]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146 /*
147 * Test whether an inode is a fast symlink.
148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 return S_ISLNK(inode->i_mode) && inode->i_size &&
153 (inode->i_size < EXT4_N_BLOCKS * 4);
154 }
155
156 /*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 int nblocks)
163 {
164 int ret;
165
166 /*
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 jbd_debug(2, "restarting handle %p\n", handle);
174 up_write(&EXT4_I(inode)->i_data_sem);
175 ret = ext4_journal_restart(handle, nblocks);
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode);
178
179 return ret;
180 }
181
182 /*
183 * Called at the last iput() if i_nlink is zero.
184 */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 handle_t *handle;
188 int err;
189 int extra_credits = 3;
190 struct ext4_xattr_inode_array *ea_inode_array = NULL;
191
192 trace_ext4_evict_inode(inode);
193
194 if (inode->i_nlink) {
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (inode->i_ino != EXT4_JOURNAL_INO &&
214 ext4_should_journal_data(inode) &&
215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
216 inode->i_data.nrpages) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241
242 if (!IS_NOQUOTA(inode))
243 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244
245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
246 ext4_blocks_for_truncate(inode)+extra_credits);
247 if (IS_ERR(handle)) {
248 ext4_std_error(inode->i_sb, PTR_ERR(handle));
249 /*
250 * If we're going to skip the normal cleanup, we still need to
251 * make sure that the in-core orphan linked list is properly
252 * cleaned up.
253 */
254 ext4_orphan_del(NULL, inode);
255 sb_end_intwrite(inode->i_sb);
256 goto no_delete;
257 }
258
259 if (IS_SYNC(inode))
260 ext4_handle_sync(handle);
261
262 /*
263 * Set inode->i_size to 0 before calling ext4_truncate(). We need
264 * special handling of symlinks here because i_size is used to
265 * determine whether ext4_inode_info->i_data contains symlink data or
266 * block mappings. Setting i_size to 0 will remove its fast symlink
267 * status. Erase i_data so that it becomes a valid empty block map.
268 */
269 if (ext4_inode_is_fast_symlink(inode))
270 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
271 inode->i_size = 0;
272 err = ext4_mark_inode_dirty(handle, inode);
273 if (err) {
274 ext4_warning(inode->i_sb,
275 "couldn't mark inode dirty (err %d)", err);
276 goto stop_handle;
277 }
278 if (inode->i_blocks) {
279 err = ext4_truncate(inode);
280 if (err) {
281 ext4_error(inode->i_sb,
282 "couldn't truncate inode %lu (err %d)",
283 inode->i_ino, err);
284 goto stop_handle;
285 }
286 }
287
288 /* Remove xattr references. */
289 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
290 extra_credits);
291 if (err) {
292 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
293 stop_handle:
294 ext4_journal_stop(handle);
295 ext4_orphan_del(NULL, inode);
296 sb_end_intwrite(inode->i_sb);
297 ext4_xattr_inode_array_free(ea_inode_array);
298 goto no_delete;
299 }
300
301 /*
302 * Kill off the orphan record which ext4_truncate created.
303 * AKPM: I think this can be inside the above `if'.
304 * Note that ext4_orphan_del() has to be able to cope with the
305 * deletion of a non-existent orphan - this is because we don't
306 * know if ext4_truncate() actually created an orphan record.
307 * (Well, we could do this if we need to, but heck - it works)
308 */
309 ext4_orphan_del(handle, inode);
310 EXT4_I(inode)->i_dtime = get_seconds();
311
312 /*
313 * One subtle ordering requirement: if anything has gone wrong
314 * (transaction abort, IO errors, whatever), then we can still
315 * do these next steps (the fs will already have been marked as
316 * having errors), but we can't free the inode if the mark_dirty
317 * fails.
318 */
319 if (ext4_mark_inode_dirty(handle, inode))
320 /* If that failed, just do the required in-core inode clear. */
321 ext4_clear_inode(inode);
322 else
323 ext4_free_inode(handle, inode);
324 ext4_journal_stop(handle);
325 sb_end_intwrite(inode->i_sb);
326 ext4_xattr_inode_array_free(ea_inode_array);
327 return;
328 no_delete:
329 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
330 }
331
332 #ifdef CONFIG_QUOTA
333 qsize_t *ext4_get_reserved_space(struct inode *inode)
334 {
335 return &EXT4_I(inode)->i_reserved_quota;
336 }
337 #endif
338
339 /*
340 * Called with i_data_sem down, which is important since we can call
341 * ext4_discard_preallocations() from here.
342 */
343 void ext4_da_update_reserve_space(struct inode *inode,
344 int used, int quota_claim)
345 {
346 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
347 struct ext4_inode_info *ei = EXT4_I(inode);
348
349 spin_lock(&ei->i_block_reservation_lock);
350 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
351 if (unlikely(used > ei->i_reserved_data_blocks)) {
352 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
353 "with only %d reserved data blocks",
354 __func__, inode->i_ino, used,
355 ei->i_reserved_data_blocks);
356 WARN_ON(1);
357 used = ei->i_reserved_data_blocks;
358 }
359
360 /* Update per-inode reservations */
361 ei->i_reserved_data_blocks -= used;
362 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
363
364 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
365
366 /* Update quota subsystem for data blocks */
367 if (quota_claim)
368 dquot_claim_block(inode, EXT4_C2B(sbi, used));
369 else {
370 /*
371 * We did fallocate with an offset that is already delayed
372 * allocated. So on delayed allocated writeback we should
373 * not re-claim the quota for fallocated blocks.
374 */
375 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
376 }
377
378 /*
379 * If we have done all the pending block allocations and if
380 * there aren't any writers on the inode, we can discard the
381 * inode's preallocations.
382 */
383 if ((ei->i_reserved_data_blocks == 0) &&
384 (atomic_read(&inode->i_writecount) == 0))
385 ext4_discard_preallocations(inode);
386 }
387
388 static int __check_block_validity(struct inode *inode, const char *func,
389 unsigned int line,
390 struct ext4_map_blocks *map)
391 {
392 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
393 map->m_len)) {
394 ext4_error_inode(inode, func, line, map->m_pblk,
395 "lblock %lu mapped to illegal pblock "
396 "(length %d)", (unsigned long) map->m_lblk,
397 map->m_len);
398 return -EFSCORRUPTED;
399 }
400 return 0;
401 }
402
403 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
404 ext4_lblk_t len)
405 {
406 int ret;
407
408 if (ext4_encrypted_inode(inode))
409 return fscrypt_zeroout_range(inode, lblk, pblk, len);
410
411 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
412 if (ret > 0)
413 ret = 0;
414
415 return ret;
416 }
417
418 #define check_block_validity(inode, map) \
419 __check_block_validity((inode), __func__, __LINE__, (map))
420
421 #ifdef ES_AGGRESSIVE_TEST
422 static void ext4_map_blocks_es_recheck(handle_t *handle,
423 struct inode *inode,
424 struct ext4_map_blocks *es_map,
425 struct ext4_map_blocks *map,
426 int flags)
427 {
428 int retval;
429
430 map->m_flags = 0;
431 /*
432 * There is a race window that the result is not the same.
433 * e.g. xfstests #223 when dioread_nolock enables. The reason
434 * is that we lookup a block mapping in extent status tree with
435 * out taking i_data_sem. So at the time the unwritten extent
436 * could be converted.
437 */
438 down_read(&EXT4_I(inode)->i_data_sem);
439 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
440 retval = ext4_ext_map_blocks(handle, inode, map, flags &
441 EXT4_GET_BLOCKS_KEEP_SIZE);
442 } else {
443 retval = ext4_ind_map_blocks(handle, inode, map, flags &
444 EXT4_GET_BLOCKS_KEEP_SIZE);
445 }
446 up_read((&EXT4_I(inode)->i_data_sem));
447
448 /*
449 * We don't check m_len because extent will be collpased in status
450 * tree. So the m_len might not equal.
451 */
452 if (es_map->m_lblk != map->m_lblk ||
453 es_map->m_flags != map->m_flags ||
454 es_map->m_pblk != map->m_pblk) {
455 printk("ES cache assertion failed for inode: %lu "
456 "es_cached ex [%d/%d/%llu/%x] != "
457 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
458 inode->i_ino, es_map->m_lblk, es_map->m_len,
459 es_map->m_pblk, es_map->m_flags, map->m_lblk,
460 map->m_len, map->m_pblk, map->m_flags,
461 retval, flags);
462 }
463 }
464 #endif /* ES_AGGRESSIVE_TEST */
465
466 /*
467 * The ext4_map_blocks() function tries to look up the requested blocks,
468 * and returns if the blocks are already mapped.
469 *
470 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
471 * and store the allocated blocks in the result buffer head and mark it
472 * mapped.
473 *
474 * If file type is extents based, it will call ext4_ext_map_blocks(),
475 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
476 * based files
477 *
478 * On success, it returns the number of blocks being mapped or allocated. if
479 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
480 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
481 *
482 * It returns 0 if plain look up failed (blocks have not been allocated), in
483 * that case, @map is returned as unmapped but we still do fill map->m_len to
484 * indicate the length of a hole starting at map->m_lblk.
485 *
486 * It returns the error in case of allocation failure.
487 */
488 int ext4_map_blocks(handle_t *handle, struct inode *inode,
489 struct ext4_map_blocks *map, int flags)
490 {
491 struct extent_status es;
492 int retval;
493 int ret = 0;
494 #ifdef ES_AGGRESSIVE_TEST
495 struct ext4_map_blocks orig_map;
496
497 memcpy(&orig_map, map, sizeof(*map));
498 #endif
499
500 map->m_flags = 0;
501 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
502 "logical block %lu\n", inode->i_ino, flags, map->m_len,
503 (unsigned long) map->m_lblk);
504
505 /*
506 * ext4_map_blocks returns an int, and m_len is an unsigned int
507 */
508 if (unlikely(map->m_len > INT_MAX))
509 map->m_len = INT_MAX;
510
511 /* We can handle the block number less than EXT_MAX_BLOCKS */
512 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
513 return -EFSCORRUPTED;
514
515 /* Lookup extent status tree firstly */
516 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
517 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
518 map->m_pblk = ext4_es_pblock(&es) +
519 map->m_lblk - es.es_lblk;
520 map->m_flags |= ext4_es_is_written(&es) ?
521 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
522 retval = es.es_len - (map->m_lblk - es.es_lblk);
523 if (retval > map->m_len)
524 retval = map->m_len;
525 map->m_len = retval;
526 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
527 map->m_pblk = 0;
528 retval = es.es_len - (map->m_lblk - es.es_lblk);
529 if (retval > map->m_len)
530 retval = map->m_len;
531 map->m_len = retval;
532 retval = 0;
533 } else {
534 BUG_ON(1);
535 }
536 #ifdef ES_AGGRESSIVE_TEST
537 ext4_map_blocks_es_recheck(handle, inode, map,
538 &orig_map, flags);
539 #endif
540 goto found;
541 }
542
543 /*
544 * Try to see if we can get the block without requesting a new
545 * file system block.
546 */
547 down_read(&EXT4_I(inode)->i_data_sem);
548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
549 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
551 } else {
552 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 EXT4_GET_BLOCKS_KEEP_SIZE);
554 }
555 if (retval > 0) {
556 unsigned int status;
557
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
564 }
565
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 !(status & EXTENT_STATUS_WRITTEN) &&
570 ext4_find_delalloc_range(inode, map->m_lblk,
571 map->m_lblk + map->m_len - 1))
572 status |= EXTENT_STATUS_DELAYED;
573 ret = ext4_es_insert_extent(inode, map->m_lblk,
574 map->m_len, map->m_pblk, status);
575 if (ret < 0)
576 retval = ret;
577 }
578 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 ret = check_block_validity(inode, map);
583 if (ret != 0)
584 return ret;
585 }
586
587 /* If it is only a block(s) look up */
588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
595 * ext4_ext_get_block() returns the create = 0
596 * with buffer head unmapped.
597 */
598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 /*
600 * If we need to convert extent to unwritten
601 * we continue and do the actual work in
602 * ext4_ext_map_blocks()
603 */
604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605 return retval;
606
607 /*
608 * Here we clear m_flags because after allocating an new extent,
609 * it will be set again.
610 */
611 map->m_flags &= ~EXT4_MAP_FLAGS;
612
613 /*
614 * New blocks allocate and/or writing to unwritten extent
615 * will possibly result in updating i_data, so we take
616 * the write lock of i_data_sem, and call get_block()
617 * with create == 1 flag.
618 */
619 down_write(&EXT4_I(inode)->i_data_sem);
620
621 /*
622 * We need to check for EXT4 here because migrate
623 * could have changed the inode type in between
624 */
625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
626 retval = ext4_ext_map_blocks(handle, inode, map, flags);
627 } else {
628 retval = ext4_ind_map_blocks(handle, inode, map, flags);
629
630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
631 /*
632 * We allocated new blocks which will result in
633 * i_data's format changing. Force the migrate
634 * to fail by clearing migrate flags
635 */
636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
637 }
638
639 /*
640 * Update reserved blocks/metadata blocks after successful
641 * block allocation which had been deferred till now. We don't
642 * support fallocate for non extent files. So we can update
643 * reserve space here.
644 */
645 if ((retval > 0) &&
646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
647 ext4_da_update_reserve_space(inode, retval, 1);
648 }
649
650 if (retval > 0) {
651 unsigned int status;
652
653 if (unlikely(retval != map->m_len)) {
654 ext4_warning(inode->i_sb,
655 "ES len assertion failed for inode "
656 "%lu: retval %d != map->m_len %d",
657 inode->i_ino, retval, map->m_len);
658 WARN_ON(1);
659 }
660
661 /*
662 * We have to zeroout blocks before inserting them into extent
663 * status tree. Otherwise someone could look them up there and
664 * use them before they are really zeroed. We also have to
665 * unmap metadata before zeroing as otherwise writeback can
666 * overwrite zeros with stale data from block device.
667 */
668 if (flags & EXT4_GET_BLOCKS_ZERO &&
669 map->m_flags & EXT4_MAP_MAPPED &&
670 map->m_flags & EXT4_MAP_NEW) {
671 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
672 map->m_len);
673 ret = ext4_issue_zeroout(inode, map->m_lblk,
674 map->m_pblk, map->m_len);
675 if (ret) {
676 retval = ret;
677 goto out_sem;
678 }
679 }
680
681 /*
682 * If the extent has been zeroed out, we don't need to update
683 * extent status tree.
684 */
685 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
686 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
687 if (ext4_es_is_written(&es))
688 goto out_sem;
689 }
690 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
691 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
692 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
693 !(status & EXTENT_STATUS_WRITTEN) &&
694 ext4_find_delalloc_range(inode, map->m_lblk,
695 map->m_lblk + map->m_len - 1))
696 status |= EXTENT_STATUS_DELAYED;
697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 map->m_pblk, status);
699 if (ret < 0) {
700 retval = ret;
701 goto out_sem;
702 }
703 }
704
705 out_sem:
706 up_write((&EXT4_I(inode)->i_data_sem));
707 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
708 ret = check_block_validity(inode, map);
709 if (ret != 0)
710 return ret;
711
712 /*
713 * Inodes with freshly allocated blocks where contents will be
714 * visible after transaction commit must be on transaction's
715 * ordered data list.
716 */
717 if (map->m_flags & EXT4_MAP_NEW &&
718 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
719 !(flags & EXT4_GET_BLOCKS_ZERO) &&
720 !ext4_is_quota_file(inode) &&
721 ext4_should_order_data(inode)) {
722 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
723 ret = ext4_jbd2_inode_add_wait(handle, inode);
724 else
725 ret = ext4_jbd2_inode_add_write(handle, inode);
726 if (ret)
727 return ret;
728 }
729 }
730 return retval;
731 }
732
733 /*
734 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
735 * we have to be careful as someone else may be manipulating b_state as well.
736 */
737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738 {
739 unsigned long old_state;
740 unsigned long new_state;
741
742 flags &= EXT4_MAP_FLAGS;
743
744 /* Dummy buffer_head? Set non-atomically. */
745 if (!bh->b_page) {
746 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
747 return;
748 }
749 /*
750 * Someone else may be modifying b_state. Be careful! This is ugly but
751 * once we get rid of using bh as a container for mapping information
752 * to pass to / from get_block functions, this can go away.
753 */
754 do {
755 old_state = READ_ONCE(bh->b_state);
756 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757 } while (unlikely(
758 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
759 }
760
761 static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 struct buffer_head *bh, int flags)
763 {
764 struct ext4_map_blocks map;
765 int ret = 0;
766
767 if (ext4_has_inline_data(inode))
768 return -ERANGE;
769
770 map.m_lblk = iblock;
771 map.m_len = bh->b_size >> inode->i_blkbits;
772
773 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
774 flags);
775 if (ret > 0) {
776 map_bh(bh, inode->i_sb, map.m_pblk);
777 ext4_update_bh_state(bh, map.m_flags);
778 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
779 ret = 0;
780 } else if (ret == 0) {
781 /* hole case, need to fill in bh->b_size */
782 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
783 }
784 return ret;
785 }
786
787 int ext4_get_block(struct inode *inode, sector_t iblock,
788 struct buffer_head *bh, int create)
789 {
790 return _ext4_get_block(inode, iblock, bh,
791 create ? EXT4_GET_BLOCKS_CREATE : 0);
792 }
793
794 /*
795 * Get block function used when preparing for buffered write if we require
796 * creating an unwritten extent if blocks haven't been allocated. The extent
797 * will be converted to written after the IO is complete.
798 */
799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
800 struct buffer_head *bh_result, int create)
801 {
802 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
803 inode->i_ino, create);
804 return _ext4_get_block(inode, iblock, bh_result,
805 EXT4_GET_BLOCKS_IO_CREATE_EXT);
806 }
807
808 /* Maximum number of blocks we map for direct IO at once. */
809 #define DIO_MAX_BLOCKS 4096
810
811 /*
812 * Get blocks function for the cases that need to start a transaction -
813 * generally difference cases of direct IO and DAX IO. It also handles retries
814 * in case of ENOSPC.
815 */
816 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
817 struct buffer_head *bh_result, int flags)
818 {
819 int dio_credits;
820 handle_t *handle;
821 int retries = 0;
822 int ret;
823
824 /* Trim mapping request to maximum we can map at once for DIO */
825 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
826 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
827 dio_credits = ext4_chunk_trans_blocks(inode,
828 bh_result->b_size >> inode->i_blkbits);
829 retry:
830 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
831 if (IS_ERR(handle))
832 return PTR_ERR(handle);
833
834 ret = _ext4_get_block(inode, iblock, bh_result, flags);
835 ext4_journal_stop(handle);
836
837 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
838 goto retry;
839 return ret;
840 }
841
842 /* Get block function for DIO reads and writes to inodes without extents */
843 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
844 struct buffer_head *bh, int create)
845 {
846 /* We don't expect handle for direct IO */
847 WARN_ON_ONCE(ext4_journal_current_handle());
848
849 if (!create)
850 return _ext4_get_block(inode, iblock, bh, 0);
851 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
852 }
853
854 /*
855 * Get block function for AIO DIO writes when we create unwritten extent if
856 * blocks are not allocated yet. The extent will be converted to written
857 * after IO is complete.
858 */
859 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
860 sector_t iblock, struct buffer_head *bh_result, int create)
861 {
862 int ret;
863
864 /* We don't expect handle for direct IO */
865 WARN_ON_ONCE(ext4_journal_current_handle());
866
867 ret = ext4_get_block_trans(inode, iblock, bh_result,
868 EXT4_GET_BLOCKS_IO_CREATE_EXT);
869
870 /*
871 * When doing DIO using unwritten extents, we need io_end to convert
872 * unwritten extents to written on IO completion. We allocate io_end
873 * once we spot unwritten extent and store it in b_private. Generic
874 * DIO code keeps b_private set and furthermore passes the value to
875 * our completion callback in 'private' argument.
876 */
877 if (!ret && buffer_unwritten(bh_result)) {
878 if (!bh_result->b_private) {
879 ext4_io_end_t *io_end;
880
881 io_end = ext4_init_io_end(inode, GFP_KERNEL);
882 if (!io_end)
883 return -ENOMEM;
884 bh_result->b_private = io_end;
885 ext4_set_io_unwritten_flag(inode, io_end);
886 }
887 set_buffer_defer_completion(bh_result);
888 }
889
890 return ret;
891 }
892
893 /*
894 * Get block function for non-AIO DIO writes when we create unwritten extent if
895 * blocks are not allocated yet. The extent will be converted to written
896 * after IO is complete by ext4_direct_IO_write().
897 */
898 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
899 sector_t iblock, struct buffer_head *bh_result, int create)
900 {
901 int ret;
902
903 /* We don't expect handle for direct IO */
904 WARN_ON_ONCE(ext4_journal_current_handle());
905
906 ret = ext4_get_block_trans(inode, iblock, bh_result,
907 EXT4_GET_BLOCKS_IO_CREATE_EXT);
908
909 /*
910 * Mark inode as having pending DIO writes to unwritten extents.
911 * ext4_direct_IO_write() checks this flag and converts extents to
912 * written.
913 */
914 if (!ret && buffer_unwritten(bh_result))
915 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
916
917 return ret;
918 }
919
920 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
921 struct buffer_head *bh_result, int create)
922 {
923 int ret;
924
925 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
926 inode->i_ino, create);
927 /* We don't expect handle for direct IO */
928 WARN_ON_ONCE(ext4_journal_current_handle());
929
930 ret = _ext4_get_block(inode, iblock, bh_result, 0);
931 /*
932 * Blocks should have been preallocated! ext4_file_write_iter() checks
933 * that.
934 */
935 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
936
937 return ret;
938 }
939
940
941 /*
942 * `handle' can be NULL if create is zero
943 */
944 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
945 ext4_lblk_t block, int map_flags)
946 {
947 struct ext4_map_blocks map;
948 struct buffer_head *bh;
949 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
950 int err;
951
952 J_ASSERT(handle != NULL || create == 0);
953
954 map.m_lblk = block;
955 map.m_len = 1;
956 err = ext4_map_blocks(handle, inode, &map, map_flags);
957
958 if (err == 0)
959 return create ? ERR_PTR(-ENOSPC) : NULL;
960 if (err < 0)
961 return ERR_PTR(err);
962
963 bh = sb_getblk(inode->i_sb, map.m_pblk);
964 if (unlikely(!bh))
965 return ERR_PTR(-ENOMEM);
966 if (map.m_flags & EXT4_MAP_NEW) {
967 J_ASSERT(create != 0);
968 J_ASSERT(handle != NULL);
969
970 /*
971 * Now that we do not always journal data, we should
972 * keep in mind whether this should always journal the
973 * new buffer as metadata. For now, regular file
974 * writes use ext4_get_block instead, so it's not a
975 * problem.
976 */
977 lock_buffer(bh);
978 BUFFER_TRACE(bh, "call get_create_access");
979 err = ext4_journal_get_create_access(handle, bh);
980 if (unlikely(err)) {
981 unlock_buffer(bh);
982 goto errout;
983 }
984 if (!buffer_uptodate(bh)) {
985 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
986 set_buffer_uptodate(bh);
987 }
988 unlock_buffer(bh);
989 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
990 err = ext4_handle_dirty_metadata(handle, inode, bh);
991 if (unlikely(err))
992 goto errout;
993 } else
994 BUFFER_TRACE(bh, "not a new buffer");
995 return bh;
996 errout:
997 brelse(bh);
998 return ERR_PTR(err);
999 }
1000
1001 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1002 ext4_lblk_t block, int map_flags)
1003 {
1004 struct buffer_head *bh;
1005
1006 bh = ext4_getblk(handle, inode, block, map_flags);
1007 if (IS_ERR(bh))
1008 return bh;
1009 if (!bh || buffer_uptodate(bh))
1010 return bh;
1011 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1012 wait_on_buffer(bh);
1013 if (buffer_uptodate(bh))
1014 return bh;
1015 put_bh(bh);
1016 return ERR_PTR(-EIO);
1017 }
1018
1019 /* Read a contiguous batch of blocks. */
1020 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1021 bool wait, struct buffer_head **bhs)
1022 {
1023 int i, err;
1024
1025 for (i = 0; i < bh_count; i++) {
1026 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1027 if (IS_ERR(bhs[i])) {
1028 err = PTR_ERR(bhs[i]);
1029 bh_count = i;
1030 goto out_brelse;
1031 }
1032 }
1033
1034 for (i = 0; i < bh_count; i++)
1035 /* Note that NULL bhs[i] is valid because of holes. */
1036 if (bhs[i] && !buffer_uptodate(bhs[i]))
1037 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1038 &bhs[i]);
1039
1040 if (!wait)
1041 return 0;
1042
1043 for (i = 0; i < bh_count; i++)
1044 if (bhs[i])
1045 wait_on_buffer(bhs[i]);
1046
1047 for (i = 0; i < bh_count; i++) {
1048 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1049 err = -EIO;
1050 goto out_brelse;
1051 }
1052 }
1053 return 0;
1054
1055 out_brelse:
1056 for (i = 0; i < bh_count; i++) {
1057 brelse(bhs[i]);
1058 bhs[i] = NULL;
1059 }
1060 return err;
1061 }
1062
1063 int ext4_walk_page_buffers(handle_t *handle,
1064 struct buffer_head *head,
1065 unsigned from,
1066 unsigned to,
1067 int *partial,
1068 int (*fn)(handle_t *handle,
1069 struct buffer_head *bh))
1070 {
1071 struct buffer_head *bh;
1072 unsigned block_start, block_end;
1073 unsigned blocksize = head->b_size;
1074 int err, ret = 0;
1075 struct buffer_head *next;
1076
1077 for (bh = head, block_start = 0;
1078 ret == 0 && (bh != head || !block_start);
1079 block_start = block_end, bh = next) {
1080 next = bh->b_this_page;
1081 block_end = block_start + blocksize;
1082 if (block_end <= from || block_start >= to) {
1083 if (partial && !buffer_uptodate(bh))
1084 *partial = 1;
1085 continue;
1086 }
1087 err = (*fn)(handle, bh);
1088 if (!ret)
1089 ret = err;
1090 }
1091 return ret;
1092 }
1093
1094 /*
1095 * To preserve ordering, it is essential that the hole instantiation and
1096 * the data write be encapsulated in a single transaction. We cannot
1097 * close off a transaction and start a new one between the ext4_get_block()
1098 * and the commit_write(). So doing the jbd2_journal_start at the start of
1099 * prepare_write() is the right place.
1100 *
1101 * Also, this function can nest inside ext4_writepage(). In that case, we
1102 * *know* that ext4_writepage() has generated enough buffer credits to do the
1103 * whole page. So we won't block on the journal in that case, which is good,
1104 * because the caller may be PF_MEMALLOC.
1105 *
1106 * By accident, ext4 can be reentered when a transaction is open via
1107 * quota file writes. If we were to commit the transaction while thus
1108 * reentered, there can be a deadlock - we would be holding a quota
1109 * lock, and the commit would never complete if another thread had a
1110 * transaction open and was blocking on the quota lock - a ranking
1111 * violation.
1112 *
1113 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1114 * will _not_ run commit under these circumstances because handle->h_ref
1115 * is elevated. We'll still have enough credits for the tiny quotafile
1116 * write.
1117 */
1118 int do_journal_get_write_access(handle_t *handle,
1119 struct buffer_head *bh)
1120 {
1121 int dirty = buffer_dirty(bh);
1122 int ret;
1123
1124 if (!buffer_mapped(bh) || buffer_freed(bh))
1125 return 0;
1126 /*
1127 * __block_write_begin() could have dirtied some buffers. Clean
1128 * the dirty bit as jbd2_journal_get_write_access() could complain
1129 * otherwise about fs integrity issues. Setting of the dirty bit
1130 * by __block_write_begin() isn't a real problem here as we clear
1131 * the bit before releasing a page lock and thus writeback cannot
1132 * ever write the buffer.
1133 */
1134 if (dirty)
1135 clear_buffer_dirty(bh);
1136 BUFFER_TRACE(bh, "get write access");
1137 ret = ext4_journal_get_write_access(handle, bh);
1138 if (!ret && dirty)
1139 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1140 return ret;
1141 }
1142
1143 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1144 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1145 get_block_t *get_block)
1146 {
1147 unsigned from = pos & (PAGE_SIZE - 1);
1148 unsigned to = from + len;
1149 struct inode *inode = page->mapping->host;
1150 unsigned block_start, block_end;
1151 sector_t block;
1152 int err = 0;
1153 unsigned blocksize = inode->i_sb->s_blocksize;
1154 unsigned bbits;
1155 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1156 bool decrypt = false;
1157
1158 BUG_ON(!PageLocked(page));
1159 BUG_ON(from > PAGE_SIZE);
1160 BUG_ON(to > PAGE_SIZE);
1161 BUG_ON(from > to);
1162
1163 if (!page_has_buffers(page))
1164 create_empty_buffers(page, blocksize, 0);
1165 head = page_buffers(page);
1166 bbits = ilog2(blocksize);
1167 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1168
1169 for (bh = head, block_start = 0; bh != head || !block_start;
1170 block++, block_start = block_end, bh = bh->b_this_page) {
1171 block_end = block_start + blocksize;
1172 if (block_end <= from || block_start >= to) {
1173 if (PageUptodate(page)) {
1174 if (!buffer_uptodate(bh))
1175 set_buffer_uptodate(bh);
1176 }
1177 continue;
1178 }
1179 if (buffer_new(bh))
1180 clear_buffer_new(bh);
1181 if (!buffer_mapped(bh)) {
1182 WARN_ON(bh->b_size != blocksize);
1183 err = get_block(inode, block, bh, 1);
1184 if (err)
1185 break;
1186 if (buffer_new(bh)) {
1187 clean_bdev_bh_alias(bh);
1188 if (PageUptodate(page)) {
1189 clear_buffer_new(bh);
1190 set_buffer_uptodate(bh);
1191 mark_buffer_dirty(bh);
1192 continue;
1193 }
1194 if (block_end > to || block_start < from)
1195 zero_user_segments(page, to, block_end,
1196 block_start, from);
1197 continue;
1198 }
1199 }
1200 if (PageUptodate(page)) {
1201 if (!buffer_uptodate(bh))
1202 set_buffer_uptodate(bh);
1203 continue;
1204 }
1205 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1206 !buffer_unwritten(bh) &&
1207 (block_start < from || block_end > to)) {
1208 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209 *wait_bh++ = bh;
1210 decrypt = ext4_encrypted_inode(inode) &&
1211 S_ISREG(inode->i_mode);
1212 }
1213 }
1214 /*
1215 * If we issued read requests, let them complete.
1216 */
1217 while (wait_bh > wait) {
1218 wait_on_buffer(*--wait_bh);
1219 if (!buffer_uptodate(*wait_bh))
1220 err = -EIO;
1221 }
1222 if (unlikely(err))
1223 page_zero_new_buffers(page, from, to);
1224 else if (decrypt)
1225 err = fscrypt_decrypt_page(page->mapping->host, page,
1226 PAGE_SIZE, 0, page->index);
1227 return err;
1228 }
1229 #endif
1230
1231 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1232 loff_t pos, unsigned len, unsigned flags,
1233 struct page **pagep, void **fsdata)
1234 {
1235 struct inode *inode = mapping->host;
1236 int ret, needed_blocks;
1237 handle_t *handle;
1238 int retries = 0;
1239 struct page *page;
1240 pgoff_t index;
1241 unsigned from, to;
1242
1243 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1244 return -EIO;
1245
1246 trace_ext4_write_begin(inode, pos, len, flags);
1247 /*
1248 * Reserve one block more for addition to orphan list in case
1249 * we allocate blocks but write fails for some reason
1250 */
1251 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1252 index = pos >> PAGE_SHIFT;
1253 from = pos & (PAGE_SIZE - 1);
1254 to = from + len;
1255
1256 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1257 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1258 flags, pagep);
1259 if (ret < 0)
1260 return ret;
1261 if (ret == 1)
1262 return 0;
1263 }
1264
1265 /*
1266 * grab_cache_page_write_begin() can take a long time if the
1267 * system is thrashing due to memory pressure, or if the page
1268 * is being written back. So grab it first before we start
1269 * the transaction handle. This also allows us to allocate
1270 * the page (if needed) without using GFP_NOFS.
1271 */
1272 retry_grab:
1273 page = grab_cache_page_write_begin(mapping, index, flags);
1274 if (!page)
1275 return -ENOMEM;
1276 unlock_page(page);
1277
1278 retry_journal:
1279 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1280 if (IS_ERR(handle)) {
1281 put_page(page);
1282 return PTR_ERR(handle);
1283 }
1284
1285 lock_page(page);
1286 if (page->mapping != mapping) {
1287 /* The page got truncated from under us */
1288 unlock_page(page);
1289 put_page(page);
1290 ext4_journal_stop(handle);
1291 goto retry_grab;
1292 }
1293 /* In case writeback began while the page was unlocked */
1294 wait_for_stable_page(page);
1295
1296 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1297 if (ext4_should_dioread_nolock(inode))
1298 ret = ext4_block_write_begin(page, pos, len,
1299 ext4_get_block_unwritten);
1300 else
1301 ret = ext4_block_write_begin(page, pos, len,
1302 ext4_get_block);
1303 #else
1304 if (ext4_should_dioread_nolock(inode))
1305 ret = __block_write_begin(page, pos, len,
1306 ext4_get_block_unwritten);
1307 else
1308 ret = __block_write_begin(page, pos, len, ext4_get_block);
1309 #endif
1310 if (!ret && ext4_should_journal_data(inode)) {
1311 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312 from, to, NULL,
1313 do_journal_get_write_access);
1314 }
1315
1316 if (ret) {
1317 unlock_page(page);
1318 /*
1319 * __block_write_begin may have instantiated a few blocks
1320 * outside i_size. Trim these off again. Don't need
1321 * i_size_read because we hold i_mutex.
1322 *
1323 * Add inode to orphan list in case we crash before
1324 * truncate finishes
1325 */
1326 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1327 ext4_orphan_add(handle, inode);
1328
1329 ext4_journal_stop(handle);
1330 if (pos + len > inode->i_size) {
1331 ext4_truncate_failed_write(inode);
1332 /*
1333 * If truncate failed early the inode might
1334 * still be on the orphan list; we need to
1335 * make sure the inode is removed from the
1336 * orphan list in that case.
1337 */
1338 if (inode->i_nlink)
1339 ext4_orphan_del(NULL, inode);
1340 }
1341
1342 if (ret == -ENOSPC &&
1343 ext4_should_retry_alloc(inode->i_sb, &retries))
1344 goto retry_journal;
1345 put_page(page);
1346 return ret;
1347 }
1348 *pagep = page;
1349 return ret;
1350 }
1351
1352 /* For write_end() in data=journal mode */
1353 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1354 {
1355 int ret;
1356 if (!buffer_mapped(bh) || buffer_freed(bh))
1357 return 0;
1358 set_buffer_uptodate(bh);
1359 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1360 clear_buffer_meta(bh);
1361 clear_buffer_prio(bh);
1362 return ret;
1363 }
1364
1365 /*
1366 * We need to pick up the new inode size which generic_commit_write gave us
1367 * `file' can be NULL - eg, when called from page_symlink().
1368 *
1369 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1370 * buffers are managed internally.
1371 */
1372 static int ext4_write_end(struct file *file,
1373 struct address_space *mapping,
1374 loff_t pos, unsigned len, unsigned copied,
1375 struct page *page, void *fsdata)
1376 {
1377 handle_t *handle = ext4_journal_current_handle();
1378 struct inode *inode = mapping->host;
1379 loff_t old_size = inode->i_size;
1380 int ret = 0, ret2;
1381 int i_size_changed = 0;
1382
1383 trace_ext4_write_end(inode, pos, len, copied);
1384 if (ext4_has_inline_data(inode)) {
1385 ret = ext4_write_inline_data_end(inode, pos, len,
1386 copied, page);
1387 if (ret < 0) {
1388 unlock_page(page);
1389 put_page(page);
1390 goto errout;
1391 }
1392 copied = ret;
1393 } else
1394 copied = block_write_end(file, mapping, pos,
1395 len, copied, page, fsdata);
1396 /*
1397 * it's important to update i_size while still holding page lock:
1398 * page writeout could otherwise come in and zero beyond i_size.
1399 */
1400 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1401 unlock_page(page);
1402 put_page(page);
1403
1404 if (old_size < pos)
1405 pagecache_isize_extended(inode, old_size, pos);
1406 /*
1407 * Don't mark the inode dirty under page lock. First, it unnecessarily
1408 * makes the holding time of page lock longer. Second, it forces lock
1409 * ordering of page lock and transaction start for journaling
1410 * filesystems.
1411 */
1412 if (i_size_changed)
1413 ext4_mark_inode_dirty(handle, inode);
1414
1415 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1416 /* if we have allocated more blocks and copied
1417 * less. We will have blocks allocated outside
1418 * inode->i_size. So truncate them
1419 */
1420 ext4_orphan_add(handle, inode);
1421 errout:
1422 ret2 = ext4_journal_stop(handle);
1423 if (!ret)
1424 ret = ret2;
1425
1426 if (pos + len > inode->i_size) {
1427 ext4_truncate_failed_write(inode);
1428 /*
1429 * If truncate failed early the inode might still be
1430 * on the orphan list; we need to make sure the inode
1431 * is removed from the orphan list in that case.
1432 */
1433 if (inode->i_nlink)
1434 ext4_orphan_del(NULL, inode);
1435 }
1436
1437 return ret ? ret : copied;
1438 }
1439
1440 /*
1441 * This is a private version of page_zero_new_buffers() which doesn't
1442 * set the buffer to be dirty, since in data=journalled mode we need
1443 * to call ext4_handle_dirty_metadata() instead.
1444 */
1445 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446 struct page *page,
1447 unsigned from, unsigned to)
1448 {
1449 unsigned int block_start = 0, block_end;
1450 struct buffer_head *head, *bh;
1451
1452 bh = head = page_buffers(page);
1453 do {
1454 block_end = block_start + bh->b_size;
1455 if (buffer_new(bh)) {
1456 if (block_end > from && block_start < to) {
1457 if (!PageUptodate(page)) {
1458 unsigned start, size;
1459
1460 start = max(from, block_start);
1461 size = min(to, block_end) - start;
1462
1463 zero_user(page, start, size);
1464 write_end_fn(handle, bh);
1465 }
1466 clear_buffer_new(bh);
1467 }
1468 }
1469 block_start = block_end;
1470 bh = bh->b_this_page;
1471 } while (bh != head);
1472 }
1473
1474 static int ext4_journalled_write_end(struct file *file,
1475 struct address_space *mapping,
1476 loff_t pos, unsigned len, unsigned copied,
1477 struct page *page, void *fsdata)
1478 {
1479 handle_t *handle = ext4_journal_current_handle();
1480 struct inode *inode = mapping->host;
1481 loff_t old_size = inode->i_size;
1482 int ret = 0, ret2;
1483 int partial = 0;
1484 unsigned from, to;
1485 int size_changed = 0;
1486
1487 trace_ext4_journalled_write_end(inode, pos, len, copied);
1488 from = pos & (PAGE_SIZE - 1);
1489 to = from + len;
1490
1491 BUG_ON(!ext4_handle_valid(handle));
1492
1493 if (ext4_has_inline_data(inode)) {
1494 ret = ext4_write_inline_data_end(inode, pos, len,
1495 copied, page);
1496 if (ret < 0) {
1497 unlock_page(page);
1498 put_page(page);
1499 goto errout;
1500 }
1501 copied = ret;
1502 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1503 copied = 0;
1504 ext4_journalled_zero_new_buffers(handle, page, from, to);
1505 } else {
1506 if (unlikely(copied < len))
1507 ext4_journalled_zero_new_buffers(handle, page,
1508 from + copied, to);
1509 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1510 from + copied, &partial,
1511 write_end_fn);
1512 if (!partial)
1513 SetPageUptodate(page);
1514 }
1515 size_changed = ext4_update_inode_size(inode, pos + copied);
1516 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1517 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1518 unlock_page(page);
1519 put_page(page);
1520
1521 if (old_size < pos)
1522 pagecache_isize_extended(inode, old_size, pos);
1523
1524 if (size_changed) {
1525 ret2 = ext4_mark_inode_dirty(handle, inode);
1526 if (!ret)
1527 ret = ret2;
1528 }
1529
1530 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1531 /* if we have allocated more blocks and copied
1532 * less. We will have blocks allocated outside
1533 * inode->i_size. So truncate them
1534 */
1535 ext4_orphan_add(handle, inode);
1536
1537 errout:
1538 ret2 = ext4_journal_stop(handle);
1539 if (!ret)
1540 ret = ret2;
1541 if (pos + len > inode->i_size) {
1542 ext4_truncate_failed_write(inode);
1543 /*
1544 * If truncate failed early the inode might still be
1545 * on the orphan list; we need to make sure the inode
1546 * is removed from the orphan list in that case.
1547 */
1548 if (inode->i_nlink)
1549 ext4_orphan_del(NULL, inode);
1550 }
1551
1552 return ret ? ret : copied;
1553 }
1554
1555 /*
1556 * Reserve space for a single cluster
1557 */
1558 static int ext4_da_reserve_space(struct inode *inode)
1559 {
1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 struct ext4_inode_info *ei = EXT4_I(inode);
1562 int ret;
1563
1564 /*
1565 * We will charge metadata quota at writeout time; this saves
1566 * us from metadata over-estimation, though we may go over by
1567 * a small amount in the end. Here we just reserve for data.
1568 */
1569 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1570 if (ret)
1571 return ret;
1572
1573 spin_lock(&ei->i_block_reservation_lock);
1574 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1575 spin_unlock(&ei->i_block_reservation_lock);
1576 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1577 return -ENOSPC;
1578 }
1579 ei->i_reserved_data_blocks++;
1580 trace_ext4_da_reserve_space(inode);
1581 spin_unlock(&ei->i_block_reservation_lock);
1582
1583 return 0; /* success */
1584 }
1585
1586 static void ext4_da_release_space(struct inode *inode, int to_free)
1587 {
1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589 struct ext4_inode_info *ei = EXT4_I(inode);
1590
1591 if (!to_free)
1592 return; /* Nothing to release, exit */
1593
1594 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1595
1596 trace_ext4_da_release_space(inode, to_free);
1597 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1598 /*
1599 * if there aren't enough reserved blocks, then the
1600 * counter is messed up somewhere. Since this
1601 * function is called from invalidate page, it's
1602 * harmless to return without any action.
1603 */
1604 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1605 "ino %lu, to_free %d with only %d reserved "
1606 "data blocks", inode->i_ino, to_free,
1607 ei->i_reserved_data_blocks);
1608 WARN_ON(1);
1609 to_free = ei->i_reserved_data_blocks;
1610 }
1611 ei->i_reserved_data_blocks -= to_free;
1612
1613 /* update fs dirty data blocks counter */
1614 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1615
1616 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1617
1618 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1619 }
1620
1621 static void ext4_da_page_release_reservation(struct page *page,
1622 unsigned int offset,
1623 unsigned int length)
1624 {
1625 int to_release = 0, contiguous_blks = 0;
1626 struct buffer_head *head, *bh;
1627 unsigned int curr_off = 0;
1628 struct inode *inode = page->mapping->host;
1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630 unsigned int stop = offset + length;
1631 int num_clusters;
1632 ext4_fsblk_t lblk;
1633
1634 BUG_ON(stop > PAGE_SIZE || stop < length);
1635
1636 head = page_buffers(page);
1637 bh = head;
1638 do {
1639 unsigned int next_off = curr_off + bh->b_size;
1640
1641 if (next_off > stop)
1642 break;
1643
1644 if ((offset <= curr_off) && (buffer_delay(bh))) {
1645 to_release++;
1646 contiguous_blks++;
1647 clear_buffer_delay(bh);
1648 } else if (contiguous_blks) {
1649 lblk = page->index <<
1650 (PAGE_SHIFT - inode->i_blkbits);
1651 lblk += (curr_off >> inode->i_blkbits) -
1652 contiguous_blks;
1653 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1654 contiguous_blks = 0;
1655 }
1656 curr_off = next_off;
1657 } while ((bh = bh->b_this_page) != head);
1658
1659 if (contiguous_blks) {
1660 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1661 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1662 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1663 }
1664
1665 /* If we have released all the blocks belonging to a cluster, then we
1666 * need to release the reserved space for that cluster. */
1667 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1668 while (num_clusters > 0) {
1669 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1670 ((num_clusters - 1) << sbi->s_cluster_bits);
1671 if (sbi->s_cluster_ratio == 1 ||
1672 !ext4_find_delalloc_cluster(inode, lblk))
1673 ext4_da_release_space(inode, 1);
1674
1675 num_clusters--;
1676 }
1677 }
1678
1679 /*
1680 * Delayed allocation stuff
1681 */
1682
1683 struct mpage_da_data {
1684 struct inode *inode;
1685 struct writeback_control *wbc;
1686
1687 pgoff_t first_page; /* The first page to write */
1688 pgoff_t next_page; /* Current page to examine */
1689 pgoff_t last_page; /* Last page to examine */
1690 /*
1691 * Extent to map - this can be after first_page because that can be
1692 * fully mapped. We somewhat abuse m_flags to store whether the extent
1693 * is delalloc or unwritten.
1694 */
1695 struct ext4_map_blocks map;
1696 struct ext4_io_submit io_submit; /* IO submission data */
1697 unsigned int do_map:1;
1698 };
1699
1700 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1701 bool invalidate)
1702 {
1703 int nr_pages, i;
1704 pgoff_t index, end;
1705 struct pagevec pvec;
1706 struct inode *inode = mpd->inode;
1707 struct address_space *mapping = inode->i_mapping;
1708
1709 /* This is necessary when next_page == 0. */
1710 if (mpd->first_page >= mpd->next_page)
1711 return;
1712
1713 index = mpd->first_page;
1714 end = mpd->next_page - 1;
1715 if (invalidate) {
1716 ext4_lblk_t start, last;
1717 start = index << (PAGE_SHIFT - inode->i_blkbits);
1718 last = end << (PAGE_SHIFT - inode->i_blkbits);
1719 ext4_es_remove_extent(inode, start, last - start + 1);
1720 }
1721
1722 pagevec_init(&pvec, 0);
1723 while (index <= end) {
1724 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1725 if (nr_pages == 0)
1726 break;
1727 for (i = 0; i < nr_pages; i++) {
1728 struct page *page = pvec.pages[i];
1729
1730 BUG_ON(!PageLocked(page));
1731 BUG_ON(PageWriteback(page));
1732 if (invalidate) {
1733 if (page_mapped(page))
1734 clear_page_dirty_for_io(page);
1735 block_invalidatepage(page, 0, PAGE_SIZE);
1736 ClearPageUptodate(page);
1737 }
1738 unlock_page(page);
1739 }
1740 pagevec_release(&pvec);
1741 }
1742 }
1743
1744 static void ext4_print_free_blocks(struct inode *inode)
1745 {
1746 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1747 struct super_block *sb = inode->i_sb;
1748 struct ext4_inode_info *ei = EXT4_I(inode);
1749
1750 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1751 EXT4_C2B(EXT4_SB(inode->i_sb),
1752 ext4_count_free_clusters(sb)));
1753 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1754 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1755 (long long) EXT4_C2B(EXT4_SB(sb),
1756 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1757 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1758 (long long) EXT4_C2B(EXT4_SB(sb),
1759 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1760 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1761 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1762 ei->i_reserved_data_blocks);
1763 return;
1764 }
1765
1766 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1767 {
1768 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1769 }
1770
1771 /*
1772 * This function is grabs code from the very beginning of
1773 * ext4_map_blocks, but assumes that the caller is from delayed write
1774 * time. This function looks up the requested blocks and sets the
1775 * buffer delay bit under the protection of i_data_sem.
1776 */
1777 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778 struct ext4_map_blocks *map,
1779 struct buffer_head *bh)
1780 {
1781 struct extent_status es;
1782 int retval;
1783 sector_t invalid_block = ~((sector_t) 0xffff);
1784 #ifdef ES_AGGRESSIVE_TEST
1785 struct ext4_map_blocks orig_map;
1786
1787 memcpy(&orig_map, map, sizeof(*map));
1788 #endif
1789
1790 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1791 invalid_block = ~0;
1792
1793 map->m_flags = 0;
1794 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1795 "logical block %lu\n", inode->i_ino, map->m_len,
1796 (unsigned long) map->m_lblk);
1797
1798 /* Lookup extent status tree firstly */
1799 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1800 if (ext4_es_is_hole(&es)) {
1801 retval = 0;
1802 down_read(&EXT4_I(inode)->i_data_sem);
1803 goto add_delayed;
1804 }
1805
1806 /*
1807 * Delayed extent could be allocated by fallocate.
1808 * So we need to check it.
1809 */
1810 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1811 map_bh(bh, inode->i_sb, invalid_block);
1812 set_buffer_new(bh);
1813 set_buffer_delay(bh);
1814 return 0;
1815 }
1816
1817 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1818 retval = es.es_len - (iblock - es.es_lblk);
1819 if (retval > map->m_len)
1820 retval = map->m_len;
1821 map->m_len = retval;
1822 if (ext4_es_is_written(&es))
1823 map->m_flags |= EXT4_MAP_MAPPED;
1824 else if (ext4_es_is_unwritten(&es))
1825 map->m_flags |= EXT4_MAP_UNWRITTEN;
1826 else
1827 BUG_ON(1);
1828
1829 #ifdef ES_AGGRESSIVE_TEST
1830 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1831 #endif
1832 return retval;
1833 }
1834
1835 /*
1836 * Try to see if we can get the block without requesting a new
1837 * file system block.
1838 */
1839 down_read(&EXT4_I(inode)->i_data_sem);
1840 if (ext4_has_inline_data(inode))
1841 retval = 0;
1842 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1843 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1844 else
1845 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1846
1847 add_delayed:
1848 if (retval == 0) {
1849 int ret;
1850 /*
1851 * XXX: __block_prepare_write() unmaps passed block,
1852 * is it OK?
1853 */
1854 /*
1855 * If the block was allocated from previously allocated cluster,
1856 * then we don't need to reserve it again. However we still need
1857 * to reserve metadata for every block we're going to write.
1858 */
1859 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1860 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1861 ret = ext4_da_reserve_space(inode);
1862 if (ret) {
1863 /* not enough space to reserve */
1864 retval = ret;
1865 goto out_unlock;
1866 }
1867 }
1868
1869 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1870 ~0, EXTENT_STATUS_DELAYED);
1871 if (ret) {
1872 retval = ret;
1873 goto out_unlock;
1874 }
1875
1876 map_bh(bh, inode->i_sb, invalid_block);
1877 set_buffer_new(bh);
1878 set_buffer_delay(bh);
1879 } else if (retval > 0) {
1880 int ret;
1881 unsigned int status;
1882
1883 if (unlikely(retval != map->m_len)) {
1884 ext4_warning(inode->i_sb,
1885 "ES len assertion failed for inode "
1886 "%lu: retval %d != map->m_len %d",
1887 inode->i_ino, retval, map->m_len);
1888 WARN_ON(1);
1889 }
1890
1891 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1892 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1893 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1894 map->m_pblk, status);
1895 if (ret != 0)
1896 retval = ret;
1897 }
1898
1899 out_unlock:
1900 up_read((&EXT4_I(inode)->i_data_sem));
1901
1902 return retval;
1903 }
1904
1905 /*
1906 * This is a special get_block_t callback which is used by
1907 * ext4_da_write_begin(). It will either return mapped block or
1908 * reserve space for a single block.
1909 *
1910 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1911 * We also have b_blocknr = -1 and b_bdev initialized properly
1912 *
1913 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1914 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1915 * initialized properly.
1916 */
1917 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1918 struct buffer_head *bh, int create)
1919 {
1920 struct ext4_map_blocks map;
1921 int ret = 0;
1922
1923 BUG_ON(create == 0);
1924 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1925
1926 map.m_lblk = iblock;
1927 map.m_len = 1;
1928
1929 /*
1930 * first, we need to know whether the block is allocated already
1931 * preallocated blocks are unmapped but should treated
1932 * the same as allocated blocks.
1933 */
1934 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1935 if (ret <= 0)
1936 return ret;
1937
1938 map_bh(bh, inode->i_sb, map.m_pblk);
1939 ext4_update_bh_state(bh, map.m_flags);
1940
1941 if (buffer_unwritten(bh)) {
1942 /* A delayed write to unwritten bh should be marked
1943 * new and mapped. Mapped ensures that we don't do
1944 * get_block multiple times when we write to the same
1945 * offset and new ensures that we do proper zero out
1946 * for partial write.
1947 */
1948 set_buffer_new(bh);
1949 set_buffer_mapped(bh);
1950 }
1951 return 0;
1952 }
1953
1954 static int bget_one(handle_t *handle, struct buffer_head *bh)
1955 {
1956 get_bh(bh);
1957 return 0;
1958 }
1959
1960 static int bput_one(handle_t *handle, struct buffer_head *bh)
1961 {
1962 put_bh(bh);
1963 return 0;
1964 }
1965
1966 static int __ext4_journalled_writepage(struct page *page,
1967 unsigned int len)
1968 {
1969 struct address_space *mapping = page->mapping;
1970 struct inode *inode = mapping->host;
1971 struct buffer_head *page_bufs = NULL;
1972 handle_t *handle = NULL;
1973 int ret = 0, err = 0;
1974 int inline_data = ext4_has_inline_data(inode);
1975 struct buffer_head *inode_bh = NULL;
1976
1977 ClearPageChecked(page);
1978
1979 if (inline_data) {
1980 BUG_ON(page->index != 0);
1981 BUG_ON(len > ext4_get_max_inline_size(inode));
1982 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1983 if (inode_bh == NULL)
1984 goto out;
1985 } else {
1986 page_bufs = page_buffers(page);
1987 if (!page_bufs) {
1988 BUG();
1989 goto out;
1990 }
1991 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1992 NULL, bget_one);
1993 }
1994 /*
1995 * We need to release the page lock before we start the
1996 * journal, so grab a reference so the page won't disappear
1997 * out from under us.
1998 */
1999 get_page(page);
2000 unlock_page(page);
2001
2002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2003 ext4_writepage_trans_blocks(inode));
2004 if (IS_ERR(handle)) {
2005 ret = PTR_ERR(handle);
2006 put_page(page);
2007 goto out_no_pagelock;
2008 }
2009 BUG_ON(!ext4_handle_valid(handle));
2010
2011 lock_page(page);
2012 put_page(page);
2013 if (page->mapping != mapping) {
2014 /* The page got truncated from under us */
2015 ext4_journal_stop(handle);
2016 ret = 0;
2017 goto out;
2018 }
2019
2020 if (inline_data) {
2021 BUFFER_TRACE(inode_bh, "get write access");
2022 ret = ext4_journal_get_write_access(handle, inode_bh);
2023
2024 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2025
2026 } else {
2027 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2028 do_journal_get_write_access);
2029
2030 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2031 write_end_fn);
2032 }
2033 if (ret == 0)
2034 ret = err;
2035 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2036 err = ext4_journal_stop(handle);
2037 if (!ret)
2038 ret = err;
2039
2040 if (!ext4_has_inline_data(inode))
2041 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2042 NULL, bput_one);
2043 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2044 out:
2045 unlock_page(page);
2046 out_no_pagelock:
2047 brelse(inode_bh);
2048 return ret;
2049 }
2050
2051 /*
2052 * Note that we don't need to start a transaction unless we're journaling data
2053 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2054 * need to file the inode to the transaction's list in ordered mode because if
2055 * we are writing back data added by write(), the inode is already there and if
2056 * we are writing back data modified via mmap(), no one guarantees in which
2057 * transaction the data will hit the disk. In case we are journaling data, we
2058 * cannot start transaction directly because transaction start ranks above page
2059 * lock so we have to do some magic.
2060 *
2061 * This function can get called via...
2062 * - ext4_writepages after taking page lock (have journal handle)
2063 * - journal_submit_inode_data_buffers (no journal handle)
2064 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2065 * - grab_page_cache when doing write_begin (have journal handle)
2066 *
2067 * We don't do any block allocation in this function. If we have page with
2068 * multiple blocks we need to write those buffer_heads that are mapped. This
2069 * is important for mmaped based write. So if we do with blocksize 1K
2070 * truncate(f, 1024);
2071 * a = mmap(f, 0, 4096);
2072 * a[0] = 'a';
2073 * truncate(f, 4096);
2074 * we have in the page first buffer_head mapped via page_mkwrite call back
2075 * but other buffer_heads would be unmapped but dirty (dirty done via the
2076 * do_wp_page). So writepage should write the first block. If we modify
2077 * the mmap area beyond 1024 we will again get a page_fault and the
2078 * page_mkwrite callback will do the block allocation and mark the
2079 * buffer_heads mapped.
2080 *
2081 * We redirty the page if we have any buffer_heads that is either delay or
2082 * unwritten in the page.
2083 *
2084 * We can get recursively called as show below.
2085 *
2086 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2087 * ext4_writepage()
2088 *
2089 * But since we don't do any block allocation we should not deadlock.
2090 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2091 */
2092 static int ext4_writepage(struct page *page,
2093 struct writeback_control *wbc)
2094 {
2095 int ret = 0;
2096 loff_t size;
2097 unsigned int len;
2098 struct buffer_head *page_bufs = NULL;
2099 struct inode *inode = page->mapping->host;
2100 struct ext4_io_submit io_submit;
2101 bool keep_towrite = false;
2102
2103 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2104 ext4_invalidatepage(page, 0, PAGE_SIZE);
2105 unlock_page(page);
2106 return -EIO;
2107 }
2108
2109 trace_ext4_writepage(page);
2110 size = i_size_read(inode);
2111 if (page->index == size >> PAGE_SHIFT)
2112 len = size & ~PAGE_MASK;
2113 else
2114 len = PAGE_SIZE;
2115
2116 page_bufs = page_buffers(page);
2117 /*
2118 * We cannot do block allocation or other extent handling in this
2119 * function. If there are buffers needing that, we have to redirty
2120 * the page. But we may reach here when we do a journal commit via
2121 * journal_submit_inode_data_buffers() and in that case we must write
2122 * allocated buffers to achieve data=ordered mode guarantees.
2123 *
2124 * Also, if there is only one buffer per page (the fs block
2125 * size == the page size), if one buffer needs block
2126 * allocation or needs to modify the extent tree to clear the
2127 * unwritten flag, we know that the page can't be written at
2128 * all, so we might as well refuse the write immediately.
2129 * Unfortunately if the block size != page size, we can't as
2130 * easily detect this case using ext4_walk_page_buffers(), but
2131 * for the extremely common case, this is an optimization that
2132 * skips a useless round trip through ext4_bio_write_page().
2133 */
2134 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2135 ext4_bh_delay_or_unwritten)) {
2136 redirty_page_for_writepage(wbc, page);
2137 if ((current->flags & PF_MEMALLOC) ||
2138 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2139 /*
2140 * For memory cleaning there's no point in writing only
2141 * some buffers. So just bail out. Warn if we came here
2142 * from direct reclaim.
2143 */
2144 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2145 == PF_MEMALLOC);
2146 unlock_page(page);
2147 return 0;
2148 }
2149 keep_towrite = true;
2150 }
2151
2152 if (PageChecked(page) && ext4_should_journal_data(inode))
2153 /*
2154 * It's mmapped pagecache. Add buffers and journal it. There
2155 * doesn't seem much point in redirtying the page here.
2156 */
2157 return __ext4_journalled_writepage(page, len);
2158
2159 ext4_io_submit_init(&io_submit, wbc);
2160 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2161 if (!io_submit.io_end) {
2162 redirty_page_for_writepage(wbc, page);
2163 unlock_page(page);
2164 return -ENOMEM;
2165 }
2166 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2167 ext4_io_submit(&io_submit);
2168 /* Drop io_end reference we got from init */
2169 ext4_put_io_end_defer(io_submit.io_end);
2170 return ret;
2171 }
2172
2173 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2174 {
2175 int len;
2176 loff_t size;
2177 int err;
2178
2179 BUG_ON(page->index != mpd->first_page);
2180 clear_page_dirty_for_io(page);
2181 /*
2182 * We have to be very careful here! Nothing protects writeback path
2183 * against i_size changes and the page can be writeably mapped into
2184 * page tables. So an application can be growing i_size and writing
2185 * data through mmap while writeback runs. clear_page_dirty_for_io()
2186 * write-protects our page in page tables and the page cannot get
2187 * written to again until we release page lock. So only after
2188 * clear_page_dirty_for_io() we are safe to sample i_size for
2189 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2190 * on the barrier provided by TestClearPageDirty in
2191 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2192 * after page tables are updated.
2193 */
2194 size = i_size_read(mpd->inode);
2195 if (page->index == size >> PAGE_SHIFT)
2196 len = size & ~PAGE_MASK;
2197 else
2198 len = PAGE_SIZE;
2199 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2200 if (!err)
2201 mpd->wbc->nr_to_write--;
2202 mpd->first_page++;
2203
2204 return err;
2205 }
2206
2207 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2208
2209 /*
2210 * mballoc gives us at most this number of blocks...
2211 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2212 * The rest of mballoc seems to handle chunks up to full group size.
2213 */
2214 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2215
2216 /*
2217 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2218 *
2219 * @mpd - extent of blocks
2220 * @lblk - logical number of the block in the file
2221 * @bh - buffer head we want to add to the extent
2222 *
2223 * The function is used to collect contig. blocks in the same state. If the
2224 * buffer doesn't require mapping for writeback and we haven't started the
2225 * extent of buffers to map yet, the function returns 'true' immediately - the
2226 * caller can write the buffer right away. Otherwise the function returns true
2227 * if the block has been added to the extent, false if the block couldn't be
2228 * added.
2229 */
2230 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2231 struct buffer_head *bh)
2232 {
2233 struct ext4_map_blocks *map = &mpd->map;
2234
2235 /* Buffer that doesn't need mapping for writeback? */
2236 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2237 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2238 /* So far no extent to map => we write the buffer right away */
2239 if (map->m_len == 0)
2240 return true;
2241 return false;
2242 }
2243
2244 /* First block in the extent? */
2245 if (map->m_len == 0) {
2246 /* We cannot map unless handle is started... */
2247 if (!mpd->do_map)
2248 return false;
2249 map->m_lblk = lblk;
2250 map->m_len = 1;
2251 map->m_flags = bh->b_state & BH_FLAGS;
2252 return true;
2253 }
2254
2255 /* Don't go larger than mballoc is willing to allocate */
2256 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2257 return false;
2258
2259 /* Can we merge the block to our big extent? */
2260 if (lblk == map->m_lblk + map->m_len &&
2261 (bh->b_state & BH_FLAGS) == map->m_flags) {
2262 map->m_len++;
2263 return true;
2264 }
2265 return false;
2266 }
2267
2268 /*
2269 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2270 *
2271 * @mpd - extent of blocks for mapping
2272 * @head - the first buffer in the page
2273 * @bh - buffer we should start processing from
2274 * @lblk - logical number of the block in the file corresponding to @bh
2275 *
2276 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2277 * the page for IO if all buffers in this page were mapped and there's no
2278 * accumulated extent of buffers to map or add buffers in the page to the
2279 * extent of buffers to map. The function returns 1 if the caller can continue
2280 * by processing the next page, 0 if it should stop adding buffers to the
2281 * extent to map because we cannot extend it anymore. It can also return value
2282 * < 0 in case of error during IO submission.
2283 */
2284 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2285 struct buffer_head *head,
2286 struct buffer_head *bh,
2287 ext4_lblk_t lblk)
2288 {
2289 struct inode *inode = mpd->inode;
2290 int err;
2291 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2292 >> inode->i_blkbits;
2293
2294 do {
2295 BUG_ON(buffer_locked(bh));
2296
2297 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2298 /* Found extent to map? */
2299 if (mpd->map.m_len)
2300 return 0;
2301 /* Buffer needs mapping and handle is not started? */
2302 if (!mpd->do_map)
2303 return 0;
2304 /* Everything mapped so far and we hit EOF */
2305 break;
2306 }
2307 } while (lblk++, (bh = bh->b_this_page) != head);
2308 /* So far everything mapped? Submit the page for IO. */
2309 if (mpd->map.m_len == 0) {
2310 err = mpage_submit_page(mpd, head->b_page);
2311 if (err < 0)
2312 return err;
2313 }
2314 return lblk < blocks;
2315 }
2316
2317 /*
2318 * mpage_map_buffers - update buffers corresponding to changed extent and
2319 * submit fully mapped pages for IO
2320 *
2321 * @mpd - description of extent to map, on return next extent to map
2322 *
2323 * Scan buffers corresponding to changed extent (we expect corresponding pages
2324 * to be already locked) and update buffer state according to new extent state.
2325 * We map delalloc buffers to their physical location, clear unwritten bits,
2326 * and mark buffers as uninit when we perform writes to unwritten extents
2327 * and do extent conversion after IO is finished. If the last page is not fully
2328 * mapped, we update @map to the next extent in the last page that needs
2329 * mapping. Otherwise we submit the page for IO.
2330 */
2331 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332 {
2333 struct pagevec pvec;
2334 int nr_pages, i;
2335 struct inode *inode = mpd->inode;
2336 struct buffer_head *head, *bh;
2337 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2338 pgoff_t start, end;
2339 ext4_lblk_t lblk;
2340 sector_t pblock;
2341 int err;
2342
2343 start = mpd->map.m_lblk >> bpp_bits;
2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345 lblk = start << bpp_bits;
2346 pblock = mpd->map.m_pblk;
2347
2348 pagevec_init(&pvec, 0);
2349 while (start <= end) {
2350 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2351 &start, end);
2352 if (nr_pages == 0)
2353 break;
2354 for (i = 0; i < nr_pages; i++) {
2355 struct page *page = pvec.pages[i];
2356
2357 bh = head = page_buffers(page);
2358 do {
2359 if (lblk < mpd->map.m_lblk)
2360 continue;
2361 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2362 /*
2363 * Buffer after end of mapped extent.
2364 * Find next buffer in the page to map.
2365 */
2366 mpd->map.m_len = 0;
2367 mpd->map.m_flags = 0;
2368 /*
2369 * FIXME: If dioread_nolock supports
2370 * blocksize < pagesize, we need to make
2371 * sure we add size mapped so far to
2372 * io_end->size as the following call
2373 * can submit the page for IO.
2374 */
2375 err = mpage_process_page_bufs(mpd, head,
2376 bh, lblk);
2377 pagevec_release(&pvec);
2378 if (err > 0)
2379 err = 0;
2380 return err;
2381 }
2382 if (buffer_delay(bh)) {
2383 clear_buffer_delay(bh);
2384 bh->b_blocknr = pblock++;
2385 }
2386 clear_buffer_unwritten(bh);
2387 } while (lblk++, (bh = bh->b_this_page) != head);
2388
2389 /*
2390 * FIXME: This is going to break if dioread_nolock
2391 * supports blocksize < pagesize as we will try to
2392 * convert potentially unmapped parts of inode.
2393 */
2394 mpd->io_submit.io_end->size += PAGE_SIZE;
2395 /* Page fully mapped - let IO run! */
2396 err = mpage_submit_page(mpd, page);
2397 if (err < 0) {
2398 pagevec_release(&pvec);
2399 return err;
2400 }
2401 }
2402 pagevec_release(&pvec);
2403 }
2404 /* Extent fully mapped and matches with page boundary. We are done. */
2405 mpd->map.m_len = 0;
2406 mpd->map.m_flags = 0;
2407 return 0;
2408 }
2409
2410 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2411 {
2412 struct inode *inode = mpd->inode;
2413 struct ext4_map_blocks *map = &mpd->map;
2414 int get_blocks_flags;
2415 int err, dioread_nolock;
2416
2417 trace_ext4_da_write_pages_extent(inode, map);
2418 /*
2419 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2420 * to convert an unwritten extent to be initialized (in the case
2421 * where we have written into one or more preallocated blocks). It is
2422 * possible that we're going to need more metadata blocks than
2423 * previously reserved. However we must not fail because we're in
2424 * writeback and there is nothing we can do about it so it might result
2425 * in data loss. So use reserved blocks to allocate metadata if
2426 * possible.
2427 *
2428 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2429 * the blocks in question are delalloc blocks. This indicates
2430 * that the blocks and quotas has already been checked when
2431 * the data was copied into the page cache.
2432 */
2433 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2434 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2435 EXT4_GET_BLOCKS_IO_SUBMIT;
2436 dioread_nolock = ext4_should_dioread_nolock(inode);
2437 if (dioread_nolock)
2438 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2439 if (map->m_flags & (1 << BH_Delay))
2440 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2441
2442 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2443 if (err < 0)
2444 return err;
2445 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2446 if (!mpd->io_submit.io_end->handle &&
2447 ext4_handle_valid(handle)) {
2448 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2449 handle->h_rsv_handle = NULL;
2450 }
2451 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2452 }
2453
2454 BUG_ON(map->m_len == 0);
2455 if (map->m_flags & EXT4_MAP_NEW) {
2456 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2457 map->m_len);
2458 }
2459 return 0;
2460 }
2461
2462 /*
2463 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2464 * mpd->len and submit pages underlying it for IO
2465 *
2466 * @handle - handle for journal operations
2467 * @mpd - extent to map
2468 * @give_up_on_write - we set this to true iff there is a fatal error and there
2469 * is no hope of writing the data. The caller should discard
2470 * dirty pages to avoid infinite loops.
2471 *
2472 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2473 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2474 * them to initialized or split the described range from larger unwritten
2475 * extent. Note that we need not map all the described range since allocation
2476 * can return less blocks or the range is covered by more unwritten extents. We
2477 * cannot map more because we are limited by reserved transaction credits. On
2478 * the other hand we always make sure that the last touched page is fully
2479 * mapped so that it can be written out (and thus forward progress is
2480 * guaranteed). After mapping we submit all mapped pages for IO.
2481 */
2482 static int mpage_map_and_submit_extent(handle_t *handle,
2483 struct mpage_da_data *mpd,
2484 bool *give_up_on_write)
2485 {
2486 struct inode *inode = mpd->inode;
2487 struct ext4_map_blocks *map = &mpd->map;
2488 int err;
2489 loff_t disksize;
2490 int progress = 0;
2491
2492 mpd->io_submit.io_end->offset =
2493 ((loff_t)map->m_lblk) << inode->i_blkbits;
2494 do {
2495 err = mpage_map_one_extent(handle, mpd);
2496 if (err < 0) {
2497 struct super_block *sb = inode->i_sb;
2498
2499 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2500 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2501 goto invalidate_dirty_pages;
2502 /*
2503 * Let the uper layers retry transient errors.
2504 * In the case of ENOSPC, if ext4_count_free_blocks()
2505 * is non-zero, a commit should free up blocks.
2506 */
2507 if ((err == -ENOMEM) ||
2508 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2509 if (progress)
2510 goto update_disksize;
2511 return err;
2512 }
2513 ext4_msg(sb, KERN_CRIT,
2514 "Delayed block allocation failed for "
2515 "inode %lu at logical offset %llu with"
2516 " max blocks %u with error %d",
2517 inode->i_ino,
2518 (unsigned long long)map->m_lblk,
2519 (unsigned)map->m_len, -err);
2520 ext4_msg(sb, KERN_CRIT,
2521 "This should not happen!! Data will "
2522 "be lost\n");
2523 if (err == -ENOSPC)
2524 ext4_print_free_blocks(inode);
2525 invalidate_dirty_pages:
2526 *give_up_on_write = true;
2527 return err;
2528 }
2529 progress = 1;
2530 /*
2531 * Update buffer state, submit mapped pages, and get us new
2532 * extent to map
2533 */
2534 err = mpage_map_and_submit_buffers(mpd);
2535 if (err < 0)
2536 goto update_disksize;
2537 } while (map->m_len);
2538
2539 update_disksize:
2540 /*
2541 * Update on-disk size after IO is submitted. Races with
2542 * truncate are avoided by checking i_size under i_data_sem.
2543 */
2544 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2545 if (disksize > EXT4_I(inode)->i_disksize) {
2546 int err2;
2547 loff_t i_size;
2548
2549 down_write(&EXT4_I(inode)->i_data_sem);
2550 i_size = i_size_read(inode);
2551 if (disksize > i_size)
2552 disksize = i_size;
2553 if (disksize > EXT4_I(inode)->i_disksize)
2554 EXT4_I(inode)->i_disksize = disksize;
2555 up_write(&EXT4_I(inode)->i_data_sem);
2556 err2 = ext4_mark_inode_dirty(handle, inode);
2557 if (err2)
2558 ext4_error(inode->i_sb,
2559 "Failed to mark inode %lu dirty",
2560 inode->i_ino);
2561 if (!err)
2562 err = err2;
2563 }
2564 return err;
2565 }
2566
2567 /*
2568 * Calculate the total number of credits to reserve for one writepages
2569 * iteration. This is called from ext4_writepages(). We map an extent of
2570 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2571 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2572 * bpp - 1 blocks in bpp different extents.
2573 */
2574 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2575 {
2576 int bpp = ext4_journal_blocks_per_page(inode);
2577
2578 return ext4_meta_trans_blocks(inode,
2579 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2580 }
2581
2582 /*
2583 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2584 * and underlying extent to map
2585 *
2586 * @mpd - where to look for pages
2587 *
2588 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2589 * IO immediately. When we find a page which isn't mapped we start accumulating
2590 * extent of buffers underlying these pages that needs mapping (formed by
2591 * either delayed or unwritten buffers). We also lock the pages containing
2592 * these buffers. The extent found is returned in @mpd structure (starting at
2593 * mpd->lblk with length mpd->len blocks).
2594 *
2595 * Note that this function can attach bios to one io_end structure which are
2596 * neither logically nor physically contiguous. Although it may seem as an
2597 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2598 * case as we need to track IO to all buffers underlying a page in one io_end.
2599 */
2600 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2601 {
2602 struct address_space *mapping = mpd->inode->i_mapping;
2603 struct pagevec pvec;
2604 unsigned int nr_pages;
2605 long left = mpd->wbc->nr_to_write;
2606 pgoff_t index = mpd->first_page;
2607 pgoff_t end = mpd->last_page;
2608 int tag;
2609 int i, err = 0;
2610 int blkbits = mpd->inode->i_blkbits;
2611 ext4_lblk_t lblk;
2612 struct buffer_head *head;
2613
2614 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2615 tag = PAGECACHE_TAG_TOWRITE;
2616 else
2617 tag = PAGECACHE_TAG_DIRTY;
2618
2619 pagevec_init(&pvec, 0);
2620 mpd->map.m_len = 0;
2621 mpd->next_page = index;
2622 while (index <= end) {
2623 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2624 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2625 if (nr_pages == 0)
2626 goto out;
2627
2628 for (i = 0; i < nr_pages; i++) {
2629 struct page *page = pvec.pages[i];
2630
2631 /*
2632 * At this point, the page may be truncated or
2633 * invalidated (changing page->mapping to NULL), or
2634 * even swizzled back from swapper_space to tmpfs file
2635 * mapping. However, page->index will not change
2636 * because we have a reference on the page.
2637 */
2638 if (page->index > end)
2639 goto out;
2640
2641 /*
2642 * Accumulated enough dirty pages? This doesn't apply
2643 * to WB_SYNC_ALL mode. For integrity sync we have to
2644 * keep going because someone may be concurrently
2645 * dirtying pages, and we might have synced a lot of
2646 * newly appeared dirty pages, but have not synced all
2647 * of the old dirty pages.
2648 */
2649 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2650 goto out;
2651
2652 /* If we can't merge this page, we are done. */
2653 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2654 goto out;
2655
2656 lock_page(page);
2657 /*
2658 * If the page is no longer dirty, or its mapping no
2659 * longer corresponds to inode we are writing (which
2660 * means it has been truncated or invalidated), or the
2661 * page is already under writeback and we are not doing
2662 * a data integrity writeback, skip the page
2663 */
2664 if (!PageDirty(page) ||
2665 (PageWriteback(page) &&
2666 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2667 unlikely(page->mapping != mapping)) {
2668 unlock_page(page);
2669 continue;
2670 }
2671
2672 wait_on_page_writeback(page);
2673 BUG_ON(PageWriteback(page));
2674
2675 if (mpd->map.m_len == 0)
2676 mpd->first_page = page->index;
2677 mpd->next_page = page->index + 1;
2678 /* Add all dirty buffers to mpd */
2679 lblk = ((ext4_lblk_t)page->index) <<
2680 (PAGE_SHIFT - blkbits);
2681 head = page_buffers(page);
2682 err = mpage_process_page_bufs(mpd, head, head, lblk);
2683 if (err <= 0)
2684 goto out;
2685 err = 0;
2686 left--;
2687 }
2688 pagevec_release(&pvec);
2689 cond_resched();
2690 }
2691 return 0;
2692 out:
2693 pagevec_release(&pvec);
2694 return err;
2695 }
2696
2697 static int __writepage(struct page *page, struct writeback_control *wbc,
2698 void *data)
2699 {
2700 struct address_space *mapping = data;
2701 int ret = ext4_writepage(page, wbc);
2702 mapping_set_error(mapping, ret);
2703 return ret;
2704 }
2705
2706 static int ext4_writepages(struct address_space *mapping,
2707 struct writeback_control *wbc)
2708 {
2709 pgoff_t writeback_index = 0;
2710 long nr_to_write = wbc->nr_to_write;
2711 int range_whole = 0;
2712 int cycled = 1;
2713 handle_t *handle = NULL;
2714 struct mpage_da_data mpd;
2715 struct inode *inode = mapping->host;
2716 int needed_blocks, rsv_blocks = 0, ret = 0;
2717 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2718 bool done;
2719 struct blk_plug plug;
2720 bool give_up_on_write = false;
2721
2722 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2723 return -EIO;
2724
2725 percpu_down_read(&sbi->s_journal_flag_rwsem);
2726 trace_ext4_writepages(inode, wbc);
2727
2728 if (dax_mapping(mapping)) {
2729 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2730 wbc);
2731 goto out_writepages;
2732 }
2733
2734 /*
2735 * No pages to write? This is mainly a kludge to avoid starting
2736 * a transaction for special inodes like journal inode on last iput()
2737 * because that could violate lock ordering on umount
2738 */
2739 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2740 goto out_writepages;
2741
2742 if (ext4_should_journal_data(inode)) {
2743 struct blk_plug plug;
2744
2745 blk_start_plug(&plug);
2746 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2747 blk_finish_plug(&plug);
2748 goto out_writepages;
2749 }
2750
2751 /*
2752 * If the filesystem has aborted, it is read-only, so return
2753 * right away instead of dumping stack traces later on that
2754 * will obscure the real source of the problem. We test
2755 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2756 * the latter could be true if the filesystem is mounted
2757 * read-only, and in that case, ext4_writepages should
2758 * *never* be called, so if that ever happens, we would want
2759 * the stack trace.
2760 */
2761 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2762 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2763 ret = -EROFS;
2764 goto out_writepages;
2765 }
2766
2767 if (ext4_should_dioread_nolock(inode)) {
2768 /*
2769 * We may need to convert up to one extent per block in
2770 * the page and we may dirty the inode.
2771 */
2772 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2773 }
2774
2775 /*
2776 * If we have inline data and arrive here, it means that
2777 * we will soon create the block for the 1st page, so
2778 * we'd better clear the inline data here.
2779 */
2780 if (ext4_has_inline_data(inode)) {
2781 /* Just inode will be modified... */
2782 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2783 if (IS_ERR(handle)) {
2784 ret = PTR_ERR(handle);
2785 goto out_writepages;
2786 }
2787 BUG_ON(ext4_test_inode_state(inode,
2788 EXT4_STATE_MAY_INLINE_DATA));
2789 ext4_destroy_inline_data(handle, inode);
2790 ext4_journal_stop(handle);
2791 }
2792
2793 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2794 range_whole = 1;
2795
2796 if (wbc->range_cyclic) {
2797 writeback_index = mapping->writeback_index;
2798 if (writeback_index)
2799 cycled = 0;
2800 mpd.first_page = writeback_index;
2801 mpd.last_page = -1;
2802 } else {
2803 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2804 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2805 }
2806
2807 mpd.inode = inode;
2808 mpd.wbc = wbc;
2809 ext4_io_submit_init(&mpd.io_submit, wbc);
2810 retry:
2811 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2812 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2813 done = false;
2814 blk_start_plug(&plug);
2815
2816 /*
2817 * First writeback pages that don't need mapping - we can avoid
2818 * starting a transaction unnecessarily and also avoid being blocked
2819 * in the block layer on device congestion while having transaction
2820 * started.
2821 */
2822 mpd.do_map = 0;
2823 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2824 if (!mpd.io_submit.io_end) {
2825 ret = -ENOMEM;
2826 goto unplug;
2827 }
2828 ret = mpage_prepare_extent_to_map(&mpd);
2829 /* Submit prepared bio */
2830 ext4_io_submit(&mpd.io_submit);
2831 ext4_put_io_end_defer(mpd.io_submit.io_end);
2832 mpd.io_submit.io_end = NULL;
2833 /* Unlock pages we didn't use */
2834 mpage_release_unused_pages(&mpd, false);
2835 if (ret < 0)
2836 goto unplug;
2837
2838 while (!done && mpd.first_page <= mpd.last_page) {
2839 /* For each extent of pages we use new io_end */
2840 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2841 if (!mpd.io_submit.io_end) {
2842 ret = -ENOMEM;
2843 break;
2844 }
2845
2846 /*
2847 * We have two constraints: We find one extent to map and we
2848 * must always write out whole page (makes a difference when
2849 * blocksize < pagesize) so that we don't block on IO when we
2850 * try to write out the rest of the page. Journalled mode is
2851 * not supported by delalloc.
2852 */
2853 BUG_ON(ext4_should_journal_data(inode));
2854 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2855
2856 /* start a new transaction */
2857 handle = ext4_journal_start_with_reserve(inode,
2858 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2859 if (IS_ERR(handle)) {
2860 ret = PTR_ERR(handle);
2861 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2862 "%ld pages, ino %lu; err %d", __func__,
2863 wbc->nr_to_write, inode->i_ino, ret);
2864 /* Release allocated io_end */
2865 ext4_put_io_end(mpd.io_submit.io_end);
2866 mpd.io_submit.io_end = NULL;
2867 break;
2868 }
2869 mpd.do_map = 1;
2870
2871 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2872 ret = mpage_prepare_extent_to_map(&mpd);
2873 if (!ret) {
2874 if (mpd.map.m_len)
2875 ret = mpage_map_and_submit_extent(handle, &mpd,
2876 &give_up_on_write);
2877 else {
2878 /*
2879 * We scanned the whole range (or exhausted
2880 * nr_to_write), submitted what was mapped and
2881 * didn't find anything needing mapping. We are
2882 * done.
2883 */
2884 done = true;
2885 }
2886 }
2887 /*
2888 * Caution: If the handle is synchronous,
2889 * ext4_journal_stop() can wait for transaction commit
2890 * to finish which may depend on writeback of pages to
2891 * complete or on page lock to be released. In that
2892 * case, we have to wait until after after we have
2893 * submitted all the IO, released page locks we hold,
2894 * and dropped io_end reference (for extent conversion
2895 * to be able to complete) before stopping the handle.
2896 */
2897 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2898 ext4_journal_stop(handle);
2899 handle = NULL;
2900 mpd.do_map = 0;
2901 }
2902 /* Submit prepared bio */
2903 ext4_io_submit(&mpd.io_submit);
2904 /* Unlock pages we didn't use */
2905 mpage_release_unused_pages(&mpd, give_up_on_write);
2906 /*
2907 * Drop our io_end reference we got from init. We have
2908 * to be careful and use deferred io_end finishing if
2909 * we are still holding the transaction as we can
2910 * release the last reference to io_end which may end
2911 * up doing unwritten extent conversion.
2912 */
2913 if (handle) {
2914 ext4_put_io_end_defer(mpd.io_submit.io_end);
2915 ext4_journal_stop(handle);
2916 } else
2917 ext4_put_io_end(mpd.io_submit.io_end);
2918 mpd.io_submit.io_end = NULL;
2919
2920 if (ret == -ENOSPC && sbi->s_journal) {
2921 /*
2922 * Commit the transaction which would
2923 * free blocks released in the transaction
2924 * and try again
2925 */
2926 jbd2_journal_force_commit_nested(sbi->s_journal);
2927 ret = 0;
2928 continue;
2929 }
2930 /* Fatal error - ENOMEM, EIO... */
2931 if (ret)
2932 break;
2933 }
2934 unplug:
2935 blk_finish_plug(&plug);
2936 if (!ret && !cycled && wbc->nr_to_write > 0) {
2937 cycled = 1;
2938 mpd.last_page = writeback_index - 1;
2939 mpd.first_page = 0;
2940 goto retry;
2941 }
2942
2943 /* Update index */
2944 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2945 /*
2946 * Set the writeback_index so that range_cyclic
2947 * mode will write it back later
2948 */
2949 mapping->writeback_index = mpd.first_page;
2950
2951 out_writepages:
2952 trace_ext4_writepages_result(inode, wbc, ret,
2953 nr_to_write - wbc->nr_to_write);
2954 percpu_up_read(&sbi->s_journal_flag_rwsem);
2955 return ret;
2956 }
2957
2958 static int ext4_nonda_switch(struct super_block *sb)
2959 {
2960 s64 free_clusters, dirty_clusters;
2961 struct ext4_sb_info *sbi = EXT4_SB(sb);
2962
2963 /*
2964 * switch to non delalloc mode if we are running low
2965 * on free block. The free block accounting via percpu
2966 * counters can get slightly wrong with percpu_counter_batch getting
2967 * accumulated on each CPU without updating global counters
2968 * Delalloc need an accurate free block accounting. So switch
2969 * to non delalloc when we are near to error range.
2970 */
2971 free_clusters =
2972 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2973 dirty_clusters =
2974 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2975 /*
2976 * Start pushing delalloc when 1/2 of free blocks are dirty.
2977 */
2978 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2979 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2980
2981 if (2 * free_clusters < 3 * dirty_clusters ||
2982 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2983 /*
2984 * free block count is less than 150% of dirty blocks
2985 * or free blocks is less than watermark
2986 */
2987 return 1;
2988 }
2989 return 0;
2990 }
2991
2992 /* We always reserve for an inode update; the superblock could be there too */
2993 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2994 {
2995 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2996 return 1;
2997
2998 if (pos + len <= 0x7fffffffULL)
2999 return 1;
3000
3001 /* We might need to update the superblock to set LARGE_FILE */
3002 return 2;
3003 }
3004
3005 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3006 loff_t pos, unsigned len, unsigned flags,
3007 struct page **pagep, void **fsdata)
3008 {
3009 int ret, retries = 0;
3010 struct page *page;
3011 pgoff_t index;
3012 struct inode *inode = mapping->host;
3013 handle_t *handle;
3014
3015 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3016 return -EIO;
3017
3018 index = pos >> PAGE_SHIFT;
3019
3020 if (ext4_nonda_switch(inode->i_sb) ||
3021 S_ISLNK(inode->i_mode)) {
3022 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3023 return ext4_write_begin(file, mapping, pos,
3024 len, flags, pagep, fsdata);
3025 }
3026 *fsdata = (void *)0;
3027 trace_ext4_da_write_begin(inode, pos, len, flags);
3028
3029 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3030 ret = ext4_da_write_inline_data_begin(mapping, inode,
3031 pos, len, flags,
3032 pagep, fsdata);
3033 if (ret < 0)
3034 return ret;
3035 if (ret == 1)
3036 return 0;
3037 }
3038
3039 /*
3040 * grab_cache_page_write_begin() can take a long time if the
3041 * system is thrashing due to memory pressure, or if the page
3042 * is being written back. So grab it first before we start
3043 * the transaction handle. This also allows us to allocate
3044 * the page (if needed) without using GFP_NOFS.
3045 */
3046 retry_grab:
3047 page = grab_cache_page_write_begin(mapping, index, flags);
3048 if (!page)
3049 return -ENOMEM;
3050 unlock_page(page);
3051
3052 /*
3053 * With delayed allocation, we don't log the i_disksize update
3054 * if there is delayed block allocation. But we still need
3055 * to journalling the i_disksize update if writes to the end
3056 * of file which has an already mapped buffer.
3057 */
3058 retry_journal:
3059 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3060 ext4_da_write_credits(inode, pos, len));
3061 if (IS_ERR(handle)) {
3062 put_page(page);
3063 return PTR_ERR(handle);
3064 }
3065
3066 lock_page(page);
3067 if (page->mapping != mapping) {
3068 /* The page got truncated from under us */
3069 unlock_page(page);
3070 put_page(page);
3071 ext4_journal_stop(handle);
3072 goto retry_grab;
3073 }
3074 /* In case writeback began while the page was unlocked */
3075 wait_for_stable_page(page);
3076
3077 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3078 ret = ext4_block_write_begin(page, pos, len,
3079 ext4_da_get_block_prep);
3080 #else
3081 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3082 #endif
3083 if (ret < 0) {
3084 unlock_page(page);
3085 ext4_journal_stop(handle);
3086 /*
3087 * block_write_begin may have instantiated a few blocks
3088 * outside i_size. Trim these off again. Don't need
3089 * i_size_read because we hold i_mutex.
3090 */
3091 if (pos + len > inode->i_size)
3092 ext4_truncate_failed_write(inode);
3093
3094 if (ret == -ENOSPC &&
3095 ext4_should_retry_alloc(inode->i_sb, &retries))
3096 goto retry_journal;
3097
3098 put_page(page);
3099 return ret;
3100 }
3101
3102 *pagep = page;
3103 return ret;
3104 }
3105
3106 /*
3107 * Check if we should update i_disksize
3108 * when write to the end of file but not require block allocation
3109 */
3110 static int ext4_da_should_update_i_disksize(struct page *page,
3111 unsigned long offset)
3112 {
3113 struct buffer_head *bh;
3114 struct inode *inode = page->mapping->host;
3115 unsigned int idx;
3116 int i;
3117
3118 bh = page_buffers(page);
3119 idx = offset >> inode->i_blkbits;
3120
3121 for (i = 0; i < idx; i++)
3122 bh = bh->b_this_page;
3123
3124 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3125 return 0;
3126 return 1;
3127 }
3128
3129 static int ext4_da_write_end(struct file *file,
3130 struct address_space *mapping,
3131 loff_t pos, unsigned len, unsigned copied,
3132 struct page *page, void *fsdata)
3133 {
3134 struct inode *inode = mapping->host;
3135 int ret = 0, ret2;
3136 handle_t *handle = ext4_journal_current_handle();
3137 loff_t new_i_size;
3138 unsigned long start, end;
3139 int write_mode = (int)(unsigned long)fsdata;
3140
3141 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3142 return ext4_write_end(file, mapping, pos,
3143 len, copied, page, fsdata);
3144
3145 trace_ext4_da_write_end(inode, pos, len, copied);
3146 start = pos & (PAGE_SIZE - 1);
3147 end = start + copied - 1;
3148
3149 /*
3150 * generic_write_end() will run mark_inode_dirty() if i_size
3151 * changes. So let's piggyback the i_disksize mark_inode_dirty
3152 * into that.
3153 */
3154 new_i_size = pos + copied;
3155 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3156 if (ext4_has_inline_data(inode) ||
3157 ext4_da_should_update_i_disksize(page, end)) {
3158 ext4_update_i_disksize(inode, new_i_size);
3159 /* We need to mark inode dirty even if
3160 * new_i_size is less that inode->i_size
3161 * bu greater than i_disksize.(hint delalloc)
3162 */
3163 ext4_mark_inode_dirty(handle, inode);
3164 }
3165 }
3166
3167 if (write_mode != CONVERT_INLINE_DATA &&
3168 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3169 ext4_has_inline_data(inode))
3170 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3171 page);
3172 else
3173 ret2 = generic_write_end(file, mapping, pos, len, copied,
3174 page, fsdata);
3175
3176 copied = ret2;
3177 if (ret2 < 0)
3178 ret = ret2;
3179 ret2 = ext4_journal_stop(handle);
3180 if (!ret)
3181 ret = ret2;
3182
3183 return ret ? ret : copied;
3184 }
3185
3186 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3187 unsigned int length)
3188 {
3189 /*
3190 * Drop reserved blocks
3191 */
3192 BUG_ON(!PageLocked(page));
3193 if (!page_has_buffers(page))
3194 goto out;
3195
3196 ext4_da_page_release_reservation(page, offset, length);
3197
3198 out:
3199 ext4_invalidatepage(page, offset, length);
3200
3201 return;
3202 }
3203
3204 /*
3205 * Force all delayed allocation blocks to be allocated for a given inode.
3206 */
3207 int ext4_alloc_da_blocks(struct inode *inode)
3208 {
3209 trace_ext4_alloc_da_blocks(inode);
3210
3211 if (!EXT4_I(inode)->i_reserved_data_blocks)
3212 return 0;
3213
3214 /*
3215 * We do something simple for now. The filemap_flush() will
3216 * also start triggering a write of the data blocks, which is
3217 * not strictly speaking necessary (and for users of
3218 * laptop_mode, not even desirable). However, to do otherwise
3219 * would require replicating code paths in:
3220 *
3221 * ext4_writepages() ->
3222 * write_cache_pages() ---> (via passed in callback function)
3223 * __mpage_da_writepage() -->
3224 * mpage_add_bh_to_extent()
3225 * mpage_da_map_blocks()
3226 *
3227 * The problem is that write_cache_pages(), located in
3228 * mm/page-writeback.c, marks pages clean in preparation for
3229 * doing I/O, which is not desirable if we're not planning on
3230 * doing I/O at all.
3231 *
3232 * We could call write_cache_pages(), and then redirty all of
3233 * the pages by calling redirty_page_for_writepage() but that
3234 * would be ugly in the extreme. So instead we would need to
3235 * replicate parts of the code in the above functions,
3236 * simplifying them because we wouldn't actually intend to
3237 * write out the pages, but rather only collect contiguous
3238 * logical block extents, call the multi-block allocator, and
3239 * then update the buffer heads with the block allocations.
3240 *
3241 * For now, though, we'll cheat by calling filemap_flush(),
3242 * which will map the blocks, and start the I/O, but not
3243 * actually wait for the I/O to complete.
3244 */
3245 return filemap_flush(inode->i_mapping);
3246 }
3247
3248 /*
3249 * bmap() is special. It gets used by applications such as lilo and by
3250 * the swapper to find the on-disk block of a specific piece of data.
3251 *
3252 * Naturally, this is dangerous if the block concerned is still in the
3253 * journal. If somebody makes a swapfile on an ext4 data-journaling
3254 * filesystem and enables swap, then they may get a nasty shock when the
3255 * data getting swapped to that swapfile suddenly gets overwritten by
3256 * the original zero's written out previously to the journal and
3257 * awaiting writeback in the kernel's buffer cache.
3258 *
3259 * So, if we see any bmap calls here on a modified, data-journaled file,
3260 * take extra steps to flush any blocks which might be in the cache.
3261 */
3262 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3263 {
3264 struct inode *inode = mapping->host;
3265 journal_t *journal;
3266 int err;
3267
3268 /*
3269 * We can get here for an inline file via the FIBMAP ioctl
3270 */
3271 if (ext4_has_inline_data(inode))
3272 return 0;
3273
3274 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3275 test_opt(inode->i_sb, DELALLOC)) {
3276 /*
3277 * With delalloc we want to sync the file
3278 * so that we can make sure we allocate
3279 * blocks for file
3280 */
3281 filemap_write_and_wait(mapping);
3282 }
3283
3284 if (EXT4_JOURNAL(inode) &&
3285 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3286 /*
3287 * This is a REALLY heavyweight approach, but the use of
3288 * bmap on dirty files is expected to be extremely rare:
3289 * only if we run lilo or swapon on a freshly made file
3290 * do we expect this to happen.
3291 *
3292 * (bmap requires CAP_SYS_RAWIO so this does not
3293 * represent an unprivileged user DOS attack --- we'd be
3294 * in trouble if mortal users could trigger this path at
3295 * will.)
3296 *
3297 * NB. EXT4_STATE_JDATA is not set on files other than
3298 * regular files. If somebody wants to bmap a directory
3299 * or symlink and gets confused because the buffer
3300 * hasn't yet been flushed to disk, they deserve
3301 * everything they get.
3302 */
3303
3304 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3305 journal = EXT4_JOURNAL(inode);
3306 jbd2_journal_lock_updates(journal);
3307 err = jbd2_journal_flush(journal);
3308 jbd2_journal_unlock_updates(journal);
3309
3310 if (err)
3311 return 0;
3312 }
3313
3314 return generic_block_bmap(mapping, block, ext4_get_block);
3315 }
3316
3317 static int ext4_readpage(struct file *file, struct page *page)
3318 {
3319 int ret = -EAGAIN;
3320 struct inode *inode = page->mapping->host;
3321
3322 trace_ext4_readpage(page);
3323
3324 if (ext4_has_inline_data(inode))
3325 ret = ext4_readpage_inline(inode, page);
3326
3327 if (ret == -EAGAIN)
3328 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3329
3330 return ret;
3331 }
3332
3333 static int
3334 ext4_readpages(struct file *file, struct address_space *mapping,
3335 struct list_head *pages, unsigned nr_pages)
3336 {
3337 struct inode *inode = mapping->host;
3338
3339 /* If the file has inline data, no need to do readpages. */
3340 if (ext4_has_inline_data(inode))
3341 return 0;
3342
3343 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3344 }
3345
3346 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3347 unsigned int length)
3348 {
3349 trace_ext4_invalidatepage(page, offset, length);
3350
3351 /* No journalling happens on data buffers when this function is used */
3352 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3353
3354 block_invalidatepage(page, offset, length);
3355 }
3356
3357 static int __ext4_journalled_invalidatepage(struct page *page,
3358 unsigned int offset,
3359 unsigned int length)
3360 {
3361 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3362
3363 trace_ext4_journalled_invalidatepage(page, offset, length);
3364
3365 /*
3366 * If it's a full truncate we just forget about the pending dirtying
3367 */
3368 if (offset == 0 && length == PAGE_SIZE)
3369 ClearPageChecked(page);
3370
3371 return jbd2_journal_invalidatepage(journal, page, offset, length);
3372 }
3373
3374 /* Wrapper for aops... */
3375 static void ext4_journalled_invalidatepage(struct page *page,
3376 unsigned int offset,
3377 unsigned int length)
3378 {
3379 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3380 }
3381
3382 static int ext4_releasepage(struct page *page, gfp_t wait)
3383 {
3384 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3385
3386 trace_ext4_releasepage(page);
3387
3388 /* Page has dirty journalled data -> cannot release */
3389 if (PageChecked(page))
3390 return 0;
3391 if (journal)
3392 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3393 else
3394 return try_to_free_buffers(page);
3395 }
3396
3397 #ifdef CONFIG_FS_DAX
3398 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3399 unsigned flags, struct iomap *iomap)
3400 {
3401 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3402 unsigned int blkbits = inode->i_blkbits;
3403 unsigned long first_block = offset >> blkbits;
3404 unsigned long last_block = (offset + length - 1) >> blkbits;
3405 struct ext4_map_blocks map;
3406 int ret;
3407
3408 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3409 return -ERANGE;
3410
3411 map.m_lblk = first_block;
3412 map.m_len = last_block - first_block + 1;
3413
3414 if (!(flags & IOMAP_WRITE)) {
3415 ret = ext4_map_blocks(NULL, inode, &map, 0);
3416 } else {
3417 int dio_credits;
3418 handle_t *handle;
3419 int retries = 0;
3420
3421 /* Trim mapping request to maximum we can map at once for DIO */
3422 if (map.m_len > DIO_MAX_BLOCKS)
3423 map.m_len = DIO_MAX_BLOCKS;
3424 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3425 retry:
3426 /*
3427 * Either we allocate blocks and then we don't get unwritten
3428 * extent so we have reserved enough credits, or the blocks
3429 * are already allocated and unwritten and in that case
3430 * extent conversion fits in the credits as well.
3431 */
3432 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3433 dio_credits);
3434 if (IS_ERR(handle))
3435 return PTR_ERR(handle);
3436
3437 ret = ext4_map_blocks(handle, inode, &map,
3438 EXT4_GET_BLOCKS_CREATE_ZERO);
3439 if (ret < 0) {
3440 ext4_journal_stop(handle);
3441 if (ret == -ENOSPC &&
3442 ext4_should_retry_alloc(inode->i_sb, &retries))
3443 goto retry;
3444 return ret;
3445 }
3446
3447 /*
3448 * If we added blocks beyond i_size, we need to make sure they
3449 * will get truncated if we crash before updating i_size in
3450 * ext4_iomap_end(). For faults we don't need to do that (and
3451 * even cannot because for orphan list operations inode_lock is
3452 * required) - if we happen to instantiate block beyond i_size,
3453 * it is because we race with truncate which has already added
3454 * the inode to the orphan list.
3455 */
3456 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3457 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3458 int err;
3459
3460 err = ext4_orphan_add(handle, inode);
3461 if (err < 0) {
3462 ext4_journal_stop(handle);
3463 return err;
3464 }
3465 }
3466 ext4_journal_stop(handle);
3467 }
3468
3469 iomap->flags = 0;
3470 iomap->bdev = inode->i_sb->s_bdev;
3471 iomap->dax_dev = sbi->s_daxdev;
3472 iomap->offset = first_block << blkbits;
3473
3474 if (ret == 0) {
3475 iomap->type = IOMAP_HOLE;
3476 iomap->blkno = IOMAP_NULL_BLOCK;
3477 iomap->length = (u64)map.m_len << blkbits;
3478 } else {
3479 if (map.m_flags & EXT4_MAP_MAPPED) {
3480 iomap->type = IOMAP_MAPPED;
3481 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3482 iomap->type = IOMAP_UNWRITTEN;
3483 } else {
3484 WARN_ON_ONCE(1);
3485 return -EIO;
3486 }
3487 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3488 iomap->length = (u64)map.m_len << blkbits;
3489 }
3490
3491 if (map.m_flags & EXT4_MAP_NEW)
3492 iomap->flags |= IOMAP_F_NEW;
3493 return 0;
3494 }
3495
3496 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3497 ssize_t written, unsigned flags, struct iomap *iomap)
3498 {
3499 int ret = 0;
3500 handle_t *handle;
3501 int blkbits = inode->i_blkbits;
3502 bool truncate = false;
3503
3504 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3505 return 0;
3506
3507 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3508 if (IS_ERR(handle)) {
3509 ret = PTR_ERR(handle);
3510 goto orphan_del;
3511 }
3512 if (ext4_update_inode_size(inode, offset + written))
3513 ext4_mark_inode_dirty(handle, inode);
3514 /*
3515 * We may need to truncate allocated but not written blocks beyond EOF.
3516 */
3517 if (iomap->offset + iomap->length >
3518 ALIGN(inode->i_size, 1 << blkbits)) {
3519 ext4_lblk_t written_blk, end_blk;
3520
3521 written_blk = (offset + written) >> blkbits;
3522 end_blk = (offset + length) >> blkbits;
3523 if (written_blk < end_blk && ext4_can_truncate(inode))
3524 truncate = true;
3525 }
3526 /*
3527 * Remove inode from orphan list if we were extending a inode and
3528 * everything went fine.
3529 */
3530 if (!truncate && inode->i_nlink &&
3531 !list_empty(&EXT4_I(inode)->i_orphan))
3532 ext4_orphan_del(handle, inode);
3533 ext4_journal_stop(handle);
3534 if (truncate) {
3535 ext4_truncate_failed_write(inode);
3536 orphan_del:
3537 /*
3538 * If truncate failed early the inode might still be on the
3539 * orphan list; we need to make sure the inode is removed from
3540 * the orphan list in that case.
3541 */
3542 if (inode->i_nlink)
3543 ext4_orphan_del(NULL, inode);
3544 }
3545 return ret;
3546 }
3547
3548 const struct iomap_ops ext4_iomap_ops = {
3549 .iomap_begin = ext4_iomap_begin,
3550 .iomap_end = ext4_iomap_end,
3551 };
3552
3553 #endif
3554
3555 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3556 ssize_t size, void *private)
3557 {
3558 ext4_io_end_t *io_end = private;
3559
3560 /* if not async direct IO just return */
3561 if (!io_end)
3562 return 0;
3563
3564 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3565 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3566 io_end, io_end->inode->i_ino, iocb, offset, size);
3567
3568 /*
3569 * Error during AIO DIO. We cannot convert unwritten extents as the
3570 * data was not written. Just clear the unwritten flag and drop io_end.
3571 */
3572 if (size <= 0) {
3573 ext4_clear_io_unwritten_flag(io_end);
3574 size = 0;
3575 }
3576 io_end->offset = offset;
3577 io_end->size = size;
3578 ext4_put_io_end(io_end);
3579
3580 return 0;
3581 }
3582
3583 /*
3584 * Handling of direct IO writes.
3585 *
3586 * For ext4 extent files, ext4 will do direct-io write even to holes,
3587 * preallocated extents, and those write extend the file, no need to
3588 * fall back to buffered IO.
3589 *
3590 * For holes, we fallocate those blocks, mark them as unwritten
3591 * If those blocks were preallocated, we mark sure they are split, but
3592 * still keep the range to write as unwritten.
3593 *
3594 * The unwritten extents will be converted to written when DIO is completed.
3595 * For async direct IO, since the IO may still pending when return, we
3596 * set up an end_io call back function, which will do the conversion
3597 * when async direct IO completed.
3598 *
3599 * If the O_DIRECT write will extend the file then add this inode to the
3600 * orphan list. So recovery will truncate it back to the original size
3601 * if the machine crashes during the write.
3602 *
3603 */
3604 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3605 {
3606 struct file *file = iocb->ki_filp;
3607 struct inode *inode = file->f_mapping->host;
3608 struct ext4_inode_info *ei = EXT4_I(inode);
3609 ssize_t ret;
3610 loff_t offset = iocb->ki_pos;
3611 size_t count = iov_iter_count(iter);
3612 int overwrite = 0;
3613 get_block_t *get_block_func = NULL;
3614 int dio_flags = 0;
3615 loff_t final_size = offset + count;
3616 int orphan = 0;
3617 handle_t *handle;
3618
3619 if (final_size > inode->i_size) {
3620 /* Credits for sb + inode write */
3621 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3622 if (IS_ERR(handle)) {
3623 ret = PTR_ERR(handle);
3624 goto out;
3625 }
3626 ret = ext4_orphan_add(handle, inode);
3627 if (ret) {
3628 ext4_journal_stop(handle);
3629 goto out;
3630 }
3631 orphan = 1;
3632 ei->i_disksize = inode->i_size;
3633 ext4_journal_stop(handle);
3634 }
3635
3636 BUG_ON(iocb->private == NULL);
3637
3638 /*
3639 * Make all waiters for direct IO properly wait also for extent
3640 * conversion. This also disallows race between truncate() and
3641 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3642 */
3643 inode_dio_begin(inode);
3644
3645 /* If we do a overwrite dio, i_mutex locking can be released */
3646 overwrite = *((int *)iocb->private);
3647
3648 if (overwrite)
3649 inode_unlock(inode);
3650
3651 /*
3652 * For extent mapped files we could direct write to holes and fallocate.
3653 *
3654 * Allocated blocks to fill the hole are marked as unwritten to prevent
3655 * parallel buffered read to expose the stale data before DIO complete
3656 * the data IO.
3657 *
3658 * As to previously fallocated extents, ext4 get_block will just simply
3659 * mark the buffer mapped but still keep the extents unwritten.
3660 *
3661 * For non AIO case, we will convert those unwritten extents to written
3662 * after return back from blockdev_direct_IO. That way we save us from
3663 * allocating io_end structure and also the overhead of offloading
3664 * the extent convertion to a workqueue.
3665 *
3666 * For async DIO, the conversion needs to be deferred when the
3667 * IO is completed. The ext4 end_io callback function will be
3668 * called to take care of the conversion work. Here for async
3669 * case, we allocate an io_end structure to hook to the iocb.
3670 */
3671 iocb->private = NULL;
3672 if (overwrite)
3673 get_block_func = ext4_dio_get_block_overwrite;
3674 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3675 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3676 get_block_func = ext4_dio_get_block;
3677 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3678 } else if (is_sync_kiocb(iocb)) {
3679 get_block_func = ext4_dio_get_block_unwritten_sync;
3680 dio_flags = DIO_LOCKING;
3681 } else {
3682 get_block_func = ext4_dio_get_block_unwritten_async;
3683 dio_flags = DIO_LOCKING;
3684 }
3685 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3686 get_block_func, ext4_end_io_dio, NULL,
3687 dio_flags);
3688
3689 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3690 EXT4_STATE_DIO_UNWRITTEN)) {
3691 int err;
3692 /*
3693 * for non AIO case, since the IO is already
3694 * completed, we could do the conversion right here
3695 */
3696 err = ext4_convert_unwritten_extents(NULL, inode,
3697 offset, ret);
3698 if (err < 0)
3699 ret = err;
3700 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3701 }
3702
3703 inode_dio_end(inode);
3704 /* take i_mutex locking again if we do a ovewrite dio */
3705 if (overwrite)
3706 inode_lock(inode);
3707
3708 if (ret < 0 && final_size > inode->i_size)
3709 ext4_truncate_failed_write(inode);
3710
3711 /* Handle extending of i_size after direct IO write */
3712 if (orphan) {
3713 int err;
3714
3715 /* Credits for sb + inode write */
3716 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3717 if (IS_ERR(handle)) {
3718 /* This is really bad luck. We've written the data
3719 * but cannot extend i_size. Bail out and pretend
3720 * the write failed... */
3721 ret = PTR_ERR(handle);
3722 if (inode->i_nlink)
3723 ext4_orphan_del(NULL, inode);
3724
3725 goto out;
3726 }
3727 if (inode->i_nlink)
3728 ext4_orphan_del(handle, inode);
3729 if (ret > 0) {
3730 loff_t end = offset + ret;
3731 if (end > inode->i_size) {
3732 ei->i_disksize = end;
3733 i_size_write(inode, end);
3734 /*
3735 * We're going to return a positive `ret'
3736 * here due to non-zero-length I/O, so there's
3737 * no way of reporting error returns from
3738 * ext4_mark_inode_dirty() to userspace. So
3739 * ignore it.
3740 */
3741 ext4_mark_inode_dirty(handle, inode);
3742 }
3743 }
3744 err = ext4_journal_stop(handle);
3745 if (ret == 0)
3746 ret = err;
3747 }
3748 out:
3749 return ret;
3750 }
3751
3752 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3753 {
3754 struct address_space *mapping = iocb->ki_filp->f_mapping;
3755 struct inode *inode = mapping->host;
3756 size_t count = iov_iter_count(iter);
3757 ssize_t ret;
3758
3759 /*
3760 * Shared inode_lock is enough for us - it protects against concurrent
3761 * writes & truncates and since we take care of writing back page cache,
3762 * we are protected against page writeback as well.
3763 */
3764 inode_lock_shared(inode);
3765 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3766 iocb->ki_pos + count - 1);
3767 if (ret)
3768 goto out_unlock;
3769 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3770 iter, ext4_dio_get_block, NULL, NULL, 0);
3771 out_unlock:
3772 inode_unlock_shared(inode);
3773 return ret;
3774 }
3775
3776 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3777 {
3778 struct file *file = iocb->ki_filp;
3779 struct inode *inode = file->f_mapping->host;
3780 size_t count = iov_iter_count(iter);
3781 loff_t offset = iocb->ki_pos;
3782 ssize_t ret;
3783
3784 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3785 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3786 return 0;
3787 #endif
3788
3789 /*
3790 * If we are doing data journalling we don't support O_DIRECT
3791 */
3792 if (ext4_should_journal_data(inode))
3793 return 0;
3794
3795 /* Let buffer I/O handle the inline data case. */
3796 if (ext4_has_inline_data(inode))
3797 return 0;
3798
3799 /* DAX uses iomap path now */
3800 if (WARN_ON_ONCE(IS_DAX(inode)))
3801 return 0;
3802
3803 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3804 if (iov_iter_rw(iter) == READ)
3805 ret = ext4_direct_IO_read(iocb, iter);
3806 else
3807 ret = ext4_direct_IO_write(iocb, iter);
3808 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3809 return ret;
3810 }
3811
3812 /*
3813 * Pages can be marked dirty completely asynchronously from ext4's journalling
3814 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3815 * much here because ->set_page_dirty is called under VFS locks. The page is
3816 * not necessarily locked.
3817 *
3818 * We cannot just dirty the page and leave attached buffers clean, because the
3819 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3820 * or jbddirty because all the journalling code will explode.
3821 *
3822 * So what we do is to mark the page "pending dirty" and next time writepage
3823 * is called, propagate that into the buffers appropriately.
3824 */
3825 static int ext4_journalled_set_page_dirty(struct page *page)
3826 {
3827 SetPageChecked(page);
3828 return __set_page_dirty_nobuffers(page);
3829 }
3830
3831 static int ext4_set_page_dirty(struct page *page)
3832 {
3833 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3834 WARN_ON_ONCE(!page_has_buffers(page));
3835 return __set_page_dirty_buffers(page);
3836 }
3837
3838 static const struct address_space_operations ext4_aops = {
3839 .readpage = ext4_readpage,
3840 .readpages = ext4_readpages,
3841 .writepage = ext4_writepage,
3842 .writepages = ext4_writepages,
3843 .write_begin = ext4_write_begin,
3844 .write_end = ext4_write_end,
3845 .set_page_dirty = ext4_set_page_dirty,
3846 .bmap = ext4_bmap,
3847 .invalidatepage = ext4_invalidatepage,
3848 .releasepage = ext4_releasepage,
3849 .direct_IO = ext4_direct_IO,
3850 .migratepage = buffer_migrate_page,
3851 .is_partially_uptodate = block_is_partially_uptodate,
3852 .error_remove_page = generic_error_remove_page,
3853 };
3854
3855 static const struct address_space_operations ext4_journalled_aops = {
3856 .readpage = ext4_readpage,
3857 .readpages = ext4_readpages,
3858 .writepage = ext4_writepage,
3859 .writepages = ext4_writepages,
3860 .write_begin = ext4_write_begin,
3861 .write_end = ext4_journalled_write_end,
3862 .set_page_dirty = ext4_journalled_set_page_dirty,
3863 .bmap = ext4_bmap,
3864 .invalidatepage = ext4_journalled_invalidatepage,
3865 .releasepage = ext4_releasepage,
3866 .direct_IO = ext4_direct_IO,
3867 .is_partially_uptodate = block_is_partially_uptodate,
3868 .error_remove_page = generic_error_remove_page,
3869 };
3870
3871 static const struct address_space_operations ext4_da_aops = {
3872 .readpage = ext4_readpage,
3873 .readpages = ext4_readpages,
3874 .writepage = ext4_writepage,
3875 .writepages = ext4_writepages,
3876 .write_begin = ext4_da_write_begin,
3877 .write_end = ext4_da_write_end,
3878 .set_page_dirty = ext4_set_page_dirty,
3879 .bmap = ext4_bmap,
3880 .invalidatepage = ext4_da_invalidatepage,
3881 .releasepage = ext4_releasepage,
3882 .direct_IO = ext4_direct_IO,
3883 .migratepage = buffer_migrate_page,
3884 .is_partially_uptodate = block_is_partially_uptodate,
3885 .error_remove_page = generic_error_remove_page,
3886 };
3887
3888 void ext4_set_aops(struct inode *inode)
3889 {
3890 switch (ext4_inode_journal_mode(inode)) {
3891 case EXT4_INODE_ORDERED_DATA_MODE:
3892 case EXT4_INODE_WRITEBACK_DATA_MODE:
3893 break;
3894 case EXT4_INODE_JOURNAL_DATA_MODE:
3895 inode->i_mapping->a_ops = &ext4_journalled_aops;
3896 return;
3897 default:
3898 BUG();
3899 }
3900 if (test_opt(inode->i_sb, DELALLOC))
3901 inode->i_mapping->a_ops = &ext4_da_aops;
3902 else
3903 inode->i_mapping->a_ops = &ext4_aops;
3904 }
3905
3906 static int __ext4_block_zero_page_range(handle_t *handle,
3907 struct address_space *mapping, loff_t from, loff_t length)
3908 {
3909 ext4_fsblk_t index = from >> PAGE_SHIFT;
3910 unsigned offset = from & (PAGE_SIZE-1);
3911 unsigned blocksize, pos;
3912 ext4_lblk_t iblock;
3913 struct inode *inode = mapping->host;
3914 struct buffer_head *bh;
3915 struct page *page;
3916 int err = 0;
3917
3918 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3919 mapping_gfp_constraint(mapping, ~__GFP_FS));
3920 if (!page)
3921 return -ENOMEM;
3922
3923 blocksize = inode->i_sb->s_blocksize;
3924
3925 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3926
3927 if (!page_has_buffers(page))
3928 create_empty_buffers(page, blocksize, 0);
3929
3930 /* Find the buffer that contains "offset" */
3931 bh = page_buffers(page);
3932 pos = blocksize;
3933 while (offset >= pos) {
3934 bh = bh->b_this_page;
3935 iblock++;
3936 pos += blocksize;
3937 }
3938 if (buffer_freed(bh)) {
3939 BUFFER_TRACE(bh, "freed: skip");
3940 goto unlock;
3941 }
3942 if (!buffer_mapped(bh)) {
3943 BUFFER_TRACE(bh, "unmapped");
3944 ext4_get_block(inode, iblock, bh, 0);
3945 /* unmapped? It's a hole - nothing to do */
3946 if (!buffer_mapped(bh)) {
3947 BUFFER_TRACE(bh, "still unmapped");
3948 goto unlock;
3949 }
3950 }
3951
3952 /* Ok, it's mapped. Make sure it's up-to-date */
3953 if (PageUptodate(page))
3954 set_buffer_uptodate(bh);
3955
3956 if (!buffer_uptodate(bh)) {
3957 err = -EIO;
3958 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3959 wait_on_buffer(bh);
3960 /* Uhhuh. Read error. Complain and punt. */
3961 if (!buffer_uptodate(bh))
3962 goto unlock;
3963 if (S_ISREG(inode->i_mode) &&
3964 ext4_encrypted_inode(inode)) {
3965 /* We expect the key to be set. */
3966 BUG_ON(!fscrypt_has_encryption_key(inode));
3967 BUG_ON(blocksize != PAGE_SIZE);
3968 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3969 page, PAGE_SIZE, 0, page->index));
3970 }
3971 }
3972 if (ext4_should_journal_data(inode)) {
3973 BUFFER_TRACE(bh, "get write access");
3974 err = ext4_journal_get_write_access(handle, bh);
3975 if (err)
3976 goto unlock;
3977 }
3978 zero_user(page, offset, length);
3979 BUFFER_TRACE(bh, "zeroed end of block");
3980
3981 if (ext4_should_journal_data(inode)) {
3982 err = ext4_handle_dirty_metadata(handle, inode, bh);
3983 } else {
3984 err = 0;
3985 mark_buffer_dirty(bh);
3986 if (ext4_should_order_data(inode))
3987 err = ext4_jbd2_inode_add_write(handle, inode);
3988 }
3989
3990 unlock:
3991 unlock_page(page);
3992 put_page(page);
3993 return err;
3994 }
3995
3996 /*
3997 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3998 * starting from file offset 'from'. The range to be zero'd must
3999 * be contained with in one block. If the specified range exceeds
4000 * the end of the block it will be shortened to end of the block
4001 * that cooresponds to 'from'
4002 */
4003 static int ext4_block_zero_page_range(handle_t *handle,
4004 struct address_space *mapping, loff_t from, loff_t length)
4005 {
4006 struct inode *inode = mapping->host;
4007 unsigned offset = from & (PAGE_SIZE-1);
4008 unsigned blocksize = inode->i_sb->s_blocksize;
4009 unsigned max = blocksize - (offset & (blocksize - 1));
4010
4011 /*
4012 * correct length if it does not fall between
4013 * 'from' and the end of the block
4014 */
4015 if (length > max || length < 0)
4016 length = max;
4017
4018 if (IS_DAX(inode)) {
4019 return iomap_zero_range(inode, from, length, NULL,
4020 &ext4_iomap_ops);
4021 }
4022 return __ext4_block_zero_page_range(handle, mapping, from, length);
4023 }
4024
4025 /*
4026 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4027 * up to the end of the block which corresponds to `from'.
4028 * This required during truncate. We need to physically zero the tail end
4029 * of that block so it doesn't yield old data if the file is later grown.
4030 */
4031 static int ext4_block_truncate_page(handle_t *handle,
4032 struct address_space *mapping, loff_t from)
4033 {
4034 unsigned offset = from & (PAGE_SIZE-1);
4035 unsigned length;
4036 unsigned blocksize;
4037 struct inode *inode = mapping->host;
4038
4039 /* If we are processing an encrypted inode during orphan list handling */
4040 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4041 return 0;
4042
4043 blocksize = inode->i_sb->s_blocksize;
4044 length = blocksize - (offset & (blocksize - 1));
4045
4046 return ext4_block_zero_page_range(handle, mapping, from, length);
4047 }
4048
4049 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4050 loff_t lstart, loff_t length)
4051 {
4052 struct super_block *sb = inode->i_sb;
4053 struct address_space *mapping = inode->i_mapping;
4054 unsigned partial_start, partial_end;
4055 ext4_fsblk_t start, end;
4056 loff_t byte_end = (lstart + length - 1);
4057 int err = 0;
4058
4059 partial_start = lstart & (sb->s_blocksize - 1);
4060 partial_end = byte_end & (sb->s_blocksize - 1);
4061
4062 start = lstart >> sb->s_blocksize_bits;
4063 end = byte_end >> sb->s_blocksize_bits;
4064
4065 /* Handle partial zero within the single block */
4066 if (start == end &&
4067 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4068 err = ext4_block_zero_page_range(handle, mapping,
4069 lstart, length);
4070 return err;
4071 }
4072 /* Handle partial zero out on the start of the range */
4073 if (partial_start) {
4074 err = ext4_block_zero_page_range(handle, mapping,
4075 lstart, sb->s_blocksize);
4076 if (err)
4077 return err;
4078 }
4079 /* Handle partial zero out on the end of the range */
4080 if (partial_end != sb->s_blocksize - 1)
4081 err = ext4_block_zero_page_range(handle, mapping,
4082 byte_end - partial_end,
4083 partial_end + 1);
4084 return err;
4085 }
4086
4087 int ext4_can_truncate(struct inode *inode)
4088 {
4089 if (S_ISREG(inode->i_mode))
4090 return 1;
4091 if (S_ISDIR(inode->i_mode))
4092 return 1;
4093 if (S_ISLNK(inode->i_mode))
4094 return !ext4_inode_is_fast_symlink(inode);
4095 return 0;
4096 }
4097
4098 /*
4099 * We have to make sure i_disksize gets properly updated before we truncate
4100 * page cache due to hole punching or zero range. Otherwise i_disksize update
4101 * can get lost as it may have been postponed to submission of writeback but
4102 * that will never happen after we truncate page cache.
4103 */
4104 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4105 loff_t len)
4106 {
4107 handle_t *handle;
4108 loff_t size = i_size_read(inode);
4109
4110 WARN_ON(!inode_is_locked(inode));
4111 if (offset > size || offset + len < size)
4112 return 0;
4113
4114 if (EXT4_I(inode)->i_disksize >= size)
4115 return 0;
4116
4117 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4118 if (IS_ERR(handle))
4119 return PTR_ERR(handle);
4120 ext4_update_i_disksize(inode, size);
4121 ext4_mark_inode_dirty(handle, inode);
4122 ext4_journal_stop(handle);
4123
4124 return 0;
4125 }
4126
4127 /*
4128 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4129 * associated with the given offset and length
4130 *
4131 * @inode: File inode
4132 * @offset: The offset where the hole will begin
4133 * @len: The length of the hole
4134 *
4135 * Returns: 0 on success or negative on failure
4136 */
4137
4138 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4139 {
4140 struct super_block *sb = inode->i_sb;
4141 ext4_lblk_t first_block, stop_block;
4142 struct address_space *mapping = inode->i_mapping;
4143 loff_t first_block_offset, last_block_offset;
4144 handle_t *handle;
4145 unsigned int credits;
4146 int ret = 0;
4147
4148 if (!S_ISREG(inode->i_mode))
4149 return -EOPNOTSUPP;
4150
4151 trace_ext4_punch_hole(inode, offset, length, 0);
4152
4153 /*
4154 * Write out all dirty pages to avoid race conditions
4155 * Then release them.
4156 */
4157 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4158 ret = filemap_write_and_wait_range(mapping, offset,
4159 offset + length - 1);
4160 if (ret)
4161 return ret;
4162 }
4163
4164 inode_lock(inode);
4165
4166 /* No need to punch hole beyond i_size */
4167 if (offset >= inode->i_size)
4168 goto out_mutex;
4169
4170 /*
4171 * If the hole extends beyond i_size, set the hole
4172 * to end after the page that contains i_size
4173 */
4174 if (offset + length > inode->i_size) {
4175 length = inode->i_size +
4176 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4177 offset;
4178 }
4179
4180 if (offset & (sb->s_blocksize - 1) ||
4181 (offset + length) & (sb->s_blocksize - 1)) {
4182 /*
4183 * Attach jinode to inode for jbd2 if we do any zeroing of
4184 * partial block
4185 */
4186 ret = ext4_inode_attach_jinode(inode);
4187 if (ret < 0)
4188 goto out_mutex;
4189
4190 }
4191
4192 /* Wait all existing dio workers, newcomers will block on i_mutex */
4193 ext4_inode_block_unlocked_dio(inode);
4194 inode_dio_wait(inode);
4195
4196 /*
4197 * Prevent page faults from reinstantiating pages we have released from
4198 * page cache.
4199 */
4200 down_write(&EXT4_I(inode)->i_mmap_sem);
4201 first_block_offset = round_up(offset, sb->s_blocksize);
4202 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4203
4204 /* Now release the pages and zero block aligned part of pages*/
4205 if (last_block_offset > first_block_offset) {
4206 ret = ext4_update_disksize_before_punch(inode, offset, length);
4207 if (ret)
4208 goto out_dio;
4209 truncate_pagecache_range(inode, first_block_offset,
4210 last_block_offset);
4211 }
4212
4213 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4214 credits = ext4_writepage_trans_blocks(inode);
4215 else
4216 credits = ext4_blocks_for_truncate(inode);
4217 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4218 if (IS_ERR(handle)) {
4219 ret = PTR_ERR(handle);
4220 ext4_std_error(sb, ret);
4221 goto out_dio;
4222 }
4223
4224 ret = ext4_zero_partial_blocks(handle, inode, offset,
4225 length);
4226 if (ret)
4227 goto out_stop;
4228
4229 first_block = (offset + sb->s_blocksize - 1) >>
4230 EXT4_BLOCK_SIZE_BITS(sb);
4231 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4232
4233 /* If there are no blocks to remove, return now */
4234 if (first_block >= stop_block)
4235 goto out_stop;
4236
4237 down_write(&EXT4_I(inode)->i_data_sem);
4238 ext4_discard_preallocations(inode);
4239
4240 ret = ext4_es_remove_extent(inode, first_block,
4241 stop_block - first_block);
4242 if (ret) {
4243 up_write(&EXT4_I(inode)->i_data_sem);
4244 goto out_stop;
4245 }
4246
4247 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4248 ret = ext4_ext_remove_space(inode, first_block,
4249 stop_block - 1);
4250 else
4251 ret = ext4_ind_remove_space(handle, inode, first_block,
4252 stop_block);
4253
4254 up_write(&EXT4_I(inode)->i_data_sem);
4255 if (IS_SYNC(inode))
4256 ext4_handle_sync(handle);
4257
4258 inode->i_mtime = inode->i_ctime = current_time(inode);
4259 ext4_mark_inode_dirty(handle, inode);
4260 if (ret >= 0)
4261 ext4_update_inode_fsync_trans(handle, inode, 1);
4262 out_stop:
4263 ext4_journal_stop(handle);
4264 out_dio:
4265 up_write(&EXT4_I(inode)->i_mmap_sem);
4266 ext4_inode_resume_unlocked_dio(inode);
4267 out_mutex:
4268 inode_unlock(inode);
4269 return ret;
4270 }
4271
4272 int ext4_inode_attach_jinode(struct inode *inode)
4273 {
4274 struct ext4_inode_info *ei = EXT4_I(inode);
4275 struct jbd2_inode *jinode;
4276
4277 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4278 return 0;
4279
4280 jinode = jbd2_alloc_inode(GFP_KERNEL);
4281 spin_lock(&inode->i_lock);
4282 if (!ei->jinode) {
4283 if (!jinode) {
4284 spin_unlock(&inode->i_lock);
4285 return -ENOMEM;
4286 }
4287 ei->jinode = jinode;
4288 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4289 jinode = NULL;
4290 }
4291 spin_unlock(&inode->i_lock);
4292 if (unlikely(jinode != NULL))
4293 jbd2_free_inode(jinode);
4294 return 0;
4295 }
4296
4297 /*
4298 * ext4_truncate()
4299 *
4300 * We block out ext4_get_block() block instantiations across the entire
4301 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4302 * simultaneously on behalf of the same inode.
4303 *
4304 * As we work through the truncate and commit bits of it to the journal there
4305 * is one core, guiding principle: the file's tree must always be consistent on
4306 * disk. We must be able to restart the truncate after a crash.
4307 *
4308 * The file's tree may be transiently inconsistent in memory (although it
4309 * probably isn't), but whenever we close off and commit a journal transaction,
4310 * the contents of (the filesystem + the journal) must be consistent and
4311 * restartable. It's pretty simple, really: bottom up, right to left (although
4312 * left-to-right works OK too).
4313 *
4314 * Note that at recovery time, journal replay occurs *before* the restart of
4315 * truncate against the orphan inode list.
4316 *
4317 * The committed inode has the new, desired i_size (which is the same as
4318 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4319 * that this inode's truncate did not complete and it will again call
4320 * ext4_truncate() to have another go. So there will be instantiated blocks
4321 * to the right of the truncation point in a crashed ext4 filesystem. But
4322 * that's fine - as long as they are linked from the inode, the post-crash
4323 * ext4_truncate() run will find them and release them.
4324 */
4325 int ext4_truncate(struct inode *inode)
4326 {
4327 struct ext4_inode_info *ei = EXT4_I(inode);
4328 unsigned int credits;
4329 int err = 0;
4330 handle_t *handle;
4331 struct address_space *mapping = inode->i_mapping;
4332
4333 /*
4334 * There is a possibility that we're either freeing the inode
4335 * or it's a completely new inode. In those cases we might not
4336 * have i_mutex locked because it's not necessary.
4337 */
4338 if (!(inode->i_state & (I_NEW|I_FREEING)))
4339 WARN_ON(!inode_is_locked(inode));
4340 trace_ext4_truncate_enter(inode);
4341
4342 if (!ext4_can_truncate(inode))
4343 return 0;
4344
4345 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4346
4347 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4348 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4349
4350 if (ext4_has_inline_data(inode)) {
4351 int has_inline = 1;
4352
4353 err = ext4_inline_data_truncate(inode, &has_inline);
4354 if (err)
4355 return err;
4356 if (has_inline)
4357 return 0;
4358 }
4359
4360 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4361 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4362 if (ext4_inode_attach_jinode(inode) < 0)
4363 return 0;
4364 }
4365
4366 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4367 credits = ext4_writepage_trans_blocks(inode);
4368 else
4369 credits = ext4_blocks_for_truncate(inode);
4370
4371 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4372 if (IS_ERR(handle))
4373 return PTR_ERR(handle);
4374
4375 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4376 ext4_block_truncate_page(handle, mapping, inode->i_size);
4377
4378 /*
4379 * We add the inode to the orphan list, so that if this
4380 * truncate spans multiple transactions, and we crash, we will
4381 * resume the truncate when the filesystem recovers. It also
4382 * marks the inode dirty, to catch the new size.
4383 *
4384 * Implication: the file must always be in a sane, consistent
4385 * truncatable state while each transaction commits.
4386 */
4387 err = ext4_orphan_add(handle, inode);
4388 if (err)
4389 goto out_stop;
4390
4391 down_write(&EXT4_I(inode)->i_data_sem);
4392
4393 ext4_discard_preallocations(inode);
4394
4395 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4396 err = ext4_ext_truncate(handle, inode);
4397 else
4398 ext4_ind_truncate(handle, inode);
4399
4400 up_write(&ei->i_data_sem);
4401 if (err)
4402 goto out_stop;
4403
4404 if (IS_SYNC(inode))
4405 ext4_handle_sync(handle);
4406
4407 out_stop:
4408 /*
4409 * If this was a simple ftruncate() and the file will remain alive,
4410 * then we need to clear up the orphan record which we created above.
4411 * However, if this was a real unlink then we were called by
4412 * ext4_evict_inode(), and we allow that function to clean up the
4413 * orphan info for us.
4414 */
4415 if (inode->i_nlink)
4416 ext4_orphan_del(handle, inode);
4417
4418 inode->i_mtime = inode->i_ctime = current_time(inode);
4419 ext4_mark_inode_dirty(handle, inode);
4420 ext4_journal_stop(handle);
4421
4422 trace_ext4_truncate_exit(inode);
4423 return err;
4424 }
4425
4426 /*
4427 * ext4_get_inode_loc returns with an extra refcount against the inode's
4428 * underlying buffer_head on success. If 'in_mem' is true, we have all
4429 * data in memory that is needed to recreate the on-disk version of this
4430 * inode.
4431 */
4432 static int __ext4_get_inode_loc(struct inode *inode,
4433 struct ext4_iloc *iloc, int in_mem)
4434 {
4435 struct ext4_group_desc *gdp;
4436 struct buffer_head *bh;
4437 struct super_block *sb = inode->i_sb;
4438 ext4_fsblk_t block;
4439 int inodes_per_block, inode_offset;
4440
4441 iloc->bh = NULL;
4442 if (!ext4_valid_inum(sb, inode->i_ino))
4443 return -EFSCORRUPTED;
4444
4445 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4446 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4447 if (!gdp)
4448 return -EIO;
4449
4450 /*
4451 * Figure out the offset within the block group inode table
4452 */
4453 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4454 inode_offset = ((inode->i_ino - 1) %
4455 EXT4_INODES_PER_GROUP(sb));
4456 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4457 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4458
4459 bh = sb_getblk(sb, block);
4460 if (unlikely(!bh))
4461 return -ENOMEM;
4462 if (!buffer_uptodate(bh)) {
4463 lock_buffer(bh);
4464
4465 /*
4466 * If the buffer has the write error flag, we have failed
4467 * to write out another inode in the same block. In this
4468 * case, we don't have to read the block because we may
4469 * read the old inode data successfully.
4470 */
4471 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4472 set_buffer_uptodate(bh);
4473
4474 if (buffer_uptodate(bh)) {
4475 /* someone brought it uptodate while we waited */
4476 unlock_buffer(bh);
4477 goto has_buffer;
4478 }
4479
4480 /*
4481 * If we have all information of the inode in memory and this
4482 * is the only valid inode in the block, we need not read the
4483 * block.
4484 */
4485 if (in_mem) {
4486 struct buffer_head *bitmap_bh;
4487 int i, start;
4488
4489 start = inode_offset & ~(inodes_per_block - 1);
4490
4491 /* Is the inode bitmap in cache? */
4492 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4493 if (unlikely(!bitmap_bh))
4494 goto make_io;
4495
4496 /*
4497 * If the inode bitmap isn't in cache then the
4498 * optimisation may end up performing two reads instead
4499 * of one, so skip it.
4500 */
4501 if (!buffer_uptodate(bitmap_bh)) {
4502 brelse(bitmap_bh);
4503 goto make_io;
4504 }
4505 for (i = start; i < start + inodes_per_block; i++) {
4506 if (i == inode_offset)
4507 continue;
4508 if (ext4_test_bit(i, bitmap_bh->b_data))
4509 break;
4510 }
4511 brelse(bitmap_bh);
4512 if (i == start + inodes_per_block) {
4513 /* all other inodes are free, so skip I/O */
4514 memset(bh->b_data, 0, bh->b_size);
4515 set_buffer_uptodate(bh);
4516 unlock_buffer(bh);
4517 goto has_buffer;
4518 }
4519 }
4520
4521 make_io:
4522 /*
4523 * If we need to do any I/O, try to pre-readahead extra
4524 * blocks from the inode table.
4525 */
4526 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4527 ext4_fsblk_t b, end, table;
4528 unsigned num;
4529 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4530
4531 table = ext4_inode_table(sb, gdp);
4532 /* s_inode_readahead_blks is always a power of 2 */
4533 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4534 if (table > b)
4535 b = table;
4536 end = b + ra_blks;
4537 num = EXT4_INODES_PER_GROUP(sb);
4538 if (ext4_has_group_desc_csum(sb))
4539 num -= ext4_itable_unused_count(sb, gdp);
4540 table += num / inodes_per_block;
4541 if (end > table)
4542 end = table;
4543 while (b <= end)
4544 sb_breadahead(sb, b++);
4545 }
4546
4547 /*
4548 * There are other valid inodes in the buffer, this inode
4549 * has in-inode xattrs, or we don't have this inode in memory.
4550 * Read the block from disk.
4551 */
4552 trace_ext4_load_inode(inode);
4553 get_bh(bh);
4554 bh->b_end_io = end_buffer_read_sync;
4555 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4556 wait_on_buffer(bh);
4557 if (!buffer_uptodate(bh)) {
4558 EXT4_ERROR_INODE_BLOCK(inode, block,
4559 "unable to read itable block");
4560 brelse(bh);
4561 return -EIO;
4562 }
4563 }
4564 has_buffer:
4565 iloc->bh = bh;
4566 return 0;
4567 }
4568
4569 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4570 {
4571 /* We have all inode data except xattrs in memory here. */
4572 return __ext4_get_inode_loc(inode, iloc,
4573 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4574 }
4575
4576 void ext4_set_inode_flags(struct inode *inode)
4577 {
4578 unsigned int flags = EXT4_I(inode)->i_flags;
4579 unsigned int new_fl = 0;
4580
4581 if (flags & EXT4_SYNC_FL)
4582 new_fl |= S_SYNC;
4583 if (flags & EXT4_APPEND_FL)
4584 new_fl |= S_APPEND;
4585 if (flags & EXT4_IMMUTABLE_FL)
4586 new_fl |= S_IMMUTABLE;
4587 if (flags & EXT4_NOATIME_FL)
4588 new_fl |= S_NOATIME;
4589 if (flags & EXT4_DIRSYNC_FL)
4590 new_fl |= S_DIRSYNC;
4591 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4592 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4593 !ext4_encrypted_inode(inode))
4594 new_fl |= S_DAX;
4595 inode_set_flags(inode, new_fl,
4596 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4597 }
4598
4599 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4600 struct ext4_inode_info *ei)
4601 {
4602 blkcnt_t i_blocks ;
4603 struct inode *inode = &(ei->vfs_inode);
4604 struct super_block *sb = inode->i_sb;
4605
4606 if (ext4_has_feature_huge_file(sb)) {
4607 /* we are using combined 48 bit field */
4608 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4609 le32_to_cpu(raw_inode->i_blocks_lo);
4610 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4611 /* i_blocks represent file system block size */
4612 return i_blocks << (inode->i_blkbits - 9);
4613 } else {
4614 return i_blocks;
4615 }
4616 } else {
4617 return le32_to_cpu(raw_inode->i_blocks_lo);
4618 }
4619 }
4620
4621 static inline void ext4_iget_extra_inode(struct inode *inode,
4622 struct ext4_inode *raw_inode,
4623 struct ext4_inode_info *ei)
4624 {
4625 __le32 *magic = (void *)raw_inode +
4626 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4627 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4628 EXT4_INODE_SIZE(inode->i_sb) &&
4629 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4630 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4631 ext4_find_inline_data_nolock(inode);
4632 } else
4633 EXT4_I(inode)->i_inline_off = 0;
4634 }
4635
4636 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4637 {
4638 if (!ext4_has_feature_project(inode->i_sb))
4639 return -EOPNOTSUPP;
4640 *projid = EXT4_I(inode)->i_projid;
4641 return 0;
4642 }
4643
4644 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4645 {
4646 struct ext4_iloc iloc;
4647 struct ext4_inode *raw_inode;
4648 struct ext4_inode_info *ei;
4649 struct inode *inode;
4650 journal_t *journal = EXT4_SB(sb)->s_journal;
4651 long ret;
4652 loff_t size;
4653 int block;
4654 uid_t i_uid;
4655 gid_t i_gid;
4656 projid_t i_projid;
4657
4658 inode = iget_locked(sb, ino);
4659 if (!inode)
4660 return ERR_PTR(-ENOMEM);
4661 if (!(inode->i_state & I_NEW))
4662 return inode;
4663
4664 ei = EXT4_I(inode);
4665 iloc.bh = NULL;
4666
4667 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4668 if (ret < 0)
4669 goto bad_inode;
4670 raw_inode = ext4_raw_inode(&iloc);
4671
4672 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4673 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4674 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4675 EXT4_INODE_SIZE(inode->i_sb) ||
4676 (ei->i_extra_isize & 3)) {
4677 EXT4_ERROR_INODE(inode,
4678 "bad extra_isize %u (inode size %u)",
4679 ei->i_extra_isize,
4680 EXT4_INODE_SIZE(inode->i_sb));
4681 ret = -EFSCORRUPTED;
4682 goto bad_inode;
4683 }
4684 } else
4685 ei->i_extra_isize = 0;
4686
4687 /* Precompute checksum seed for inode metadata */
4688 if (ext4_has_metadata_csum(sb)) {
4689 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4690 __u32 csum;
4691 __le32 inum = cpu_to_le32(inode->i_ino);
4692 __le32 gen = raw_inode->i_generation;
4693 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4694 sizeof(inum));
4695 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4696 sizeof(gen));
4697 }
4698
4699 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4700 EXT4_ERROR_INODE(inode, "checksum invalid");
4701 ret = -EFSBADCRC;
4702 goto bad_inode;
4703 }
4704
4705 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4706 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4707 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4708 if (ext4_has_feature_project(sb) &&
4709 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4710 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4711 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4712 else
4713 i_projid = EXT4_DEF_PROJID;
4714
4715 if (!(test_opt(inode->i_sb, NO_UID32))) {
4716 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4717 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4718 }
4719 i_uid_write(inode, i_uid);
4720 i_gid_write(inode, i_gid);
4721 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4722 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4723
4724 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4725 ei->i_inline_off = 0;
4726 ei->i_dir_start_lookup = 0;
4727 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4728 /* We now have enough fields to check if the inode was active or not.
4729 * This is needed because nfsd might try to access dead inodes
4730 * the test is that same one that e2fsck uses
4731 * NeilBrown 1999oct15
4732 */
4733 if (inode->i_nlink == 0) {
4734 if ((inode->i_mode == 0 ||
4735 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4736 ino != EXT4_BOOT_LOADER_INO) {
4737 /* this inode is deleted */
4738 ret = -ESTALE;
4739 goto bad_inode;
4740 }
4741 /* The only unlinked inodes we let through here have
4742 * valid i_mode and are being read by the orphan
4743 * recovery code: that's fine, we're about to complete
4744 * the process of deleting those.
4745 * OR it is the EXT4_BOOT_LOADER_INO which is
4746 * not initialized on a new filesystem. */
4747 }
4748 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4749 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4750 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4751 if (ext4_has_feature_64bit(sb))
4752 ei->i_file_acl |=
4753 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4754 inode->i_size = ext4_isize(sb, raw_inode);
4755 if ((size = i_size_read(inode)) < 0) {
4756 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4757 ret = -EFSCORRUPTED;
4758 goto bad_inode;
4759 }
4760 ei->i_disksize = inode->i_size;
4761 #ifdef CONFIG_QUOTA
4762 ei->i_reserved_quota = 0;
4763 #endif
4764 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4765 ei->i_block_group = iloc.block_group;
4766 ei->i_last_alloc_group = ~0;
4767 /*
4768 * NOTE! The in-memory inode i_data array is in little-endian order
4769 * even on big-endian machines: we do NOT byteswap the block numbers!
4770 */
4771 for (block = 0; block < EXT4_N_BLOCKS; block++)
4772 ei->i_data[block] = raw_inode->i_block[block];
4773 INIT_LIST_HEAD(&ei->i_orphan);
4774
4775 /*
4776 * Set transaction id's of transactions that have to be committed
4777 * to finish f[data]sync. We set them to currently running transaction
4778 * as we cannot be sure that the inode or some of its metadata isn't
4779 * part of the transaction - the inode could have been reclaimed and
4780 * now it is reread from disk.
4781 */
4782 if (journal) {
4783 transaction_t *transaction;
4784 tid_t tid;
4785
4786 read_lock(&journal->j_state_lock);
4787 if (journal->j_running_transaction)
4788 transaction = journal->j_running_transaction;
4789 else
4790 transaction = journal->j_committing_transaction;
4791 if (transaction)
4792 tid = transaction->t_tid;
4793 else
4794 tid = journal->j_commit_sequence;
4795 read_unlock(&journal->j_state_lock);
4796 ei->i_sync_tid = tid;
4797 ei->i_datasync_tid = tid;
4798 }
4799
4800 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4801 if (ei->i_extra_isize == 0) {
4802 /* The extra space is currently unused. Use it. */
4803 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4804 ei->i_extra_isize = sizeof(struct ext4_inode) -
4805 EXT4_GOOD_OLD_INODE_SIZE;
4806 } else {
4807 ext4_iget_extra_inode(inode, raw_inode, ei);
4808 }
4809 }
4810
4811 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4812 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4813 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4814 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4815
4816 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4817 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4818 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4819 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4820 inode->i_version |=
4821 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4822 }
4823 }
4824
4825 ret = 0;
4826 if (ei->i_file_acl &&
4827 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4828 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4829 ei->i_file_acl);
4830 ret = -EFSCORRUPTED;
4831 goto bad_inode;
4832 } else if (!ext4_has_inline_data(inode)) {
4833 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4834 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4835 (S_ISLNK(inode->i_mode) &&
4836 !ext4_inode_is_fast_symlink(inode))))
4837 /* Validate extent which is part of inode */
4838 ret = ext4_ext_check_inode(inode);
4839 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4840 (S_ISLNK(inode->i_mode) &&
4841 !ext4_inode_is_fast_symlink(inode))) {
4842 /* Validate block references which are part of inode */
4843 ret = ext4_ind_check_inode(inode);
4844 }
4845 }
4846 if (ret)
4847 goto bad_inode;
4848
4849 if (S_ISREG(inode->i_mode)) {
4850 inode->i_op = &ext4_file_inode_operations;
4851 inode->i_fop = &ext4_file_operations;
4852 ext4_set_aops(inode);
4853 } else if (S_ISDIR(inode->i_mode)) {
4854 inode->i_op = &ext4_dir_inode_operations;
4855 inode->i_fop = &ext4_dir_operations;
4856 } else if (S_ISLNK(inode->i_mode)) {
4857 if (ext4_encrypted_inode(inode)) {
4858 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4859 ext4_set_aops(inode);
4860 } else if (ext4_inode_is_fast_symlink(inode)) {
4861 inode->i_link = (char *)ei->i_data;
4862 inode->i_op = &ext4_fast_symlink_inode_operations;
4863 nd_terminate_link(ei->i_data, inode->i_size,
4864 sizeof(ei->i_data) - 1);
4865 } else {
4866 inode->i_op = &ext4_symlink_inode_operations;
4867 ext4_set_aops(inode);
4868 }
4869 inode_nohighmem(inode);
4870 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4871 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4872 inode->i_op = &ext4_special_inode_operations;
4873 if (raw_inode->i_block[0])
4874 init_special_inode(inode, inode->i_mode,
4875 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4876 else
4877 init_special_inode(inode, inode->i_mode,
4878 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4879 } else if (ino == EXT4_BOOT_LOADER_INO) {
4880 make_bad_inode(inode);
4881 } else {
4882 ret = -EFSCORRUPTED;
4883 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4884 goto bad_inode;
4885 }
4886 brelse(iloc.bh);
4887 ext4_set_inode_flags(inode);
4888
4889 unlock_new_inode(inode);
4890 return inode;
4891
4892 bad_inode:
4893 brelse(iloc.bh);
4894 iget_failed(inode);
4895 return ERR_PTR(ret);
4896 }
4897
4898 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4899 {
4900 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4901 return ERR_PTR(-EFSCORRUPTED);
4902 return ext4_iget(sb, ino);
4903 }
4904
4905 static int ext4_inode_blocks_set(handle_t *handle,
4906 struct ext4_inode *raw_inode,
4907 struct ext4_inode_info *ei)
4908 {
4909 struct inode *inode = &(ei->vfs_inode);
4910 u64 i_blocks = inode->i_blocks;
4911 struct super_block *sb = inode->i_sb;
4912
4913 if (i_blocks <= ~0U) {
4914 /*
4915 * i_blocks can be represented in a 32 bit variable
4916 * as multiple of 512 bytes
4917 */
4918 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4919 raw_inode->i_blocks_high = 0;
4920 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4921 return 0;
4922 }
4923 if (!ext4_has_feature_huge_file(sb))
4924 return -EFBIG;
4925
4926 if (i_blocks <= 0xffffffffffffULL) {
4927 /*
4928 * i_blocks can be represented in a 48 bit variable
4929 * as multiple of 512 bytes
4930 */
4931 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4932 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4933 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4934 } else {
4935 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4936 /* i_block is stored in file system block size */
4937 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4938 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4939 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4940 }
4941 return 0;
4942 }
4943
4944 struct other_inode {
4945 unsigned long orig_ino;
4946 struct ext4_inode *raw_inode;
4947 };
4948
4949 static int other_inode_match(struct inode * inode, unsigned long ino,
4950 void *data)
4951 {
4952 struct other_inode *oi = (struct other_inode *) data;
4953
4954 if ((inode->i_ino != ino) ||
4955 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4956 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4957 ((inode->i_state & I_DIRTY_TIME) == 0))
4958 return 0;
4959 spin_lock(&inode->i_lock);
4960 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4961 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4962 (inode->i_state & I_DIRTY_TIME)) {
4963 struct ext4_inode_info *ei = EXT4_I(inode);
4964
4965 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4966 spin_unlock(&inode->i_lock);
4967
4968 spin_lock(&ei->i_raw_lock);
4969 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4970 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4971 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4972 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4973 spin_unlock(&ei->i_raw_lock);
4974 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4975 return -1;
4976 }
4977 spin_unlock(&inode->i_lock);
4978 return -1;
4979 }
4980
4981 /*
4982 * Opportunistically update the other time fields for other inodes in
4983 * the same inode table block.
4984 */
4985 static void ext4_update_other_inodes_time(struct super_block *sb,
4986 unsigned long orig_ino, char *buf)
4987 {
4988 struct other_inode oi;
4989 unsigned long ino;
4990 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4991 int inode_size = EXT4_INODE_SIZE(sb);
4992
4993 oi.orig_ino = orig_ino;
4994 /*
4995 * Calculate the first inode in the inode table block. Inode
4996 * numbers are one-based. That is, the first inode in a block
4997 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4998 */
4999 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5000 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5001 if (ino == orig_ino)
5002 continue;
5003 oi.raw_inode = (struct ext4_inode *) buf;
5004 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5005 }
5006 }
5007
5008 /*
5009 * Post the struct inode info into an on-disk inode location in the
5010 * buffer-cache. This gobbles the caller's reference to the
5011 * buffer_head in the inode location struct.
5012 *
5013 * The caller must have write access to iloc->bh.
5014 */
5015 static int ext4_do_update_inode(handle_t *handle,
5016 struct inode *inode,
5017 struct ext4_iloc *iloc)
5018 {
5019 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5020 struct ext4_inode_info *ei = EXT4_I(inode);
5021 struct buffer_head *bh = iloc->bh;
5022 struct super_block *sb = inode->i_sb;
5023 int err = 0, rc, block;
5024 int need_datasync = 0, set_large_file = 0;
5025 uid_t i_uid;
5026 gid_t i_gid;
5027 projid_t i_projid;
5028
5029 spin_lock(&ei->i_raw_lock);
5030
5031 /* For fields not tracked in the in-memory inode,
5032 * initialise them to zero for new inodes. */
5033 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5034 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5035
5036 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5037 i_uid = i_uid_read(inode);
5038 i_gid = i_gid_read(inode);
5039 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5040 if (!(test_opt(inode->i_sb, NO_UID32))) {
5041 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5042 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5043 /*
5044 * Fix up interoperability with old kernels. Otherwise, old inodes get
5045 * re-used with the upper 16 bits of the uid/gid intact
5046 */
5047 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5048 raw_inode->i_uid_high = 0;
5049 raw_inode->i_gid_high = 0;
5050 } else {
5051 raw_inode->i_uid_high =
5052 cpu_to_le16(high_16_bits(i_uid));
5053 raw_inode->i_gid_high =
5054 cpu_to_le16(high_16_bits(i_gid));
5055 }
5056 } else {
5057 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5058 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5059 raw_inode->i_uid_high = 0;
5060 raw_inode->i_gid_high = 0;
5061 }
5062 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5063
5064 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5065 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5066 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5067 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5068
5069 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5070 if (err) {
5071 spin_unlock(&ei->i_raw_lock);
5072 goto out_brelse;
5073 }
5074 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5075 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5076 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5077 raw_inode->i_file_acl_high =
5078 cpu_to_le16(ei->i_file_acl >> 32);
5079 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5080 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5081 ext4_isize_set(raw_inode, ei->i_disksize);
5082 need_datasync = 1;
5083 }
5084 if (ei->i_disksize > 0x7fffffffULL) {
5085 if (!ext4_has_feature_large_file(sb) ||
5086 EXT4_SB(sb)->s_es->s_rev_level ==
5087 cpu_to_le32(EXT4_GOOD_OLD_REV))
5088 set_large_file = 1;
5089 }
5090 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5091 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5092 if (old_valid_dev(inode->i_rdev)) {
5093 raw_inode->i_block[0] =
5094 cpu_to_le32(old_encode_dev(inode->i_rdev));
5095 raw_inode->i_block[1] = 0;
5096 } else {
5097 raw_inode->i_block[0] = 0;
5098 raw_inode->i_block[1] =
5099 cpu_to_le32(new_encode_dev(inode->i_rdev));
5100 raw_inode->i_block[2] = 0;
5101 }
5102 } else if (!ext4_has_inline_data(inode)) {
5103 for (block = 0; block < EXT4_N_BLOCKS; block++)
5104 raw_inode->i_block[block] = ei->i_data[block];
5105 }
5106
5107 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5108 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5109 if (ei->i_extra_isize) {
5110 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5111 raw_inode->i_version_hi =
5112 cpu_to_le32(inode->i_version >> 32);
5113 raw_inode->i_extra_isize =
5114 cpu_to_le16(ei->i_extra_isize);
5115 }
5116 }
5117
5118 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5119 i_projid != EXT4_DEF_PROJID);
5120
5121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5122 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5123 raw_inode->i_projid = cpu_to_le32(i_projid);
5124
5125 ext4_inode_csum_set(inode, raw_inode, ei);
5126 spin_unlock(&ei->i_raw_lock);
5127 if (inode->i_sb->s_flags & MS_LAZYTIME)
5128 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5129 bh->b_data);
5130
5131 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5132 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5133 if (!err)
5134 err = rc;
5135 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5136 if (set_large_file) {
5137 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5138 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5139 if (err)
5140 goto out_brelse;
5141 ext4_update_dynamic_rev(sb);
5142 ext4_set_feature_large_file(sb);
5143 ext4_handle_sync(handle);
5144 err = ext4_handle_dirty_super(handle, sb);
5145 }
5146 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5147 out_brelse:
5148 brelse(bh);
5149 ext4_std_error(inode->i_sb, err);
5150 return err;
5151 }
5152
5153 /*
5154 * ext4_write_inode()
5155 *
5156 * We are called from a few places:
5157 *
5158 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5159 * Here, there will be no transaction running. We wait for any running
5160 * transaction to commit.
5161 *
5162 * - Within flush work (sys_sync(), kupdate and such).
5163 * We wait on commit, if told to.
5164 *
5165 * - Within iput_final() -> write_inode_now()
5166 * We wait on commit, if told to.
5167 *
5168 * In all cases it is actually safe for us to return without doing anything,
5169 * because the inode has been copied into a raw inode buffer in
5170 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5171 * writeback.
5172 *
5173 * Note that we are absolutely dependent upon all inode dirtiers doing the
5174 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5175 * which we are interested.
5176 *
5177 * It would be a bug for them to not do this. The code:
5178 *
5179 * mark_inode_dirty(inode)
5180 * stuff();
5181 * inode->i_size = expr;
5182 *
5183 * is in error because write_inode() could occur while `stuff()' is running,
5184 * and the new i_size will be lost. Plus the inode will no longer be on the
5185 * superblock's dirty inode list.
5186 */
5187 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5188 {
5189 int err;
5190
5191 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5192 return 0;
5193
5194 if (EXT4_SB(inode->i_sb)->s_journal) {
5195 if (ext4_journal_current_handle()) {
5196 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5197 dump_stack();
5198 return -EIO;
5199 }
5200
5201 /*
5202 * No need to force transaction in WB_SYNC_NONE mode. Also
5203 * ext4_sync_fs() will force the commit after everything is
5204 * written.
5205 */
5206 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5207 return 0;
5208
5209 err = ext4_force_commit(inode->i_sb);
5210 } else {
5211 struct ext4_iloc iloc;
5212
5213 err = __ext4_get_inode_loc(inode, &iloc, 0);
5214 if (err)
5215 return err;
5216 /*
5217 * sync(2) will flush the whole buffer cache. No need to do
5218 * it here separately for each inode.
5219 */
5220 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5221 sync_dirty_buffer(iloc.bh);
5222 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5223 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5224 "IO error syncing inode");
5225 err = -EIO;
5226 }
5227 brelse(iloc.bh);
5228 }
5229 return err;
5230 }
5231
5232 /*
5233 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5234 * buffers that are attached to a page stradding i_size and are undergoing
5235 * commit. In that case we have to wait for commit to finish and try again.
5236 */
5237 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5238 {
5239 struct page *page;
5240 unsigned offset;
5241 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5242 tid_t commit_tid = 0;
5243 int ret;
5244
5245 offset = inode->i_size & (PAGE_SIZE - 1);
5246 /*
5247 * All buffers in the last page remain valid? Then there's nothing to
5248 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5249 * blocksize case
5250 */
5251 if (offset > PAGE_SIZE - i_blocksize(inode))
5252 return;
5253 while (1) {
5254 page = find_lock_page(inode->i_mapping,
5255 inode->i_size >> PAGE_SHIFT);
5256 if (!page)
5257 return;
5258 ret = __ext4_journalled_invalidatepage(page, offset,
5259 PAGE_SIZE - offset);
5260 unlock_page(page);
5261 put_page(page);
5262 if (ret != -EBUSY)
5263 return;
5264 commit_tid = 0;
5265 read_lock(&journal->j_state_lock);
5266 if (journal->j_committing_transaction)
5267 commit_tid = journal->j_committing_transaction->t_tid;
5268 read_unlock(&journal->j_state_lock);
5269 if (commit_tid)
5270 jbd2_log_wait_commit(journal, commit_tid);
5271 }
5272 }
5273
5274 /*
5275 * ext4_setattr()
5276 *
5277 * Called from notify_change.
5278 *
5279 * We want to trap VFS attempts to truncate the file as soon as
5280 * possible. In particular, we want to make sure that when the VFS
5281 * shrinks i_size, we put the inode on the orphan list and modify
5282 * i_disksize immediately, so that during the subsequent flushing of
5283 * dirty pages and freeing of disk blocks, we can guarantee that any
5284 * commit will leave the blocks being flushed in an unused state on
5285 * disk. (On recovery, the inode will get truncated and the blocks will
5286 * be freed, so we have a strong guarantee that no future commit will
5287 * leave these blocks visible to the user.)
5288 *
5289 * Another thing we have to assure is that if we are in ordered mode
5290 * and inode is still attached to the committing transaction, we must
5291 * we start writeout of all the dirty pages which are being truncated.
5292 * This way we are sure that all the data written in the previous
5293 * transaction are already on disk (truncate waits for pages under
5294 * writeback).
5295 *
5296 * Called with inode->i_mutex down.
5297 */
5298 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5299 {
5300 struct inode *inode = d_inode(dentry);
5301 int error, rc = 0;
5302 int orphan = 0;
5303 const unsigned int ia_valid = attr->ia_valid;
5304
5305 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5306 return -EIO;
5307
5308 error = setattr_prepare(dentry, attr);
5309 if (error)
5310 return error;
5311
5312 if (is_quota_modification(inode, attr)) {
5313 error = dquot_initialize(inode);
5314 if (error)
5315 return error;
5316 }
5317 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5318 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5319 handle_t *handle;
5320
5321 /* (user+group)*(old+new) structure, inode write (sb,
5322 * inode block, ? - but truncate inode update has it) */
5323 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5324 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5325 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5326 if (IS_ERR(handle)) {
5327 error = PTR_ERR(handle);
5328 goto err_out;
5329 }
5330
5331 /* dquot_transfer() calls back ext4_get_inode_usage() which
5332 * counts xattr inode references.
5333 */
5334 down_read(&EXT4_I(inode)->xattr_sem);
5335 error = dquot_transfer(inode, attr);
5336 up_read(&EXT4_I(inode)->xattr_sem);
5337
5338 if (error) {
5339 ext4_journal_stop(handle);
5340 return error;
5341 }
5342 /* Update corresponding info in inode so that everything is in
5343 * one transaction */
5344 if (attr->ia_valid & ATTR_UID)
5345 inode->i_uid = attr->ia_uid;
5346 if (attr->ia_valid & ATTR_GID)
5347 inode->i_gid = attr->ia_gid;
5348 error = ext4_mark_inode_dirty(handle, inode);
5349 ext4_journal_stop(handle);
5350 }
5351
5352 if (attr->ia_valid & ATTR_SIZE) {
5353 handle_t *handle;
5354 loff_t oldsize = inode->i_size;
5355 int shrink = (attr->ia_size <= inode->i_size);
5356
5357 if (ext4_encrypted_inode(inode)) {
5358 error = fscrypt_get_encryption_info(inode);
5359 if (error)
5360 return error;
5361 if (!fscrypt_has_encryption_key(inode))
5362 return -ENOKEY;
5363 }
5364
5365 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5367
5368 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5369 return -EFBIG;
5370 }
5371 if (!S_ISREG(inode->i_mode))
5372 return -EINVAL;
5373
5374 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5375 inode_inc_iversion(inode);
5376
5377 if (ext4_should_order_data(inode) &&
5378 (attr->ia_size < inode->i_size)) {
5379 error = ext4_begin_ordered_truncate(inode,
5380 attr->ia_size);
5381 if (error)
5382 goto err_out;
5383 }
5384 if (attr->ia_size != inode->i_size) {
5385 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5386 if (IS_ERR(handle)) {
5387 error = PTR_ERR(handle);
5388 goto err_out;
5389 }
5390 if (ext4_handle_valid(handle) && shrink) {
5391 error = ext4_orphan_add(handle, inode);
5392 orphan = 1;
5393 }
5394 /*
5395 * Update c/mtime on truncate up, ext4_truncate() will
5396 * update c/mtime in shrink case below
5397 */
5398 if (!shrink) {
5399 inode->i_mtime = current_time(inode);
5400 inode->i_ctime = inode->i_mtime;
5401 }
5402 down_write(&EXT4_I(inode)->i_data_sem);
5403 EXT4_I(inode)->i_disksize = attr->ia_size;
5404 rc = ext4_mark_inode_dirty(handle, inode);
5405 if (!error)
5406 error = rc;
5407 /*
5408 * We have to update i_size under i_data_sem together
5409 * with i_disksize to avoid races with writeback code
5410 * running ext4_wb_update_i_disksize().
5411 */
5412 if (!error)
5413 i_size_write(inode, attr->ia_size);
5414 up_write(&EXT4_I(inode)->i_data_sem);
5415 ext4_journal_stop(handle);
5416 if (error) {
5417 if (orphan)
5418 ext4_orphan_del(NULL, inode);
5419 goto err_out;
5420 }
5421 }
5422 if (!shrink)
5423 pagecache_isize_extended(inode, oldsize, inode->i_size);
5424
5425 /*
5426 * Blocks are going to be removed from the inode. Wait
5427 * for dio in flight. Temporarily disable
5428 * dioread_nolock to prevent livelock.
5429 */
5430 if (orphan) {
5431 if (!ext4_should_journal_data(inode)) {
5432 ext4_inode_block_unlocked_dio(inode);
5433 inode_dio_wait(inode);
5434 ext4_inode_resume_unlocked_dio(inode);
5435 } else
5436 ext4_wait_for_tail_page_commit(inode);
5437 }
5438 down_write(&EXT4_I(inode)->i_mmap_sem);
5439 /*
5440 * Truncate pagecache after we've waited for commit
5441 * in data=journal mode to make pages freeable.
5442 */
5443 truncate_pagecache(inode, inode->i_size);
5444 if (shrink) {
5445 rc = ext4_truncate(inode);
5446 if (rc)
5447 error = rc;
5448 }
5449 up_write(&EXT4_I(inode)->i_mmap_sem);
5450 }
5451
5452 if (!error) {
5453 setattr_copy(inode, attr);
5454 mark_inode_dirty(inode);
5455 }
5456
5457 /*
5458 * If the call to ext4_truncate failed to get a transaction handle at
5459 * all, we need to clean up the in-core orphan list manually.
5460 */
5461 if (orphan && inode->i_nlink)
5462 ext4_orphan_del(NULL, inode);
5463
5464 if (!error && (ia_valid & ATTR_MODE))
5465 rc = posix_acl_chmod(inode, inode->i_mode);
5466
5467 err_out:
5468 ext4_std_error(inode->i_sb, error);
5469 if (!error)
5470 error = rc;
5471 return error;
5472 }
5473
5474 int ext4_getattr(const struct path *path, struct kstat *stat,
5475 u32 request_mask, unsigned int query_flags)
5476 {
5477 struct inode *inode = d_inode(path->dentry);
5478 struct ext4_inode *raw_inode;
5479 struct ext4_inode_info *ei = EXT4_I(inode);
5480 unsigned int flags;
5481
5482 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5483 stat->result_mask |= STATX_BTIME;
5484 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5485 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5486 }
5487
5488 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5489 if (flags & EXT4_APPEND_FL)
5490 stat->attributes |= STATX_ATTR_APPEND;
5491 if (flags & EXT4_COMPR_FL)
5492 stat->attributes |= STATX_ATTR_COMPRESSED;
5493 if (flags & EXT4_ENCRYPT_FL)
5494 stat->attributes |= STATX_ATTR_ENCRYPTED;
5495 if (flags & EXT4_IMMUTABLE_FL)
5496 stat->attributes |= STATX_ATTR_IMMUTABLE;
5497 if (flags & EXT4_NODUMP_FL)
5498 stat->attributes |= STATX_ATTR_NODUMP;
5499
5500 stat->attributes_mask |= (STATX_ATTR_APPEND |
5501 STATX_ATTR_COMPRESSED |
5502 STATX_ATTR_ENCRYPTED |
5503 STATX_ATTR_IMMUTABLE |
5504 STATX_ATTR_NODUMP);
5505
5506 generic_fillattr(inode, stat);
5507 return 0;
5508 }
5509
5510 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5511 u32 request_mask, unsigned int query_flags)
5512 {
5513 struct inode *inode = d_inode(path->dentry);
5514 u64 delalloc_blocks;
5515
5516 ext4_getattr(path, stat, request_mask, query_flags);
5517
5518 /*
5519 * If there is inline data in the inode, the inode will normally not
5520 * have data blocks allocated (it may have an external xattr block).
5521 * Report at least one sector for such files, so tools like tar, rsync,
5522 * others don't incorrectly think the file is completely sparse.
5523 */
5524 if (unlikely(ext4_has_inline_data(inode)))
5525 stat->blocks += (stat->size + 511) >> 9;
5526
5527 /*
5528 * We can't update i_blocks if the block allocation is delayed
5529 * otherwise in the case of system crash before the real block
5530 * allocation is done, we will have i_blocks inconsistent with
5531 * on-disk file blocks.
5532 * We always keep i_blocks updated together with real
5533 * allocation. But to not confuse with user, stat
5534 * will return the blocks that include the delayed allocation
5535 * blocks for this file.
5536 */
5537 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5538 EXT4_I(inode)->i_reserved_data_blocks);
5539 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5540 return 0;
5541 }
5542
5543 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5544 int pextents)
5545 {
5546 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5547 return ext4_ind_trans_blocks(inode, lblocks);
5548 return ext4_ext_index_trans_blocks(inode, pextents);
5549 }
5550
5551 /*
5552 * Account for index blocks, block groups bitmaps and block group
5553 * descriptor blocks if modify datablocks and index blocks
5554 * worse case, the indexs blocks spread over different block groups
5555 *
5556 * If datablocks are discontiguous, they are possible to spread over
5557 * different block groups too. If they are contiguous, with flexbg,
5558 * they could still across block group boundary.
5559 *
5560 * Also account for superblock, inode, quota and xattr blocks
5561 */
5562 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5563 int pextents)
5564 {
5565 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5566 int gdpblocks;
5567 int idxblocks;
5568 int ret = 0;
5569
5570 /*
5571 * How many index blocks need to touch to map @lblocks logical blocks
5572 * to @pextents physical extents?
5573 */
5574 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5575
5576 ret = idxblocks;
5577
5578 /*
5579 * Now let's see how many group bitmaps and group descriptors need
5580 * to account
5581 */
5582 groups = idxblocks + pextents;
5583 gdpblocks = groups;
5584 if (groups > ngroups)
5585 groups = ngroups;
5586 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5587 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5588
5589 /* bitmaps and block group descriptor blocks */
5590 ret += groups + gdpblocks;
5591
5592 /* Blocks for super block, inode, quota and xattr blocks */
5593 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5594
5595 return ret;
5596 }
5597
5598 /*
5599 * Calculate the total number of credits to reserve to fit
5600 * the modification of a single pages into a single transaction,
5601 * which may include multiple chunks of block allocations.
5602 *
5603 * This could be called via ext4_write_begin()
5604 *
5605 * We need to consider the worse case, when
5606 * one new block per extent.
5607 */
5608 int ext4_writepage_trans_blocks(struct inode *inode)
5609 {
5610 int bpp = ext4_journal_blocks_per_page(inode);
5611 int ret;
5612
5613 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5614
5615 /* Account for data blocks for journalled mode */
5616 if (ext4_should_journal_data(inode))
5617 ret += bpp;
5618 return ret;
5619 }
5620
5621 /*
5622 * Calculate the journal credits for a chunk of data modification.
5623 *
5624 * This is called from DIO, fallocate or whoever calling
5625 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5626 *
5627 * journal buffers for data blocks are not included here, as DIO
5628 * and fallocate do no need to journal data buffers.
5629 */
5630 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5631 {
5632 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5633 }
5634
5635 /*
5636 * The caller must have previously called ext4_reserve_inode_write().
5637 * Give this, we know that the caller already has write access to iloc->bh.
5638 */
5639 int ext4_mark_iloc_dirty(handle_t *handle,
5640 struct inode *inode, struct ext4_iloc *iloc)
5641 {
5642 int err = 0;
5643
5644 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5645 return -EIO;
5646
5647 if (IS_I_VERSION(inode))
5648 inode_inc_iversion(inode);
5649
5650 /* the do_update_inode consumes one bh->b_count */
5651 get_bh(iloc->bh);
5652
5653 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5654 err = ext4_do_update_inode(handle, inode, iloc);
5655 put_bh(iloc->bh);
5656 return err;
5657 }
5658
5659 /*
5660 * On success, We end up with an outstanding reference count against
5661 * iloc->bh. This _must_ be cleaned up later.
5662 */
5663
5664 int
5665 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5666 struct ext4_iloc *iloc)
5667 {
5668 int err;
5669
5670 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5671 return -EIO;
5672
5673 err = ext4_get_inode_loc(inode, iloc);
5674 if (!err) {
5675 BUFFER_TRACE(iloc->bh, "get_write_access");
5676 err = ext4_journal_get_write_access(handle, iloc->bh);
5677 if (err) {
5678 brelse(iloc->bh);
5679 iloc->bh = NULL;
5680 }
5681 }
5682 ext4_std_error(inode->i_sb, err);
5683 return err;
5684 }
5685
5686 static int __ext4_expand_extra_isize(struct inode *inode,
5687 unsigned int new_extra_isize,
5688 struct ext4_iloc *iloc,
5689 handle_t *handle, int *no_expand)
5690 {
5691 struct ext4_inode *raw_inode;
5692 struct ext4_xattr_ibody_header *header;
5693 int error;
5694
5695 raw_inode = ext4_raw_inode(iloc);
5696
5697 header = IHDR(inode, raw_inode);
5698
5699 /* No extended attributes present */
5700 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5701 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5702 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5703 EXT4_I(inode)->i_extra_isize, 0,
5704 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5705 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5706 return 0;
5707 }
5708
5709 /* try to expand with EAs present */
5710 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5711 raw_inode, handle);
5712 if (error) {
5713 /*
5714 * Inode size expansion failed; don't try again
5715 */
5716 *no_expand = 1;
5717 }
5718
5719 return error;
5720 }
5721
5722 /*
5723 * Expand an inode by new_extra_isize bytes.
5724 * Returns 0 on success or negative error number on failure.
5725 */
5726 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5727 unsigned int new_extra_isize,
5728 struct ext4_iloc iloc,
5729 handle_t *handle)
5730 {
5731 int no_expand;
5732 int error;
5733
5734 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5735 return -EOVERFLOW;
5736
5737 /*
5738 * In nojournal mode, we can immediately attempt to expand
5739 * the inode. When journaled, we first need to obtain extra
5740 * buffer credits since we may write into the EA block
5741 * with this same handle. If journal_extend fails, then it will
5742 * only result in a minor loss of functionality for that inode.
5743 * If this is felt to be critical, then e2fsck should be run to
5744 * force a large enough s_min_extra_isize.
5745 */
5746 if (ext4_handle_valid(handle) &&
5747 jbd2_journal_extend(handle,
5748 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5749 return -ENOSPC;
5750
5751 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5752 return -EBUSY;
5753
5754 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5755 handle, &no_expand);
5756 ext4_write_unlock_xattr(inode, &no_expand);
5757
5758 return error;
5759 }
5760
5761 int ext4_expand_extra_isize(struct inode *inode,
5762 unsigned int new_extra_isize,
5763 struct ext4_iloc *iloc)
5764 {
5765 handle_t *handle;
5766 int no_expand;
5767 int error, rc;
5768
5769 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5770 brelse(iloc->bh);
5771 return -EOVERFLOW;
5772 }
5773
5774 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5775 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5776 if (IS_ERR(handle)) {
5777 error = PTR_ERR(handle);
5778 brelse(iloc->bh);
5779 return error;
5780 }
5781
5782 ext4_write_lock_xattr(inode, &no_expand);
5783
5784 BUFFER_TRACE(iloc.bh, "get_write_access");
5785 error = ext4_journal_get_write_access(handle, iloc->bh);
5786 if (error) {
5787 brelse(iloc->bh);
5788 goto out_stop;
5789 }
5790
5791 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5792 handle, &no_expand);
5793
5794 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5795 if (!error)
5796 error = rc;
5797
5798 ext4_write_unlock_xattr(inode, &no_expand);
5799 out_stop:
5800 ext4_journal_stop(handle);
5801 return error;
5802 }
5803
5804 /*
5805 * What we do here is to mark the in-core inode as clean with respect to inode
5806 * dirtiness (it may still be data-dirty).
5807 * This means that the in-core inode may be reaped by prune_icache
5808 * without having to perform any I/O. This is a very good thing,
5809 * because *any* task may call prune_icache - even ones which
5810 * have a transaction open against a different journal.
5811 *
5812 * Is this cheating? Not really. Sure, we haven't written the
5813 * inode out, but prune_icache isn't a user-visible syncing function.
5814 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5815 * we start and wait on commits.
5816 */
5817 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5818 {
5819 struct ext4_iloc iloc;
5820 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5821 int err;
5822
5823 might_sleep();
5824 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5825 err = ext4_reserve_inode_write(handle, inode, &iloc);
5826 if (err)
5827 return err;
5828
5829 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5830 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5831 iloc, handle);
5832
5833 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5834 }
5835
5836 /*
5837 * ext4_dirty_inode() is called from __mark_inode_dirty()
5838 *
5839 * We're really interested in the case where a file is being extended.
5840 * i_size has been changed by generic_commit_write() and we thus need
5841 * to include the updated inode in the current transaction.
5842 *
5843 * Also, dquot_alloc_block() will always dirty the inode when blocks
5844 * are allocated to the file.
5845 *
5846 * If the inode is marked synchronous, we don't honour that here - doing
5847 * so would cause a commit on atime updates, which we don't bother doing.
5848 * We handle synchronous inodes at the highest possible level.
5849 *
5850 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5851 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5852 * to copy into the on-disk inode structure are the timestamp files.
5853 */
5854 void ext4_dirty_inode(struct inode *inode, int flags)
5855 {
5856 handle_t *handle;
5857
5858 if (flags == I_DIRTY_TIME)
5859 return;
5860 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5861 if (IS_ERR(handle))
5862 goto out;
5863
5864 ext4_mark_inode_dirty(handle, inode);
5865
5866 ext4_journal_stop(handle);
5867 out:
5868 return;
5869 }
5870
5871 #if 0
5872 /*
5873 * Bind an inode's backing buffer_head into this transaction, to prevent
5874 * it from being flushed to disk early. Unlike
5875 * ext4_reserve_inode_write, this leaves behind no bh reference and
5876 * returns no iloc structure, so the caller needs to repeat the iloc
5877 * lookup to mark the inode dirty later.
5878 */
5879 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5880 {
5881 struct ext4_iloc iloc;
5882
5883 int err = 0;
5884 if (handle) {
5885 err = ext4_get_inode_loc(inode, &iloc);
5886 if (!err) {
5887 BUFFER_TRACE(iloc.bh, "get_write_access");
5888 err = jbd2_journal_get_write_access(handle, iloc.bh);
5889 if (!err)
5890 err = ext4_handle_dirty_metadata(handle,
5891 NULL,
5892 iloc.bh);
5893 brelse(iloc.bh);
5894 }
5895 }
5896 ext4_std_error(inode->i_sb, err);
5897 return err;
5898 }
5899 #endif
5900
5901 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5902 {
5903 journal_t *journal;
5904 handle_t *handle;
5905 int err;
5906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5907
5908 /*
5909 * We have to be very careful here: changing a data block's
5910 * journaling status dynamically is dangerous. If we write a
5911 * data block to the journal, change the status and then delete
5912 * that block, we risk forgetting to revoke the old log record
5913 * from the journal and so a subsequent replay can corrupt data.
5914 * So, first we make sure that the journal is empty and that
5915 * nobody is changing anything.
5916 */
5917
5918 journal = EXT4_JOURNAL(inode);
5919 if (!journal)
5920 return 0;
5921 if (is_journal_aborted(journal))
5922 return -EROFS;
5923
5924 /* Wait for all existing dio workers */
5925 ext4_inode_block_unlocked_dio(inode);
5926 inode_dio_wait(inode);
5927
5928 /*
5929 * Before flushing the journal and switching inode's aops, we have
5930 * to flush all dirty data the inode has. There can be outstanding
5931 * delayed allocations, there can be unwritten extents created by
5932 * fallocate or buffered writes in dioread_nolock mode covered by
5933 * dirty data which can be converted only after flushing the dirty
5934 * data (and journalled aops don't know how to handle these cases).
5935 */
5936 if (val) {
5937 down_write(&EXT4_I(inode)->i_mmap_sem);
5938 err = filemap_write_and_wait(inode->i_mapping);
5939 if (err < 0) {
5940 up_write(&EXT4_I(inode)->i_mmap_sem);
5941 ext4_inode_resume_unlocked_dio(inode);
5942 return err;
5943 }
5944 }
5945
5946 percpu_down_write(&sbi->s_journal_flag_rwsem);
5947 jbd2_journal_lock_updates(journal);
5948
5949 /*
5950 * OK, there are no updates running now, and all cached data is
5951 * synced to disk. We are now in a completely consistent state
5952 * which doesn't have anything in the journal, and we know that
5953 * no filesystem updates are running, so it is safe to modify
5954 * the inode's in-core data-journaling state flag now.
5955 */
5956
5957 if (val)
5958 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5959 else {
5960 err = jbd2_journal_flush(journal);
5961 if (err < 0) {
5962 jbd2_journal_unlock_updates(journal);
5963 percpu_up_write(&sbi->s_journal_flag_rwsem);
5964 ext4_inode_resume_unlocked_dio(inode);
5965 return err;
5966 }
5967 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5968 }
5969 ext4_set_aops(inode);
5970 /*
5971 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5972 * E.g. S_DAX may get cleared / set.
5973 */
5974 ext4_set_inode_flags(inode);
5975
5976 jbd2_journal_unlock_updates(journal);
5977 percpu_up_write(&sbi->s_journal_flag_rwsem);
5978
5979 if (val)
5980 up_write(&EXT4_I(inode)->i_mmap_sem);
5981 ext4_inode_resume_unlocked_dio(inode);
5982
5983 /* Finally we can mark the inode as dirty. */
5984
5985 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5986 if (IS_ERR(handle))
5987 return PTR_ERR(handle);
5988
5989 err = ext4_mark_inode_dirty(handle, inode);
5990 ext4_handle_sync(handle);
5991 ext4_journal_stop(handle);
5992 ext4_std_error(inode->i_sb, err);
5993
5994 return err;
5995 }
5996
5997 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5998 {
5999 return !buffer_mapped(bh);
6000 }
6001
6002 int ext4_page_mkwrite(struct vm_fault *vmf)
6003 {
6004 struct vm_area_struct *vma = vmf->vma;
6005 struct page *page = vmf->page;
6006 loff_t size;
6007 unsigned long len;
6008 int ret;
6009 struct file *file = vma->vm_file;
6010 struct inode *inode = file_inode(file);
6011 struct address_space *mapping = inode->i_mapping;
6012 handle_t *handle;
6013 get_block_t *get_block;
6014 int retries = 0;
6015
6016 sb_start_pagefault(inode->i_sb);
6017 file_update_time(vma->vm_file);
6018
6019 down_read(&EXT4_I(inode)->i_mmap_sem);
6020
6021 ret = ext4_convert_inline_data(inode);
6022 if (ret)
6023 goto out_ret;
6024
6025 /* Delalloc case is easy... */
6026 if (test_opt(inode->i_sb, DELALLOC) &&
6027 !ext4_should_journal_data(inode) &&
6028 !ext4_nonda_switch(inode->i_sb)) {
6029 do {
6030 ret = block_page_mkwrite(vma, vmf,
6031 ext4_da_get_block_prep);
6032 } while (ret == -ENOSPC &&
6033 ext4_should_retry_alloc(inode->i_sb, &retries));
6034 goto out_ret;
6035 }
6036
6037 lock_page(page);
6038 size = i_size_read(inode);
6039 /* Page got truncated from under us? */
6040 if (page->mapping != mapping || page_offset(page) > size) {
6041 unlock_page(page);
6042 ret = VM_FAULT_NOPAGE;
6043 goto out;
6044 }
6045
6046 if (page->index == size >> PAGE_SHIFT)
6047 len = size & ~PAGE_MASK;
6048 else
6049 len = PAGE_SIZE;
6050 /*
6051 * Return if we have all the buffers mapped. This avoids the need to do
6052 * journal_start/journal_stop which can block and take a long time
6053 */
6054 if (page_has_buffers(page)) {
6055 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6056 0, len, NULL,
6057 ext4_bh_unmapped)) {
6058 /* Wait so that we don't change page under IO */
6059 wait_for_stable_page(page);
6060 ret = VM_FAULT_LOCKED;
6061 goto out;
6062 }
6063 }
6064 unlock_page(page);
6065 /* OK, we need to fill the hole... */
6066 if (ext4_should_dioread_nolock(inode))
6067 get_block = ext4_get_block_unwritten;
6068 else
6069 get_block = ext4_get_block;
6070 retry_alloc:
6071 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6072 ext4_writepage_trans_blocks(inode));
6073 if (IS_ERR(handle)) {
6074 ret = VM_FAULT_SIGBUS;
6075 goto out;
6076 }
6077 ret = block_page_mkwrite(vma, vmf, get_block);
6078 if (!ret && ext4_should_journal_data(inode)) {
6079 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6080 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6081 unlock_page(page);
6082 ret = VM_FAULT_SIGBUS;
6083 ext4_journal_stop(handle);
6084 goto out;
6085 }
6086 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6087 }
6088 ext4_journal_stop(handle);
6089 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6090 goto retry_alloc;
6091 out_ret:
6092 ret = block_page_mkwrite_return(ret);
6093 out:
6094 up_read(&EXT4_I(inode)->i_mmap_sem);
6095 sb_end_pagefault(inode->i_sb);
6096 return ret;
6097 }
6098
6099 int ext4_filemap_fault(struct vm_fault *vmf)
6100 {
6101 struct inode *inode = file_inode(vmf->vma->vm_file);
6102 int err;
6103
6104 down_read(&EXT4_I(inode)->i_mmap_sem);
6105 err = filemap_fault(vmf);
6106 up_read(&EXT4_I(inode)->i_mmap_sem);
6107
6108 return err;
6109 }
6110
6111 /*
6112 * Find the first extent at or after @lblk in an inode that is not a hole.
6113 * Search for @map_len blocks at most. The extent is returned in @result.
6114 *
6115 * The function returns 1 if we found an extent. The function returns 0 in
6116 * case there is no extent at or after @lblk and in that case also sets
6117 * @result->es_len to 0. In case of error, the error code is returned.
6118 */
6119 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6120 unsigned int map_len, struct extent_status *result)
6121 {
6122 struct ext4_map_blocks map;
6123 struct extent_status es = {};
6124 int ret;
6125
6126 map.m_lblk = lblk;
6127 map.m_len = map_len;
6128
6129 /*
6130 * For non-extent based files this loop may iterate several times since
6131 * we do not determine full hole size.
6132 */
6133 while (map.m_len > 0) {
6134 ret = ext4_map_blocks(NULL, inode, &map, 0);
6135 if (ret < 0)
6136 return ret;
6137 /* There's extent covering m_lblk? Just return it. */
6138 if (ret > 0) {
6139 int status;
6140
6141 ext4_es_store_pblock(result, map.m_pblk);
6142 result->es_lblk = map.m_lblk;
6143 result->es_len = map.m_len;
6144 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6145 status = EXTENT_STATUS_UNWRITTEN;
6146 else
6147 status = EXTENT_STATUS_WRITTEN;
6148 ext4_es_store_status(result, status);
6149 return 1;
6150 }
6151 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6152 map.m_lblk + map.m_len - 1,
6153 &es);
6154 /* Is delalloc data before next block in extent tree? */
6155 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6156 ext4_lblk_t offset = 0;
6157
6158 if (es.es_lblk < lblk)
6159 offset = lblk - es.es_lblk;
6160 result->es_lblk = es.es_lblk + offset;
6161 ext4_es_store_pblock(result,
6162 ext4_es_pblock(&es) + offset);
6163 result->es_len = es.es_len - offset;
6164 ext4_es_store_status(result, ext4_es_status(&es));
6165
6166 return 1;
6167 }
6168 /* There's a hole at m_lblk, advance us after it */
6169 map.m_lblk += map.m_len;
6170 map_len -= map.m_len;
6171 map.m_len = map_len;
6172 cond_resched();
6173 }
6174 result->es_len = 0;
6175 return 0;
6176 }