]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
280 if (!ext4_handle_has_enough_credits(handle, 3)) {
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
285 ext4_warning(inode->i_sb,
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 goto no_delete;
292 }
293 }
294
295 /*
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
302 */
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 return;
321 no_delete:
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
338 {
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
341
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
352
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 else {
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
367 */
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 }
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
378 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382 unsigned int line,
383 struct ext4_map_blocks *map)
384 {
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
391 return -EFSCORRUPTED;
392 }
393 return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398 {
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409 }
410
411 #define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420 {
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
431 down_read(&EXT4_I(inode)->i_data_sem);
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
439 up_read((&EXT4_I(inode)->i_data_sem));
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
462 *
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469 * based files
470 *
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
478 *
479 * It returns the error in case of allocation failure.
480 */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
483 {
484 struct extent_status es;
485 int retval;
486 int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
497
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 return -EFSCORRUPTED;
507
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532 #endif
533 goto found;
534 }
535
536 /*
537 * Try to see if we can get the block without requesting a new
538 * file system block.
539 */
540 down_read(&EXT4_I(inode)->i_data_sem);
541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
547 }
548 if (retval > 0) {
549 unsigned int status;
550
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
557 }
558
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 !(status & EXTENT_STATUS_WRITTEN) &&
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
571 up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579
580 /* If it is only a block(s) look up */
581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
590 */
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
599
600 /*
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
603 */
604 map->m_flags &= ~EXT4_MAP_FLAGS;
605
606 /*
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
611 */
612 down_write(&EXT4_I(inode)->i_data_sem);
613
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642
643 if (retval > 0) {
644 unsigned int status;
645
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
652 }
653
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
681 goto out_sem;
682 }
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 !(status & EXTENT_STATUS_WRITTEN) &&
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
692 if (ret < 0) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698 out_sem:
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
702 if (ret != 0)
703 return ret;
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
719 if (ret)
720 return ret;
721 }
722 }
723 return retval;
724 }
725
726 /*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
756 {
757 struct ext4_map_blocks map;
758 int ret = 0;
759
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
768 if (ret > 0) {
769 map_bh(bh, inode->i_sb, map.m_pblk);
770 ext4_update_bh_state(bh, map.m_flags);
771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 ret = 0;
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 }
777 return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782 {
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794 {
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
811 {
812 int dio_credits;
813 handle_t *handle;
814 int retries = 0;
815 int ret;
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
822 retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838 {
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848 * Get block function for AIO DIO writes when we create unwritten extent if
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855 int ret;
856
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
880 set_buffer_defer_completion(bh_result);
881 }
882
883 return ret;
884 }
885
886 /*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915 {
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930 return ret;
931 }
932
933
934 /*
935 * `handle' can be NULL if create is zero
936 */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 ext4_lblk_t block, int map_flags)
939 {
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 int err;
944
945 J_ASSERT(handle != NULL || create == 0);
946
947 map.m_lblk = block;
948 map.m_len = 1;
949 err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
953 if (err < 0)
954 return ERR_PTR(err);
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
962
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
980 }
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
984 if (unlikely(err))
985 goto errout;
986 } else
987 BUFFER_TRACE(bh, "not a new buffer");
988 return bh;
989 errout:
990 brelse(bh);
991 return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 ext4_lblk_t block, int map_flags)
996 {
997 struct buffer_head *bh;
998
999 bh = ext4_getblk(handle, inode, block, map_flags);
1000 if (IS_ERR(bh))
1001 return bh;
1002 if (!bh || buffer_uptodate(bh))
1003 return bh;
1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1009 return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
1019 {
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
1028 block_start = block_end, bh = next) {
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041 }
1042
1043 /*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067 int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
1069 {
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
1075 /*
1076 * __block_write_begin() could have dirtied some buffers. Clean
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
1079 * by __block_write_begin() isn't a real problem here as we clear
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
1085 BUFFER_TRACE(bh, "get write access");
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095 {
1096 unsigned from = pos & (PAGE_SIZE - 1);
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
1136 clean_bdev_bh_alias(bh);
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
1174 err = fscrypt_decrypt_page(page->mapping->host, page,
1175 PAGE_SIZE, 0, page->index);
1176 return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
1183 {
1184 struct inode *inode = mapping->host;
1185 int ret, needed_blocks;
1186 handle_t *handle;
1187 int retries = 0;
1188 struct page *page;
1189 pgoff_t index;
1190 unsigned from, to;
1191
1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 return -EIO;
1194
1195 trace_ext4_write_begin(inode, pos, len, flags);
1196 /*
1197 * Reserve one block more for addition to orphan list in case
1198 * we allocate blocks but write fails for some reason
1199 */
1200 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1201 index = pos >> PAGE_SHIFT;
1202 from = pos & (PAGE_SIZE - 1);
1203 to = from + len;
1204
1205 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 flags, pagep);
1208 if (ret < 0)
1209 return ret;
1210 if (ret == 1)
1211 return 0;
1212 }
1213
1214 /*
1215 * grab_cache_page_write_begin() can take a long time if the
1216 * system is thrashing due to memory pressure, or if the page
1217 * is being written back. So grab it first before we start
1218 * the transaction handle. This also allows us to allocate
1219 * the page (if needed) without using GFP_NOFS.
1220 */
1221 retry_grab:
1222 page = grab_cache_page_write_begin(mapping, index, flags);
1223 if (!page)
1224 return -ENOMEM;
1225 unlock_page(page);
1226
1227 retry_journal:
1228 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1229 if (IS_ERR(handle)) {
1230 put_page(page);
1231 return PTR_ERR(handle);
1232 }
1233
1234 lock_page(page);
1235 if (page->mapping != mapping) {
1236 /* The page got truncated from under us */
1237 unlock_page(page);
1238 put_page(page);
1239 ext4_journal_stop(handle);
1240 goto retry_grab;
1241 }
1242 /* In case writeback began while the page was unlocked */
1243 wait_for_stable_page(page);
1244
1245 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 if (ext4_should_dioread_nolock(inode))
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block_unwritten);
1249 else
1250 ret = ext4_block_write_begin(page, pos, len,
1251 ext4_get_block);
1252 #else
1253 if (ext4_should_dioread_nolock(inode))
1254 ret = __block_write_begin(page, pos, len,
1255 ext4_get_block_unwritten);
1256 else
1257 ret = __block_write_begin(page, pos, len, ext4_get_block);
1258 #endif
1259 if (!ret && ext4_should_journal_data(inode)) {
1260 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 from, to, NULL,
1262 do_journal_get_write_access);
1263 }
1264
1265 if (ret) {
1266 unlock_page(page);
1267 /*
1268 * __block_write_begin may have instantiated a few blocks
1269 * outside i_size. Trim these off again. Don't need
1270 * i_size_read because we hold i_mutex.
1271 *
1272 * Add inode to orphan list in case we crash before
1273 * truncate finishes
1274 */
1275 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1276 ext4_orphan_add(handle, inode);
1277
1278 ext4_journal_stop(handle);
1279 if (pos + len > inode->i_size) {
1280 ext4_truncate_failed_write(inode);
1281 /*
1282 * If truncate failed early the inode might
1283 * still be on the orphan list; we need to
1284 * make sure the inode is removed from the
1285 * orphan list in that case.
1286 */
1287 if (inode->i_nlink)
1288 ext4_orphan_del(NULL, inode);
1289 }
1290
1291 if (ret == -ENOSPC &&
1292 ext4_should_retry_alloc(inode->i_sb, &retries))
1293 goto retry_journal;
1294 put_page(page);
1295 return ret;
1296 }
1297 *pagep = page;
1298 return ret;
1299 }
1300
1301 /* For write_end() in data=journal mode */
1302 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1303 {
1304 int ret;
1305 if (!buffer_mapped(bh) || buffer_freed(bh))
1306 return 0;
1307 set_buffer_uptodate(bh);
1308 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 clear_buffer_meta(bh);
1310 clear_buffer_prio(bh);
1311 return ret;
1312 }
1313
1314 /*
1315 * We need to pick up the new inode size which generic_commit_write gave us
1316 * `file' can be NULL - eg, when called from page_symlink().
1317 *
1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1319 * buffers are managed internally.
1320 */
1321 static int ext4_write_end(struct file *file,
1322 struct address_space *mapping,
1323 loff_t pos, unsigned len, unsigned copied,
1324 struct page *page, void *fsdata)
1325 {
1326 handle_t *handle = ext4_journal_current_handle();
1327 struct inode *inode = mapping->host;
1328 loff_t old_size = inode->i_size;
1329 int ret = 0, ret2;
1330 int i_size_changed = 0;
1331
1332 trace_ext4_write_end(inode, pos, len, copied);
1333 if (ext4_has_inline_data(inode)) {
1334 ret = ext4_write_inline_data_end(inode, pos, len,
1335 copied, page);
1336 if (ret < 0) {
1337 unlock_page(page);
1338 put_page(page);
1339 goto errout;
1340 }
1341 copied = ret;
1342 } else
1343 copied = block_write_end(file, mapping, pos,
1344 len, copied, page, fsdata);
1345 /*
1346 * it's important to update i_size while still holding page lock:
1347 * page writeout could otherwise come in and zero beyond i_size.
1348 */
1349 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1350 unlock_page(page);
1351 put_page(page);
1352
1353 if (old_size < pos)
1354 pagecache_isize_extended(inode, old_size, pos);
1355 /*
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1359 * filesystems.
1360 */
1361 if (i_size_changed)
1362 ext4_mark_inode_dirty(handle, inode);
1363
1364 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1368 */
1369 ext4_orphan_add(handle, inode);
1370 errout:
1371 ret2 = ext4_journal_stop(handle);
1372 if (!ret)
1373 ret = ret2;
1374
1375 if (pos + len > inode->i_size) {
1376 ext4_truncate_failed_write(inode);
1377 /*
1378 * If truncate failed early the inode might still be
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1381 */
1382 if (inode->i_nlink)
1383 ext4_orphan_del(NULL, inode);
1384 }
1385
1386 return ret ? ret : copied;
1387 }
1388
1389 /*
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1393 */
1394 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 struct page *page,
1396 unsigned from, unsigned to)
1397 {
1398 unsigned int block_start = 0, block_end;
1399 struct buffer_head *head, *bh;
1400
1401 bh = head = page_buffers(page);
1402 do {
1403 block_end = block_start + bh->b_size;
1404 if (buffer_new(bh)) {
1405 if (block_end > from && block_start < to) {
1406 if (!PageUptodate(page)) {
1407 unsigned start, size;
1408
1409 start = max(from, block_start);
1410 size = min(to, block_end) - start;
1411
1412 zero_user(page, start, size);
1413 write_end_fn(handle, bh);
1414 }
1415 clear_buffer_new(bh);
1416 }
1417 }
1418 block_start = block_end;
1419 bh = bh->b_this_page;
1420 } while (bh != head);
1421 }
1422
1423 static int ext4_journalled_write_end(struct file *file,
1424 struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned copied,
1426 struct page *page, void *fsdata)
1427 {
1428 handle_t *handle = ext4_journal_current_handle();
1429 struct inode *inode = mapping->host;
1430 loff_t old_size = inode->i_size;
1431 int ret = 0, ret2;
1432 int partial = 0;
1433 unsigned from, to;
1434 int size_changed = 0;
1435
1436 trace_ext4_journalled_write_end(inode, pos, len, copied);
1437 from = pos & (PAGE_SIZE - 1);
1438 to = from + len;
1439
1440 BUG_ON(!ext4_handle_valid(handle));
1441
1442 if (ext4_has_inline_data(inode)) {
1443 ret = ext4_write_inline_data_end(inode, pos, len,
1444 copied, page);
1445 if (ret < 0) {
1446 unlock_page(page);
1447 put_page(page);
1448 goto errout;
1449 }
1450 copied = ret;
1451 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1452 copied = 0;
1453 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 } else {
1455 if (unlikely(copied < len))
1456 ext4_journalled_zero_new_buffers(handle, page,
1457 from + copied, to);
1458 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1459 from + copied, &partial,
1460 write_end_fn);
1461 if (!partial)
1462 SetPageUptodate(page);
1463 }
1464 size_changed = ext4_update_inode_size(inode, pos + copied);
1465 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1466 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1467 unlock_page(page);
1468 put_page(page);
1469
1470 if (old_size < pos)
1471 pagecache_isize_extended(inode, old_size, pos);
1472
1473 if (size_changed) {
1474 ret2 = ext4_mark_inode_dirty(handle, inode);
1475 if (!ret)
1476 ret = ret2;
1477 }
1478
1479 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1480 /* if we have allocated more blocks and copied
1481 * less. We will have blocks allocated outside
1482 * inode->i_size. So truncate them
1483 */
1484 ext4_orphan_add(handle, inode);
1485
1486 errout:
1487 ret2 = ext4_journal_stop(handle);
1488 if (!ret)
1489 ret = ret2;
1490 if (pos + len > inode->i_size) {
1491 ext4_truncate_failed_write(inode);
1492 /*
1493 * If truncate failed early the inode might still be
1494 * on the orphan list; we need to make sure the inode
1495 * is removed from the orphan list in that case.
1496 */
1497 if (inode->i_nlink)
1498 ext4_orphan_del(NULL, inode);
1499 }
1500
1501 return ret ? ret : copied;
1502 }
1503
1504 /*
1505 * Reserve space for a single cluster
1506 */
1507 static int ext4_da_reserve_space(struct inode *inode)
1508 {
1509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1510 struct ext4_inode_info *ei = EXT4_I(inode);
1511 int ret;
1512
1513 /*
1514 * We will charge metadata quota at writeout time; this saves
1515 * us from metadata over-estimation, though we may go over by
1516 * a small amount in the end. Here we just reserve for data.
1517 */
1518 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 if (ret)
1520 return ret;
1521
1522 spin_lock(&ei->i_block_reservation_lock);
1523 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1524 spin_unlock(&ei->i_block_reservation_lock);
1525 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1526 return -ENOSPC;
1527 }
1528 ei->i_reserved_data_blocks++;
1529 trace_ext4_da_reserve_space(inode);
1530 spin_unlock(&ei->i_block_reservation_lock);
1531
1532 return 0; /* success */
1533 }
1534
1535 static void ext4_da_release_space(struct inode *inode, int to_free)
1536 {
1537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1538 struct ext4_inode_info *ei = EXT4_I(inode);
1539
1540 if (!to_free)
1541 return; /* Nothing to release, exit */
1542
1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545 trace_ext4_da_release_space(inode, to_free);
1546 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1547 /*
1548 * if there aren't enough reserved blocks, then the
1549 * counter is messed up somewhere. Since this
1550 * function is called from invalidate page, it's
1551 * harmless to return without any action.
1552 */
1553 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1554 "ino %lu, to_free %d with only %d reserved "
1555 "data blocks", inode->i_ino, to_free,
1556 ei->i_reserved_data_blocks);
1557 WARN_ON(1);
1558 to_free = ei->i_reserved_data_blocks;
1559 }
1560 ei->i_reserved_data_blocks -= to_free;
1561
1562 /* update fs dirty data blocks counter */
1563 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1564
1565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1566
1567 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1568 }
1569
1570 static void ext4_da_page_release_reservation(struct page *page,
1571 unsigned int offset,
1572 unsigned int length)
1573 {
1574 int to_release = 0, contiguous_blks = 0;
1575 struct buffer_head *head, *bh;
1576 unsigned int curr_off = 0;
1577 struct inode *inode = page->mapping->host;
1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1579 unsigned int stop = offset + length;
1580 int num_clusters;
1581 ext4_fsblk_t lblk;
1582
1583 BUG_ON(stop > PAGE_SIZE || stop < length);
1584
1585 head = page_buffers(page);
1586 bh = head;
1587 do {
1588 unsigned int next_off = curr_off + bh->b_size;
1589
1590 if (next_off > stop)
1591 break;
1592
1593 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 to_release++;
1595 contiguous_blks++;
1596 clear_buffer_delay(bh);
1597 } else if (contiguous_blks) {
1598 lblk = page->index <<
1599 (PAGE_SHIFT - inode->i_blkbits);
1600 lblk += (curr_off >> inode->i_blkbits) -
1601 contiguous_blks;
1602 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 contiguous_blks = 0;
1604 }
1605 curr_off = next_off;
1606 } while ((bh = bh->b_this_page) != head);
1607
1608 if (contiguous_blks) {
1609 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1610 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1612 }
1613
1614 /* If we have released all the blocks belonging to a cluster, then we
1615 * need to release the reserved space for that cluster. */
1616 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 while (num_clusters > 0) {
1618 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1619 ((num_clusters - 1) << sbi->s_cluster_bits);
1620 if (sbi->s_cluster_ratio == 1 ||
1621 !ext4_find_delalloc_cluster(inode, lblk))
1622 ext4_da_release_space(inode, 1);
1623
1624 num_clusters--;
1625 }
1626 }
1627
1628 /*
1629 * Delayed allocation stuff
1630 */
1631
1632 struct mpage_da_data {
1633 struct inode *inode;
1634 struct writeback_control *wbc;
1635
1636 pgoff_t first_page; /* The first page to write */
1637 pgoff_t next_page; /* Current page to examine */
1638 pgoff_t last_page; /* Last page to examine */
1639 /*
1640 * Extent to map - this can be after first_page because that can be
1641 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 * is delalloc or unwritten.
1643 */
1644 struct ext4_map_blocks map;
1645 struct ext4_io_submit io_submit; /* IO submission data */
1646 unsigned int do_map:1;
1647 };
1648
1649 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1650 bool invalidate)
1651 {
1652 int nr_pages, i;
1653 pgoff_t index, end;
1654 struct pagevec pvec;
1655 struct inode *inode = mpd->inode;
1656 struct address_space *mapping = inode->i_mapping;
1657
1658 /* This is necessary when next_page == 0. */
1659 if (mpd->first_page >= mpd->next_page)
1660 return;
1661
1662 index = mpd->first_page;
1663 end = mpd->next_page - 1;
1664 if (invalidate) {
1665 ext4_lblk_t start, last;
1666 start = index << (PAGE_SHIFT - inode->i_blkbits);
1667 last = end << (PAGE_SHIFT - inode->i_blkbits);
1668 ext4_es_remove_extent(inode, start, last - start + 1);
1669 }
1670
1671 pagevec_init(&pvec, 0);
1672 while (index <= end) {
1673 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1674 if (nr_pages == 0)
1675 break;
1676 for (i = 0; i < nr_pages; i++) {
1677 struct page *page = pvec.pages[i];
1678 if (page->index > end)
1679 break;
1680 BUG_ON(!PageLocked(page));
1681 BUG_ON(PageWriteback(page));
1682 if (invalidate) {
1683 if (page_mapped(page))
1684 clear_page_dirty_for_io(page);
1685 block_invalidatepage(page, 0, PAGE_SIZE);
1686 ClearPageUptodate(page);
1687 }
1688 unlock_page(page);
1689 }
1690 index = pvec.pages[nr_pages - 1]->index + 1;
1691 pagevec_release(&pvec);
1692 }
1693 }
1694
1695 static void ext4_print_free_blocks(struct inode *inode)
1696 {
1697 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1698 struct super_block *sb = inode->i_sb;
1699 struct ext4_inode_info *ei = EXT4_I(inode);
1700
1701 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1702 EXT4_C2B(EXT4_SB(inode->i_sb),
1703 ext4_count_free_clusters(sb)));
1704 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1705 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1706 (long long) EXT4_C2B(EXT4_SB(sb),
1707 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1708 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1709 (long long) EXT4_C2B(EXT4_SB(sb),
1710 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1711 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1712 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1713 ei->i_reserved_data_blocks);
1714 return;
1715 }
1716
1717 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1718 {
1719 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1720 }
1721
1722 /*
1723 * This function is grabs code from the very beginning of
1724 * ext4_map_blocks, but assumes that the caller is from delayed write
1725 * time. This function looks up the requested blocks and sets the
1726 * buffer delay bit under the protection of i_data_sem.
1727 */
1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 struct ext4_map_blocks *map,
1730 struct buffer_head *bh)
1731 {
1732 struct extent_status es;
1733 int retval;
1734 sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736 struct ext4_map_blocks orig_map;
1737
1738 memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740
1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 invalid_block = ~0;
1743
1744 map->m_flags = 0;
1745 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1746 "logical block %lu\n", inode->i_ino, map->m_len,
1747 (unsigned long) map->m_lblk);
1748
1749 /* Lookup extent status tree firstly */
1750 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1751 if (ext4_es_is_hole(&es)) {
1752 retval = 0;
1753 down_read(&EXT4_I(inode)->i_data_sem);
1754 goto add_delayed;
1755 }
1756
1757 /*
1758 * Delayed extent could be allocated by fallocate.
1759 * So we need to check it.
1760 */
1761 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762 map_bh(bh, inode->i_sb, invalid_block);
1763 set_buffer_new(bh);
1764 set_buffer_delay(bh);
1765 return 0;
1766 }
1767
1768 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769 retval = es.es_len - (iblock - es.es_lblk);
1770 if (retval > map->m_len)
1771 retval = map->m_len;
1772 map->m_len = retval;
1773 if (ext4_es_is_written(&es))
1774 map->m_flags |= EXT4_MAP_MAPPED;
1775 else if (ext4_es_is_unwritten(&es))
1776 map->m_flags |= EXT4_MAP_UNWRITTEN;
1777 else
1778 BUG_ON(1);
1779
1780 #ifdef ES_AGGRESSIVE_TEST
1781 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782 #endif
1783 return retval;
1784 }
1785
1786 /*
1787 * Try to see if we can get the block without requesting a new
1788 * file system block.
1789 */
1790 down_read(&EXT4_I(inode)->i_data_sem);
1791 if (ext4_has_inline_data(inode))
1792 retval = 0;
1793 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1794 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1795 else
1796 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1797
1798 add_delayed:
1799 if (retval == 0) {
1800 int ret;
1801 /*
1802 * XXX: __block_prepare_write() unmaps passed block,
1803 * is it OK?
1804 */
1805 /*
1806 * If the block was allocated from previously allocated cluster,
1807 * then we don't need to reserve it again. However we still need
1808 * to reserve metadata for every block we're going to write.
1809 */
1810 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1811 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1812 ret = ext4_da_reserve_space(inode);
1813 if (ret) {
1814 /* not enough space to reserve */
1815 retval = ret;
1816 goto out_unlock;
1817 }
1818 }
1819
1820 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1821 ~0, EXTENT_STATUS_DELAYED);
1822 if (ret) {
1823 retval = ret;
1824 goto out_unlock;
1825 }
1826
1827 map_bh(bh, inode->i_sb, invalid_block);
1828 set_buffer_new(bh);
1829 set_buffer_delay(bh);
1830 } else if (retval > 0) {
1831 int ret;
1832 unsigned int status;
1833
1834 if (unlikely(retval != map->m_len)) {
1835 ext4_warning(inode->i_sb,
1836 "ES len assertion failed for inode "
1837 "%lu: retval %d != map->m_len %d",
1838 inode->i_ino, retval, map->m_len);
1839 WARN_ON(1);
1840 }
1841
1842 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1843 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1844 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1845 map->m_pblk, status);
1846 if (ret != 0)
1847 retval = ret;
1848 }
1849
1850 out_unlock:
1851 up_read((&EXT4_I(inode)->i_data_sem));
1852
1853 return retval;
1854 }
1855
1856 /*
1857 * This is a special get_block_t callback which is used by
1858 * ext4_da_write_begin(). It will either return mapped block or
1859 * reserve space for a single block.
1860 *
1861 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1862 * We also have b_blocknr = -1 and b_bdev initialized properly
1863 *
1864 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1865 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1866 * initialized properly.
1867 */
1868 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1869 struct buffer_head *bh, int create)
1870 {
1871 struct ext4_map_blocks map;
1872 int ret = 0;
1873
1874 BUG_ON(create == 0);
1875 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1876
1877 map.m_lblk = iblock;
1878 map.m_len = 1;
1879
1880 /*
1881 * first, we need to know whether the block is allocated already
1882 * preallocated blocks are unmapped but should treated
1883 * the same as allocated blocks.
1884 */
1885 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1886 if (ret <= 0)
1887 return ret;
1888
1889 map_bh(bh, inode->i_sb, map.m_pblk);
1890 ext4_update_bh_state(bh, map.m_flags);
1891
1892 if (buffer_unwritten(bh)) {
1893 /* A delayed write to unwritten bh should be marked
1894 * new and mapped. Mapped ensures that we don't do
1895 * get_block multiple times when we write to the same
1896 * offset and new ensures that we do proper zero out
1897 * for partial write.
1898 */
1899 set_buffer_new(bh);
1900 set_buffer_mapped(bh);
1901 }
1902 return 0;
1903 }
1904
1905 static int bget_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907 get_bh(bh);
1908 return 0;
1909 }
1910
1911 static int bput_one(handle_t *handle, struct buffer_head *bh)
1912 {
1913 put_bh(bh);
1914 return 0;
1915 }
1916
1917 static int __ext4_journalled_writepage(struct page *page,
1918 unsigned int len)
1919 {
1920 struct address_space *mapping = page->mapping;
1921 struct inode *inode = mapping->host;
1922 struct buffer_head *page_bufs = NULL;
1923 handle_t *handle = NULL;
1924 int ret = 0, err = 0;
1925 int inline_data = ext4_has_inline_data(inode);
1926 struct buffer_head *inode_bh = NULL;
1927
1928 ClearPageChecked(page);
1929
1930 if (inline_data) {
1931 BUG_ON(page->index != 0);
1932 BUG_ON(len > ext4_get_max_inline_size(inode));
1933 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1934 if (inode_bh == NULL)
1935 goto out;
1936 } else {
1937 page_bufs = page_buffers(page);
1938 if (!page_bufs) {
1939 BUG();
1940 goto out;
1941 }
1942 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1943 NULL, bget_one);
1944 }
1945 /*
1946 * We need to release the page lock before we start the
1947 * journal, so grab a reference so the page won't disappear
1948 * out from under us.
1949 */
1950 get_page(page);
1951 unlock_page(page);
1952
1953 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1954 ext4_writepage_trans_blocks(inode));
1955 if (IS_ERR(handle)) {
1956 ret = PTR_ERR(handle);
1957 put_page(page);
1958 goto out_no_pagelock;
1959 }
1960 BUG_ON(!ext4_handle_valid(handle));
1961
1962 lock_page(page);
1963 put_page(page);
1964 if (page->mapping != mapping) {
1965 /* The page got truncated from under us */
1966 ext4_journal_stop(handle);
1967 ret = 0;
1968 goto out;
1969 }
1970
1971 if (inline_data) {
1972 BUFFER_TRACE(inode_bh, "get write access");
1973 ret = ext4_journal_get_write_access(handle, inode_bh);
1974
1975 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1976
1977 } else {
1978 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1979 do_journal_get_write_access);
1980
1981 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982 write_end_fn);
1983 }
1984 if (ret == 0)
1985 ret = err;
1986 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1987 err = ext4_journal_stop(handle);
1988 if (!ret)
1989 ret = err;
1990
1991 if (!ext4_has_inline_data(inode))
1992 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1993 NULL, bput_one);
1994 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1995 out:
1996 unlock_page(page);
1997 out_no_pagelock:
1998 brelse(inode_bh);
1999 return ret;
2000 }
2001
2002 /*
2003 * Note that we don't need to start a transaction unless we're journaling data
2004 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2005 * need to file the inode to the transaction's list in ordered mode because if
2006 * we are writing back data added by write(), the inode is already there and if
2007 * we are writing back data modified via mmap(), no one guarantees in which
2008 * transaction the data will hit the disk. In case we are journaling data, we
2009 * cannot start transaction directly because transaction start ranks above page
2010 * lock so we have to do some magic.
2011 *
2012 * This function can get called via...
2013 * - ext4_writepages after taking page lock (have journal handle)
2014 * - journal_submit_inode_data_buffers (no journal handle)
2015 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2016 * - grab_page_cache when doing write_begin (have journal handle)
2017 *
2018 * We don't do any block allocation in this function. If we have page with
2019 * multiple blocks we need to write those buffer_heads that are mapped. This
2020 * is important for mmaped based write. So if we do with blocksize 1K
2021 * truncate(f, 1024);
2022 * a = mmap(f, 0, 4096);
2023 * a[0] = 'a';
2024 * truncate(f, 4096);
2025 * we have in the page first buffer_head mapped via page_mkwrite call back
2026 * but other buffer_heads would be unmapped but dirty (dirty done via the
2027 * do_wp_page). So writepage should write the first block. If we modify
2028 * the mmap area beyond 1024 we will again get a page_fault and the
2029 * page_mkwrite callback will do the block allocation and mark the
2030 * buffer_heads mapped.
2031 *
2032 * We redirty the page if we have any buffer_heads that is either delay or
2033 * unwritten in the page.
2034 *
2035 * We can get recursively called as show below.
2036 *
2037 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2038 * ext4_writepage()
2039 *
2040 * But since we don't do any block allocation we should not deadlock.
2041 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2042 */
2043 static int ext4_writepage(struct page *page,
2044 struct writeback_control *wbc)
2045 {
2046 int ret = 0;
2047 loff_t size;
2048 unsigned int len;
2049 struct buffer_head *page_bufs = NULL;
2050 struct inode *inode = page->mapping->host;
2051 struct ext4_io_submit io_submit;
2052 bool keep_towrite = false;
2053
2054 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2055 ext4_invalidatepage(page, 0, PAGE_SIZE);
2056 unlock_page(page);
2057 return -EIO;
2058 }
2059
2060 trace_ext4_writepage(page);
2061 size = i_size_read(inode);
2062 if (page->index == size >> PAGE_SHIFT)
2063 len = size & ~PAGE_MASK;
2064 else
2065 len = PAGE_SIZE;
2066
2067 page_bufs = page_buffers(page);
2068 /*
2069 * We cannot do block allocation or other extent handling in this
2070 * function. If there are buffers needing that, we have to redirty
2071 * the page. But we may reach here when we do a journal commit via
2072 * journal_submit_inode_data_buffers() and in that case we must write
2073 * allocated buffers to achieve data=ordered mode guarantees.
2074 *
2075 * Also, if there is only one buffer per page (the fs block
2076 * size == the page size), if one buffer needs block
2077 * allocation or needs to modify the extent tree to clear the
2078 * unwritten flag, we know that the page can't be written at
2079 * all, so we might as well refuse the write immediately.
2080 * Unfortunately if the block size != page size, we can't as
2081 * easily detect this case using ext4_walk_page_buffers(), but
2082 * for the extremely common case, this is an optimization that
2083 * skips a useless round trip through ext4_bio_write_page().
2084 */
2085 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2086 ext4_bh_delay_or_unwritten)) {
2087 redirty_page_for_writepage(wbc, page);
2088 if ((current->flags & PF_MEMALLOC) ||
2089 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2090 /*
2091 * For memory cleaning there's no point in writing only
2092 * some buffers. So just bail out. Warn if we came here
2093 * from direct reclaim.
2094 */
2095 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096 == PF_MEMALLOC);
2097 unlock_page(page);
2098 return 0;
2099 }
2100 keep_towrite = true;
2101 }
2102
2103 if (PageChecked(page) && ext4_should_journal_data(inode))
2104 /*
2105 * It's mmapped pagecache. Add buffers and journal it. There
2106 * doesn't seem much point in redirtying the page here.
2107 */
2108 return __ext4_journalled_writepage(page, len);
2109
2110 ext4_io_submit_init(&io_submit, wbc);
2111 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2112 if (!io_submit.io_end) {
2113 redirty_page_for_writepage(wbc, page);
2114 unlock_page(page);
2115 return -ENOMEM;
2116 }
2117 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2118 ext4_io_submit(&io_submit);
2119 /* Drop io_end reference we got from init */
2120 ext4_put_io_end_defer(io_submit.io_end);
2121 return ret;
2122 }
2123
2124 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2125 {
2126 int len;
2127 loff_t size;
2128 int err;
2129
2130 BUG_ON(page->index != mpd->first_page);
2131 clear_page_dirty_for_io(page);
2132 /*
2133 * We have to be very careful here! Nothing protects writeback path
2134 * against i_size changes and the page can be writeably mapped into
2135 * page tables. So an application can be growing i_size and writing
2136 * data through mmap while writeback runs. clear_page_dirty_for_io()
2137 * write-protects our page in page tables and the page cannot get
2138 * written to again until we release page lock. So only after
2139 * clear_page_dirty_for_io() we are safe to sample i_size for
2140 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2141 * on the barrier provided by TestClearPageDirty in
2142 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2143 * after page tables are updated.
2144 */
2145 size = i_size_read(mpd->inode);
2146 if (page->index == size >> PAGE_SHIFT)
2147 len = size & ~PAGE_MASK;
2148 else
2149 len = PAGE_SIZE;
2150 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2151 if (!err)
2152 mpd->wbc->nr_to_write--;
2153 mpd->first_page++;
2154
2155 return err;
2156 }
2157
2158 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2159
2160 /*
2161 * mballoc gives us at most this number of blocks...
2162 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2163 * The rest of mballoc seems to handle chunks up to full group size.
2164 */
2165 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2166
2167 /*
2168 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2169 *
2170 * @mpd - extent of blocks
2171 * @lblk - logical number of the block in the file
2172 * @bh - buffer head we want to add to the extent
2173 *
2174 * The function is used to collect contig. blocks in the same state. If the
2175 * buffer doesn't require mapping for writeback and we haven't started the
2176 * extent of buffers to map yet, the function returns 'true' immediately - the
2177 * caller can write the buffer right away. Otherwise the function returns true
2178 * if the block has been added to the extent, false if the block couldn't be
2179 * added.
2180 */
2181 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2182 struct buffer_head *bh)
2183 {
2184 struct ext4_map_blocks *map = &mpd->map;
2185
2186 /* Buffer that doesn't need mapping for writeback? */
2187 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2188 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2189 /* So far no extent to map => we write the buffer right away */
2190 if (map->m_len == 0)
2191 return true;
2192 return false;
2193 }
2194
2195 /* First block in the extent? */
2196 if (map->m_len == 0) {
2197 /* We cannot map unless handle is started... */
2198 if (!mpd->do_map)
2199 return false;
2200 map->m_lblk = lblk;
2201 map->m_len = 1;
2202 map->m_flags = bh->b_state & BH_FLAGS;
2203 return true;
2204 }
2205
2206 /* Don't go larger than mballoc is willing to allocate */
2207 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2208 return false;
2209
2210 /* Can we merge the block to our big extent? */
2211 if (lblk == map->m_lblk + map->m_len &&
2212 (bh->b_state & BH_FLAGS) == map->m_flags) {
2213 map->m_len++;
2214 return true;
2215 }
2216 return false;
2217 }
2218
2219 /*
2220 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2221 *
2222 * @mpd - extent of blocks for mapping
2223 * @head - the first buffer in the page
2224 * @bh - buffer we should start processing from
2225 * @lblk - logical number of the block in the file corresponding to @bh
2226 *
2227 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2228 * the page for IO if all buffers in this page were mapped and there's no
2229 * accumulated extent of buffers to map or add buffers in the page to the
2230 * extent of buffers to map. The function returns 1 if the caller can continue
2231 * by processing the next page, 0 if it should stop adding buffers to the
2232 * extent to map because we cannot extend it anymore. It can also return value
2233 * < 0 in case of error during IO submission.
2234 */
2235 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2236 struct buffer_head *head,
2237 struct buffer_head *bh,
2238 ext4_lblk_t lblk)
2239 {
2240 struct inode *inode = mpd->inode;
2241 int err;
2242 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2243 >> inode->i_blkbits;
2244
2245 do {
2246 BUG_ON(buffer_locked(bh));
2247
2248 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2249 /* Found extent to map? */
2250 if (mpd->map.m_len)
2251 return 0;
2252 /* Buffer needs mapping and handle is not started? */
2253 if (!mpd->do_map)
2254 return 0;
2255 /* Everything mapped so far and we hit EOF */
2256 break;
2257 }
2258 } while (lblk++, (bh = bh->b_this_page) != head);
2259 /* So far everything mapped? Submit the page for IO. */
2260 if (mpd->map.m_len == 0) {
2261 err = mpage_submit_page(mpd, head->b_page);
2262 if (err < 0)
2263 return err;
2264 }
2265 return lblk < blocks;
2266 }
2267
2268 /*
2269 * mpage_map_buffers - update buffers corresponding to changed extent and
2270 * submit fully mapped pages for IO
2271 *
2272 * @mpd - description of extent to map, on return next extent to map
2273 *
2274 * Scan buffers corresponding to changed extent (we expect corresponding pages
2275 * to be already locked) and update buffer state according to new extent state.
2276 * We map delalloc buffers to their physical location, clear unwritten bits,
2277 * and mark buffers as uninit when we perform writes to unwritten extents
2278 * and do extent conversion after IO is finished. If the last page is not fully
2279 * mapped, we update @map to the next extent in the last page that needs
2280 * mapping. Otherwise we submit the page for IO.
2281 */
2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2283 {
2284 struct pagevec pvec;
2285 int nr_pages, i;
2286 struct inode *inode = mpd->inode;
2287 struct buffer_head *head, *bh;
2288 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2289 pgoff_t start, end;
2290 ext4_lblk_t lblk;
2291 sector_t pblock;
2292 int err;
2293
2294 start = mpd->map.m_lblk >> bpp_bits;
2295 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2296 lblk = start << bpp_bits;
2297 pblock = mpd->map.m_pblk;
2298
2299 pagevec_init(&pvec, 0);
2300 while (start <= end) {
2301 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2302 PAGEVEC_SIZE);
2303 if (nr_pages == 0)
2304 break;
2305 for (i = 0; i < nr_pages; i++) {
2306 struct page *page = pvec.pages[i];
2307
2308 if (page->index > end)
2309 break;
2310 /* Up to 'end' pages must be contiguous */
2311 BUG_ON(page->index != start);
2312 bh = head = page_buffers(page);
2313 do {
2314 if (lblk < mpd->map.m_lblk)
2315 continue;
2316 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2317 /*
2318 * Buffer after end of mapped extent.
2319 * Find next buffer in the page to map.
2320 */
2321 mpd->map.m_len = 0;
2322 mpd->map.m_flags = 0;
2323 /*
2324 * FIXME: If dioread_nolock supports
2325 * blocksize < pagesize, we need to make
2326 * sure we add size mapped so far to
2327 * io_end->size as the following call
2328 * can submit the page for IO.
2329 */
2330 err = mpage_process_page_bufs(mpd, head,
2331 bh, lblk);
2332 pagevec_release(&pvec);
2333 if (err > 0)
2334 err = 0;
2335 return err;
2336 }
2337 if (buffer_delay(bh)) {
2338 clear_buffer_delay(bh);
2339 bh->b_blocknr = pblock++;
2340 }
2341 clear_buffer_unwritten(bh);
2342 } while (lblk++, (bh = bh->b_this_page) != head);
2343
2344 /*
2345 * FIXME: This is going to break if dioread_nolock
2346 * supports blocksize < pagesize as we will try to
2347 * convert potentially unmapped parts of inode.
2348 */
2349 mpd->io_submit.io_end->size += PAGE_SIZE;
2350 /* Page fully mapped - let IO run! */
2351 err = mpage_submit_page(mpd, page);
2352 if (err < 0) {
2353 pagevec_release(&pvec);
2354 return err;
2355 }
2356 start++;
2357 }
2358 pagevec_release(&pvec);
2359 }
2360 /* Extent fully mapped and matches with page boundary. We are done. */
2361 mpd->map.m_len = 0;
2362 mpd->map.m_flags = 0;
2363 return 0;
2364 }
2365
2366 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2367 {
2368 struct inode *inode = mpd->inode;
2369 struct ext4_map_blocks *map = &mpd->map;
2370 int get_blocks_flags;
2371 int err, dioread_nolock;
2372
2373 trace_ext4_da_write_pages_extent(inode, map);
2374 /*
2375 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2376 * to convert an unwritten extent to be initialized (in the case
2377 * where we have written into one or more preallocated blocks). It is
2378 * possible that we're going to need more metadata blocks than
2379 * previously reserved. However we must not fail because we're in
2380 * writeback and there is nothing we can do about it so it might result
2381 * in data loss. So use reserved blocks to allocate metadata if
2382 * possible.
2383 *
2384 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2385 * the blocks in question are delalloc blocks. This indicates
2386 * that the blocks and quotas has already been checked when
2387 * the data was copied into the page cache.
2388 */
2389 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2390 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2391 EXT4_GET_BLOCKS_IO_SUBMIT;
2392 dioread_nolock = ext4_should_dioread_nolock(inode);
2393 if (dioread_nolock)
2394 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2395 if (map->m_flags & (1 << BH_Delay))
2396 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2397
2398 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2399 if (err < 0)
2400 return err;
2401 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2402 if (!mpd->io_submit.io_end->handle &&
2403 ext4_handle_valid(handle)) {
2404 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2405 handle->h_rsv_handle = NULL;
2406 }
2407 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2408 }
2409
2410 BUG_ON(map->m_len == 0);
2411 if (map->m_flags & EXT4_MAP_NEW) {
2412 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2413 map->m_len);
2414 }
2415 return 0;
2416 }
2417
2418 /*
2419 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2420 * mpd->len and submit pages underlying it for IO
2421 *
2422 * @handle - handle for journal operations
2423 * @mpd - extent to map
2424 * @give_up_on_write - we set this to true iff there is a fatal error and there
2425 * is no hope of writing the data. The caller should discard
2426 * dirty pages to avoid infinite loops.
2427 *
2428 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2429 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2430 * them to initialized or split the described range from larger unwritten
2431 * extent. Note that we need not map all the described range since allocation
2432 * can return less blocks or the range is covered by more unwritten extents. We
2433 * cannot map more because we are limited by reserved transaction credits. On
2434 * the other hand we always make sure that the last touched page is fully
2435 * mapped so that it can be written out (and thus forward progress is
2436 * guaranteed). After mapping we submit all mapped pages for IO.
2437 */
2438 static int mpage_map_and_submit_extent(handle_t *handle,
2439 struct mpage_da_data *mpd,
2440 bool *give_up_on_write)
2441 {
2442 struct inode *inode = mpd->inode;
2443 struct ext4_map_blocks *map = &mpd->map;
2444 int err;
2445 loff_t disksize;
2446 int progress = 0;
2447
2448 mpd->io_submit.io_end->offset =
2449 ((loff_t)map->m_lblk) << inode->i_blkbits;
2450 do {
2451 err = mpage_map_one_extent(handle, mpd);
2452 if (err < 0) {
2453 struct super_block *sb = inode->i_sb;
2454
2455 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2456 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2457 goto invalidate_dirty_pages;
2458 /*
2459 * Let the uper layers retry transient errors.
2460 * In the case of ENOSPC, if ext4_count_free_blocks()
2461 * is non-zero, a commit should free up blocks.
2462 */
2463 if ((err == -ENOMEM) ||
2464 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2465 if (progress)
2466 goto update_disksize;
2467 return err;
2468 }
2469 ext4_msg(sb, KERN_CRIT,
2470 "Delayed block allocation failed for "
2471 "inode %lu at logical offset %llu with"
2472 " max blocks %u with error %d",
2473 inode->i_ino,
2474 (unsigned long long)map->m_lblk,
2475 (unsigned)map->m_len, -err);
2476 ext4_msg(sb, KERN_CRIT,
2477 "This should not happen!! Data will "
2478 "be lost\n");
2479 if (err == -ENOSPC)
2480 ext4_print_free_blocks(inode);
2481 invalidate_dirty_pages:
2482 *give_up_on_write = true;
2483 return err;
2484 }
2485 progress = 1;
2486 /*
2487 * Update buffer state, submit mapped pages, and get us new
2488 * extent to map
2489 */
2490 err = mpage_map_and_submit_buffers(mpd);
2491 if (err < 0)
2492 goto update_disksize;
2493 } while (map->m_len);
2494
2495 update_disksize:
2496 /*
2497 * Update on-disk size after IO is submitted. Races with
2498 * truncate are avoided by checking i_size under i_data_sem.
2499 */
2500 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2501 if (disksize > EXT4_I(inode)->i_disksize) {
2502 int err2;
2503 loff_t i_size;
2504
2505 down_write(&EXT4_I(inode)->i_data_sem);
2506 i_size = i_size_read(inode);
2507 if (disksize > i_size)
2508 disksize = i_size;
2509 if (disksize > EXT4_I(inode)->i_disksize)
2510 EXT4_I(inode)->i_disksize = disksize;
2511 up_write(&EXT4_I(inode)->i_data_sem);
2512 err2 = ext4_mark_inode_dirty(handle, inode);
2513 if (err2)
2514 ext4_error(inode->i_sb,
2515 "Failed to mark inode %lu dirty",
2516 inode->i_ino);
2517 if (!err)
2518 err = err2;
2519 }
2520 return err;
2521 }
2522
2523 /*
2524 * Calculate the total number of credits to reserve for one writepages
2525 * iteration. This is called from ext4_writepages(). We map an extent of
2526 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2527 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2528 * bpp - 1 blocks in bpp different extents.
2529 */
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532 int bpp = ext4_journal_blocks_per_page(inode);
2533
2534 return ext4_meta_trans_blocks(inode,
2535 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2536 }
2537
2538 /*
2539 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2540 * and underlying extent to map
2541 *
2542 * @mpd - where to look for pages
2543 *
2544 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2545 * IO immediately. When we find a page which isn't mapped we start accumulating
2546 * extent of buffers underlying these pages that needs mapping (formed by
2547 * either delayed or unwritten buffers). We also lock the pages containing
2548 * these buffers. The extent found is returned in @mpd structure (starting at
2549 * mpd->lblk with length mpd->len blocks).
2550 *
2551 * Note that this function can attach bios to one io_end structure which are
2552 * neither logically nor physically contiguous. Although it may seem as an
2553 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2554 * case as we need to track IO to all buffers underlying a page in one io_end.
2555 */
2556 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2557 {
2558 struct address_space *mapping = mpd->inode->i_mapping;
2559 struct pagevec pvec;
2560 unsigned int nr_pages;
2561 long left = mpd->wbc->nr_to_write;
2562 pgoff_t index = mpd->first_page;
2563 pgoff_t end = mpd->last_page;
2564 int tag;
2565 int i, err = 0;
2566 int blkbits = mpd->inode->i_blkbits;
2567 ext4_lblk_t lblk;
2568 struct buffer_head *head;
2569
2570 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2571 tag = PAGECACHE_TAG_TOWRITE;
2572 else
2573 tag = PAGECACHE_TAG_DIRTY;
2574
2575 pagevec_init(&pvec, 0);
2576 mpd->map.m_len = 0;
2577 mpd->next_page = index;
2578 while (index <= end) {
2579 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2580 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2581 if (nr_pages == 0)
2582 goto out;
2583
2584 for (i = 0; i < nr_pages; i++) {
2585 struct page *page = pvec.pages[i];
2586
2587 /*
2588 * At this point, the page may be truncated or
2589 * invalidated (changing page->mapping to NULL), or
2590 * even swizzled back from swapper_space to tmpfs file
2591 * mapping. However, page->index will not change
2592 * because we have a reference on the page.
2593 */
2594 if (page->index > end)
2595 goto out;
2596
2597 /*
2598 * Accumulated enough dirty pages? This doesn't apply
2599 * to WB_SYNC_ALL mode. For integrity sync we have to
2600 * keep going because someone may be concurrently
2601 * dirtying pages, and we might have synced a lot of
2602 * newly appeared dirty pages, but have not synced all
2603 * of the old dirty pages.
2604 */
2605 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2606 goto out;
2607
2608 /* If we can't merge this page, we are done. */
2609 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2610 goto out;
2611
2612 lock_page(page);
2613 /*
2614 * If the page is no longer dirty, or its mapping no
2615 * longer corresponds to inode we are writing (which
2616 * means it has been truncated or invalidated), or the
2617 * page is already under writeback and we are not doing
2618 * a data integrity writeback, skip the page
2619 */
2620 if (!PageDirty(page) ||
2621 (PageWriteback(page) &&
2622 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2623 unlikely(page->mapping != mapping)) {
2624 unlock_page(page);
2625 continue;
2626 }
2627
2628 wait_on_page_writeback(page);
2629 BUG_ON(PageWriteback(page));
2630
2631 if (mpd->map.m_len == 0)
2632 mpd->first_page = page->index;
2633 mpd->next_page = page->index + 1;
2634 /* Add all dirty buffers to mpd */
2635 lblk = ((ext4_lblk_t)page->index) <<
2636 (PAGE_SHIFT - blkbits);
2637 head = page_buffers(page);
2638 err = mpage_process_page_bufs(mpd, head, head, lblk);
2639 if (err <= 0)
2640 goto out;
2641 err = 0;
2642 left--;
2643 }
2644 pagevec_release(&pvec);
2645 cond_resched();
2646 }
2647 return 0;
2648 out:
2649 pagevec_release(&pvec);
2650 return err;
2651 }
2652
2653 static int __writepage(struct page *page, struct writeback_control *wbc,
2654 void *data)
2655 {
2656 struct address_space *mapping = data;
2657 int ret = ext4_writepage(page, wbc);
2658 mapping_set_error(mapping, ret);
2659 return ret;
2660 }
2661
2662 static int ext4_writepages(struct address_space *mapping,
2663 struct writeback_control *wbc)
2664 {
2665 pgoff_t writeback_index = 0;
2666 long nr_to_write = wbc->nr_to_write;
2667 int range_whole = 0;
2668 int cycled = 1;
2669 handle_t *handle = NULL;
2670 struct mpage_da_data mpd;
2671 struct inode *inode = mapping->host;
2672 int needed_blocks, rsv_blocks = 0, ret = 0;
2673 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2674 bool done;
2675 struct blk_plug plug;
2676 bool give_up_on_write = false;
2677
2678 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2679 return -EIO;
2680
2681 percpu_down_read(&sbi->s_journal_flag_rwsem);
2682 trace_ext4_writepages(inode, wbc);
2683
2684 if (dax_mapping(mapping)) {
2685 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2686 wbc);
2687 goto out_writepages;
2688 }
2689
2690 /*
2691 * No pages to write? This is mainly a kludge to avoid starting
2692 * a transaction for special inodes like journal inode on last iput()
2693 * because that could violate lock ordering on umount
2694 */
2695 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2696 goto out_writepages;
2697
2698 if (ext4_should_journal_data(inode)) {
2699 struct blk_plug plug;
2700
2701 blk_start_plug(&plug);
2702 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2703 blk_finish_plug(&plug);
2704 goto out_writepages;
2705 }
2706
2707 /*
2708 * If the filesystem has aborted, it is read-only, so return
2709 * right away instead of dumping stack traces later on that
2710 * will obscure the real source of the problem. We test
2711 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2712 * the latter could be true if the filesystem is mounted
2713 * read-only, and in that case, ext4_writepages should
2714 * *never* be called, so if that ever happens, we would want
2715 * the stack trace.
2716 */
2717 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2718 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2719 ret = -EROFS;
2720 goto out_writepages;
2721 }
2722
2723 if (ext4_should_dioread_nolock(inode)) {
2724 /*
2725 * We may need to convert up to one extent per block in
2726 * the page and we may dirty the inode.
2727 */
2728 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2729 }
2730
2731 /*
2732 * If we have inline data and arrive here, it means that
2733 * we will soon create the block for the 1st page, so
2734 * we'd better clear the inline data here.
2735 */
2736 if (ext4_has_inline_data(inode)) {
2737 /* Just inode will be modified... */
2738 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2739 if (IS_ERR(handle)) {
2740 ret = PTR_ERR(handle);
2741 goto out_writepages;
2742 }
2743 BUG_ON(ext4_test_inode_state(inode,
2744 EXT4_STATE_MAY_INLINE_DATA));
2745 ext4_destroy_inline_data(handle, inode);
2746 ext4_journal_stop(handle);
2747 }
2748
2749 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2750 range_whole = 1;
2751
2752 if (wbc->range_cyclic) {
2753 writeback_index = mapping->writeback_index;
2754 if (writeback_index)
2755 cycled = 0;
2756 mpd.first_page = writeback_index;
2757 mpd.last_page = -1;
2758 } else {
2759 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2760 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2761 }
2762
2763 mpd.inode = inode;
2764 mpd.wbc = wbc;
2765 ext4_io_submit_init(&mpd.io_submit, wbc);
2766 retry:
2767 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2768 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2769 done = false;
2770 blk_start_plug(&plug);
2771
2772 /*
2773 * First writeback pages that don't need mapping - we can avoid
2774 * starting a transaction unnecessarily and also avoid being blocked
2775 * in the block layer on device congestion while having transaction
2776 * started.
2777 */
2778 mpd.do_map = 0;
2779 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2780 if (!mpd.io_submit.io_end) {
2781 ret = -ENOMEM;
2782 goto unplug;
2783 }
2784 ret = mpage_prepare_extent_to_map(&mpd);
2785 /* Submit prepared bio */
2786 ext4_io_submit(&mpd.io_submit);
2787 ext4_put_io_end_defer(mpd.io_submit.io_end);
2788 mpd.io_submit.io_end = NULL;
2789 /* Unlock pages we didn't use */
2790 mpage_release_unused_pages(&mpd, false);
2791 if (ret < 0)
2792 goto unplug;
2793
2794 while (!done && mpd.first_page <= mpd.last_page) {
2795 /* For each extent of pages we use new io_end */
2796 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2797 if (!mpd.io_submit.io_end) {
2798 ret = -ENOMEM;
2799 break;
2800 }
2801
2802 /*
2803 * We have two constraints: We find one extent to map and we
2804 * must always write out whole page (makes a difference when
2805 * blocksize < pagesize) so that we don't block on IO when we
2806 * try to write out the rest of the page. Journalled mode is
2807 * not supported by delalloc.
2808 */
2809 BUG_ON(ext4_should_journal_data(inode));
2810 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2811
2812 /* start a new transaction */
2813 handle = ext4_journal_start_with_reserve(inode,
2814 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2815 if (IS_ERR(handle)) {
2816 ret = PTR_ERR(handle);
2817 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2818 "%ld pages, ino %lu; err %d", __func__,
2819 wbc->nr_to_write, inode->i_ino, ret);
2820 /* Release allocated io_end */
2821 ext4_put_io_end(mpd.io_submit.io_end);
2822 mpd.io_submit.io_end = NULL;
2823 break;
2824 }
2825 mpd.do_map = 1;
2826
2827 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2828 ret = mpage_prepare_extent_to_map(&mpd);
2829 if (!ret) {
2830 if (mpd.map.m_len)
2831 ret = mpage_map_and_submit_extent(handle, &mpd,
2832 &give_up_on_write);
2833 else {
2834 /*
2835 * We scanned the whole range (or exhausted
2836 * nr_to_write), submitted what was mapped and
2837 * didn't find anything needing mapping. We are
2838 * done.
2839 */
2840 done = true;
2841 }
2842 }
2843 /*
2844 * Caution: If the handle is synchronous,
2845 * ext4_journal_stop() can wait for transaction commit
2846 * to finish which may depend on writeback of pages to
2847 * complete or on page lock to be released. In that
2848 * case, we have to wait until after after we have
2849 * submitted all the IO, released page locks we hold,
2850 * and dropped io_end reference (for extent conversion
2851 * to be able to complete) before stopping the handle.
2852 */
2853 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2854 ext4_journal_stop(handle);
2855 handle = NULL;
2856 mpd.do_map = 0;
2857 }
2858 /* Submit prepared bio */
2859 ext4_io_submit(&mpd.io_submit);
2860 /* Unlock pages we didn't use */
2861 mpage_release_unused_pages(&mpd, give_up_on_write);
2862 /*
2863 * Drop our io_end reference we got from init. We have
2864 * to be careful and use deferred io_end finishing if
2865 * we are still holding the transaction as we can
2866 * release the last reference to io_end which may end
2867 * up doing unwritten extent conversion.
2868 */
2869 if (handle) {
2870 ext4_put_io_end_defer(mpd.io_submit.io_end);
2871 ext4_journal_stop(handle);
2872 } else
2873 ext4_put_io_end(mpd.io_submit.io_end);
2874 mpd.io_submit.io_end = NULL;
2875
2876 if (ret == -ENOSPC && sbi->s_journal) {
2877 /*
2878 * Commit the transaction which would
2879 * free blocks released in the transaction
2880 * and try again
2881 */
2882 jbd2_journal_force_commit_nested(sbi->s_journal);
2883 ret = 0;
2884 continue;
2885 }
2886 /* Fatal error - ENOMEM, EIO... */
2887 if (ret)
2888 break;
2889 }
2890 unplug:
2891 blk_finish_plug(&plug);
2892 if (!ret && !cycled && wbc->nr_to_write > 0) {
2893 cycled = 1;
2894 mpd.last_page = writeback_index - 1;
2895 mpd.first_page = 0;
2896 goto retry;
2897 }
2898
2899 /* Update index */
2900 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2901 /*
2902 * Set the writeback_index so that range_cyclic
2903 * mode will write it back later
2904 */
2905 mapping->writeback_index = mpd.first_page;
2906
2907 out_writepages:
2908 trace_ext4_writepages_result(inode, wbc, ret,
2909 nr_to_write - wbc->nr_to_write);
2910 percpu_up_read(&sbi->s_journal_flag_rwsem);
2911 return ret;
2912 }
2913
2914 static int ext4_nonda_switch(struct super_block *sb)
2915 {
2916 s64 free_clusters, dirty_clusters;
2917 struct ext4_sb_info *sbi = EXT4_SB(sb);
2918
2919 /*
2920 * switch to non delalloc mode if we are running low
2921 * on free block. The free block accounting via percpu
2922 * counters can get slightly wrong with percpu_counter_batch getting
2923 * accumulated on each CPU without updating global counters
2924 * Delalloc need an accurate free block accounting. So switch
2925 * to non delalloc when we are near to error range.
2926 */
2927 free_clusters =
2928 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2929 dirty_clusters =
2930 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2931 /*
2932 * Start pushing delalloc when 1/2 of free blocks are dirty.
2933 */
2934 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2935 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2936
2937 if (2 * free_clusters < 3 * dirty_clusters ||
2938 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2939 /*
2940 * free block count is less than 150% of dirty blocks
2941 * or free blocks is less than watermark
2942 */
2943 return 1;
2944 }
2945 return 0;
2946 }
2947
2948 /* We always reserve for an inode update; the superblock could be there too */
2949 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2950 {
2951 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2952 return 1;
2953
2954 if (pos + len <= 0x7fffffffULL)
2955 return 1;
2956
2957 /* We might need to update the superblock to set LARGE_FILE */
2958 return 2;
2959 }
2960
2961 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2962 loff_t pos, unsigned len, unsigned flags,
2963 struct page **pagep, void **fsdata)
2964 {
2965 int ret, retries = 0;
2966 struct page *page;
2967 pgoff_t index;
2968 struct inode *inode = mapping->host;
2969 handle_t *handle;
2970
2971 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2972 return -EIO;
2973
2974 index = pos >> PAGE_SHIFT;
2975
2976 if (ext4_nonda_switch(inode->i_sb) ||
2977 S_ISLNK(inode->i_mode)) {
2978 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2979 return ext4_write_begin(file, mapping, pos,
2980 len, flags, pagep, fsdata);
2981 }
2982 *fsdata = (void *)0;
2983 trace_ext4_da_write_begin(inode, pos, len, flags);
2984
2985 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2986 ret = ext4_da_write_inline_data_begin(mapping, inode,
2987 pos, len, flags,
2988 pagep, fsdata);
2989 if (ret < 0)
2990 return ret;
2991 if (ret == 1)
2992 return 0;
2993 }
2994
2995 /*
2996 * grab_cache_page_write_begin() can take a long time if the
2997 * system is thrashing due to memory pressure, or if the page
2998 * is being written back. So grab it first before we start
2999 * the transaction handle. This also allows us to allocate
3000 * the page (if needed) without using GFP_NOFS.
3001 */
3002 retry_grab:
3003 page = grab_cache_page_write_begin(mapping, index, flags);
3004 if (!page)
3005 return -ENOMEM;
3006 unlock_page(page);
3007
3008 /*
3009 * With delayed allocation, we don't log the i_disksize update
3010 * if there is delayed block allocation. But we still need
3011 * to journalling the i_disksize update if writes to the end
3012 * of file which has an already mapped buffer.
3013 */
3014 retry_journal:
3015 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3016 ext4_da_write_credits(inode, pos, len));
3017 if (IS_ERR(handle)) {
3018 put_page(page);
3019 return PTR_ERR(handle);
3020 }
3021
3022 lock_page(page);
3023 if (page->mapping != mapping) {
3024 /* The page got truncated from under us */
3025 unlock_page(page);
3026 put_page(page);
3027 ext4_journal_stop(handle);
3028 goto retry_grab;
3029 }
3030 /* In case writeback began while the page was unlocked */
3031 wait_for_stable_page(page);
3032
3033 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3034 ret = ext4_block_write_begin(page, pos, len,
3035 ext4_da_get_block_prep);
3036 #else
3037 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3038 #endif
3039 if (ret < 0) {
3040 unlock_page(page);
3041 ext4_journal_stop(handle);
3042 /*
3043 * block_write_begin may have instantiated a few blocks
3044 * outside i_size. Trim these off again. Don't need
3045 * i_size_read because we hold i_mutex.
3046 */
3047 if (pos + len > inode->i_size)
3048 ext4_truncate_failed_write(inode);
3049
3050 if (ret == -ENOSPC &&
3051 ext4_should_retry_alloc(inode->i_sb, &retries))
3052 goto retry_journal;
3053
3054 put_page(page);
3055 return ret;
3056 }
3057
3058 *pagep = page;
3059 return ret;
3060 }
3061
3062 /*
3063 * Check if we should update i_disksize
3064 * when write to the end of file but not require block allocation
3065 */
3066 static int ext4_da_should_update_i_disksize(struct page *page,
3067 unsigned long offset)
3068 {
3069 struct buffer_head *bh;
3070 struct inode *inode = page->mapping->host;
3071 unsigned int idx;
3072 int i;
3073
3074 bh = page_buffers(page);
3075 idx = offset >> inode->i_blkbits;
3076
3077 for (i = 0; i < idx; i++)
3078 bh = bh->b_this_page;
3079
3080 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3081 return 0;
3082 return 1;
3083 }
3084
3085 static int ext4_da_write_end(struct file *file,
3086 struct address_space *mapping,
3087 loff_t pos, unsigned len, unsigned copied,
3088 struct page *page, void *fsdata)
3089 {
3090 struct inode *inode = mapping->host;
3091 int ret = 0, ret2;
3092 handle_t *handle = ext4_journal_current_handle();
3093 loff_t new_i_size;
3094 unsigned long start, end;
3095 int write_mode = (int)(unsigned long)fsdata;
3096
3097 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3098 return ext4_write_end(file, mapping, pos,
3099 len, copied, page, fsdata);
3100
3101 trace_ext4_da_write_end(inode, pos, len, copied);
3102 start = pos & (PAGE_SIZE - 1);
3103 end = start + copied - 1;
3104
3105 /*
3106 * generic_write_end() will run mark_inode_dirty() if i_size
3107 * changes. So let's piggyback the i_disksize mark_inode_dirty
3108 * into that.
3109 */
3110 new_i_size = pos + copied;
3111 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3112 if (ext4_has_inline_data(inode) ||
3113 ext4_da_should_update_i_disksize(page, end)) {
3114 ext4_update_i_disksize(inode, new_i_size);
3115 /* We need to mark inode dirty even if
3116 * new_i_size is less that inode->i_size
3117 * bu greater than i_disksize.(hint delalloc)
3118 */
3119 ext4_mark_inode_dirty(handle, inode);
3120 }
3121 }
3122
3123 if (write_mode != CONVERT_INLINE_DATA &&
3124 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3125 ext4_has_inline_data(inode))
3126 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3127 page);
3128 else
3129 ret2 = generic_write_end(file, mapping, pos, len, copied,
3130 page, fsdata);
3131
3132 copied = ret2;
3133 if (ret2 < 0)
3134 ret = ret2;
3135 ret2 = ext4_journal_stop(handle);
3136 if (!ret)
3137 ret = ret2;
3138
3139 return ret ? ret : copied;
3140 }
3141
3142 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3143 unsigned int length)
3144 {
3145 /*
3146 * Drop reserved blocks
3147 */
3148 BUG_ON(!PageLocked(page));
3149 if (!page_has_buffers(page))
3150 goto out;
3151
3152 ext4_da_page_release_reservation(page, offset, length);
3153
3154 out:
3155 ext4_invalidatepage(page, offset, length);
3156
3157 return;
3158 }
3159
3160 /*
3161 * Force all delayed allocation blocks to be allocated for a given inode.
3162 */
3163 int ext4_alloc_da_blocks(struct inode *inode)
3164 {
3165 trace_ext4_alloc_da_blocks(inode);
3166
3167 if (!EXT4_I(inode)->i_reserved_data_blocks)
3168 return 0;
3169
3170 /*
3171 * We do something simple for now. The filemap_flush() will
3172 * also start triggering a write of the data blocks, which is
3173 * not strictly speaking necessary (and for users of
3174 * laptop_mode, not even desirable). However, to do otherwise
3175 * would require replicating code paths in:
3176 *
3177 * ext4_writepages() ->
3178 * write_cache_pages() ---> (via passed in callback function)
3179 * __mpage_da_writepage() -->
3180 * mpage_add_bh_to_extent()
3181 * mpage_da_map_blocks()
3182 *
3183 * The problem is that write_cache_pages(), located in
3184 * mm/page-writeback.c, marks pages clean in preparation for
3185 * doing I/O, which is not desirable if we're not planning on
3186 * doing I/O at all.
3187 *
3188 * We could call write_cache_pages(), and then redirty all of
3189 * the pages by calling redirty_page_for_writepage() but that
3190 * would be ugly in the extreme. So instead we would need to
3191 * replicate parts of the code in the above functions,
3192 * simplifying them because we wouldn't actually intend to
3193 * write out the pages, but rather only collect contiguous
3194 * logical block extents, call the multi-block allocator, and
3195 * then update the buffer heads with the block allocations.
3196 *
3197 * For now, though, we'll cheat by calling filemap_flush(),
3198 * which will map the blocks, and start the I/O, but not
3199 * actually wait for the I/O to complete.
3200 */
3201 return filemap_flush(inode->i_mapping);
3202 }
3203
3204 /*
3205 * bmap() is special. It gets used by applications such as lilo and by
3206 * the swapper to find the on-disk block of a specific piece of data.
3207 *
3208 * Naturally, this is dangerous if the block concerned is still in the
3209 * journal. If somebody makes a swapfile on an ext4 data-journaling
3210 * filesystem and enables swap, then they may get a nasty shock when the
3211 * data getting swapped to that swapfile suddenly gets overwritten by
3212 * the original zero's written out previously to the journal and
3213 * awaiting writeback in the kernel's buffer cache.
3214 *
3215 * So, if we see any bmap calls here on a modified, data-journaled file,
3216 * take extra steps to flush any blocks which might be in the cache.
3217 */
3218 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3219 {
3220 struct inode *inode = mapping->host;
3221 journal_t *journal;
3222 int err;
3223
3224 /*
3225 * We can get here for an inline file via the FIBMAP ioctl
3226 */
3227 if (ext4_has_inline_data(inode))
3228 return 0;
3229
3230 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3231 test_opt(inode->i_sb, DELALLOC)) {
3232 /*
3233 * With delalloc we want to sync the file
3234 * so that we can make sure we allocate
3235 * blocks for file
3236 */
3237 filemap_write_and_wait(mapping);
3238 }
3239
3240 if (EXT4_JOURNAL(inode) &&
3241 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3242 /*
3243 * This is a REALLY heavyweight approach, but the use of
3244 * bmap on dirty files is expected to be extremely rare:
3245 * only if we run lilo or swapon on a freshly made file
3246 * do we expect this to happen.
3247 *
3248 * (bmap requires CAP_SYS_RAWIO so this does not
3249 * represent an unprivileged user DOS attack --- we'd be
3250 * in trouble if mortal users could trigger this path at
3251 * will.)
3252 *
3253 * NB. EXT4_STATE_JDATA is not set on files other than
3254 * regular files. If somebody wants to bmap a directory
3255 * or symlink and gets confused because the buffer
3256 * hasn't yet been flushed to disk, they deserve
3257 * everything they get.
3258 */
3259
3260 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3261 journal = EXT4_JOURNAL(inode);
3262 jbd2_journal_lock_updates(journal);
3263 err = jbd2_journal_flush(journal);
3264 jbd2_journal_unlock_updates(journal);
3265
3266 if (err)
3267 return 0;
3268 }
3269
3270 return generic_block_bmap(mapping, block, ext4_get_block);
3271 }
3272
3273 static int ext4_readpage(struct file *file, struct page *page)
3274 {
3275 int ret = -EAGAIN;
3276 struct inode *inode = page->mapping->host;
3277
3278 trace_ext4_readpage(page);
3279
3280 if (ext4_has_inline_data(inode))
3281 ret = ext4_readpage_inline(inode, page);
3282
3283 if (ret == -EAGAIN)
3284 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3285
3286 return ret;
3287 }
3288
3289 static int
3290 ext4_readpages(struct file *file, struct address_space *mapping,
3291 struct list_head *pages, unsigned nr_pages)
3292 {
3293 struct inode *inode = mapping->host;
3294
3295 /* If the file has inline data, no need to do readpages. */
3296 if (ext4_has_inline_data(inode))
3297 return 0;
3298
3299 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3300 }
3301
3302 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3303 unsigned int length)
3304 {
3305 trace_ext4_invalidatepage(page, offset, length);
3306
3307 /* No journalling happens on data buffers when this function is used */
3308 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3309
3310 block_invalidatepage(page, offset, length);
3311 }
3312
3313 static int __ext4_journalled_invalidatepage(struct page *page,
3314 unsigned int offset,
3315 unsigned int length)
3316 {
3317 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3318
3319 trace_ext4_journalled_invalidatepage(page, offset, length);
3320
3321 /*
3322 * If it's a full truncate we just forget about the pending dirtying
3323 */
3324 if (offset == 0 && length == PAGE_SIZE)
3325 ClearPageChecked(page);
3326
3327 return jbd2_journal_invalidatepage(journal, page, offset, length);
3328 }
3329
3330 /* Wrapper for aops... */
3331 static void ext4_journalled_invalidatepage(struct page *page,
3332 unsigned int offset,
3333 unsigned int length)
3334 {
3335 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3336 }
3337
3338 static int ext4_releasepage(struct page *page, gfp_t wait)
3339 {
3340 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3341
3342 trace_ext4_releasepage(page);
3343
3344 /* Page has dirty journalled data -> cannot release */
3345 if (PageChecked(page))
3346 return 0;
3347 if (journal)
3348 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3349 else
3350 return try_to_free_buffers(page);
3351 }
3352
3353 #ifdef CONFIG_FS_DAX
3354 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3355 unsigned flags, struct iomap *iomap)
3356 {
3357 struct block_device *bdev;
3358 unsigned int blkbits = inode->i_blkbits;
3359 unsigned long first_block = offset >> blkbits;
3360 unsigned long last_block = (offset + length - 1) >> blkbits;
3361 struct ext4_map_blocks map;
3362 int ret;
3363
3364 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3365 return -ERANGE;
3366
3367 map.m_lblk = first_block;
3368 map.m_len = last_block - first_block + 1;
3369
3370 if (!(flags & IOMAP_WRITE)) {
3371 ret = ext4_map_blocks(NULL, inode, &map, 0);
3372 } else {
3373 int dio_credits;
3374 handle_t *handle;
3375 int retries = 0;
3376
3377 /* Trim mapping request to maximum we can map at once for DIO */
3378 if (map.m_len > DIO_MAX_BLOCKS)
3379 map.m_len = DIO_MAX_BLOCKS;
3380 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3381 retry:
3382 /*
3383 * Either we allocate blocks and then we don't get unwritten
3384 * extent so we have reserved enough credits, or the blocks
3385 * are already allocated and unwritten and in that case
3386 * extent conversion fits in the credits as well.
3387 */
3388 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3389 dio_credits);
3390 if (IS_ERR(handle))
3391 return PTR_ERR(handle);
3392
3393 ret = ext4_map_blocks(handle, inode, &map,
3394 EXT4_GET_BLOCKS_CREATE_ZERO);
3395 if (ret < 0) {
3396 ext4_journal_stop(handle);
3397 if (ret == -ENOSPC &&
3398 ext4_should_retry_alloc(inode->i_sb, &retries))
3399 goto retry;
3400 return ret;
3401 }
3402
3403 /*
3404 * If we added blocks beyond i_size, we need to make sure they
3405 * will get truncated if we crash before updating i_size in
3406 * ext4_iomap_end(). For faults we don't need to do that (and
3407 * even cannot because for orphan list operations inode_lock is
3408 * required) - if we happen to instantiate block beyond i_size,
3409 * it is because we race with truncate which has already added
3410 * the inode to the orphan list.
3411 */
3412 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3413 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3414 int err;
3415
3416 err = ext4_orphan_add(handle, inode);
3417 if (err < 0) {
3418 ext4_journal_stop(handle);
3419 return err;
3420 }
3421 }
3422 ext4_journal_stop(handle);
3423 }
3424
3425 iomap->flags = 0;
3426 bdev = inode->i_sb->s_bdev;
3427 iomap->bdev = bdev;
3428 if (blk_queue_dax(bdev->bd_queue))
3429 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3430 else
3431 iomap->dax_dev = NULL;
3432 iomap->offset = first_block << blkbits;
3433
3434 if (ret == 0) {
3435 iomap->type = IOMAP_HOLE;
3436 iomap->blkno = IOMAP_NULL_BLOCK;
3437 iomap->length = (u64)map.m_len << blkbits;
3438 } else {
3439 if (map.m_flags & EXT4_MAP_MAPPED) {
3440 iomap->type = IOMAP_MAPPED;
3441 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3442 iomap->type = IOMAP_UNWRITTEN;
3443 } else {
3444 WARN_ON_ONCE(1);
3445 return -EIO;
3446 }
3447 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3448 iomap->length = (u64)map.m_len << blkbits;
3449 }
3450
3451 if (map.m_flags & EXT4_MAP_NEW)
3452 iomap->flags |= IOMAP_F_NEW;
3453 return 0;
3454 }
3455
3456 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3457 ssize_t written, unsigned flags, struct iomap *iomap)
3458 {
3459 int ret = 0;
3460 handle_t *handle;
3461 int blkbits = inode->i_blkbits;
3462 bool truncate = false;
3463
3464 fs_put_dax(iomap->dax_dev);
3465 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3466 return 0;
3467
3468 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3469 if (IS_ERR(handle)) {
3470 ret = PTR_ERR(handle);
3471 goto orphan_del;
3472 }
3473 if (ext4_update_inode_size(inode, offset + written))
3474 ext4_mark_inode_dirty(handle, inode);
3475 /*
3476 * We may need to truncate allocated but not written blocks beyond EOF.
3477 */
3478 if (iomap->offset + iomap->length >
3479 ALIGN(inode->i_size, 1 << blkbits)) {
3480 ext4_lblk_t written_blk, end_blk;
3481
3482 written_blk = (offset + written) >> blkbits;
3483 end_blk = (offset + length) >> blkbits;
3484 if (written_blk < end_blk && ext4_can_truncate(inode))
3485 truncate = true;
3486 }
3487 /*
3488 * Remove inode from orphan list if we were extending a inode and
3489 * everything went fine.
3490 */
3491 if (!truncate && inode->i_nlink &&
3492 !list_empty(&EXT4_I(inode)->i_orphan))
3493 ext4_orphan_del(handle, inode);
3494 ext4_journal_stop(handle);
3495 if (truncate) {
3496 ext4_truncate_failed_write(inode);
3497 orphan_del:
3498 /*
3499 * If truncate failed early the inode might still be on the
3500 * orphan list; we need to make sure the inode is removed from
3501 * the orphan list in that case.
3502 */
3503 if (inode->i_nlink)
3504 ext4_orphan_del(NULL, inode);
3505 }
3506 return ret;
3507 }
3508
3509 const struct iomap_ops ext4_iomap_ops = {
3510 .iomap_begin = ext4_iomap_begin,
3511 .iomap_end = ext4_iomap_end,
3512 };
3513
3514 #endif
3515
3516 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3517 ssize_t size, void *private)
3518 {
3519 ext4_io_end_t *io_end = private;
3520
3521 /* if not async direct IO just return */
3522 if (!io_end)
3523 return 0;
3524
3525 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3526 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3527 io_end, io_end->inode->i_ino, iocb, offset, size);
3528
3529 /*
3530 * Error during AIO DIO. We cannot convert unwritten extents as the
3531 * data was not written. Just clear the unwritten flag and drop io_end.
3532 */
3533 if (size <= 0) {
3534 ext4_clear_io_unwritten_flag(io_end);
3535 size = 0;
3536 }
3537 io_end->offset = offset;
3538 io_end->size = size;
3539 ext4_put_io_end(io_end);
3540
3541 return 0;
3542 }
3543
3544 /*
3545 * Handling of direct IO writes.
3546 *
3547 * For ext4 extent files, ext4 will do direct-io write even to holes,
3548 * preallocated extents, and those write extend the file, no need to
3549 * fall back to buffered IO.
3550 *
3551 * For holes, we fallocate those blocks, mark them as unwritten
3552 * If those blocks were preallocated, we mark sure they are split, but
3553 * still keep the range to write as unwritten.
3554 *
3555 * The unwritten extents will be converted to written when DIO is completed.
3556 * For async direct IO, since the IO may still pending when return, we
3557 * set up an end_io call back function, which will do the conversion
3558 * when async direct IO completed.
3559 *
3560 * If the O_DIRECT write will extend the file then add this inode to the
3561 * orphan list. So recovery will truncate it back to the original size
3562 * if the machine crashes during the write.
3563 *
3564 */
3565 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3566 {
3567 struct file *file = iocb->ki_filp;
3568 struct inode *inode = file->f_mapping->host;
3569 struct ext4_inode_info *ei = EXT4_I(inode);
3570 ssize_t ret;
3571 loff_t offset = iocb->ki_pos;
3572 size_t count = iov_iter_count(iter);
3573 int overwrite = 0;
3574 get_block_t *get_block_func = NULL;
3575 int dio_flags = 0;
3576 loff_t final_size = offset + count;
3577 int orphan = 0;
3578 handle_t *handle;
3579
3580 if (final_size > inode->i_size) {
3581 /* Credits for sb + inode write */
3582 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3583 if (IS_ERR(handle)) {
3584 ret = PTR_ERR(handle);
3585 goto out;
3586 }
3587 ret = ext4_orphan_add(handle, inode);
3588 if (ret) {
3589 ext4_journal_stop(handle);
3590 goto out;
3591 }
3592 orphan = 1;
3593 ei->i_disksize = inode->i_size;
3594 ext4_journal_stop(handle);
3595 }
3596
3597 BUG_ON(iocb->private == NULL);
3598
3599 /*
3600 * Make all waiters for direct IO properly wait also for extent
3601 * conversion. This also disallows race between truncate() and
3602 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3603 */
3604 inode_dio_begin(inode);
3605
3606 /* If we do a overwrite dio, i_mutex locking can be released */
3607 overwrite = *((int *)iocb->private);
3608
3609 if (overwrite)
3610 inode_unlock(inode);
3611
3612 /*
3613 * For extent mapped files we could direct write to holes and fallocate.
3614 *
3615 * Allocated blocks to fill the hole are marked as unwritten to prevent
3616 * parallel buffered read to expose the stale data before DIO complete
3617 * the data IO.
3618 *
3619 * As to previously fallocated extents, ext4 get_block will just simply
3620 * mark the buffer mapped but still keep the extents unwritten.
3621 *
3622 * For non AIO case, we will convert those unwritten extents to written
3623 * after return back from blockdev_direct_IO. That way we save us from
3624 * allocating io_end structure and also the overhead of offloading
3625 * the extent convertion to a workqueue.
3626 *
3627 * For async DIO, the conversion needs to be deferred when the
3628 * IO is completed. The ext4 end_io callback function will be
3629 * called to take care of the conversion work. Here for async
3630 * case, we allocate an io_end structure to hook to the iocb.
3631 */
3632 iocb->private = NULL;
3633 if (overwrite)
3634 get_block_func = ext4_dio_get_block_overwrite;
3635 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3636 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3637 get_block_func = ext4_dio_get_block;
3638 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3639 } else if (is_sync_kiocb(iocb)) {
3640 get_block_func = ext4_dio_get_block_unwritten_sync;
3641 dio_flags = DIO_LOCKING;
3642 } else {
3643 get_block_func = ext4_dio_get_block_unwritten_async;
3644 dio_flags = DIO_LOCKING;
3645 }
3646 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3647 get_block_func, ext4_end_io_dio, NULL,
3648 dio_flags);
3649
3650 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3651 EXT4_STATE_DIO_UNWRITTEN)) {
3652 int err;
3653 /*
3654 * for non AIO case, since the IO is already
3655 * completed, we could do the conversion right here
3656 */
3657 err = ext4_convert_unwritten_extents(NULL, inode,
3658 offset, ret);
3659 if (err < 0)
3660 ret = err;
3661 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3662 }
3663
3664 inode_dio_end(inode);
3665 /* take i_mutex locking again if we do a ovewrite dio */
3666 if (overwrite)
3667 inode_lock(inode);
3668
3669 if (ret < 0 && final_size > inode->i_size)
3670 ext4_truncate_failed_write(inode);
3671
3672 /* Handle extending of i_size after direct IO write */
3673 if (orphan) {
3674 int err;
3675
3676 /* Credits for sb + inode write */
3677 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3678 if (IS_ERR(handle)) {
3679 /* This is really bad luck. We've written the data
3680 * but cannot extend i_size. Bail out and pretend
3681 * the write failed... */
3682 ret = PTR_ERR(handle);
3683 if (inode->i_nlink)
3684 ext4_orphan_del(NULL, inode);
3685
3686 goto out;
3687 }
3688 if (inode->i_nlink)
3689 ext4_orphan_del(handle, inode);
3690 if (ret > 0) {
3691 loff_t end = offset + ret;
3692 if (end > inode->i_size) {
3693 ei->i_disksize = end;
3694 i_size_write(inode, end);
3695 /*
3696 * We're going to return a positive `ret'
3697 * here due to non-zero-length I/O, so there's
3698 * no way of reporting error returns from
3699 * ext4_mark_inode_dirty() to userspace. So
3700 * ignore it.
3701 */
3702 ext4_mark_inode_dirty(handle, inode);
3703 }
3704 }
3705 err = ext4_journal_stop(handle);
3706 if (ret == 0)
3707 ret = err;
3708 }
3709 out:
3710 return ret;
3711 }
3712
3713 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3714 {
3715 struct address_space *mapping = iocb->ki_filp->f_mapping;
3716 struct inode *inode = mapping->host;
3717 size_t count = iov_iter_count(iter);
3718 ssize_t ret;
3719
3720 /*
3721 * Shared inode_lock is enough for us - it protects against concurrent
3722 * writes & truncates and since we take care of writing back page cache,
3723 * we are protected against page writeback as well.
3724 */
3725 inode_lock_shared(inode);
3726 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3727 iocb->ki_pos + count - 1);
3728 if (ret)
3729 goto out_unlock;
3730 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3731 iter, ext4_dio_get_block, NULL, NULL, 0);
3732 out_unlock:
3733 inode_unlock_shared(inode);
3734 return ret;
3735 }
3736
3737 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3738 {
3739 struct file *file = iocb->ki_filp;
3740 struct inode *inode = file->f_mapping->host;
3741 size_t count = iov_iter_count(iter);
3742 loff_t offset = iocb->ki_pos;
3743 ssize_t ret;
3744
3745 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3746 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3747 return 0;
3748 #endif
3749
3750 /*
3751 * If we are doing data journalling we don't support O_DIRECT
3752 */
3753 if (ext4_should_journal_data(inode))
3754 return 0;
3755
3756 /* Let buffer I/O handle the inline data case. */
3757 if (ext4_has_inline_data(inode))
3758 return 0;
3759
3760 /* DAX uses iomap path now */
3761 if (WARN_ON_ONCE(IS_DAX(inode)))
3762 return 0;
3763
3764 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3765 if (iov_iter_rw(iter) == READ)
3766 ret = ext4_direct_IO_read(iocb, iter);
3767 else
3768 ret = ext4_direct_IO_write(iocb, iter);
3769 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3770 return ret;
3771 }
3772
3773 /*
3774 * Pages can be marked dirty completely asynchronously from ext4's journalling
3775 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3776 * much here because ->set_page_dirty is called under VFS locks. The page is
3777 * not necessarily locked.
3778 *
3779 * We cannot just dirty the page and leave attached buffers clean, because the
3780 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3781 * or jbddirty because all the journalling code will explode.
3782 *
3783 * So what we do is to mark the page "pending dirty" and next time writepage
3784 * is called, propagate that into the buffers appropriately.
3785 */
3786 static int ext4_journalled_set_page_dirty(struct page *page)
3787 {
3788 SetPageChecked(page);
3789 return __set_page_dirty_nobuffers(page);
3790 }
3791
3792 static int ext4_set_page_dirty(struct page *page)
3793 {
3794 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3795 WARN_ON_ONCE(!page_has_buffers(page));
3796 return __set_page_dirty_buffers(page);
3797 }
3798
3799 static const struct address_space_operations ext4_aops = {
3800 .readpage = ext4_readpage,
3801 .readpages = ext4_readpages,
3802 .writepage = ext4_writepage,
3803 .writepages = ext4_writepages,
3804 .write_begin = ext4_write_begin,
3805 .write_end = ext4_write_end,
3806 .set_page_dirty = ext4_set_page_dirty,
3807 .bmap = ext4_bmap,
3808 .invalidatepage = ext4_invalidatepage,
3809 .releasepage = ext4_releasepage,
3810 .direct_IO = ext4_direct_IO,
3811 .migratepage = buffer_migrate_page,
3812 .is_partially_uptodate = block_is_partially_uptodate,
3813 .error_remove_page = generic_error_remove_page,
3814 };
3815
3816 static const struct address_space_operations ext4_journalled_aops = {
3817 .readpage = ext4_readpage,
3818 .readpages = ext4_readpages,
3819 .writepage = ext4_writepage,
3820 .writepages = ext4_writepages,
3821 .write_begin = ext4_write_begin,
3822 .write_end = ext4_journalled_write_end,
3823 .set_page_dirty = ext4_journalled_set_page_dirty,
3824 .bmap = ext4_bmap,
3825 .invalidatepage = ext4_journalled_invalidatepage,
3826 .releasepage = ext4_releasepage,
3827 .direct_IO = ext4_direct_IO,
3828 .is_partially_uptodate = block_is_partially_uptodate,
3829 .error_remove_page = generic_error_remove_page,
3830 };
3831
3832 static const struct address_space_operations ext4_da_aops = {
3833 .readpage = ext4_readpage,
3834 .readpages = ext4_readpages,
3835 .writepage = ext4_writepage,
3836 .writepages = ext4_writepages,
3837 .write_begin = ext4_da_write_begin,
3838 .write_end = ext4_da_write_end,
3839 .set_page_dirty = ext4_set_page_dirty,
3840 .bmap = ext4_bmap,
3841 .invalidatepage = ext4_da_invalidatepage,
3842 .releasepage = ext4_releasepage,
3843 .direct_IO = ext4_direct_IO,
3844 .migratepage = buffer_migrate_page,
3845 .is_partially_uptodate = block_is_partially_uptodate,
3846 .error_remove_page = generic_error_remove_page,
3847 };
3848
3849 void ext4_set_aops(struct inode *inode)
3850 {
3851 switch (ext4_inode_journal_mode(inode)) {
3852 case EXT4_INODE_ORDERED_DATA_MODE:
3853 case EXT4_INODE_WRITEBACK_DATA_MODE:
3854 break;
3855 case EXT4_INODE_JOURNAL_DATA_MODE:
3856 inode->i_mapping->a_ops = &ext4_journalled_aops;
3857 return;
3858 default:
3859 BUG();
3860 }
3861 if (test_opt(inode->i_sb, DELALLOC))
3862 inode->i_mapping->a_ops = &ext4_da_aops;
3863 else
3864 inode->i_mapping->a_ops = &ext4_aops;
3865 }
3866
3867 static int __ext4_block_zero_page_range(handle_t *handle,
3868 struct address_space *mapping, loff_t from, loff_t length)
3869 {
3870 ext4_fsblk_t index = from >> PAGE_SHIFT;
3871 unsigned offset = from & (PAGE_SIZE-1);
3872 unsigned blocksize, pos;
3873 ext4_lblk_t iblock;
3874 struct inode *inode = mapping->host;
3875 struct buffer_head *bh;
3876 struct page *page;
3877 int err = 0;
3878
3879 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3880 mapping_gfp_constraint(mapping, ~__GFP_FS));
3881 if (!page)
3882 return -ENOMEM;
3883
3884 blocksize = inode->i_sb->s_blocksize;
3885
3886 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3887
3888 if (!page_has_buffers(page))
3889 create_empty_buffers(page, blocksize, 0);
3890
3891 /* Find the buffer that contains "offset" */
3892 bh = page_buffers(page);
3893 pos = blocksize;
3894 while (offset >= pos) {
3895 bh = bh->b_this_page;
3896 iblock++;
3897 pos += blocksize;
3898 }
3899 if (buffer_freed(bh)) {
3900 BUFFER_TRACE(bh, "freed: skip");
3901 goto unlock;
3902 }
3903 if (!buffer_mapped(bh)) {
3904 BUFFER_TRACE(bh, "unmapped");
3905 ext4_get_block(inode, iblock, bh, 0);
3906 /* unmapped? It's a hole - nothing to do */
3907 if (!buffer_mapped(bh)) {
3908 BUFFER_TRACE(bh, "still unmapped");
3909 goto unlock;
3910 }
3911 }
3912
3913 /* Ok, it's mapped. Make sure it's up-to-date */
3914 if (PageUptodate(page))
3915 set_buffer_uptodate(bh);
3916
3917 if (!buffer_uptodate(bh)) {
3918 err = -EIO;
3919 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3920 wait_on_buffer(bh);
3921 /* Uhhuh. Read error. Complain and punt. */
3922 if (!buffer_uptodate(bh))
3923 goto unlock;
3924 if (S_ISREG(inode->i_mode) &&
3925 ext4_encrypted_inode(inode)) {
3926 /* We expect the key to be set. */
3927 BUG_ON(!fscrypt_has_encryption_key(inode));
3928 BUG_ON(blocksize != PAGE_SIZE);
3929 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3930 page, PAGE_SIZE, 0, page->index));
3931 }
3932 }
3933 if (ext4_should_journal_data(inode)) {
3934 BUFFER_TRACE(bh, "get write access");
3935 err = ext4_journal_get_write_access(handle, bh);
3936 if (err)
3937 goto unlock;
3938 }
3939 zero_user(page, offset, length);
3940 BUFFER_TRACE(bh, "zeroed end of block");
3941
3942 if (ext4_should_journal_data(inode)) {
3943 err = ext4_handle_dirty_metadata(handle, inode, bh);
3944 } else {
3945 err = 0;
3946 mark_buffer_dirty(bh);
3947 if (ext4_should_order_data(inode))
3948 err = ext4_jbd2_inode_add_write(handle, inode);
3949 }
3950
3951 unlock:
3952 unlock_page(page);
3953 put_page(page);
3954 return err;
3955 }
3956
3957 /*
3958 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3959 * starting from file offset 'from'. The range to be zero'd must
3960 * be contained with in one block. If the specified range exceeds
3961 * the end of the block it will be shortened to end of the block
3962 * that cooresponds to 'from'
3963 */
3964 static int ext4_block_zero_page_range(handle_t *handle,
3965 struct address_space *mapping, loff_t from, loff_t length)
3966 {
3967 struct inode *inode = mapping->host;
3968 unsigned offset = from & (PAGE_SIZE-1);
3969 unsigned blocksize = inode->i_sb->s_blocksize;
3970 unsigned max = blocksize - (offset & (blocksize - 1));
3971
3972 /*
3973 * correct length if it does not fall between
3974 * 'from' and the end of the block
3975 */
3976 if (length > max || length < 0)
3977 length = max;
3978
3979 if (IS_DAX(inode)) {
3980 return iomap_zero_range(inode, from, length, NULL,
3981 &ext4_iomap_ops);
3982 }
3983 return __ext4_block_zero_page_range(handle, mapping, from, length);
3984 }
3985
3986 /*
3987 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3988 * up to the end of the block which corresponds to `from'.
3989 * This required during truncate. We need to physically zero the tail end
3990 * of that block so it doesn't yield old data if the file is later grown.
3991 */
3992 static int ext4_block_truncate_page(handle_t *handle,
3993 struct address_space *mapping, loff_t from)
3994 {
3995 unsigned offset = from & (PAGE_SIZE-1);
3996 unsigned length;
3997 unsigned blocksize;
3998 struct inode *inode = mapping->host;
3999
4000 /* If we are processing an encrypted inode during orphan list handling */
4001 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4002 return 0;
4003
4004 blocksize = inode->i_sb->s_blocksize;
4005 length = blocksize - (offset & (blocksize - 1));
4006
4007 return ext4_block_zero_page_range(handle, mapping, from, length);
4008 }
4009
4010 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4011 loff_t lstart, loff_t length)
4012 {
4013 struct super_block *sb = inode->i_sb;
4014 struct address_space *mapping = inode->i_mapping;
4015 unsigned partial_start, partial_end;
4016 ext4_fsblk_t start, end;
4017 loff_t byte_end = (lstart + length - 1);
4018 int err = 0;
4019
4020 partial_start = lstart & (sb->s_blocksize - 1);
4021 partial_end = byte_end & (sb->s_blocksize - 1);
4022
4023 start = lstart >> sb->s_blocksize_bits;
4024 end = byte_end >> sb->s_blocksize_bits;
4025
4026 /* Handle partial zero within the single block */
4027 if (start == end &&
4028 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4029 err = ext4_block_zero_page_range(handle, mapping,
4030 lstart, length);
4031 return err;
4032 }
4033 /* Handle partial zero out on the start of the range */
4034 if (partial_start) {
4035 err = ext4_block_zero_page_range(handle, mapping,
4036 lstart, sb->s_blocksize);
4037 if (err)
4038 return err;
4039 }
4040 /* Handle partial zero out on the end of the range */
4041 if (partial_end != sb->s_blocksize - 1)
4042 err = ext4_block_zero_page_range(handle, mapping,
4043 byte_end - partial_end,
4044 partial_end + 1);
4045 return err;
4046 }
4047
4048 int ext4_can_truncate(struct inode *inode)
4049 {
4050 if (S_ISREG(inode->i_mode))
4051 return 1;
4052 if (S_ISDIR(inode->i_mode))
4053 return 1;
4054 if (S_ISLNK(inode->i_mode))
4055 return !ext4_inode_is_fast_symlink(inode);
4056 return 0;
4057 }
4058
4059 /*
4060 * We have to make sure i_disksize gets properly updated before we truncate
4061 * page cache due to hole punching or zero range. Otherwise i_disksize update
4062 * can get lost as it may have been postponed to submission of writeback but
4063 * that will never happen after we truncate page cache.
4064 */
4065 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4066 loff_t len)
4067 {
4068 handle_t *handle;
4069 loff_t size = i_size_read(inode);
4070
4071 WARN_ON(!inode_is_locked(inode));
4072 if (offset > size || offset + len < size)
4073 return 0;
4074
4075 if (EXT4_I(inode)->i_disksize >= size)
4076 return 0;
4077
4078 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4079 if (IS_ERR(handle))
4080 return PTR_ERR(handle);
4081 ext4_update_i_disksize(inode, size);
4082 ext4_mark_inode_dirty(handle, inode);
4083 ext4_journal_stop(handle);
4084
4085 return 0;
4086 }
4087
4088 /*
4089 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4090 * associated with the given offset and length
4091 *
4092 * @inode: File inode
4093 * @offset: The offset where the hole will begin
4094 * @len: The length of the hole
4095 *
4096 * Returns: 0 on success or negative on failure
4097 */
4098
4099 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4100 {
4101 struct super_block *sb = inode->i_sb;
4102 ext4_lblk_t first_block, stop_block;
4103 struct address_space *mapping = inode->i_mapping;
4104 loff_t first_block_offset, last_block_offset;
4105 handle_t *handle;
4106 unsigned int credits;
4107 int ret = 0;
4108
4109 if (!S_ISREG(inode->i_mode))
4110 return -EOPNOTSUPP;
4111
4112 trace_ext4_punch_hole(inode, offset, length, 0);
4113
4114 /*
4115 * Write out all dirty pages to avoid race conditions
4116 * Then release them.
4117 */
4118 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4119 ret = filemap_write_and_wait_range(mapping, offset,
4120 offset + length - 1);
4121 if (ret)
4122 return ret;
4123 }
4124
4125 inode_lock(inode);
4126
4127 /* No need to punch hole beyond i_size */
4128 if (offset >= inode->i_size)
4129 goto out_mutex;
4130
4131 /*
4132 * If the hole extends beyond i_size, set the hole
4133 * to end after the page that contains i_size
4134 */
4135 if (offset + length > inode->i_size) {
4136 length = inode->i_size +
4137 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4138 offset;
4139 }
4140
4141 if (offset & (sb->s_blocksize - 1) ||
4142 (offset + length) & (sb->s_blocksize - 1)) {
4143 /*
4144 * Attach jinode to inode for jbd2 if we do any zeroing of
4145 * partial block
4146 */
4147 ret = ext4_inode_attach_jinode(inode);
4148 if (ret < 0)
4149 goto out_mutex;
4150
4151 }
4152
4153 /* Wait all existing dio workers, newcomers will block on i_mutex */
4154 ext4_inode_block_unlocked_dio(inode);
4155 inode_dio_wait(inode);
4156
4157 /*
4158 * Prevent page faults from reinstantiating pages we have released from
4159 * page cache.
4160 */
4161 down_write(&EXT4_I(inode)->i_mmap_sem);
4162 first_block_offset = round_up(offset, sb->s_blocksize);
4163 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4164
4165 /* Now release the pages and zero block aligned part of pages*/
4166 if (last_block_offset > first_block_offset) {
4167 ret = ext4_update_disksize_before_punch(inode, offset, length);
4168 if (ret)
4169 goto out_dio;
4170 truncate_pagecache_range(inode, first_block_offset,
4171 last_block_offset);
4172 }
4173
4174 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4175 credits = ext4_writepage_trans_blocks(inode);
4176 else
4177 credits = ext4_blocks_for_truncate(inode);
4178 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4179 if (IS_ERR(handle)) {
4180 ret = PTR_ERR(handle);
4181 ext4_std_error(sb, ret);
4182 goto out_dio;
4183 }
4184
4185 ret = ext4_zero_partial_blocks(handle, inode, offset,
4186 length);
4187 if (ret)
4188 goto out_stop;
4189
4190 first_block = (offset + sb->s_blocksize - 1) >>
4191 EXT4_BLOCK_SIZE_BITS(sb);
4192 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4193
4194 /* If there are no blocks to remove, return now */
4195 if (first_block >= stop_block)
4196 goto out_stop;
4197
4198 down_write(&EXT4_I(inode)->i_data_sem);
4199 ext4_discard_preallocations(inode);
4200
4201 ret = ext4_es_remove_extent(inode, first_block,
4202 stop_block - first_block);
4203 if (ret) {
4204 up_write(&EXT4_I(inode)->i_data_sem);
4205 goto out_stop;
4206 }
4207
4208 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4209 ret = ext4_ext_remove_space(inode, first_block,
4210 stop_block - 1);
4211 else
4212 ret = ext4_ind_remove_space(handle, inode, first_block,
4213 stop_block);
4214
4215 up_write(&EXT4_I(inode)->i_data_sem);
4216 if (IS_SYNC(inode))
4217 ext4_handle_sync(handle);
4218
4219 inode->i_mtime = inode->i_ctime = current_time(inode);
4220 ext4_mark_inode_dirty(handle, inode);
4221 if (ret >= 0)
4222 ext4_update_inode_fsync_trans(handle, inode, 1);
4223 out_stop:
4224 ext4_journal_stop(handle);
4225 out_dio:
4226 up_write(&EXT4_I(inode)->i_mmap_sem);
4227 ext4_inode_resume_unlocked_dio(inode);
4228 out_mutex:
4229 inode_unlock(inode);
4230 return ret;
4231 }
4232
4233 int ext4_inode_attach_jinode(struct inode *inode)
4234 {
4235 struct ext4_inode_info *ei = EXT4_I(inode);
4236 struct jbd2_inode *jinode;
4237
4238 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4239 return 0;
4240
4241 jinode = jbd2_alloc_inode(GFP_KERNEL);
4242 spin_lock(&inode->i_lock);
4243 if (!ei->jinode) {
4244 if (!jinode) {
4245 spin_unlock(&inode->i_lock);
4246 return -ENOMEM;
4247 }
4248 ei->jinode = jinode;
4249 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4250 jinode = NULL;
4251 }
4252 spin_unlock(&inode->i_lock);
4253 if (unlikely(jinode != NULL))
4254 jbd2_free_inode(jinode);
4255 return 0;
4256 }
4257
4258 /*
4259 * ext4_truncate()
4260 *
4261 * We block out ext4_get_block() block instantiations across the entire
4262 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4263 * simultaneously on behalf of the same inode.
4264 *
4265 * As we work through the truncate and commit bits of it to the journal there
4266 * is one core, guiding principle: the file's tree must always be consistent on
4267 * disk. We must be able to restart the truncate after a crash.
4268 *
4269 * The file's tree may be transiently inconsistent in memory (although it
4270 * probably isn't), but whenever we close off and commit a journal transaction,
4271 * the contents of (the filesystem + the journal) must be consistent and
4272 * restartable. It's pretty simple, really: bottom up, right to left (although
4273 * left-to-right works OK too).
4274 *
4275 * Note that at recovery time, journal replay occurs *before* the restart of
4276 * truncate against the orphan inode list.
4277 *
4278 * The committed inode has the new, desired i_size (which is the same as
4279 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4280 * that this inode's truncate did not complete and it will again call
4281 * ext4_truncate() to have another go. So there will be instantiated blocks
4282 * to the right of the truncation point in a crashed ext4 filesystem. But
4283 * that's fine - as long as they are linked from the inode, the post-crash
4284 * ext4_truncate() run will find them and release them.
4285 */
4286 int ext4_truncate(struct inode *inode)
4287 {
4288 struct ext4_inode_info *ei = EXT4_I(inode);
4289 unsigned int credits;
4290 int err = 0;
4291 handle_t *handle;
4292 struct address_space *mapping = inode->i_mapping;
4293
4294 /*
4295 * There is a possibility that we're either freeing the inode
4296 * or it's a completely new inode. In those cases we might not
4297 * have i_mutex locked because it's not necessary.
4298 */
4299 if (!(inode->i_state & (I_NEW|I_FREEING)))
4300 WARN_ON(!inode_is_locked(inode));
4301 trace_ext4_truncate_enter(inode);
4302
4303 if (!ext4_can_truncate(inode))
4304 return 0;
4305
4306 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4307
4308 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4309 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4310
4311 if (ext4_has_inline_data(inode)) {
4312 int has_inline = 1;
4313
4314 err = ext4_inline_data_truncate(inode, &has_inline);
4315 if (err)
4316 return err;
4317 if (has_inline)
4318 return 0;
4319 }
4320
4321 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4322 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4323 if (ext4_inode_attach_jinode(inode) < 0)
4324 return 0;
4325 }
4326
4327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4328 credits = ext4_writepage_trans_blocks(inode);
4329 else
4330 credits = ext4_blocks_for_truncate(inode);
4331
4332 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4333 if (IS_ERR(handle))
4334 return PTR_ERR(handle);
4335
4336 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4337 ext4_block_truncate_page(handle, mapping, inode->i_size);
4338
4339 /*
4340 * We add the inode to the orphan list, so that if this
4341 * truncate spans multiple transactions, and we crash, we will
4342 * resume the truncate when the filesystem recovers. It also
4343 * marks the inode dirty, to catch the new size.
4344 *
4345 * Implication: the file must always be in a sane, consistent
4346 * truncatable state while each transaction commits.
4347 */
4348 err = ext4_orphan_add(handle, inode);
4349 if (err)
4350 goto out_stop;
4351
4352 down_write(&EXT4_I(inode)->i_data_sem);
4353
4354 ext4_discard_preallocations(inode);
4355
4356 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4357 err = ext4_ext_truncate(handle, inode);
4358 else
4359 ext4_ind_truncate(handle, inode);
4360
4361 up_write(&ei->i_data_sem);
4362 if (err)
4363 goto out_stop;
4364
4365 if (IS_SYNC(inode))
4366 ext4_handle_sync(handle);
4367
4368 out_stop:
4369 /*
4370 * If this was a simple ftruncate() and the file will remain alive,
4371 * then we need to clear up the orphan record which we created above.
4372 * However, if this was a real unlink then we were called by
4373 * ext4_evict_inode(), and we allow that function to clean up the
4374 * orphan info for us.
4375 */
4376 if (inode->i_nlink)
4377 ext4_orphan_del(handle, inode);
4378
4379 inode->i_mtime = inode->i_ctime = current_time(inode);
4380 ext4_mark_inode_dirty(handle, inode);
4381 ext4_journal_stop(handle);
4382
4383 trace_ext4_truncate_exit(inode);
4384 return err;
4385 }
4386
4387 /*
4388 * ext4_get_inode_loc returns with an extra refcount against the inode's
4389 * underlying buffer_head on success. If 'in_mem' is true, we have all
4390 * data in memory that is needed to recreate the on-disk version of this
4391 * inode.
4392 */
4393 static int __ext4_get_inode_loc(struct inode *inode,
4394 struct ext4_iloc *iloc, int in_mem)
4395 {
4396 struct ext4_group_desc *gdp;
4397 struct buffer_head *bh;
4398 struct super_block *sb = inode->i_sb;
4399 ext4_fsblk_t block;
4400 int inodes_per_block, inode_offset;
4401
4402 iloc->bh = NULL;
4403 if (!ext4_valid_inum(sb, inode->i_ino))
4404 return -EFSCORRUPTED;
4405
4406 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4407 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4408 if (!gdp)
4409 return -EIO;
4410
4411 /*
4412 * Figure out the offset within the block group inode table
4413 */
4414 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4415 inode_offset = ((inode->i_ino - 1) %
4416 EXT4_INODES_PER_GROUP(sb));
4417 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4418 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4419
4420 bh = sb_getblk(sb, block);
4421 if (unlikely(!bh))
4422 return -ENOMEM;
4423 if (!buffer_uptodate(bh)) {
4424 lock_buffer(bh);
4425
4426 /*
4427 * If the buffer has the write error flag, we have failed
4428 * to write out another inode in the same block. In this
4429 * case, we don't have to read the block because we may
4430 * read the old inode data successfully.
4431 */
4432 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4433 set_buffer_uptodate(bh);
4434
4435 if (buffer_uptodate(bh)) {
4436 /* someone brought it uptodate while we waited */
4437 unlock_buffer(bh);
4438 goto has_buffer;
4439 }
4440
4441 /*
4442 * If we have all information of the inode in memory and this
4443 * is the only valid inode in the block, we need not read the
4444 * block.
4445 */
4446 if (in_mem) {
4447 struct buffer_head *bitmap_bh;
4448 int i, start;
4449
4450 start = inode_offset & ~(inodes_per_block - 1);
4451
4452 /* Is the inode bitmap in cache? */
4453 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4454 if (unlikely(!bitmap_bh))
4455 goto make_io;
4456
4457 /*
4458 * If the inode bitmap isn't in cache then the
4459 * optimisation may end up performing two reads instead
4460 * of one, so skip it.
4461 */
4462 if (!buffer_uptodate(bitmap_bh)) {
4463 brelse(bitmap_bh);
4464 goto make_io;
4465 }
4466 for (i = start; i < start + inodes_per_block; i++) {
4467 if (i == inode_offset)
4468 continue;
4469 if (ext4_test_bit(i, bitmap_bh->b_data))
4470 break;
4471 }
4472 brelse(bitmap_bh);
4473 if (i == start + inodes_per_block) {
4474 /* all other inodes are free, so skip I/O */
4475 memset(bh->b_data, 0, bh->b_size);
4476 set_buffer_uptodate(bh);
4477 unlock_buffer(bh);
4478 goto has_buffer;
4479 }
4480 }
4481
4482 make_io:
4483 /*
4484 * If we need to do any I/O, try to pre-readahead extra
4485 * blocks from the inode table.
4486 */
4487 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4488 ext4_fsblk_t b, end, table;
4489 unsigned num;
4490 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4491
4492 table = ext4_inode_table(sb, gdp);
4493 /* s_inode_readahead_blks is always a power of 2 */
4494 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4495 if (table > b)
4496 b = table;
4497 end = b + ra_blks;
4498 num = EXT4_INODES_PER_GROUP(sb);
4499 if (ext4_has_group_desc_csum(sb))
4500 num -= ext4_itable_unused_count(sb, gdp);
4501 table += num / inodes_per_block;
4502 if (end > table)
4503 end = table;
4504 while (b <= end)
4505 sb_breadahead(sb, b++);
4506 }
4507
4508 /*
4509 * There are other valid inodes in the buffer, this inode
4510 * has in-inode xattrs, or we don't have this inode in memory.
4511 * Read the block from disk.
4512 */
4513 trace_ext4_load_inode(inode);
4514 get_bh(bh);
4515 bh->b_end_io = end_buffer_read_sync;
4516 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4517 wait_on_buffer(bh);
4518 if (!buffer_uptodate(bh)) {
4519 EXT4_ERROR_INODE_BLOCK(inode, block,
4520 "unable to read itable block");
4521 brelse(bh);
4522 return -EIO;
4523 }
4524 }
4525 has_buffer:
4526 iloc->bh = bh;
4527 return 0;
4528 }
4529
4530 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4531 {
4532 /* We have all inode data except xattrs in memory here. */
4533 return __ext4_get_inode_loc(inode, iloc,
4534 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4535 }
4536
4537 void ext4_set_inode_flags(struct inode *inode)
4538 {
4539 unsigned int flags = EXT4_I(inode)->i_flags;
4540 unsigned int new_fl = 0;
4541
4542 if (flags & EXT4_SYNC_FL)
4543 new_fl |= S_SYNC;
4544 if (flags & EXT4_APPEND_FL)
4545 new_fl |= S_APPEND;
4546 if (flags & EXT4_IMMUTABLE_FL)
4547 new_fl |= S_IMMUTABLE;
4548 if (flags & EXT4_NOATIME_FL)
4549 new_fl |= S_NOATIME;
4550 if (flags & EXT4_DIRSYNC_FL)
4551 new_fl |= S_DIRSYNC;
4552 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4553 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4554 !ext4_encrypted_inode(inode))
4555 new_fl |= S_DAX;
4556 inode_set_flags(inode, new_fl,
4557 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4558 }
4559
4560 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4561 struct ext4_inode_info *ei)
4562 {
4563 blkcnt_t i_blocks ;
4564 struct inode *inode = &(ei->vfs_inode);
4565 struct super_block *sb = inode->i_sb;
4566
4567 if (ext4_has_feature_huge_file(sb)) {
4568 /* we are using combined 48 bit field */
4569 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4570 le32_to_cpu(raw_inode->i_blocks_lo);
4571 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4572 /* i_blocks represent file system block size */
4573 return i_blocks << (inode->i_blkbits - 9);
4574 } else {
4575 return i_blocks;
4576 }
4577 } else {
4578 return le32_to_cpu(raw_inode->i_blocks_lo);
4579 }
4580 }
4581
4582 static inline void ext4_iget_extra_inode(struct inode *inode,
4583 struct ext4_inode *raw_inode,
4584 struct ext4_inode_info *ei)
4585 {
4586 __le32 *magic = (void *)raw_inode +
4587 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4588 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4589 EXT4_INODE_SIZE(inode->i_sb) &&
4590 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4591 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4592 ext4_find_inline_data_nolock(inode);
4593 } else
4594 EXT4_I(inode)->i_inline_off = 0;
4595 }
4596
4597 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4598 {
4599 if (!ext4_has_feature_project(inode->i_sb))
4600 return -EOPNOTSUPP;
4601 *projid = EXT4_I(inode)->i_projid;
4602 return 0;
4603 }
4604
4605 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4606 {
4607 struct ext4_iloc iloc;
4608 struct ext4_inode *raw_inode;
4609 struct ext4_inode_info *ei;
4610 struct inode *inode;
4611 journal_t *journal = EXT4_SB(sb)->s_journal;
4612 long ret;
4613 loff_t size;
4614 int block;
4615 uid_t i_uid;
4616 gid_t i_gid;
4617 projid_t i_projid;
4618
4619 inode = iget_locked(sb, ino);
4620 if (!inode)
4621 return ERR_PTR(-ENOMEM);
4622 if (!(inode->i_state & I_NEW))
4623 return inode;
4624
4625 ei = EXT4_I(inode);
4626 iloc.bh = NULL;
4627
4628 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4629 if (ret < 0)
4630 goto bad_inode;
4631 raw_inode = ext4_raw_inode(&iloc);
4632
4633 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4634 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4635 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4636 EXT4_INODE_SIZE(inode->i_sb) ||
4637 (ei->i_extra_isize & 3)) {
4638 EXT4_ERROR_INODE(inode,
4639 "bad extra_isize %u (inode size %u)",
4640 ei->i_extra_isize,
4641 EXT4_INODE_SIZE(inode->i_sb));
4642 ret = -EFSCORRUPTED;
4643 goto bad_inode;
4644 }
4645 } else
4646 ei->i_extra_isize = 0;
4647
4648 /* Precompute checksum seed for inode metadata */
4649 if (ext4_has_metadata_csum(sb)) {
4650 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4651 __u32 csum;
4652 __le32 inum = cpu_to_le32(inode->i_ino);
4653 __le32 gen = raw_inode->i_generation;
4654 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4655 sizeof(inum));
4656 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4657 sizeof(gen));
4658 }
4659
4660 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4661 EXT4_ERROR_INODE(inode, "checksum invalid");
4662 ret = -EFSBADCRC;
4663 goto bad_inode;
4664 }
4665
4666 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4667 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4668 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4669 if (ext4_has_feature_project(sb) &&
4670 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4671 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4672 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4673 else
4674 i_projid = EXT4_DEF_PROJID;
4675
4676 if (!(test_opt(inode->i_sb, NO_UID32))) {
4677 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4678 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4679 }
4680 i_uid_write(inode, i_uid);
4681 i_gid_write(inode, i_gid);
4682 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4683 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4684
4685 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4686 ei->i_inline_off = 0;
4687 ei->i_dir_start_lookup = 0;
4688 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4689 /* We now have enough fields to check if the inode was active or not.
4690 * This is needed because nfsd might try to access dead inodes
4691 * the test is that same one that e2fsck uses
4692 * NeilBrown 1999oct15
4693 */
4694 if (inode->i_nlink == 0) {
4695 if ((inode->i_mode == 0 ||
4696 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4697 ino != EXT4_BOOT_LOADER_INO) {
4698 /* this inode is deleted */
4699 ret = -ESTALE;
4700 goto bad_inode;
4701 }
4702 /* The only unlinked inodes we let through here have
4703 * valid i_mode and are being read by the orphan
4704 * recovery code: that's fine, we're about to complete
4705 * the process of deleting those.
4706 * OR it is the EXT4_BOOT_LOADER_INO which is
4707 * not initialized on a new filesystem. */
4708 }
4709 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4710 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4711 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4712 if (ext4_has_feature_64bit(sb))
4713 ei->i_file_acl |=
4714 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4715 inode->i_size = ext4_isize(raw_inode);
4716 if ((size = i_size_read(inode)) < 0) {
4717 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4718 ret = -EFSCORRUPTED;
4719 goto bad_inode;
4720 }
4721 ei->i_disksize = inode->i_size;
4722 #ifdef CONFIG_QUOTA
4723 ei->i_reserved_quota = 0;
4724 #endif
4725 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4726 ei->i_block_group = iloc.block_group;
4727 ei->i_last_alloc_group = ~0;
4728 /*
4729 * NOTE! The in-memory inode i_data array is in little-endian order
4730 * even on big-endian machines: we do NOT byteswap the block numbers!
4731 */
4732 for (block = 0; block < EXT4_N_BLOCKS; block++)
4733 ei->i_data[block] = raw_inode->i_block[block];
4734 INIT_LIST_HEAD(&ei->i_orphan);
4735
4736 /*
4737 * Set transaction id's of transactions that have to be committed
4738 * to finish f[data]sync. We set them to currently running transaction
4739 * as we cannot be sure that the inode or some of its metadata isn't
4740 * part of the transaction - the inode could have been reclaimed and
4741 * now it is reread from disk.
4742 */
4743 if (journal) {
4744 transaction_t *transaction;
4745 tid_t tid;
4746
4747 read_lock(&journal->j_state_lock);
4748 if (journal->j_running_transaction)
4749 transaction = journal->j_running_transaction;
4750 else
4751 transaction = journal->j_committing_transaction;
4752 if (transaction)
4753 tid = transaction->t_tid;
4754 else
4755 tid = journal->j_commit_sequence;
4756 read_unlock(&journal->j_state_lock);
4757 ei->i_sync_tid = tid;
4758 ei->i_datasync_tid = tid;
4759 }
4760
4761 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4762 if (ei->i_extra_isize == 0) {
4763 /* The extra space is currently unused. Use it. */
4764 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4765 ei->i_extra_isize = sizeof(struct ext4_inode) -
4766 EXT4_GOOD_OLD_INODE_SIZE;
4767 } else {
4768 ext4_iget_extra_inode(inode, raw_inode, ei);
4769 }
4770 }
4771
4772 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4773 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4774 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4775 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4776
4777 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4778 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4779 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4780 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4781 inode->i_version |=
4782 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4783 }
4784 }
4785
4786 ret = 0;
4787 if (ei->i_file_acl &&
4788 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4789 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4790 ei->i_file_acl);
4791 ret = -EFSCORRUPTED;
4792 goto bad_inode;
4793 } else if (!ext4_has_inline_data(inode)) {
4794 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4795 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4796 (S_ISLNK(inode->i_mode) &&
4797 !ext4_inode_is_fast_symlink(inode))))
4798 /* Validate extent which is part of inode */
4799 ret = ext4_ext_check_inode(inode);
4800 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4801 (S_ISLNK(inode->i_mode) &&
4802 !ext4_inode_is_fast_symlink(inode))) {
4803 /* Validate block references which are part of inode */
4804 ret = ext4_ind_check_inode(inode);
4805 }
4806 }
4807 if (ret)
4808 goto bad_inode;
4809
4810 if (S_ISREG(inode->i_mode)) {
4811 inode->i_op = &ext4_file_inode_operations;
4812 inode->i_fop = &ext4_file_operations;
4813 ext4_set_aops(inode);
4814 } else if (S_ISDIR(inode->i_mode)) {
4815 inode->i_op = &ext4_dir_inode_operations;
4816 inode->i_fop = &ext4_dir_operations;
4817 } else if (S_ISLNK(inode->i_mode)) {
4818 if (ext4_encrypted_inode(inode)) {
4819 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4820 ext4_set_aops(inode);
4821 } else if (ext4_inode_is_fast_symlink(inode)) {
4822 inode->i_link = (char *)ei->i_data;
4823 inode->i_op = &ext4_fast_symlink_inode_operations;
4824 nd_terminate_link(ei->i_data, inode->i_size,
4825 sizeof(ei->i_data) - 1);
4826 } else {
4827 inode->i_op = &ext4_symlink_inode_operations;
4828 ext4_set_aops(inode);
4829 }
4830 inode_nohighmem(inode);
4831 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4832 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4833 inode->i_op = &ext4_special_inode_operations;
4834 if (raw_inode->i_block[0])
4835 init_special_inode(inode, inode->i_mode,
4836 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4837 else
4838 init_special_inode(inode, inode->i_mode,
4839 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4840 } else if (ino == EXT4_BOOT_LOADER_INO) {
4841 make_bad_inode(inode);
4842 } else {
4843 ret = -EFSCORRUPTED;
4844 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4845 goto bad_inode;
4846 }
4847 brelse(iloc.bh);
4848 ext4_set_inode_flags(inode);
4849 unlock_new_inode(inode);
4850 return inode;
4851
4852 bad_inode:
4853 brelse(iloc.bh);
4854 iget_failed(inode);
4855 return ERR_PTR(ret);
4856 }
4857
4858 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4859 {
4860 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4861 return ERR_PTR(-EFSCORRUPTED);
4862 return ext4_iget(sb, ino);
4863 }
4864
4865 static int ext4_inode_blocks_set(handle_t *handle,
4866 struct ext4_inode *raw_inode,
4867 struct ext4_inode_info *ei)
4868 {
4869 struct inode *inode = &(ei->vfs_inode);
4870 u64 i_blocks = inode->i_blocks;
4871 struct super_block *sb = inode->i_sb;
4872
4873 if (i_blocks <= ~0U) {
4874 /*
4875 * i_blocks can be represented in a 32 bit variable
4876 * as multiple of 512 bytes
4877 */
4878 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4879 raw_inode->i_blocks_high = 0;
4880 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4881 return 0;
4882 }
4883 if (!ext4_has_feature_huge_file(sb))
4884 return -EFBIG;
4885
4886 if (i_blocks <= 0xffffffffffffULL) {
4887 /*
4888 * i_blocks can be represented in a 48 bit variable
4889 * as multiple of 512 bytes
4890 */
4891 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4892 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4893 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4894 } else {
4895 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4896 /* i_block is stored in file system block size */
4897 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4898 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4899 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4900 }
4901 return 0;
4902 }
4903
4904 struct other_inode {
4905 unsigned long orig_ino;
4906 struct ext4_inode *raw_inode;
4907 };
4908
4909 static int other_inode_match(struct inode * inode, unsigned long ino,
4910 void *data)
4911 {
4912 struct other_inode *oi = (struct other_inode *) data;
4913
4914 if ((inode->i_ino != ino) ||
4915 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4916 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4917 ((inode->i_state & I_DIRTY_TIME) == 0))
4918 return 0;
4919 spin_lock(&inode->i_lock);
4920 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4921 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4922 (inode->i_state & I_DIRTY_TIME)) {
4923 struct ext4_inode_info *ei = EXT4_I(inode);
4924
4925 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4926 spin_unlock(&inode->i_lock);
4927
4928 spin_lock(&ei->i_raw_lock);
4929 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4930 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4931 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4932 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4933 spin_unlock(&ei->i_raw_lock);
4934 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4935 return -1;
4936 }
4937 spin_unlock(&inode->i_lock);
4938 return -1;
4939 }
4940
4941 /*
4942 * Opportunistically update the other time fields for other inodes in
4943 * the same inode table block.
4944 */
4945 static void ext4_update_other_inodes_time(struct super_block *sb,
4946 unsigned long orig_ino, char *buf)
4947 {
4948 struct other_inode oi;
4949 unsigned long ino;
4950 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4951 int inode_size = EXT4_INODE_SIZE(sb);
4952
4953 oi.orig_ino = orig_ino;
4954 /*
4955 * Calculate the first inode in the inode table block. Inode
4956 * numbers are one-based. That is, the first inode in a block
4957 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4958 */
4959 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4960 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4961 if (ino == orig_ino)
4962 continue;
4963 oi.raw_inode = (struct ext4_inode *) buf;
4964 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4965 }
4966 }
4967
4968 /*
4969 * Post the struct inode info into an on-disk inode location in the
4970 * buffer-cache. This gobbles the caller's reference to the
4971 * buffer_head in the inode location struct.
4972 *
4973 * The caller must have write access to iloc->bh.
4974 */
4975 static int ext4_do_update_inode(handle_t *handle,
4976 struct inode *inode,
4977 struct ext4_iloc *iloc)
4978 {
4979 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4980 struct ext4_inode_info *ei = EXT4_I(inode);
4981 struct buffer_head *bh = iloc->bh;
4982 struct super_block *sb = inode->i_sb;
4983 int err = 0, rc, block;
4984 int need_datasync = 0, set_large_file = 0;
4985 uid_t i_uid;
4986 gid_t i_gid;
4987 projid_t i_projid;
4988
4989 spin_lock(&ei->i_raw_lock);
4990
4991 /* For fields not tracked in the in-memory inode,
4992 * initialise them to zero for new inodes. */
4993 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4994 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4995
4996 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4997 i_uid = i_uid_read(inode);
4998 i_gid = i_gid_read(inode);
4999 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5000 if (!(test_opt(inode->i_sb, NO_UID32))) {
5001 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5002 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5003 /*
5004 * Fix up interoperability with old kernels. Otherwise, old inodes get
5005 * re-used with the upper 16 bits of the uid/gid intact
5006 */
5007 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5008 raw_inode->i_uid_high = 0;
5009 raw_inode->i_gid_high = 0;
5010 } else {
5011 raw_inode->i_uid_high =
5012 cpu_to_le16(high_16_bits(i_uid));
5013 raw_inode->i_gid_high =
5014 cpu_to_le16(high_16_bits(i_gid));
5015 }
5016 } else {
5017 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5018 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5019 raw_inode->i_uid_high = 0;
5020 raw_inode->i_gid_high = 0;
5021 }
5022 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5023
5024 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5025 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5026 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5027 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5028
5029 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5030 if (err) {
5031 spin_unlock(&ei->i_raw_lock);
5032 goto out_brelse;
5033 }
5034 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5035 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5036 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5037 raw_inode->i_file_acl_high =
5038 cpu_to_le16(ei->i_file_acl >> 32);
5039 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5040 if (ei->i_disksize != ext4_isize(raw_inode)) {
5041 ext4_isize_set(raw_inode, ei->i_disksize);
5042 need_datasync = 1;
5043 }
5044 if (ei->i_disksize > 0x7fffffffULL) {
5045 if (!ext4_has_feature_large_file(sb) ||
5046 EXT4_SB(sb)->s_es->s_rev_level ==
5047 cpu_to_le32(EXT4_GOOD_OLD_REV))
5048 set_large_file = 1;
5049 }
5050 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5051 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5052 if (old_valid_dev(inode->i_rdev)) {
5053 raw_inode->i_block[0] =
5054 cpu_to_le32(old_encode_dev(inode->i_rdev));
5055 raw_inode->i_block[1] = 0;
5056 } else {
5057 raw_inode->i_block[0] = 0;
5058 raw_inode->i_block[1] =
5059 cpu_to_le32(new_encode_dev(inode->i_rdev));
5060 raw_inode->i_block[2] = 0;
5061 }
5062 } else if (!ext4_has_inline_data(inode)) {
5063 for (block = 0; block < EXT4_N_BLOCKS; block++)
5064 raw_inode->i_block[block] = ei->i_data[block];
5065 }
5066
5067 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5068 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5069 if (ei->i_extra_isize) {
5070 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5071 raw_inode->i_version_hi =
5072 cpu_to_le32(inode->i_version >> 32);
5073 raw_inode->i_extra_isize =
5074 cpu_to_le16(ei->i_extra_isize);
5075 }
5076 }
5077
5078 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5079 i_projid != EXT4_DEF_PROJID);
5080
5081 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5082 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5083 raw_inode->i_projid = cpu_to_le32(i_projid);
5084
5085 ext4_inode_csum_set(inode, raw_inode, ei);
5086 spin_unlock(&ei->i_raw_lock);
5087 if (inode->i_sb->s_flags & MS_LAZYTIME)
5088 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5089 bh->b_data);
5090
5091 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5092 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5093 if (!err)
5094 err = rc;
5095 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5096 if (set_large_file) {
5097 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5098 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5099 if (err)
5100 goto out_brelse;
5101 ext4_update_dynamic_rev(sb);
5102 ext4_set_feature_large_file(sb);
5103 ext4_handle_sync(handle);
5104 err = ext4_handle_dirty_super(handle, sb);
5105 }
5106 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5107 out_brelse:
5108 brelse(bh);
5109 ext4_std_error(inode->i_sb, err);
5110 return err;
5111 }
5112
5113 /*
5114 * ext4_write_inode()
5115 *
5116 * We are called from a few places:
5117 *
5118 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5119 * Here, there will be no transaction running. We wait for any running
5120 * transaction to commit.
5121 *
5122 * - Within flush work (sys_sync(), kupdate and such).
5123 * We wait on commit, if told to.
5124 *
5125 * - Within iput_final() -> write_inode_now()
5126 * We wait on commit, if told to.
5127 *
5128 * In all cases it is actually safe for us to return without doing anything,
5129 * because the inode has been copied into a raw inode buffer in
5130 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5131 * writeback.
5132 *
5133 * Note that we are absolutely dependent upon all inode dirtiers doing the
5134 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5135 * which we are interested.
5136 *
5137 * It would be a bug for them to not do this. The code:
5138 *
5139 * mark_inode_dirty(inode)
5140 * stuff();
5141 * inode->i_size = expr;
5142 *
5143 * is in error because write_inode() could occur while `stuff()' is running,
5144 * and the new i_size will be lost. Plus the inode will no longer be on the
5145 * superblock's dirty inode list.
5146 */
5147 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5148 {
5149 int err;
5150
5151 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5152 return 0;
5153
5154 if (EXT4_SB(inode->i_sb)->s_journal) {
5155 if (ext4_journal_current_handle()) {
5156 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5157 dump_stack();
5158 return -EIO;
5159 }
5160
5161 /*
5162 * No need to force transaction in WB_SYNC_NONE mode. Also
5163 * ext4_sync_fs() will force the commit after everything is
5164 * written.
5165 */
5166 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5167 return 0;
5168
5169 err = ext4_force_commit(inode->i_sb);
5170 } else {
5171 struct ext4_iloc iloc;
5172
5173 err = __ext4_get_inode_loc(inode, &iloc, 0);
5174 if (err)
5175 return err;
5176 /*
5177 * sync(2) will flush the whole buffer cache. No need to do
5178 * it here separately for each inode.
5179 */
5180 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5181 sync_dirty_buffer(iloc.bh);
5182 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5183 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5184 "IO error syncing inode");
5185 err = -EIO;
5186 }
5187 brelse(iloc.bh);
5188 }
5189 return err;
5190 }
5191
5192 /*
5193 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5194 * buffers that are attached to a page stradding i_size and are undergoing
5195 * commit. In that case we have to wait for commit to finish and try again.
5196 */
5197 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5198 {
5199 struct page *page;
5200 unsigned offset;
5201 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5202 tid_t commit_tid = 0;
5203 int ret;
5204
5205 offset = inode->i_size & (PAGE_SIZE - 1);
5206 /*
5207 * All buffers in the last page remain valid? Then there's nothing to
5208 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5209 * blocksize case
5210 */
5211 if (offset > PAGE_SIZE - i_blocksize(inode))
5212 return;
5213 while (1) {
5214 page = find_lock_page(inode->i_mapping,
5215 inode->i_size >> PAGE_SHIFT);
5216 if (!page)
5217 return;
5218 ret = __ext4_journalled_invalidatepage(page, offset,
5219 PAGE_SIZE - offset);
5220 unlock_page(page);
5221 put_page(page);
5222 if (ret != -EBUSY)
5223 return;
5224 commit_tid = 0;
5225 read_lock(&journal->j_state_lock);
5226 if (journal->j_committing_transaction)
5227 commit_tid = journal->j_committing_transaction->t_tid;
5228 read_unlock(&journal->j_state_lock);
5229 if (commit_tid)
5230 jbd2_log_wait_commit(journal, commit_tid);
5231 }
5232 }
5233
5234 /*
5235 * ext4_setattr()
5236 *
5237 * Called from notify_change.
5238 *
5239 * We want to trap VFS attempts to truncate the file as soon as
5240 * possible. In particular, we want to make sure that when the VFS
5241 * shrinks i_size, we put the inode on the orphan list and modify
5242 * i_disksize immediately, so that during the subsequent flushing of
5243 * dirty pages and freeing of disk blocks, we can guarantee that any
5244 * commit will leave the blocks being flushed in an unused state on
5245 * disk. (On recovery, the inode will get truncated and the blocks will
5246 * be freed, so we have a strong guarantee that no future commit will
5247 * leave these blocks visible to the user.)
5248 *
5249 * Another thing we have to assure is that if we are in ordered mode
5250 * and inode is still attached to the committing transaction, we must
5251 * we start writeout of all the dirty pages which are being truncated.
5252 * This way we are sure that all the data written in the previous
5253 * transaction are already on disk (truncate waits for pages under
5254 * writeback).
5255 *
5256 * Called with inode->i_mutex down.
5257 */
5258 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5259 {
5260 struct inode *inode = d_inode(dentry);
5261 int error, rc = 0;
5262 int orphan = 0;
5263 const unsigned int ia_valid = attr->ia_valid;
5264
5265 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5266 return -EIO;
5267
5268 error = setattr_prepare(dentry, attr);
5269 if (error)
5270 return error;
5271
5272 if (is_quota_modification(inode, attr)) {
5273 error = dquot_initialize(inode);
5274 if (error)
5275 return error;
5276 }
5277 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5278 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5279 handle_t *handle;
5280
5281 /* (user+group)*(old+new) structure, inode write (sb,
5282 * inode block, ? - but truncate inode update has it) */
5283 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5284 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5285 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5286 if (IS_ERR(handle)) {
5287 error = PTR_ERR(handle);
5288 goto err_out;
5289 }
5290 error = dquot_transfer(inode, attr);
5291 if (error) {
5292 ext4_journal_stop(handle);
5293 return error;
5294 }
5295 /* Update corresponding info in inode so that everything is in
5296 * one transaction */
5297 if (attr->ia_valid & ATTR_UID)
5298 inode->i_uid = attr->ia_uid;
5299 if (attr->ia_valid & ATTR_GID)
5300 inode->i_gid = attr->ia_gid;
5301 error = ext4_mark_inode_dirty(handle, inode);
5302 ext4_journal_stop(handle);
5303 }
5304
5305 if (attr->ia_valid & ATTR_SIZE) {
5306 handle_t *handle;
5307 loff_t oldsize = inode->i_size;
5308 int shrink = (attr->ia_size <= inode->i_size);
5309
5310 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5311 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5312
5313 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5314 return -EFBIG;
5315 }
5316 if (!S_ISREG(inode->i_mode))
5317 return -EINVAL;
5318
5319 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5320 inode_inc_iversion(inode);
5321
5322 if (ext4_should_order_data(inode) &&
5323 (attr->ia_size < inode->i_size)) {
5324 error = ext4_begin_ordered_truncate(inode,
5325 attr->ia_size);
5326 if (error)
5327 goto err_out;
5328 }
5329 if (attr->ia_size != inode->i_size) {
5330 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5331 if (IS_ERR(handle)) {
5332 error = PTR_ERR(handle);
5333 goto err_out;
5334 }
5335 if (ext4_handle_valid(handle) && shrink) {
5336 error = ext4_orphan_add(handle, inode);
5337 orphan = 1;
5338 }
5339 /*
5340 * Update c/mtime on truncate up, ext4_truncate() will
5341 * update c/mtime in shrink case below
5342 */
5343 if (!shrink) {
5344 inode->i_mtime = current_time(inode);
5345 inode->i_ctime = inode->i_mtime;
5346 }
5347 down_write(&EXT4_I(inode)->i_data_sem);
5348 EXT4_I(inode)->i_disksize = attr->ia_size;
5349 rc = ext4_mark_inode_dirty(handle, inode);
5350 if (!error)
5351 error = rc;
5352 /*
5353 * We have to update i_size under i_data_sem together
5354 * with i_disksize to avoid races with writeback code
5355 * running ext4_wb_update_i_disksize().
5356 */
5357 if (!error)
5358 i_size_write(inode, attr->ia_size);
5359 up_write(&EXT4_I(inode)->i_data_sem);
5360 ext4_journal_stop(handle);
5361 if (error) {
5362 if (orphan)
5363 ext4_orphan_del(NULL, inode);
5364 goto err_out;
5365 }
5366 }
5367 if (!shrink)
5368 pagecache_isize_extended(inode, oldsize, inode->i_size);
5369
5370 /*
5371 * Blocks are going to be removed from the inode. Wait
5372 * for dio in flight. Temporarily disable
5373 * dioread_nolock to prevent livelock.
5374 */
5375 if (orphan) {
5376 if (!ext4_should_journal_data(inode)) {
5377 ext4_inode_block_unlocked_dio(inode);
5378 inode_dio_wait(inode);
5379 ext4_inode_resume_unlocked_dio(inode);
5380 } else
5381 ext4_wait_for_tail_page_commit(inode);
5382 }
5383 down_write(&EXT4_I(inode)->i_mmap_sem);
5384 /*
5385 * Truncate pagecache after we've waited for commit
5386 * in data=journal mode to make pages freeable.
5387 */
5388 truncate_pagecache(inode, inode->i_size);
5389 if (shrink) {
5390 rc = ext4_truncate(inode);
5391 if (rc)
5392 error = rc;
5393 }
5394 up_write(&EXT4_I(inode)->i_mmap_sem);
5395 }
5396
5397 if (!error) {
5398 setattr_copy(inode, attr);
5399 mark_inode_dirty(inode);
5400 }
5401
5402 /*
5403 * If the call to ext4_truncate failed to get a transaction handle at
5404 * all, we need to clean up the in-core orphan list manually.
5405 */
5406 if (orphan && inode->i_nlink)
5407 ext4_orphan_del(NULL, inode);
5408
5409 if (!error && (ia_valid & ATTR_MODE))
5410 rc = posix_acl_chmod(inode, inode->i_mode);
5411
5412 err_out:
5413 ext4_std_error(inode->i_sb, error);
5414 if (!error)
5415 error = rc;
5416 return error;
5417 }
5418
5419 int ext4_getattr(const struct path *path, struct kstat *stat,
5420 u32 request_mask, unsigned int query_flags)
5421 {
5422 struct inode *inode = d_inode(path->dentry);
5423 struct ext4_inode *raw_inode;
5424 struct ext4_inode_info *ei = EXT4_I(inode);
5425 unsigned int flags;
5426
5427 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5428 stat->result_mask |= STATX_BTIME;
5429 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5430 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5431 }
5432
5433 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5434 if (flags & EXT4_APPEND_FL)
5435 stat->attributes |= STATX_ATTR_APPEND;
5436 if (flags & EXT4_COMPR_FL)
5437 stat->attributes |= STATX_ATTR_COMPRESSED;
5438 if (flags & EXT4_ENCRYPT_FL)
5439 stat->attributes |= STATX_ATTR_ENCRYPTED;
5440 if (flags & EXT4_IMMUTABLE_FL)
5441 stat->attributes |= STATX_ATTR_IMMUTABLE;
5442 if (flags & EXT4_NODUMP_FL)
5443 stat->attributes |= STATX_ATTR_NODUMP;
5444
5445 stat->attributes_mask |= (STATX_ATTR_APPEND |
5446 STATX_ATTR_COMPRESSED |
5447 STATX_ATTR_ENCRYPTED |
5448 STATX_ATTR_IMMUTABLE |
5449 STATX_ATTR_NODUMP);
5450
5451 generic_fillattr(inode, stat);
5452 return 0;
5453 }
5454
5455 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5456 u32 request_mask, unsigned int query_flags)
5457 {
5458 struct inode *inode = d_inode(path->dentry);
5459 u64 delalloc_blocks;
5460
5461 ext4_getattr(path, stat, request_mask, query_flags);
5462
5463 /*
5464 * If there is inline data in the inode, the inode will normally not
5465 * have data blocks allocated (it may have an external xattr block).
5466 * Report at least one sector for such files, so tools like tar, rsync,
5467 * others don't incorrectly think the file is completely sparse.
5468 */
5469 if (unlikely(ext4_has_inline_data(inode)))
5470 stat->blocks += (stat->size + 511) >> 9;
5471
5472 /*
5473 * We can't update i_blocks if the block allocation is delayed
5474 * otherwise in the case of system crash before the real block
5475 * allocation is done, we will have i_blocks inconsistent with
5476 * on-disk file blocks.
5477 * We always keep i_blocks updated together with real
5478 * allocation. But to not confuse with user, stat
5479 * will return the blocks that include the delayed allocation
5480 * blocks for this file.
5481 */
5482 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5483 EXT4_I(inode)->i_reserved_data_blocks);
5484 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5485 return 0;
5486 }
5487
5488 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5489 int pextents)
5490 {
5491 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5492 return ext4_ind_trans_blocks(inode, lblocks);
5493 return ext4_ext_index_trans_blocks(inode, pextents);
5494 }
5495
5496 /*
5497 * Account for index blocks, block groups bitmaps and block group
5498 * descriptor blocks if modify datablocks and index blocks
5499 * worse case, the indexs blocks spread over different block groups
5500 *
5501 * If datablocks are discontiguous, they are possible to spread over
5502 * different block groups too. If they are contiguous, with flexbg,
5503 * they could still across block group boundary.
5504 *
5505 * Also account for superblock, inode, quota and xattr blocks
5506 */
5507 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5508 int pextents)
5509 {
5510 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5511 int gdpblocks;
5512 int idxblocks;
5513 int ret = 0;
5514
5515 /*
5516 * How many index blocks need to touch to map @lblocks logical blocks
5517 * to @pextents physical extents?
5518 */
5519 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5520
5521 ret = idxblocks;
5522
5523 /*
5524 * Now let's see how many group bitmaps and group descriptors need
5525 * to account
5526 */
5527 groups = idxblocks + pextents;
5528 gdpblocks = groups;
5529 if (groups > ngroups)
5530 groups = ngroups;
5531 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5532 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5533
5534 /* bitmaps and block group descriptor blocks */
5535 ret += groups + gdpblocks;
5536
5537 /* Blocks for super block, inode, quota and xattr blocks */
5538 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5539
5540 return ret;
5541 }
5542
5543 /*
5544 * Calculate the total number of credits to reserve to fit
5545 * the modification of a single pages into a single transaction,
5546 * which may include multiple chunks of block allocations.
5547 *
5548 * This could be called via ext4_write_begin()
5549 *
5550 * We need to consider the worse case, when
5551 * one new block per extent.
5552 */
5553 int ext4_writepage_trans_blocks(struct inode *inode)
5554 {
5555 int bpp = ext4_journal_blocks_per_page(inode);
5556 int ret;
5557
5558 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5559
5560 /* Account for data blocks for journalled mode */
5561 if (ext4_should_journal_data(inode))
5562 ret += bpp;
5563 return ret;
5564 }
5565
5566 /*
5567 * Calculate the journal credits for a chunk of data modification.
5568 *
5569 * This is called from DIO, fallocate or whoever calling
5570 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5571 *
5572 * journal buffers for data blocks are not included here, as DIO
5573 * and fallocate do no need to journal data buffers.
5574 */
5575 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5576 {
5577 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5578 }
5579
5580 /*
5581 * The caller must have previously called ext4_reserve_inode_write().
5582 * Give this, we know that the caller already has write access to iloc->bh.
5583 */
5584 int ext4_mark_iloc_dirty(handle_t *handle,
5585 struct inode *inode, struct ext4_iloc *iloc)
5586 {
5587 int err = 0;
5588
5589 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5590 return -EIO;
5591
5592 if (IS_I_VERSION(inode))
5593 inode_inc_iversion(inode);
5594
5595 /* the do_update_inode consumes one bh->b_count */
5596 get_bh(iloc->bh);
5597
5598 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5599 err = ext4_do_update_inode(handle, inode, iloc);
5600 put_bh(iloc->bh);
5601 return err;
5602 }
5603
5604 /*
5605 * On success, We end up with an outstanding reference count against
5606 * iloc->bh. This _must_ be cleaned up later.
5607 */
5608
5609 int
5610 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5611 struct ext4_iloc *iloc)
5612 {
5613 int err;
5614
5615 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5616 return -EIO;
5617
5618 err = ext4_get_inode_loc(inode, iloc);
5619 if (!err) {
5620 BUFFER_TRACE(iloc->bh, "get_write_access");
5621 err = ext4_journal_get_write_access(handle, iloc->bh);
5622 if (err) {
5623 brelse(iloc->bh);
5624 iloc->bh = NULL;
5625 }
5626 }
5627 ext4_std_error(inode->i_sb, err);
5628 return err;
5629 }
5630
5631 /*
5632 * Expand an inode by new_extra_isize bytes.
5633 * Returns 0 on success or negative error number on failure.
5634 */
5635 static int ext4_expand_extra_isize(struct inode *inode,
5636 unsigned int new_extra_isize,
5637 struct ext4_iloc iloc,
5638 handle_t *handle)
5639 {
5640 struct ext4_inode *raw_inode;
5641 struct ext4_xattr_ibody_header *header;
5642
5643 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5644 return 0;
5645
5646 raw_inode = ext4_raw_inode(&iloc);
5647
5648 header = IHDR(inode, raw_inode);
5649
5650 /* No extended attributes present */
5651 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5652 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5653 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5654 EXT4_I(inode)->i_extra_isize, 0,
5655 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5656 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5657 return 0;
5658 }
5659
5660 /* try to expand with EAs present */
5661 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5662 raw_inode, handle);
5663 }
5664
5665 /*
5666 * What we do here is to mark the in-core inode as clean with respect to inode
5667 * dirtiness (it may still be data-dirty).
5668 * This means that the in-core inode may be reaped by prune_icache
5669 * without having to perform any I/O. This is a very good thing,
5670 * because *any* task may call prune_icache - even ones which
5671 * have a transaction open against a different journal.
5672 *
5673 * Is this cheating? Not really. Sure, we haven't written the
5674 * inode out, but prune_icache isn't a user-visible syncing function.
5675 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5676 * we start and wait on commits.
5677 */
5678 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5679 {
5680 struct ext4_iloc iloc;
5681 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5682 static unsigned int mnt_count;
5683 int err, ret;
5684
5685 might_sleep();
5686 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5687 err = ext4_reserve_inode_write(handle, inode, &iloc);
5688 if (err)
5689 return err;
5690 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5691 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5692 /*
5693 * In nojournal mode, we can immediately attempt to expand
5694 * the inode. When journaled, we first need to obtain extra
5695 * buffer credits since we may write into the EA block
5696 * with this same handle. If journal_extend fails, then it will
5697 * only result in a minor loss of functionality for that inode.
5698 * If this is felt to be critical, then e2fsck should be run to
5699 * force a large enough s_min_extra_isize.
5700 */
5701 if (!ext4_handle_valid(handle) ||
5702 jbd2_journal_extend(handle,
5703 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5704 ret = ext4_expand_extra_isize(inode,
5705 sbi->s_want_extra_isize,
5706 iloc, handle);
5707 if (ret) {
5708 if (mnt_count !=
5709 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5710 ext4_warning(inode->i_sb,
5711 "Unable to expand inode %lu. Delete"
5712 " some EAs or run e2fsck.",
5713 inode->i_ino);
5714 mnt_count =
5715 le16_to_cpu(sbi->s_es->s_mnt_count);
5716 }
5717 }
5718 }
5719 }
5720 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5721 }
5722
5723 /*
5724 * ext4_dirty_inode() is called from __mark_inode_dirty()
5725 *
5726 * We're really interested in the case where a file is being extended.
5727 * i_size has been changed by generic_commit_write() and we thus need
5728 * to include the updated inode in the current transaction.
5729 *
5730 * Also, dquot_alloc_block() will always dirty the inode when blocks
5731 * are allocated to the file.
5732 *
5733 * If the inode is marked synchronous, we don't honour that here - doing
5734 * so would cause a commit on atime updates, which we don't bother doing.
5735 * We handle synchronous inodes at the highest possible level.
5736 *
5737 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5738 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5739 * to copy into the on-disk inode structure are the timestamp files.
5740 */
5741 void ext4_dirty_inode(struct inode *inode, int flags)
5742 {
5743 handle_t *handle;
5744
5745 if (flags == I_DIRTY_TIME)
5746 return;
5747 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5748 if (IS_ERR(handle))
5749 goto out;
5750
5751 ext4_mark_inode_dirty(handle, inode);
5752
5753 ext4_journal_stop(handle);
5754 out:
5755 return;
5756 }
5757
5758 #if 0
5759 /*
5760 * Bind an inode's backing buffer_head into this transaction, to prevent
5761 * it from being flushed to disk early. Unlike
5762 * ext4_reserve_inode_write, this leaves behind no bh reference and
5763 * returns no iloc structure, so the caller needs to repeat the iloc
5764 * lookup to mark the inode dirty later.
5765 */
5766 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5767 {
5768 struct ext4_iloc iloc;
5769
5770 int err = 0;
5771 if (handle) {
5772 err = ext4_get_inode_loc(inode, &iloc);
5773 if (!err) {
5774 BUFFER_TRACE(iloc.bh, "get_write_access");
5775 err = jbd2_journal_get_write_access(handle, iloc.bh);
5776 if (!err)
5777 err = ext4_handle_dirty_metadata(handle,
5778 NULL,
5779 iloc.bh);
5780 brelse(iloc.bh);
5781 }
5782 }
5783 ext4_std_error(inode->i_sb, err);
5784 return err;
5785 }
5786 #endif
5787
5788 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5789 {
5790 journal_t *journal;
5791 handle_t *handle;
5792 int err;
5793 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5794
5795 /*
5796 * We have to be very careful here: changing a data block's
5797 * journaling status dynamically is dangerous. If we write a
5798 * data block to the journal, change the status and then delete
5799 * that block, we risk forgetting to revoke the old log record
5800 * from the journal and so a subsequent replay can corrupt data.
5801 * So, first we make sure that the journal is empty and that
5802 * nobody is changing anything.
5803 */
5804
5805 journal = EXT4_JOURNAL(inode);
5806 if (!journal)
5807 return 0;
5808 if (is_journal_aborted(journal))
5809 return -EROFS;
5810
5811 /* Wait for all existing dio workers */
5812 ext4_inode_block_unlocked_dio(inode);
5813 inode_dio_wait(inode);
5814
5815 /*
5816 * Before flushing the journal and switching inode's aops, we have
5817 * to flush all dirty data the inode has. There can be outstanding
5818 * delayed allocations, there can be unwritten extents created by
5819 * fallocate or buffered writes in dioread_nolock mode covered by
5820 * dirty data which can be converted only after flushing the dirty
5821 * data (and journalled aops don't know how to handle these cases).
5822 */
5823 if (val) {
5824 down_write(&EXT4_I(inode)->i_mmap_sem);
5825 err = filemap_write_and_wait(inode->i_mapping);
5826 if (err < 0) {
5827 up_write(&EXT4_I(inode)->i_mmap_sem);
5828 ext4_inode_resume_unlocked_dio(inode);
5829 return err;
5830 }
5831 }
5832
5833 percpu_down_write(&sbi->s_journal_flag_rwsem);
5834 jbd2_journal_lock_updates(journal);
5835
5836 /*
5837 * OK, there are no updates running now, and all cached data is
5838 * synced to disk. We are now in a completely consistent state
5839 * which doesn't have anything in the journal, and we know that
5840 * no filesystem updates are running, so it is safe to modify
5841 * the inode's in-core data-journaling state flag now.
5842 */
5843
5844 if (val)
5845 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5846 else {
5847 err = jbd2_journal_flush(journal);
5848 if (err < 0) {
5849 jbd2_journal_unlock_updates(journal);
5850 percpu_up_write(&sbi->s_journal_flag_rwsem);
5851 ext4_inode_resume_unlocked_dio(inode);
5852 return err;
5853 }
5854 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5855 }
5856 ext4_set_aops(inode);
5857 /*
5858 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5859 * E.g. S_DAX may get cleared / set.
5860 */
5861 ext4_set_inode_flags(inode);
5862
5863 jbd2_journal_unlock_updates(journal);
5864 percpu_up_write(&sbi->s_journal_flag_rwsem);
5865
5866 if (val)
5867 up_write(&EXT4_I(inode)->i_mmap_sem);
5868 ext4_inode_resume_unlocked_dio(inode);
5869
5870 /* Finally we can mark the inode as dirty. */
5871
5872 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5873 if (IS_ERR(handle))
5874 return PTR_ERR(handle);
5875
5876 err = ext4_mark_inode_dirty(handle, inode);
5877 ext4_handle_sync(handle);
5878 ext4_journal_stop(handle);
5879 ext4_std_error(inode->i_sb, err);
5880
5881 return err;
5882 }
5883
5884 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5885 {
5886 return !buffer_mapped(bh);
5887 }
5888
5889 int ext4_page_mkwrite(struct vm_fault *vmf)
5890 {
5891 struct vm_area_struct *vma = vmf->vma;
5892 struct page *page = vmf->page;
5893 loff_t size;
5894 unsigned long len;
5895 int ret;
5896 struct file *file = vma->vm_file;
5897 struct inode *inode = file_inode(file);
5898 struct address_space *mapping = inode->i_mapping;
5899 handle_t *handle;
5900 get_block_t *get_block;
5901 int retries = 0;
5902
5903 sb_start_pagefault(inode->i_sb);
5904 file_update_time(vma->vm_file);
5905
5906 down_read(&EXT4_I(inode)->i_mmap_sem);
5907
5908 ret = ext4_convert_inline_data(inode);
5909 if (ret)
5910 goto out_ret;
5911
5912 /* Delalloc case is easy... */
5913 if (test_opt(inode->i_sb, DELALLOC) &&
5914 !ext4_should_journal_data(inode) &&
5915 !ext4_nonda_switch(inode->i_sb)) {
5916 do {
5917 ret = block_page_mkwrite(vma, vmf,
5918 ext4_da_get_block_prep);
5919 } while (ret == -ENOSPC &&
5920 ext4_should_retry_alloc(inode->i_sb, &retries));
5921 goto out_ret;
5922 }
5923
5924 lock_page(page);
5925 size = i_size_read(inode);
5926 /* Page got truncated from under us? */
5927 if (page->mapping != mapping || page_offset(page) > size) {
5928 unlock_page(page);
5929 ret = VM_FAULT_NOPAGE;
5930 goto out;
5931 }
5932
5933 if (page->index == size >> PAGE_SHIFT)
5934 len = size & ~PAGE_MASK;
5935 else
5936 len = PAGE_SIZE;
5937 /*
5938 * Return if we have all the buffers mapped. This avoids the need to do
5939 * journal_start/journal_stop which can block and take a long time
5940 */
5941 if (page_has_buffers(page)) {
5942 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5943 0, len, NULL,
5944 ext4_bh_unmapped)) {
5945 /* Wait so that we don't change page under IO */
5946 wait_for_stable_page(page);
5947 ret = VM_FAULT_LOCKED;
5948 goto out;
5949 }
5950 }
5951 unlock_page(page);
5952 /* OK, we need to fill the hole... */
5953 if (ext4_should_dioread_nolock(inode))
5954 get_block = ext4_get_block_unwritten;
5955 else
5956 get_block = ext4_get_block;
5957 retry_alloc:
5958 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5959 ext4_writepage_trans_blocks(inode));
5960 if (IS_ERR(handle)) {
5961 ret = VM_FAULT_SIGBUS;
5962 goto out;
5963 }
5964 ret = block_page_mkwrite(vma, vmf, get_block);
5965 if (!ret && ext4_should_journal_data(inode)) {
5966 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5967 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5968 unlock_page(page);
5969 ret = VM_FAULT_SIGBUS;
5970 ext4_journal_stop(handle);
5971 goto out;
5972 }
5973 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5974 }
5975 ext4_journal_stop(handle);
5976 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5977 goto retry_alloc;
5978 out_ret:
5979 ret = block_page_mkwrite_return(ret);
5980 out:
5981 up_read(&EXT4_I(inode)->i_mmap_sem);
5982 sb_end_pagefault(inode->i_sb);
5983 return ret;
5984 }
5985
5986 int ext4_filemap_fault(struct vm_fault *vmf)
5987 {
5988 struct inode *inode = file_inode(vmf->vma->vm_file);
5989 int err;
5990
5991 down_read(&EXT4_I(inode)->i_mmap_sem);
5992 err = filemap_fault(vmf);
5993 up_read(&EXT4_I(inode)->i_mmap_sem);
5994
5995 return err;
5996 }
5997
5998 /*
5999 * Find the first extent at or after @lblk in an inode that is not a hole.
6000 * Search for @map_len blocks at most. The extent is returned in @result.
6001 *
6002 * The function returns 1 if we found an extent. The function returns 0 in
6003 * case there is no extent at or after @lblk and in that case also sets
6004 * @result->es_len to 0. In case of error, the error code is returned.
6005 */
6006 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6007 unsigned int map_len, struct extent_status *result)
6008 {
6009 struct ext4_map_blocks map;
6010 struct extent_status es = {};
6011 int ret;
6012
6013 map.m_lblk = lblk;
6014 map.m_len = map_len;
6015
6016 /*
6017 * For non-extent based files this loop may iterate several times since
6018 * we do not determine full hole size.
6019 */
6020 while (map.m_len > 0) {
6021 ret = ext4_map_blocks(NULL, inode, &map, 0);
6022 if (ret < 0)
6023 return ret;
6024 /* There's extent covering m_lblk? Just return it. */
6025 if (ret > 0) {
6026 int status;
6027
6028 ext4_es_store_pblock(result, map.m_pblk);
6029 result->es_lblk = map.m_lblk;
6030 result->es_len = map.m_len;
6031 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6032 status = EXTENT_STATUS_UNWRITTEN;
6033 else
6034 status = EXTENT_STATUS_WRITTEN;
6035 ext4_es_store_status(result, status);
6036 return 1;
6037 }
6038 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6039 map.m_lblk + map.m_len - 1,
6040 &es);
6041 /* Is delalloc data before next block in extent tree? */
6042 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6043 ext4_lblk_t offset = 0;
6044
6045 if (es.es_lblk < lblk)
6046 offset = lblk - es.es_lblk;
6047 result->es_lblk = es.es_lblk + offset;
6048 ext4_es_store_pblock(result,
6049 ext4_es_pblock(&es) + offset);
6050 result->es_len = es.es_len - offset;
6051 ext4_es_store_status(result, ext4_es_status(&es));
6052
6053 return 1;
6054 }
6055 /* There's a hole at m_lblk, advance us after it */
6056 map.m_lblk += map.m_len;
6057 map_len -= map.m_len;
6058 map.m_len = map_len;
6059 cond_resched();
6060 }
6061 result->es_len = 0;
6062 return 0;
6063 }