]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/ext4/inode.c
6682eda10bfc58998d6606e73021ff4cb5d9cc93
[mirror_ubuntu-zesty-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
280 if (!ext4_handle_has_enough_credits(handle, 3)) {
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
285 ext4_warning(inode->i_sb,
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 goto no_delete;
292 }
293 }
294
295 /*
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
302 */
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 return;
321 no_delete:
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
323 }
324
325 #ifdef CONFIG_QUOTA
326 qsize_t *ext4_get_reserved_space(struct inode *inode)
327 {
328 return &EXT4_I(inode)->i_reserved_quota;
329 }
330 #endif
331
332 /*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
336 void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
338 {
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
341
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
352
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 else {
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
367 */
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 }
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
378 ext4_discard_preallocations(inode);
379 }
380
381 static int __check_block_validity(struct inode *inode, const char *func,
382 unsigned int line,
383 struct ext4_map_blocks *map)
384 {
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
391 return -EFSCORRUPTED;
392 }
393 return 0;
394 }
395
396 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398 {
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409 }
410
411 #define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
413
414 #ifdef ES_AGGRESSIVE_TEST
415 static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420 {
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
431 down_read(&EXT4_I(inode)->i_data_sem);
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
439 up_read((&EXT4_I(inode)->i_data_sem));
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456 }
457 #endif /* ES_AGGRESSIVE_TEST */
458
459 /*
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
462 *
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469 * based files
470 *
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
478 *
479 * It returns the error in case of allocation failure.
480 */
481 int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
483 {
484 struct extent_status es;
485 int retval;
486 int ret = 0;
487 #ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491 #endif
492
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
497
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 return -EFSCORRUPTED;
507
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
529 #ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532 #endif
533 goto found;
534 }
535
536 /*
537 * Try to see if we can get the block without requesting a new
538 * file system block.
539 */
540 down_read(&EXT4_I(inode)->i_data_sem);
541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
547 }
548 if (retval > 0) {
549 unsigned int status;
550
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
557 }
558
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 !(status & EXTENT_STATUS_WRITTEN) &&
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
571 up_read((&EXT4_I(inode)->i_data_sem));
572
573 found:
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579
580 /* If it is only a block(s) look up */
581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
590 */
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
599
600 /*
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
603 */
604 map->m_flags &= ~EXT4_MAP_FLAGS;
605
606 /*
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
611 */
612 down_write(&EXT4_I(inode)->i_data_sem);
613
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642
643 if (retval > 0) {
644 unsigned int status;
645
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
652 }
653
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
681 goto out_sem;
682 }
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 !(status & EXTENT_STATUS_WRITTEN) &&
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
692 if (ret < 0) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698 out_sem:
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
702 if (ret != 0)
703 return ret;
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
719 if (ret)
720 return ret;
721 }
722 }
723 return retval;
724 }
725
726 /*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731 {
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752 }
753
754 static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
756 {
757 struct ext4_map_blocks map;
758 int ret = 0;
759
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
768 if (ret > 0) {
769 map_bh(bh, inode->i_sb, map.m_pblk);
770 ext4_update_bh_state(bh, map.m_flags);
771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 ret = 0;
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 }
777 return ret;
778 }
779
780 int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782 {
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785 }
786
787 /*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794 {
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799 }
800
801 /* Maximum number of blocks we map for direct IO at once. */
802 #define DIO_MAX_BLOCKS 4096
803
804 /*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
811 {
812 int dio_credits;
813 handle_t *handle;
814 int retries = 0;
815 int ret;
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
822 retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
833 }
834
835 /* Get block function for DIO reads and writes to inodes without extents */
836 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838 {
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845 }
846
847 /*
848 * Get block function for AIO DIO writes when we create unwritten extent if
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
852 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
854 {
855 int ret;
856
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
880 set_buffer_defer_completion(bh_result);
881 }
882
883 return ret;
884 }
885
886 /*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893 {
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911 }
912
913 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915 {
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930 return ret;
931 }
932
933
934 /*
935 * `handle' can be NULL if create is zero
936 */
937 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 ext4_lblk_t block, int map_flags)
939 {
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 int err;
944
945 J_ASSERT(handle != NULL || create == 0);
946
947 map.m_lblk = block;
948 map.m_len = 1;
949 err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
953 if (err < 0)
954 return ERR_PTR(err);
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
962
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
980 }
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
984 if (unlikely(err))
985 goto errout;
986 } else
987 BUFFER_TRACE(bh, "not a new buffer");
988 return bh;
989 errout:
990 brelse(bh);
991 return ERR_PTR(err);
992 }
993
994 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 ext4_lblk_t block, int map_flags)
996 {
997 struct buffer_head *bh;
998
999 bh = ext4_getblk(handle, inode, block, map_flags);
1000 if (IS_ERR(bh))
1001 return bh;
1002 if (!bh || buffer_uptodate(bh))
1003 return bh;
1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1009 return ERR_PTR(-EIO);
1010 }
1011
1012 int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
1019 {
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
1028 block_start = block_end, bh = next) {
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041 }
1042
1043 /*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067 int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
1069 {
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
1075 /*
1076 * __block_write_begin() could have dirtied some buffers. Clean
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
1079 * by __block_write_begin() isn't a real problem here as we clear
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
1085 BUFFER_TRACE(bh, "get write access");
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
1090 }
1091
1092 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1093 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095 {
1096 unsigned from = pos & (PAGE_SIZE - 1);
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
1136 clean_bdev_bh_alias(bh);
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
1174 err = fscrypt_decrypt_page(page->mapping->host, page,
1175 PAGE_SIZE, 0, page->index);
1176 return err;
1177 }
1178 #endif
1179
1180 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
1183 {
1184 struct inode *inode = mapping->host;
1185 int ret, needed_blocks;
1186 handle_t *handle;
1187 int retries = 0;
1188 struct page *page;
1189 pgoff_t index;
1190 unsigned from, to;
1191
1192 trace_ext4_write_begin(inode, pos, len, flags);
1193 /*
1194 * Reserve one block more for addition to orphan list in case
1195 * we allocate blocks but write fails for some reason
1196 */
1197 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198 index = pos >> PAGE_SHIFT;
1199 from = pos & (PAGE_SIZE - 1);
1200 to = from + len;
1201
1202 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204 flags, pagep);
1205 if (ret < 0)
1206 return ret;
1207 if (ret == 1)
1208 return 0;
1209 }
1210
1211 /*
1212 * grab_cache_page_write_begin() can take a long time if the
1213 * system is thrashing due to memory pressure, or if the page
1214 * is being written back. So grab it first before we start
1215 * the transaction handle. This also allows us to allocate
1216 * the page (if needed) without using GFP_NOFS.
1217 */
1218 retry_grab:
1219 page = grab_cache_page_write_begin(mapping, index, flags);
1220 if (!page)
1221 return -ENOMEM;
1222 unlock_page(page);
1223
1224 retry_journal:
1225 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226 if (IS_ERR(handle)) {
1227 put_page(page);
1228 return PTR_ERR(handle);
1229 }
1230
1231 lock_page(page);
1232 if (page->mapping != mapping) {
1233 /* The page got truncated from under us */
1234 unlock_page(page);
1235 put_page(page);
1236 ext4_journal_stop(handle);
1237 goto retry_grab;
1238 }
1239 /* In case writeback began while the page was unlocked */
1240 wait_for_stable_page(page);
1241
1242 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1243 if (ext4_should_dioread_nolock(inode))
1244 ret = ext4_block_write_begin(page, pos, len,
1245 ext4_get_block_unwritten);
1246 else
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block);
1249 #else
1250 if (ext4_should_dioread_nolock(inode))
1251 ret = __block_write_begin(page, pos, len,
1252 ext4_get_block_unwritten);
1253 else
1254 ret = __block_write_begin(page, pos, len, ext4_get_block);
1255 #endif
1256 if (!ret && ext4_should_journal_data(inode)) {
1257 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258 from, to, NULL,
1259 do_journal_get_write_access);
1260 }
1261
1262 if (ret) {
1263 unlock_page(page);
1264 /*
1265 * __block_write_begin may have instantiated a few blocks
1266 * outside i_size. Trim these off again. Don't need
1267 * i_size_read because we hold i_mutex.
1268 *
1269 * Add inode to orphan list in case we crash before
1270 * truncate finishes
1271 */
1272 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273 ext4_orphan_add(handle, inode);
1274
1275 ext4_journal_stop(handle);
1276 if (pos + len > inode->i_size) {
1277 ext4_truncate_failed_write(inode);
1278 /*
1279 * If truncate failed early the inode might
1280 * still be on the orphan list; we need to
1281 * make sure the inode is removed from the
1282 * orphan list in that case.
1283 */
1284 if (inode->i_nlink)
1285 ext4_orphan_del(NULL, inode);
1286 }
1287
1288 if (ret == -ENOSPC &&
1289 ext4_should_retry_alloc(inode->i_sb, &retries))
1290 goto retry_journal;
1291 put_page(page);
1292 return ret;
1293 }
1294 *pagep = page;
1295 return ret;
1296 }
1297
1298 /* For write_end() in data=journal mode */
1299 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300 {
1301 int ret;
1302 if (!buffer_mapped(bh) || buffer_freed(bh))
1303 return 0;
1304 set_buffer_uptodate(bh);
1305 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306 clear_buffer_meta(bh);
1307 clear_buffer_prio(bh);
1308 return ret;
1309 }
1310
1311 /*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1316 * buffers are managed internally.
1317 */
1318 static int ext4_write_end(struct file *file,
1319 struct address_space *mapping,
1320 loff_t pos, unsigned len, unsigned copied,
1321 struct page *page, void *fsdata)
1322 {
1323 handle_t *handle = ext4_journal_current_handle();
1324 struct inode *inode = mapping->host;
1325 loff_t old_size = inode->i_size;
1326 int ret = 0, ret2;
1327 int i_size_changed = 0;
1328
1329 trace_ext4_write_end(inode, pos, len, copied);
1330 if (ext4_has_inline_data(inode)) {
1331 ret = ext4_write_inline_data_end(inode, pos, len,
1332 copied, page);
1333 if (ret < 0)
1334 goto errout;
1335 copied = ret;
1336 } else
1337 copied = block_write_end(file, mapping, pos,
1338 len, copied, page, fsdata);
1339 /*
1340 * it's important to update i_size while still holding page lock:
1341 * page writeout could otherwise come in and zero beyond i_size.
1342 */
1343 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1344 unlock_page(page);
1345 put_page(page);
1346
1347 if (old_size < pos)
1348 pagecache_isize_extended(inode, old_size, pos);
1349 /*
1350 * Don't mark the inode dirty under page lock. First, it unnecessarily
1351 * makes the holding time of page lock longer. Second, it forces lock
1352 * ordering of page lock and transaction start for journaling
1353 * filesystems.
1354 */
1355 if (i_size_changed)
1356 ext4_mark_inode_dirty(handle, inode);
1357
1358 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1359 /* if we have allocated more blocks and copied
1360 * less. We will have blocks allocated outside
1361 * inode->i_size. So truncate them
1362 */
1363 ext4_orphan_add(handle, inode);
1364 errout:
1365 ret2 = ext4_journal_stop(handle);
1366 if (!ret)
1367 ret = ret2;
1368
1369 if (pos + len > inode->i_size) {
1370 ext4_truncate_failed_write(inode);
1371 /*
1372 * If truncate failed early the inode might still be
1373 * on the orphan list; we need to make sure the inode
1374 * is removed from the orphan list in that case.
1375 */
1376 if (inode->i_nlink)
1377 ext4_orphan_del(NULL, inode);
1378 }
1379
1380 return ret ? ret : copied;
1381 }
1382
1383 /*
1384 * This is a private version of page_zero_new_buffers() which doesn't
1385 * set the buffer to be dirty, since in data=journalled mode we need
1386 * to call ext4_handle_dirty_metadata() instead.
1387 */
1388 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1389 struct page *page,
1390 unsigned from, unsigned to)
1391 {
1392 unsigned int block_start = 0, block_end;
1393 struct buffer_head *head, *bh;
1394
1395 bh = head = page_buffers(page);
1396 do {
1397 block_end = block_start + bh->b_size;
1398 if (buffer_new(bh)) {
1399 if (block_end > from && block_start < to) {
1400 if (!PageUptodate(page)) {
1401 unsigned start, size;
1402
1403 start = max(from, block_start);
1404 size = min(to, block_end) - start;
1405
1406 zero_user(page, start, size);
1407 write_end_fn(handle, bh);
1408 }
1409 clear_buffer_new(bh);
1410 }
1411 }
1412 block_start = block_end;
1413 bh = bh->b_this_page;
1414 } while (bh != head);
1415 }
1416
1417 static int ext4_journalled_write_end(struct file *file,
1418 struct address_space *mapping,
1419 loff_t pos, unsigned len, unsigned copied,
1420 struct page *page, void *fsdata)
1421 {
1422 handle_t *handle = ext4_journal_current_handle();
1423 struct inode *inode = mapping->host;
1424 loff_t old_size = inode->i_size;
1425 int ret = 0, ret2;
1426 int partial = 0;
1427 unsigned from, to;
1428 int size_changed = 0;
1429
1430 trace_ext4_journalled_write_end(inode, pos, len, copied);
1431 from = pos & (PAGE_SIZE - 1);
1432 to = from + len;
1433
1434 BUG_ON(!ext4_handle_valid(handle));
1435
1436 if (ext4_has_inline_data(inode))
1437 copied = ext4_write_inline_data_end(inode, pos, len,
1438 copied, page);
1439 else if (unlikely(copied < len) && !PageUptodate(page)) {
1440 copied = 0;
1441 ext4_journalled_zero_new_buffers(handle, page, from, to);
1442 } else {
1443 if (unlikely(copied < len))
1444 ext4_journalled_zero_new_buffers(handle, page,
1445 from + copied, to);
1446 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1447 from + copied, &partial,
1448 write_end_fn);
1449 if (!partial)
1450 SetPageUptodate(page);
1451 }
1452 size_changed = ext4_update_inode_size(inode, pos + copied);
1453 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1454 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1455 unlock_page(page);
1456 put_page(page);
1457
1458 if (old_size < pos)
1459 pagecache_isize_extended(inode, old_size, pos);
1460
1461 if (size_changed) {
1462 ret2 = ext4_mark_inode_dirty(handle, inode);
1463 if (!ret)
1464 ret = ret2;
1465 }
1466
1467 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1468 /* if we have allocated more blocks and copied
1469 * less. We will have blocks allocated outside
1470 * inode->i_size. So truncate them
1471 */
1472 ext4_orphan_add(handle, inode);
1473
1474 ret2 = ext4_journal_stop(handle);
1475 if (!ret)
1476 ret = ret2;
1477 if (pos + len > inode->i_size) {
1478 ext4_truncate_failed_write(inode);
1479 /*
1480 * If truncate failed early the inode might still be
1481 * on the orphan list; we need to make sure the inode
1482 * is removed from the orphan list in that case.
1483 */
1484 if (inode->i_nlink)
1485 ext4_orphan_del(NULL, inode);
1486 }
1487
1488 return ret ? ret : copied;
1489 }
1490
1491 /*
1492 * Reserve space for a single cluster
1493 */
1494 static int ext4_da_reserve_space(struct inode *inode)
1495 {
1496 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1497 struct ext4_inode_info *ei = EXT4_I(inode);
1498 int ret;
1499
1500 /*
1501 * We will charge metadata quota at writeout time; this saves
1502 * us from metadata over-estimation, though we may go over by
1503 * a small amount in the end. Here we just reserve for data.
1504 */
1505 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1506 if (ret)
1507 return ret;
1508
1509 spin_lock(&ei->i_block_reservation_lock);
1510 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1511 spin_unlock(&ei->i_block_reservation_lock);
1512 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1513 return -ENOSPC;
1514 }
1515 ei->i_reserved_data_blocks++;
1516 trace_ext4_da_reserve_space(inode);
1517 spin_unlock(&ei->i_block_reservation_lock);
1518
1519 return 0; /* success */
1520 }
1521
1522 static void ext4_da_release_space(struct inode *inode, int to_free)
1523 {
1524 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1525 struct ext4_inode_info *ei = EXT4_I(inode);
1526
1527 if (!to_free)
1528 return; /* Nothing to release, exit */
1529
1530 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1531
1532 trace_ext4_da_release_space(inode, to_free);
1533 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1534 /*
1535 * if there aren't enough reserved blocks, then the
1536 * counter is messed up somewhere. Since this
1537 * function is called from invalidate page, it's
1538 * harmless to return without any action.
1539 */
1540 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1541 "ino %lu, to_free %d with only %d reserved "
1542 "data blocks", inode->i_ino, to_free,
1543 ei->i_reserved_data_blocks);
1544 WARN_ON(1);
1545 to_free = ei->i_reserved_data_blocks;
1546 }
1547 ei->i_reserved_data_blocks -= to_free;
1548
1549 /* update fs dirty data blocks counter */
1550 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1551
1552 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1553
1554 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1555 }
1556
1557 static void ext4_da_page_release_reservation(struct page *page,
1558 unsigned int offset,
1559 unsigned int length)
1560 {
1561 int to_release = 0, contiguous_blks = 0;
1562 struct buffer_head *head, *bh;
1563 unsigned int curr_off = 0;
1564 struct inode *inode = page->mapping->host;
1565 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1566 unsigned int stop = offset + length;
1567 int num_clusters;
1568 ext4_fsblk_t lblk;
1569
1570 BUG_ON(stop > PAGE_SIZE || stop < length);
1571
1572 head = page_buffers(page);
1573 bh = head;
1574 do {
1575 unsigned int next_off = curr_off + bh->b_size;
1576
1577 if (next_off > stop)
1578 break;
1579
1580 if ((offset <= curr_off) && (buffer_delay(bh))) {
1581 to_release++;
1582 contiguous_blks++;
1583 clear_buffer_delay(bh);
1584 } else if (contiguous_blks) {
1585 lblk = page->index <<
1586 (PAGE_SHIFT - inode->i_blkbits);
1587 lblk += (curr_off >> inode->i_blkbits) -
1588 contiguous_blks;
1589 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1590 contiguous_blks = 0;
1591 }
1592 curr_off = next_off;
1593 } while ((bh = bh->b_this_page) != head);
1594
1595 if (contiguous_blks) {
1596 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1597 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1598 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1599 }
1600
1601 /* If we have released all the blocks belonging to a cluster, then we
1602 * need to release the reserved space for that cluster. */
1603 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1604 while (num_clusters > 0) {
1605 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1606 ((num_clusters - 1) << sbi->s_cluster_bits);
1607 if (sbi->s_cluster_ratio == 1 ||
1608 !ext4_find_delalloc_cluster(inode, lblk))
1609 ext4_da_release_space(inode, 1);
1610
1611 num_clusters--;
1612 }
1613 }
1614
1615 /*
1616 * Delayed allocation stuff
1617 */
1618
1619 struct mpage_da_data {
1620 struct inode *inode;
1621 struct writeback_control *wbc;
1622
1623 pgoff_t first_page; /* The first page to write */
1624 pgoff_t next_page; /* Current page to examine */
1625 pgoff_t last_page; /* Last page to examine */
1626 /*
1627 * Extent to map - this can be after first_page because that can be
1628 * fully mapped. We somewhat abuse m_flags to store whether the extent
1629 * is delalloc or unwritten.
1630 */
1631 struct ext4_map_blocks map;
1632 struct ext4_io_submit io_submit; /* IO submission data */
1633 };
1634
1635 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1636 bool invalidate)
1637 {
1638 int nr_pages, i;
1639 pgoff_t index, end;
1640 struct pagevec pvec;
1641 struct inode *inode = mpd->inode;
1642 struct address_space *mapping = inode->i_mapping;
1643
1644 /* This is necessary when next_page == 0. */
1645 if (mpd->first_page >= mpd->next_page)
1646 return;
1647
1648 index = mpd->first_page;
1649 end = mpd->next_page - 1;
1650 if (invalidate) {
1651 ext4_lblk_t start, last;
1652 start = index << (PAGE_SHIFT - inode->i_blkbits);
1653 last = end << (PAGE_SHIFT - inode->i_blkbits);
1654 ext4_es_remove_extent(inode, start, last - start + 1);
1655 }
1656
1657 pagevec_init(&pvec, 0);
1658 while (index <= end) {
1659 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1660 if (nr_pages == 0)
1661 break;
1662 for (i = 0; i < nr_pages; i++) {
1663 struct page *page = pvec.pages[i];
1664 if (page->index > end)
1665 break;
1666 BUG_ON(!PageLocked(page));
1667 BUG_ON(PageWriteback(page));
1668 if (invalidate) {
1669 if (page_mapped(page))
1670 clear_page_dirty_for_io(page);
1671 block_invalidatepage(page, 0, PAGE_SIZE);
1672 ClearPageUptodate(page);
1673 }
1674 unlock_page(page);
1675 }
1676 index = pvec.pages[nr_pages - 1]->index + 1;
1677 pagevec_release(&pvec);
1678 }
1679 }
1680
1681 static void ext4_print_free_blocks(struct inode *inode)
1682 {
1683 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1684 struct super_block *sb = inode->i_sb;
1685 struct ext4_inode_info *ei = EXT4_I(inode);
1686
1687 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1688 EXT4_C2B(EXT4_SB(inode->i_sb),
1689 ext4_count_free_clusters(sb)));
1690 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1691 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1692 (long long) EXT4_C2B(EXT4_SB(sb),
1693 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1694 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1695 (long long) EXT4_C2B(EXT4_SB(sb),
1696 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1697 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1698 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1699 ei->i_reserved_data_blocks);
1700 return;
1701 }
1702
1703 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1704 {
1705 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1706 }
1707
1708 /*
1709 * This function is grabs code from the very beginning of
1710 * ext4_map_blocks, but assumes that the caller is from delayed write
1711 * time. This function looks up the requested blocks and sets the
1712 * buffer delay bit under the protection of i_data_sem.
1713 */
1714 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1715 struct ext4_map_blocks *map,
1716 struct buffer_head *bh)
1717 {
1718 struct extent_status es;
1719 int retval;
1720 sector_t invalid_block = ~((sector_t) 0xffff);
1721 #ifdef ES_AGGRESSIVE_TEST
1722 struct ext4_map_blocks orig_map;
1723
1724 memcpy(&orig_map, map, sizeof(*map));
1725 #endif
1726
1727 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1728 invalid_block = ~0;
1729
1730 map->m_flags = 0;
1731 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1732 "logical block %lu\n", inode->i_ino, map->m_len,
1733 (unsigned long) map->m_lblk);
1734
1735 /* Lookup extent status tree firstly */
1736 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1737 if (ext4_es_is_hole(&es)) {
1738 retval = 0;
1739 down_read(&EXT4_I(inode)->i_data_sem);
1740 goto add_delayed;
1741 }
1742
1743 /*
1744 * Delayed extent could be allocated by fallocate.
1745 * So we need to check it.
1746 */
1747 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1748 map_bh(bh, inode->i_sb, invalid_block);
1749 set_buffer_new(bh);
1750 set_buffer_delay(bh);
1751 return 0;
1752 }
1753
1754 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1755 retval = es.es_len - (iblock - es.es_lblk);
1756 if (retval > map->m_len)
1757 retval = map->m_len;
1758 map->m_len = retval;
1759 if (ext4_es_is_written(&es))
1760 map->m_flags |= EXT4_MAP_MAPPED;
1761 else if (ext4_es_is_unwritten(&es))
1762 map->m_flags |= EXT4_MAP_UNWRITTEN;
1763 else
1764 BUG_ON(1);
1765
1766 #ifdef ES_AGGRESSIVE_TEST
1767 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1768 #endif
1769 return retval;
1770 }
1771
1772 /*
1773 * Try to see if we can get the block without requesting a new
1774 * file system block.
1775 */
1776 down_read(&EXT4_I(inode)->i_data_sem);
1777 if (ext4_has_inline_data(inode))
1778 retval = 0;
1779 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1780 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1781 else
1782 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1783
1784 add_delayed:
1785 if (retval == 0) {
1786 int ret;
1787 /*
1788 * XXX: __block_prepare_write() unmaps passed block,
1789 * is it OK?
1790 */
1791 /*
1792 * If the block was allocated from previously allocated cluster,
1793 * then we don't need to reserve it again. However we still need
1794 * to reserve metadata for every block we're going to write.
1795 */
1796 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1797 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1798 ret = ext4_da_reserve_space(inode);
1799 if (ret) {
1800 /* not enough space to reserve */
1801 retval = ret;
1802 goto out_unlock;
1803 }
1804 }
1805
1806 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1807 ~0, EXTENT_STATUS_DELAYED);
1808 if (ret) {
1809 retval = ret;
1810 goto out_unlock;
1811 }
1812
1813 map_bh(bh, inode->i_sb, invalid_block);
1814 set_buffer_new(bh);
1815 set_buffer_delay(bh);
1816 } else if (retval > 0) {
1817 int ret;
1818 unsigned int status;
1819
1820 if (unlikely(retval != map->m_len)) {
1821 ext4_warning(inode->i_sb,
1822 "ES len assertion failed for inode "
1823 "%lu: retval %d != map->m_len %d",
1824 inode->i_ino, retval, map->m_len);
1825 WARN_ON(1);
1826 }
1827
1828 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1829 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1830 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1831 map->m_pblk, status);
1832 if (ret != 0)
1833 retval = ret;
1834 }
1835
1836 out_unlock:
1837 up_read((&EXT4_I(inode)->i_data_sem));
1838
1839 return retval;
1840 }
1841
1842 /*
1843 * This is a special get_block_t callback which is used by
1844 * ext4_da_write_begin(). It will either return mapped block or
1845 * reserve space for a single block.
1846 *
1847 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1848 * We also have b_blocknr = -1 and b_bdev initialized properly
1849 *
1850 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1851 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1852 * initialized properly.
1853 */
1854 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1855 struct buffer_head *bh, int create)
1856 {
1857 struct ext4_map_blocks map;
1858 int ret = 0;
1859
1860 BUG_ON(create == 0);
1861 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1862
1863 map.m_lblk = iblock;
1864 map.m_len = 1;
1865
1866 /*
1867 * first, we need to know whether the block is allocated already
1868 * preallocated blocks are unmapped but should treated
1869 * the same as allocated blocks.
1870 */
1871 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1872 if (ret <= 0)
1873 return ret;
1874
1875 map_bh(bh, inode->i_sb, map.m_pblk);
1876 ext4_update_bh_state(bh, map.m_flags);
1877
1878 if (buffer_unwritten(bh)) {
1879 /* A delayed write to unwritten bh should be marked
1880 * new and mapped. Mapped ensures that we don't do
1881 * get_block multiple times when we write to the same
1882 * offset and new ensures that we do proper zero out
1883 * for partial write.
1884 */
1885 set_buffer_new(bh);
1886 set_buffer_mapped(bh);
1887 }
1888 return 0;
1889 }
1890
1891 static int bget_one(handle_t *handle, struct buffer_head *bh)
1892 {
1893 get_bh(bh);
1894 return 0;
1895 }
1896
1897 static int bput_one(handle_t *handle, struct buffer_head *bh)
1898 {
1899 put_bh(bh);
1900 return 0;
1901 }
1902
1903 static int __ext4_journalled_writepage(struct page *page,
1904 unsigned int len)
1905 {
1906 struct address_space *mapping = page->mapping;
1907 struct inode *inode = mapping->host;
1908 struct buffer_head *page_bufs = NULL;
1909 handle_t *handle = NULL;
1910 int ret = 0, err = 0;
1911 int inline_data = ext4_has_inline_data(inode);
1912 struct buffer_head *inode_bh = NULL;
1913
1914 ClearPageChecked(page);
1915
1916 if (inline_data) {
1917 BUG_ON(page->index != 0);
1918 BUG_ON(len > ext4_get_max_inline_size(inode));
1919 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1920 if (inode_bh == NULL)
1921 goto out;
1922 } else {
1923 page_bufs = page_buffers(page);
1924 if (!page_bufs) {
1925 BUG();
1926 goto out;
1927 }
1928 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1929 NULL, bget_one);
1930 }
1931 /*
1932 * We need to release the page lock before we start the
1933 * journal, so grab a reference so the page won't disappear
1934 * out from under us.
1935 */
1936 get_page(page);
1937 unlock_page(page);
1938
1939 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1940 ext4_writepage_trans_blocks(inode));
1941 if (IS_ERR(handle)) {
1942 ret = PTR_ERR(handle);
1943 put_page(page);
1944 goto out_no_pagelock;
1945 }
1946 BUG_ON(!ext4_handle_valid(handle));
1947
1948 lock_page(page);
1949 put_page(page);
1950 if (page->mapping != mapping) {
1951 /* The page got truncated from under us */
1952 ext4_journal_stop(handle);
1953 ret = 0;
1954 goto out;
1955 }
1956
1957 if (inline_data) {
1958 BUFFER_TRACE(inode_bh, "get write access");
1959 ret = ext4_journal_get_write_access(handle, inode_bh);
1960
1961 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1962
1963 } else {
1964 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1965 do_journal_get_write_access);
1966
1967 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1968 write_end_fn);
1969 }
1970 if (ret == 0)
1971 ret = err;
1972 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1973 err = ext4_journal_stop(handle);
1974 if (!ret)
1975 ret = err;
1976
1977 if (!ext4_has_inline_data(inode))
1978 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1979 NULL, bput_one);
1980 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1981 out:
1982 unlock_page(page);
1983 out_no_pagelock:
1984 brelse(inode_bh);
1985 return ret;
1986 }
1987
1988 /*
1989 * Note that we don't need to start a transaction unless we're journaling data
1990 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1991 * need to file the inode to the transaction's list in ordered mode because if
1992 * we are writing back data added by write(), the inode is already there and if
1993 * we are writing back data modified via mmap(), no one guarantees in which
1994 * transaction the data will hit the disk. In case we are journaling data, we
1995 * cannot start transaction directly because transaction start ranks above page
1996 * lock so we have to do some magic.
1997 *
1998 * This function can get called via...
1999 * - ext4_writepages after taking page lock (have journal handle)
2000 * - journal_submit_inode_data_buffers (no journal handle)
2001 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2002 * - grab_page_cache when doing write_begin (have journal handle)
2003 *
2004 * We don't do any block allocation in this function. If we have page with
2005 * multiple blocks we need to write those buffer_heads that are mapped. This
2006 * is important for mmaped based write. So if we do with blocksize 1K
2007 * truncate(f, 1024);
2008 * a = mmap(f, 0, 4096);
2009 * a[0] = 'a';
2010 * truncate(f, 4096);
2011 * we have in the page first buffer_head mapped via page_mkwrite call back
2012 * but other buffer_heads would be unmapped but dirty (dirty done via the
2013 * do_wp_page). So writepage should write the first block. If we modify
2014 * the mmap area beyond 1024 we will again get a page_fault and the
2015 * page_mkwrite callback will do the block allocation and mark the
2016 * buffer_heads mapped.
2017 *
2018 * We redirty the page if we have any buffer_heads that is either delay or
2019 * unwritten in the page.
2020 *
2021 * We can get recursively called as show below.
2022 *
2023 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2024 * ext4_writepage()
2025 *
2026 * But since we don't do any block allocation we should not deadlock.
2027 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2028 */
2029 static int ext4_writepage(struct page *page,
2030 struct writeback_control *wbc)
2031 {
2032 int ret = 0;
2033 loff_t size;
2034 unsigned int len;
2035 struct buffer_head *page_bufs = NULL;
2036 struct inode *inode = page->mapping->host;
2037 struct ext4_io_submit io_submit;
2038 bool keep_towrite = false;
2039
2040 trace_ext4_writepage(page);
2041 size = i_size_read(inode);
2042 if (page->index == size >> PAGE_SHIFT)
2043 len = size & ~PAGE_MASK;
2044 else
2045 len = PAGE_SIZE;
2046
2047 page_bufs = page_buffers(page);
2048 /*
2049 * We cannot do block allocation or other extent handling in this
2050 * function. If there are buffers needing that, we have to redirty
2051 * the page. But we may reach here when we do a journal commit via
2052 * journal_submit_inode_data_buffers() and in that case we must write
2053 * allocated buffers to achieve data=ordered mode guarantees.
2054 *
2055 * Also, if there is only one buffer per page (the fs block
2056 * size == the page size), if one buffer needs block
2057 * allocation or needs to modify the extent tree to clear the
2058 * unwritten flag, we know that the page can't be written at
2059 * all, so we might as well refuse the write immediately.
2060 * Unfortunately if the block size != page size, we can't as
2061 * easily detect this case using ext4_walk_page_buffers(), but
2062 * for the extremely common case, this is an optimization that
2063 * skips a useless round trip through ext4_bio_write_page().
2064 */
2065 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2066 ext4_bh_delay_or_unwritten)) {
2067 redirty_page_for_writepage(wbc, page);
2068 if ((current->flags & PF_MEMALLOC) ||
2069 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2070 /*
2071 * For memory cleaning there's no point in writing only
2072 * some buffers. So just bail out. Warn if we came here
2073 * from direct reclaim.
2074 */
2075 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2076 == PF_MEMALLOC);
2077 unlock_page(page);
2078 return 0;
2079 }
2080 keep_towrite = true;
2081 }
2082
2083 if (PageChecked(page) && ext4_should_journal_data(inode))
2084 /*
2085 * It's mmapped pagecache. Add buffers and journal it. There
2086 * doesn't seem much point in redirtying the page here.
2087 */
2088 return __ext4_journalled_writepage(page, len);
2089
2090 ext4_io_submit_init(&io_submit, wbc);
2091 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2092 if (!io_submit.io_end) {
2093 redirty_page_for_writepage(wbc, page);
2094 unlock_page(page);
2095 return -ENOMEM;
2096 }
2097 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2098 ext4_io_submit(&io_submit);
2099 /* Drop io_end reference we got from init */
2100 ext4_put_io_end_defer(io_submit.io_end);
2101 return ret;
2102 }
2103
2104 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2105 {
2106 int len;
2107 loff_t size = i_size_read(mpd->inode);
2108 int err;
2109
2110 BUG_ON(page->index != mpd->first_page);
2111 if (page->index == size >> PAGE_SHIFT)
2112 len = size & ~PAGE_MASK;
2113 else
2114 len = PAGE_SIZE;
2115 clear_page_dirty_for_io(page);
2116 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2117 if (!err)
2118 mpd->wbc->nr_to_write--;
2119 mpd->first_page++;
2120
2121 return err;
2122 }
2123
2124 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2125
2126 /*
2127 * mballoc gives us at most this number of blocks...
2128 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2129 * The rest of mballoc seems to handle chunks up to full group size.
2130 */
2131 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2132
2133 /*
2134 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2135 *
2136 * @mpd - extent of blocks
2137 * @lblk - logical number of the block in the file
2138 * @bh - buffer head we want to add to the extent
2139 *
2140 * The function is used to collect contig. blocks in the same state. If the
2141 * buffer doesn't require mapping for writeback and we haven't started the
2142 * extent of buffers to map yet, the function returns 'true' immediately - the
2143 * caller can write the buffer right away. Otherwise the function returns true
2144 * if the block has been added to the extent, false if the block couldn't be
2145 * added.
2146 */
2147 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2148 struct buffer_head *bh)
2149 {
2150 struct ext4_map_blocks *map = &mpd->map;
2151
2152 /* Buffer that doesn't need mapping for writeback? */
2153 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2154 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2155 /* So far no extent to map => we write the buffer right away */
2156 if (map->m_len == 0)
2157 return true;
2158 return false;
2159 }
2160
2161 /* First block in the extent? */
2162 if (map->m_len == 0) {
2163 map->m_lblk = lblk;
2164 map->m_len = 1;
2165 map->m_flags = bh->b_state & BH_FLAGS;
2166 return true;
2167 }
2168
2169 /* Don't go larger than mballoc is willing to allocate */
2170 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2171 return false;
2172
2173 /* Can we merge the block to our big extent? */
2174 if (lblk == map->m_lblk + map->m_len &&
2175 (bh->b_state & BH_FLAGS) == map->m_flags) {
2176 map->m_len++;
2177 return true;
2178 }
2179 return false;
2180 }
2181
2182 /*
2183 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2184 *
2185 * @mpd - extent of blocks for mapping
2186 * @head - the first buffer in the page
2187 * @bh - buffer we should start processing from
2188 * @lblk - logical number of the block in the file corresponding to @bh
2189 *
2190 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2191 * the page for IO if all buffers in this page were mapped and there's no
2192 * accumulated extent of buffers to map or add buffers in the page to the
2193 * extent of buffers to map. The function returns 1 if the caller can continue
2194 * by processing the next page, 0 if it should stop adding buffers to the
2195 * extent to map because we cannot extend it anymore. It can also return value
2196 * < 0 in case of error during IO submission.
2197 */
2198 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2199 struct buffer_head *head,
2200 struct buffer_head *bh,
2201 ext4_lblk_t lblk)
2202 {
2203 struct inode *inode = mpd->inode;
2204 int err;
2205 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2206 >> inode->i_blkbits;
2207
2208 do {
2209 BUG_ON(buffer_locked(bh));
2210
2211 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2212 /* Found extent to map? */
2213 if (mpd->map.m_len)
2214 return 0;
2215 /* Everything mapped so far and we hit EOF */
2216 break;
2217 }
2218 } while (lblk++, (bh = bh->b_this_page) != head);
2219 /* So far everything mapped? Submit the page for IO. */
2220 if (mpd->map.m_len == 0) {
2221 err = mpage_submit_page(mpd, head->b_page);
2222 if (err < 0)
2223 return err;
2224 }
2225 return lblk < blocks;
2226 }
2227
2228 /*
2229 * mpage_map_buffers - update buffers corresponding to changed extent and
2230 * submit fully mapped pages for IO
2231 *
2232 * @mpd - description of extent to map, on return next extent to map
2233 *
2234 * Scan buffers corresponding to changed extent (we expect corresponding pages
2235 * to be already locked) and update buffer state according to new extent state.
2236 * We map delalloc buffers to their physical location, clear unwritten bits,
2237 * and mark buffers as uninit when we perform writes to unwritten extents
2238 * and do extent conversion after IO is finished. If the last page is not fully
2239 * mapped, we update @map to the next extent in the last page that needs
2240 * mapping. Otherwise we submit the page for IO.
2241 */
2242 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2243 {
2244 struct pagevec pvec;
2245 int nr_pages, i;
2246 struct inode *inode = mpd->inode;
2247 struct buffer_head *head, *bh;
2248 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2249 pgoff_t start, end;
2250 ext4_lblk_t lblk;
2251 sector_t pblock;
2252 int err;
2253
2254 start = mpd->map.m_lblk >> bpp_bits;
2255 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2256 lblk = start << bpp_bits;
2257 pblock = mpd->map.m_pblk;
2258
2259 pagevec_init(&pvec, 0);
2260 while (start <= end) {
2261 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2262 PAGEVEC_SIZE);
2263 if (nr_pages == 0)
2264 break;
2265 for (i = 0; i < nr_pages; i++) {
2266 struct page *page = pvec.pages[i];
2267
2268 if (page->index > end)
2269 break;
2270 /* Up to 'end' pages must be contiguous */
2271 BUG_ON(page->index != start);
2272 bh = head = page_buffers(page);
2273 do {
2274 if (lblk < mpd->map.m_lblk)
2275 continue;
2276 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2277 /*
2278 * Buffer after end of mapped extent.
2279 * Find next buffer in the page to map.
2280 */
2281 mpd->map.m_len = 0;
2282 mpd->map.m_flags = 0;
2283 /*
2284 * FIXME: If dioread_nolock supports
2285 * blocksize < pagesize, we need to make
2286 * sure we add size mapped so far to
2287 * io_end->size as the following call
2288 * can submit the page for IO.
2289 */
2290 err = mpage_process_page_bufs(mpd, head,
2291 bh, lblk);
2292 pagevec_release(&pvec);
2293 if (err > 0)
2294 err = 0;
2295 return err;
2296 }
2297 if (buffer_delay(bh)) {
2298 clear_buffer_delay(bh);
2299 bh->b_blocknr = pblock++;
2300 }
2301 clear_buffer_unwritten(bh);
2302 } while (lblk++, (bh = bh->b_this_page) != head);
2303
2304 /*
2305 * FIXME: This is going to break if dioread_nolock
2306 * supports blocksize < pagesize as we will try to
2307 * convert potentially unmapped parts of inode.
2308 */
2309 mpd->io_submit.io_end->size += PAGE_SIZE;
2310 /* Page fully mapped - let IO run! */
2311 err = mpage_submit_page(mpd, page);
2312 if (err < 0) {
2313 pagevec_release(&pvec);
2314 return err;
2315 }
2316 start++;
2317 }
2318 pagevec_release(&pvec);
2319 }
2320 /* Extent fully mapped and matches with page boundary. We are done. */
2321 mpd->map.m_len = 0;
2322 mpd->map.m_flags = 0;
2323 return 0;
2324 }
2325
2326 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2327 {
2328 struct inode *inode = mpd->inode;
2329 struct ext4_map_blocks *map = &mpd->map;
2330 int get_blocks_flags;
2331 int err, dioread_nolock;
2332
2333 trace_ext4_da_write_pages_extent(inode, map);
2334 /*
2335 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2336 * to convert an unwritten extent to be initialized (in the case
2337 * where we have written into one or more preallocated blocks). It is
2338 * possible that we're going to need more metadata blocks than
2339 * previously reserved. However we must not fail because we're in
2340 * writeback and there is nothing we can do about it so it might result
2341 * in data loss. So use reserved blocks to allocate metadata if
2342 * possible.
2343 *
2344 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2345 * the blocks in question are delalloc blocks. This indicates
2346 * that the blocks and quotas has already been checked when
2347 * the data was copied into the page cache.
2348 */
2349 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2350 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2351 EXT4_GET_BLOCKS_IO_SUBMIT;
2352 dioread_nolock = ext4_should_dioread_nolock(inode);
2353 if (dioread_nolock)
2354 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2355 if (map->m_flags & (1 << BH_Delay))
2356 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2357
2358 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2359 if (err < 0)
2360 return err;
2361 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2362 if (!mpd->io_submit.io_end->handle &&
2363 ext4_handle_valid(handle)) {
2364 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2365 handle->h_rsv_handle = NULL;
2366 }
2367 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2368 }
2369
2370 BUG_ON(map->m_len == 0);
2371 if (map->m_flags & EXT4_MAP_NEW) {
2372 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2373 map->m_len);
2374 }
2375 return 0;
2376 }
2377
2378 /*
2379 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2380 * mpd->len and submit pages underlying it for IO
2381 *
2382 * @handle - handle for journal operations
2383 * @mpd - extent to map
2384 * @give_up_on_write - we set this to true iff there is a fatal error and there
2385 * is no hope of writing the data. The caller should discard
2386 * dirty pages to avoid infinite loops.
2387 *
2388 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2389 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2390 * them to initialized or split the described range from larger unwritten
2391 * extent. Note that we need not map all the described range since allocation
2392 * can return less blocks or the range is covered by more unwritten extents. We
2393 * cannot map more because we are limited by reserved transaction credits. On
2394 * the other hand we always make sure that the last touched page is fully
2395 * mapped so that it can be written out (and thus forward progress is
2396 * guaranteed). After mapping we submit all mapped pages for IO.
2397 */
2398 static int mpage_map_and_submit_extent(handle_t *handle,
2399 struct mpage_da_data *mpd,
2400 bool *give_up_on_write)
2401 {
2402 struct inode *inode = mpd->inode;
2403 struct ext4_map_blocks *map = &mpd->map;
2404 int err;
2405 loff_t disksize;
2406 int progress = 0;
2407
2408 mpd->io_submit.io_end->offset =
2409 ((loff_t)map->m_lblk) << inode->i_blkbits;
2410 do {
2411 err = mpage_map_one_extent(handle, mpd);
2412 if (err < 0) {
2413 struct super_block *sb = inode->i_sb;
2414
2415 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2416 goto invalidate_dirty_pages;
2417 /*
2418 * Let the uper layers retry transient errors.
2419 * In the case of ENOSPC, if ext4_count_free_blocks()
2420 * is non-zero, a commit should free up blocks.
2421 */
2422 if ((err == -ENOMEM) ||
2423 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2424 if (progress)
2425 goto update_disksize;
2426 return err;
2427 }
2428 ext4_msg(sb, KERN_CRIT,
2429 "Delayed block allocation failed for "
2430 "inode %lu at logical offset %llu with"
2431 " max blocks %u with error %d",
2432 inode->i_ino,
2433 (unsigned long long)map->m_lblk,
2434 (unsigned)map->m_len, -err);
2435 ext4_msg(sb, KERN_CRIT,
2436 "This should not happen!! Data will "
2437 "be lost\n");
2438 if (err == -ENOSPC)
2439 ext4_print_free_blocks(inode);
2440 invalidate_dirty_pages:
2441 *give_up_on_write = true;
2442 return err;
2443 }
2444 progress = 1;
2445 /*
2446 * Update buffer state, submit mapped pages, and get us new
2447 * extent to map
2448 */
2449 err = mpage_map_and_submit_buffers(mpd);
2450 if (err < 0)
2451 goto update_disksize;
2452 } while (map->m_len);
2453
2454 update_disksize:
2455 /*
2456 * Update on-disk size after IO is submitted. Races with
2457 * truncate are avoided by checking i_size under i_data_sem.
2458 */
2459 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2460 if (disksize > EXT4_I(inode)->i_disksize) {
2461 int err2;
2462 loff_t i_size;
2463
2464 down_write(&EXT4_I(inode)->i_data_sem);
2465 i_size = i_size_read(inode);
2466 if (disksize > i_size)
2467 disksize = i_size;
2468 if (disksize > EXT4_I(inode)->i_disksize)
2469 EXT4_I(inode)->i_disksize = disksize;
2470 err2 = ext4_mark_inode_dirty(handle, inode);
2471 up_write(&EXT4_I(inode)->i_data_sem);
2472 if (err2)
2473 ext4_error(inode->i_sb,
2474 "Failed to mark inode %lu dirty",
2475 inode->i_ino);
2476 if (!err)
2477 err = err2;
2478 }
2479 return err;
2480 }
2481
2482 /*
2483 * Calculate the total number of credits to reserve for one writepages
2484 * iteration. This is called from ext4_writepages(). We map an extent of
2485 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2486 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2487 * bpp - 1 blocks in bpp different extents.
2488 */
2489 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2490 {
2491 int bpp = ext4_journal_blocks_per_page(inode);
2492
2493 return ext4_meta_trans_blocks(inode,
2494 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2495 }
2496
2497 /*
2498 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2499 * and underlying extent to map
2500 *
2501 * @mpd - where to look for pages
2502 *
2503 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2504 * IO immediately. When we find a page which isn't mapped we start accumulating
2505 * extent of buffers underlying these pages that needs mapping (formed by
2506 * either delayed or unwritten buffers). We also lock the pages containing
2507 * these buffers. The extent found is returned in @mpd structure (starting at
2508 * mpd->lblk with length mpd->len blocks).
2509 *
2510 * Note that this function can attach bios to one io_end structure which are
2511 * neither logically nor physically contiguous. Although it may seem as an
2512 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2513 * case as we need to track IO to all buffers underlying a page in one io_end.
2514 */
2515 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2516 {
2517 struct address_space *mapping = mpd->inode->i_mapping;
2518 struct pagevec pvec;
2519 unsigned int nr_pages;
2520 long left = mpd->wbc->nr_to_write;
2521 pgoff_t index = mpd->first_page;
2522 pgoff_t end = mpd->last_page;
2523 int tag;
2524 int i, err = 0;
2525 int blkbits = mpd->inode->i_blkbits;
2526 ext4_lblk_t lblk;
2527 struct buffer_head *head;
2528
2529 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2530 tag = PAGECACHE_TAG_TOWRITE;
2531 else
2532 tag = PAGECACHE_TAG_DIRTY;
2533
2534 pagevec_init(&pvec, 0);
2535 mpd->map.m_len = 0;
2536 mpd->next_page = index;
2537 while (index <= end) {
2538 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2539 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2540 if (nr_pages == 0)
2541 goto out;
2542
2543 for (i = 0; i < nr_pages; i++) {
2544 struct page *page = pvec.pages[i];
2545
2546 /*
2547 * At this point, the page may be truncated or
2548 * invalidated (changing page->mapping to NULL), or
2549 * even swizzled back from swapper_space to tmpfs file
2550 * mapping. However, page->index will not change
2551 * because we have a reference on the page.
2552 */
2553 if (page->index > end)
2554 goto out;
2555
2556 /*
2557 * Accumulated enough dirty pages? This doesn't apply
2558 * to WB_SYNC_ALL mode. For integrity sync we have to
2559 * keep going because someone may be concurrently
2560 * dirtying pages, and we might have synced a lot of
2561 * newly appeared dirty pages, but have not synced all
2562 * of the old dirty pages.
2563 */
2564 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2565 goto out;
2566
2567 /* If we can't merge this page, we are done. */
2568 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2569 goto out;
2570
2571 lock_page(page);
2572 /*
2573 * If the page is no longer dirty, or its mapping no
2574 * longer corresponds to inode we are writing (which
2575 * means it has been truncated or invalidated), or the
2576 * page is already under writeback and we are not doing
2577 * a data integrity writeback, skip the page
2578 */
2579 if (!PageDirty(page) ||
2580 (PageWriteback(page) &&
2581 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2582 unlikely(page->mapping != mapping)) {
2583 unlock_page(page);
2584 continue;
2585 }
2586
2587 wait_on_page_writeback(page);
2588 BUG_ON(PageWriteback(page));
2589
2590 if (mpd->map.m_len == 0)
2591 mpd->first_page = page->index;
2592 mpd->next_page = page->index + 1;
2593 /* Add all dirty buffers to mpd */
2594 lblk = ((ext4_lblk_t)page->index) <<
2595 (PAGE_SHIFT - blkbits);
2596 head = page_buffers(page);
2597 err = mpage_process_page_bufs(mpd, head, head, lblk);
2598 if (err <= 0)
2599 goto out;
2600 err = 0;
2601 left--;
2602 }
2603 pagevec_release(&pvec);
2604 cond_resched();
2605 }
2606 return 0;
2607 out:
2608 pagevec_release(&pvec);
2609 return err;
2610 }
2611
2612 static int __writepage(struct page *page, struct writeback_control *wbc,
2613 void *data)
2614 {
2615 struct address_space *mapping = data;
2616 int ret = ext4_writepage(page, wbc);
2617 mapping_set_error(mapping, ret);
2618 return ret;
2619 }
2620
2621 static int ext4_writepages(struct address_space *mapping,
2622 struct writeback_control *wbc)
2623 {
2624 pgoff_t writeback_index = 0;
2625 long nr_to_write = wbc->nr_to_write;
2626 int range_whole = 0;
2627 int cycled = 1;
2628 handle_t *handle = NULL;
2629 struct mpage_da_data mpd;
2630 struct inode *inode = mapping->host;
2631 int needed_blocks, rsv_blocks = 0, ret = 0;
2632 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2633 bool done;
2634 struct blk_plug plug;
2635 bool give_up_on_write = false;
2636
2637 percpu_down_read(&sbi->s_journal_flag_rwsem);
2638 trace_ext4_writepages(inode, wbc);
2639
2640 if (dax_mapping(mapping)) {
2641 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2642 wbc);
2643 goto out_writepages;
2644 }
2645
2646 /*
2647 * No pages to write? This is mainly a kludge to avoid starting
2648 * a transaction for special inodes like journal inode on last iput()
2649 * because that could violate lock ordering on umount
2650 */
2651 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2652 goto out_writepages;
2653
2654 if (ext4_should_journal_data(inode)) {
2655 struct blk_plug plug;
2656
2657 blk_start_plug(&plug);
2658 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2659 blk_finish_plug(&plug);
2660 goto out_writepages;
2661 }
2662
2663 /*
2664 * If the filesystem has aborted, it is read-only, so return
2665 * right away instead of dumping stack traces later on that
2666 * will obscure the real source of the problem. We test
2667 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2668 * the latter could be true if the filesystem is mounted
2669 * read-only, and in that case, ext4_writepages should
2670 * *never* be called, so if that ever happens, we would want
2671 * the stack trace.
2672 */
2673 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2674 ret = -EROFS;
2675 goto out_writepages;
2676 }
2677
2678 if (ext4_should_dioread_nolock(inode)) {
2679 /*
2680 * We may need to convert up to one extent per block in
2681 * the page and we may dirty the inode.
2682 */
2683 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2684 }
2685
2686 /*
2687 * If we have inline data and arrive here, it means that
2688 * we will soon create the block for the 1st page, so
2689 * we'd better clear the inline data here.
2690 */
2691 if (ext4_has_inline_data(inode)) {
2692 /* Just inode will be modified... */
2693 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2694 if (IS_ERR(handle)) {
2695 ret = PTR_ERR(handle);
2696 goto out_writepages;
2697 }
2698 BUG_ON(ext4_test_inode_state(inode,
2699 EXT4_STATE_MAY_INLINE_DATA));
2700 ext4_destroy_inline_data(handle, inode);
2701 ext4_journal_stop(handle);
2702 }
2703
2704 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2705 range_whole = 1;
2706
2707 if (wbc->range_cyclic) {
2708 writeback_index = mapping->writeback_index;
2709 if (writeback_index)
2710 cycled = 0;
2711 mpd.first_page = writeback_index;
2712 mpd.last_page = -1;
2713 } else {
2714 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2715 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2716 }
2717
2718 mpd.inode = inode;
2719 mpd.wbc = wbc;
2720 ext4_io_submit_init(&mpd.io_submit, wbc);
2721 retry:
2722 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2723 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2724 done = false;
2725 blk_start_plug(&plug);
2726 while (!done && mpd.first_page <= mpd.last_page) {
2727 /* For each extent of pages we use new io_end */
2728 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2729 if (!mpd.io_submit.io_end) {
2730 ret = -ENOMEM;
2731 break;
2732 }
2733
2734 /*
2735 * We have two constraints: We find one extent to map and we
2736 * must always write out whole page (makes a difference when
2737 * blocksize < pagesize) so that we don't block on IO when we
2738 * try to write out the rest of the page. Journalled mode is
2739 * not supported by delalloc.
2740 */
2741 BUG_ON(ext4_should_journal_data(inode));
2742 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2743
2744 /* start a new transaction */
2745 handle = ext4_journal_start_with_reserve(inode,
2746 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2747 if (IS_ERR(handle)) {
2748 ret = PTR_ERR(handle);
2749 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2750 "%ld pages, ino %lu; err %d", __func__,
2751 wbc->nr_to_write, inode->i_ino, ret);
2752 /* Release allocated io_end */
2753 ext4_put_io_end(mpd.io_submit.io_end);
2754 break;
2755 }
2756
2757 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2758 ret = mpage_prepare_extent_to_map(&mpd);
2759 if (!ret) {
2760 if (mpd.map.m_len)
2761 ret = mpage_map_and_submit_extent(handle, &mpd,
2762 &give_up_on_write);
2763 else {
2764 /*
2765 * We scanned the whole range (or exhausted
2766 * nr_to_write), submitted what was mapped and
2767 * didn't find anything needing mapping. We are
2768 * done.
2769 */
2770 done = true;
2771 }
2772 }
2773 /*
2774 * Caution: If the handle is synchronous,
2775 * ext4_journal_stop() can wait for transaction commit
2776 * to finish which may depend on writeback of pages to
2777 * complete or on page lock to be released. In that
2778 * case, we have to wait until after after we have
2779 * submitted all the IO, released page locks we hold,
2780 * and dropped io_end reference (for extent conversion
2781 * to be able to complete) before stopping the handle.
2782 */
2783 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2784 ext4_journal_stop(handle);
2785 handle = NULL;
2786 }
2787 /* Submit prepared bio */
2788 ext4_io_submit(&mpd.io_submit);
2789 /* Unlock pages we didn't use */
2790 mpage_release_unused_pages(&mpd, give_up_on_write);
2791 /*
2792 * Drop our io_end reference we got from init. We have
2793 * to be careful and use deferred io_end finishing if
2794 * we are still holding the transaction as we can
2795 * release the last reference to io_end which may end
2796 * up doing unwritten extent conversion.
2797 */
2798 if (handle) {
2799 ext4_put_io_end_defer(mpd.io_submit.io_end);
2800 ext4_journal_stop(handle);
2801 } else
2802 ext4_put_io_end(mpd.io_submit.io_end);
2803
2804 if (ret == -ENOSPC && sbi->s_journal) {
2805 /*
2806 * Commit the transaction which would
2807 * free blocks released in the transaction
2808 * and try again
2809 */
2810 jbd2_journal_force_commit_nested(sbi->s_journal);
2811 ret = 0;
2812 continue;
2813 }
2814 /* Fatal error - ENOMEM, EIO... */
2815 if (ret)
2816 break;
2817 }
2818 blk_finish_plug(&plug);
2819 if (!ret && !cycled && wbc->nr_to_write > 0) {
2820 cycled = 1;
2821 mpd.last_page = writeback_index - 1;
2822 mpd.first_page = 0;
2823 goto retry;
2824 }
2825
2826 /* Update index */
2827 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2828 /*
2829 * Set the writeback_index so that range_cyclic
2830 * mode will write it back later
2831 */
2832 mapping->writeback_index = mpd.first_page;
2833
2834 out_writepages:
2835 trace_ext4_writepages_result(inode, wbc, ret,
2836 nr_to_write - wbc->nr_to_write);
2837 percpu_up_read(&sbi->s_journal_flag_rwsem);
2838 return ret;
2839 }
2840
2841 static int ext4_nonda_switch(struct super_block *sb)
2842 {
2843 s64 free_clusters, dirty_clusters;
2844 struct ext4_sb_info *sbi = EXT4_SB(sb);
2845
2846 /*
2847 * switch to non delalloc mode if we are running low
2848 * on free block. The free block accounting via percpu
2849 * counters can get slightly wrong with percpu_counter_batch getting
2850 * accumulated on each CPU without updating global counters
2851 * Delalloc need an accurate free block accounting. So switch
2852 * to non delalloc when we are near to error range.
2853 */
2854 free_clusters =
2855 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2856 dirty_clusters =
2857 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2858 /*
2859 * Start pushing delalloc when 1/2 of free blocks are dirty.
2860 */
2861 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2862 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2863
2864 if (2 * free_clusters < 3 * dirty_clusters ||
2865 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2866 /*
2867 * free block count is less than 150% of dirty blocks
2868 * or free blocks is less than watermark
2869 */
2870 return 1;
2871 }
2872 return 0;
2873 }
2874
2875 /* We always reserve for an inode update; the superblock could be there too */
2876 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2877 {
2878 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2879 return 1;
2880
2881 if (pos + len <= 0x7fffffffULL)
2882 return 1;
2883
2884 /* We might need to update the superblock to set LARGE_FILE */
2885 return 2;
2886 }
2887
2888 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2889 loff_t pos, unsigned len, unsigned flags,
2890 struct page **pagep, void **fsdata)
2891 {
2892 int ret, retries = 0;
2893 struct page *page;
2894 pgoff_t index;
2895 struct inode *inode = mapping->host;
2896 handle_t *handle;
2897
2898 index = pos >> PAGE_SHIFT;
2899
2900 if (ext4_nonda_switch(inode->i_sb) ||
2901 S_ISLNK(inode->i_mode)) {
2902 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2903 return ext4_write_begin(file, mapping, pos,
2904 len, flags, pagep, fsdata);
2905 }
2906 *fsdata = (void *)0;
2907 trace_ext4_da_write_begin(inode, pos, len, flags);
2908
2909 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2910 ret = ext4_da_write_inline_data_begin(mapping, inode,
2911 pos, len, flags,
2912 pagep, fsdata);
2913 if (ret < 0)
2914 return ret;
2915 if (ret == 1)
2916 return 0;
2917 }
2918
2919 /*
2920 * grab_cache_page_write_begin() can take a long time if the
2921 * system is thrashing due to memory pressure, or if the page
2922 * is being written back. So grab it first before we start
2923 * the transaction handle. This also allows us to allocate
2924 * the page (if needed) without using GFP_NOFS.
2925 */
2926 retry_grab:
2927 page = grab_cache_page_write_begin(mapping, index, flags);
2928 if (!page)
2929 return -ENOMEM;
2930 unlock_page(page);
2931
2932 /*
2933 * With delayed allocation, we don't log the i_disksize update
2934 * if there is delayed block allocation. But we still need
2935 * to journalling the i_disksize update if writes to the end
2936 * of file which has an already mapped buffer.
2937 */
2938 retry_journal:
2939 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2940 ext4_da_write_credits(inode, pos, len));
2941 if (IS_ERR(handle)) {
2942 put_page(page);
2943 return PTR_ERR(handle);
2944 }
2945
2946 lock_page(page);
2947 if (page->mapping != mapping) {
2948 /* The page got truncated from under us */
2949 unlock_page(page);
2950 put_page(page);
2951 ext4_journal_stop(handle);
2952 goto retry_grab;
2953 }
2954 /* In case writeback began while the page was unlocked */
2955 wait_for_stable_page(page);
2956
2957 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2958 ret = ext4_block_write_begin(page, pos, len,
2959 ext4_da_get_block_prep);
2960 #else
2961 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2962 #endif
2963 if (ret < 0) {
2964 unlock_page(page);
2965 ext4_journal_stop(handle);
2966 /*
2967 * block_write_begin may have instantiated a few blocks
2968 * outside i_size. Trim these off again. Don't need
2969 * i_size_read because we hold i_mutex.
2970 */
2971 if (pos + len > inode->i_size)
2972 ext4_truncate_failed_write(inode);
2973
2974 if (ret == -ENOSPC &&
2975 ext4_should_retry_alloc(inode->i_sb, &retries))
2976 goto retry_journal;
2977
2978 put_page(page);
2979 return ret;
2980 }
2981
2982 *pagep = page;
2983 return ret;
2984 }
2985
2986 /*
2987 * Check if we should update i_disksize
2988 * when write to the end of file but not require block allocation
2989 */
2990 static int ext4_da_should_update_i_disksize(struct page *page,
2991 unsigned long offset)
2992 {
2993 struct buffer_head *bh;
2994 struct inode *inode = page->mapping->host;
2995 unsigned int idx;
2996 int i;
2997
2998 bh = page_buffers(page);
2999 idx = offset >> inode->i_blkbits;
3000
3001 for (i = 0; i < idx; i++)
3002 bh = bh->b_this_page;
3003
3004 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3005 return 0;
3006 return 1;
3007 }
3008
3009 static int ext4_da_write_end(struct file *file,
3010 struct address_space *mapping,
3011 loff_t pos, unsigned len, unsigned copied,
3012 struct page *page, void *fsdata)
3013 {
3014 struct inode *inode = mapping->host;
3015 int ret = 0, ret2;
3016 handle_t *handle = ext4_journal_current_handle();
3017 loff_t new_i_size;
3018 unsigned long start, end;
3019 int write_mode = (int)(unsigned long)fsdata;
3020
3021 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3022 return ext4_write_end(file, mapping, pos,
3023 len, copied, page, fsdata);
3024
3025 trace_ext4_da_write_end(inode, pos, len, copied);
3026 start = pos & (PAGE_SIZE - 1);
3027 end = start + copied - 1;
3028
3029 /*
3030 * generic_write_end() will run mark_inode_dirty() if i_size
3031 * changes. So let's piggyback the i_disksize mark_inode_dirty
3032 * into that.
3033 */
3034 new_i_size = pos + copied;
3035 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3036 if (ext4_has_inline_data(inode) ||
3037 ext4_da_should_update_i_disksize(page, end)) {
3038 ext4_update_i_disksize(inode, new_i_size);
3039 /* We need to mark inode dirty even if
3040 * new_i_size is less that inode->i_size
3041 * bu greater than i_disksize.(hint delalloc)
3042 */
3043 ext4_mark_inode_dirty(handle, inode);
3044 }
3045 }
3046
3047 if (write_mode != CONVERT_INLINE_DATA &&
3048 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3049 ext4_has_inline_data(inode))
3050 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3051 page);
3052 else
3053 ret2 = generic_write_end(file, mapping, pos, len, copied,
3054 page, fsdata);
3055
3056 copied = ret2;
3057 if (ret2 < 0)
3058 ret = ret2;
3059 ret2 = ext4_journal_stop(handle);
3060 if (!ret)
3061 ret = ret2;
3062
3063 return ret ? ret : copied;
3064 }
3065
3066 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3067 unsigned int length)
3068 {
3069 /*
3070 * Drop reserved blocks
3071 */
3072 BUG_ON(!PageLocked(page));
3073 if (!page_has_buffers(page))
3074 goto out;
3075
3076 ext4_da_page_release_reservation(page, offset, length);
3077
3078 out:
3079 ext4_invalidatepage(page, offset, length);
3080
3081 return;
3082 }
3083
3084 /*
3085 * Force all delayed allocation blocks to be allocated for a given inode.
3086 */
3087 int ext4_alloc_da_blocks(struct inode *inode)
3088 {
3089 trace_ext4_alloc_da_blocks(inode);
3090
3091 if (!EXT4_I(inode)->i_reserved_data_blocks)
3092 return 0;
3093
3094 /*
3095 * We do something simple for now. The filemap_flush() will
3096 * also start triggering a write of the data blocks, which is
3097 * not strictly speaking necessary (and for users of
3098 * laptop_mode, not even desirable). However, to do otherwise
3099 * would require replicating code paths in:
3100 *
3101 * ext4_writepages() ->
3102 * write_cache_pages() ---> (via passed in callback function)
3103 * __mpage_da_writepage() -->
3104 * mpage_add_bh_to_extent()
3105 * mpage_da_map_blocks()
3106 *
3107 * The problem is that write_cache_pages(), located in
3108 * mm/page-writeback.c, marks pages clean in preparation for
3109 * doing I/O, which is not desirable if we're not planning on
3110 * doing I/O at all.
3111 *
3112 * We could call write_cache_pages(), and then redirty all of
3113 * the pages by calling redirty_page_for_writepage() but that
3114 * would be ugly in the extreme. So instead we would need to
3115 * replicate parts of the code in the above functions,
3116 * simplifying them because we wouldn't actually intend to
3117 * write out the pages, but rather only collect contiguous
3118 * logical block extents, call the multi-block allocator, and
3119 * then update the buffer heads with the block allocations.
3120 *
3121 * For now, though, we'll cheat by calling filemap_flush(),
3122 * which will map the blocks, and start the I/O, but not
3123 * actually wait for the I/O to complete.
3124 */
3125 return filemap_flush(inode->i_mapping);
3126 }
3127
3128 /*
3129 * bmap() is special. It gets used by applications such as lilo and by
3130 * the swapper to find the on-disk block of a specific piece of data.
3131 *
3132 * Naturally, this is dangerous if the block concerned is still in the
3133 * journal. If somebody makes a swapfile on an ext4 data-journaling
3134 * filesystem and enables swap, then they may get a nasty shock when the
3135 * data getting swapped to that swapfile suddenly gets overwritten by
3136 * the original zero's written out previously to the journal and
3137 * awaiting writeback in the kernel's buffer cache.
3138 *
3139 * So, if we see any bmap calls here on a modified, data-journaled file,
3140 * take extra steps to flush any blocks which might be in the cache.
3141 */
3142 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3143 {
3144 struct inode *inode = mapping->host;
3145 journal_t *journal;
3146 int err;
3147
3148 /*
3149 * We can get here for an inline file via the FIBMAP ioctl
3150 */
3151 if (ext4_has_inline_data(inode))
3152 return 0;
3153
3154 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3155 test_opt(inode->i_sb, DELALLOC)) {
3156 /*
3157 * With delalloc we want to sync the file
3158 * so that we can make sure we allocate
3159 * blocks for file
3160 */
3161 filemap_write_and_wait(mapping);
3162 }
3163
3164 if (EXT4_JOURNAL(inode) &&
3165 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3166 /*
3167 * This is a REALLY heavyweight approach, but the use of
3168 * bmap on dirty files is expected to be extremely rare:
3169 * only if we run lilo or swapon on a freshly made file
3170 * do we expect this to happen.
3171 *
3172 * (bmap requires CAP_SYS_RAWIO so this does not
3173 * represent an unprivileged user DOS attack --- we'd be
3174 * in trouble if mortal users could trigger this path at
3175 * will.)
3176 *
3177 * NB. EXT4_STATE_JDATA is not set on files other than
3178 * regular files. If somebody wants to bmap a directory
3179 * or symlink and gets confused because the buffer
3180 * hasn't yet been flushed to disk, they deserve
3181 * everything they get.
3182 */
3183
3184 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3185 journal = EXT4_JOURNAL(inode);
3186 jbd2_journal_lock_updates(journal);
3187 err = jbd2_journal_flush(journal);
3188 jbd2_journal_unlock_updates(journal);
3189
3190 if (err)
3191 return 0;
3192 }
3193
3194 return generic_block_bmap(mapping, block, ext4_get_block);
3195 }
3196
3197 static int ext4_readpage(struct file *file, struct page *page)
3198 {
3199 int ret = -EAGAIN;
3200 struct inode *inode = page->mapping->host;
3201
3202 trace_ext4_readpage(page);
3203
3204 if (ext4_has_inline_data(inode))
3205 ret = ext4_readpage_inline(inode, page);
3206
3207 if (ret == -EAGAIN)
3208 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3209
3210 return ret;
3211 }
3212
3213 static int
3214 ext4_readpages(struct file *file, struct address_space *mapping,
3215 struct list_head *pages, unsigned nr_pages)
3216 {
3217 struct inode *inode = mapping->host;
3218
3219 /* If the file has inline data, no need to do readpages. */
3220 if (ext4_has_inline_data(inode))
3221 return 0;
3222
3223 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3224 }
3225
3226 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3227 unsigned int length)
3228 {
3229 trace_ext4_invalidatepage(page, offset, length);
3230
3231 /* No journalling happens on data buffers when this function is used */
3232 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3233
3234 block_invalidatepage(page, offset, length);
3235 }
3236
3237 static int __ext4_journalled_invalidatepage(struct page *page,
3238 unsigned int offset,
3239 unsigned int length)
3240 {
3241 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3242
3243 trace_ext4_journalled_invalidatepage(page, offset, length);
3244
3245 /*
3246 * If it's a full truncate we just forget about the pending dirtying
3247 */
3248 if (offset == 0 && length == PAGE_SIZE)
3249 ClearPageChecked(page);
3250
3251 return jbd2_journal_invalidatepage(journal, page, offset, length);
3252 }
3253
3254 /* Wrapper for aops... */
3255 static void ext4_journalled_invalidatepage(struct page *page,
3256 unsigned int offset,
3257 unsigned int length)
3258 {
3259 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3260 }
3261
3262 static int ext4_releasepage(struct page *page, gfp_t wait)
3263 {
3264 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3265
3266 trace_ext4_releasepage(page);
3267
3268 /* Page has dirty journalled data -> cannot release */
3269 if (PageChecked(page))
3270 return 0;
3271 if (journal)
3272 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3273 else
3274 return try_to_free_buffers(page);
3275 }
3276
3277 #ifdef CONFIG_FS_DAX
3278 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3279 unsigned flags, struct iomap *iomap)
3280 {
3281 unsigned int blkbits = inode->i_blkbits;
3282 unsigned long first_block = offset >> blkbits;
3283 unsigned long last_block = (offset + length - 1) >> blkbits;
3284 struct ext4_map_blocks map;
3285 int ret;
3286
3287 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3288 return -ERANGE;
3289
3290 map.m_lblk = first_block;
3291 map.m_len = last_block - first_block + 1;
3292
3293 if (!(flags & IOMAP_WRITE)) {
3294 ret = ext4_map_blocks(NULL, inode, &map, 0);
3295 } else {
3296 int dio_credits;
3297 handle_t *handle;
3298 int retries = 0;
3299
3300 /* Trim mapping request to maximum we can map at once for DIO */
3301 if (map.m_len > DIO_MAX_BLOCKS)
3302 map.m_len = DIO_MAX_BLOCKS;
3303 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3304 retry:
3305 /*
3306 * Either we allocate blocks and then we don't get unwritten
3307 * extent so we have reserved enough credits, or the blocks
3308 * are already allocated and unwritten and in that case
3309 * extent conversion fits in the credits as well.
3310 */
3311 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3312 dio_credits);
3313 if (IS_ERR(handle))
3314 return PTR_ERR(handle);
3315
3316 ret = ext4_map_blocks(handle, inode, &map,
3317 EXT4_GET_BLOCKS_CREATE_ZERO);
3318 if (ret < 0) {
3319 ext4_journal_stop(handle);
3320 if (ret == -ENOSPC &&
3321 ext4_should_retry_alloc(inode->i_sb, &retries))
3322 goto retry;
3323 return ret;
3324 }
3325
3326 /*
3327 * If we added blocks beyond i_size, we need to make sure they
3328 * will get truncated if we crash before updating i_size in
3329 * ext4_iomap_end(). For faults we don't need to do that (and
3330 * even cannot because for orphan list operations inode_lock is
3331 * required) - if we happen to instantiate block beyond i_size,
3332 * it is because we race with truncate which has already added
3333 * the inode to the orphan list.
3334 */
3335 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3336 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3337 int err;
3338
3339 err = ext4_orphan_add(handle, inode);
3340 if (err < 0) {
3341 ext4_journal_stop(handle);
3342 return err;
3343 }
3344 }
3345 ext4_journal_stop(handle);
3346 }
3347
3348 iomap->flags = 0;
3349 iomap->bdev = inode->i_sb->s_bdev;
3350 iomap->offset = first_block << blkbits;
3351
3352 if (ret == 0) {
3353 iomap->type = IOMAP_HOLE;
3354 iomap->blkno = IOMAP_NULL_BLOCK;
3355 iomap->length = (u64)map.m_len << blkbits;
3356 } else {
3357 if (map.m_flags & EXT4_MAP_MAPPED) {
3358 iomap->type = IOMAP_MAPPED;
3359 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3360 iomap->type = IOMAP_UNWRITTEN;
3361 } else {
3362 WARN_ON_ONCE(1);
3363 return -EIO;
3364 }
3365 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3366 iomap->length = (u64)map.m_len << blkbits;
3367 }
3368
3369 if (map.m_flags & EXT4_MAP_NEW)
3370 iomap->flags |= IOMAP_F_NEW;
3371 return 0;
3372 }
3373
3374 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3375 ssize_t written, unsigned flags, struct iomap *iomap)
3376 {
3377 int ret = 0;
3378 handle_t *handle;
3379 int blkbits = inode->i_blkbits;
3380 bool truncate = false;
3381
3382 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3383 return 0;
3384
3385 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3386 if (IS_ERR(handle)) {
3387 ret = PTR_ERR(handle);
3388 goto orphan_del;
3389 }
3390 if (ext4_update_inode_size(inode, offset + written))
3391 ext4_mark_inode_dirty(handle, inode);
3392 /*
3393 * We may need to truncate allocated but not written blocks beyond EOF.
3394 */
3395 if (iomap->offset + iomap->length >
3396 ALIGN(inode->i_size, 1 << blkbits)) {
3397 ext4_lblk_t written_blk, end_blk;
3398
3399 written_blk = (offset + written) >> blkbits;
3400 end_blk = (offset + length) >> blkbits;
3401 if (written_blk < end_blk && ext4_can_truncate(inode))
3402 truncate = true;
3403 }
3404 /*
3405 * Remove inode from orphan list if we were extending a inode and
3406 * everything went fine.
3407 */
3408 if (!truncate && inode->i_nlink &&
3409 !list_empty(&EXT4_I(inode)->i_orphan))
3410 ext4_orphan_del(handle, inode);
3411 ext4_journal_stop(handle);
3412 if (truncate) {
3413 ext4_truncate_failed_write(inode);
3414 orphan_del:
3415 /*
3416 * If truncate failed early the inode might still be on the
3417 * orphan list; we need to make sure the inode is removed from
3418 * the orphan list in that case.
3419 */
3420 if (inode->i_nlink)
3421 ext4_orphan_del(NULL, inode);
3422 }
3423 return ret;
3424 }
3425
3426 struct iomap_ops ext4_iomap_ops = {
3427 .iomap_begin = ext4_iomap_begin,
3428 .iomap_end = ext4_iomap_end,
3429 };
3430
3431 #endif
3432
3433 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3434 ssize_t size, void *private)
3435 {
3436 ext4_io_end_t *io_end = private;
3437
3438 /* if not async direct IO just return */
3439 if (!io_end)
3440 return 0;
3441
3442 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3443 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3444 io_end, io_end->inode->i_ino, iocb, offset, size);
3445
3446 /*
3447 * Error during AIO DIO. We cannot convert unwritten extents as the
3448 * data was not written. Just clear the unwritten flag and drop io_end.
3449 */
3450 if (size <= 0) {
3451 ext4_clear_io_unwritten_flag(io_end);
3452 size = 0;
3453 }
3454 io_end->offset = offset;
3455 io_end->size = size;
3456 ext4_put_io_end(io_end);
3457
3458 return 0;
3459 }
3460
3461 /*
3462 * Handling of direct IO writes.
3463 *
3464 * For ext4 extent files, ext4 will do direct-io write even to holes,
3465 * preallocated extents, and those write extend the file, no need to
3466 * fall back to buffered IO.
3467 *
3468 * For holes, we fallocate those blocks, mark them as unwritten
3469 * If those blocks were preallocated, we mark sure they are split, but
3470 * still keep the range to write as unwritten.
3471 *
3472 * The unwritten extents will be converted to written when DIO is completed.
3473 * For async direct IO, since the IO may still pending when return, we
3474 * set up an end_io call back function, which will do the conversion
3475 * when async direct IO completed.
3476 *
3477 * If the O_DIRECT write will extend the file then add this inode to the
3478 * orphan list. So recovery will truncate it back to the original size
3479 * if the machine crashes during the write.
3480 *
3481 */
3482 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3483 {
3484 struct file *file = iocb->ki_filp;
3485 struct inode *inode = file->f_mapping->host;
3486 struct ext4_inode_info *ei = EXT4_I(inode);
3487 ssize_t ret;
3488 loff_t offset = iocb->ki_pos;
3489 size_t count = iov_iter_count(iter);
3490 int overwrite = 0;
3491 get_block_t *get_block_func = NULL;
3492 int dio_flags = 0;
3493 loff_t final_size = offset + count;
3494 int orphan = 0;
3495 handle_t *handle;
3496
3497 if (final_size > inode->i_size) {
3498 /* Credits for sb + inode write */
3499 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3500 if (IS_ERR(handle)) {
3501 ret = PTR_ERR(handle);
3502 goto out;
3503 }
3504 ret = ext4_orphan_add(handle, inode);
3505 if (ret) {
3506 ext4_journal_stop(handle);
3507 goto out;
3508 }
3509 orphan = 1;
3510 ei->i_disksize = inode->i_size;
3511 ext4_journal_stop(handle);
3512 }
3513
3514 BUG_ON(iocb->private == NULL);
3515
3516 /*
3517 * Make all waiters for direct IO properly wait also for extent
3518 * conversion. This also disallows race between truncate() and
3519 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3520 */
3521 inode_dio_begin(inode);
3522
3523 /* If we do a overwrite dio, i_mutex locking can be released */
3524 overwrite = *((int *)iocb->private);
3525
3526 if (overwrite)
3527 inode_unlock(inode);
3528
3529 /*
3530 * For extent mapped files we could direct write to holes and fallocate.
3531 *
3532 * Allocated blocks to fill the hole are marked as unwritten to prevent
3533 * parallel buffered read to expose the stale data before DIO complete
3534 * the data IO.
3535 *
3536 * As to previously fallocated extents, ext4 get_block will just simply
3537 * mark the buffer mapped but still keep the extents unwritten.
3538 *
3539 * For non AIO case, we will convert those unwritten extents to written
3540 * after return back from blockdev_direct_IO. That way we save us from
3541 * allocating io_end structure and also the overhead of offloading
3542 * the extent convertion to a workqueue.
3543 *
3544 * For async DIO, the conversion needs to be deferred when the
3545 * IO is completed. The ext4 end_io callback function will be
3546 * called to take care of the conversion work. Here for async
3547 * case, we allocate an io_end structure to hook to the iocb.
3548 */
3549 iocb->private = NULL;
3550 if (overwrite)
3551 get_block_func = ext4_dio_get_block_overwrite;
3552 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3553 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3554 get_block_func = ext4_dio_get_block;
3555 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3556 } else if (is_sync_kiocb(iocb)) {
3557 get_block_func = ext4_dio_get_block_unwritten_sync;
3558 dio_flags = DIO_LOCKING;
3559 } else {
3560 get_block_func = ext4_dio_get_block_unwritten_async;
3561 dio_flags = DIO_LOCKING;
3562 }
3563 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3564 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3565 #endif
3566 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3567 get_block_func, ext4_end_io_dio, NULL,
3568 dio_flags);
3569
3570 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3571 EXT4_STATE_DIO_UNWRITTEN)) {
3572 int err;
3573 /*
3574 * for non AIO case, since the IO is already
3575 * completed, we could do the conversion right here
3576 */
3577 err = ext4_convert_unwritten_extents(NULL, inode,
3578 offset, ret);
3579 if (err < 0)
3580 ret = err;
3581 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3582 }
3583
3584 inode_dio_end(inode);
3585 /* take i_mutex locking again if we do a ovewrite dio */
3586 if (overwrite)
3587 inode_lock(inode);
3588
3589 if (ret < 0 && final_size > inode->i_size)
3590 ext4_truncate_failed_write(inode);
3591
3592 /* Handle extending of i_size after direct IO write */
3593 if (orphan) {
3594 int err;
3595
3596 /* Credits for sb + inode write */
3597 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3598 if (IS_ERR(handle)) {
3599 /* This is really bad luck. We've written the data
3600 * but cannot extend i_size. Bail out and pretend
3601 * the write failed... */
3602 ret = PTR_ERR(handle);
3603 if (inode->i_nlink)
3604 ext4_orphan_del(NULL, inode);
3605
3606 goto out;
3607 }
3608 if (inode->i_nlink)
3609 ext4_orphan_del(handle, inode);
3610 if (ret > 0) {
3611 loff_t end = offset + ret;
3612 if (end > inode->i_size) {
3613 ei->i_disksize = end;
3614 i_size_write(inode, end);
3615 /*
3616 * We're going to return a positive `ret'
3617 * here due to non-zero-length I/O, so there's
3618 * no way of reporting error returns from
3619 * ext4_mark_inode_dirty() to userspace. So
3620 * ignore it.
3621 */
3622 ext4_mark_inode_dirty(handle, inode);
3623 }
3624 }
3625 err = ext4_journal_stop(handle);
3626 if (ret == 0)
3627 ret = err;
3628 }
3629 out:
3630 return ret;
3631 }
3632
3633 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3634 {
3635 struct address_space *mapping = iocb->ki_filp->f_mapping;
3636 struct inode *inode = mapping->host;
3637 size_t count = iov_iter_count(iter);
3638 ssize_t ret;
3639
3640 /*
3641 * Shared inode_lock is enough for us - it protects against concurrent
3642 * writes & truncates and since we take care of writing back page cache,
3643 * we are protected against page writeback as well.
3644 */
3645 inode_lock_shared(inode);
3646 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3647 iocb->ki_pos + count);
3648 if (ret)
3649 goto out_unlock;
3650 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3651 iter, ext4_dio_get_block, NULL, NULL, 0);
3652 out_unlock:
3653 inode_unlock_shared(inode);
3654 return ret;
3655 }
3656
3657 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3658 {
3659 struct file *file = iocb->ki_filp;
3660 struct inode *inode = file->f_mapping->host;
3661 size_t count = iov_iter_count(iter);
3662 loff_t offset = iocb->ki_pos;
3663 ssize_t ret;
3664
3665 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3666 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3667 return 0;
3668 #endif
3669
3670 /*
3671 * If we are doing data journalling we don't support O_DIRECT
3672 */
3673 if (ext4_should_journal_data(inode))
3674 return 0;
3675
3676 /* Let buffer I/O handle the inline data case. */
3677 if (ext4_has_inline_data(inode))
3678 return 0;
3679
3680 /* DAX uses iomap path now */
3681 if (WARN_ON_ONCE(IS_DAX(inode)))
3682 return 0;
3683
3684 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3685 if (iov_iter_rw(iter) == READ)
3686 ret = ext4_direct_IO_read(iocb, iter);
3687 else
3688 ret = ext4_direct_IO_write(iocb, iter);
3689 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3690 return ret;
3691 }
3692
3693 /*
3694 * Pages can be marked dirty completely asynchronously from ext4's journalling
3695 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3696 * much here because ->set_page_dirty is called under VFS locks. The page is
3697 * not necessarily locked.
3698 *
3699 * We cannot just dirty the page and leave attached buffers clean, because the
3700 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3701 * or jbddirty because all the journalling code will explode.
3702 *
3703 * So what we do is to mark the page "pending dirty" and next time writepage
3704 * is called, propagate that into the buffers appropriately.
3705 */
3706 static int ext4_journalled_set_page_dirty(struct page *page)
3707 {
3708 SetPageChecked(page);
3709 return __set_page_dirty_nobuffers(page);
3710 }
3711
3712 static int ext4_set_page_dirty(struct page *page)
3713 {
3714 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3715 WARN_ON_ONCE(!page_has_buffers(page));
3716 return __set_page_dirty_buffers(page);
3717 }
3718
3719 static const struct address_space_operations ext4_aops = {
3720 .readpage = ext4_readpage,
3721 .readpages = ext4_readpages,
3722 .writepage = ext4_writepage,
3723 .writepages = ext4_writepages,
3724 .write_begin = ext4_write_begin,
3725 .write_end = ext4_write_end,
3726 .set_page_dirty = ext4_set_page_dirty,
3727 .bmap = ext4_bmap,
3728 .invalidatepage = ext4_invalidatepage,
3729 .releasepage = ext4_releasepage,
3730 .direct_IO = ext4_direct_IO,
3731 .migratepage = buffer_migrate_page,
3732 .is_partially_uptodate = block_is_partially_uptodate,
3733 .error_remove_page = generic_error_remove_page,
3734 };
3735
3736 static const struct address_space_operations ext4_journalled_aops = {
3737 .readpage = ext4_readpage,
3738 .readpages = ext4_readpages,
3739 .writepage = ext4_writepage,
3740 .writepages = ext4_writepages,
3741 .write_begin = ext4_write_begin,
3742 .write_end = ext4_journalled_write_end,
3743 .set_page_dirty = ext4_journalled_set_page_dirty,
3744 .bmap = ext4_bmap,
3745 .invalidatepage = ext4_journalled_invalidatepage,
3746 .releasepage = ext4_releasepage,
3747 .direct_IO = ext4_direct_IO,
3748 .is_partially_uptodate = block_is_partially_uptodate,
3749 .error_remove_page = generic_error_remove_page,
3750 };
3751
3752 static const struct address_space_operations ext4_da_aops = {
3753 .readpage = ext4_readpage,
3754 .readpages = ext4_readpages,
3755 .writepage = ext4_writepage,
3756 .writepages = ext4_writepages,
3757 .write_begin = ext4_da_write_begin,
3758 .write_end = ext4_da_write_end,
3759 .set_page_dirty = ext4_set_page_dirty,
3760 .bmap = ext4_bmap,
3761 .invalidatepage = ext4_da_invalidatepage,
3762 .releasepage = ext4_releasepage,
3763 .direct_IO = ext4_direct_IO,
3764 .migratepage = buffer_migrate_page,
3765 .is_partially_uptodate = block_is_partially_uptodate,
3766 .error_remove_page = generic_error_remove_page,
3767 };
3768
3769 void ext4_set_aops(struct inode *inode)
3770 {
3771 switch (ext4_inode_journal_mode(inode)) {
3772 case EXT4_INODE_ORDERED_DATA_MODE:
3773 case EXT4_INODE_WRITEBACK_DATA_MODE:
3774 break;
3775 case EXT4_INODE_JOURNAL_DATA_MODE:
3776 inode->i_mapping->a_ops = &ext4_journalled_aops;
3777 return;
3778 default:
3779 BUG();
3780 }
3781 if (test_opt(inode->i_sb, DELALLOC))
3782 inode->i_mapping->a_ops = &ext4_da_aops;
3783 else
3784 inode->i_mapping->a_ops = &ext4_aops;
3785 }
3786
3787 static int __ext4_block_zero_page_range(handle_t *handle,
3788 struct address_space *mapping, loff_t from, loff_t length)
3789 {
3790 ext4_fsblk_t index = from >> PAGE_SHIFT;
3791 unsigned offset = from & (PAGE_SIZE-1);
3792 unsigned blocksize, pos;
3793 ext4_lblk_t iblock;
3794 struct inode *inode = mapping->host;
3795 struct buffer_head *bh;
3796 struct page *page;
3797 int err = 0;
3798
3799 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3800 mapping_gfp_constraint(mapping, ~__GFP_FS));
3801 if (!page)
3802 return -ENOMEM;
3803
3804 blocksize = inode->i_sb->s_blocksize;
3805
3806 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3807
3808 if (!page_has_buffers(page))
3809 create_empty_buffers(page, blocksize, 0);
3810
3811 /* Find the buffer that contains "offset" */
3812 bh = page_buffers(page);
3813 pos = blocksize;
3814 while (offset >= pos) {
3815 bh = bh->b_this_page;
3816 iblock++;
3817 pos += blocksize;
3818 }
3819 if (buffer_freed(bh)) {
3820 BUFFER_TRACE(bh, "freed: skip");
3821 goto unlock;
3822 }
3823 if (!buffer_mapped(bh)) {
3824 BUFFER_TRACE(bh, "unmapped");
3825 ext4_get_block(inode, iblock, bh, 0);
3826 /* unmapped? It's a hole - nothing to do */
3827 if (!buffer_mapped(bh)) {
3828 BUFFER_TRACE(bh, "still unmapped");
3829 goto unlock;
3830 }
3831 }
3832
3833 /* Ok, it's mapped. Make sure it's up-to-date */
3834 if (PageUptodate(page))
3835 set_buffer_uptodate(bh);
3836
3837 if (!buffer_uptodate(bh)) {
3838 err = -EIO;
3839 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3840 wait_on_buffer(bh);
3841 /* Uhhuh. Read error. Complain and punt. */
3842 if (!buffer_uptodate(bh))
3843 goto unlock;
3844 if (S_ISREG(inode->i_mode) &&
3845 ext4_encrypted_inode(inode)) {
3846 /* We expect the key to be set. */
3847 BUG_ON(!fscrypt_has_encryption_key(inode));
3848 BUG_ON(blocksize != PAGE_SIZE);
3849 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3850 page, PAGE_SIZE, 0, page->index));
3851 }
3852 }
3853 if (ext4_should_journal_data(inode)) {
3854 BUFFER_TRACE(bh, "get write access");
3855 err = ext4_journal_get_write_access(handle, bh);
3856 if (err)
3857 goto unlock;
3858 }
3859 zero_user(page, offset, length);
3860 BUFFER_TRACE(bh, "zeroed end of block");
3861
3862 if (ext4_should_journal_data(inode)) {
3863 err = ext4_handle_dirty_metadata(handle, inode, bh);
3864 } else {
3865 err = 0;
3866 mark_buffer_dirty(bh);
3867 if (ext4_should_order_data(inode))
3868 err = ext4_jbd2_inode_add_write(handle, inode);
3869 }
3870
3871 unlock:
3872 unlock_page(page);
3873 put_page(page);
3874 return err;
3875 }
3876
3877 /*
3878 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3879 * starting from file offset 'from'. The range to be zero'd must
3880 * be contained with in one block. If the specified range exceeds
3881 * the end of the block it will be shortened to end of the block
3882 * that cooresponds to 'from'
3883 */
3884 static int ext4_block_zero_page_range(handle_t *handle,
3885 struct address_space *mapping, loff_t from, loff_t length)
3886 {
3887 struct inode *inode = mapping->host;
3888 unsigned offset = from & (PAGE_SIZE-1);
3889 unsigned blocksize = inode->i_sb->s_blocksize;
3890 unsigned max = blocksize - (offset & (blocksize - 1));
3891
3892 /*
3893 * correct length if it does not fall between
3894 * 'from' and the end of the block
3895 */
3896 if (length > max || length < 0)
3897 length = max;
3898
3899 if (IS_DAX(inode)) {
3900 return iomap_zero_range(inode, from, length, NULL,
3901 &ext4_iomap_ops);
3902 }
3903 return __ext4_block_zero_page_range(handle, mapping, from, length);
3904 }
3905
3906 /*
3907 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3908 * up to the end of the block which corresponds to `from'.
3909 * This required during truncate. We need to physically zero the tail end
3910 * of that block so it doesn't yield old data if the file is later grown.
3911 */
3912 static int ext4_block_truncate_page(handle_t *handle,
3913 struct address_space *mapping, loff_t from)
3914 {
3915 unsigned offset = from & (PAGE_SIZE-1);
3916 unsigned length;
3917 unsigned blocksize;
3918 struct inode *inode = mapping->host;
3919
3920 blocksize = inode->i_sb->s_blocksize;
3921 length = blocksize - (offset & (blocksize - 1));
3922
3923 return ext4_block_zero_page_range(handle, mapping, from, length);
3924 }
3925
3926 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3927 loff_t lstart, loff_t length)
3928 {
3929 struct super_block *sb = inode->i_sb;
3930 struct address_space *mapping = inode->i_mapping;
3931 unsigned partial_start, partial_end;
3932 ext4_fsblk_t start, end;
3933 loff_t byte_end = (lstart + length - 1);
3934 int err = 0;
3935
3936 partial_start = lstart & (sb->s_blocksize - 1);
3937 partial_end = byte_end & (sb->s_blocksize - 1);
3938
3939 start = lstart >> sb->s_blocksize_bits;
3940 end = byte_end >> sb->s_blocksize_bits;
3941
3942 /* Handle partial zero within the single block */
3943 if (start == end &&
3944 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3945 err = ext4_block_zero_page_range(handle, mapping,
3946 lstart, length);
3947 return err;
3948 }
3949 /* Handle partial zero out on the start of the range */
3950 if (partial_start) {
3951 err = ext4_block_zero_page_range(handle, mapping,
3952 lstart, sb->s_blocksize);
3953 if (err)
3954 return err;
3955 }
3956 /* Handle partial zero out on the end of the range */
3957 if (partial_end != sb->s_blocksize - 1)
3958 err = ext4_block_zero_page_range(handle, mapping,
3959 byte_end - partial_end,
3960 partial_end + 1);
3961 return err;
3962 }
3963
3964 int ext4_can_truncate(struct inode *inode)
3965 {
3966 if (S_ISREG(inode->i_mode))
3967 return 1;
3968 if (S_ISDIR(inode->i_mode))
3969 return 1;
3970 if (S_ISLNK(inode->i_mode))
3971 return !ext4_inode_is_fast_symlink(inode);
3972 return 0;
3973 }
3974
3975 /*
3976 * We have to make sure i_disksize gets properly updated before we truncate
3977 * page cache due to hole punching or zero range. Otherwise i_disksize update
3978 * can get lost as it may have been postponed to submission of writeback but
3979 * that will never happen after we truncate page cache.
3980 */
3981 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3982 loff_t len)
3983 {
3984 handle_t *handle;
3985 loff_t size = i_size_read(inode);
3986
3987 WARN_ON(!inode_is_locked(inode));
3988 if (offset > size || offset + len < size)
3989 return 0;
3990
3991 if (EXT4_I(inode)->i_disksize >= size)
3992 return 0;
3993
3994 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3995 if (IS_ERR(handle))
3996 return PTR_ERR(handle);
3997 ext4_update_i_disksize(inode, size);
3998 ext4_mark_inode_dirty(handle, inode);
3999 ext4_journal_stop(handle);
4000
4001 return 0;
4002 }
4003
4004 /*
4005 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4006 * associated with the given offset and length
4007 *
4008 * @inode: File inode
4009 * @offset: The offset where the hole will begin
4010 * @len: The length of the hole
4011 *
4012 * Returns: 0 on success or negative on failure
4013 */
4014
4015 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4016 {
4017 struct super_block *sb = inode->i_sb;
4018 ext4_lblk_t first_block, stop_block;
4019 struct address_space *mapping = inode->i_mapping;
4020 loff_t first_block_offset, last_block_offset;
4021 handle_t *handle;
4022 unsigned int credits;
4023 int ret = 0;
4024
4025 if (!S_ISREG(inode->i_mode))
4026 return -EOPNOTSUPP;
4027
4028 trace_ext4_punch_hole(inode, offset, length, 0);
4029
4030 /*
4031 * Write out all dirty pages to avoid race conditions
4032 * Then release them.
4033 */
4034 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4035 ret = filemap_write_and_wait_range(mapping, offset,
4036 offset + length - 1);
4037 if (ret)
4038 return ret;
4039 }
4040
4041 inode_lock(inode);
4042
4043 /* No need to punch hole beyond i_size */
4044 if (offset >= inode->i_size)
4045 goto out_mutex;
4046
4047 /*
4048 * If the hole extends beyond i_size, set the hole
4049 * to end after the page that contains i_size
4050 */
4051 if (offset + length > inode->i_size) {
4052 length = inode->i_size +
4053 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4054 offset;
4055 }
4056
4057 if (offset & (sb->s_blocksize - 1) ||
4058 (offset + length) & (sb->s_blocksize - 1)) {
4059 /*
4060 * Attach jinode to inode for jbd2 if we do any zeroing of
4061 * partial block
4062 */
4063 ret = ext4_inode_attach_jinode(inode);
4064 if (ret < 0)
4065 goto out_mutex;
4066
4067 }
4068
4069 /* Wait all existing dio workers, newcomers will block on i_mutex */
4070 ext4_inode_block_unlocked_dio(inode);
4071 inode_dio_wait(inode);
4072
4073 /*
4074 * Prevent page faults from reinstantiating pages we have released from
4075 * page cache.
4076 */
4077 down_write(&EXT4_I(inode)->i_mmap_sem);
4078 first_block_offset = round_up(offset, sb->s_blocksize);
4079 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4080
4081 /* Now release the pages and zero block aligned part of pages*/
4082 if (last_block_offset > first_block_offset) {
4083 ret = ext4_update_disksize_before_punch(inode, offset, length);
4084 if (ret)
4085 goto out_dio;
4086 truncate_pagecache_range(inode, first_block_offset,
4087 last_block_offset);
4088 }
4089
4090 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4091 credits = ext4_writepage_trans_blocks(inode);
4092 else
4093 credits = ext4_blocks_for_truncate(inode);
4094 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4095 if (IS_ERR(handle)) {
4096 ret = PTR_ERR(handle);
4097 ext4_std_error(sb, ret);
4098 goto out_dio;
4099 }
4100
4101 ret = ext4_zero_partial_blocks(handle, inode, offset,
4102 length);
4103 if (ret)
4104 goto out_stop;
4105
4106 first_block = (offset + sb->s_blocksize - 1) >>
4107 EXT4_BLOCK_SIZE_BITS(sb);
4108 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4109
4110 /* If there are no blocks to remove, return now */
4111 if (first_block >= stop_block)
4112 goto out_stop;
4113
4114 down_write(&EXT4_I(inode)->i_data_sem);
4115 ext4_discard_preallocations(inode);
4116
4117 ret = ext4_es_remove_extent(inode, first_block,
4118 stop_block - first_block);
4119 if (ret) {
4120 up_write(&EXT4_I(inode)->i_data_sem);
4121 goto out_stop;
4122 }
4123
4124 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4125 ret = ext4_ext_remove_space(inode, first_block,
4126 stop_block - 1);
4127 else
4128 ret = ext4_ind_remove_space(handle, inode, first_block,
4129 stop_block);
4130
4131 up_write(&EXT4_I(inode)->i_data_sem);
4132 if (IS_SYNC(inode))
4133 ext4_handle_sync(handle);
4134
4135 inode->i_mtime = inode->i_ctime = current_time(inode);
4136 ext4_mark_inode_dirty(handle, inode);
4137 out_stop:
4138 ext4_journal_stop(handle);
4139 out_dio:
4140 up_write(&EXT4_I(inode)->i_mmap_sem);
4141 ext4_inode_resume_unlocked_dio(inode);
4142 out_mutex:
4143 inode_unlock(inode);
4144 return ret;
4145 }
4146
4147 int ext4_inode_attach_jinode(struct inode *inode)
4148 {
4149 struct ext4_inode_info *ei = EXT4_I(inode);
4150 struct jbd2_inode *jinode;
4151
4152 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4153 return 0;
4154
4155 jinode = jbd2_alloc_inode(GFP_KERNEL);
4156 spin_lock(&inode->i_lock);
4157 if (!ei->jinode) {
4158 if (!jinode) {
4159 spin_unlock(&inode->i_lock);
4160 return -ENOMEM;
4161 }
4162 ei->jinode = jinode;
4163 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4164 jinode = NULL;
4165 }
4166 spin_unlock(&inode->i_lock);
4167 if (unlikely(jinode != NULL))
4168 jbd2_free_inode(jinode);
4169 return 0;
4170 }
4171
4172 /*
4173 * ext4_truncate()
4174 *
4175 * We block out ext4_get_block() block instantiations across the entire
4176 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4177 * simultaneously on behalf of the same inode.
4178 *
4179 * As we work through the truncate and commit bits of it to the journal there
4180 * is one core, guiding principle: the file's tree must always be consistent on
4181 * disk. We must be able to restart the truncate after a crash.
4182 *
4183 * The file's tree may be transiently inconsistent in memory (although it
4184 * probably isn't), but whenever we close off and commit a journal transaction,
4185 * the contents of (the filesystem + the journal) must be consistent and
4186 * restartable. It's pretty simple, really: bottom up, right to left (although
4187 * left-to-right works OK too).
4188 *
4189 * Note that at recovery time, journal replay occurs *before* the restart of
4190 * truncate against the orphan inode list.
4191 *
4192 * The committed inode has the new, desired i_size (which is the same as
4193 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4194 * that this inode's truncate did not complete and it will again call
4195 * ext4_truncate() to have another go. So there will be instantiated blocks
4196 * to the right of the truncation point in a crashed ext4 filesystem. But
4197 * that's fine - as long as they are linked from the inode, the post-crash
4198 * ext4_truncate() run will find them and release them.
4199 */
4200 int ext4_truncate(struct inode *inode)
4201 {
4202 struct ext4_inode_info *ei = EXT4_I(inode);
4203 unsigned int credits;
4204 int err = 0;
4205 handle_t *handle;
4206 struct address_space *mapping = inode->i_mapping;
4207
4208 /*
4209 * There is a possibility that we're either freeing the inode
4210 * or it's a completely new inode. In those cases we might not
4211 * have i_mutex locked because it's not necessary.
4212 */
4213 if (!(inode->i_state & (I_NEW|I_FREEING)))
4214 WARN_ON(!inode_is_locked(inode));
4215 trace_ext4_truncate_enter(inode);
4216
4217 if (!ext4_can_truncate(inode))
4218 return 0;
4219
4220 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4221
4222 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4223 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4224
4225 if (ext4_has_inline_data(inode)) {
4226 int has_inline = 1;
4227
4228 ext4_inline_data_truncate(inode, &has_inline);
4229 if (has_inline)
4230 return 0;
4231 }
4232
4233 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4234 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4235 if (ext4_inode_attach_jinode(inode) < 0)
4236 return 0;
4237 }
4238
4239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4240 credits = ext4_writepage_trans_blocks(inode);
4241 else
4242 credits = ext4_blocks_for_truncate(inode);
4243
4244 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4245 if (IS_ERR(handle))
4246 return PTR_ERR(handle);
4247
4248 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4249 ext4_block_truncate_page(handle, mapping, inode->i_size);
4250
4251 /*
4252 * We add the inode to the orphan list, so that if this
4253 * truncate spans multiple transactions, and we crash, we will
4254 * resume the truncate when the filesystem recovers. It also
4255 * marks the inode dirty, to catch the new size.
4256 *
4257 * Implication: the file must always be in a sane, consistent
4258 * truncatable state while each transaction commits.
4259 */
4260 err = ext4_orphan_add(handle, inode);
4261 if (err)
4262 goto out_stop;
4263
4264 down_write(&EXT4_I(inode)->i_data_sem);
4265
4266 ext4_discard_preallocations(inode);
4267
4268 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4269 err = ext4_ext_truncate(handle, inode);
4270 else
4271 ext4_ind_truncate(handle, inode);
4272
4273 up_write(&ei->i_data_sem);
4274 if (err)
4275 goto out_stop;
4276
4277 if (IS_SYNC(inode))
4278 ext4_handle_sync(handle);
4279
4280 out_stop:
4281 /*
4282 * If this was a simple ftruncate() and the file will remain alive,
4283 * then we need to clear up the orphan record which we created above.
4284 * However, if this was a real unlink then we were called by
4285 * ext4_evict_inode(), and we allow that function to clean up the
4286 * orphan info for us.
4287 */
4288 if (inode->i_nlink)
4289 ext4_orphan_del(handle, inode);
4290
4291 inode->i_mtime = inode->i_ctime = current_time(inode);
4292 ext4_mark_inode_dirty(handle, inode);
4293 ext4_journal_stop(handle);
4294
4295 trace_ext4_truncate_exit(inode);
4296 return err;
4297 }
4298
4299 /*
4300 * ext4_get_inode_loc returns with an extra refcount against the inode's
4301 * underlying buffer_head on success. If 'in_mem' is true, we have all
4302 * data in memory that is needed to recreate the on-disk version of this
4303 * inode.
4304 */
4305 static int __ext4_get_inode_loc(struct inode *inode,
4306 struct ext4_iloc *iloc, int in_mem)
4307 {
4308 struct ext4_group_desc *gdp;
4309 struct buffer_head *bh;
4310 struct super_block *sb = inode->i_sb;
4311 ext4_fsblk_t block;
4312 int inodes_per_block, inode_offset;
4313
4314 iloc->bh = NULL;
4315 if (!ext4_valid_inum(sb, inode->i_ino))
4316 return -EFSCORRUPTED;
4317
4318 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4319 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4320 if (!gdp)
4321 return -EIO;
4322
4323 /*
4324 * Figure out the offset within the block group inode table
4325 */
4326 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4327 inode_offset = ((inode->i_ino - 1) %
4328 EXT4_INODES_PER_GROUP(sb));
4329 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4330 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4331
4332 bh = sb_getblk(sb, block);
4333 if (unlikely(!bh))
4334 return -ENOMEM;
4335 if (!buffer_uptodate(bh)) {
4336 lock_buffer(bh);
4337
4338 /*
4339 * If the buffer has the write error flag, we have failed
4340 * to write out another inode in the same block. In this
4341 * case, we don't have to read the block because we may
4342 * read the old inode data successfully.
4343 */
4344 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4345 set_buffer_uptodate(bh);
4346
4347 if (buffer_uptodate(bh)) {
4348 /* someone brought it uptodate while we waited */
4349 unlock_buffer(bh);
4350 goto has_buffer;
4351 }
4352
4353 /*
4354 * If we have all information of the inode in memory and this
4355 * is the only valid inode in the block, we need not read the
4356 * block.
4357 */
4358 if (in_mem) {
4359 struct buffer_head *bitmap_bh;
4360 int i, start;
4361
4362 start = inode_offset & ~(inodes_per_block - 1);
4363
4364 /* Is the inode bitmap in cache? */
4365 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4366 if (unlikely(!bitmap_bh))
4367 goto make_io;
4368
4369 /*
4370 * If the inode bitmap isn't in cache then the
4371 * optimisation may end up performing two reads instead
4372 * of one, so skip it.
4373 */
4374 if (!buffer_uptodate(bitmap_bh)) {
4375 brelse(bitmap_bh);
4376 goto make_io;
4377 }
4378 for (i = start; i < start + inodes_per_block; i++) {
4379 if (i == inode_offset)
4380 continue;
4381 if (ext4_test_bit(i, bitmap_bh->b_data))
4382 break;
4383 }
4384 brelse(bitmap_bh);
4385 if (i == start + inodes_per_block) {
4386 /* all other inodes are free, so skip I/O */
4387 memset(bh->b_data, 0, bh->b_size);
4388 set_buffer_uptodate(bh);
4389 unlock_buffer(bh);
4390 goto has_buffer;
4391 }
4392 }
4393
4394 make_io:
4395 /*
4396 * If we need to do any I/O, try to pre-readahead extra
4397 * blocks from the inode table.
4398 */
4399 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4400 ext4_fsblk_t b, end, table;
4401 unsigned num;
4402 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4403
4404 table = ext4_inode_table(sb, gdp);
4405 /* s_inode_readahead_blks is always a power of 2 */
4406 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4407 if (table > b)
4408 b = table;
4409 end = b + ra_blks;
4410 num = EXT4_INODES_PER_GROUP(sb);
4411 if (ext4_has_group_desc_csum(sb))
4412 num -= ext4_itable_unused_count(sb, gdp);
4413 table += num / inodes_per_block;
4414 if (end > table)
4415 end = table;
4416 while (b <= end)
4417 sb_breadahead(sb, b++);
4418 }
4419
4420 /*
4421 * There are other valid inodes in the buffer, this inode
4422 * has in-inode xattrs, or we don't have this inode in memory.
4423 * Read the block from disk.
4424 */
4425 trace_ext4_load_inode(inode);
4426 get_bh(bh);
4427 bh->b_end_io = end_buffer_read_sync;
4428 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4429 wait_on_buffer(bh);
4430 if (!buffer_uptodate(bh)) {
4431 EXT4_ERROR_INODE_BLOCK(inode, block,
4432 "unable to read itable block");
4433 brelse(bh);
4434 return -EIO;
4435 }
4436 }
4437 has_buffer:
4438 iloc->bh = bh;
4439 return 0;
4440 }
4441
4442 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4443 {
4444 /* We have all inode data except xattrs in memory here. */
4445 return __ext4_get_inode_loc(inode, iloc,
4446 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4447 }
4448
4449 void ext4_set_inode_flags(struct inode *inode)
4450 {
4451 unsigned int flags = EXT4_I(inode)->i_flags;
4452 unsigned int new_fl = 0;
4453
4454 if (flags & EXT4_SYNC_FL)
4455 new_fl |= S_SYNC;
4456 if (flags & EXT4_APPEND_FL)
4457 new_fl |= S_APPEND;
4458 if (flags & EXT4_IMMUTABLE_FL)
4459 new_fl |= S_IMMUTABLE;
4460 if (flags & EXT4_NOATIME_FL)
4461 new_fl |= S_NOATIME;
4462 if (flags & EXT4_DIRSYNC_FL)
4463 new_fl |= S_DIRSYNC;
4464 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4465 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4466 !ext4_encrypted_inode(inode))
4467 new_fl |= S_DAX;
4468 inode_set_flags(inode, new_fl,
4469 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4470 }
4471
4472 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4473 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4474 {
4475 unsigned int vfs_fl;
4476 unsigned long old_fl, new_fl;
4477
4478 do {
4479 vfs_fl = ei->vfs_inode.i_flags;
4480 old_fl = ei->i_flags;
4481 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4482 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4483 EXT4_DIRSYNC_FL);
4484 if (vfs_fl & S_SYNC)
4485 new_fl |= EXT4_SYNC_FL;
4486 if (vfs_fl & S_APPEND)
4487 new_fl |= EXT4_APPEND_FL;
4488 if (vfs_fl & S_IMMUTABLE)
4489 new_fl |= EXT4_IMMUTABLE_FL;
4490 if (vfs_fl & S_NOATIME)
4491 new_fl |= EXT4_NOATIME_FL;
4492 if (vfs_fl & S_DIRSYNC)
4493 new_fl |= EXT4_DIRSYNC_FL;
4494 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4495 }
4496
4497 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4498 struct ext4_inode_info *ei)
4499 {
4500 blkcnt_t i_blocks ;
4501 struct inode *inode = &(ei->vfs_inode);
4502 struct super_block *sb = inode->i_sb;
4503
4504 if (ext4_has_feature_huge_file(sb)) {
4505 /* we are using combined 48 bit field */
4506 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4507 le32_to_cpu(raw_inode->i_blocks_lo);
4508 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4509 /* i_blocks represent file system block size */
4510 return i_blocks << (inode->i_blkbits - 9);
4511 } else {
4512 return i_blocks;
4513 }
4514 } else {
4515 return le32_to_cpu(raw_inode->i_blocks_lo);
4516 }
4517 }
4518
4519 static inline void ext4_iget_extra_inode(struct inode *inode,
4520 struct ext4_inode *raw_inode,
4521 struct ext4_inode_info *ei)
4522 {
4523 __le32 *magic = (void *)raw_inode +
4524 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4525 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4526 EXT4_INODE_SIZE(inode->i_sb) &&
4527 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4528 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4529 ext4_find_inline_data_nolock(inode);
4530 } else
4531 EXT4_I(inode)->i_inline_off = 0;
4532 }
4533
4534 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4535 {
4536 if (!ext4_has_feature_project(inode->i_sb))
4537 return -EOPNOTSUPP;
4538 *projid = EXT4_I(inode)->i_projid;
4539 return 0;
4540 }
4541
4542 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4543 {
4544 struct ext4_iloc iloc;
4545 struct ext4_inode *raw_inode;
4546 struct ext4_inode_info *ei;
4547 struct inode *inode;
4548 journal_t *journal = EXT4_SB(sb)->s_journal;
4549 long ret;
4550 loff_t size;
4551 int block;
4552 uid_t i_uid;
4553 gid_t i_gid;
4554 projid_t i_projid;
4555
4556 inode = iget_locked(sb, ino);
4557 if (!inode)
4558 return ERR_PTR(-ENOMEM);
4559 if (!(inode->i_state & I_NEW))
4560 return inode;
4561
4562 ei = EXT4_I(inode);
4563 iloc.bh = NULL;
4564
4565 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4566 if (ret < 0)
4567 goto bad_inode;
4568 raw_inode = ext4_raw_inode(&iloc);
4569
4570 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4571 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4572 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4573 EXT4_INODE_SIZE(inode->i_sb) ||
4574 (ei->i_extra_isize & 3)) {
4575 EXT4_ERROR_INODE(inode,
4576 "bad extra_isize %u (inode size %u)",
4577 ei->i_extra_isize,
4578 EXT4_INODE_SIZE(inode->i_sb));
4579 ret = -EFSCORRUPTED;
4580 goto bad_inode;
4581 }
4582 } else
4583 ei->i_extra_isize = 0;
4584
4585 /* Precompute checksum seed for inode metadata */
4586 if (ext4_has_metadata_csum(sb)) {
4587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588 __u32 csum;
4589 __le32 inum = cpu_to_le32(inode->i_ino);
4590 __le32 gen = raw_inode->i_generation;
4591 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4592 sizeof(inum));
4593 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4594 sizeof(gen));
4595 }
4596
4597 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4598 EXT4_ERROR_INODE(inode, "checksum invalid");
4599 ret = -EFSBADCRC;
4600 goto bad_inode;
4601 }
4602
4603 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4604 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4605 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4606 if (ext4_has_feature_project(sb) &&
4607 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4608 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4609 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4610 else
4611 i_projid = EXT4_DEF_PROJID;
4612
4613 if (!(test_opt(inode->i_sb, NO_UID32))) {
4614 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4615 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4616 }
4617 i_uid_write(inode, i_uid);
4618 i_gid_write(inode, i_gid);
4619 ei->i_projid = make_kprojid(sb->s_user_ns, i_projid);
4620 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4621
4622 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4623 ei->i_inline_off = 0;
4624 ei->i_dir_start_lookup = 0;
4625 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4626 /* We now have enough fields to check if the inode was active or not.
4627 * This is needed because nfsd might try to access dead inodes
4628 * the test is that same one that e2fsck uses
4629 * NeilBrown 1999oct15
4630 */
4631 if (inode->i_nlink == 0) {
4632 if ((inode->i_mode == 0 ||
4633 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4634 ino != EXT4_BOOT_LOADER_INO) {
4635 /* this inode is deleted */
4636 ret = -ESTALE;
4637 goto bad_inode;
4638 }
4639 /* The only unlinked inodes we let through here have
4640 * valid i_mode and are being read by the orphan
4641 * recovery code: that's fine, we're about to complete
4642 * the process of deleting those.
4643 * OR it is the EXT4_BOOT_LOADER_INO which is
4644 * not initialized on a new filesystem. */
4645 }
4646 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4647 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4648 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4649 if (ext4_has_feature_64bit(sb))
4650 ei->i_file_acl |=
4651 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4652 inode->i_size = ext4_isize(raw_inode);
4653 if ((size = i_size_read(inode)) < 0) {
4654 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4655 ret = -EFSCORRUPTED;
4656 goto bad_inode;
4657 }
4658 ei->i_disksize = inode->i_size;
4659 #ifdef CONFIG_QUOTA
4660 ei->i_reserved_quota = 0;
4661 #endif
4662 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4663 ei->i_block_group = iloc.block_group;
4664 ei->i_last_alloc_group = ~0;
4665 /*
4666 * NOTE! The in-memory inode i_data array is in little-endian order
4667 * even on big-endian machines: we do NOT byteswap the block numbers!
4668 */
4669 for (block = 0; block < EXT4_N_BLOCKS; block++)
4670 ei->i_data[block] = raw_inode->i_block[block];
4671 INIT_LIST_HEAD(&ei->i_orphan);
4672
4673 /*
4674 * Set transaction id's of transactions that have to be committed
4675 * to finish f[data]sync. We set them to currently running transaction
4676 * as we cannot be sure that the inode or some of its metadata isn't
4677 * part of the transaction - the inode could have been reclaimed and
4678 * now it is reread from disk.
4679 */
4680 if (journal) {
4681 transaction_t *transaction;
4682 tid_t tid;
4683
4684 read_lock(&journal->j_state_lock);
4685 if (journal->j_running_transaction)
4686 transaction = journal->j_running_transaction;
4687 else
4688 transaction = journal->j_committing_transaction;
4689 if (transaction)
4690 tid = transaction->t_tid;
4691 else
4692 tid = journal->j_commit_sequence;
4693 read_unlock(&journal->j_state_lock);
4694 ei->i_sync_tid = tid;
4695 ei->i_datasync_tid = tid;
4696 }
4697
4698 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4699 if (ei->i_extra_isize == 0) {
4700 /* The extra space is currently unused. Use it. */
4701 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4702 ei->i_extra_isize = sizeof(struct ext4_inode) -
4703 EXT4_GOOD_OLD_INODE_SIZE;
4704 } else {
4705 ext4_iget_extra_inode(inode, raw_inode, ei);
4706 }
4707 }
4708
4709 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4710 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4711 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4712 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4713
4714 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4715 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4716 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4717 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4718 inode->i_version |=
4719 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4720 }
4721 }
4722
4723 ret = 0;
4724 if (ei->i_file_acl &&
4725 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4726 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4727 ei->i_file_acl);
4728 ret = -EFSCORRUPTED;
4729 goto bad_inode;
4730 } else if (!ext4_has_inline_data(inode)) {
4731 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4732 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4733 (S_ISLNK(inode->i_mode) &&
4734 !ext4_inode_is_fast_symlink(inode))))
4735 /* Validate extent which is part of inode */
4736 ret = ext4_ext_check_inode(inode);
4737 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4738 (S_ISLNK(inode->i_mode) &&
4739 !ext4_inode_is_fast_symlink(inode))) {
4740 /* Validate block references which are part of inode */
4741 ret = ext4_ind_check_inode(inode);
4742 }
4743 }
4744 if (ret)
4745 goto bad_inode;
4746
4747 if (S_ISREG(inode->i_mode)) {
4748 inode->i_op = &ext4_file_inode_operations;
4749 inode->i_fop = &ext4_file_operations;
4750 ext4_set_aops(inode);
4751 } else if (S_ISDIR(inode->i_mode)) {
4752 inode->i_op = &ext4_dir_inode_operations;
4753 inode->i_fop = &ext4_dir_operations;
4754 } else if (S_ISLNK(inode->i_mode)) {
4755 if (ext4_encrypted_inode(inode)) {
4756 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4757 ext4_set_aops(inode);
4758 } else if (ext4_inode_is_fast_symlink(inode)) {
4759 inode->i_link = (char *)ei->i_data;
4760 inode->i_op = &ext4_fast_symlink_inode_operations;
4761 nd_terminate_link(ei->i_data, inode->i_size,
4762 sizeof(ei->i_data) - 1);
4763 } else {
4764 inode->i_op = &ext4_symlink_inode_operations;
4765 ext4_set_aops(inode);
4766 }
4767 inode_nohighmem(inode);
4768 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4769 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4770 inode->i_op = &ext4_special_inode_operations;
4771 if (raw_inode->i_block[0])
4772 init_special_inode(inode, inode->i_mode,
4773 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4774 else
4775 init_special_inode(inode, inode->i_mode,
4776 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4777 } else if (ino == EXT4_BOOT_LOADER_INO) {
4778 make_bad_inode(inode);
4779 } else {
4780 ret = -EFSCORRUPTED;
4781 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4782 goto bad_inode;
4783 }
4784 brelse(iloc.bh);
4785 ext4_set_inode_flags(inode);
4786 unlock_new_inode(inode);
4787 return inode;
4788
4789 bad_inode:
4790 brelse(iloc.bh);
4791 iget_failed(inode);
4792 return ERR_PTR(ret);
4793 }
4794
4795 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4796 {
4797 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4798 return ERR_PTR(-EFSCORRUPTED);
4799 return ext4_iget(sb, ino);
4800 }
4801
4802 static int ext4_inode_blocks_set(handle_t *handle,
4803 struct ext4_inode *raw_inode,
4804 struct ext4_inode_info *ei)
4805 {
4806 struct inode *inode = &(ei->vfs_inode);
4807 u64 i_blocks = inode->i_blocks;
4808 struct super_block *sb = inode->i_sb;
4809
4810 if (i_blocks <= ~0U) {
4811 /*
4812 * i_blocks can be represented in a 32 bit variable
4813 * as multiple of 512 bytes
4814 */
4815 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4816 raw_inode->i_blocks_high = 0;
4817 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4818 return 0;
4819 }
4820 if (!ext4_has_feature_huge_file(sb))
4821 return -EFBIG;
4822
4823 if (i_blocks <= 0xffffffffffffULL) {
4824 /*
4825 * i_blocks can be represented in a 48 bit variable
4826 * as multiple of 512 bytes
4827 */
4828 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4829 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4830 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4831 } else {
4832 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4833 /* i_block is stored in file system block size */
4834 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4835 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4836 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4837 }
4838 return 0;
4839 }
4840
4841 struct other_inode {
4842 unsigned long orig_ino;
4843 struct ext4_inode *raw_inode;
4844 };
4845
4846 static int other_inode_match(struct inode * inode, unsigned long ino,
4847 void *data)
4848 {
4849 struct other_inode *oi = (struct other_inode *) data;
4850
4851 if ((inode->i_ino != ino) ||
4852 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4853 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4854 ((inode->i_state & I_DIRTY_TIME) == 0))
4855 return 0;
4856 spin_lock(&inode->i_lock);
4857 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4858 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4859 (inode->i_state & I_DIRTY_TIME)) {
4860 struct ext4_inode_info *ei = EXT4_I(inode);
4861
4862 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4863 spin_unlock(&inode->i_lock);
4864
4865 spin_lock(&ei->i_raw_lock);
4866 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4867 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4868 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4869 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4870 spin_unlock(&ei->i_raw_lock);
4871 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4872 return -1;
4873 }
4874 spin_unlock(&inode->i_lock);
4875 return -1;
4876 }
4877
4878 /*
4879 * Opportunistically update the other time fields for other inodes in
4880 * the same inode table block.
4881 */
4882 static void ext4_update_other_inodes_time(struct super_block *sb,
4883 unsigned long orig_ino, char *buf)
4884 {
4885 struct other_inode oi;
4886 unsigned long ino;
4887 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4888 int inode_size = EXT4_INODE_SIZE(sb);
4889
4890 oi.orig_ino = orig_ino;
4891 /*
4892 * Calculate the first inode in the inode table block. Inode
4893 * numbers are one-based. That is, the first inode in a block
4894 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4895 */
4896 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4897 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4898 if (ino == orig_ino)
4899 continue;
4900 oi.raw_inode = (struct ext4_inode *) buf;
4901 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4902 }
4903 }
4904
4905 /*
4906 * Post the struct inode info into an on-disk inode location in the
4907 * buffer-cache. This gobbles the caller's reference to the
4908 * buffer_head in the inode location struct.
4909 *
4910 * The caller must have write access to iloc->bh.
4911 */
4912 static int ext4_do_update_inode(handle_t *handle,
4913 struct inode *inode,
4914 struct ext4_iloc *iloc)
4915 {
4916 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4917 struct ext4_inode_info *ei = EXT4_I(inode);
4918 struct buffer_head *bh = iloc->bh;
4919 struct super_block *sb = inode->i_sb;
4920 int err = 0, rc, block;
4921 int need_datasync = 0, set_large_file = 0;
4922 uid_t i_uid;
4923 gid_t i_gid;
4924 projid_t i_projid;
4925
4926 spin_lock(&ei->i_raw_lock);
4927
4928 /* For fields not tracked in the in-memory inode,
4929 * initialise them to zero for new inodes. */
4930 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4931 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4932
4933 ext4_get_inode_flags(ei);
4934 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4935 i_uid = i_uid_read(inode);
4936 i_gid = i_gid_read(inode);
4937 i_projid = from_kprojid(sb->s_user_ns, ei->i_projid);
4938 if (!(test_opt(inode->i_sb, NO_UID32))) {
4939 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4940 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4941 /*
4942 * Fix up interoperability with old kernels. Otherwise, old inodes get
4943 * re-used with the upper 16 bits of the uid/gid intact
4944 */
4945 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4946 raw_inode->i_uid_high = 0;
4947 raw_inode->i_gid_high = 0;
4948 } else {
4949 raw_inode->i_uid_high =
4950 cpu_to_le16(high_16_bits(i_uid));
4951 raw_inode->i_gid_high =
4952 cpu_to_le16(high_16_bits(i_gid));
4953 }
4954 } else {
4955 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4956 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4957 raw_inode->i_uid_high = 0;
4958 raw_inode->i_gid_high = 0;
4959 }
4960 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4961
4962 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4963 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4964 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4965 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4966
4967 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4968 if (err) {
4969 spin_unlock(&ei->i_raw_lock);
4970 goto out_brelse;
4971 }
4972 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4973 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4974 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4975 raw_inode->i_file_acl_high =
4976 cpu_to_le16(ei->i_file_acl >> 32);
4977 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4978 if (ei->i_disksize != ext4_isize(raw_inode)) {
4979 ext4_isize_set(raw_inode, ei->i_disksize);
4980 need_datasync = 1;
4981 }
4982 if (ei->i_disksize > 0x7fffffffULL) {
4983 if (!ext4_has_feature_large_file(sb) ||
4984 EXT4_SB(sb)->s_es->s_rev_level ==
4985 cpu_to_le32(EXT4_GOOD_OLD_REV))
4986 set_large_file = 1;
4987 }
4988 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4989 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4990 if (old_valid_dev(inode->i_rdev)) {
4991 raw_inode->i_block[0] =
4992 cpu_to_le32(old_encode_dev(inode->i_rdev));
4993 raw_inode->i_block[1] = 0;
4994 } else {
4995 raw_inode->i_block[0] = 0;
4996 raw_inode->i_block[1] =
4997 cpu_to_le32(new_encode_dev(inode->i_rdev));
4998 raw_inode->i_block[2] = 0;
4999 }
5000 } else if (!ext4_has_inline_data(inode)) {
5001 for (block = 0; block < EXT4_N_BLOCKS; block++)
5002 raw_inode->i_block[block] = ei->i_data[block];
5003 }
5004
5005 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5006 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5007 if (ei->i_extra_isize) {
5008 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5009 raw_inode->i_version_hi =
5010 cpu_to_le32(inode->i_version >> 32);
5011 raw_inode->i_extra_isize =
5012 cpu_to_le16(ei->i_extra_isize);
5013 }
5014 }
5015
5016 if (i_projid != (projid_t)-1) {
5017 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5018 i_projid != EXT4_DEF_PROJID);
5019
5020 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5021 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5022 raw_inode->i_projid = cpu_to_le32(i_projid);
5023 }
5024
5025 ext4_inode_csum_set(inode, raw_inode, ei);
5026 spin_unlock(&ei->i_raw_lock);
5027 if (inode->i_sb->s_flags & MS_LAZYTIME)
5028 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5029 bh->b_data);
5030
5031 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5032 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5033 if (!err)
5034 err = rc;
5035 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5036 if (set_large_file) {
5037 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5038 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5039 if (err)
5040 goto out_brelse;
5041 ext4_update_dynamic_rev(sb);
5042 ext4_set_feature_large_file(sb);
5043 ext4_handle_sync(handle);
5044 err = ext4_handle_dirty_super(handle, sb);
5045 }
5046 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5047 out_brelse:
5048 brelse(bh);
5049 ext4_std_error(inode->i_sb, err);
5050 return err;
5051 }
5052
5053 /*
5054 * ext4_write_inode()
5055 *
5056 * We are called from a few places:
5057 *
5058 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5059 * Here, there will be no transaction running. We wait for any running
5060 * transaction to commit.
5061 *
5062 * - Within flush work (sys_sync(), kupdate and such).
5063 * We wait on commit, if told to.
5064 *
5065 * - Within iput_final() -> write_inode_now()
5066 * We wait on commit, if told to.
5067 *
5068 * In all cases it is actually safe for us to return without doing anything,
5069 * because the inode has been copied into a raw inode buffer in
5070 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5071 * writeback.
5072 *
5073 * Note that we are absolutely dependent upon all inode dirtiers doing the
5074 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5075 * which we are interested.
5076 *
5077 * It would be a bug for them to not do this. The code:
5078 *
5079 * mark_inode_dirty(inode)
5080 * stuff();
5081 * inode->i_size = expr;
5082 *
5083 * is in error because write_inode() could occur while `stuff()' is running,
5084 * and the new i_size will be lost. Plus the inode will no longer be on the
5085 * superblock's dirty inode list.
5086 */
5087 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5088 {
5089 int err;
5090
5091 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5092 return 0;
5093
5094 if (EXT4_SB(inode->i_sb)->s_journal) {
5095 if (ext4_journal_current_handle()) {
5096 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5097 dump_stack();
5098 return -EIO;
5099 }
5100
5101 /*
5102 * No need to force transaction in WB_SYNC_NONE mode. Also
5103 * ext4_sync_fs() will force the commit after everything is
5104 * written.
5105 */
5106 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5107 return 0;
5108
5109 err = ext4_force_commit(inode->i_sb);
5110 } else {
5111 struct ext4_iloc iloc;
5112
5113 err = __ext4_get_inode_loc(inode, &iloc, 0);
5114 if (err)
5115 return err;
5116 /*
5117 * sync(2) will flush the whole buffer cache. No need to do
5118 * it here separately for each inode.
5119 */
5120 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5121 sync_dirty_buffer(iloc.bh);
5122 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5123 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5124 "IO error syncing inode");
5125 err = -EIO;
5126 }
5127 brelse(iloc.bh);
5128 }
5129 return err;
5130 }
5131
5132 /*
5133 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5134 * buffers that are attached to a page stradding i_size and are undergoing
5135 * commit. In that case we have to wait for commit to finish and try again.
5136 */
5137 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5138 {
5139 struct page *page;
5140 unsigned offset;
5141 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5142 tid_t commit_tid = 0;
5143 int ret;
5144
5145 offset = inode->i_size & (PAGE_SIZE - 1);
5146 /*
5147 * All buffers in the last page remain valid? Then there's nothing to
5148 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5149 * blocksize case
5150 */
5151 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5152 return;
5153 while (1) {
5154 page = find_lock_page(inode->i_mapping,
5155 inode->i_size >> PAGE_SHIFT);
5156 if (!page)
5157 return;
5158 ret = __ext4_journalled_invalidatepage(page, offset,
5159 PAGE_SIZE - offset);
5160 unlock_page(page);
5161 put_page(page);
5162 if (ret != -EBUSY)
5163 return;
5164 commit_tid = 0;
5165 read_lock(&journal->j_state_lock);
5166 if (journal->j_committing_transaction)
5167 commit_tid = journal->j_committing_transaction->t_tid;
5168 read_unlock(&journal->j_state_lock);
5169 if (commit_tid)
5170 jbd2_log_wait_commit(journal, commit_tid);
5171 }
5172 }
5173
5174 /*
5175 * ext4_setattr()
5176 *
5177 * Called from notify_change.
5178 *
5179 * We want to trap VFS attempts to truncate the file as soon as
5180 * possible. In particular, we want to make sure that when the VFS
5181 * shrinks i_size, we put the inode on the orphan list and modify
5182 * i_disksize immediately, so that during the subsequent flushing of
5183 * dirty pages and freeing of disk blocks, we can guarantee that any
5184 * commit will leave the blocks being flushed in an unused state on
5185 * disk. (On recovery, the inode will get truncated and the blocks will
5186 * be freed, so we have a strong guarantee that no future commit will
5187 * leave these blocks visible to the user.)
5188 *
5189 * Another thing we have to assure is that if we are in ordered mode
5190 * and inode is still attached to the committing transaction, we must
5191 * we start writeout of all the dirty pages which are being truncated.
5192 * This way we are sure that all the data written in the previous
5193 * transaction are already on disk (truncate waits for pages under
5194 * writeback).
5195 *
5196 * Called with inode->i_mutex down.
5197 */
5198 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5199 {
5200 struct inode *inode = d_inode(dentry);
5201 int error, rc = 0;
5202 int orphan = 0;
5203 const unsigned int ia_valid = attr->ia_valid;
5204
5205 error = setattr_prepare(dentry, attr);
5206 if (error)
5207 return error;
5208
5209 if (is_quota_modification(inode, attr)) {
5210 error = dquot_initialize(inode);
5211 if (error)
5212 return error;
5213 }
5214 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5215 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5216 handle_t *handle;
5217
5218 /* (user+group)*(old+new) structure, inode write (sb,
5219 * inode block, ? - but truncate inode update has it) */
5220 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5221 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5222 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5223 if (IS_ERR(handle)) {
5224 error = PTR_ERR(handle);
5225 goto err_out;
5226 }
5227 error = dquot_transfer(inode, attr);
5228 if (error) {
5229 ext4_journal_stop(handle);
5230 return error;
5231 }
5232 /* Update corresponding info in inode so that everything is in
5233 * one transaction */
5234 if (attr->ia_valid & ATTR_UID)
5235 inode->i_uid = attr->ia_uid;
5236 if (attr->ia_valid & ATTR_GID)
5237 inode->i_gid = attr->ia_gid;
5238 error = ext4_mark_inode_dirty(handle, inode);
5239 ext4_journal_stop(handle);
5240 }
5241
5242 if (attr->ia_valid & ATTR_SIZE) {
5243 handle_t *handle;
5244 loff_t oldsize = inode->i_size;
5245 int shrink = (attr->ia_size <= inode->i_size);
5246
5247 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5249
5250 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5251 return -EFBIG;
5252 }
5253 if (!S_ISREG(inode->i_mode))
5254 return -EINVAL;
5255
5256 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5257 inode_inc_iversion(inode);
5258
5259 if (ext4_should_order_data(inode) &&
5260 (attr->ia_size < inode->i_size)) {
5261 error = ext4_begin_ordered_truncate(inode,
5262 attr->ia_size);
5263 if (error)
5264 goto err_out;
5265 }
5266 if (attr->ia_size != inode->i_size) {
5267 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5268 if (IS_ERR(handle)) {
5269 error = PTR_ERR(handle);
5270 goto err_out;
5271 }
5272 if (ext4_handle_valid(handle) && shrink) {
5273 error = ext4_orphan_add(handle, inode);
5274 orphan = 1;
5275 }
5276 /*
5277 * Update c/mtime on truncate up, ext4_truncate() will
5278 * update c/mtime in shrink case below
5279 */
5280 if (!shrink) {
5281 inode->i_mtime = current_time(inode);
5282 inode->i_ctime = inode->i_mtime;
5283 }
5284 down_write(&EXT4_I(inode)->i_data_sem);
5285 EXT4_I(inode)->i_disksize = attr->ia_size;
5286 rc = ext4_mark_inode_dirty(handle, inode);
5287 if (!error)
5288 error = rc;
5289 /*
5290 * We have to update i_size under i_data_sem together
5291 * with i_disksize to avoid races with writeback code
5292 * running ext4_wb_update_i_disksize().
5293 */
5294 if (!error)
5295 i_size_write(inode, attr->ia_size);
5296 up_write(&EXT4_I(inode)->i_data_sem);
5297 ext4_journal_stop(handle);
5298 if (error) {
5299 if (orphan)
5300 ext4_orphan_del(NULL, inode);
5301 goto err_out;
5302 }
5303 }
5304 if (!shrink)
5305 pagecache_isize_extended(inode, oldsize, inode->i_size);
5306
5307 /*
5308 * Blocks are going to be removed from the inode. Wait
5309 * for dio in flight. Temporarily disable
5310 * dioread_nolock to prevent livelock.
5311 */
5312 if (orphan) {
5313 if (!ext4_should_journal_data(inode)) {
5314 ext4_inode_block_unlocked_dio(inode);
5315 inode_dio_wait(inode);
5316 ext4_inode_resume_unlocked_dio(inode);
5317 } else
5318 ext4_wait_for_tail_page_commit(inode);
5319 }
5320 down_write(&EXT4_I(inode)->i_mmap_sem);
5321 /*
5322 * Truncate pagecache after we've waited for commit
5323 * in data=journal mode to make pages freeable.
5324 */
5325 truncate_pagecache(inode, inode->i_size);
5326 if (shrink) {
5327 rc = ext4_truncate(inode);
5328 if (rc)
5329 error = rc;
5330 }
5331 up_write(&EXT4_I(inode)->i_mmap_sem);
5332 }
5333
5334 if (!error) {
5335 setattr_copy(inode, attr);
5336 mark_inode_dirty(inode);
5337 }
5338
5339 /*
5340 * If the call to ext4_truncate failed to get a transaction handle at
5341 * all, we need to clean up the in-core orphan list manually.
5342 */
5343 if (orphan && inode->i_nlink)
5344 ext4_orphan_del(NULL, inode);
5345
5346 if (!error && (ia_valid & ATTR_MODE))
5347 rc = posix_acl_chmod(inode, inode->i_mode);
5348
5349 err_out:
5350 ext4_std_error(inode->i_sb, error);
5351 if (!error)
5352 error = rc;
5353 return error;
5354 }
5355
5356 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5357 struct kstat *stat)
5358 {
5359 struct inode *inode;
5360 unsigned long long delalloc_blocks;
5361
5362 inode = d_inode(dentry);
5363 generic_fillattr(inode, stat);
5364
5365 /*
5366 * If there is inline data in the inode, the inode will normally not
5367 * have data blocks allocated (it may have an external xattr block).
5368 * Report at least one sector for such files, so tools like tar, rsync,
5369 * others doen't incorrectly think the file is completely sparse.
5370 */
5371 if (unlikely(ext4_has_inline_data(inode)))
5372 stat->blocks += (stat->size + 511) >> 9;
5373
5374 /*
5375 * We can't update i_blocks if the block allocation is delayed
5376 * otherwise in the case of system crash before the real block
5377 * allocation is done, we will have i_blocks inconsistent with
5378 * on-disk file blocks.
5379 * We always keep i_blocks updated together with real
5380 * allocation. But to not confuse with user, stat
5381 * will return the blocks that include the delayed allocation
5382 * blocks for this file.
5383 */
5384 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5385 EXT4_I(inode)->i_reserved_data_blocks);
5386 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5387 return 0;
5388 }
5389
5390 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5391 int pextents)
5392 {
5393 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5394 return ext4_ind_trans_blocks(inode, lblocks);
5395 return ext4_ext_index_trans_blocks(inode, pextents);
5396 }
5397
5398 /*
5399 * Account for index blocks, block groups bitmaps and block group
5400 * descriptor blocks if modify datablocks and index blocks
5401 * worse case, the indexs blocks spread over different block groups
5402 *
5403 * If datablocks are discontiguous, they are possible to spread over
5404 * different block groups too. If they are contiguous, with flexbg,
5405 * they could still across block group boundary.
5406 *
5407 * Also account for superblock, inode, quota and xattr blocks
5408 */
5409 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5410 int pextents)
5411 {
5412 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5413 int gdpblocks;
5414 int idxblocks;
5415 int ret = 0;
5416
5417 /*
5418 * How many index blocks need to touch to map @lblocks logical blocks
5419 * to @pextents physical extents?
5420 */
5421 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5422
5423 ret = idxblocks;
5424
5425 /*
5426 * Now let's see how many group bitmaps and group descriptors need
5427 * to account
5428 */
5429 groups = idxblocks + pextents;
5430 gdpblocks = groups;
5431 if (groups > ngroups)
5432 groups = ngroups;
5433 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5434 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5435
5436 /* bitmaps and block group descriptor blocks */
5437 ret += groups + gdpblocks;
5438
5439 /* Blocks for super block, inode, quota and xattr blocks */
5440 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5441
5442 return ret;
5443 }
5444
5445 /*
5446 * Calculate the total number of credits to reserve to fit
5447 * the modification of a single pages into a single transaction,
5448 * which may include multiple chunks of block allocations.
5449 *
5450 * This could be called via ext4_write_begin()
5451 *
5452 * We need to consider the worse case, when
5453 * one new block per extent.
5454 */
5455 int ext4_writepage_trans_blocks(struct inode *inode)
5456 {
5457 int bpp = ext4_journal_blocks_per_page(inode);
5458 int ret;
5459
5460 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5461
5462 /* Account for data blocks for journalled mode */
5463 if (ext4_should_journal_data(inode))
5464 ret += bpp;
5465 return ret;
5466 }
5467
5468 /*
5469 * Calculate the journal credits for a chunk of data modification.
5470 *
5471 * This is called from DIO, fallocate or whoever calling
5472 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5473 *
5474 * journal buffers for data blocks are not included here, as DIO
5475 * and fallocate do no need to journal data buffers.
5476 */
5477 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5478 {
5479 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5480 }
5481
5482 /*
5483 * The caller must have previously called ext4_reserve_inode_write().
5484 * Give this, we know that the caller already has write access to iloc->bh.
5485 */
5486 int ext4_mark_iloc_dirty(handle_t *handle,
5487 struct inode *inode, struct ext4_iloc *iloc)
5488 {
5489 int err = 0;
5490
5491 if (IS_I_VERSION(inode))
5492 inode_inc_iversion(inode);
5493
5494 /* the do_update_inode consumes one bh->b_count */
5495 get_bh(iloc->bh);
5496
5497 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5498 err = ext4_do_update_inode(handle, inode, iloc);
5499 put_bh(iloc->bh);
5500 return err;
5501 }
5502
5503 /*
5504 * On success, We end up with an outstanding reference count against
5505 * iloc->bh. This _must_ be cleaned up later.
5506 */
5507
5508 int
5509 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5510 struct ext4_iloc *iloc)
5511 {
5512 int err;
5513
5514 err = ext4_get_inode_loc(inode, iloc);
5515 if (!err) {
5516 BUFFER_TRACE(iloc->bh, "get_write_access");
5517 err = ext4_journal_get_write_access(handle, iloc->bh);
5518 if (err) {
5519 brelse(iloc->bh);
5520 iloc->bh = NULL;
5521 }
5522 }
5523 ext4_std_error(inode->i_sb, err);
5524 return err;
5525 }
5526
5527 /*
5528 * Expand an inode by new_extra_isize bytes.
5529 * Returns 0 on success or negative error number on failure.
5530 */
5531 static int ext4_expand_extra_isize(struct inode *inode,
5532 unsigned int new_extra_isize,
5533 struct ext4_iloc iloc,
5534 handle_t *handle)
5535 {
5536 struct ext4_inode *raw_inode;
5537 struct ext4_xattr_ibody_header *header;
5538
5539 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5540 return 0;
5541
5542 raw_inode = ext4_raw_inode(&iloc);
5543
5544 header = IHDR(inode, raw_inode);
5545
5546 /* No extended attributes present */
5547 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5548 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5549 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5550 new_extra_isize);
5551 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5552 return 0;
5553 }
5554
5555 /* try to expand with EAs present */
5556 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5557 raw_inode, handle);
5558 }
5559
5560 /*
5561 * What we do here is to mark the in-core inode as clean with respect to inode
5562 * dirtiness (it may still be data-dirty).
5563 * This means that the in-core inode may be reaped by prune_icache
5564 * without having to perform any I/O. This is a very good thing,
5565 * because *any* task may call prune_icache - even ones which
5566 * have a transaction open against a different journal.
5567 *
5568 * Is this cheating? Not really. Sure, we haven't written the
5569 * inode out, but prune_icache isn't a user-visible syncing function.
5570 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5571 * we start and wait on commits.
5572 */
5573 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5574 {
5575 struct ext4_iloc iloc;
5576 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5577 static unsigned int mnt_count;
5578 int err, ret;
5579
5580 might_sleep();
5581 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5582 err = ext4_reserve_inode_write(handle, inode, &iloc);
5583 if (err)
5584 return err;
5585 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5586 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5587 /*
5588 * In nojournal mode, we can immediately attempt to expand
5589 * the inode. When journaled, we first need to obtain extra
5590 * buffer credits since we may write into the EA block
5591 * with this same handle. If journal_extend fails, then it will
5592 * only result in a minor loss of functionality for that inode.
5593 * If this is felt to be critical, then e2fsck should be run to
5594 * force a large enough s_min_extra_isize.
5595 */
5596 if (!ext4_handle_valid(handle) ||
5597 jbd2_journal_extend(handle,
5598 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5599 ret = ext4_expand_extra_isize(inode,
5600 sbi->s_want_extra_isize,
5601 iloc, handle);
5602 if (ret) {
5603 if (mnt_count !=
5604 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5605 ext4_warning(inode->i_sb,
5606 "Unable to expand inode %lu. Delete"
5607 " some EAs or run e2fsck.",
5608 inode->i_ino);
5609 mnt_count =
5610 le16_to_cpu(sbi->s_es->s_mnt_count);
5611 }
5612 }
5613 }
5614 }
5615 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5616 }
5617
5618 /*
5619 * ext4_dirty_inode() is called from __mark_inode_dirty()
5620 *
5621 * We're really interested in the case where a file is being extended.
5622 * i_size has been changed by generic_commit_write() and we thus need
5623 * to include the updated inode in the current transaction.
5624 *
5625 * Also, dquot_alloc_block() will always dirty the inode when blocks
5626 * are allocated to the file.
5627 *
5628 * If the inode is marked synchronous, we don't honour that here - doing
5629 * so would cause a commit on atime updates, which we don't bother doing.
5630 * We handle synchronous inodes at the highest possible level.
5631 *
5632 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5633 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5634 * to copy into the on-disk inode structure are the timestamp files.
5635 */
5636 void ext4_dirty_inode(struct inode *inode, int flags)
5637 {
5638 handle_t *handle;
5639
5640 if (flags == I_DIRTY_TIME)
5641 return;
5642 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5643 if (IS_ERR(handle))
5644 goto out;
5645
5646 ext4_mark_inode_dirty(handle, inode);
5647
5648 ext4_journal_stop(handle);
5649 out:
5650 return;
5651 }
5652
5653 #if 0
5654 /*
5655 * Bind an inode's backing buffer_head into this transaction, to prevent
5656 * it from being flushed to disk early. Unlike
5657 * ext4_reserve_inode_write, this leaves behind no bh reference and
5658 * returns no iloc structure, so the caller needs to repeat the iloc
5659 * lookup to mark the inode dirty later.
5660 */
5661 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5662 {
5663 struct ext4_iloc iloc;
5664
5665 int err = 0;
5666 if (handle) {
5667 err = ext4_get_inode_loc(inode, &iloc);
5668 if (!err) {
5669 BUFFER_TRACE(iloc.bh, "get_write_access");
5670 err = jbd2_journal_get_write_access(handle, iloc.bh);
5671 if (!err)
5672 err = ext4_handle_dirty_metadata(handle,
5673 NULL,
5674 iloc.bh);
5675 brelse(iloc.bh);
5676 }
5677 }
5678 ext4_std_error(inode->i_sb, err);
5679 return err;
5680 }
5681 #endif
5682
5683 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5684 {
5685 journal_t *journal;
5686 handle_t *handle;
5687 int err;
5688 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5689
5690 /*
5691 * We have to be very careful here: changing a data block's
5692 * journaling status dynamically is dangerous. If we write a
5693 * data block to the journal, change the status and then delete
5694 * that block, we risk forgetting to revoke the old log record
5695 * from the journal and so a subsequent replay can corrupt data.
5696 * So, first we make sure that the journal is empty and that
5697 * nobody is changing anything.
5698 */
5699
5700 journal = EXT4_JOURNAL(inode);
5701 if (!journal)
5702 return 0;
5703 if (is_journal_aborted(journal))
5704 return -EROFS;
5705
5706 /* Wait for all existing dio workers */
5707 ext4_inode_block_unlocked_dio(inode);
5708 inode_dio_wait(inode);
5709
5710 /*
5711 * Before flushing the journal and switching inode's aops, we have
5712 * to flush all dirty data the inode has. There can be outstanding
5713 * delayed allocations, there can be unwritten extents created by
5714 * fallocate or buffered writes in dioread_nolock mode covered by
5715 * dirty data which can be converted only after flushing the dirty
5716 * data (and journalled aops don't know how to handle these cases).
5717 */
5718 if (val) {
5719 down_write(&EXT4_I(inode)->i_mmap_sem);
5720 err = filemap_write_and_wait(inode->i_mapping);
5721 if (err < 0) {
5722 up_write(&EXT4_I(inode)->i_mmap_sem);
5723 ext4_inode_resume_unlocked_dio(inode);
5724 return err;
5725 }
5726 }
5727
5728 percpu_down_write(&sbi->s_journal_flag_rwsem);
5729 jbd2_journal_lock_updates(journal);
5730
5731 /*
5732 * OK, there are no updates running now, and all cached data is
5733 * synced to disk. We are now in a completely consistent state
5734 * which doesn't have anything in the journal, and we know that
5735 * no filesystem updates are running, so it is safe to modify
5736 * the inode's in-core data-journaling state flag now.
5737 */
5738
5739 if (val)
5740 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5741 else {
5742 err = jbd2_journal_flush(journal);
5743 if (err < 0) {
5744 jbd2_journal_unlock_updates(journal);
5745 percpu_up_write(&sbi->s_journal_flag_rwsem);
5746 ext4_inode_resume_unlocked_dio(inode);
5747 return err;
5748 }
5749 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5750 }
5751 ext4_set_aops(inode);
5752 /*
5753 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5754 * E.g. S_DAX may get cleared / set.
5755 */
5756 ext4_set_inode_flags(inode);
5757
5758 jbd2_journal_unlock_updates(journal);
5759 percpu_up_write(&sbi->s_journal_flag_rwsem);
5760
5761 if (val)
5762 up_write(&EXT4_I(inode)->i_mmap_sem);
5763 ext4_inode_resume_unlocked_dio(inode);
5764
5765 /* Finally we can mark the inode as dirty. */
5766
5767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5768 if (IS_ERR(handle))
5769 return PTR_ERR(handle);
5770
5771 err = ext4_mark_inode_dirty(handle, inode);
5772 ext4_handle_sync(handle);
5773 ext4_journal_stop(handle);
5774 ext4_std_error(inode->i_sb, err);
5775
5776 return err;
5777 }
5778
5779 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5780 {
5781 return !buffer_mapped(bh);
5782 }
5783
5784 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5785 {
5786 struct page *page = vmf->page;
5787 loff_t size;
5788 unsigned long len;
5789 int ret;
5790 struct file *file = vma->vm_file;
5791 struct inode *inode = file_inode(file);
5792 struct address_space *mapping = inode->i_mapping;
5793 handle_t *handle;
5794 get_block_t *get_block;
5795 int retries = 0;
5796
5797 sb_start_pagefault(inode->i_sb);
5798 file_update_time(vma->vm_file);
5799
5800 down_read(&EXT4_I(inode)->i_mmap_sem);
5801 /* Delalloc case is easy... */
5802 if (test_opt(inode->i_sb, DELALLOC) &&
5803 !ext4_should_journal_data(inode) &&
5804 !ext4_nonda_switch(inode->i_sb)) {
5805 do {
5806 ret = block_page_mkwrite(vma, vmf,
5807 ext4_da_get_block_prep);
5808 } while (ret == -ENOSPC &&
5809 ext4_should_retry_alloc(inode->i_sb, &retries));
5810 goto out_ret;
5811 }
5812
5813 lock_page(page);
5814 size = i_size_read(inode);
5815 /* Page got truncated from under us? */
5816 if (page->mapping != mapping || page_offset(page) > size) {
5817 unlock_page(page);
5818 ret = VM_FAULT_NOPAGE;
5819 goto out;
5820 }
5821
5822 if (page->index == size >> PAGE_SHIFT)
5823 len = size & ~PAGE_MASK;
5824 else
5825 len = PAGE_SIZE;
5826 /*
5827 * Return if we have all the buffers mapped. This avoids the need to do
5828 * journal_start/journal_stop which can block and take a long time
5829 */
5830 if (page_has_buffers(page)) {
5831 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5832 0, len, NULL,
5833 ext4_bh_unmapped)) {
5834 /* Wait so that we don't change page under IO */
5835 wait_for_stable_page(page);
5836 ret = VM_FAULT_LOCKED;
5837 goto out;
5838 }
5839 }
5840 unlock_page(page);
5841 /* OK, we need to fill the hole... */
5842 if (ext4_should_dioread_nolock(inode))
5843 get_block = ext4_get_block_unwritten;
5844 else
5845 get_block = ext4_get_block;
5846 retry_alloc:
5847 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5848 ext4_writepage_trans_blocks(inode));
5849 if (IS_ERR(handle)) {
5850 ret = VM_FAULT_SIGBUS;
5851 goto out;
5852 }
5853 ret = block_page_mkwrite(vma, vmf, get_block);
5854 if (!ret && ext4_should_journal_data(inode)) {
5855 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5856 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5857 unlock_page(page);
5858 ret = VM_FAULT_SIGBUS;
5859 ext4_journal_stop(handle);
5860 goto out;
5861 }
5862 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5863 }
5864 ext4_journal_stop(handle);
5865 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5866 goto retry_alloc;
5867 out_ret:
5868 ret = block_page_mkwrite_return(ret);
5869 out:
5870 up_read(&EXT4_I(inode)->i_mmap_sem);
5871 sb_end_pagefault(inode->i_sb);
5872 return ret;
5873 }
5874
5875 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5876 {
5877 struct inode *inode = file_inode(vma->vm_file);
5878 int err;
5879
5880 down_read(&EXT4_I(inode)->i_mmap_sem);
5881 err = filemap_fault(vma, vmf);
5882 up_read(&EXT4_I(inode)->i_mmap_sem);
5883
5884 return err;
5885 }
5886
5887 /*
5888 * Find the first extent at or after @lblk in an inode that is not a hole.
5889 * Search for @map_len blocks at most. The extent is returned in @result.
5890 *
5891 * The function returns 1 if we found an extent. The function returns 0 in
5892 * case there is no extent at or after @lblk and in that case also sets
5893 * @result->es_len to 0. In case of error, the error code is returned.
5894 */
5895 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5896 unsigned int map_len, struct extent_status *result)
5897 {
5898 struct ext4_map_blocks map;
5899 struct extent_status es = {};
5900 int ret;
5901
5902 map.m_lblk = lblk;
5903 map.m_len = map_len;
5904
5905 /*
5906 * For non-extent based files this loop may iterate several times since
5907 * we do not determine full hole size.
5908 */
5909 while (map.m_len > 0) {
5910 ret = ext4_map_blocks(NULL, inode, &map, 0);
5911 if (ret < 0)
5912 return ret;
5913 /* There's extent covering m_lblk? Just return it. */
5914 if (ret > 0) {
5915 int status;
5916
5917 ext4_es_store_pblock(result, map.m_pblk);
5918 result->es_lblk = map.m_lblk;
5919 result->es_len = map.m_len;
5920 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5921 status = EXTENT_STATUS_UNWRITTEN;
5922 else
5923 status = EXTENT_STATUS_WRITTEN;
5924 ext4_es_store_status(result, status);
5925 return 1;
5926 }
5927 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5928 map.m_lblk + map.m_len - 1,
5929 &es);
5930 /* Is delalloc data before next block in extent tree? */
5931 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5932 ext4_lblk_t offset = 0;
5933
5934 if (es.es_lblk < lblk)
5935 offset = lblk - es.es_lblk;
5936 result->es_lblk = es.es_lblk + offset;
5937 ext4_es_store_pblock(result,
5938 ext4_es_pblock(&es) + offset);
5939 result->es_len = es.es_len - offset;
5940 ext4_es_store_status(result, ext4_es_status(&es));
5941
5942 return 1;
5943 }
5944 /* There's a hole at m_lblk, advance us after it */
5945 map.m_lblk += map.m_len;
5946 map_len -= map.m_len;
5947 map.m_len = map_len;
5948 cond_resched();
5949 }
5950 result->es_len = 0;
5951 return 0;
5952 }