Note that this function can attach bios to one io_end structure which are
2538 * neither logically nor physically contiguous. Although it may seem as an
2539 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2540 * case as we need to track IO to all buffers underlying a page in one io_end.
2541 */
2542 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2543 {
2544 struct address_space *mapping = mpd->inode->i_mapping;
2545 struct pagevec pvec;
2546 unsigned int nr_pages;
2547 long left = mpd->wbc->nr_to_write;
2548 pgoff_t index = mpd->first_page;
2549 pgoff_t end = mpd->last_page;
2550 int tag;
2551 int i, err = 0;
2552 int blkbits = mpd->inode->i_blkbits;
2553 ext4_lblk_t lblk;
2554 struct buffer_head *head;
2555
2556 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2557 tag = PAGECACHE_TAG_TOWRITE;
2558 else
2559 tag = PAGECACHE_TAG_DIRTY;
2560
2561 pagevec_init(&pvec, 0);
2562 mpd->map.m_len = 0;
2563 mpd->next_page = index;
2564 while (index <= end) {
2565 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2566 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2567 if (nr_pages == 0)
2568 goto out;
2569
2570 for (i = 0; i < nr_pages; i++) {
2571 struct page *page = pvec.pages[i];
2572
2573 /*
2574 * At this point, the page may be truncated or
2575 * invalidated (changing page->mapping to NULL), or
2576 * even swizzled back from swapper_space to tmpfs file
2577 * mapping. However, page->index will not change
2578 * because we have a reference on the page.
2579 */
2580 if (page->index > end)
2581 goto out;
2582
2583 /*
2584 * Accumulated enough dirty pages? This doesn't apply
2585 * to WB_SYNC_ALL mode. For integrity sync we have to
2586 * keep going because someone may be concurrently
2587 * dirtying pages, and we might have synced a lot of
2588 * newly appeared dirty pages, but have not synced all
2589 * of the old dirty pages.
2590 */
2591 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2592 goto out;
2593
2594 /* If we can't merge this page, we are done. */
2595 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2596 goto out;
2597
2598 lock_page(page);
2599 /*
2600 * If the page is no longer dirty, or its mapping no
2601 * longer corresponds to inode we are writing (which
2602 * means it has been truncated or invalidated), or the
2603 * page is already under writeback and we are not doing
2604 * a data integrity writeback, skip the page
2605 */
2606 if (!PageDirty(page) ||
2607 (PageWriteback(page) &&
2608 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2609 unlikely(page->mapping != mapping)) {
2610 unlock_page(page);
2611 continue;
2612 }
2613
2614 wait_on_page_writeback(page);
2615 BUG_ON(PageWriteback(page));
2616
2617 if (mpd->map.m_len == 0)
2618 mpd->first_page = page->index;
2619 mpd->next_page = page->index + 1;
2620 /* Add all dirty buffers to mpd */
2621 lblk = ((ext4_lblk_t)page->index) <<
2622 (PAGE_SHIFT - blkbits);
2623 head = page_buffers(page);
2624 err = mpage_process_page_bufs(mpd, head, head, lblk);
2625 if (err <= 0)
2626 goto out;
2627 err = 0;
2628 left--;
2629 }
2630 pagevec_release(&pvec);
2631 cond_resched();
2632 }
2633 return 0;
2634 out:
2635 pagevec_release(&pvec);
2636 return err;
2637 }
2638
2639 static int __writepage(struct page *page, struct writeback_control *wbc,
2640 void *data)
2641 {
2642 struct address_space *mapping = data;
2643 int ret = ext4_writepage(page, wbc);
2644 mapping_set_error(mapping, ret);
2645 return ret;
2646 }
2647
2648 static int ext4_writepages(struct address_space *mapping,
2649 struct writeback_control *wbc)
2650 {
2651 pgoff_t writeback_index = 0;
2652 long nr_to_write = wbc->nr_to_write;
2653 int range_whole = 0;
2654 int cycled = 1;
2655 handle_t *handle = NULL;
2656 struct mpage_da_data mpd;
2657 struct inode *inode = mapping->host;
2658 int needed_blocks, rsv_blocks = 0, ret = 0;
2659 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2660 bool done;
2661 struct blk_plug plug;
2662 bool give_up_on_write = false;
2663
2664 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2665 return -EIO;
2666
2667 percpu_down_read(&sbi->s_journal_flag_rwsem);
2668 trace_ext4_writepages(inode, wbc);
2669
2670 if (dax_mapping(mapping)) {
2671 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2672 wbc);
2673 goto out_writepages;
2674 }
2675
2676 /*
2677 * No pages to write? This is mainly a kludge to avoid starting
2678 * a transaction for special inodes like journal inode on last iput()
2679 * because that could violate lock ordering on umount
2680 */
2681 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2682 goto out_writepages;
2683
2684 if (ext4_should_journal_data(inode)) {
2685 struct blk_plug plug;
2686
2687 blk_start_plug(&plug);
2688 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2689 blk_finish_plug(&plug);
2690 goto out_writepages;
2691 }
2692
2693 /*
2694 * If the filesystem has aborted, it is read-only, so return
2695 * right away instead of dumping stack traces later on that
2696 * will obscure the real source of the problem. We test
2697 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2698 * the latter could be true if the filesystem is mounted
2699 * read-only, and in that case, ext4_writepages should
2700 * *never* be called, so if that ever happens, we would want
2701 * the stack trace.
2702 */
2703 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2704 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2705 ret = -EROFS;
2706 goto out_writepages;
2707 }
2708
2709 if (ext4_should_dioread_nolock(inode)) {
2710 /*
2711 * We may need to convert up to one extent per block in
2712 * the page and we may dirty the inode.
2713 */
2714 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2715 }
2716
2717 /*
2718 * If we have inline data and arrive here, it means that
2719 * we will soon create the block for the 1st page, so
2720 * we'd better clear the inline data here.
2721 */
2722 if (ext4_has_inline_data(inode)) {
2723 /* Just inode will be modified... */
2724 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2725 if (IS_ERR(handle)) {
2726 ret = PTR_ERR(handle);
2727 goto out_writepages;
2728 }
2729 BUG_ON(ext4_test_inode_state(inode,
2730 EXT4_STATE_MAY_INLINE_DATA));
2731 ext4_destroy_inline_data(handle, inode);
2732 ext4_journal_stop(handle);
2733 }
2734
2735 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2736 range_whole = 1;
2737
2738 if (wbc->range_cyclic) {
2739 writeback_index = mapping->writeback_index;
2740 if (writeback_index)
2741 cycled = 0;
2742 mpd.first_page = writeback_index;
2743 mpd.last_page = -1;
2744 } else {
2745 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2746 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2747 }
2748
2749 mpd.inode = inode;
2750 mpd.wbc = wbc;
2751 ext4_io_submit_init(&mpd.io_submit, wbc);
2752 retry:
2753 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2754 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2755 done = false;
2756 blk_start_plug(&plug);
2757
2758 /*
2759 * First writeback pages that don't need mapping - we can avoid
2760 * starting a transaction unnecessarily and also avoid being blocked
2761 * in the block layer on device congestion while having transaction
2762 * started.
2763 */
2764 mpd.do_map = 0;
2765 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2766 if (!mpd.io_submit.io_end) {
2767 ret = -ENOMEM;
2768 goto unplug;
2769 }
2770 ret = mpage_prepare_extent_to_map(&mpd);
2771 /* Submit prepared bio */
2772 ext4_io_submit(&mpd.io_submit);
2773 ext4_put_io_end_defer(mpd.io_submit.io_end);
2774 mpd.io_submit.io_end = NULL;
2775 /* Unlock pages we didn't use */
2776 mpage_release_unused_pages(&mpd, false);
2777 if (ret < 0)
2778 goto unplug;
2779
2780 while (!done && mpd.first_page <= mpd.last_page) {
2781 /* For each extent of pages we use new io_end */
2782 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2783 if (!mpd.io_submit.io_end) {
2784 ret = -ENOMEM;
2785 break;
2786 }
2787
2788 /*
2789 * We have two constraints: We find one extent to map and we
2790 * must always write out whole page (makes a difference when
2791 * blocksize < pagesize) so that we don't block on IO when we
2792 * try to write out the rest of the page. Journalled mode is
2793 * not supported by delalloc.
2794 */
2795 BUG_ON(ext4_should_journal_data(inode));
2796 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2797
2798 /* start a new transaction */
2799 handle = ext4_journal_start_with_reserve(inode,
2800 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2801 if (IS_ERR(handle)) {
2802 ret = PTR_ERR(handle);
2803 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2804 "%ld pages, ino %lu; err %d", __func__,
2805 wbc->nr_to_write, inode->i_ino, ret);
2806 /* Release allocated io_end */
2807 ext4_put_io_end(mpd.io_submit.io_end);
2808 mpd.io_submit.io_end = NULL;
2809 break;
2810 }
2811 mpd.do_map = 1;
2812
2813 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2814 ret = mpage_prepare_extent_to_map(&mpd);
2815 if (!ret) {
2816 if (mpd.map.m_len)
2817 ret = mpage_map_and_submit_extent(handle, &mpd,
2818 &give_up_on_write);
2819 else {
2820 /*
2821 * We scanned the whole range (or exhausted
2822 * nr_to_write), submitted what was mapped and
2823 * didn't find anything needing mapping. We are
2824 * done.
2825 */
2826 done = true;
2827 }
2828 }
2829 /*
2830 * Caution: If the handle is synchronous,
2831 * ext4_journal_stop() can wait for transaction commit
2832 * to finish which may depend on writeback of pages to
2833 * complete or on page lock to be released. In that
2834 * case, we have to wait until after after we have
2835 * submitted all the IO, released page locks we hold,
2836 * and dropped io_end reference (for extent conversion
2837 * to be able to complete) before stopping the handle.
2838 */
2839 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2840 ext4_journal_stop(handle);
2841 handle = NULL;
2842 mpd.do_map = 0;
2843 }
2844 /* Submit prepared bio */
2845 ext4_io_submit(&mpd.io_submit);
2846 /* Unlock pages we didn't use */
2847 mpage_release_unused_pages(&mpd, give_up_on_write);
2848 /*
2849 * Drop our io_end reference we got from init. We have
2850 * to be careful and use deferred io_end finishing if
2851 * we are still holding the transaction as we can
2852 * release the last reference to io_end which may end
2853 * up doing unwritten extent conversion.
2854 */
2855 if (handle) {
2856 ext4_put_io_end_defer(mpd.io_submit.io_end);
2857 ext4_journal_stop(handle);
2858 } else
2859 ext4_put_io_end(mpd.io_submit.io_end);
2860 mpd.io_submit.io_end = NULL;
2861
2862 if (ret == -ENOSPC && sbi->s_journal) {
2863 /*
2864 * Commit the transaction which would
2865 * free blocks released in the transaction
2866 * and try again
2867 */
2868 jbd2_journal_force_commit_nested(sbi->s_journal);
2869 ret = 0;
2870 continue;
2871 }
2872 /* Fatal error - ENOMEM, EIO... */
2873 if (ret)
2874 break;
2875 }
2876 unplug:
2877 blk_finish_plug(&plug);
2878 if (!ret && !cycled && wbc->nr_to_write > 0) {
2879 cycled = 1;
2880 mpd.last_page = writeback_index - 1;
2881 mpd.first_page = 0;
2882 goto retry;
2883 }
2884
2885 /* Update index */
2886 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2887 /*
2888 * Set the writeback_index so that range_cyclic
2889 * mode will write it back later
2890 */
2891 mapping->writeback_index = mpd.first_page;
2892
2893 out_writepages:
2894 trace_ext4_writepages_result(inode, wbc, ret,
2895 nr_to_write - wbc->nr_to_write);
2896 percpu_up_read(&sbi->s_journal_flag_rwsem);
2897 return ret;
2898 }
2899
2900 static int ext4_nonda_switch(struct super_block *sb)
2901 {
2902 s64 free_clusters, dirty_clusters;
2903 struct ext4_sb_info *sbi = EXT4_SB(sb);
2904
2905 /*
2906 * switch to non delalloc mode if we are running low
2907 * on free block. The free block accounting via percpu
2908 * counters can get slightly wrong with percpu_counter_batch getting
2909 * accumulated on each CPU without updating global counters
2910 * Delalloc need an accurate free block accounting. So switch
2911 * to non delalloc when we are near to error range.
2912 */
2913 free_clusters =
2914 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2915 dirty_clusters =
2916 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2917 /*
2918 * Start pushing delalloc when 1/2 of free blocks are dirty.
2919 */
2920 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2921 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2922
2923 if (2 * free_clusters < 3 * dirty_clusters ||
2924 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2925 /*
2926 * free block count is less than 150% of dirty blocks
2927 * or free blocks is less than watermark
2928 */
2929 return 1;
2930 }
2931 return 0;
2932 }
2933
2934 /* We always reserve for an inode update; the superblock could be there too */
2935 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2936 {
2937 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2938 return 1;
2939
2940 if (pos + len <= 0x7fffffffULL)
2941 return 1;
2942
2943 /* We might need to update the superblock to set LARGE_FILE */
2944 return 2;
2945 }
2946
2947 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2948 loff_t pos, unsigned len, unsigned flags,
2949 struct page **pagep, void **fsdata)
2950 {
2951 int ret, retries = 0;
2952 struct page *page;
2953 pgoff_t index;
2954 struct inode *inode = mapping->host;
2955 handle_t *handle;
2956
2957 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2958 return -EIO;
2959
2960 index = pos >> PAGE_SHIFT;
2961
2962 if (ext4_nonda_switch(inode->i_sb) ||
2963 S_ISLNK(inode->i_mode)) {
2964 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2965 return ext4_write_begin(file, mapping, pos,
2966 len, flags, pagep, fsdata);
2967 }
2968 *fsdata = (void *)0;
2969 trace_ext4_da_write_begin(inode, pos, len, flags);
2970
2971 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2972 ret = ext4_da_write_inline_data_begin(mapping, inode,
2973 pos, len, flags,
2974 pagep, fsdata);
2975 if (ret < 0)
2976 return ret;
2977 if (ret == 1)
2978 return 0;
2979 }
2980
2981 /*
2982 * grab_cache_page_write_begin() can take a long time if the
2983 * system is thrashing due to memory pressure, or if the page
2984 * is being written back. So grab it first before we start
2985 * the transaction handle. This also allows us to allocate
2986 * the page (if needed) without using GFP_NOFS.
2987 */
2988 retry_grab:
2989 page = grab_cache_page_write_begin(mapping, index, flags);
2990 if (!page)
2991 return -ENOMEM;
2992 unlock_page(page);
2993
2994 /*
2995 * With delayed allocation, we don't log the i_disksize update
2996 * if there is delayed block allocation. But we still need
2997 * to journalling the i_disksize update if writes to the end
2998 * of file which has an already mapped buffer.
2999 */
3000 retry_journal:
3001 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3002 ext4_da_write_credits(inode, pos, len));
3003 if (IS_ERR(handle)) {
3004 put_page(page);
3005 return PTR_ERR(handle);
3006 }
3007
3008 lock_page(page);
3009 if (page->mapping != mapping) {
3010 /* The page got truncated from under us */
3011 unlock_page(page);
3012 put_page(page);
3013 ext4_journal_stop(handle);
3014 goto retry_grab;
3015 }
3016 /* In case writeback began while the page was unlocked */
3017 wait_for_stable_page(page);
3018
3019 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3020 ret = ext4_block_write_begin(page, pos, len,
3021 ext4_da_get_block_prep);
3022 #else
3023 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3024 #endif
3025 if (ret < 0) {
3026 unlock_page(page);
3027 ext4_journal_stop(handle);
3028 /*
3029 * block_write_begin may have instantiated a few blocks
3030 * outside i_size. Trim these off again. Don't need
3031 * i_size_read because we hold i_mutex.
3032 */
3033 if (pos + len > inode->i_size)
3034 ext4_truncate_failed_write(inode);
3035
3036 if (ret == -ENOSPC &&
3037 ext4_should_retry_alloc(inode->i_sb, &retries))
3038 goto retry_journal;
3039
3040 put_page(page);
3041 return ret;
3042 }
3043
3044 *pagep = page;
3045 return ret;
3046 }
3047
3048 /*
3049 * Check if we should update i_disksize
3050 * when write to the end of file but not require block allocation
3051 */
3052 static int ext4_da_should_update_i_disksize(struct page *page,
3053 unsigned long offset)
3054 {
3055 struct buffer_head *bh;
3056 struct inode *inode = page->mapping->host;
3057 unsigned int idx;
3058 int i;
3059
3060 bh = page_buffers(page);
3061 idx = offset >> inode->i_blkbits;
3062
3063 for (i = 0; i < idx; i++)
3064 bh = bh->b_this_page;
3065
3066 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3067 return 0;
3068 return 1;
3069 }
3070
3071 static int ext4_da_write_end(struct file *file,
3072 struct address_space *mapping,
3073 loff_t pos, unsigned len, unsigned copied,
3074 struct page *page, void *fsdata)
3075 {
3076 struct inode *inode = mapping->host;
3077 int ret = 0, ret2;
3078 handle_t *handle = ext4_journal_current_handle();
3079 loff_t new_i_size;
3080 unsigned long start, end;
3081 int write_mode = (int)(unsigned long)fsdata;
3082
3083 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3084 return ext4_write_end(file, mapping, pos,
3085 len, copied, page, fsdata);
3086
3087 trace_ext4_da_write_end(inode, pos, len, copied);
3088 start = pos & (PAGE_SIZE - 1);
3089 end = start + copied - 1;
3090
3091 /*
3092 * generic_write_end() will run mark_inode_dirty() if i_size
3093 * changes. So let's piggyback the i_disksize mark_inode_dirty
3094 * into that.
3095 */
3096 new_i_size = pos + copied;
3097 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3098 if (ext4_has_inline_data(inode) ||
3099 ext4_da_should_update_i_disksize(page, end)) {
3100 ext4_update_i_disksize(inode, new_i_size);
3101 /* We need to mark inode dirty even if
3102 * new_i_size is less that inode->i_size
3103 * bu greater than i_disksize.(hint delalloc)
3104 */
3105 ext4_mark_inode_dirty(handle, inode);
3106 }
3107 }
3108
3109 if (write_mode != CONVERT_INLINE_DATA &&
3110 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3111 ext4_has_inline_data(inode))
3112 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3113 page);
3114 else
3115 ret2 = generic_write_end(file, mapping, pos, len, copied,
3116 page, fsdata);
3117
3118 copied = ret2;
3119 if (ret2 < 0)
3120 ret = ret2;
3121 ret2 = ext4_journal_stop(handle);
3122 if (!ret)
3123 ret = ret2;
3124
3125 return ret ? ret : copied;
3126 }
3127
3128 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3129 unsigned int length)
3130 {
3131 /*
3132 * Drop reserved blocks
3133 */
3134 BUG_ON(!PageLocked(page));
3135 if (!page_has_buffers(page))
3136 goto out;
3137
3138 ext4_da_page_release_reservation(page, offset, length);
3139
3140 out:
3141 ext4_invalidatepage(page, offset, length);
3142
3143 return;
3144 }
3145
3146 /*
3147 * Force all delayed allocation blocks to be allocated for a given inode.
3148 */
3149 int ext4_alloc_da_blocks(struct inode *inode)
3150 {
3151 trace_ext4_alloc_da_blocks(inode);
3152
3153 if (!EXT4_I(inode)->i_reserved_data_blocks)
3154 return 0;
3155
3156 /*
3157 * We do something simple for now. The filemap_flush() will
3158 * also start triggering a write of the data blocks, which is
3159 * not strictly speaking necessary (and for users of
3160 * laptop_mode, not even desirable). However, to do otherwise
3161 * would require replicating code paths in:
3162 *
3163 * ext4_writepages() ->
3164 * write_cache_pages() ---> (via passed in callback function)
3165 * __mpage_da_writepage() -->
3166 * mpage_add_bh_to_extent()
3167 * mpage_da_map_blocks()
3168 *
3169 * The problem is that write_cache_pages(), located in
3170 * mm/page-writeback.c, marks pages clean in preparation for
3171 * doing I/O, which is not desirable if we're not planning on
3172 * doing I/O at all.
3173 *
3174 * We could call write_cache_pages(), and then redirty all of
3175 * the pages by calling redirty_page_for_writepage() but that
3176 * would be ugly in the extreme. So instead we would need to
3177 * replicate parts of the code in the above functions,
3178 * simplifying them because we wouldn't actually intend to
3179 * write out the pages, but rather only collect contiguous
3180 * logical block extents, call the multi-block allocator, and
3181 * then update the buffer heads with the block allocations.
3182 *
3183 * For now, though, we'll cheat by calling filemap_flush(),
3184 * which will map the blocks, and start the I/O, but not
3185 * actually wait for the I/O to complete.
3186 */
3187 return filemap_flush(inode->i_mapping);
3188 }
3189
3190 /*
3191 * bmap() is special. It gets used by applications such as lilo and by
3192 * the swapper to find the on-disk block of a specific piece of data.
3193 *
3194 * Naturally, this is dangerous if the block concerned is still in the
3195 * journal. If somebody makes a swapfile on an ext4 data-journaling
3196 * filesystem and enables swap, then they may get a nasty shock when the
3197 * data getting swapped to that swapfile suddenly gets overwritten by
3198 * the original zero's written out previously to the journal and
3199 * awaiting writeback in the kernel's buffer cache.
3200 *
3201 * So, if we see any bmap calls here on a modified, data-journaled file,
3202 * take extra steps to flush any blocks which might be in the cache.
3203 */
3204 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3205 {
3206 struct inode *inode = mapping->host;
3207 journal_t *journal;
3208 int err;
3209
3210 /*
3211 * We can get here for an inline file via the FIBMAP ioctl
3212 */
3213 if (ext4_has_inline_data(inode))
3214 return 0;
3215
3216 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3217 test_opt(inode->i_sb, DELALLOC)) {
3218 /*
3219 * With delalloc we want to sync the file
3220 * so that we can make sure we allocate
3221 * blocks for file
3222 */
3223 filemap_write_and_wait(mapping);
3224 }
3225
3226 if (EXT4_JOURNAL(inode) &&
3227 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3228 /*
3229 * This is a REALLY heavyweight approach, but the use of
3230 * bmap on dirty files is expected to be extremely rare:
3231 * only if we run lilo or swapon on a freshly made file
3232 * do we expect this to happen.
3233 *
3234 * (bmap requires CAP_SYS_RAWIO so this does not
3235 * represent an unprivileged user DOS attack --- we'd be
3236 * in trouble if mortal users could trigger this path at
3237 * will.)
3238 *
3239 * NB. EXT4_STATE_JDATA is not set on files other than
3240 * regular files. If somebody wants to bmap a directory
3241 * or symlink and gets confused because the buffer
3242 * hasn't yet been flushed to disk, they deserve
3243 * everything they get.
3244 */
3245
3246 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3247 journal = EXT4_JOURNAL(inode);
3248 jbd2_journal_lock_updates(journal);
3249 err = jbd2_journal_flush(journal);
3250 jbd2_journal_unlock_updates(journal);
3251
3252 if (err)
3253 return 0;
3254 }
3255
3256 return generic_block_bmap(mapping, block, ext4_get_block);
3257 }
3258
3259 static int ext4_readpage(struct file *file, struct page *page)
3260 {
3261 int ret = -EAGAIN;
3262 struct inode *inode = page->mapping->host;
3263
3264 trace_ext4_readpage(page);
3265
3266 if (ext4_has_inline_data(inode))
3267 ret = ext4_readpage_inline(inode, page);
3268
3269 if (ret == -EAGAIN)
3270 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3271
3272 return ret;
3273 }
3274
3275 static int
3276 ext4_readpages(struct file *file, struct address_space *mapping,
3277 struct list_head *pages, unsigned nr_pages)
3278 {
3279 struct inode *inode = mapping->host;
3280
3281 /* If the file has inline data, no need to do readpages. */
3282 if (ext4_has_inline_data(inode))
3283 return 0;
3284
3285 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3286 }
3287
3288 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3289 unsigned int length)
3290 {
3291 trace_ext4_invalidatepage(page, offset, length);
3292
3293 /* No journalling happens on data buffers when this function is used */
3294 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3295
3296 block_invalidatepage(page, offset, length);
3297 }
3298
3299 static int __ext4_journalled_invalidatepage(struct page *page,
3300 unsigned int offset,
3301 unsigned int length)
3302 {
3303 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304
3305 trace_ext4_journalled_invalidatepage(page, offset, length);
3306
3307 /*
3308 * If it's a full truncate we just forget about the pending dirtying
3309 */
3310 if (offset == 0 && length == PAGE_SIZE)
3311 ClearPageChecked(page);
3312
3313 return jbd2_journal_invalidatepage(journal, page, offset, length);
3314 }
3315
3316 /* Wrapper for aops... */
3317 static void ext4_journalled_invalidatepage(struct page *page,
3318 unsigned int offset,
3319 unsigned int length)
3320 {
3321 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3322 }
3323
3324 static int ext4_releasepage(struct page *page, gfp_t wait)
3325 {
3326 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3327
3328 trace_ext4_releasepage(page);
3329
3330 /* Page has dirty journalled data -> cannot release */
3331 if (PageChecked(page))
3332 return 0;
3333 if (journal)
3334 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3335 else
3336 return try_to_free_buffers(page);
3337 }
3338
3339 #ifdef CONFIG_FS_DAX
3340 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3341 unsigned flags, struct iomap *iomap)
3342 {
3343 struct block_device *bdev;
3344 unsigned int blkbits = inode->i_blkbits;
3345 unsigned long first_block = offset >> blkbits;
3346 unsigned long last_block = (offset + length - 1) >> blkbits;
3347 struct ext4_map_blocks map;
3348 int ret;
3349
3350 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3351 return -ERANGE;
3352
3353 map.m_lblk = first_block;
3354 map.m_len = last_block - first_block + 1;
3355
3356 if (!(flags & IOMAP_WRITE)) {
3357 ret = ext4_map_blocks(NULL, inode, &map, 0);
3358 } else {
3359 int dio_credits;
3360 handle_t *handle;
3361 int retries = 0;
3362
3363 /* Trim mapping request to maximum we can map at once for DIO */
3364 if (map.m_len > DIO_MAX_BLOCKS)
3365 map.m_len = DIO_MAX_BLOCKS;
3366 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3367 retry:
3368 /*
3369 * Either we allocate blocks and then we don't get unwritten
3370 * extent so we have reserved enough credits, or the blocks
3371 * are already allocated and unwritten and in that case
3372 * extent conversion fits in the credits as well.
3373 */
3374 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3375 dio_credits);
3376 if (IS_ERR(handle))
3377 return PTR_ERR(handle);
3378
3379 ret = ext4_map_blocks(handle, inode, &map,
3380 EXT4_GET_BLOCKS_CREATE_ZERO);
3381 if (ret < 0) {
3382 ext4_journal_stop(handle);
3383 if (ret == -ENOSPC &&
3384 ext4_should_retry_alloc(inode->i_sb, &retries))
3385 goto retry;
3386 return ret;
3387 }
3388
3389 /*
3390 * If we added blocks beyond i_size, we need to make sure they
3391 * will get truncated if we crash before updating i_size in
3392 * ext4_iomap_end(). For faults we don't need to do that (and
3393 * even cannot because for orphan list operations inode_lock is
3394 * required) - if we happen to instantiate block beyond i_size,
3395 * it is because we race with truncate which has already added
3396 * the inode to the orphan list.
3397 */
3398 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3399 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3400 int err;
3401
3402 err = ext4_orphan_add(handle, inode);
3403 if (err < 0) {
3404 ext4_journal_stop(handle);
3405 return err;
3406 }
3407 }
3408 ext4_journal_stop(handle);
3409 }
3410
3411 iomap->flags = 0;
3412 bdev = inode->i_sb->s_bdev;
3413 iomap->bdev = bdev;
3414 if (blk_queue_dax(bdev->bd_queue))
3415 iomap->dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
3416 else
3417 iomap->dax_dev = NULL;
3418 iomap->offset = first_block << blkbits;
3419
3420 if (ret == 0) {
3421 iomap->type = IOMAP_HOLE;
3422 iomap->blkno = IOMAP_NULL_BLOCK;
3423 iomap->length = (u64)map.m_len << blkbits;
3424 } else {
3425 if (map.m_flags & EXT4_MAP_MAPPED) {
3426 iomap->type = IOMAP_MAPPED;
3427 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3428 iomap->type = IOMAP_UNWRITTEN;
3429 } else {
3430 WARN_ON_ONCE(1);
3431 return -EIO;
3432 }
3433 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3434 iomap->length = (u64)map.m_len << blkbits;
3435 }
3436
3437 if (map.m_flags & EXT4_MAP_NEW)
3438 iomap->flags |= IOMAP_F_NEW;
3439 return 0;
3440 }
3441
3442 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3443 ssize_t written, unsigned flags, struct iomap *iomap)
3444 {
3445 int ret = 0;
3446 handle_t *handle;
3447 int blkbits = inode->i_blkbits;
3448 bool truncate = false;
3449
3450 put_dax(iomap->dax_dev);
3451 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3452 return 0;
3453
3454 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3455 if (IS_ERR(handle)) {
3456 ret = PTR_ERR(handle);
3457 goto orphan_del;
3458 }
3459 if (ext4_update_inode_size(inode, offset + written))
3460 ext4_mark_inode_dirty(handle, inode);
3461 /*
3462 * We may need to truncate allocated but not written blocks beyond EOF.
3463 */
3464 if (iomap->offset + iomap->length >
3465 ALIGN(inode->i_size, 1 << blkbits)) {
3466 ext4_lblk_t written_blk, end_blk;
3467
3468 written_blk = (offset + written) >> blkbits;
3469 end_blk = (offset + length) >> blkbits;
3470 if (written_blk < end_blk && ext4_can_truncate(inode))
3471 truncate = true;
3472 }
3473 /*
3474 * Remove inode from orphan list if we were extending a inode and
3475 * everything went fine.
3476 */
3477 if (!truncate && inode->i_nlink &&
3478 !list_empty(&EXT4_I(inode)->i_orphan))
3479 ext4_orphan_del(handle, inode);
3480 ext4_journal_stop(handle);
3481 if (truncate) {
3482 ext4_truncate_failed_write(inode);
3483 orphan_del:
3484 /*
3485 * If truncate failed early the inode might still be on the
3486 * orphan list; we need to make sure the inode is removed from
3487 * the orphan list in that case.
3488 */
3489 if (inode->i_nlink)
3490 ext4_orphan_del(NULL, inode);
3491 }
3492 return ret;
3493 }
3494
3495 const struct iomap_ops ext4_iomap_ops = {
3496 .iomap_begin = ext4_iomap_begin,
3497 .iomap_end = ext4_iomap_end,
3498 };
3499
3500 #endif
3501
3502 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3503 ssize_t size, void *private)
3504 {
3505 ext4_io_end_t *io_end = private;
3506
3507 /* if not async direct IO just return */
3508 if (!io_end)
3509 return 0;
3510
3511 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3512 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3513 io_end, io_end->inode->i_ino, iocb, offset, size);
3514
3515 /*
3516 * Error during AIO DIO. We cannot convert unwritten extents as the
3517 * data was not written. Just clear the unwritten flag and drop io_end.
3518 */
3519 if (size <= 0) {
3520 ext4_clear_io_unwritten_flag(io_end);
3521 size = 0;
3522 }
3523 io_end->offset = offset;
3524 io_end->size = size;
3525 ext4_put_io_end(io_end);
3526
3527 return 0;
3528 }
3529
3530 /*
3531 * Handling of direct IO writes.
3532 *
3533 * For ext4 extent files, ext4 will do direct-io write even to holes,
3534 * preallocated extents, and those write extend the file, no need to
3535 * fall back to buffered IO.
3536 *
3537 * For holes, we fallocate those blocks, mark them as unwritten
3538 * If those blocks were preallocated, we mark sure they are split, but
3539 * still keep the range to write as unwritten.
3540 *
3541 * The unwritten extents will be converted to written when DIO is completed.
3542 * For async direct IO, since the IO may still pending when return, we
3543 * set up an end_io call back function, which will do the conversion
3544 * when async direct IO completed.
3545 *
3546 * If the O_DIRECT write will extend the file then add this inode to the
3547 * orphan list. So recovery will truncate it back to the original size
3548 * if the machine crashes during the write.
3549 *
3550 */
3551 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3552 {
3553 struct file *file = iocb->ki_filp;
3554 struct inode *inode = file->f_mapping->host;
3555 struct ext4_inode_info *ei = EXT4_I(inode);
3556 ssize_t ret;
3557 loff_t offset = iocb->ki_pos;
3558 size_t count = iov_iter_count(iter);
3559 int overwrite = 0;
3560 get_block_t *get_block_func = NULL;
3561 int dio_flags = 0;
3562 loff_t final_size = offset + count;
3563 int orphan = 0;
3564 handle_t *handle;
3565
3566 if (final_size > inode->i_size) {
3567 /* Credits for sb + inode write */
3568 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3569 if (IS_ERR(handle)) {
3570 ret = PTR_ERR(handle);
3571 goto out;
3572 }
3573 ret = ext4_orphan_add(handle, inode);
3574 if (ret) {
3575 ext4_journal_stop(handle);
3576 goto out;
3577 }
3578 orphan = 1;
3579 ei->i_disksize = inode->i_size;
3580 ext4_journal_stop(handle);
3581 }
3582
3583 BUG_ON(iocb->private == NULL);
3584
3585 /*
3586 * Make all waiters for direct IO properly wait also for extent
3587 * conversion. This also disallows race between truncate() and
3588 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3589 */
3590 inode_dio_begin(inode);
3591
3592 /* If we do a overwrite dio, i_mutex locking can be released */
3593 overwrite = *((int *)iocb->private);
3594
3595 if (overwrite)
3596 inode_unlock(inode);
3597
3598 /*
3599 * For extent mapped files we could direct write to holes and fallocate.
3600 *
3601 * Allocated blocks to fill the hole are marked as unwritten to prevent
3602 * parallel buffered read to expose the stale data before DIO complete
3603 * the data IO.
3604 *
3605 * As to previously fallocated extents, ext4 get_block will just simply
3606 * mark the buffer mapped but still keep the extents unwritten.
3607 *
3608 * For non AIO case, we will convert those unwritten extents to written
3609 * after return back from blockdev_direct_IO. That way we save us from
3610 * allocating io_end structure and also the overhead of offloading
3611 * the extent convertion to a workqueue.
3612 *
3613 * For async DIO, the conversion needs to be deferred when the
3614 * IO is completed. The ext4 end_io callback function will be
3615 * called to take care of the conversion work. Here for async
3616 * case, we allocate an io_end structure to hook to the iocb.
3617 */
3618 iocb->private = NULL;
3619 if (overwrite)
3620 get_block_func = ext4_dio_get_block_overwrite;
3621 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3622 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3623 get_block_func = ext4_dio_get_block;
3624 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3625 } else if (is_sync_kiocb(iocb)) {
3626 get_block_func = ext4_dio_get_block_unwritten_sync;
3627 dio_flags = DIO_LOCKING;
3628 } else {
3629 get_block_func = ext4_dio_get_block_unwritten_async;
3630 dio_flags = DIO_LOCKING;
3631 }
3632 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3633 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3634 #endif
3635 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3636 get_block_func, ext4_end_io_dio, NULL,
3637 dio_flags);
3638
3639 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3640 EXT4_STATE_DIO_UNWRITTEN)) {
3641 int err;
3642 /*
3643 * for non AIO case, since the IO is already
3644 * completed, we could do the conversion right here
3645 */
3646 err = ext4_convert_unwritten_extents(NULL, inode,
3647 offset, ret);
3648 if (err < 0)
3649 ret = err;
3650 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3651 }
3652
3653 inode_dio_end(inode);
3654 /* take i_mutex locking again if we do a ovewrite dio */
3655 if (overwrite)
3656 inode_lock(inode);
3657
3658 if (ret < 0 && final_size > inode->i_size)
3659 ext4_truncate_failed_write(inode);
3660
3661 /* Handle extending of i_size after direct IO write */
3662 if (orphan) {
3663 int err;
3664
3665 /* Credits for sb + inode write */
3666 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3667 if (IS_ERR(handle)) {
3668 /* This is really bad luck. We've written the data
3669 * but cannot extend i_size. Bail out and pretend
3670 * the write failed... */
3671 ret = PTR_ERR(handle);
3672 if (inode->i_nlink)
3673 ext4_orphan_del(NULL, inode);
3674
3675 goto out;
3676 }
3677 if (inode->i_nlink)
3678 ext4_orphan_del(handle, inode);
3679 if (ret > 0) {
3680 loff_t end = offset + ret;
3681 if (end > inode->i_size) {
3682 ei->i_disksize = end;
3683 i_size_write(inode, end);
3684 /*
3685 * We're going to return a positive `ret'
3686 * here due to non-zero-length I/O, so there's
3687 * no way of reporting error returns from
3688 * ext4_mark_inode_dirty() to userspace. So
3689 * ignore it.
3690 */
3691 ext4_mark_inode_dirty(handle, inode);
3692 }
3693 }
3694 err = ext4_journal_stop(handle);
3695 if (ret == 0)
3696 ret = err;
3697 }
3698 out:
3699 return ret;
3700 }
3701
3702 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3703 {
3704 struct address_space *mapping = iocb->ki_filp->f_mapping;
3705 struct inode *inode = mapping->host;
3706 size_t count = iov_iter_count(iter);
3707 ssize_t ret;
3708
3709 /*
3710 * Shared inode_lock is enough for us - it protects against concurrent
3711 * writes & truncates and since we take care of writing back page cache,
3712 * we are protected against page writeback as well.
3713 */
3714 inode_lock_shared(inode);
3715 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3716 iocb->ki_pos + count);
3717 if (ret)
3718 goto out_unlock;
3719 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3720 iter, ext4_dio_get_block, NULL, NULL, 0);
3721 out_unlock:
3722 inode_unlock_shared(inode);
3723 return ret;
3724 }
3725
3726 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3727 {
3728 struct file *file = iocb->ki_filp;
3729 struct inode *inode = file->f_mapping->host;
3730 size_t count = iov_iter_count(iter);
3731 loff_t offset = iocb->ki_pos;
3732 ssize_t ret;
3733
3734 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3735 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3736 return 0;
3737 #endif
3738
3739 /*
3740 * If we are doing data journalling we don't support O_DIRECT
3741 */
3742 if (ext4_should_journal_data(inode))
3743 return 0;
3744
3745 /* Let buffer I/O handle the inline data case. */
3746 if (ext4_has_inline_data(inode))
3747 return 0;
3748
3749 /* DAX uses iomap path now */
3750 if (WARN_ON_ONCE(IS_DAX(inode)))
3751 return 0;
3752
3753 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3754 if (iov_iter_rw(iter) == READ)
3755 ret = ext4_direct_IO_read(iocb, iter);
3756 else
3757 ret = ext4_direct_IO_write(iocb, iter);
3758 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3759 return ret;
3760 }
3761
3762 /*
3763 * Pages can be marked dirty completely asynchronously from ext4's journalling
3764 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3765 * much here because ->set_page_dirty is called under VFS locks. The page is
3766 * not necessarily locked.
3767 *
3768 * We cannot just dirty the page and leave attached buffers clean, because the
3769 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3770 * or jbddirty because all the journalling code will explode.
3771 *
3772 * So what we do is to mark the page "pending dirty" and next time writepage
3773 * is called, propagate that into the buffers appropriately.
3774 */
3775 static int ext4_journalled_set_page_dirty(struct page *page)
3776 {
3777 SetPageChecked(page);
3778 return __set_page_dirty_nobuffers(page);
3779 }
3780
3781 static int ext4_set_page_dirty(struct page *page)
3782 {
3783 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3784 WARN_ON_ONCE(!page_has_buffers(page));
3785 return __set_page_dirty_buffers(page);
3786 }
3787
3788 static const struct address_space_operations ext4_aops = {
3789 .readpage = ext4_readpage,
3790 .readpages = ext4_readpages,
3791 .writepage = ext4_writepage,
3792 .writepages = ext4_writepages,
3793 .write_begin = ext4_write_begin,
3794 .write_end = ext4_write_end,
3795 .set_page_dirty = ext4_set_page_dirty,
3796 .bmap = ext4_bmap,
3797 .invalidatepage = ext4_invalidatepage,
3798 .releasepage = ext4_releasepage,
3799 .direct_IO = ext4_direct_IO,
3800 .migratepage = buffer_migrate_page,
3801 .is_partially_uptodate = block_is_partially_uptodate,
3802 .error_remove_page = generic_error_remove_page,
3803 };
3804
3805 static const struct address_space_operations ext4_journalled_aops = {
3806 .readpage = ext4_readpage,
3807 .readpages = ext4_readpages,
3808 .writepage = ext4_writepage,
3809 .writepages = ext4_writepages,
3810 .write_begin = ext4_write_begin,
3811 .write_end = ext4_journalled_write_end,
3812 .set_page_dirty = ext4_journalled_set_page_dirty,
3813 .bmap = ext4_bmap,
3814 .invalidatepage = ext4_journalled_invalidatepage,
3815 .releasepage = ext4_releasepage,
3816 .direct_IO = ext4_direct_IO,
3817 .is_partially_uptodate = block_is_partially_uptodate,
3818 .error_remove_page = generic_error_remove_page,
3819 };
3820
3821 static const struct address_space_operations ext4_da_aops = {
3822 .readpage = ext4_readpage,
3823 .readpages = ext4_readpages,
3824 .writepage = ext4_writepage,
3825 .writepages = ext4_writepages,
3826 .write_begin = ext4_da_write_begin,
3827 .write_end = ext4_da_write_end,
3828 .set_page_dirty = ext4_set_page_dirty,
3829 .bmap = ext4_bmap,
3830 .invalidatepage = ext4_da_invalidatepage,
3831 .releasepage = ext4_releasepage,
3832 .direct_IO = ext4_direct_IO,
3833 .migratepage = buffer_migrate_page,
3834 .is_partially_uptodate = block_is_partially_uptodate,
3835 .error_remove_page = generic_error_remove_page,
3836 };
3837
3838 void ext4_set_aops(struct inode *inode)
3839 {
3840 switch (ext4_inode_journal_mode(inode)) {
3841 case EXT4_INODE_ORDERED_DATA_MODE:
3842 case EXT4_INODE_WRITEBACK_DATA_MODE:
3843 break;
3844 case EXT4_INODE_JOURNAL_DATA_MODE:
3845 inode->i_mapping->a_ops = &ext4_journalled_aops;
3846 return;
3847 default:
3848 BUG();
3849 }
3850 if (test_opt(inode->i_sb, DELALLOC))
3851 inode->i_mapping->a_ops = &ext4_da_aops;
3852 else
3853 inode->i_mapping->a_ops = &ext4_aops;
3854 }
3855
3856 static int __ext4_block_zero_page_range(handle_t *handle,
3857 struct address_space *mapping, loff_t from, loff_t length)
3858 {
3859 ext4_fsblk_t index = from >> PAGE_SHIFT;
3860 unsigned offset = from & (PAGE_SIZE-1);
3861 unsigned blocksize, pos;
3862 ext4_lblk_t iblock;
3863 struct inode *inode = mapping->host;
3864 struct buffer_head *bh;
3865 struct page *page;
3866 int err = 0;
3867
3868 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3869 mapping_gfp_constraint(mapping, ~__GFP_FS));
3870 if (!page)
3871 return -ENOMEM;
3872
3873 blocksize = inode->i_sb->s_blocksize;
3874
3875 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3876
3877 if (!page_has_buffers(page))
3878 create_empty_buffers(page, blocksize, 0);
3879
3880 /* Find the buffer that contains "offset" */
3881 bh = page_buffers(page);
3882 pos = blocksize;
3883 while (offset >= pos) {
3884 bh = bh->b_this_page;
3885 iblock++;
3886 pos += blocksize;
3887 }
3888 if (buffer_freed(bh)) {
3889 BUFFER_TRACE(bh, "freed: skip");
3890 goto unlock;
3891 }
3892 if (!buffer_mapped(bh)) {
3893 BUFFER_TRACE(bh, "unmapped");
3894 ext4_get_block(inode, iblock, bh, 0);
3895 /* unmapped? It's a hole - nothing to do */
3896 if (!buffer_mapped(bh)) {
3897 BUFFER_TRACE(bh, "still unmapped");
3898 goto unlock;
3899 }
3900 }
3901
3902 /* Ok, it's mapped. Make sure it's up-to-date */
3903 if (PageUptodate(page))
3904 set_buffer_uptodate(bh);
3905
3906 if (!buffer_uptodate(bh)) {
3907 err = -EIO;
3908 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3909 wait_on_buffer(bh);
3910 /* Uhhuh. Read error. Complain and punt. */
3911 if (!buffer_uptodate(bh))
3912 goto unlock;
3913 if (S_ISREG(inode->i_mode) &&
3914 ext4_encrypted_inode(inode)) {
3915 /* We expect the key to be set. */
3916 BUG_ON(!fscrypt_has_encryption_key(inode));
3917 BUG_ON(blocksize != PAGE_SIZE);
3918 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3919 page, PAGE_SIZE, 0, page->index));
3920 }
3921 }
3922 if (ext4_should_journal_data(inode)) {
3923 BUFFER_TRACE(bh, "get write access");
3924 err = ext4_journal_get_write_access(handle, bh);
3925 if (err)
3926 goto unlock;
3927 }
3928 zero_user(page, offset, length);
3929 BUFFER_TRACE(bh, "zeroed end of block");
3930
3931 if (ext4_should_journal_data(inode)) {
3932 err = ext4_handle_dirty_metadata(handle, inode, bh);
3933 } else {
3934 err = 0;
3935 mark_buffer_dirty(bh);
3936 if (ext4_should_order_data(inode))
3937 err = ext4_jbd2_inode_add_write(handle, inode);
3938 }
3939
3940 unlock:
3941 unlock_page(page);
3942 put_page(page);
3943 return err;
3944 }
3945
3946 /*
3947 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3948 * starting from file offset 'from'. The range to be zero'd must
3949 * be contained with in one block. If the specified range exceeds
3950 * the end of the block it will be shortened to end of the block
3951 * that cooresponds to 'from'
3952 */
3953 static int ext4_block_zero_page_range(handle_t *handle,
3954 struct address_space *mapping, loff_t from, loff_t length)
3955 {
3956 struct inode *inode = mapping->host;
3957 unsigned offset = from & (PAGE_SIZE-1);
3958 unsigned blocksize = inode->i_sb->s_blocksize;
3959 unsigned max = blocksize - (offset & (blocksize - 1));
3960
3961 /*
3962 * correct length if it does not fall between
3963 * 'from' and the end of the block
3964 */
3965 if (length > max || length < 0)
3966 length = max;
3967
3968 if (IS_DAX(inode)) {
3969 return iomap_zero_range(inode, from, length, NULL,
3970 &ext4_iomap_ops);
3971 }
3972 return __ext4_block_zero_page_range(handle, mapping, from, length);
3973 }
3974
3975 /*
3976 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3977 * up to the end of the block which corresponds to `from'.
3978 * This required during truncate. We need to physically zero the tail end
3979 * of that block so it doesn't yield old data if the file is later grown.
3980 */
3981 static int ext4_block_truncate_page(handle_t *handle,
3982 struct address_space *mapping, loff_t from)
3983 {
3984 unsigned offset = from & (PAGE_SIZE-1);
3985 unsigned length;
3986 unsigned blocksize;
3987 struct inode *inode = mapping->host;
3988
3989 /* If we are processing an encrypted inode during orphan list handling */
3990 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3991 return 0;
3992
3993 blocksize = inode->i_sb->s_blocksize;
3994 length = blocksize - (offset & (blocksize - 1));
3995
3996 return ext4_block_zero_page_range(handle, mapping, from, length);
3997 }
3998
3999 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4000 loff_t lstart, loff_t length)
4001 {
4002 struct super_block *sb = inode->i_sb;
4003 struct address_space *mapping = inode->i_mapping;
4004 unsigned partial_start, partial_end;
4005 ext4_fsblk_t start, end;
4006 loff_t byte_end = (lstart + length - 1);
4007 int err = 0;
4008
4009 partial_start = lstart & (sb->s_blocksize - 1);
4010 partial_end = byte_end & (sb->s_blocksize - 1);
4011
4012 start = lstart >> sb->s_blocksize_bits;
4013 end = byte_end >> sb->s_blocksize_bits;
4014
4015 /* Handle partial zero within the single block */
4016 if (start == end &&
4017 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4018 err = ext4_block_zero_page_range(handle, mapping,
4019 lstart, length);
4020 return err;
4021 }
4022 /* Handle partial zero out on the start of the range */
4023 if (partial_start) {
4024 err = ext4_block_zero_page_range(handle, mapping,
4025 lstart, sb->s_blocksize);
4026 if (err)
4027 return err;
4028 }
4029 /* Handle partial zero out on the end of the range */
4030 if (partial_end != sb->s_blocksize - 1)
4031 err = ext4_block_zero_page_range(handle, mapping,
4032 byte_end - partial_end,
4033 partial_end + 1);
4034 return err;
4035 }
4036
4037 int ext4_can_truncate(struct inode *inode)
4038 {
4039 if (S_ISREG(inode->i_mode))
4040 return 1;
4041 if (S_ISDIR(inode->i_mode))
4042 return 1;
4043 if (S_ISLNK(inode->i_mode))
4044 return !ext4_inode_is_fast_symlink(inode);
4045 return 0;
4046 }
4047
4048 /*
4049 * We have to make sure i_disksize gets properly updated before we truncate
4050 * page cache due to hole punching or zero range. Otherwise i_disksize update
4051 * can get lost as it may have been postponed to submission of writeback but
4052 * that will never happen after we truncate page cache.
4053 */
4054 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4055 loff_t len)
4056 {
4057 handle_t *handle;
4058 loff_t size = i_size_read(inode);
4059
4060 WARN_ON(!inode_is_locked(inode));
4061 if (offset > size || offset + len < size)
4062 return 0;
4063
4064 if (EXT4_I(inode)->i_disksize >= size)
4065 return 0;
4066
4067 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4068 if (IS_ERR(handle))
4069 return PTR_ERR(handle);
4070 ext4_update_i_disksize(inode, size);
4071 ext4_mark_inode_dirty(handle, inode);
4072 ext4_journal_stop(handle);
4073
4074 return 0;
4075 }
4076
4077 /*
4078 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4079 * associated with the given offset and length
4080 *
4081 * @inode: File inode
4082 * @offset: The offset where the hole will begin
4083 * @len: The length of the hole
4084 *
4085 * Returns: 0 on success or negative on failure
4086 */
4087
4088 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4089 {
4090 struct super_block *sb = inode->i_sb;
4091 ext4_lblk_t first_block, stop_block;
4092 struct address_space *mapping = inode->i_mapping;
4093 loff_t first_block_offset, last_block_offset;
4094 handle_t *handle;
4095 unsigned int credits;
4096 int ret = 0;
4097
4098 if (!S_ISREG(inode->i_mode))
4099 return -EOPNOTSUPP;
4100
4101 trace_ext4_punch_hole(inode, offset, length, 0);
4102
4103 /*
4104 * Write out all dirty pages to avoid race conditions
4105 * Then release them.
4106 */
4107 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4108 ret = filemap_write_and_wait_range(mapping, offset,
4109 offset + length - 1);
4110 if (ret)
4111 return ret;
4112 }
4113
4114 inode_lock(inode);
4115
4116 /* No need to punch hole beyond i_size */
4117 if (offset >= inode->i_size)
4118 goto out_mutex;
4119
4120 /*
4121 * If the hole extends beyond i_size, set the hole
4122 * to end after the page that contains i_size
4123 */
4124 if (offset + length > inode->i_size) {
4125 length = inode->i_size +
4126 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4127 offset;
4128 }
4129
4130 if (offset & (sb->s_blocksize - 1) ||
4131 (offset + length) & (sb->s_blocksize - 1)) {
4132 /*
4133 * Attach jinode to inode for jbd2 if we do any zeroing of
4134 * partial block
4135 */
4136 ret = ext4_inode_attach_jinode(inode);
4137 if (ret < 0)
4138 goto out_mutex;
4139
4140 }
4141
4142 /* Wait all existing dio workers, newcomers will block on i_mutex */
4143 ext4_inode_block_unlocked_dio(inode);
4144 inode_dio_wait(inode);
4145
4146 /*
4147 * Prevent page faults from reinstantiating pages we have released from
4148 * page cache.
4149 */
4150 down_write(&EXT4_I(inode)->i_mmap_sem);
4151 first_block_offset = round_up(offset, sb->s_blocksize);
4152 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4153
4154 /* Now release the pages and zero block aligned part of pages*/
4155 if (last_block_offset > first_block_offset) {
4156 ret = ext4_update_disksize_before_punch(inode, offset, length);
4157 if (ret)
4158 goto out_dio;
4159 truncate_pagecache_range(inode, first_block_offset,
4160 last_block_offset);
4161 }
4162
4163 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4164 credits = ext4_writepage_trans_blocks(inode);
4165 else
4166 credits = ext4_blocks_for_truncate(inode);
4167 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4168 if (IS_ERR(handle)) {
4169 ret = PTR_ERR(handle);
4170 ext4_std_error(sb, ret);
4171 goto out_dio;
4172 }
4173
4174 ret = ext4_zero_partial_blocks(handle, inode, offset,
4175 length);
4176 if (ret)
4177 goto out_stop;
4178
4179 first_block = (offset + sb->s_blocksize - 1) >>
4180 EXT4_BLOCK_SIZE_BITS(sb);
4181 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4182
4183 /* If there are no blocks to remove, return now */
4184 if (first_block >= stop_block)
4185 goto out_stop;
4186
4187 down_write(&EXT4_I(inode)->i_data_sem);
4188 ext4_discard_preallocations(inode);
4189
4190 ret = ext4_es_remove_extent(inode, first_block,
4191 stop_block - first_block);
4192 if (ret) {
4193 up_write(&EXT4_I(inode)->i_data_sem);
4194 goto out_stop;
4195 }
4196
4197 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4198 ret = ext4_ext_remove_space(inode, first_block,
4199 stop_block - 1);
4200 else
4201 ret = ext4_ind_remove_space(handle, inode, first_block,
4202 stop_block);
4203
4204 up_write(&EXT4_I(inode)->i_data_sem);
4205 if (IS_SYNC(inode))
4206 ext4_handle_sync(handle);
4207
4208 inode->i_mtime = inode->i_ctime = current_time(inode);
4209 ext4_mark_inode_dirty(handle, inode);
4210 out_stop:
4211 ext4_journal_stop(handle);
4212 out_dio:
4213 up_write(&EXT4_I(inode)->i_mmap_sem);
4214 ext4_inode_resume_unlocked_dio(inode);
4215 out_mutex:
4216 inode_unlock(inode);
4217 return ret;
4218 }
4219
4220 int ext4_inode_attach_jinode(struct inode *inode)
4221 {
4222 struct ext4_inode_info *ei = EXT4_I(inode);
4223 struct jbd2_inode *jinode;
4224
4225 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4226 return 0;
4227
4228 jinode = jbd2_alloc_inode(GFP_KERNEL);
4229 spin_lock(&inode->i_lock);
4230 if (!ei->jinode) {
4231 if (!jinode) {
4232 spin_unlock(&inode->i_lock);
4233 return -ENOMEM;
4234 }
4235 ei->jinode = jinode;
4236 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4237 jinode = NULL;
4238 }
4239 spin_unlock(&inode->i_lock);
4240 if (unlikely(jinode != NULL))
4241 jbd2_free_inode(jinode);
4242 return 0;
4243 }
4244
4245 /*
4246 * ext4_truncate()
4247 *
4248 * We block out ext4_get_block() block instantiations across the entire
4249 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4250 * simultaneously on behalf of the same inode.
4251 *
4252 * As we work through the truncate and commit bits of it to the journal there
4253 * is one core, guiding principle: the file's tree must always be consistent on
4254 * disk. We must be able to restart the truncate after a crash.
4255 *
4256 * The file's tree may be transiently inconsistent in memory (although it
4257 * probably isn't), but whenever we close off and commit a journal transaction,
4258 * the contents of (the filesystem + the journal) must be consistent and
4259 * restartable. It's pretty simple, really: bottom up, right to left (although
4260 * left-to-right works OK too).
4261 *
4262 * Note that at recovery time, journal replay occurs *before* the restart of
4263 * truncate against the orphan inode list.
4264 *
4265 * The committed inode has the new, desired i_size (which is the same as
4266 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4267 * that this inode's truncate did not complete and it will again call
4268 * ext4_truncate() to have another go. So there will be instantiated blocks
4269 * to the right of the truncation point in a crashed ext4 filesystem. But
4270 * that's fine - as long as they are linked from the inode, the post-crash
4271 * ext4_truncate() run will find them and release them.
4272 */
4273 int ext4_truncate(struct inode *inode)
4274 {
4275 struct ext4_inode_info *ei = EXT4_I(inode);
4276 unsigned int credits;
4277 int err = 0;
4278 handle_t *handle;
4279 struct address_space *mapping = inode->i_mapping;
4280
4281 /*
4282 * There is a possibility that we're either freeing the inode
4283 * or it's a completely new inode. In those cases we might not
4284 * have i_mutex locked because it's not necessary.
4285 */
4286 if (!(inode->i_state & (I_NEW|I_FREEING)))
4287 WARN_ON(!inode_is_locked(inode));
4288 trace_ext4_truncate_enter(inode);
4289
4290 if (!ext4_can_truncate(inode))
4291 return 0;
4292
4293 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4294
4295 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4296 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4297
4298 if (ext4_has_inline_data(inode)) {
4299 int has_inline = 1;
4300
4301 err = ext4_inline_data_truncate(inode, &has_inline);
4302 if (err)
4303 return err;
4304 if (has_inline)
4305 return 0;
4306 }
4307
4308 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4309 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4310 if (ext4_inode_attach_jinode(inode) < 0)
4311 return 0;
4312 }
4313
4314 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4315 credits = ext4_writepage_trans_blocks(inode);
4316 else
4317 credits = ext4_blocks_for_truncate(inode);
4318
4319 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4320 if (IS_ERR(handle))
4321 return PTR_ERR(handle);
4322
4323 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4324 ext4_block_truncate_page(handle, mapping, inode->i_size);
4325
4326 /*
4327 * We add the inode to the orphan list, so that if this
4328 * truncate spans multiple transactions, and we crash, we will
4329 * resume the truncate when the filesystem recovers. It also
4330 * marks the inode dirty, to catch the new size.
4331 *
4332 * Implication: the file must always be in a sane, consistent
4333 * truncatable state while each transaction commits.
4334 */
4335 err = ext4_orphan_add(handle, inode);
4336 if (err)
4337 goto out_stop;
4338
4339 down_write(&EXT4_I(inode)->i_data_sem);
4340
4341 ext4_discard_preallocations(inode);
4342
4343 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4344 err = ext4_ext_truncate(handle, inode);
4345 else
4346 ext4_ind_truncate(handle, inode);
4347
4348 up_write(&ei->i_data_sem);
4349 if (err)
4350 goto out_stop;
4351
4352 if (IS_SYNC(inode))
4353 ext4_handle_sync(handle);
4354
4355 out_stop:
4356 /*
4357 * If this was a simple ftruncate() and the file will remain alive,
4358 * then we need to clear up the orphan record which we created above.
4359 * However, if this was a real unlink then we were called by
4360 * ext4_evict_inode(), and we allow that function to clean up the
4361 * orphan info for us.
4362 */
4363 if (inode->i_nlink)
4364 ext4_orphan_del(handle, inode);
4365
4366 inode->i_mtime = inode->i_ctime = current_time(inode);
4367 ext4_mark_inode_dirty(handle, inode);
4368 ext4_journal_stop(handle);
4369
4370 trace_ext4_truncate_exit(inode);
4371 return err;
4372 }
4373
4374 /*
4375 * ext4_get_inode_loc returns with an extra refcount against the inode's
4376 * underlying buffer_head on success. If 'in_mem' is true, we have all
4377 * data in memory that is needed to recreate the on-disk version of this
4378 * inode.
4379 */
4380 static int __ext4_get_inode_loc(struct inode *inode,
4381 struct ext4_iloc *iloc, int in_mem)
4382 {
4383 struct ext4_group_desc *gdp;
4384 struct buffer_head *bh;
4385 struct super_block *sb = inode->i_sb;
4386 ext4_fsblk_t block;
4387 int inodes_per_block, inode_offset;
4388
4389 iloc->bh = NULL;
4390 if (!ext4_valid_inum(sb, inode->i_ino))
4391 return -EFSCORRUPTED;
4392
4393 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4394 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4395 if (!gdp)
4396 return -EIO;
4397
4398 /*
4399 * Figure out the offset within the block group inode table
4400 */
4401 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4402 inode_offset = ((inode->i_ino - 1) %
4403 EXT4_INODES_PER_GROUP(sb));
4404 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4405 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4406
4407 bh = sb_getblk(sb, block);
4408 if (unlikely(!bh))
4409 return -ENOMEM;
4410 if (!buffer_uptodate(bh)) {
4411 lock_buffer(bh);
4412
4413 /*
4414 * If the buffer has the write error flag, we have failed
4415 * to write out another inode in the same block. In this
4416 * case, we don't have to read the block because we may
4417 * read the old inode data successfully.
4418 */
4419 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4420 set_buffer_uptodate(bh);
4421
4422 if (buffer_uptodate(bh)) {
4423 /* someone brought it uptodate while we waited */
4424 unlock_buffer(bh);
4425 goto has_buffer;
4426 }
4427
4428 /*
4429 * If we have all information of the inode in memory and this
4430 * is the only valid inode in the block, we need not read the
4431 * block.
4432 */
4433 if (in_mem) {
4434 struct buffer_head *bitmap_bh;
4435 int i, start;
4436
4437 start = inode_offset & ~(inodes_per_block - 1);
4438
4439 /* Is the inode bitmap in cache? */
4440 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4441 if (unlikely(!bitmap_bh))
4442 goto make_io;
4443
4444 /*
4445 * If the inode bitmap isn't in cache then the
4446 * optimisation may end up performing two reads instead
4447 * of one, so skip it.
4448 */
4449 if (!buffer_uptodate(bitmap_bh)) {
4450 brelse(bitmap_bh);
4451 goto make_io;
4452 }
4453 for (i = start; i < start + inodes_per_block; i++) {
4454 if (i == inode_offset)
4455 continue;
4456 if (ext4_test_bit(i, bitmap_bh->b_data))
4457 break;
4458 }
4459 brelse(bitmap_bh);
4460 if (i == start + inodes_per_block) {
4461 /* all other inodes are free, so skip I/O */
4462 memset(bh->b_data, 0, bh->b_size);
4463 set_buffer_uptodate(bh);
4464 unlock_buffer(bh);
4465 goto has_buffer;
4466 }
4467 }
4468
4469 make_io:
4470 /*
4471 * If we need to do any I/O, try to pre-readahead extra
4472 * blocks from the inode table.
4473 */
4474 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4475 ext4_fsblk_t b, end, table;
4476 unsigned num;
4477 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4478
4479 table = ext4_inode_table(sb, gdp);
4480 /* s_inode_readahead_blks is always a power of 2 */
4481 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4482 if (table > b)
4483 b = table;
4484 end = b + ra_blks;
4485 num = EXT4_INODES_PER_GROUP(sb);
4486 if (ext4_has_group_desc_csum(sb))
4487 num -= ext4_itable_unused_count(sb, gdp);
4488 table += num / inodes_per_block;
4489 if (end > table)
4490 end = table;
4491 while (b <= end)
4492 sb_breadahead(sb, b++);
4493 }
4494
4495 /*
4496 * There are other valid inodes in the buffer, this inode
4497 * has in-inode xattrs, or we don't have this inode in memory.
4498 * Read the block from disk.
4499 */
4500 trace_ext4_load_inode(inode);
4501 get_bh(bh);
4502 bh->b_end_io = end_buffer_read_sync;
4503 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4504 wait_on_buffer(bh);
4505 if (!buffer_uptodate(bh)) {
4506 EXT4_ERROR_INODE_BLOCK(inode, block,
4507 "unable to read itable block");
4508 brelse(bh);
4509 return -EIO;
4510 }
4511 }
4512 has_buffer:
4513 iloc->bh = bh;
4514 return 0;
4515 }
4516
4517 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4518 {
4519 /* We have all inode data except xattrs in memory here. */
4520 return __ext4_get_inode_loc(inode, iloc,
4521 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4522 }
4523
4524 void ext4_set_inode_flags(struct inode *inode)
4525 {
4526 unsigned int flags = EXT4_I(inode)->i_flags;
4527 unsigned int new_fl = 0;
4528
4529 if (flags & EXT4_SYNC_FL)
4530 new_fl |= S_SYNC;
4531 if (flags & EXT4_APPEND_FL)
4532 new_fl |= S_APPEND;
4533 if (flags & EXT4_IMMUTABLE_FL)
4534 new_fl |= S_IMMUTABLE;
4535 if (flags & EXT4_NOATIME_FL)
4536 new_fl |= S_NOATIME;
4537 if (flags & EXT4_DIRSYNC_FL)
4538 new_fl |= S_DIRSYNC;
4539 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4540 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4541 !ext4_encrypted_inode(inode))
4542 new_fl |= S_DAX;
4543 inode_set_flags(inode, new_fl,
4544 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4545 }
4546
4547 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4548 struct ext4_inode_info *ei)
4549 {
4550 blkcnt_t i_blocks ;
4551 struct inode *inode = &(ei->vfs_inode);
4552 struct super_block *sb = inode->i_sb;
4553
4554 if (ext4_has_feature_huge_file(sb)) {
4555 /* we are using combined 48 bit field */
4556 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4557 le32_to_cpu(raw_inode->i_blocks_lo);
4558 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4559 /* i_blocks represent file system block size */
4560 return i_blocks << (inode->i_blkbits - 9);
4561 } else {
4562 return i_blocks;
4563 }
4564 } else {
4565 return le32_to_cpu(raw_inode->i_blocks_lo);
4566 }
4567 }
4568
4569 static inline void ext4_iget_extra_inode(struct inode *inode,
4570 struct ext4_inode *raw_inode,
4571 struct ext4_inode_info *ei)
4572 {
4573 __le32 *magic = (void *)raw_inode +
4574 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4575 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4576 EXT4_INODE_SIZE(inode->i_sb) &&
4577 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4578 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4579 ext4_find_inline_data_nolock(inode);
4580 } else
4581 EXT4_I(inode)->i_inline_off = 0;
4582 }
4583
4584 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4585 {
4586 if (!ext4_has_feature_project(inode->i_sb))
4587 return -EOPNOTSUPP;
4588 *projid = EXT4_I(inode)->i_projid;
4589 return 0;
4590 }
4591
4592 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4593 {
4594 struct ext4_iloc iloc;
4595 struct ext4_inode *raw_inode;
4596 struct ext4_inode_info *ei;
4597 struct inode *inode;
4598 journal_t *journal = EXT4_SB(sb)->s_journal;
4599 long ret;
4600 loff_t size;
4601 int block;
4602 uid_t i_uid;
4603 gid_t i_gid;
4604 projid_t i_projid;
4605
4606 inode = iget_locked(sb, ino);
4607 if (!inode)
4608 return ERR_PTR(-ENOMEM);
4609 if (!(inode->i_state & I_NEW))
4610 return inode;
4611
4612 ei = EXT4_I(inode);
4613 iloc.bh = NULL;
4614
4615 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4616 if (ret < 0)
4617 goto bad_inode;
4618 raw_inode = ext4_raw_inode(&iloc);
4619
4620 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4621 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4622 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4623 EXT4_INODE_SIZE(inode->i_sb) ||
4624 (ei->i_extra_isize & 3)) {
4625 EXT4_ERROR_INODE(inode,
4626 "bad extra_isize %u (inode size %u)",
4627 ei->i_extra_isize,
4628 EXT4_INODE_SIZE(inode->i_sb));
4629 ret = -EFSCORRUPTED;
4630 goto bad_inode;
4631 }
4632 } else
4633 ei->i_extra_isize = 0;
4634
4635 /* Precompute checksum seed for inode metadata */
4636 if (ext4_has_metadata_csum(sb)) {
4637 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4638 __u32 csum;
4639 __le32 inum = cpu_to_le32(inode->i_ino);
4640 __le32 gen = raw_inode->i_generation;
4641 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4642 sizeof(inum));
4643 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4644 sizeof(gen));
4645 }
4646
4647 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4648 EXT4_ERROR_INODE(inode, "checksum invalid");
4649 ret = -EFSBADCRC;
4650 goto bad_inode;
4651 }
4652
4653 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4654 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4655 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4656 if (ext4_has_feature_project(sb) &&
4657 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4658 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4659 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4660 else
4661 i_projid = EXT4_DEF_PROJID;
4662
4663 if (!(test_opt(inode->i_sb, NO_UID32))) {
4664 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4665 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4666 }
4667 i_uid_write(inode, i_uid);
4668 i_gid_write(inode, i_gid);
4669 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4670 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4671
4672 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4673 ei->i_inline_off = 0;
4674 ei->i_dir_start_lookup = 0;
4675 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4676 /* We now have enough fields to check if the inode was active or not.
4677 * This is needed because nfsd might try to access dead inodes
4678 * the test is that same one that e2fsck uses
4679 * NeilBrown 1999oct15
4680 */
4681 if (inode->i_nlink == 0) {
4682 if ((inode->i_mode == 0 ||
4683 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4684 ino != EXT4_BOOT_LOADER_INO) {
4685 /* this inode is deleted */
4686 ret = -ESTALE;
4687 goto bad_inode;
4688 }
4689 /* The only unlinked inodes we let through here have
4690 * valid i_mode and are being read by the orphan
4691 * recovery code: that's fine, we're about to complete
4692 * the process of deleting those.
4693 * OR it is the EXT4_BOOT_LOADER_INO which is
4694 * not initialized on a new filesystem. */
4695 }
4696 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4697 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4698 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4699 if (ext4_has_feature_64bit(sb))
4700 ei->i_file_acl |=
4701 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4702 inode->i_size = ext4_isize(raw_inode);
4703 if ((size = i_size_read(inode)) < 0) {
4704 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4705 ret = -EFSCORRUPTED;
4706 goto bad_inode;
4707 }
4708 ei->i_disksize = inode->i_size;
4709 #ifdef CONFIG_QUOTA
4710 ei->i_reserved_quota = 0;
4711 #endif
4712 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4713 ei->i_block_group = iloc.block_group;
4714 ei->i_last_alloc_group = ~0;
4715 /*
4716 * NOTE! The in-memory inode i_data array is in little-endian order
4717 * even on big-endian machines: we do NOT byteswap the block numbers!
4718 */
4719 for (block = 0; block < EXT4_N_BLOCKS; block++)
4720 ei->i_data[block] = raw_inode->i_block[block];
4721 INIT_LIST_HEAD(&ei->i_orphan);
4722
4723 /*
4724 * Set transaction id's of transactions that have to be committed
4725 * to finish f[data]sync. We set them to currently running transaction
4726 * as we cannot be sure that the inode or some of its metadata isn't
4727 * part of the transaction - the inode could have been reclaimed and
4728 * now it is reread from disk.
4729 */
4730 if (journal) {
4731 transaction_t *transaction;
4732 tid_t tid;
4733
4734 read_lock(&journal->j_state_lock);
4735 if (journal->j_running_transaction)
4736 transaction = journal->j_running_transaction;
4737 else
4738 transaction = journal->j_committing_transaction;
4739 if (transaction)
4740 tid = transaction->t_tid;
4741 else
4742 tid = journal->j_commit_sequence;
4743 read_unlock(&journal->j_state_lock);
4744 ei->i_sync_tid = tid;
4745 ei->i_datasync_tid = tid;
4746 }
4747
4748 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4749 if (ei->i_extra_isize == 0) {
4750 /* The extra space is currently unused. Use it. */
4751 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4752 ei->i_extra_isize = sizeof(struct ext4_inode) -
4753 EXT4_GOOD_OLD_INODE_SIZE;
4754 } else {
4755 ext4_iget_extra_inode(inode, raw_inode, ei);
4756 }
4757 }
4758
4759 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4760 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4761 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4762 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4763
4764 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4765 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4766 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4767 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4768 inode->i_version |=
4769 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4770 }
4771 }
4772
4773 ret = 0;
4774 if (ei->i_file_acl &&
4775 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4776 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4777 ei->i_file_acl);
4778 ret = -EFSCORRUPTED;
4779 goto bad_inode;
4780 } else if (!ext4_has_inline_data(inode)) {
4781 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4782 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4783 (S_ISLNK(inode->i_mode) &&
4784 !ext4_inode_is_fast_symlink(inode))))
4785 /* Validate extent which is part of inode */
4786 ret = ext4_ext_check_inode(inode);
4787 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4788 (S_ISLNK(inode->i_mode) &&
4789 !ext4_inode_is_fast_symlink(inode))) {
4790 /* Validate block references which are part of inode */
4791 ret = ext4_ind_check_inode(inode);
4792 }
4793 }
4794 if (ret)
4795 goto bad_inode;
4796
4797 if (S_ISREG(inode->i_mode)) {
4798 inode->i_op = &ext4_file_inode_operations;
4799 inode->i_fop = &ext4_file_operations;
4800 ext4_set_aops(inode);
4801 } else if (S_ISDIR(inode->i_mode)) {
4802 inode->i_op = &ext4_dir_inode_operations;
4803 inode->i_fop = &ext4_dir_operations;
4804 } else if (S_ISLNK(inode->i_mode)) {
4805 if (ext4_encrypted_inode(inode)) {
4806 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4807 ext4_set_aops(inode);
4808 } else if (ext4_inode_is_fast_symlink(inode)) {
4809 inode->i_link = (char *)ei->i_data;
4810 inode->i_op = &ext4_fast_symlink_inode_operations;
4811 nd_terminate_link(ei->i_data, inode->i_size,
4812 sizeof(ei->i_data) - 1);
4813 } else {
4814 inode->i_op = &ext4_symlink_inode_operations;
4815 ext4_set_aops(inode);
4816 }
4817 inode_nohighmem(inode);
4818 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4819 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4820 inode->i_op = &ext4_special_inode_operations;
4821 if (raw_inode->i_block[0])
4822 init_special_inode(inode, inode->i_mode,
4823 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4824 else
4825 init_special_inode(inode, inode->i_mode,
4826 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4827 } else if (ino == EXT4_BOOT_LOADER_INO) {
4828 make_bad_inode(inode);
4829 } else {
4830 ret = -EFSCORRUPTED;
4831 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4832 goto bad_inode;
4833 }
4834 brelse(iloc.bh);
4835 ext4_set_inode_flags(inode);
4836 unlock_new_inode(inode);
4837 return inode;
4838
4839 bad_inode:
4840 brelse(iloc.bh);
4841 iget_failed(inode);
4842 return ERR_PTR(ret);
4843 }
4844
4845 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4846 {
4847 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4848 return ERR_PTR(-EFSCORRUPTED);
4849 return ext4_iget(sb, ino);
4850 }
4851
4852 static int ext4_inode_blocks_set(handle_t *handle,
4853 struct ext4_inode *raw_inode,
4854 struct ext4_inode_info *ei)
4855 {
4856 struct inode *inode = &(ei->vfs_inode);
4857 u64 i_blocks = inode->i_blocks;
4858 struct super_block *sb = inode->i_sb;
4859
4860 if (i_blocks <= ~0U) {
4861 /*
4862 * i_blocks can be represented in a 32 bit variable
4863 * as multiple of 512 bytes
4864 */
4865 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4866 raw_inode->i_blocks_high = 0;
4867 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4868 return 0;
4869 }
4870 if (!ext4_has_feature_huge_file(sb))
4871 return -EFBIG;
4872
4873 if (i_blocks <= 0xffffffffffffULL) {
4874 /*
4875 * i_blocks can be represented in a 48 bit variable
4876 * as multiple of 512 bytes
4877 */
4878 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4879 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4880 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4881 } else {
4882 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4883 /* i_block is stored in file system block size */
4884 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4885 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4886 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4887 }
4888 return 0;
4889 }
4890
4891 struct other_inode {
4892 unsigned long orig_ino;
4893 struct ext4_inode *raw_inode;
4894 };
4895
4896 static int other_inode_match(struct inode * inode, unsigned long ino,
4897 void *data)
4898 {
4899 struct other_inode *oi = (struct other_inode *) data;
4900
4901 if ((inode->i_ino != ino) ||
4902 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4903 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4904 ((inode->i_state & I_DIRTY_TIME) == 0))
4905 return 0;
4906 spin_lock(&inode->i_lock);
4907 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4908 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4909 (inode->i_state & I_DIRTY_TIME)) {
4910 struct ext4_inode_info *ei = EXT4_I(inode);
4911
4912 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4913 spin_unlock(&inode->i_lock);
4914
4915 spin_lock(&ei->i_raw_lock);
4916 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4917 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4918 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4919 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4920 spin_unlock(&ei->i_raw_lock);
4921 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4922 return -1;
4923 }
4924 spin_unlock(&inode->i_lock);
4925 return -1;
4926 }
4927
4928 /*
4929 * Opportunistically update the other time fields for other inodes in
4930 * the same inode table block.
4931 */
4932 static void ext4_update_other_inodes_time(struct super_block *sb,
4933 unsigned long orig_ino, char *buf)
4934 {
4935 struct other_inode oi;
4936 unsigned long ino;
4937 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4938 int inode_size = EXT4_INODE_SIZE(sb);
4939
4940 oi.orig_ino = orig_ino;
4941 /*
4942 * Calculate the first inode in the inode table block. Inode
4943 * numbers are one-based. That is, the first inode in a block
4944 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4945 */
4946 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4947 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4948 if (ino == orig_ino)
4949 continue;
4950 oi.raw_inode = (struct ext4_inode *) buf;
4951 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4952 }
4953 }
4954
4955 /*
4956 * Post the struct inode info into an on-disk inode location in the
4957 * buffer-cache. This gobbles the caller's reference to the
4958 * buffer_head in the inode location struct.
4959 *
4960 * The caller must have write access to iloc->bh.
4961 */
4962 static int ext4_do_update_inode(handle_t *handle,
4963 struct inode *inode,
4964 struct ext4_iloc *iloc)
4965 {
4966 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4967 struct ext4_inode_info *ei = EXT4_I(inode);
4968 struct buffer_head *bh = iloc->bh;
4969 struct super_block *sb = inode->i_sb;
4970 int err = 0, rc, block;
4971 int need_datasync = 0, set_large_file = 0;
4972 uid_t i_uid;
4973 gid_t i_gid;
4974 projid_t i_projid;
4975
4976 spin_lock(&ei->i_raw_lock);
4977
4978 /* For fields not tracked in the in-memory inode,
4979 * initialise them to zero for new inodes. */
4980 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4981 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4982
4983 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4984 i_uid = i_uid_read(inode);
4985 i_gid = i_gid_read(inode);
4986 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4987 if (!(test_opt(inode->i_sb, NO_UID32))) {
4988 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4989 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4990 /*
4991 * Fix up interoperability with old kernels. Otherwise, old inodes get
4992 * re-used with the upper 16 bits of the uid/gid intact
4993 */
4994 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4995 raw_inode->i_uid_high = 0;
4996 raw_inode->i_gid_high = 0;
4997 } else {
4998 raw_inode->i_uid_high =
4999 cpu_to_le16(high_16_bits(i_uid));
5000 raw_inode->i_gid_high =
5001 cpu_to_le16(high_16_bits(i_gid));
5002 }
5003 } else {
5004 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5005 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5006 raw_inode->i_uid_high = 0;
5007 raw_inode->i_gid_high = 0;
5008 }
5009 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5010
5011 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5012 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5013 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5014 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5015
5016 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5017 if (err) {
5018 spin_unlock(&ei->i_raw_lock);
5019 goto out_brelse;
5020 }
5021 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5022 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5023 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5024 raw_inode->i_file_acl_high =
5025 cpu_to_le16(ei->i_file_acl >> 32);
5026 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5027 if (ei->i_disksize != ext4_isize(raw_inode)) {
5028 ext4_isize_set(raw_inode, ei->i_disksize);
5029 need_datasync = 1;
5030 }
5031 if (ei->i_disksize > 0x7fffffffULL) {
5032 if (!ext4_has_feature_large_file(sb) ||
5033 EXT4_SB(sb)->s_es->s_rev_level ==
5034 cpu_to_le32(EXT4_GOOD_OLD_REV))
5035 set_large_file = 1;
5036 }
5037 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5038 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5039 if (old_valid_dev(inode->i_rdev)) {
5040 raw_inode->i_block[0] =
5041 cpu_to_le32(old_encode_dev(inode->i_rdev));
5042 raw_inode->i_block[1] = 0;
5043 } else {
5044 raw_inode->i_block[0] = 0;
5045 raw_inode->i_block[1] =
5046 cpu_to_le32(new_encode_dev(inode->i_rdev));
5047 raw_inode->i_block[2] = 0;
5048 }
5049 } else if (!ext4_has_inline_data(inode)) {
5050 for (block = 0; block < EXT4_N_BLOCKS; block++)
5051 raw_inode->i_block[block] = ei->i_data[block];
5052 }
5053
5054 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5055 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5056 if (ei->i_extra_isize) {
5057 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5058 raw_inode->i_version_hi =
5059 cpu_to_le32(inode->i_version >> 32);
5060 raw_inode->i_extra_isize =
5061 cpu_to_le16(ei->i_extra_isize);
5062 }
5063 }
5064
5065 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5066 i_projid != EXT4_DEF_PROJID);
5067
5068 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5069 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5070 raw_inode->i_projid = cpu_to_le32(i_projid);
5071
5072 ext4_inode_csum_set(inode, raw_inode, ei);
5073 spin_unlock(&ei->i_raw_lock);
5074 if (inode->i_sb->s_flags & MS_LAZYTIME)
5075 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5076 bh->b_data);
5077
5078 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5079 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5080 if (!err)
5081 err = rc;
5082 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5083 if (set_large_file) {
5084 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5085 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5086 if (err)
5087 goto out_brelse;
5088 ext4_update_dynamic_rev(sb);
5089 ext4_set_feature_large_file(sb);
5090 ext4_handle_sync(handle);
5091 err = ext4_handle_dirty_super(handle, sb);
5092 }
5093 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5094 out_brelse:
5095 brelse(bh);
5096 ext4_std_error(inode->i_sb, err);
5097 return err;
5098 }
5099
5100 /*
5101 * ext4_write_inode()
5102 *
5103 * We are called from a few places:
5104 *
5105 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5106 * Here, there will be no transaction running. We wait for any running
5107 * transaction to commit.
5108 *
5109 * - Within flush work (sys_sync(), kupdate and such).
5110 * We wait on commit, if told to.
5111 *
5112 * - Within iput_final() -> write_inode_now()
5113 * We wait on commit, if told to.
5114 *
5115 * In all cases it is actually safe for us to return without doing anything,
5116 * because the inode has been copied into a raw inode buffer in
5117 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5118 * writeback.
5119 *
5120 * Note that we are absolutely dependent upon all inode dirtiers doing the
5121 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5122 * which we are interested.
5123 *
5124 * It would be a bug for them to not do this. The code:
5125 *
5126 * mark_inode_dirty(inode)
5127 * stuff();
5128 * inode->i_size = expr;
5129 *
5130 * is in error because write_inode() could occur while `stuff()' is running,
5131 * and the new i_size will be lost. Plus the inode will no longer be on the
5132 * superblock's dirty inode list.
5133 */
5134 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5135 {
5136 int err;
5137
5138 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5139 return 0;
5140
5141 if (EXT4_SB(inode->i_sb)->s_journal) {
5142 if (ext4_journal_current_handle()) {
5143 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5144 dump_stack();
5145 return -EIO;
5146 }
5147
5148 /*
5149 * No need to force transaction in WB_SYNC_NONE mode. Also
5150 * ext4_sync_fs() will force the commit after everything is
5151 * written.
5152 */
5153 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5154 return 0;
5155
5156 err = ext4_force_commit(inode->i_sb);
5157 } else {
5158 struct ext4_iloc iloc;
5159
5160 err = __ext4_get_inode_loc(inode, &iloc, 0);
5161 if (err)
5162 return err;
5163 /*
5164 * sync(2) will flush the whole buffer cache. No need to do
5165 * it here separately for each inode.
5166 */
5167 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5168 sync_dirty_buffer(iloc.bh);
5169 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5170 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5171 "IO error syncing inode");
5172 err = -EIO;
5173 }
5174 brelse(iloc.bh);
5175 }
5176 return err;
5177 }
5178
5179 /*
5180 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5181 * buffers that are attached to a page stradding i_size and are undergoing
5182 * commit. In that case we have to wait for commit to finish and try again.
5183 */
5184 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5185 {
5186 struct page *page;
5187 unsigned offset;
5188 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5189 tid_t commit_tid = 0;
5190 int ret;
5191
5192 offset = inode->i_size & (PAGE_SIZE - 1);
5193 /*
5194 * All buffers in the last page remain valid? Then there's nothing to
5195 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5196 * blocksize case
5197 */
5198 if (offset > PAGE_SIZE - i_blocksize(inode))
5199 return;
5200 while (1) {
5201 page = find_lock_page(inode->i_mapping,
5202 inode->i_size >> PAGE_SHIFT);
5203 if (!page)
5204 return;
5205 ret = __ext4_journalled_invalidatepage(page, offset,
5206 PAGE_SIZE - offset);
5207 unlock_page(page);
5208 put_page(page);
5209 if (ret != -EBUSY)
5210 return;
5211 commit_tid = 0;
5212 read_lock(&journal->j_state_lock);
5213 if (journal->j_committing_transaction)
5214 commit_tid = journal->j_committing_transaction->t_tid;
5215 read_unlock(&journal->j_state_lock);
5216 if (commit_tid)
5217 jbd2_log_wait_commit(journal, commit_tid);
5218 }
5219 }
5220
5221 /*
5222 * ext4_setattr()
5223 *
5224 * Called from notify_change.
5225 *
5226 * We want to trap VFS attempts to truncate the file as soon as
5227 * possible. In particular, we want to make sure that when the VFS
5228 * shrinks i_size, we put the inode on the orphan list and modify
5229 * i_disksize immediately, so that during the subsequent flushing of
5230 * dirty pages and freeing of disk blocks, we can guarantee that any
5231 * commit will leave the blocks being flushed in an unused state on
5232 * disk. (On recovery, the inode will get truncated and the blocks will
5233 * be freed, so we have a strong guarantee that no future commit will
5234 * leave these blocks visible to the user.)
5235 *
5236 * Another thing we have to assure is that if we are in ordered mode
5237 * and inode is still attached to the committing transaction, we must
5238 * we start writeout of all the dirty pages which are being truncated.
5239 * This way we are sure that all the data written in the previous
5240 * transaction are already on disk (truncate waits for pages under
5241 * writeback).
5242 *
5243 * Called with inode->i_mutex down.
5244 */
5245 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5246 {
5247 struct inode *inode = d_inode(dentry);
5248 int error, rc = 0;
5249 int orphan = 0;
5250 const unsigned int ia_valid = attr->ia_valid;
5251
5252 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5253 return -EIO;
5254
5255 error = setattr_prepare(dentry, attr);
5256 if (error)
5257 return error;
5258
5259 if (is_quota_modification(inode, attr)) {
5260 error = dquot_initialize(inode);
5261 if (error)
5262 return error;
5263 }
5264 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5265 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5266 handle_t *handle;
5267
5268 /* (user+group)*(old+new) structure, inode write (sb,
5269 * inode block, ? - but truncate inode update has it) */
5270 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5271 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5272 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5273 if (IS_ERR(handle)) {
5274 error = PTR_ERR(handle);
5275 goto err_out;
5276 }
5277 error = dquot_transfer(inode, attr);
5278 if (error) {
5279 ext4_journal_stop(handle);
5280 return error;
5281 }
5282 /* Update corresponding info in inode so that everything is in
5283 * one transaction */
5284 if (attr->ia_valid & ATTR_UID)
5285 inode->i_uid = attr->ia_uid;
5286 if (attr->ia_valid & ATTR_GID)
5287 inode->i_gid = attr->ia_gid;
5288 error = ext4_mark_inode_dirty(handle, inode);
5289 ext4_journal_stop(handle);
5290 }
5291
5292 if (attr->ia_valid & ATTR_SIZE) {
5293 handle_t *handle;
5294 loff_t oldsize = inode->i_size;
5295 int shrink = (attr->ia_size <= inode->i_size);
5296
5297 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5298 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5299
5300 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5301 return -EFBIG;
5302 }
5303 if (!S_ISREG(inode->i_mode))
5304 return -EINVAL;
5305
5306 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5307 inode_inc_iversion(inode);
5308
5309 if (ext4_should_order_data(inode) &&
5310 (attr->ia_size < inode->i_size)) {
5311 error = ext4_begin_ordered_truncate(inode,
5312 attr->ia_size);
5313 if (error)
5314 goto err_out;
5315 }
5316 if (attr->ia_size != inode->i_size) {
5317 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5318 if (IS_ERR(handle)) {
5319 error = PTR_ERR(handle);
5320 goto err_out;
5321 }
5322 if (ext4_handle_valid(handle) && shrink) {
5323 error = ext4_orphan_add(handle, inode);
5324 orphan = 1;
5325 }
5326 /*
5327 * Update c/mtime on truncate up, ext4_truncate() will
5328 * update c/mtime in shrink case below
5329 */
5330 if (!shrink) {
5331 inode->i_mtime = current_time(inode);
5332 inode->i_ctime = inode->i_mtime;
5333 }
5334 down_write(&EXT4_I(inode)->i_data_sem);
5335 EXT4_I(inode)->i_disksize = attr->ia_size;
5336 rc = ext4_mark_inode_dirty(handle, inode);
5337 if (!error)
5338 error = rc;
5339 /*
5340 * We have to update i_size under i_data_sem together
5341 * with i_disksize to avoid races with writeback code
5342 * running ext4_wb_update_i_disksize().
5343 */
5344 if (!error)
5345 i_size_write(inode, attr->ia_size);
5346 up_write(&EXT4_I(inode)->i_data_sem);
5347 ext4_journal_stop(handle);
5348 if (error) {
5349 if (orphan)
5350 ext4_orphan_del(NULL, inode);
5351 goto err_out;
5352 }
5353 }
5354 if (!shrink)
5355 pagecache_isize_extended(inode, oldsize, inode->i_size);
5356
5357 /*
5358 * Blocks are going to be removed from the inode. Wait
5359 * for dio in flight. Temporarily disable
5360 * dioread_nolock to prevent livelock.
5361 */
5362 if (orphan) {
5363 if (!ext4_should_journal_data(inode)) {
5364 ext4_inode_block_unlocked_dio(inode);
5365 inode_dio_wait(inode);
5366 ext4_inode_resume_unlocked_dio(inode);
5367 } else
5368 ext4_wait_for_tail_page_commit(inode);
5369 }
5370 down_write(&EXT4_I(inode)->i_mmap_sem);
5371 /*
5372 * Truncate pagecache after we've waited for commit
5373 * in data=journal mode to make pages freeable.
5374 */
5375 truncate_pagecache(inode, inode->i_size);
5376 if (shrink) {
5377 rc = ext4_truncate(inode);
5378 if (rc)
5379 error = rc;
5380 }
5381 up_write(&EXT4_I(inode)->i_mmap_sem);
5382 }
5383
5384 if (!error) {
5385 setattr_copy(inode, attr);
5386 mark_inode_dirty(inode);
5387 }
5388
5389 /*
5390 * If the call to ext4_truncate failed to get a transaction handle at
5391 * all, we need to clean up the in-core orphan list manually.
5392 */
5393 if (orphan && inode->i_nlink)
5394 ext4_orphan_del(NULL, inode);
5395
5396 if (!error && (ia_valid & ATTR_MODE))
5397 rc = posix_acl_chmod(inode, inode->i_mode);
5398
5399 err_out:
5400 ext4_std_error(inode->i_sb, error);
5401 if (!error)
5402 error = rc;
5403 return error;
5404 }
5405
5406 int ext4_getattr(const struct path *path, struct kstat *stat,
5407 u32 request_mask, unsigned int query_flags)
5408 {
5409 struct inode *inode = d_inode(path->dentry);
5410 struct ext4_inode *raw_inode;
5411 struct ext4_inode_info *ei = EXT4_I(inode);
5412 unsigned int flags;
5413
5414 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5415 stat->result_mask |= STATX_BTIME;
5416 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5417 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5418 }
5419
5420 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5421 if (flags & EXT4_APPEND_FL)
5422 stat->attributes |= STATX_ATTR_APPEND;
5423 if (flags & EXT4_COMPR_FL)
5424 stat->attributes |= STATX_ATTR_COMPRESSED;
5425 if (flags & EXT4_ENCRYPT_FL)
5426 stat->attributes |= STATX_ATTR_ENCRYPTED;
5427 if (flags & EXT4_IMMUTABLE_FL)
5428 stat->attributes |= STATX_ATTR_IMMUTABLE;
5429 if (flags & EXT4_NODUMP_FL)
5430 stat->attributes |= STATX_ATTR_NODUMP;
5431
5432 stat->attributes_mask |= (STATX_ATTR_APPEND |
5433 STATX_ATTR_COMPRESSED |
5434 STATX_ATTR_ENCRYPTED |
5435 STATX_ATTR_IMMUTABLE |
5436 STATX_ATTR_NODUMP);
5437
5438 generic_fillattr(inode, stat);
5439 return 0;
5440 }
5441
5442 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5443 u32 request_mask, unsigned int query_flags)
5444 {
5445 struct inode *inode = d_inode(path->dentry);
5446 u64 delalloc_blocks;
5447
5448 ext4_getattr(path, stat, request_mask, query_flags);
5449
5450 /*
5451 * If there is inline data in the inode, the inode will normally not
5452 * have data blocks allocated (it may have an external xattr block).
5453 * Report at least one sector for such files, so tools like tar, rsync,
5454 * others don't incorrectly think the file is completely sparse.
5455 */
5456 if (unlikely(ext4_has_inline_data(inode)))
5457 stat->blocks += (stat->size + 511) >> 9;
5458
5459 /*
5460 * We can't update i_blocks if the block allocation is delayed
5461 * otherwise in the case of system crash before the real block
5462 * allocation is done, we will have i_blocks inconsistent with
5463 * on-disk file blocks.
5464 * We always keep i_blocks updated together with real
5465 * allocation. But to not confuse with user, stat
5466 * will return the blocks that include the delayed allocation
5467 * blocks for this file.
5468 */
5469 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5470 EXT4_I(inode)->i_reserved_data_blocks);
5471 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5472 return 0;
5473 }
5474
5475 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5476 int pextents)
5477 {
5478 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5479 return ext4_ind_trans_blocks(inode, lblocks);
5480 return ext4_ext_index_trans_blocks(inode, pextents);
5481 }
5482
5483 /*
5484 * Account for index blocks, block groups bitmaps and block group
5485 * descriptor blocks if modify datablocks and index blocks
5486 * worse case, the indexs blocks spread over different block groups
5487 *
5488 * If datablocks are discontiguous, they are possible to spread over
5489 * different block groups too. If they are contiguous, with flexbg,
5490 * they could still across block group boundary.
5491 *
5492 * Also account for superblock, inode, quota and xattr blocks
5493 */
5494 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5495 int pextents)
5496 {
5497 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5498 int gdpblocks;
5499 int idxblocks;
5500 int ret = 0;
5501
5502 /*
5503 * How many index blocks need to touch to map @lblocks logical blocks
5504 * to @pextents physical extents?
5505 */
5506 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5507
5508 ret = idxblocks;
5509
5510 /*
5511 * Now let's see how many group bitmaps and group descriptors need
5512 * to account
5513 */
5514 groups = idxblocks + pextents;
5515 gdpblocks = groups;
5516 if (groups > ngroups)
5517 groups = ngroups;
5518 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5519 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5520
5521 /* bitmaps and block group descriptor blocks */
5522 ret += groups + gdpblocks;
5523
5524 /* Blocks for super block, inode, quota and xattr blocks */
5525 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5526
5527 return ret;
5528 }
5529
5530 /*
5531 * Calculate the total number of credits to reserve to fit
5532 * the modification of a single pages into a single transaction,
5533 * which may include multiple chunks of block allocations.
5534 *
5535 * This could be called via ext4_write_begin()
5536 *
5537 * We need to consider the worse case, when
5538 * one new block per extent.
5539 */
5540 int ext4_writepage_trans_blocks(struct inode *inode)
5541 {
5542 int bpp = ext4_journal_blocks_per_page(inode);
5543 int ret;
5544
5545 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5546
5547 /* Account for data blocks for journalled mode */
5548 if (ext4_should_journal_data(inode))
5549 ret += bpp;
5550 return ret;
5551 }
5552
5553 /*
5554 * Calculate the journal credits for a chunk of data modification.
5555 *
5556 * This is called from DIO, fallocate or whoever calling
5557 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5558 *
5559 * journal buffers for data blocks are not included here, as DIO
5560 * and fallocate do no need to journal data buffers.
5561 */
5562 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5563 {
5564 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5565 }
5566
5567 /*
5568 * The caller must have previously called ext4_reserve_inode_write().
5569 * Give this, we know that the caller already has write access to iloc->bh.
5570 */
5571 int ext4_mark_iloc_dirty(handle_t *handle,
5572 struct inode *inode, struct ext4_iloc *iloc)
5573 {
5574 int err = 0;
5575
5576 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5577 return -EIO;
5578
5579 if (IS_I_VERSION(inode))
5580 inode_inc_iversion(inode);
5581
5582 /* the do_update_inode consumes one bh->b_count */
5583 get_bh(iloc->bh);
5584
5585 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5586 err = ext4_do_update_inode(handle, inode, iloc);
5587 put_bh(iloc->bh);
5588 return err;
5589 }
5590
5591 /*
5592 * On success, We end up with an outstanding reference count against
5593 * iloc->bh. This _must_ be cleaned up later.
5594 */
5595
5596 int
5597 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5598 struct ext4_iloc *iloc)
5599 {
5600 int err;
5601
5602 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5603 return -EIO;
5604
5605 err = ext4_get_inode_loc(inode, iloc);
5606 if (!err) {
5607 BUFFER_TRACE(iloc->bh, "get_write_access");
5608 err = ext4_journal_get_write_access(handle, iloc->bh);
5609 if (err) {
5610 brelse(iloc->bh);
5611 iloc->bh = NULL;
5612 }
5613 }
5614 ext4_std_error(inode->i_sb, err);
5615 return err;
5616 }
5617
5618 /*
5619 * Expand an inode by new_extra_isize bytes.
5620 * Returns 0 on success or negative error number on failure.
5621 */
5622 static int ext4_expand_extra_isize(struct inode *inode,
5623 unsigned int new_extra_isize,
5624 struct ext4_iloc iloc,
5625 handle_t *handle)
5626 {
5627 struct ext4_inode *raw_inode;
5628 struct ext4_xattr_ibody_header *header;
5629
5630 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5631 return 0;
5632
5633 raw_inode = ext4_raw_inode(&iloc);
5634
5635 header = IHDR(inode, raw_inode);
5636
5637 /* No extended attributes present */
5638 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5639 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5640 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5641 new_extra_isize);
5642 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5643 return 0;
5644 }
5645
5646 /* try to expand with EAs present */
5647 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5648 raw_inode, handle);
5649 }
5650
5651 /*
5652 * What we do here is to mark the in-core inode as clean with respect to inode
5653 * dirtiness (it may still be data-dirty).
5654 * This means that the in-core inode may be reaped by prune_icache
5655 * without having to perform any I/O. This is a very good thing,
5656 * because *any* task may call prune_icache - even ones which
5657 * have a transaction open against a different journal.
5658 *
5659 * Is this cheating? Not really. Sure, we haven't written the
5660 * inode out, but prune_icache isn't a user-visible syncing function.
5661 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5662 * we start and wait on commits.
5663 */
5664 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5665 {
5666 struct ext4_iloc iloc;
5667 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5668 static unsigned int mnt_count;
5669 int err, ret;
5670
5671 might_sleep();
5672 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5673 err = ext4_reserve_inode_write(handle, inode, &iloc);
5674 if (err)
5675 return err;
5676 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5677 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5678 /*
5679 * In nojournal mode, we can immediately attempt to expand
5680 * the inode. When journaled, we first need to obtain extra
5681 * buffer credits since we may write into the EA block
5682 * with this same handle. If journal_extend fails, then it will
5683 * only result in a minor loss of functionality for that inode.
5684 * If this is felt to be critical, then e2fsck should be run to
5685 * force a large enough s_min_extra_isize.
5686 */
5687 if (!ext4_handle_valid(handle) ||
5688 jbd2_journal_extend(handle,
5689 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5690 ret = ext4_expand_extra_isize(inode,
5691 sbi->s_want_extra_isize,
5692 iloc, handle);
5693 if (ret) {
5694 if (mnt_count !=
5695 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5696 ext4_warning(inode->i_sb,
5697 "Unable to expand inode %lu. Delete"
5698 " some EAs or run e2fsck.",
5699 inode->i_ino);
5700 mnt_count =
5701 le16_to_cpu(sbi->s_es->s_mnt_count);
5702 }
5703 }
5704 }
5705 }
5706 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5707 }
5708
5709 /*
5710 * ext4_dirty_inode() is called from __mark_inode_dirty()
5711 *
5712 * We're really interested in the case where a file is being extended.
5713 * i_size has been changed by generic_commit_write() and we thus need
5714 * to include the updated inode in the current transaction.
5715 *
5716 * Also, dquot_alloc_block() will always dirty the inode when blocks
5717 * are allocated to the file.
5718 *
5719 * If the inode is marked synchronous, we don't honour that here - doing
5720 * so would cause a commit on atime updates, which we don't bother doing.
5721 * We handle synchronous inodes at the highest possible level.
5722 *
5723 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5724 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5725 * to copy into the on-disk inode structure are the timestamp files.
5726 */
5727 void ext4_dirty_inode(struct inode *inode, int flags)
5728 {
5729 handle_t *handle;
5730
5731 if (flags == I_DIRTY_TIME)
5732 return;
5733 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5734 if (IS_ERR(handle))
5735 goto out;
5736
5737 ext4_mark_inode_dirty(handle, inode);
5738
5739 ext4_journal_stop(handle);
5740 out:
5741 return;
5742 }
5743
5744 #if 0
5745 /*
5746 * Bind an inode's backing buffer_head into this transaction, to prevent
5747 * it from being flushed to disk early. Unlike
5748 * ext4_reserve_inode_write, this leaves behind no bh reference and
5749 * returns no iloc structure, so the caller needs to repeat the iloc
5750 * lookup to mark the inode dirty later.
5751 */
5752 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5753 {
5754 struct ext4_iloc iloc;
5755
5756 int err = 0;
5757 if (handle) {
5758 err = ext4_get_inode_loc(inode, &iloc);
5759 if (!err) {
5760 BUFFER_TRACE(iloc.bh, "get_write_access");
5761 err = jbd2_journal_get_write_access(handle, iloc.bh);
5762 if (!err)
5763 err = ext4_handle_dirty_metadata(handle,
5764 NULL,
5765 iloc.bh);
5766 brelse(iloc.bh);
5767 }
5768 }
5769 ext4_std_error(inode->i_sb, err);
5770 return err;
5771 }
5772 #endif
5773
5774 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5775 {
5776 journal_t *journal;
5777 handle_t *handle;
5778 int err;
5779 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5780
5781 /*
5782 * We have to be very careful here: changing a data block's
5783 * journaling status dynamically is dangerous. If we write a
5784 * data block to the journal, change the status and then delete
5785 * that block, we risk forgetting to revoke the old log record
5786 * from the journal and so a subsequent replay can corrupt data.
5787 * So, first we make sure that the journal is empty and that
5788 * nobody is changing anything.
5789 */
5790
5791 journal = EXT4_JOURNAL(inode);
5792 if (!journal)
5793 return 0;
5794 if (is_journal_aborted(journal))
5795 return -EROFS;
5796
5797 /* Wait for all existing dio workers */
5798 ext4_inode_block_unlocked_dio(inode);
5799 inode_dio_wait(inode);
5800
5801 /*
5802 * Before flushing the journal and switching inode's aops, we have
5803 * to flush all dirty data the inode has. There can be outstanding
5804 * delayed allocations, there can be unwritten extents created by
5805 * fallocate or buffered writes in dioread_nolock mode covered by
5806 * dirty data which can be converted only after flushing the dirty
5807 * data (and journalled aops don't know how to handle these cases).
5808 */
5809 if (val) {
5810 down_write(&EXT4_I(inode)->i_mmap_sem);
5811 err = filemap_write_and_wait(inode->i_mapping);
5812 if (err < 0) {
5813 up_write(&EXT4_I(inode)->i_mmap_sem);
5814 ext4_inode_resume_unlocked_dio(inode);
5815 return err;
5816 }
5817 }
5818
5819 percpu_down_write(&sbi->s_journal_flag_rwsem);
5820 jbd2_journal_lock_updates(journal);
5821
5822 /*
5823 * OK, there are no updates running now, and all cached data is
5824 * synced to disk. We are now in a completely consistent state
5825 * which doesn't have anything in the journal, and we know that
5826 * no filesystem updates are running, so it is safe to modify
5827 * the inode's in-core data-journaling state flag now.
5828 */
5829
5830 if (val)
5831 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5832 else {
5833 err = jbd2_journal_flush(journal);
5834 if (err < 0) {
5835 jbd2_journal_unlock_updates(journal);
5836 percpu_up_write(&sbi->s_journal_flag_rwsem);
5837 ext4_inode_resume_unlocked_dio(inode);
5838 return err;
5839 }
5840 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5841 }
5842 ext4_set_aops(inode);
5843 /*
5844 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5845 * E.g. S_DAX may get cleared / set.
5846 */
5847 ext4_set_inode_flags(inode);
5848
5849 jbd2_journal_unlock_updates(journal);
5850 percpu_up_write(&sbi->s_journal_flag_rwsem);
5851
5852 if (val)
5853 up_write(&EXT4_I(inode)->i_mmap_sem);
5854 ext4_inode_resume_unlocked_dio(inode);
5855
5856 /* Finally we can mark the inode as dirty. */
5857
5858 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5859 if (IS_ERR(handle))
5860 return PTR_ERR(handle);
5861
5862 err = ext4_mark_inode_dirty(handle, inode);
5863 ext4_handle_sync(handle);
5864 ext4_journal_stop(handle);
5865 ext4_std_error(inode->i_sb, err);
5866
5867 return err;
5868 }
5869
5870 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5871 {
5872 return !buffer_mapped(bh);
5873 }
5874
5875 int ext4_page_mkwrite(struct vm_fault *vmf)
5876 {
5877 struct vm_area_struct *vma = vmf->vma;
5878 struct page *page = vmf->page;
5879 loff_t size;
5880 unsigned long len;
5881 int ret;
5882 struct file *file = vma->vm_file;
5883 struct inode *inode = file_inode(file);
5884 struct address_space *mapping = inode->i_mapping;
5885 handle_t *handle;
5886 get_block_t *get_block;
5887 int retries = 0;
5888
5889 sb_start_pagefault(inode->i_sb);
5890 file_update_time(vma->vm_file);
5891
5892 down_read(&EXT4_I(inode)->i_mmap_sem);
5893
5894 ret = ext4_convert_inline_data(inode);
5895 if (ret)
5896 goto out_ret;
5897
5898 /* Delalloc case is easy... */
5899 if (test_opt(inode->i_sb, DELALLOC) &&
5900 !ext4_should_journal_data(inode) &&
5901 !ext4_nonda_switch(inode->i_sb)) {
5902 do {
5903 ret = block_page_mkwrite(vma, vmf,
5904 ext4_da_get_block_prep);
5905 } while (ret == -ENOSPC &&
5906 ext4_should_retry_alloc(inode->i_sb, &retries));
5907 goto out_ret;
5908 }
5909
5910 lock_page(page);
5911 size = i_size_read(inode);
5912 /* Page got truncated from under us? */
5913 if (page->mapping != mapping || page_offset(page) > size) {
5914 unlock_page(page);
5915 ret = VM_FAULT_NOPAGE;
5916 goto out;
5917 }
5918
5919 if (page->index == size >> PAGE_SHIFT)
5920 len = size & ~PAGE_MASK;
5921 else
5922 len = PAGE_SIZE;
5923 /*
5924 * Return if we have all the buffers mapped. This avoids the need to do
5925 * journal_start/journal_stop which can block and take a long time
5926 */
5927 if (page_has_buffers(page)) {
5928 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5929 0, len, NULL,
5930 ext4_bh_unmapped)) {
5931 /* Wait so that we don't change page under IO */
5932 wait_for_stable_page(page);
5933 ret = VM_FAULT_LOCKED;
5934 goto out;
5935 }
5936 }
5937 unlock_page(page);
5938 /* OK, we need to fill the hole... */
5939 if (ext4_should_dioread_nolock(inode))
5940 get_block = ext4_get_block_unwritten;
5941 else
5942 get_block = ext4_get_block;
5943 retry_alloc:
5944 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5945 ext4_writepage_trans_blocks(inode));
5946 if (IS_ERR(handle)) {
5947 ret = VM_FAULT_SIGBUS;
5948 goto out;
5949 }
5950 ret = block_page_mkwrite(vma, vmf, get_block);
5951 if (!ret && ext4_should_journal_data(inode)) {
5952 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5953 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5954 unlock_page(page);
5955 ret = VM_FAULT_SIGBUS;
5956 ext4_journal_stop(handle);
5957 goto out;
5958 }
5959 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5960 }
5961 ext4_journal_stop(handle);
5962 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5963 goto retry_alloc;
5964 out_ret:
5965 ret = block_page_mkwrite_return(ret);
5966 out:
5967 up_read(&EXT4_I(inode)->i_mmap_sem);
5968 sb_end_pagefault(inode->i_sb);
5969 return ret;
5970 }
5971
5972 int ext4_filemap_fault(struct vm_fault *vmf)
5973 {
5974 struct inode *inode = file_inode(vmf->vma->vm_file);
5975 int err;
5976
5977 down_read(&EXT4_I(inode)->i_mmap_sem);
5978 err = filemap_fault(vmf);
5979 up_read(&EXT4_I(inode)->i_mmap_sem);
5980
5981 return err;
5982 }
5983
5984 /*
5985 * Find the first extent at or after @lblk in an inode that is not a hole.
5986 * Search for @map_len blocks at most. The extent is returned in @result.
5987 *
5988 * The function returns 1 if we found an extent. The function returns 0 in
5989 * case there is no extent at or after @lblk and in that case also sets
5990 * @result->es_len to 0. In case of error, the error code is returned.
5991 */
5992 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5993 unsigned int map_len, struct extent_status *result)
5994 {
5995 struct ext4_map_blocks map;
5996 struct extent_status es = {};
5997 int ret;
5998
5999 map.m_lblk = lblk;
6000 map.m_len = map_len;
6001
6002 /*
6003 * For non-extent based files this loop may iterate several times since
6004 * we do not determine full hole size.
6005 */
6006 while (map.m_len > 0) {
6007 ret = ext4_map_blocks(NULL, inode, &map, 0);
6008 if (ret < 0)
6009 return ret;
6010 /* There's extent covering m_lblk? Just return it. */
6011 if (ret > 0) {
6012 int status;
6013
6014 ext4_es_store_pblock(result, map.m_pblk);
6015 result->es_lblk = map.m_lblk;
6016 result->es_len = map.m_len;
6017 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6018 status = EXTENT_STATUS_UNWRITTEN;
6019 else
6020 status = EXTENT_STATUS_WRITTEN;
6021 ext4_es_store_status(result, status);
6022 return 1;
6023 }
6024 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6025 map.m_lblk + map.m_len - 1,
6026 &es);
6027 /* Is delalloc data before next block in extent tree? */
6028 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6029 ext4_lblk_t offset = 0;
6030
6031 if (es.es_lblk < lblk)
6032 offset = lblk - es.es_lblk;
6033 result->es_lblk = es.es_lblk + offset;
6034 ext4_es_store_pblock(result,
6035 ext4_es_pblock(&es) + offset);
6036 result->es_len = es.es_len - offset;
6037 ext4_es_store_status(result, ext4_es_status(&es));
6038
6039 return 1;
6040 }
6041 /* There's a hole at m_lblk, advance us after it */
6042 map.m_lblk += map.m_len;
6043 map_len -= map.m_len;
6044 map.m_len = map_len;
6045 cond_resched();
6046 }
6047 result->es_len = 0;
6048 return 0;
6049 }