]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
ext4: xattr inode deduplication
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 #include <linux/iomap.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192 int extra_credits = 3;
193 struct ext4_xattr_inode_array *ea_inode_array = NULL;
194
195 trace_ext4_evict_inode(inode);
196
197 if (inode->i_nlink) {
198 /*
199 * When journalling data dirty buffers are tracked only in the
200 * journal. So although mm thinks everything is clean and
201 * ready for reaping the inode might still have some pages to
202 * write in the running transaction or waiting to be
203 * checkpointed. Thus calling jbd2_journal_invalidatepage()
204 * (via truncate_inode_pages()) to discard these buffers can
205 * cause data loss. Also even if we did not discard these
206 * buffers, we would have no way to find them after the inode
207 * is reaped and thus user could see stale data if he tries to
208 * read them before the transaction is checkpointed. So be
209 * careful and force everything to disk here... We use
210 * ei->i_datasync_tid to store the newest transaction
211 * containing inode's data.
212 *
213 * Note that directories do not have this problem because they
214 * don't use page cache.
215 */
216 if (inode->i_ino != EXT4_JOURNAL_INO &&
217 ext4_should_journal_data(inode) &&
218 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
219 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
220 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
221
222 jbd2_complete_transaction(journal, commit_tid);
223 filemap_write_and_wait(&inode->i_data);
224 }
225 truncate_inode_pages_final(&inode->i_data);
226
227 goto no_delete;
228 }
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232 dquot_initialize(inode);
233
234 if (ext4_should_order_data(inode))
235 ext4_begin_ordered_truncate(inode, 0);
236 truncate_inode_pages_final(&inode->i_data);
237
238 /*
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
241 */
242 sb_start_intwrite(inode->i_sb);
243
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
248 ext4_blocks_for_truncate(inode)+extra_credits);
249 if (IS_ERR(handle)) {
250 ext4_std_error(inode->i_sb, PTR_ERR(handle));
251 /*
252 * If we're going to skip the normal cleanup, we still need to
253 * make sure that the in-core orphan linked list is properly
254 * cleaned up.
255 */
256 ext4_orphan_del(NULL, inode);
257 sb_end_intwrite(inode->i_sb);
258 goto no_delete;
259 }
260
261 if (IS_SYNC(inode))
262 ext4_handle_sync(handle);
263 inode->i_size = 0;
264 err = ext4_mark_inode_dirty(handle, inode);
265 if (err) {
266 ext4_warning(inode->i_sb,
267 "couldn't mark inode dirty (err %d)", err);
268 goto stop_handle;
269 }
270 if (inode->i_blocks) {
271 err = ext4_truncate(inode);
272 if (err) {
273 ext4_error(inode->i_sb,
274 "couldn't truncate inode %lu (err %d)",
275 inode->i_ino, err);
276 goto stop_handle;
277 }
278 }
279
280 /* Remove xattr references. */
281 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
282 extra_credits);
283 if (err) {
284 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
285 stop_handle:
286 ext4_journal_stop(handle);
287 ext4_orphan_del(NULL, inode);
288 sb_end_intwrite(inode->i_sb);
289 ext4_xattr_inode_array_free(ea_inode_array);
290 goto no_delete;
291 }
292
293 /*
294 * Kill off the orphan record which ext4_truncate created.
295 * AKPM: I think this can be inside the above `if'.
296 * Note that ext4_orphan_del() has to be able to cope with the
297 * deletion of a non-existent orphan - this is because we don't
298 * know if ext4_truncate() actually created an orphan record.
299 * (Well, we could do this if we need to, but heck - it works)
300 */
301 ext4_orphan_del(handle, inode);
302 EXT4_I(inode)->i_dtime = get_seconds();
303
304 /*
305 * One subtle ordering requirement: if anything has gone wrong
306 * (transaction abort, IO errors, whatever), then we can still
307 * do these next steps (the fs will already have been marked as
308 * having errors), but we can't free the inode if the mark_dirty
309 * fails.
310 */
311 if (ext4_mark_inode_dirty(handle, inode))
312 /* If that failed, just do the required in-core inode clear. */
313 ext4_clear_inode(inode);
314 else
315 ext4_free_inode(handle, inode);
316 ext4_journal_stop(handle);
317 sb_end_intwrite(inode->i_sb);
318 ext4_xattr_inode_array_free(ea_inode_array);
319 return;
320 no_delete:
321 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
322 }
323
324 #ifdef CONFIG_QUOTA
325 qsize_t *ext4_get_reserved_space(struct inode *inode)
326 {
327 return &EXT4_I(inode)->i_reserved_quota;
328 }
329 #endif
330
331 /*
332 * Called with i_data_sem down, which is important since we can call
333 * ext4_discard_preallocations() from here.
334 */
335 void ext4_da_update_reserve_space(struct inode *inode,
336 int used, int quota_claim)
337 {
338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
339 struct ext4_inode_info *ei = EXT4_I(inode);
340
341 spin_lock(&ei->i_block_reservation_lock);
342 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
343 if (unlikely(used > ei->i_reserved_data_blocks)) {
344 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
345 "with only %d reserved data blocks",
346 __func__, inode->i_ino, used,
347 ei->i_reserved_data_blocks);
348 WARN_ON(1);
349 used = ei->i_reserved_data_blocks;
350 }
351
352 /* Update per-inode reservations */
353 ei->i_reserved_data_blocks -= used;
354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
355
356 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
357
358 /* Update quota subsystem for data blocks */
359 if (quota_claim)
360 dquot_claim_block(inode, EXT4_C2B(sbi, used));
361 else {
362 /*
363 * We did fallocate with an offset that is already delayed
364 * allocated. So on delayed allocated writeback we should
365 * not re-claim the quota for fallocated blocks.
366 */
367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368 }
369
370 /*
371 * If we have done all the pending block allocations and if
372 * there aren't any writers on the inode, we can discard the
373 * inode's preallocations.
374 */
375 if ((ei->i_reserved_data_blocks == 0) &&
376 (atomic_read(&inode->i_writecount) == 0))
377 ext4_discard_preallocations(inode);
378 }
379
380 static int __check_block_validity(struct inode *inode, const char *func,
381 unsigned int line,
382 struct ext4_map_blocks *map)
383 {
384 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
385 map->m_len)) {
386 ext4_error_inode(inode, func, line, map->m_pblk,
387 "lblock %lu mapped to illegal pblock "
388 "(length %d)", (unsigned long) map->m_lblk,
389 map->m_len);
390 return -EFSCORRUPTED;
391 }
392 return 0;
393 }
394
395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
396 ext4_lblk_t len)
397 {
398 int ret;
399
400 if (ext4_encrypted_inode(inode))
401 return fscrypt_zeroout_range(inode, lblk, pblk, len);
402
403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
404 if (ret > 0)
405 ret = 0;
406
407 return ret;
408 }
409
410 #define check_block_validity(inode, map) \
411 __check_block_validity((inode), __func__, __LINE__, (map))
412
413 #ifdef ES_AGGRESSIVE_TEST
414 static void ext4_map_blocks_es_recheck(handle_t *handle,
415 struct inode *inode,
416 struct ext4_map_blocks *es_map,
417 struct ext4_map_blocks *map,
418 int flags)
419 {
420 int retval;
421
422 map->m_flags = 0;
423 /*
424 * There is a race window that the result is not the same.
425 * e.g. xfstests #223 when dioread_nolock enables. The reason
426 * is that we lookup a block mapping in extent status tree with
427 * out taking i_data_sem. So at the time the unwritten extent
428 * could be converted.
429 */
430 down_read(&EXT4_I(inode)->i_data_sem);
431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
432 retval = ext4_ext_map_blocks(handle, inode, map, flags &
433 EXT4_GET_BLOCKS_KEEP_SIZE);
434 } else {
435 retval = ext4_ind_map_blocks(handle, inode, map, flags &
436 EXT4_GET_BLOCKS_KEEP_SIZE);
437 }
438 up_read((&EXT4_I(inode)->i_data_sem));
439
440 /*
441 * We don't check m_len because extent will be collpased in status
442 * tree. So the m_len might not equal.
443 */
444 if (es_map->m_lblk != map->m_lblk ||
445 es_map->m_flags != map->m_flags ||
446 es_map->m_pblk != map->m_pblk) {
447 printk("ES cache assertion failed for inode: %lu "
448 "es_cached ex [%d/%d/%llu/%x] != "
449 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
450 inode->i_ino, es_map->m_lblk, es_map->m_len,
451 es_map->m_pblk, es_map->m_flags, map->m_lblk,
452 map->m_len, map->m_pblk, map->m_flags,
453 retval, flags);
454 }
455 }
456 #endif /* ES_AGGRESSIVE_TEST */
457
458 /*
459 * The ext4_map_blocks() function tries to look up the requested blocks,
460 * and returns if the blocks are already mapped.
461 *
462 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
463 * and store the allocated blocks in the result buffer head and mark it
464 * mapped.
465 *
466 * If file type is extents based, it will call ext4_ext_map_blocks(),
467 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
468 * based files
469 *
470 * On success, it returns the number of blocks being mapped or allocated. if
471 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
472 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
473 *
474 * It returns 0 if plain look up failed (blocks have not been allocated), in
475 * that case, @map is returned as unmapped but we still do fill map->m_len to
476 * indicate the length of a hole starting at map->m_lblk.
477 *
478 * It returns the error in case of allocation failure.
479 */
480 int ext4_map_blocks(handle_t *handle, struct inode *inode,
481 struct ext4_map_blocks *map, int flags)
482 {
483 struct extent_status es;
484 int retval;
485 int ret = 0;
486 #ifdef ES_AGGRESSIVE_TEST
487 struct ext4_map_blocks orig_map;
488
489 memcpy(&orig_map, map, sizeof(*map));
490 #endif
491
492 map->m_flags = 0;
493 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
494 "logical block %lu\n", inode->i_ino, flags, map->m_len,
495 (unsigned long) map->m_lblk);
496
497 /*
498 * ext4_map_blocks returns an int, and m_len is an unsigned int
499 */
500 if (unlikely(map->m_len > INT_MAX))
501 map->m_len = INT_MAX;
502
503 /* We can handle the block number less than EXT_MAX_BLOCKS */
504 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
505 return -EFSCORRUPTED;
506
507 /* Lookup extent status tree firstly */
508 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
509 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
510 map->m_pblk = ext4_es_pblock(&es) +
511 map->m_lblk - es.es_lblk;
512 map->m_flags |= ext4_es_is_written(&es) ?
513 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
514 retval = es.es_len - (map->m_lblk - es.es_lblk);
515 if (retval > map->m_len)
516 retval = map->m_len;
517 map->m_len = retval;
518 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
519 map->m_pblk = 0;
520 retval = es.es_len - (map->m_lblk - es.es_lblk);
521 if (retval > map->m_len)
522 retval = map->m_len;
523 map->m_len = retval;
524 retval = 0;
525 } else {
526 BUG_ON(1);
527 }
528 #ifdef ES_AGGRESSIVE_TEST
529 ext4_map_blocks_es_recheck(handle, inode, map,
530 &orig_map, flags);
531 #endif
532 goto found;
533 }
534
535 /*
536 * Try to see if we can get the block without requesting a new
537 * file system block.
538 */
539 down_read(&EXT4_I(inode)->i_data_sem);
540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541 retval = ext4_ext_map_blocks(handle, inode, map, flags &
542 EXT4_GET_BLOCKS_KEEP_SIZE);
543 } else {
544 retval = ext4_ind_map_blocks(handle, inode, map, flags &
545 EXT4_GET_BLOCKS_KEEP_SIZE);
546 }
547 if (retval > 0) {
548 unsigned int status;
549
550 if (unlikely(retval != map->m_len)) {
551 ext4_warning(inode->i_sb,
552 "ES len assertion failed for inode "
553 "%lu: retval %d != map->m_len %d",
554 inode->i_ino, retval, map->m_len);
555 WARN_ON(1);
556 }
557
558 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
559 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
560 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
561 !(status & EXTENT_STATUS_WRITTEN) &&
562 ext4_find_delalloc_range(inode, map->m_lblk,
563 map->m_lblk + map->m_len - 1))
564 status |= EXTENT_STATUS_DELAYED;
565 ret = ext4_es_insert_extent(inode, map->m_lblk,
566 map->m_len, map->m_pblk, status);
567 if (ret < 0)
568 retval = ret;
569 }
570 up_read((&EXT4_I(inode)->i_data_sem));
571
572 found:
573 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
574 ret = check_block_validity(inode, map);
575 if (ret != 0)
576 return ret;
577 }
578
579 /* If it is only a block(s) look up */
580 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
581 return retval;
582
583 /*
584 * Returns if the blocks have already allocated
585 *
586 * Note that if blocks have been preallocated
587 * ext4_ext_get_block() returns the create = 0
588 * with buffer head unmapped.
589 */
590 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
591 /*
592 * If we need to convert extent to unwritten
593 * we continue and do the actual work in
594 * ext4_ext_map_blocks()
595 */
596 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
597 return retval;
598
599 /*
600 * Here we clear m_flags because after allocating an new extent,
601 * it will be set again.
602 */
603 map->m_flags &= ~EXT4_MAP_FLAGS;
604
605 /*
606 * New blocks allocate and/or writing to unwritten extent
607 * will possibly result in updating i_data, so we take
608 * the write lock of i_data_sem, and call get_block()
609 * with create == 1 flag.
610 */
611 down_write(&EXT4_I(inode)->i_data_sem);
612
613 /*
614 * We need to check for EXT4 here because migrate
615 * could have changed the inode type in between
616 */
617 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
618 retval = ext4_ext_map_blocks(handle, inode, map, flags);
619 } else {
620 retval = ext4_ind_map_blocks(handle, inode, map, flags);
621
622 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
623 /*
624 * We allocated new blocks which will result in
625 * i_data's format changing. Force the migrate
626 * to fail by clearing migrate flags
627 */
628 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
629 }
630
631 /*
632 * Update reserved blocks/metadata blocks after successful
633 * block allocation which had been deferred till now. We don't
634 * support fallocate for non extent files. So we can update
635 * reserve space here.
636 */
637 if ((retval > 0) &&
638 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
639 ext4_da_update_reserve_space(inode, retval, 1);
640 }
641
642 if (retval > 0) {
643 unsigned int status;
644
645 if (unlikely(retval != map->m_len)) {
646 ext4_warning(inode->i_sb,
647 "ES len assertion failed for inode "
648 "%lu: retval %d != map->m_len %d",
649 inode->i_ino, retval, map->m_len);
650 WARN_ON(1);
651 }
652
653 /*
654 * We have to zeroout blocks before inserting them into extent
655 * status tree. Otherwise someone could look them up there and
656 * use them before they are really zeroed. We also have to
657 * unmap metadata before zeroing as otherwise writeback can
658 * overwrite zeros with stale data from block device.
659 */
660 if (flags & EXT4_GET_BLOCKS_ZERO &&
661 map->m_flags & EXT4_MAP_MAPPED &&
662 map->m_flags & EXT4_MAP_NEW) {
663 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
664 map->m_len);
665 ret = ext4_issue_zeroout(inode, map->m_lblk,
666 map->m_pblk, map->m_len);
667 if (ret) {
668 retval = ret;
669 goto out_sem;
670 }
671 }
672
673 /*
674 * If the extent has been zeroed out, we don't need to update
675 * extent status tree.
676 */
677 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
678 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
679 if (ext4_es_is_written(&es))
680 goto out_sem;
681 }
682 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
683 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
684 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
685 !(status & EXTENT_STATUS_WRITTEN) &&
686 ext4_find_delalloc_range(inode, map->m_lblk,
687 map->m_lblk + map->m_len - 1))
688 status |= EXTENT_STATUS_DELAYED;
689 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
690 map->m_pblk, status);
691 if (ret < 0) {
692 retval = ret;
693 goto out_sem;
694 }
695 }
696
697 out_sem:
698 up_write((&EXT4_I(inode)->i_data_sem));
699 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
700 ret = check_block_validity(inode, map);
701 if (ret != 0)
702 return ret;
703
704 /*
705 * Inodes with freshly allocated blocks where contents will be
706 * visible after transaction commit must be on transaction's
707 * ordered data list.
708 */
709 if (map->m_flags & EXT4_MAP_NEW &&
710 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
711 !(flags & EXT4_GET_BLOCKS_ZERO) &&
712 !ext4_is_quota_file(inode) &&
713 ext4_should_order_data(inode)) {
714 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
715 ret = ext4_jbd2_inode_add_wait(handle, inode);
716 else
717 ret = ext4_jbd2_inode_add_write(handle, inode);
718 if (ret)
719 return ret;
720 }
721 }
722 return retval;
723 }
724
725 /*
726 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
727 * we have to be careful as someone else may be manipulating b_state as well.
728 */
729 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
730 {
731 unsigned long old_state;
732 unsigned long new_state;
733
734 flags &= EXT4_MAP_FLAGS;
735
736 /* Dummy buffer_head? Set non-atomically. */
737 if (!bh->b_page) {
738 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
739 return;
740 }
741 /*
742 * Someone else may be modifying b_state. Be careful! This is ugly but
743 * once we get rid of using bh as a container for mapping information
744 * to pass to / from get_block functions, this can go away.
745 */
746 do {
747 old_state = READ_ONCE(bh->b_state);
748 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
749 } while (unlikely(
750 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
751 }
752
753 static int _ext4_get_block(struct inode *inode, sector_t iblock,
754 struct buffer_head *bh, int flags)
755 {
756 struct ext4_map_blocks map;
757 int ret = 0;
758
759 if (ext4_has_inline_data(inode))
760 return -ERANGE;
761
762 map.m_lblk = iblock;
763 map.m_len = bh->b_size >> inode->i_blkbits;
764
765 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766 flags);
767 if (ret > 0) {
768 map_bh(bh, inode->i_sb, map.m_pblk);
769 ext4_update_bh_state(bh, map.m_flags);
770 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771 ret = 0;
772 } else if (ret == 0) {
773 /* hole case, need to fill in bh->b_size */
774 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
775 }
776 return ret;
777 }
778
779 int ext4_get_block(struct inode *inode, sector_t iblock,
780 struct buffer_head *bh, int create)
781 {
782 return _ext4_get_block(inode, iblock, bh,
783 create ? EXT4_GET_BLOCKS_CREATE : 0);
784 }
785
786 /*
787 * Get block function used when preparing for buffered write if we require
788 * creating an unwritten extent if blocks haven't been allocated. The extent
789 * will be converted to written after the IO is complete.
790 */
791 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
792 struct buffer_head *bh_result, int create)
793 {
794 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
795 inode->i_ino, create);
796 return _ext4_get_block(inode, iblock, bh_result,
797 EXT4_GET_BLOCKS_IO_CREATE_EXT);
798 }
799
800 /* Maximum number of blocks we map for direct IO at once. */
801 #define DIO_MAX_BLOCKS 4096
802
803 /*
804 * Get blocks function for the cases that need to start a transaction -
805 * generally difference cases of direct IO and DAX IO. It also handles retries
806 * in case of ENOSPC.
807 */
808 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
809 struct buffer_head *bh_result, int flags)
810 {
811 int dio_credits;
812 handle_t *handle;
813 int retries = 0;
814 int ret;
815
816 /* Trim mapping request to maximum we can map at once for DIO */
817 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
818 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
819 dio_credits = ext4_chunk_trans_blocks(inode,
820 bh_result->b_size >> inode->i_blkbits);
821 retry:
822 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
823 if (IS_ERR(handle))
824 return PTR_ERR(handle);
825
826 ret = _ext4_get_block(inode, iblock, bh_result, flags);
827 ext4_journal_stop(handle);
828
829 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
830 goto retry;
831 return ret;
832 }
833
834 /* Get block function for DIO reads and writes to inodes without extents */
835 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
836 struct buffer_head *bh, int create)
837 {
838 /* We don't expect handle for direct IO */
839 WARN_ON_ONCE(ext4_journal_current_handle());
840
841 if (!create)
842 return _ext4_get_block(inode, iblock, bh, 0);
843 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
844 }
845
846 /*
847 * Get block function for AIO DIO writes when we create unwritten extent if
848 * blocks are not allocated yet. The extent will be converted to written
849 * after IO is complete.
850 */
851 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
852 sector_t iblock, struct buffer_head *bh_result, int create)
853 {
854 int ret;
855
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
859 ret = ext4_get_block_trans(inode, iblock, bh_result,
860 EXT4_GET_BLOCKS_IO_CREATE_EXT);
861
862 /*
863 * When doing DIO using unwritten extents, we need io_end to convert
864 * unwritten extents to written on IO completion. We allocate io_end
865 * once we spot unwritten extent and store it in b_private. Generic
866 * DIO code keeps b_private set and furthermore passes the value to
867 * our completion callback in 'private' argument.
868 */
869 if (!ret && buffer_unwritten(bh_result)) {
870 if (!bh_result->b_private) {
871 ext4_io_end_t *io_end;
872
873 io_end = ext4_init_io_end(inode, GFP_KERNEL);
874 if (!io_end)
875 return -ENOMEM;
876 bh_result->b_private = io_end;
877 ext4_set_io_unwritten_flag(inode, io_end);
878 }
879 set_buffer_defer_completion(bh_result);
880 }
881
882 return ret;
883 }
884
885 /*
886 * Get block function for non-AIO DIO writes when we create unwritten extent if
887 * blocks are not allocated yet. The extent will be converted to written
888 * after IO is complete from ext4_ext_direct_IO() function.
889 */
890 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
891 sector_t iblock, struct buffer_head *bh_result, int create)
892 {
893 int ret;
894
895 /* We don't expect handle for direct IO */
896 WARN_ON_ONCE(ext4_journal_current_handle());
897
898 ret = ext4_get_block_trans(inode, iblock, bh_result,
899 EXT4_GET_BLOCKS_IO_CREATE_EXT);
900
901 /*
902 * Mark inode as having pending DIO writes to unwritten extents.
903 * ext4_ext_direct_IO() checks this flag and converts extents to
904 * written.
905 */
906 if (!ret && buffer_unwritten(bh_result))
907 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
908
909 return ret;
910 }
911
912 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
913 struct buffer_head *bh_result, int create)
914 {
915 int ret;
916
917 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
918 inode->i_ino, create);
919 /* We don't expect handle for direct IO */
920 WARN_ON_ONCE(ext4_journal_current_handle());
921
922 ret = _ext4_get_block(inode, iblock, bh_result, 0);
923 /*
924 * Blocks should have been preallocated! ext4_file_write_iter() checks
925 * that.
926 */
927 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
928
929 return ret;
930 }
931
932
933 /*
934 * `handle' can be NULL if create is zero
935 */
936 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
937 ext4_lblk_t block, int map_flags)
938 {
939 struct ext4_map_blocks map;
940 struct buffer_head *bh;
941 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
942 int err;
943
944 J_ASSERT(handle != NULL || create == 0);
945
946 map.m_lblk = block;
947 map.m_len = 1;
948 err = ext4_map_blocks(handle, inode, &map, map_flags);
949
950 if (err == 0)
951 return create ? ERR_PTR(-ENOSPC) : NULL;
952 if (err < 0)
953 return ERR_PTR(err);
954
955 bh = sb_getblk(inode->i_sb, map.m_pblk);
956 if (unlikely(!bh))
957 return ERR_PTR(-ENOMEM);
958 if (map.m_flags & EXT4_MAP_NEW) {
959 J_ASSERT(create != 0);
960 J_ASSERT(handle != NULL);
961
962 /*
963 * Now that we do not always journal data, we should
964 * keep in mind whether this should always journal the
965 * new buffer as metadata. For now, regular file
966 * writes use ext4_get_block instead, so it's not a
967 * problem.
968 */
969 lock_buffer(bh);
970 BUFFER_TRACE(bh, "call get_create_access");
971 err = ext4_journal_get_create_access(handle, bh);
972 if (unlikely(err)) {
973 unlock_buffer(bh);
974 goto errout;
975 }
976 if (!buffer_uptodate(bh)) {
977 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
978 set_buffer_uptodate(bh);
979 }
980 unlock_buffer(bh);
981 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
982 err = ext4_handle_dirty_metadata(handle, inode, bh);
983 if (unlikely(err))
984 goto errout;
985 } else
986 BUFFER_TRACE(bh, "not a new buffer");
987 return bh;
988 errout:
989 brelse(bh);
990 return ERR_PTR(err);
991 }
992
993 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
994 ext4_lblk_t block, int map_flags)
995 {
996 struct buffer_head *bh;
997
998 bh = ext4_getblk(handle, inode, block, map_flags);
999 if (IS_ERR(bh))
1000 return bh;
1001 if (!bh || buffer_uptodate(bh))
1002 return bh;
1003 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1004 wait_on_buffer(bh);
1005 if (buffer_uptodate(bh))
1006 return bh;
1007 put_bh(bh);
1008 return ERR_PTR(-EIO);
1009 }
1010
1011 int ext4_walk_page_buffers(handle_t *handle,
1012 struct buffer_head *head,
1013 unsigned from,
1014 unsigned to,
1015 int *partial,
1016 int (*fn)(handle_t *handle,
1017 struct buffer_head *bh))
1018 {
1019 struct buffer_head *bh;
1020 unsigned block_start, block_end;
1021 unsigned blocksize = head->b_size;
1022 int err, ret = 0;
1023 struct buffer_head *next;
1024
1025 for (bh = head, block_start = 0;
1026 ret == 0 && (bh != head || !block_start);
1027 block_start = block_end, bh = next) {
1028 next = bh->b_this_page;
1029 block_end = block_start + blocksize;
1030 if (block_end <= from || block_start >= to) {
1031 if (partial && !buffer_uptodate(bh))
1032 *partial = 1;
1033 continue;
1034 }
1035 err = (*fn)(handle, bh);
1036 if (!ret)
1037 ret = err;
1038 }
1039 return ret;
1040 }
1041
1042 /*
1043 * To preserve ordering, it is essential that the hole instantiation and
1044 * the data write be encapsulated in a single transaction. We cannot
1045 * close off a transaction and start a new one between the ext4_get_block()
1046 * and the commit_write(). So doing the jbd2_journal_start at the start of
1047 * prepare_write() is the right place.
1048 *
1049 * Also, this function can nest inside ext4_writepage(). In that case, we
1050 * *know* that ext4_writepage() has generated enough buffer credits to do the
1051 * whole page. So we won't block on the journal in that case, which is good,
1052 * because the caller may be PF_MEMALLOC.
1053 *
1054 * By accident, ext4 can be reentered when a transaction is open via
1055 * quota file writes. If we were to commit the transaction while thus
1056 * reentered, there can be a deadlock - we would be holding a quota
1057 * lock, and the commit would never complete if another thread had a
1058 * transaction open and was blocking on the quota lock - a ranking
1059 * violation.
1060 *
1061 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1062 * will _not_ run commit under these circumstances because handle->h_ref
1063 * is elevated. We'll still have enough credits for the tiny quotafile
1064 * write.
1065 */
1066 int do_journal_get_write_access(handle_t *handle,
1067 struct buffer_head *bh)
1068 {
1069 int dirty = buffer_dirty(bh);
1070 int ret;
1071
1072 if (!buffer_mapped(bh) || buffer_freed(bh))
1073 return 0;
1074 /*
1075 * __block_write_begin() could have dirtied some buffers. Clean
1076 * the dirty bit as jbd2_journal_get_write_access() could complain
1077 * otherwise about fs integrity issues. Setting of the dirty bit
1078 * by __block_write_begin() isn't a real problem here as we clear
1079 * the bit before releasing a page lock and thus writeback cannot
1080 * ever write the buffer.
1081 */
1082 if (dirty)
1083 clear_buffer_dirty(bh);
1084 BUFFER_TRACE(bh, "get write access");
1085 ret = ext4_journal_get_write_access(handle, bh);
1086 if (!ret && dirty)
1087 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1088 return ret;
1089 }
1090
1091 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1092 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1093 get_block_t *get_block)
1094 {
1095 unsigned from = pos & (PAGE_SIZE - 1);
1096 unsigned to = from + len;
1097 struct inode *inode = page->mapping->host;
1098 unsigned block_start, block_end;
1099 sector_t block;
1100 int err = 0;
1101 unsigned blocksize = inode->i_sb->s_blocksize;
1102 unsigned bbits;
1103 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1104 bool decrypt = false;
1105
1106 BUG_ON(!PageLocked(page));
1107 BUG_ON(from > PAGE_SIZE);
1108 BUG_ON(to > PAGE_SIZE);
1109 BUG_ON(from > to);
1110
1111 if (!page_has_buffers(page))
1112 create_empty_buffers(page, blocksize, 0);
1113 head = page_buffers(page);
1114 bbits = ilog2(blocksize);
1115 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1116
1117 for (bh = head, block_start = 0; bh != head || !block_start;
1118 block++, block_start = block_end, bh = bh->b_this_page) {
1119 block_end = block_start + blocksize;
1120 if (block_end <= from || block_start >= to) {
1121 if (PageUptodate(page)) {
1122 if (!buffer_uptodate(bh))
1123 set_buffer_uptodate(bh);
1124 }
1125 continue;
1126 }
1127 if (buffer_new(bh))
1128 clear_buffer_new(bh);
1129 if (!buffer_mapped(bh)) {
1130 WARN_ON(bh->b_size != blocksize);
1131 err = get_block(inode, block, bh, 1);
1132 if (err)
1133 break;
1134 if (buffer_new(bh)) {
1135 clean_bdev_bh_alias(bh);
1136 if (PageUptodate(page)) {
1137 clear_buffer_new(bh);
1138 set_buffer_uptodate(bh);
1139 mark_buffer_dirty(bh);
1140 continue;
1141 }
1142 if (block_end > to || block_start < from)
1143 zero_user_segments(page, to, block_end,
1144 block_start, from);
1145 continue;
1146 }
1147 }
1148 if (PageUptodate(page)) {
1149 if (!buffer_uptodate(bh))
1150 set_buffer_uptodate(bh);
1151 continue;
1152 }
1153 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1154 !buffer_unwritten(bh) &&
1155 (block_start < from || block_end > to)) {
1156 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1157 *wait_bh++ = bh;
1158 decrypt = ext4_encrypted_inode(inode) &&
1159 S_ISREG(inode->i_mode);
1160 }
1161 }
1162 /*
1163 * If we issued read requests, let them complete.
1164 */
1165 while (wait_bh > wait) {
1166 wait_on_buffer(*--wait_bh);
1167 if (!buffer_uptodate(*wait_bh))
1168 err = -EIO;
1169 }
1170 if (unlikely(err))
1171 page_zero_new_buffers(page, from, to);
1172 else if (decrypt)
1173 err = fscrypt_decrypt_page(page->mapping->host, page,
1174 PAGE_SIZE, 0, page->index);
1175 return err;
1176 }
1177 #endif
1178
1179 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1180 loff_t pos, unsigned len, unsigned flags,
1181 struct page **pagep, void **fsdata)
1182 {
1183 struct inode *inode = mapping->host;
1184 int ret, needed_blocks;
1185 handle_t *handle;
1186 int retries = 0;
1187 struct page *page;
1188 pgoff_t index;
1189 unsigned from, to;
1190
1191 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1192 return -EIO;
1193
1194 trace_ext4_write_begin(inode, pos, len, flags);
1195 /*
1196 * Reserve one block more for addition to orphan list in case
1197 * we allocate blocks but write fails for some reason
1198 */
1199 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1200 index = pos >> PAGE_SHIFT;
1201 from = pos & (PAGE_SIZE - 1);
1202 to = from + len;
1203
1204 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1205 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1206 flags, pagep);
1207 if (ret < 0)
1208 return ret;
1209 if (ret == 1)
1210 return 0;
1211 }
1212
1213 /*
1214 * grab_cache_page_write_begin() can take a long time if the
1215 * system is thrashing due to memory pressure, or if the page
1216 * is being written back. So grab it first before we start
1217 * the transaction handle. This also allows us to allocate
1218 * the page (if needed) without using GFP_NOFS.
1219 */
1220 retry_grab:
1221 page = grab_cache_page_write_begin(mapping, index, flags);
1222 if (!page)
1223 return -ENOMEM;
1224 unlock_page(page);
1225
1226 retry_journal:
1227 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1228 if (IS_ERR(handle)) {
1229 put_page(page);
1230 return PTR_ERR(handle);
1231 }
1232
1233 lock_page(page);
1234 if (page->mapping != mapping) {
1235 /* The page got truncated from under us */
1236 unlock_page(page);
1237 put_page(page);
1238 ext4_journal_stop(handle);
1239 goto retry_grab;
1240 }
1241 /* In case writeback began while the page was unlocked */
1242 wait_for_stable_page(page);
1243
1244 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1245 if (ext4_should_dioread_nolock(inode))
1246 ret = ext4_block_write_begin(page, pos, len,
1247 ext4_get_block_unwritten);
1248 else
1249 ret = ext4_block_write_begin(page, pos, len,
1250 ext4_get_block);
1251 #else
1252 if (ext4_should_dioread_nolock(inode))
1253 ret = __block_write_begin(page, pos, len,
1254 ext4_get_block_unwritten);
1255 else
1256 ret = __block_write_begin(page, pos, len, ext4_get_block);
1257 #endif
1258 if (!ret && ext4_should_journal_data(inode)) {
1259 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1260 from, to, NULL,
1261 do_journal_get_write_access);
1262 }
1263
1264 if (ret) {
1265 unlock_page(page);
1266 /*
1267 * __block_write_begin may have instantiated a few blocks
1268 * outside i_size. Trim these off again. Don't need
1269 * i_size_read because we hold i_mutex.
1270 *
1271 * Add inode to orphan list in case we crash before
1272 * truncate finishes
1273 */
1274 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1275 ext4_orphan_add(handle, inode);
1276
1277 ext4_journal_stop(handle);
1278 if (pos + len > inode->i_size) {
1279 ext4_truncate_failed_write(inode);
1280 /*
1281 * If truncate failed early the inode might
1282 * still be on the orphan list; we need to
1283 * make sure the inode is removed from the
1284 * orphan list in that case.
1285 */
1286 if (inode->i_nlink)
1287 ext4_orphan_del(NULL, inode);
1288 }
1289
1290 if (ret == -ENOSPC &&
1291 ext4_should_retry_alloc(inode->i_sb, &retries))
1292 goto retry_journal;
1293 put_page(page);
1294 return ret;
1295 }
1296 *pagep = page;
1297 return ret;
1298 }
1299
1300 /* For write_end() in data=journal mode */
1301 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1302 {
1303 int ret;
1304 if (!buffer_mapped(bh) || buffer_freed(bh))
1305 return 0;
1306 set_buffer_uptodate(bh);
1307 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1308 clear_buffer_meta(bh);
1309 clear_buffer_prio(bh);
1310 return ret;
1311 }
1312
1313 /*
1314 * We need to pick up the new inode size which generic_commit_write gave us
1315 * `file' can be NULL - eg, when called from page_symlink().
1316 *
1317 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1318 * buffers are managed internally.
1319 */
1320 static int ext4_write_end(struct file *file,
1321 struct address_space *mapping,
1322 loff_t pos, unsigned len, unsigned copied,
1323 struct page *page, void *fsdata)
1324 {
1325 handle_t *handle = ext4_journal_current_handle();
1326 struct inode *inode = mapping->host;
1327 loff_t old_size = inode->i_size;
1328 int ret = 0, ret2;
1329 int i_size_changed = 0;
1330
1331 trace_ext4_write_end(inode, pos, len, copied);
1332 if (ext4_has_inline_data(inode)) {
1333 ret = ext4_write_inline_data_end(inode, pos, len,
1334 copied, page);
1335 if (ret < 0) {
1336 unlock_page(page);
1337 put_page(page);
1338 goto errout;
1339 }
1340 copied = ret;
1341 } else
1342 copied = block_write_end(file, mapping, pos,
1343 len, copied, page, fsdata);
1344 /*
1345 * it's important to update i_size while still holding page lock:
1346 * page writeout could otherwise come in and zero beyond i_size.
1347 */
1348 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1349 unlock_page(page);
1350 put_page(page);
1351
1352 if (old_size < pos)
1353 pagecache_isize_extended(inode, old_size, pos);
1354 /*
1355 * Don't mark the inode dirty under page lock. First, it unnecessarily
1356 * makes the holding time of page lock longer. Second, it forces lock
1357 * ordering of page lock and transaction start for journaling
1358 * filesystems.
1359 */
1360 if (i_size_changed)
1361 ext4_mark_inode_dirty(handle, inode);
1362
1363 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1364 /* if we have allocated more blocks and copied
1365 * less. We will have blocks allocated outside
1366 * inode->i_size. So truncate them
1367 */
1368 ext4_orphan_add(handle, inode);
1369 errout:
1370 ret2 = ext4_journal_stop(handle);
1371 if (!ret)
1372 ret = ret2;
1373
1374 if (pos + len > inode->i_size) {
1375 ext4_truncate_failed_write(inode);
1376 /*
1377 * If truncate failed early the inode might still be
1378 * on the orphan list; we need to make sure the inode
1379 * is removed from the orphan list in that case.
1380 */
1381 if (inode->i_nlink)
1382 ext4_orphan_del(NULL, inode);
1383 }
1384
1385 return ret ? ret : copied;
1386 }
1387
1388 /*
1389 * This is a private version of page_zero_new_buffers() which doesn't
1390 * set the buffer to be dirty, since in data=journalled mode we need
1391 * to call ext4_handle_dirty_metadata() instead.
1392 */
1393 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1394 struct page *page,
1395 unsigned from, unsigned to)
1396 {
1397 unsigned int block_start = 0, block_end;
1398 struct buffer_head *head, *bh;
1399
1400 bh = head = page_buffers(page);
1401 do {
1402 block_end = block_start + bh->b_size;
1403 if (buffer_new(bh)) {
1404 if (block_end > from && block_start < to) {
1405 if (!PageUptodate(page)) {
1406 unsigned start, size;
1407
1408 start = max(from, block_start);
1409 size = min(to, block_end) - start;
1410
1411 zero_user(page, start, size);
1412 write_end_fn(handle, bh);
1413 }
1414 clear_buffer_new(bh);
1415 }
1416 }
1417 block_start = block_end;
1418 bh = bh->b_this_page;
1419 } while (bh != head);
1420 }
1421
1422 static int ext4_journalled_write_end(struct file *file,
1423 struct address_space *mapping,
1424 loff_t pos, unsigned len, unsigned copied,
1425 struct page *page, void *fsdata)
1426 {
1427 handle_t *handle = ext4_journal_current_handle();
1428 struct inode *inode = mapping->host;
1429 loff_t old_size = inode->i_size;
1430 int ret = 0, ret2;
1431 int partial = 0;
1432 unsigned from, to;
1433 int size_changed = 0;
1434
1435 trace_ext4_journalled_write_end(inode, pos, len, copied);
1436 from = pos & (PAGE_SIZE - 1);
1437 to = from + len;
1438
1439 BUG_ON(!ext4_handle_valid(handle));
1440
1441 if (ext4_has_inline_data(inode)) {
1442 ret = ext4_write_inline_data_end(inode, pos, len,
1443 copied, page);
1444 if (ret < 0) {
1445 unlock_page(page);
1446 put_page(page);
1447 goto errout;
1448 }
1449 copied = ret;
1450 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1451 copied = 0;
1452 ext4_journalled_zero_new_buffers(handle, page, from, to);
1453 } else {
1454 if (unlikely(copied < len))
1455 ext4_journalled_zero_new_buffers(handle, page,
1456 from + copied, to);
1457 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1458 from + copied, &partial,
1459 write_end_fn);
1460 if (!partial)
1461 SetPageUptodate(page);
1462 }
1463 size_changed = ext4_update_inode_size(inode, pos + copied);
1464 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1465 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1466 unlock_page(page);
1467 put_page(page);
1468
1469 if (old_size < pos)
1470 pagecache_isize_extended(inode, old_size, pos);
1471
1472 if (size_changed) {
1473 ret2 = ext4_mark_inode_dirty(handle, inode);
1474 if (!ret)
1475 ret = ret2;
1476 }
1477
1478 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1479 /* if we have allocated more blocks and copied
1480 * less. We will have blocks allocated outside
1481 * inode->i_size. So truncate them
1482 */
1483 ext4_orphan_add(handle, inode);
1484
1485 errout:
1486 ret2 = ext4_journal_stop(handle);
1487 if (!ret)
1488 ret = ret2;
1489 if (pos + len > inode->i_size) {
1490 ext4_truncate_failed_write(inode);
1491 /*
1492 * If truncate failed early the inode might still be
1493 * on the orphan list; we need to make sure the inode
1494 * is removed from the orphan list in that case.
1495 */
1496 if (inode->i_nlink)
1497 ext4_orphan_del(NULL, inode);
1498 }
1499
1500 return ret ? ret : copied;
1501 }
1502
1503 /*
1504 * Reserve space for a single cluster
1505 */
1506 static int ext4_da_reserve_space(struct inode *inode)
1507 {
1508 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1509 struct ext4_inode_info *ei = EXT4_I(inode);
1510 int ret;
1511
1512 /*
1513 * We will charge metadata quota at writeout time; this saves
1514 * us from metadata over-estimation, though we may go over by
1515 * a small amount in the end. Here we just reserve for data.
1516 */
1517 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1518 if (ret)
1519 return ret;
1520
1521 spin_lock(&ei->i_block_reservation_lock);
1522 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1523 spin_unlock(&ei->i_block_reservation_lock);
1524 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1525 return -ENOSPC;
1526 }
1527 ei->i_reserved_data_blocks++;
1528 trace_ext4_da_reserve_space(inode);
1529 spin_unlock(&ei->i_block_reservation_lock);
1530
1531 return 0; /* success */
1532 }
1533
1534 static void ext4_da_release_space(struct inode *inode, int to_free)
1535 {
1536 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1537 struct ext4_inode_info *ei = EXT4_I(inode);
1538
1539 if (!to_free)
1540 return; /* Nothing to release, exit */
1541
1542 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1543
1544 trace_ext4_da_release_space(inode, to_free);
1545 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1546 /*
1547 * if there aren't enough reserved blocks, then the
1548 * counter is messed up somewhere. Since this
1549 * function is called from invalidate page, it's
1550 * harmless to return without any action.
1551 */
1552 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1553 "ino %lu, to_free %d with only %d reserved "
1554 "data blocks", inode->i_ino, to_free,
1555 ei->i_reserved_data_blocks);
1556 WARN_ON(1);
1557 to_free = ei->i_reserved_data_blocks;
1558 }
1559 ei->i_reserved_data_blocks -= to_free;
1560
1561 /* update fs dirty data blocks counter */
1562 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1563
1564 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1565
1566 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1567 }
1568
1569 static void ext4_da_page_release_reservation(struct page *page,
1570 unsigned int offset,
1571 unsigned int length)
1572 {
1573 int to_release = 0, contiguous_blks = 0;
1574 struct buffer_head *head, *bh;
1575 unsigned int curr_off = 0;
1576 struct inode *inode = page->mapping->host;
1577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1578 unsigned int stop = offset + length;
1579 int num_clusters;
1580 ext4_fsblk_t lblk;
1581
1582 BUG_ON(stop > PAGE_SIZE || stop < length);
1583
1584 head = page_buffers(page);
1585 bh = head;
1586 do {
1587 unsigned int next_off = curr_off + bh->b_size;
1588
1589 if (next_off > stop)
1590 break;
1591
1592 if ((offset <= curr_off) && (buffer_delay(bh))) {
1593 to_release++;
1594 contiguous_blks++;
1595 clear_buffer_delay(bh);
1596 } else if (contiguous_blks) {
1597 lblk = page->index <<
1598 (PAGE_SHIFT - inode->i_blkbits);
1599 lblk += (curr_off >> inode->i_blkbits) -
1600 contiguous_blks;
1601 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1602 contiguous_blks = 0;
1603 }
1604 curr_off = next_off;
1605 } while ((bh = bh->b_this_page) != head);
1606
1607 if (contiguous_blks) {
1608 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1609 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1610 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1611 }
1612
1613 /* If we have released all the blocks belonging to a cluster, then we
1614 * need to release the reserved space for that cluster. */
1615 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1616 while (num_clusters > 0) {
1617 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1618 ((num_clusters - 1) << sbi->s_cluster_bits);
1619 if (sbi->s_cluster_ratio == 1 ||
1620 !ext4_find_delalloc_cluster(inode, lblk))
1621 ext4_da_release_space(inode, 1);
1622
1623 num_clusters--;
1624 }
1625 }
1626
1627 /*
1628 * Delayed allocation stuff
1629 */
1630
1631 struct mpage_da_data {
1632 struct inode *inode;
1633 struct writeback_control *wbc;
1634
1635 pgoff_t first_page; /* The first page to write */
1636 pgoff_t next_page; /* Current page to examine */
1637 pgoff_t last_page; /* Last page to examine */
1638 /*
1639 * Extent to map - this can be after first_page because that can be
1640 * fully mapped. We somewhat abuse m_flags to store whether the extent
1641 * is delalloc or unwritten.
1642 */
1643 struct ext4_map_blocks map;
1644 struct ext4_io_submit io_submit; /* IO submission data */
1645 unsigned int do_map:1;
1646 };
1647
1648 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1649 bool invalidate)
1650 {
1651 int nr_pages, i;
1652 pgoff_t index, end;
1653 struct pagevec pvec;
1654 struct inode *inode = mpd->inode;
1655 struct address_space *mapping = inode->i_mapping;
1656
1657 /* This is necessary when next_page == 0. */
1658 if (mpd->first_page >= mpd->next_page)
1659 return;
1660
1661 index = mpd->first_page;
1662 end = mpd->next_page - 1;
1663 if (invalidate) {
1664 ext4_lblk_t start, last;
1665 start = index << (PAGE_SHIFT - inode->i_blkbits);
1666 last = end << (PAGE_SHIFT - inode->i_blkbits);
1667 ext4_es_remove_extent(inode, start, last - start + 1);
1668 }
1669
1670 pagevec_init(&pvec, 0);
1671 while (index <= end) {
1672 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1673 if (nr_pages == 0)
1674 break;
1675 for (i = 0; i < nr_pages; i++) {
1676 struct page *page = pvec.pages[i];
1677 if (page->index > end)
1678 break;
1679 BUG_ON(!PageLocked(page));
1680 BUG_ON(PageWriteback(page));
1681 if (invalidate) {
1682 if (page_mapped(page))
1683 clear_page_dirty_for_io(page);
1684 block_invalidatepage(page, 0, PAGE_SIZE);
1685 ClearPageUptodate(page);
1686 }
1687 unlock_page(page);
1688 }
1689 index = pvec.pages[nr_pages - 1]->index + 1;
1690 pagevec_release(&pvec);
1691 }
1692 }
1693
1694 static void ext4_print_free_blocks(struct inode *inode)
1695 {
1696 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1697 struct super_block *sb = inode->i_sb;
1698 struct ext4_inode_info *ei = EXT4_I(inode);
1699
1700 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1701 EXT4_C2B(EXT4_SB(inode->i_sb),
1702 ext4_count_free_clusters(sb)));
1703 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1704 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1705 (long long) EXT4_C2B(EXT4_SB(sb),
1706 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1707 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1708 (long long) EXT4_C2B(EXT4_SB(sb),
1709 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1710 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1711 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1712 ei->i_reserved_data_blocks);
1713 return;
1714 }
1715
1716 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1717 {
1718 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1719 }
1720
1721 /*
1722 * This function is grabs code from the very beginning of
1723 * ext4_map_blocks, but assumes that the caller is from delayed write
1724 * time. This function looks up the requested blocks and sets the
1725 * buffer delay bit under the protection of i_data_sem.
1726 */
1727 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1728 struct ext4_map_blocks *map,
1729 struct buffer_head *bh)
1730 {
1731 struct extent_status es;
1732 int retval;
1733 sector_t invalid_block = ~((sector_t) 0xffff);
1734 #ifdef ES_AGGRESSIVE_TEST
1735 struct ext4_map_blocks orig_map;
1736
1737 memcpy(&orig_map, map, sizeof(*map));
1738 #endif
1739
1740 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1741 invalid_block = ~0;
1742
1743 map->m_flags = 0;
1744 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1745 "logical block %lu\n", inode->i_ino, map->m_len,
1746 (unsigned long) map->m_lblk);
1747
1748 /* Lookup extent status tree firstly */
1749 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1750 if (ext4_es_is_hole(&es)) {
1751 retval = 0;
1752 down_read(&EXT4_I(inode)->i_data_sem);
1753 goto add_delayed;
1754 }
1755
1756 /*
1757 * Delayed extent could be allocated by fallocate.
1758 * So we need to check it.
1759 */
1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_new(bh);
1763 set_buffer_delay(bh);
1764 return 0;
1765 }
1766
1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 retval = es.es_len - (iblock - es.es_lblk);
1769 if (retval > map->m_len)
1770 retval = map->m_len;
1771 map->m_len = retval;
1772 if (ext4_es_is_written(&es))
1773 map->m_flags |= EXT4_MAP_MAPPED;
1774 else if (ext4_es_is_unwritten(&es))
1775 map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 else
1777 BUG_ON(1);
1778
1779 #ifdef ES_AGGRESSIVE_TEST
1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782 return retval;
1783 }
1784
1785 /*
1786 * Try to see if we can get the block without requesting a new
1787 * file system block.
1788 */
1789 down_read(&EXT4_I(inode)->i_data_sem);
1790 if (ext4_has_inline_data(inode))
1791 retval = 0;
1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 else
1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797 add_delayed:
1798 if (retval == 0) {
1799 int ret;
1800 /*
1801 * XXX: __block_prepare_write() unmaps passed block,
1802 * is it OK?
1803 */
1804 /*
1805 * If the block was allocated from previously allocated cluster,
1806 * then we don't need to reserve it again. However we still need
1807 * to reserve metadata for every block we're going to write.
1808 */
1809 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1810 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1811 ret = ext4_da_reserve_space(inode);
1812 if (ret) {
1813 /* not enough space to reserve */
1814 retval = ret;
1815 goto out_unlock;
1816 }
1817 }
1818
1819 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1820 ~0, EXTENT_STATUS_DELAYED);
1821 if (ret) {
1822 retval = ret;
1823 goto out_unlock;
1824 }
1825
1826 map_bh(bh, inode->i_sb, invalid_block);
1827 set_buffer_new(bh);
1828 set_buffer_delay(bh);
1829 } else if (retval > 0) {
1830 int ret;
1831 unsigned int status;
1832
1833 if (unlikely(retval != map->m_len)) {
1834 ext4_warning(inode->i_sb,
1835 "ES len assertion failed for inode "
1836 "%lu: retval %d != map->m_len %d",
1837 inode->i_ino, retval, map->m_len);
1838 WARN_ON(1);
1839 }
1840
1841 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1842 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1843 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1844 map->m_pblk, status);
1845 if (ret != 0)
1846 retval = ret;
1847 }
1848
1849 out_unlock:
1850 up_read((&EXT4_I(inode)->i_data_sem));
1851
1852 return retval;
1853 }
1854
1855 /*
1856 * This is a special get_block_t callback which is used by
1857 * ext4_da_write_begin(). It will either return mapped block or
1858 * reserve space for a single block.
1859 *
1860 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1861 * We also have b_blocknr = -1 and b_bdev initialized properly
1862 *
1863 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1864 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1865 * initialized properly.
1866 */
1867 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1868 struct buffer_head *bh, int create)
1869 {
1870 struct ext4_map_blocks map;
1871 int ret = 0;
1872
1873 BUG_ON(create == 0);
1874 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1875
1876 map.m_lblk = iblock;
1877 map.m_len = 1;
1878
1879 /*
1880 * first, we need to know whether the block is allocated already
1881 * preallocated blocks are unmapped but should treated
1882 * the same as allocated blocks.
1883 */
1884 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1885 if (ret <= 0)
1886 return ret;
1887
1888 map_bh(bh, inode->i_sb, map.m_pblk);
1889 ext4_update_bh_state(bh, map.m_flags);
1890
1891 if (buffer_unwritten(bh)) {
1892 /* A delayed write to unwritten bh should be marked
1893 * new and mapped. Mapped ensures that we don't do
1894 * get_block multiple times when we write to the same
1895 * offset and new ensures that we do proper zero out
1896 * for partial write.
1897 */
1898 set_buffer_new(bh);
1899 set_buffer_mapped(bh);
1900 }
1901 return 0;
1902 }
1903
1904 static int bget_one(handle_t *handle, struct buffer_head *bh)
1905 {
1906 get_bh(bh);
1907 return 0;
1908 }
1909
1910 static int bput_one(handle_t *handle, struct buffer_head *bh)
1911 {
1912 put_bh(bh);
1913 return 0;
1914 }
1915
1916 static int __ext4_journalled_writepage(struct page *page,
1917 unsigned int len)
1918 {
1919 struct address_space *mapping = page->mapping;
1920 struct inode *inode = mapping->host;
1921 struct buffer_head *page_bufs = NULL;
1922 handle_t *handle = NULL;
1923 int ret = 0, err = 0;
1924 int inline_data = ext4_has_inline_data(inode);
1925 struct buffer_head *inode_bh = NULL;
1926
1927 ClearPageChecked(page);
1928
1929 if (inline_data) {
1930 BUG_ON(page->index != 0);
1931 BUG_ON(len > ext4_get_max_inline_size(inode));
1932 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1933 if (inode_bh == NULL)
1934 goto out;
1935 } else {
1936 page_bufs = page_buffers(page);
1937 if (!page_bufs) {
1938 BUG();
1939 goto out;
1940 }
1941 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1942 NULL, bget_one);
1943 }
1944 /*
1945 * We need to release the page lock before we start the
1946 * journal, so grab a reference so the page won't disappear
1947 * out from under us.
1948 */
1949 get_page(page);
1950 unlock_page(page);
1951
1952 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1953 ext4_writepage_trans_blocks(inode));
1954 if (IS_ERR(handle)) {
1955 ret = PTR_ERR(handle);
1956 put_page(page);
1957 goto out_no_pagelock;
1958 }
1959 BUG_ON(!ext4_handle_valid(handle));
1960
1961 lock_page(page);
1962 put_page(page);
1963 if (page->mapping != mapping) {
1964 /* The page got truncated from under us */
1965 ext4_journal_stop(handle);
1966 ret = 0;
1967 goto out;
1968 }
1969
1970 if (inline_data) {
1971 BUFFER_TRACE(inode_bh, "get write access");
1972 ret = ext4_journal_get_write_access(handle, inode_bh);
1973
1974 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1975
1976 } else {
1977 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978 do_journal_get_write_access);
1979
1980 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1981 write_end_fn);
1982 }
1983 if (ret == 0)
1984 ret = err;
1985 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1986 err = ext4_journal_stop(handle);
1987 if (!ret)
1988 ret = err;
1989
1990 if (!ext4_has_inline_data(inode))
1991 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1992 NULL, bput_one);
1993 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1994 out:
1995 unlock_page(page);
1996 out_no_pagelock:
1997 brelse(inode_bh);
1998 return ret;
1999 }
2000
2001 /*
2002 * Note that we don't need to start a transaction unless we're journaling data
2003 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2004 * need to file the inode to the transaction's list in ordered mode because if
2005 * we are writing back data added by write(), the inode is already there and if
2006 * we are writing back data modified via mmap(), no one guarantees in which
2007 * transaction the data will hit the disk. In case we are journaling data, we
2008 * cannot start transaction directly because transaction start ranks above page
2009 * lock so we have to do some magic.
2010 *
2011 * This function can get called via...
2012 * - ext4_writepages after taking page lock (have journal handle)
2013 * - journal_submit_inode_data_buffers (no journal handle)
2014 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2015 * - grab_page_cache when doing write_begin (have journal handle)
2016 *
2017 * We don't do any block allocation in this function. If we have page with
2018 * multiple blocks we need to write those buffer_heads that are mapped. This
2019 * is important for mmaped based write. So if we do with blocksize 1K
2020 * truncate(f, 1024);
2021 * a = mmap(f, 0, 4096);
2022 * a[0] = 'a';
2023 * truncate(f, 4096);
2024 * we have in the page first buffer_head mapped via page_mkwrite call back
2025 * but other buffer_heads would be unmapped but dirty (dirty done via the
2026 * do_wp_page). So writepage should write the first block. If we modify
2027 * the mmap area beyond 1024 we will again get a page_fault and the
2028 * page_mkwrite callback will do the block allocation and mark the
2029 * buffer_heads mapped.
2030 *
2031 * We redirty the page if we have any buffer_heads that is either delay or
2032 * unwritten in the page.
2033 *
2034 * We can get recursively called as show below.
2035 *
2036 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2037 * ext4_writepage()
2038 *
2039 * But since we don't do any block allocation we should not deadlock.
2040 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2041 */
2042 static int ext4_writepage(struct page *page,
2043 struct writeback_control *wbc)
2044 {
2045 int ret = 0;
2046 loff_t size;
2047 unsigned int len;
2048 struct buffer_head *page_bufs = NULL;
2049 struct inode *inode = page->mapping->host;
2050 struct ext4_io_submit io_submit;
2051 bool keep_towrite = false;
2052
2053 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2054 ext4_invalidatepage(page, 0, PAGE_SIZE);
2055 unlock_page(page);
2056 return -EIO;
2057 }
2058
2059 trace_ext4_writepage(page);
2060 size = i_size_read(inode);
2061 if (page->index == size >> PAGE_SHIFT)
2062 len = size & ~PAGE_MASK;
2063 else
2064 len = PAGE_SIZE;
2065
2066 page_bufs = page_buffers(page);
2067 /*
2068 * We cannot do block allocation or other extent handling in this
2069 * function. If there are buffers needing that, we have to redirty
2070 * the page. But we may reach here when we do a journal commit via
2071 * journal_submit_inode_data_buffers() and in that case we must write
2072 * allocated buffers to achieve data=ordered mode guarantees.
2073 *
2074 * Also, if there is only one buffer per page (the fs block
2075 * size == the page size), if one buffer needs block
2076 * allocation or needs to modify the extent tree to clear the
2077 * unwritten flag, we know that the page can't be written at
2078 * all, so we might as well refuse the write immediately.
2079 * Unfortunately if the block size != page size, we can't as
2080 * easily detect this case using ext4_walk_page_buffers(), but
2081 * for the extremely common case, this is an optimization that
2082 * skips a useless round trip through ext4_bio_write_page().
2083 */
2084 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2085 ext4_bh_delay_or_unwritten)) {
2086 redirty_page_for_writepage(wbc, page);
2087 if ((current->flags & PF_MEMALLOC) ||
2088 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2089 /*
2090 * For memory cleaning there's no point in writing only
2091 * some buffers. So just bail out. Warn if we came here
2092 * from direct reclaim.
2093 */
2094 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2095 == PF_MEMALLOC);
2096 unlock_page(page);
2097 return 0;
2098 }
2099 keep_towrite = true;
2100 }
2101
2102 if (PageChecked(page) && ext4_should_journal_data(inode))
2103 /*
2104 * It's mmapped pagecache. Add buffers and journal it. There
2105 * doesn't seem much point in redirtying the page here.
2106 */
2107 return __ext4_journalled_writepage(page, len);
2108
2109 ext4_io_submit_init(&io_submit, wbc);
2110 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2111 if (!io_submit.io_end) {
2112 redirty_page_for_writepage(wbc, page);
2113 unlock_page(page);
2114 return -ENOMEM;
2115 }
2116 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2117 ext4_io_submit(&io_submit);
2118 /* Drop io_end reference we got from init */
2119 ext4_put_io_end_defer(io_submit.io_end);
2120 return ret;
2121 }
2122
2123 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2124 {
2125 int len;
2126 loff_t size;
2127 int err;
2128
2129 BUG_ON(page->index != mpd->first_page);
2130 clear_page_dirty_for_io(page);
2131 /*
2132 * We have to be very careful here! Nothing protects writeback path
2133 * against i_size changes and the page can be writeably mapped into
2134 * page tables. So an application can be growing i_size and writing
2135 * data through mmap while writeback runs. clear_page_dirty_for_io()
2136 * write-protects our page in page tables and the page cannot get
2137 * written to again until we release page lock. So only after
2138 * clear_page_dirty_for_io() we are safe to sample i_size for
2139 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2140 * on the barrier provided by TestClearPageDirty in
2141 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2142 * after page tables are updated.
2143 */
2144 size = i_size_read(mpd->inode);
2145 if (page->index == size >> PAGE_SHIFT)
2146 len = size & ~PAGE_MASK;
2147 else
2148 len = PAGE_SIZE;
2149 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2150 if (!err)
2151 mpd->wbc->nr_to_write--;
2152 mpd->first_page++;
2153
2154 return err;
2155 }
2156
2157 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2158
2159 /*
2160 * mballoc gives us at most this number of blocks...
2161 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2162 * The rest of mballoc seems to handle chunks up to full group size.
2163 */
2164 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2165
2166 /*
2167 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2168 *
2169 * @mpd - extent of blocks
2170 * @lblk - logical number of the block in the file
2171 * @bh - buffer head we want to add to the extent
2172 *
2173 * The function is used to collect contig. blocks in the same state. If the
2174 * buffer doesn't require mapping for writeback and we haven't started the
2175 * extent of buffers to map yet, the function returns 'true' immediately - the
2176 * caller can write the buffer right away. Otherwise the function returns true
2177 * if the block has been added to the extent, false if the block couldn't be
2178 * added.
2179 */
2180 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2181 struct buffer_head *bh)
2182 {
2183 struct ext4_map_blocks *map = &mpd->map;
2184
2185 /* Buffer that doesn't need mapping for writeback? */
2186 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2187 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2188 /* So far no extent to map => we write the buffer right away */
2189 if (map->m_len == 0)
2190 return true;
2191 return false;
2192 }
2193
2194 /* First block in the extent? */
2195 if (map->m_len == 0) {
2196 /* We cannot map unless handle is started... */
2197 if (!mpd->do_map)
2198 return false;
2199 map->m_lblk = lblk;
2200 map->m_len = 1;
2201 map->m_flags = bh->b_state & BH_FLAGS;
2202 return true;
2203 }
2204
2205 /* Don't go larger than mballoc is willing to allocate */
2206 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2207 return false;
2208
2209 /* Can we merge the block to our big extent? */
2210 if (lblk == map->m_lblk + map->m_len &&
2211 (bh->b_state & BH_FLAGS) == map->m_flags) {
2212 map->m_len++;
2213 return true;
2214 }
2215 return false;
2216 }
2217
2218 /*
2219 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2220 *
2221 * @mpd - extent of blocks for mapping
2222 * @head - the first buffer in the page
2223 * @bh - buffer we should start processing from
2224 * @lblk - logical number of the block in the file corresponding to @bh
2225 *
2226 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2227 * the page for IO if all buffers in this page were mapped and there's no
2228 * accumulated extent of buffers to map or add buffers in the page to the
2229 * extent of buffers to map. The function returns 1 if the caller can continue
2230 * by processing the next page, 0 if it should stop adding buffers to the
2231 * extent to map because we cannot extend it anymore. It can also return value
2232 * < 0 in case of error during IO submission.
2233 */
2234 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2235 struct buffer_head *head,
2236 struct buffer_head *bh,
2237 ext4_lblk_t lblk)
2238 {
2239 struct inode *inode = mpd->inode;
2240 int err;
2241 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2242 >> inode->i_blkbits;
2243
2244 do {
2245 BUG_ON(buffer_locked(bh));
2246
2247 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2248 /* Found extent to map? */
2249 if (mpd->map.m_len)
2250 return 0;
2251 /* Buffer needs mapping and handle is not started? */
2252 if (!mpd->do_map)
2253 return 0;
2254 /* Everything mapped so far and we hit EOF */
2255 break;
2256 }
2257 } while (lblk++, (bh = bh->b_this_page) != head);
2258 /* So far everything mapped? Submit the page for IO. */
2259 if (mpd->map.m_len == 0) {
2260 err = mpage_submit_page(mpd, head->b_page);
2261 if (err < 0)
2262 return err;
2263 }
2264 return lblk < blocks;
2265 }
2266
2267 /*
2268 * mpage_map_buffers - update buffers corresponding to changed extent and
2269 * submit fully mapped pages for IO
2270 *
2271 * @mpd - description of extent to map, on return next extent to map
2272 *
2273 * Scan buffers corresponding to changed extent (we expect corresponding pages
2274 * to be already locked) and update buffer state according to new extent state.
2275 * We map delalloc buffers to their physical location, clear unwritten bits,
2276 * and mark buffers as uninit when we perform writes to unwritten extents
2277 * and do extent conversion after IO is finished. If the last page is not fully
2278 * mapped, we update @map to the next extent in the last page that needs
2279 * mapping. Otherwise we submit the page for IO.
2280 */
2281 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2282 {
2283 struct pagevec pvec;
2284 int nr_pages, i;
2285 struct inode *inode = mpd->inode;
2286 struct buffer_head *head, *bh;
2287 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2288 pgoff_t start, end;
2289 ext4_lblk_t lblk;
2290 sector_t pblock;
2291 int err;
2292
2293 start = mpd->map.m_lblk >> bpp_bits;
2294 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2295 lblk = start << bpp_bits;
2296 pblock = mpd->map.m_pblk;
2297
2298 pagevec_init(&pvec, 0);
2299 while (start <= end) {
2300 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2301 PAGEVEC_SIZE);
2302 if (nr_pages == 0)
2303 break;
2304 for (i = 0; i < nr_pages; i++) {
2305 struct page *page = pvec.pages[i];
2306
2307 if (page->index > end)
2308 break;
2309 /* Up to 'end' pages must be contiguous */
2310 BUG_ON(page->index != start);
2311 bh = head = page_buffers(page);
2312 do {
2313 if (lblk < mpd->map.m_lblk)
2314 continue;
2315 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2316 /*
2317 * Buffer after end of mapped extent.
2318 * Find next buffer in the page to map.
2319 */
2320 mpd->map.m_len = 0;
2321 mpd->map.m_flags = 0;
2322 /*
2323 * FIXME: If dioread_nolock supports
2324 * blocksize < pagesize, we need to make
2325 * sure we add size mapped so far to
2326 * io_end->size as the following call
2327 * can submit the page for IO.
2328 */
2329 err = mpage_process_page_bufs(mpd, head,
2330 bh, lblk);
2331 pagevec_release(&pvec);
2332 if (err > 0)
2333 err = 0;
2334 return err;
2335 }
2336 if (buffer_delay(bh)) {
2337 clear_buffer_delay(bh);
2338 bh->b_blocknr = pblock++;
2339 }
2340 clear_buffer_unwritten(bh);
2341 } while (lblk++, (bh = bh->b_this_page) != head);
2342
2343 /*
2344 * FIXME: This is going to break if dioread_nolock
2345 * supports blocksize < pagesize as we will try to
2346 * convert potentially unmapped parts of inode.
2347 */
2348 mpd->io_submit.io_end->size += PAGE_SIZE;
2349 /* Page fully mapped - let IO run! */
2350 err = mpage_submit_page(mpd, page);
2351 if (err < 0) {
2352 pagevec_release(&pvec);
2353 return err;
2354 }
2355 start++;
2356 }
2357 pagevec_release(&pvec);
2358 }
2359 /* Extent fully mapped and matches with page boundary. We are done. */
2360 mpd->map.m_len = 0;
2361 mpd->map.m_flags = 0;
2362 return 0;
2363 }
2364
2365 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2366 {
2367 struct inode *inode = mpd->inode;
2368 struct ext4_map_blocks *map = &mpd->map;
2369 int get_blocks_flags;
2370 int err, dioread_nolock;
2371
2372 trace_ext4_da_write_pages_extent(inode, map);
2373 /*
2374 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2375 * to convert an unwritten extent to be initialized (in the case
2376 * where we have written into one or more preallocated blocks). It is
2377 * possible that we're going to need more metadata blocks than
2378 * previously reserved. However we must not fail because we're in
2379 * writeback and there is nothing we can do about it so it might result
2380 * in data loss. So use reserved blocks to allocate metadata if
2381 * possible.
2382 *
2383 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2384 * the blocks in question are delalloc blocks. This indicates
2385 * that the blocks and quotas has already been checked when
2386 * the data was copied into the page cache.
2387 */
2388 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2389 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2390 EXT4_GET_BLOCKS_IO_SUBMIT;
2391 dioread_nolock = ext4_should_dioread_nolock(inode);
2392 if (dioread_nolock)
2393 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2394 if (map->m_flags & (1 << BH_Delay))
2395 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2396
2397 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2398 if (err < 0)
2399 return err;
2400 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2401 if (!mpd->io_submit.io_end->handle &&
2402 ext4_handle_valid(handle)) {
2403 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2404 handle->h_rsv_handle = NULL;
2405 }
2406 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2407 }
2408
2409 BUG_ON(map->m_len == 0);
2410 if (map->m_flags & EXT4_MAP_NEW) {
2411 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2412 map->m_len);
2413 }
2414 return 0;
2415 }
2416
2417 /*
2418 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2419 * mpd->len and submit pages underlying it for IO
2420 *
2421 * @handle - handle for journal operations
2422 * @mpd - extent to map
2423 * @give_up_on_write - we set this to true iff there is a fatal error and there
2424 * is no hope of writing the data. The caller should discard
2425 * dirty pages to avoid infinite loops.
2426 *
2427 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2428 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2429 * them to initialized or split the described range from larger unwritten
2430 * extent. Note that we need not map all the described range since allocation
2431 * can return less blocks or the range is covered by more unwritten extents. We
2432 * cannot map more because we are limited by reserved transaction credits. On
2433 * the other hand we always make sure that the last touched page is fully
2434 * mapped so that it can be written out (and thus forward progress is
2435 * guaranteed). After mapping we submit all mapped pages for IO.
2436 */
2437 static int mpage_map_and_submit_extent(handle_t *handle,
2438 struct mpage_da_data *mpd,
2439 bool *give_up_on_write)
2440 {
2441 struct inode *inode = mpd->inode;
2442 struct ext4_map_blocks *map = &mpd->map;
2443 int err;
2444 loff_t disksize;
2445 int progress = 0;
2446
2447 mpd->io_submit.io_end->offset =
2448 ((loff_t)map->m_lblk) << inode->i_blkbits;
2449 do {
2450 err = mpage_map_one_extent(handle, mpd);
2451 if (err < 0) {
2452 struct super_block *sb = inode->i_sb;
2453
2454 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2455 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2456 goto invalidate_dirty_pages;
2457 /*
2458 * Let the uper layers retry transient errors.
2459 * In the case of ENOSPC, if ext4_count_free_blocks()
2460 * is non-zero, a commit should free up blocks.
2461 */
2462 if ((err == -ENOMEM) ||
2463 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2464 if (progress)
2465 goto update_disksize;
2466 return err;
2467 }
2468 ext4_msg(sb, KERN_CRIT,
2469 "Delayed block allocation failed for "
2470 "inode %lu at logical offset %llu with"
2471 " max blocks %u with error %d",
2472 inode->i_ino,
2473 (unsigned long long)map->m_lblk,
2474 (unsigned)map->m_len, -err);
2475 ext4_msg(sb, KERN_CRIT,
2476 "This should not happen!! Data will "
2477 "be lost\n");
2478 if (err == -ENOSPC)
2479 ext4_print_free_blocks(inode);
2480 invalidate_dirty_pages:
2481 *give_up_on_write = true;
2482 return err;
2483 }
2484 progress = 1;
2485 /*
2486 * Update buffer state, submit mapped pages, and get us new
2487 * extent to map
2488 */
2489 err = mpage_map_and_submit_buffers(mpd);
2490 if (err < 0)
2491 goto update_disksize;
2492 } while (map->m_len);
2493
2494 update_disksize:
2495 /*
2496 * Update on-disk size after IO is submitted. Races with
2497 * truncate are avoided by checking i_size under i_data_sem.
2498 */
2499 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2500 if (disksize > EXT4_I(inode)->i_disksize) {
2501 int err2;
2502 loff_t i_size;
2503
2504 down_write(&EXT4_I(inode)->i_data_sem);
2505 i_size = i_size_read(inode);
2506 if (disksize > i_size)
2507 disksize = i_size;
2508 if (disksize > EXT4_I(inode)->i_disksize)
2509 EXT4_I(inode)->i_disksize = disksize;
2510 up_write(&EXT4_I(inode)->i_data_sem);
2511 err2 = ext4_mark_inode_dirty(handle, inode);
2512 if (err2)
2513 ext4_error(inode->i_sb,
2514 "Failed to mark inode %lu dirty",
2515 inode->i_ino);
2516 if (!err)
2517 err = err2;
2518 }
2519 return err;
2520 }
2521
2522 /*
2523 * Calculate the total number of credits to reserve for one writepages
2524 * iteration. This is called from ext4_writepages(). We map an extent of
2525 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2526 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2527 * bpp - 1 blocks in bpp different extents.
2528 */
2529 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2530 {
2531 int bpp = ext4_journal_blocks_per_page(inode);
2532
2533 return ext4_meta_trans_blocks(inode,
2534 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2535 }
2536
2537 /*
2538 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2539 * and underlying extent to map
2540 *
2541 * @mpd - where to look for pages
2542 *
2543 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2544 * IO immediately. When we find a page which isn't mapped we start accumulating
2545 * extent of buffers underlying these pages that needs mapping (formed by
2546 * either delayed or unwritten buffers). We also lock the pages containing
2547 * these buffers. The extent found is returned in @mpd structure (starting at
2548 * mpd->lblk with length mpd->len blocks).
2549 *
2550 * Note that this function can attach bios to one io_end structure which are
2551 * neither logically nor physically contiguous. Although it may seem as an
2552 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2553 * case as we need to track IO to all buffers underlying a page in one io_end.
2554 */
2555 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2556 {
2557 struct address_space *mapping = mpd->inode->i_mapping;
2558 struct pagevec pvec;
2559 unsigned int nr_pages;
2560 long left = mpd->wbc->nr_to_write;
2561 pgoff_t index = mpd->first_page;
2562 pgoff_t end = mpd->last_page;
2563 int tag;
2564 int i, err = 0;
2565 int blkbits = mpd->inode->i_blkbits;
2566 ext4_lblk_t lblk;
2567 struct buffer_head *head;
2568
2569 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2570 tag = PAGECACHE_TAG_TOWRITE;
2571 else
2572 tag = PAGECACHE_TAG_DIRTY;
2573
2574 pagevec_init(&pvec, 0);
2575 mpd->map.m_len = 0;
2576 mpd->next_page = index;
2577 while (index <= end) {
2578 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2579 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2580 if (nr_pages == 0)
2581 goto out;
2582
2583 for (i = 0; i < nr_pages; i++) {
2584 struct page *page = pvec.pages[i];
2585
2586 /*
2587 * At this point, the page may be truncated or
2588 * invalidated (changing page->mapping to NULL), or
2589 * even swizzled back from swapper_space to tmpfs file
2590 * mapping. However, page->index will not change
2591 * because we have a reference on the page.
2592 */
2593 if (page->index > end)
2594 goto out;
2595
2596 /*
2597 * Accumulated enough dirty pages? This doesn't apply
2598 * to WB_SYNC_ALL mode. For integrity sync we have to
2599 * keep going because someone may be concurrently
2600 * dirtying pages, and we might have synced a lot of
2601 * newly appeared dirty pages, but have not synced all
2602 * of the old dirty pages.
2603 */
2604 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2605 goto out;
2606
2607 /* If we can't merge this page, we are done. */
2608 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2609 goto out;
2610
2611 lock_page(page);
2612 /*
2613 * If the page is no longer dirty, or its mapping no
2614 * longer corresponds to inode we are writing (which
2615 * means it has been truncated or invalidated), or the
2616 * page is already under writeback and we are not doing
2617 * a data integrity writeback, skip the page
2618 */
2619 if (!PageDirty(page) ||
2620 (PageWriteback(page) &&
2621 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2622 unlikely(page->mapping != mapping)) {
2623 unlock_page(page);
2624 continue;
2625 }
2626
2627 wait_on_page_writeback(page);
2628 BUG_ON(PageWriteback(page));
2629
2630 if (mpd->map.m_len == 0)
2631 mpd->first_page = page->index;
2632 mpd->next_page = page->index + 1;
2633 /* Add all dirty buffers to mpd */
2634 lblk = ((ext4_lblk_t)page->index) <<
2635 (PAGE_SHIFT - blkbits);
2636 head = page_buffers(page);
2637 err = mpage_process_page_bufs(mpd, head, head, lblk);
2638 if (err <= 0)
2639 goto out;
2640 err = 0;
2641 left--;
2642 }
2643 pagevec_release(&pvec);
2644 cond_resched();
2645 }
2646 return 0;
2647 out:
2648 pagevec_release(&pvec);
2649 return err;
2650 }
2651
2652 static int __writepage(struct page *page, struct writeback_control *wbc,
2653 void *data)
2654 {
2655 struct address_space *mapping = data;
2656 int ret = ext4_writepage(page, wbc);
2657 mapping_set_error(mapping, ret);
2658 return ret;
2659 }
2660
2661 static int ext4_writepages(struct address_space *mapping,
2662 struct writeback_control *wbc)
2663 {
2664 pgoff_t writeback_index = 0;
2665 long nr_to_write = wbc->nr_to_write;
2666 int range_whole = 0;
2667 int cycled = 1;
2668 handle_t *handle = NULL;
2669 struct mpage_da_data mpd;
2670 struct inode *inode = mapping->host;
2671 int needed_blocks, rsv_blocks = 0, ret = 0;
2672 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2673 bool done;
2674 struct blk_plug plug;
2675 bool give_up_on_write = false;
2676
2677 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2678 return -EIO;
2679
2680 percpu_down_read(&sbi->s_journal_flag_rwsem);
2681 trace_ext4_writepages(inode, wbc);
2682
2683 if (dax_mapping(mapping)) {
2684 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2685 wbc);
2686 goto out_writepages;
2687 }
2688
2689 /*
2690 * No pages to write? This is mainly a kludge to avoid starting
2691 * a transaction for special inodes like journal inode on last iput()
2692 * because that could violate lock ordering on umount
2693 */
2694 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2695 goto out_writepages;
2696
2697 if (ext4_should_journal_data(inode)) {
2698 struct blk_plug plug;
2699
2700 blk_start_plug(&plug);
2701 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2702 blk_finish_plug(&plug);
2703 goto out_writepages;
2704 }
2705
2706 /*
2707 * If the filesystem has aborted, it is read-only, so return
2708 * right away instead of dumping stack traces later on that
2709 * will obscure the real source of the problem. We test
2710 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2711 * the latter could be true if the filesystem is mounted
2712 * read-only, and in that case, ext4_writepages should
2713 * *never* be called, so if that ever happens, we would want
2714 * the stack trace.
2715 */
2716 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2717 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2718 ret = -EROFS;
2719 goto out_writepages;
2720 }
2721
2722 if (ext4_should_dioread_nolock(inode)) {
2723 /*
2724 * We may need to convert up to one extent per block in
2725 * the page and we may dirty the inode.
2726 */
2727 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2728 }
2729
2730 /*
2731 * If we have inline data and arrive here, it means that
2732 * we will soon create the block for the 1st page, so
2733 * we'd better clear the inline data here.
2734 */
2735 if (ext4_has_inline_data(inode)) {
2736 /* Just inode will be modified... */
2737 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2738 if (IS_ERR(handle)) {
2739 ret = PTR_ERR(handle);
2740 goto out_writepages;
2741 }
2742 BUG_ON(ext4_test_inode_state(inode,
2743 EXT4_STATE_MAY_INLINE_DATA));
2744 ext4_destroy_inline_data(handle, inode);
2745 ext4_journal_stop(handle);
2746 }
2747
2748 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2749 range_whole = 1;
2750
2751 if (wbc->range_cyclic) {
2752 writeback_index = mapping->writeback_index;
2753 if (writeback_index)
2754 cycled = 0;
2755 mpd.first_page = writeback_index;
2756 mpd.last_page = -1;
2757 } else {
2758 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2759 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2760 }
2761
2762 mpd.inode = inode;
2763 mpd.wbc = wbc;
2764 ext4_io_submit_init(&mpd.io_submit, wbc);
2765 retry:
2766 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2767 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2768 done = false;
2769 blk_start_plug(&plug);
2770
2771 /*
2772 * First writeback pages that don't need mapping - we can avoid
2773 * starting a transaction unnecessarily and also avoid being blocked
2774 * in the block layer on device congestion while having transaction
2775 * started.
2776 */
2777 mpd.do_map = 0;
2778 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2779 if (!mpd.io_submit.io_end) {
2780 ret = -ENOMEM;
2781 goto unplug;
2782 }
2783 ret = mpage_prepare_extent_to_map(&mpd);
2784 /* Submit prepared bio */
2785 ext4_io_submit(&mpd.io_submit);
2786 ext4_put_io_end_defer(mpd.io_submit.io_end);
2787 mpd.io_submit.io_end = NULL;
2788 /* Unlock pages we didn't use */
2789 mpage_release_unused_pages(&mpd, false);
2790 if (ret < 0)
2791 goto unplug;
2792
2793 while (!done && mpd.first_page <= mpd.last_page) {
2794 /* For each extent of pages we use new io_end */
2795 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2796 if (!mpd.io_submit.io_end) {
2797 ret = -ENOMEM;
2798 break;
2799 }
2800
2801 /*
2802 * We have two constraints: We find one extent to map and we
2803 * must always write out whole page (makes a difference when
2804 * blocksize < pagesize) so that we don't block on IO when we
2805 * try to write out the rest of the page. Journalled mode is
2806 * not supported by delalloc.
2807 */
2808 BUG_ON(ext4_should_journal_data(inode));
2809 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2810
2811 /* start a new transaction */
2812 handle = ext4_journal_start_with_reserve(inode,
2813 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2814 if (IS_ERR(handle)) {
2815 ret = PTR_ERR(handle);
2816 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2817 "%ld pages, ino %lu; err %d", __func__,
2818 wbc->nr_to_write, inode->i_ino, ret);
2819 /* Release allocated io_end */
2820 ext4_put_io_end(mpd.io_submit.io_end);
2821 mpd.io_submit.io_end = NULL;
2822 break;
2823 }
2824 mpd.do_map = 1;
2825
2826 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2827 ret = mpage_prepare_extent_to_map(&mpd);
2828 if (!ret) {
2829 if (mpd.map.m_len)
2830 ret = mpage_map_and_submit_extent(handle, &mpd,
2831 &give_up_on_write);
2832 else {
2833 /*
2834 * We scanned the whole range (or exhausted
2835 * nr_to_write), submitted what was mapped and
2836 * didn't find anything needing mapping. We are
2837 * done.
2838 */
2839 done = true;
2840 }
2841 }
2842 /*
2843 * Caution: If the handle is synchronous,
2844 * ext4_journal_stop() can wait for transaction commit
2845 * to finish which may depend on writeback of pages to
2846 * complete or on page lock to be released. In that
2847 * case, we have to wait until after after we have
2848 * submitted all the IO, released page locks we hold,
2849 * and dropped io_end reference (for extent conversion
2850 * to be able to complete) before stopping the handle.
2851 */
2852 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2853 ext4_journal_stop(handle);
2854 handle = NULL;
2855 mpd.do_map = 0;
2856 }
2857 /* Submit prepared bio */
2858 ext4_io_submit(&mpd.io_submit);
2859 /* Unlock pages we didn't use */
2860 mpage_release_unused_pages(&mpd, give_up_on_write);
2861 /*
2862 * Drop our io_end reference we got from init. We have
2863 * to be careful and use deferred io_end finishing if
2864 * we are still holding the transaction as we can
2865 * release the last reference to io_end which may end
2866 * up doing unwritten extent conversion.
2867 */
2868 if (handle) {
2869 ext4_put_io_end_defer(mpd.io_submit.io_end);
2870 ext4_journal_stop(handle);
2871 } else
2872 ext4_put_io_end(mpd.io_submit.io_end);
2873 mpd.io_submit.io_end = NULL;
2874
2875 if (ret == -ENOSPC && sbi->s_journal) {
2876 /*
2877 * Commit the transaction which would
2878 * free blocks released in the transaction
2879 * and try again
2880 */
2881 jbd2_journal_force_commit_nested(sbi->s_journal);
2882 ret = 0;
2883 continue;
2884 }
2885 /* Fatal error - ENOMEM, EIO... */
2886 if (ret)
2887 break;
2888 }
2889 unplug:
2890 blk_finish_plug(&plug);
2891 if (!ret && !cycled && wbc->nr_to_write > 0) {
2892 cycled = 1;
2893 mpd.last_page = writeback_index - 1;
2894 mpd.first_page = 0;
2895 goto retry;
2896 }
2897
2898 /* Update index */
2899 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2900 /*
2901 * Set the writeback_index so that range_cyclic
2902 * mode will write it back later
2903 */
2904 mapping->writeback_index = mpd.first_page;
2905
2906 out_writepages:
2907 trace_ext4_writepages_result(inode, wbc, ret,
2908 nr_to_write - wbc->nr_to_write);
2909 percpu_up_read(&sbi->s_journal_flag_rwsem);
2910 return ret;
2911 }
2912
2913 static int ext4_nonda_switch(struct super_block *sb)
2914 {
2915 s64 free_clusters, dirty_clusters;
2916 struct ext4_sb_info *sbi = EXT4_SB(sb);
2917
2918 /*
2919 * switch to non delalloc mode if we are running low
2920 * on free block. The free block accounting via percpu
2921 * counters can get slightly wrong with percpu_counter_batch getting
2922 * accumulated on each CPU without updating global counters
2923 * Delalloc need an accurate free block accounting. So switch
2924 * to non delalloc when we are near to error range.
2925 */
2926 free_clusters =
2927 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2928 dirty_clusters =
2929 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2930 /*
2931 * Start pushing delalloc when 1/2 of free blocks are dirty.
2932 */
2933 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2934 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2935
2936 if (2 * free_clusters < 3 * dirty_clusters ||
2937 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2938 /*
2939 * free block count is less than 150% of dirty blocks
2940 * or free blocks is less than watermark
2941 */
2942 return 1;
2943 }
2944 return 0;
2945 }
2946
2947 /* We always reserve for an inode update; the superblock could be there too */
2948 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2949 {
2950 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2951 return 1;
2952
2953 if (pos + len <= 0x7fffffffULL)
2954 return 1;
2955
2956 /* We might need to update the superblock to set LARGE_FILE */
2957 return 2;
2958 }
2959
2960 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2961 loff_t pos, unsigned len, unsigned flags,
2962 struct page **pagep, void **fsdata)
2963 {
2964 int ret, retries = 0;
2965 struct page *page;
2966 pgoff_t index;
2967 struct inode *inode = mapping->host;
2968 handle_t *handle;
2969
2970 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2971 return -EIO;
2972
2973 index = pos >> PAGE_SHIFT;
2974
2975 if (ext4_nonda_switch(inode->i_sb) ||
2976 S_ISLNK(inode->i_mode)) {
2977 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2978 return ext4_write_begin(file, mapping, pos,
2979 len, flags, pagep, fsdata);
2980 }
2981 *fsdata = (void *)0;
2982 trace_ext4_da_write_begin(inode, pos, len, flags);
2983
2984 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2985 ret = ext4_da_write_inline_data_begin(mapping, inode,
2986 pos, len, flags,
2987 pagep, fsdata);
2988 if (ret < 0)
2989 return ret;
2990 if (ret == 1)
2991 return 0;
2992 }
2993
2994 /*
2995 * grab_cache_page_write_begin() can take a long time if the
2996 * system is thrashing due to memory pressure, or if the page
2997 * is being written back. So grab it first before we start
2998 * the transaction handle. This also allows us to allocate
2999 * the page (if needed) without using GFP_NOFS.
3000 */
3001 retry_grab:
3002 page = grab_cache_page_write_begin(mapping, index, flags);
3003 if (!page)
3004 return -ENOMEM;
3005 unlock_page(page);
3006
3007 /*
3008 * With delayed allocation, we don't log the i_disksize update
3009 * if there is delayed block allocation. But we still need
3010 * to journalling the i_disksize update if writes to the end
3011 * of file which has an already mapped buffer.
3012 */
3013 retry_journal:
3014 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3015 ext4_da_write_credits(inode, pos, len));
3016 if (IS_ERR(handle)) {
3017 put_page(page);
3018 return PTR_ERR(handle);
3019 }
3020
3021 lock_page(page);
3022 if (page->mapping != mapping) {
3023 /* The page got truncated from under us */
3024 unlock_page(page);
3025 put_page(page);
3026 ext4_journal_stop(handle);
3027 goto retry_grab;
3028 }
3029 /* In case writeback began while the page was unlocked */
3030 wait_for_stable_page(page);
3031
3032 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3033 ret = ext4_block_write_begin(page, pos, len,
3034 ext4_da_get_block_prep);
3035 #else
3036 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3037 #endif
3038 if (ret < 0) {
3039 unlock_page(page);
3040 ext4_journal_stop(handle);
3041 /*
3042 * block_write_begin may have instantiated a few blocks
3043 * outside i_size. Trim these off again. Don't need
3044 * i_size_read because we hold i_mutex.
3045 */
3046 if (pos + len > inode->i_size)
3047 ext4_truncate_failed_write(inode);
3048
3049 if (ret == -ENOSPC &&
3050 ext4_should_retry_alloc(inode->i_sb, &retries))
3051 goto retry_journal;
3052
3053 put_page(page);
3054 return ret;
3055 }
3056
3057 *pagep = page;
3058 return ret;
3059 }
3060
3061 /*
3062 * Check if we should update i_disksize
3063 * when write to the end of file but not require block allocation
3064 */
3065 static int ext4_da_should_update_i_disksize(struct page *page,
3066 unsigned long offset)
3067 {
3068 struct buffer_head *bh;
3069 struct inode *inode = page->mapping->host;
3070 unsigned int idx;
3071 int i;
3072
3073 bh = page_buffers(page);
3074 idx = offset >> inode->i_blkbits;
3075
3076 for (i = 0; i < idx; i++)
3077 bh = bh->b_this_page;
3078
3079 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3080 return 0;
3081 return 1;
3082 }
3083
3084 static int ext4_da_write_end(struct file *file,
3085 struct address_space *mapping,
3086 loff_t pos, unsigned len, unsigned copied,
3087 struct page *page, void *fsdata)
3088 {
3089 struct inode *inode = mapping->host;
3090 int ret = 0, ret2;
3091 handle_t *handle = ext4_journal_current_handle();
3092 loff_t new_i_size;
3093 unsigned long start, end;
3094 int write_mode = (int)(unsigned long)fsdata;
3095
3096 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3097 return ext4_write_end(file, mapping, pos,
3098 len, copied, page, fsdata);
3099
3100 trace_ext4_da_write_end(inode, pos, len, copied);
3101 start = pos & (PAGE_SIZE - 1);
3102 end = start + copied - 1;
3103
3104 /*
3105 * generic_write_end() will run mark_inode_dirty() if i_size
3106 * changes. So let's piggyback the i_disksize mark_inode_dirty
3107 * into that.
3108 */
3109 new_i_size = pos + copied;
3110 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3111 if (ext4_has_inline_data(inode) ||
3112 ext4_da_should_update_i_disksize(page, end)) {
3113 ext4_update_i_disksize(inode, new_i_size);
3114 /* We need to mark inode dirty even if
3115 * new_i_size is less that inode->i_size
3116 * bu greater than i_disksize.(hint delalloc)
3117 */
3118 ext4_mark_inode_dirty(handle, inode);
3119 }
3120 }
3121
3122 if (write_mode != CONVERT_INLINE_DATA &&
3123 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3124 ext4_has_inline_data(inode))
3125 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3126 page);
3127 else
3128 ret2 = generic_write_end(file, mapping, pos, len, copied,
3129 page, fsdata);
3130
3131 copied = ret2;
3132 if (ret2 < 0)
3133 ret = ret2;
3134 ret2 = ext4_journal_stop(handle);
3135 if (!ret)
3136 ret = ret2;
3137
3138 return ret ? ret : copied;
3139 }
3140
3141 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3142 unsigned int length)
3143 {
3144 /*
3145 * Drop reserved blocks
3146 */
3147 BUG_ON(!PageLocked(page));
3148 if (!page_has_buffers(page))
3149 goto out;
3150
3151 ext4_da_page_release_reservation(page, offset, length);
3152
3153 out:
3154 ext4_invalidatepage(page, offset, length);
3155
3156 return;
3157 }
3158
3159 /*
3160 * Force all delayed allocation blocks to be allocated for a given inode.
3161 */
3162 int ext4_alloc_da_blocks(struct inode *inode)
3163 {
3164 trace_ext4_alloc_da_blocks(inode);
3165
3166 if (!EXT4_I(inode)->i_reserved_data_blocks)
3167 return 0;
3168
3169 /*
3170 * We do something simple for now. The filemap_flush() will
3171 * also start triggering a write of the data blocks, which is
3172 * not strictly speaking necessary (and for users of
3173 * laptop_mode, not even desirable). However, to do otherwise
3174 * would require replicating code paths in:
3175 *
3176 * ext4_writepages() ->
3177 * write_cache_pages() ---> (via passed in callback function)
3178 * __mpage_da_writepage() -->
3179 * mpage_add_bh_to_extent()
3180 * mpage_da_map_blocks()
3181 *
3182 * The problem is that write_cache_pages(), located in
3183 * mm/page-writeback.c, marks pages clean in preparation for
3184 * doing I/O, which is not desirable if we're not planning on
3185 * doing I/O at all.
3186 *
3187 * We could call write_cache_pages(), and then redirty all of
3188 * the pages by calling redirty_page_for_writepage() but that
3189 * would be ugly in the extreme. So instead we would need to
3190 * replicate parts of the code in the above functions,
3191 * simplifying them because we wouldn't actually intend to
3192 * write out the pages, but rather only collect contiguous
3193 * logical block extents, call the multi-block allocator, and
3194 * then update the buffer heads with the block allocations.
3195 *
3196 * For now, though, we'll cheat by calling filemap_flush(),
3197 * which will map the blocks, and start the I/O, but not
3198 * actually wait for the I/O to complete.
3199 */
3200 return filemap_flush(inode->i_mapping);
3201 }
3202
3203 /*
3204 * bmap() is special. It gets used by applications such as lilo and by
3205 * the swapper to find the on-disk block of a specific piece of data.
3206 *
3207 * Naturally, this is dangerous if the block concerned is still in the
3208 * journal. If somebody makes a swapfile on an ext4 data-journaling
3209 * filesystem and enables swap, then they may get a nasty shock when the
3210 * data getting swapped to that swapfile suddenly gets overwritten by
3211 * the original zero's written out previously to the journal and
3212 * awaiting writeback in the kernel's buffer cache.
3213 *
3214 * So, if we see any bmap calls here on a modified, data-journaled file,
3215 * take extra steps to flush any blocks which might be in the cache.
3216 */
3217 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3218 {
3219 struct inode *inode = mapping->host;
3220 journal_t *journal;
3221 int err;
3222
3223 /*
3224 * We can get here for an inline file via the FIBMAP ioctl
3225 */
3226 if (ext4_has_inline_data(inode))
3227 return 0;
3228
3229 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3230 test_opt(inode->i_sb, DELALLOC)) {
3231 /*
3232 * With delalloc we want to sync the file
3233 * so that we can make sure we allocate
3234 * blocks for file
3235 */
3236 filemap_write_and_wait(mapping);
3237 }
3238
3239 if (EXT4_JOURNAL(inode) &&
3240 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3241 /*
3242 * This is a REALLY heavyweight approach, but the use of
3243 * bmap on dirty files is expected to be extremely rare:
3244 * only if we run lilo or swapon on a freshly made file
3245 * do we expect this to happen.
3246 *
3247 * (bmap requires CAP_SYS_RAWIO so this does not
3248 * represent an unprivileged user DOS attack --- we'd be
3249 * in trouble if mortal users could trigger this path at
3250 * will.)
3251 *
3252 * NB. EXT4_STATE_JDATA is not set on files other than
3253 * regular files. If somebody wants to bmap a directory
3254 * or symlink and gets confused because the buffer
3255 * hasn't yet been flushed to disk, they deserve
3256 * everything they get.
3257 */
3258
3259 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3260 journal = EXT4_JOURNAL(inode);
3261 jbd2_journal_lock_updates(journal);
3262 err = jbd2_journal_flush(journal);
3263 jbd2_journal_unlock_updates(journal);
3264
3265 if (err)
3266 return 0;
3267 }
3268
3269 return generic_block_bmap(mapping, block, ext4_get_block);
3270 }
3271
3272 static int ext4_readpage(struct file *file, struct page *page)
3273 {
3274 int ret = -EAGAIN;
3275 struct inode *inode = page->mapping->host;
3276
3277 trace_ext4_readpage(page);
3278
3279 if (ext4_has_inline_data(inode))
3280 ret = ext4_readpage_inline(inode, page);
3281
3282 if (ret == -EAGAIN)
3283 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3284
3285 return ret;
3286 }
3287
3288 static int
3289 ext4_readpages(struct file *file, struct address_space *mapping,
3290 struct list_head *pages, unsigned nr_pages)
3291 {
3292 struct inode *inode = mapping->host;
3293
3294 /* If the file has inline data, no need to do readpages. */
3295 if (ext4_has_inline_data(inode))
3296 return 0;
3297
3298 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3299 }
3300
3301 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3302 unsigned int length)
3303 {
3304 trace_ext4_invalidatepage(page, offset, length);
3305
3306 /* No journalling happens on data buffers when this function is used */
3307 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3308
3309 block_invalidatepage(page, offset, length);
3310 }
3311
3312 static int __ext4_journalled_invalidatepage(struct page *page,
3313 unsigned int offset,
3314 unsigned int length)
3315 {
3316 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3317
3318 trace_ext4_journalled_invalidatepage(page, offset, length);
3319
3320 /*
3321 * If it's a full truncate we just forget about the pending dirtying
3322 */
3323 if (offset == 0 && length == PAGE_SIZE)
3324 ClearPageChecked(page);
3325
3326 return jbd2_journal_invalidatepage(journal, page, offset, length);
3327 }
3328
3329 /* Wrapper for aops... */
3330 static void ext4_journalled_invalidatepage(struct page *page,
3331 unsigned int offset,
3332 unsigned int length)
3333 {
3334 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3335 }
3336
3337 static int ext4_releasepage(struct page *page, gfp_t wait)
3338 {
3339 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3340
3341 trace_ext4_releasepage(page);
3342
3343 /* Page has dirty journalled data -> cannot release */
3344 if (PageChecked(page))
3345 return 0;
3346 if (journal)
3347 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3348 else
3349 return try_to_free_buffers(page);
3350 }
3351
3352 #ifdef CONFIG_FS_DAX
3353 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3354 unsigned flags, struct iomap *iomap)
3355 {
3356 struct block_device *bdev;
3357 unsigned int blkbits = inode->i_blkbits;
3358 unsigned long first_block = offset >> blkbits;
3359 unsigned long last_block = (offset + length - 1) >> blkbits;
3360 struct ext4_map_blocks map;
3361 int ret;
3362
3363 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3364 return -ERANGE;
3365
3366 map.m_lblk = first_block;
3367 map.m_len = last_block - first_block + 1;
3368
3369 if (!(flags & IOMAP_WRITE)) {
3370 ret = ext4_map_blocks(NULL, inode, &map, 0);
3371 } else {
3372 int dio_credits;
3373 handle_t *handle;
3374 int retries = 0;
3375
3376 /* Trim mapping request to maximum we can map at once for DIO */
3377 if (map.m_len > DIO_MAX_BLOCKS)
3378 map.m_len = DIO_MAX_BLOCKS;
3379 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3380 retry:
3381 /*
3382 * Either we allocate blocks and then we don't get unwritten
3383 * extent so we have reserved enough credits, or the blocks
3384 * are already allocated and unwritten and in that case
3385 * extent conversion fits in the credits as well.
3386 */
3387 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3388 dio_credits);
3389 if (IS_ERR(handle))
3390 return PTR_ERR(handle);
3391
3392 ret = ext4_map_blocks(handle, inode, &map,
3393 EXT4_GET_BLOCKS_CREATE_ZERO);
3394 if (ret < 0) {
3395 ext4_journal_stop(handle);
3396 if (ret == -ENOSPC &&
3397 ext4_should_retry_alloc(inode->i_sb, &retries))
3398 goto retry;
3399 return ret;
3400 }
3401
3402 /*
3403 * If we added blocks beyond i_size, we need to make sure they
3404 * will get truncated if we crash before updating i_size in
3405 * ext4_iomap_end(). For faults we don't need to do that (and
3406 * even cannot because for orphan list operations inode_lock is
3407 * required) - if we happen to instantiate block beyond i_size,
3408 * it is because we race with truncate which has already added
3409 * the inode to the orphan list.
3410 */
3411 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3412 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3413 int err;
3414
3415 err = ext4_orphan_add(handle, inode);
3416 if (err < 0) {
3417 ext4_journal_stop(handle);
3418 return err;
3419 }
3420 }
3421 ext4_journal_stop(handle);
3422 }
3423
3424 iomap->flags = 0;
3425 bdev = inode->i_sb->s_bdev;
3426 iomap->bdev = bdev;
3427 if (blk_queue_dax(bdev->bd_queue))
3428 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
3429 else
3430 iomap->dax_dev = NULL;
3431 iomap->offset = first_block << blkbits;
3432
3433 if (ret == 0) {
3434 iomap->type = IOMAP_HOLE;
3435 iomap->blkno = IOMAP_NULL_BLOCK;
3436 iomap->length = (u64)map.m_len << blkbits;
3437 } else {
3438 if (map.m_flags & EXT4_MAP_MAPPED) {
3439 iomap->type = IOMAP_MAPPED;
3440 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3441 iomap->type = IOMAP_UNWRITTEN;
3442 } else {
3443 WARN_ON_ONCE(1);
3444 return -EIO;
3445 }
3446 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3447 iomap->length = (u64)map.m_len << blkbits;
3448 }
3449
3450 if (map.m_flags & EXT4_MAP_NEW)
3451 iomap->flags |= IOMAP_F_NEW;
3452 return 0;
3453 }
3454
3455 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3456 ssize_t written, unsigned flags, struct iomap *iomap)
3457 {
3458 int ret = 0;
3459 handle_t *handle;
3460 int blkbits = inode->i_blkbits;
3461 bool truncate = false;
3462
3463 fs_put_dax(iomap->dax_dev);
3464 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3465 return 0;
3466
3467 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3468 if (IS_ERR(handle)) {
3469 ret = PTR_ERR(handle);
3470 goto orphan_del;
3471 }
3472 if (ext4_update_inode_size(inode, offset + written))
3473 ext4_mark_inode_dirty(handle, inode);
3474 /*
3475 * We may need to truncate allocated but not written blocks beyond EOF.
3476 */
3477 if (iomap->offset + iomap->length >
3478 ALIGN(inode->i_size, 1 << blkbits)) {
3479 ext4_lblk_t written_blk, end_blk;
3480
3481 written_blk = (offset + written) >> blkbits;
3482 end_blk = (offset + length) >> blkbits;
3483 if (written_blk < end_blk && ext4_can_truncate(inode))
3484 truncate = true;
3485 }
3486 /*
3487 * Remove inode from orphan list if we were extending a inode and
3488 * everything went fine.
3489 */
3490 if (!truncate && inode->i_nlink &&
3491 !list_empty(&EXT4_I(inode)->i_orphan))
3492 ext4_orphan_del(handle, inode);
3493 ext4_journal_stop(handle);
3494 if (truncate) {
3495 ext4_truncate_failed_write(inode);
3496 orphan_del:
3497 /*
3498 * If truncate failed early the inode might still be on the
3499 * orphan list; we need to make sure the inode is removed from
3500 * the orphan list in that case.
3501 */
3502 if (inode->i_nlink)
3503 ext4_orphan_del(NULL, inode);
3504 }
3505 return ret;
3506 }
3507
3508 const struct iomap_ops ext4_iomap_ops = {
3509 .iomap_begin = ext4_iomap_begin,
3510 .iomap_end = ext4_iomap_end,
3511 };
3512
3513 #endif
3514
3515 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3516 ssize_t size, void *private)
3517 {
3518 ext4_io_end_t *io_end = private;
3519
3520 /* if not async direct IO just return */
3521 if (!io_end)
3522 return 0;
3523
3524 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3525 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3526 io_end, io_end->inode->i_ino, iocb, offset, size);
3527
3528 /*
3529 * Error during AIO DIO. We cannot convert unwritten extents as the
3530 * data was not written. Just clear the unwritten flag and drop io_end.
3531 */
3532 if (size <= 0) {
3533 ext4_clear_io_unwritten_flag(io_end);
3534 size = 0;
3535 }
3536 io_end->offset = offset;
3537 io_end->size = size;
3538 ext4_put_io_end(io_end);
3539
3540 return 0;
3541 }
3542
3543 /*
3544 * Handling of direct IO writes.
3545 *
3546 * For ext4 extent files, ext4 will do direct-io write even to holes,
3547 * preallocated extents, and those write extend the file, no need to
3548 * fall back to buffered IO.
3549 *
3550 * For holes, we fallocate those blocks, mark them as unwritten
3551 * If those blocks were preallocated, we mark sure they are split, but
3552 * still keep the range to write as unwritten.
3553 *
3554 * The unwritten extents will be converted to written when DIO is completed.
3555 * For async direct IO, since the IO may still pending when return, we
3556 * set up an end_io call back function, which will do the conversion
3557 * when async direct IO completed.
3558 *
3559 * If the O_DIRECT write will extend the file then add this inode to the
3560 * orphan list. So recovery will truncate it back to the original size
3561 * if the machine crashes during the write.
3562 *
3563 */
3564 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3565 {
3566 struct file *file = iocb->ki_filp;
3567 struct inode *inode = file->f_mapping->host;
3568 struct ext4_inode_info *ei = EXT4_I(inode);
3569 ssize_t ret;
3570 loff_t offset = iocb->ki_pos;
3571 size_t count = iov_iter_count(iter);
3572 int overwrite = 0;
3573 get_block_t *get_block_func = NULL;
3574 int dio_flags = 0;
3575 loff_t final_size = offset + count;
3576 int orphan = 0;
3577 handle_t *handle;
3578
3579 if (final_size > inode->i_size) {
3580 /* Credits for sb + inode write */
3581 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3582 if (IS_ERR(handle)) {
3583 ret = PTR_ERR(handle);
3584 goto out;
3585 }
3586 ret = ext4_orphan_add(handle, inode);
3587 if (ret) {
3588 ext4_journal_stop(handle);
3589 goto out;
3590 }
3591 orphan = 1;
3592 ei->i_disksize = inode->i_size;
3593 ext4_journal_stop(handle);
3594 }
3595
3596 BUG_ON(iocb->private == NULL);
3597
3598 /*
3599 * Make all waiters for direct IO properly wait also for extent
3600 * conversion. This also disallows race between truncate() and
3601 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3602 */
3603 inode_dio_begin(inode);
3604
3605 /* If we do a overwrite dio, i_mutex locking can be released */
3606 overwrite = *((int *)iocb->private);
3607
3608 if (overwrite)
3609 inode_unlock(inode);
3610
3611 /*
3612 * For extent mapped files we could direct write to holes and fallocate.
3613 *
3614 * Allocated blocks to fill the hole are marked as unwritten to prevent
3615 * parallel buffered read to expose the stale data before DIO complete
3616 * the data IO.
3617 *
3618 * As to previously fallocated extents, ext4 get_block will just simply
3619 * mark the buffer mapped but still keep the extents unwritten.
3620 *
3621 * For non AIO case, we will convert those unwritten extents to written
3622 * after return back from blockdev_direct_IO. That way we save us from
3623 * allocating io_end structure and also the overhead of offloading
3624 * the extent convertion to a workqueue.
3625 *
3626 * For async DIO, the conversion needs to be deferred when the
3627 * IO is completed. The ext4 end_io callback function will be
3628 * called to take care of the conversion work. Here for async
3629 * case, we allocate an io_end structure to hook to the iocb.
3630 */
3631 iocb->private = NULL;
3632 if (overwrite)
3633 get_block_func = ext4_dio_get_block_overwrite;
3634 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3635 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3636 get_block_func = ext4_dio_get_block;
3637 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3638 } else if (is_sync_kiocb(iocb)) {
3639 get_block_func = ext4_dio_get_block_unwritten_sync;
3640 dio_flags = DIO_LOCKING;
3641 } else {
3642 get_block_func = ext4_dio_get_block_unwritten_async;
3643 dio_flags = DIO_LOCKING;
3644 }
3645 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3646 get_block_func, ext4_end_io_dio, NULL,
3647 dio_flags);
3648
3649 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3650 EXT4_STATE_DIO_UNWRITTEN)) {
3651 int err;
3652 /*
3653 * for non AIO case, since the IO is already
3654 * completed, we could do the conversion right here
3655 */
3656 err = ext4_convert_unwritten_extents(NULL, inode,
3657 offset, ret);
3658 if (err < 0)
3659 ret = err;
3660 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3661 }
3662
3663 inode_dio_end(inode);
3664 /* take i_mutex locking again if we do a ovewrite dio */
3665 if (overwrite)
3666 inode_lock(inode);
3667
3668 if (ret < 0 && final_size > inode->i_size)
3669 ext4_truncate_failed_write(inode);
3670
3671 /* Handle extending of i_size after direct IO write */
3672 if (orphan) {
3673 int err;
3674
3675 /* Credits for sb + inode write */
3676 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3677 if (IS_ERR(handle)) {
3678 /* This is really bad luck. We've written the data
3679 * but cannot extend i_size. Bail out and pretend
3680 * the write failed... */
3681 ret = PTR_ERR(handle);
3682 if (inode->i_nlink)
3683 ext4_orphan_del(NULL, inode);
3684
3685 goto out;
3686 }
3687 if (inode->i_nlink)
3688 ext4_orphan_del(handle, inode);
3689 if (ret > 0) {
3690 loff_t end = offset + ret;
3691 if (end > inode->i_size) {
3692 ei->i_disksize = end;
3693 i_size_write(inode, end);
3694 /*
3695 * We're going to return a positive `ret'
3696 * here due to non-zero-length I/O, so there's
3697 * no way of reporting error returns from
3698 * ext4_mark_inode_dirty() to userspace. So
3699 * ignore it.
3700 */
3701 ext4_mark_inode_dirty(handle, inode);
3702 }
3703 }
3704 err = ext4_journal_stop(handle);
3705 if (ret == 0)
3706 ret = err;
3707 }
3708 out:
3709 return ret;
3710 }
3711
3712 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3713 {
3714 struct address_space *mapping = iocb->ki_filp->f_mapping;
3715 struct inode *inode = mapping->host;
3716 size_t count = iov_iter_count(iter);
3717 ssize_t ret;
3718
3719 /*
3720 * Shared inode_lock is enough for us - it protects against concurrent
3721 * writes & truncates and since we take care of writing back page cache,
3722 * we are protected against page writeback as well.
3723 */
3724 inode_lock_shared(inode);
3725 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3726 iocb->ki_pos + count - 1);
3727 if (ret)
3728 goto out_unlock;
3729 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3730 iter, ext4_dio_get_block, NULL, NULL, 0);
3731 out_unlock:
3732 inode_unlock_shared(inode);
3733 return ret;
3734 }
3735
3736 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3737 {
3738 struct file *file = iocb->ki_filp;
3739 struct inode *inode = file->f_mapping->host;
3740 size_t count = iov_iter_count(iter);
3741 loff_t offset = iocb->ki_pos;
3742 ssize_t ret;
3743
3744 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3745 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3746 return 0;
3747 #endif
3748
3749 /*
3750 * If we are doing data journalling we don't support O_DIRECT
3751 */
3752 if (ext4_should_journal_data(inode))
3753 return 0;
3754
3755 /* Let buffer I/O handle the inline data case. */
3756 if (ext4_has_inline_data(inode))
3757 return 0;
3758
3759 /* DAX uses iomap path now */
3760 if (WARN_ON_ONCE(IS_DAX(inode)))
3761 return 0;
3762
3763 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3764 if (iov_iter_rw(iter) == READ)
3765 ret = ext4_direct_IO_read(iocb, iter);
3766 else
3767 ret = ext4_direct_IO_write(iocb, iter);
3768 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3769 return ret;
3770 }
3771
3772 /*
3773 * Pages can be marked dirty completely asynchronously from ext4's journalling
3774 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3775 * much here because ->set_page_dirty is called under VFS locks. The page is
3776 * not necessarily locked.
3777 *
3778 * We cannot just dirty the page and leave attached buffers clean, because the
3779 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3780 * or jbddirty because all the journalling code will explode.
3781 *
3782 * So what we do is to mark the page "pending dirty" and next time writepage
3783 * is called, propagate that into the buffers appropriately.
3784 */
3785 static int ext4_journalled_set_page_dirty(struct page *page)
3786 {
3787 SetPageChecked(page);
3788 return __set_page_dirty_nobuffers(page);
3789 }
3790
3791 static int ext4_set_page_dirty(struct page *page)
3792 {
3793 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3794 WARN_ON_ONCE(!page_has_buffers(page));
3795 return __set_page_dirty_buffers(page);
3796 }
3797
3798 static const struct address_space_operations ext4_aops = {
3799 .readpage = ext4_readpage,
3800 .readpages = ext4_readpages,
3801 .writepage = ext4_writepage,
3802 .writepages = ext4_writepages,
3803 .write_begin = ext4_write_begin,
3804 .write_end = ext4_write_end,
3805 .set_page_dirty = ext4_set_page_dirty,
3806 .bmap = ext4_bmap,
3807 .invalidatepage = ext4_invalidatepage,
3808 .releasepage = ext4_releasepage,
3809 .direct_IO = ext4_direct_IO,
3810 .migratepage = buffer_migrate_page,
3811 .is_partially_uptodate = block_is_partially_uptodate,
3812 .error_remove_page = generic_error_remove_page,
3813 };
3814
3815 static const struct address_space_operations ext4_journalled_aops = {
3816 .readpage = ext4_readpage,
3817 .readpages = ext4_readpages,
3818 .writepage = ext4_writepage,
3819 .writepages = ext4_writepages,
3820 .write_begin = ext4_write_begin,
3821 .write_end = ext4_journalled_write_end,
3822 .set_page_dirty = ext4_journalled_set_page_dirty,
3823 .bmap = ext4_bmap,
3824 .invalidatepage = ext4_journalled_invalidatepage,
3825 .releasepage = ext4_releasepage,
3826 .direct_IO = ext4_direct_IO,
3827 .is_partially_uptodate = block_is_partially_uptodate,
3828 .error_remove_page = generic_error_remove_page,
3829 };
3830
3831 static const struct address_space_operations ext4_da_aops = {
3832 .readpage = ext4_readpage,
3833 .readpages = ext4_readpages,
3834 .writepage = ext4_writepage,
3835 .writepages = ext4_writepages,
3836 .write_begin = ext4_da_write_begin,
3837 .write_end = ext4_da_write_end,
3838 .set_page_dirty = ext4_set_page_dirty,
3839 .bmap = ext4_bmap,
3840 .invalidatepage = ext4_da_invalidatepage,
3841 .releasepage = ext4_releasepage,
3842 .direct_IO = ext4_direct_IO,
3843 .migratepage = buffer_migrate_page,
3844 .is_partially_uptodate = block_is_partially_uptodate,
3845 .error_remove_page = generic_error_remove_page,
3846 };
3847
3848 void ext4_set_aops(struct inode *inode)
3849 {
3850 switch (ext4_inode_journal_mode(inode)) {
3851 case EXT4_INODE_ORDERED_DATA_MODE:
3852 case EXT4_INODE_WRITEBACK_DATA_MODE:
3853 break;
3854 case EXT4_INODE_JOURNAL_DATA_MODE:
3855 inode->i_mapping->a_ops = &ext4_journalled_aops;
3856 return;
3857 default:
3858 BUG();
3859 }
3860 if (test_opt(inode->i_sb, DELALLOC))
3861 inode->i_mapping->a_ops = &ext4_da_aops;
3862 else
3863 inode->i_mapping->a_ops = &ext4_aops;
3864 }
3865
3866 static int __ext4_block_zero_page_range(handle_t *handle,
3867 struct address_space *mapping, loff_t from, loff_t length)
3868 {
3869 ext4_fsblk_t index = from >> PAGE_SHIFT;
3870 unsigned offset = from & (PAGE_SIZE-1);
3871 unsigned blocksize, pos;
3872 ext4_lblk_t iblock;
3873 struct inode *inode = mapping->host;
3874 struct buffer_head *bh;
3875 struct page *page;
3876 int err = 0;
3877
3878 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3879 mapping_gfp_constraint(mapping, ~__GFP_FS));
3880 if (!page)
3881 return -ENOMEM;
3882
3883 blocksize = inode->i_sb->s_blocksize;
3884
3885 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3886
3887 if (!page_has_buffers(page))
3888 create_empty_buffers(page, blocksize, 0);
3889
3890 /* Find the buffer that contains "offset" */
3891 bh = page_buffers(page);
3892 pos = blocksize;
3893 while (offset >= pos) {
3894 bh = bh->b_this_page;
3895 iblock++;
3896 pos += blocksize;
3897 }
3898 if (buffer_freed(bh)) {
3899 BUFFER_TRACE(bh, "freed: skip");
3900 goto unlock;
3901 }
3902 if (!buffer_mapped(bh)) {
3903 BUFFER_TRACE(bh, "unmapped");
3904 ext4_get_block(inode, iblock, bh, 0);
3905 /* unmapped? It's a hole - nothing to do */
3906 if (!buffer_mapped(bh)) {
3907 BUFFER_TRACE(bh, "still unmapped");
3908 goto unlock;
3909 }
3910 }
3911
3912 /* Ok, it's mapped. Make sure it's up-to-date */
3913 if (PageUptodate(page))
3914 set_buffer_uptodate(bh);
3915
3916 if (!buffer_uptodate(bh)) {
3917 err = -EIO;
3918 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3919 wait_on_buffer(bh);
3920 /* Uhhuh. Read error. Complain and punt. */
3921 if (!buffer_uptodate(bh))
3922 goto unlock;
3923 if (S_ISREG(inode->i_mode) &&
3924 ext4_encrypted_inode(inode)) {
3925 /* We expect the key to be set. */
3926 BUG_ON(!fscrypt_has_encryption_key(inode));
3927 BUG_ON(blocksize != PAGE_SIZE);
3928 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3929 page, PAGE_SIZE, 0, page->index));
3930 }
3931 }
3932 if (ext4_should_journal_data(inode)) {
3933 BUFFER_TRACE(bh, "get write access");
3934 err = ext4_journal_get_write_access(handle, bh);
3935 if (err)
3936 goto unlock;
3937 }
3938 zero_user(page, offset, length);
3939 BUFFER_TRACE(bh, "zeroed end of block");
3940
3941 if (ext4_should_journal_data(inode)) {
3942 err = ext4_handle_dirty_metadata(handle, inode, bh);
3943 } else {
3944 err = 0;
3945 mark_buffer_dirty(bh);
3946 if (ext4_should_order_data(inode))
3947 err = ext4_jbd2_inode_add_write(handle, inode);
3948 }
3949
3950 unlock:
3951 unlock_page(page);
3952 put_page(page);
3953 return err;
3954 }
3955
3956 /*
3957 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3958 * starting from file offset 'from'. The range to be zero'd must
3959 * be contained with in one block. If the specified range exceeds
3960 * the end of the block it will be shortened to end of the block
3961 * that cooresponds to 'from'
3962 */
3963 static int ext4_block_zero_page_range(handle_t *handle,
3964 struct address_space *mapping, loff_t from, loff_t length)
3965 {
3966 struct inode *inode = mapping->host;
3967 unsigned offset = from & (PAGE_SIZE-1);
3968 unsigned blocksize = inode->i_sb->s_blocksize;
3969 unsigned max = blocksize - (offset & (blocksize - 1));
3970
3971 /*
3972 * correct length if it does not fall between
3973 * 'from' and the end of the block
3974 */
3975 if (length > max || length < 0)
3976 length = max;
3977
3978 if (IS_DAX(inode)) {
3979 return iomap_zero_range(inode, from, length, NULL,
3980 &ext4_iomap_ops);
3981 }
3982 return __ext4_block_zero_page_range(handle, mapping, from, length);
3983 }
3984
3985 /*
3986 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3987 * up to the end of the block which corresponds to `from'.
3988 * This required during truncate. We need to physically zero the tail end
3989 * of that block so it doesn't yield old data if the file is later grown.
3990 */
3991 static int ext4_block_truncate_page(handle_t *handle,
3992 struct address_space *mapping, loff_t from)
3993 {
3994 unsigned offset = from & (PAGE_SIZE-1);
3995 unsigned length;
3996 unsigned blocksize;
3997 struct inode *inode = mapping->host;
3998
3999 /* If we are processing an encrypted inode during orphan list handling */
4000 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4001 return 0;
4002
4003 blocksize = inode->i_sb->s_blocksize;
4004 length = blocksize - (offset & (blocksize - 1));
4005
4006 return ext4_block_zero_page_range(handle, mapping, from, length);
4007 }
4008
4009 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4010 loff_t lstart, loff_t length)
4011 {
4012 struct super_block *sb = inode->i_sb;
4013 struct address_space *mapping = inode->i_mapping;
4014 unsigned partial_start, partial_end;
4015 ext4_fsblk_t start, end;
4016 loff_t byte_end = (lstart + length - 1);
4017 int err = 0;
4018
4019 partial_start = lstart & (sb->s_blocksize - 1);
4020 partial_end = byte_end & (sb->s_blocksize - 1);
4021
4022 start = lstart >> sb->s_blocksize_bits;
4023 end = byte_end >> sb->s_blocksize_bits;
4024
4025 /* Handle partial zero within the single block */
4026 if (start == end &&
4027 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4028 err = ext4_block_zero_page_range(handle, mapping,
4029 lstart, length);
4030 return err;
4031 }
4032 /* Handle partial zero out on the start of the range */
4033 if (partial_start) {
4034 err = ext4_block_zero_page_range(handle, mapping,
4035 lstart, sb->s_blocksize);
4036 if (err)
4037 return err;
4038 }
4039 /* Handle partial zero out on the end of the range */
4040 if (partial_end != sb->s_blocksize - 1)
4041 err = ext4_block_zero_page_range(handle, mapping,
4042 byte_end - partial_end,
4043 partial_end + 1);
4044 return err;
4045 }
4046
4047 int ext4_can_truncate(struct inode *inode)
4048 {
4049 if (S_ISREG(inode->i_mode))
4050 return 1;
4051 if (S_ISDIR(inode->i_mode))
4052 return 1;
4053 if (S_ISLNK(inode->i_mode))
4054 return !ext4_inode_is_fast_symlink(inode);
4055 return 0;
4056 }
4057
4058 /*
4059 * We have to make sure i_disksize gets properly updated before we truncate
4060 * page cache due to hole punching or zero range. Otherwise i_disksize update
4061 * can get lost as it may have been postponed to submission of writeback but
4062 * that will never happen after we truncate page cache.
4063 */
4064 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4065 loff_t len)
4066 {
4067 handle_t *handle;
4068 loff_t size = i_size_read(inode);
4069
4070 WARN_ON(!inode_is_locked(inode));
4071 if (offset > size || offset + len < size)
4072 return 0;
4073
4074 if (EXT4_I(inode)->i_disksize >= size)
4075 return 0;
4076
4077 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4078 if (IS_ERR(handle))
4079 return PTR_ERR(handle);
4080 ext4_update_i_disksize(inode, size);
4081 ext4_mark_inode_dirty(handle, inode);
4082 ext4_journal_stop(handle);
4083
4084 return 0;
4085 }
4086
4087 /*
4088 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4089 * associated with the given offset and length
4090 *
4091 * @inode: File inode
4092 * @offset: The offset where the hole will begin
4093 * @len: The length of the hole
4094 *
4095 * Returns: 0 on success or negative on failure
4096 */
4097
4098 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4099 {
4100 struct super_block *sb = inode->i_sb;
4101 ext4_lblk_t first_block, stop_block;
4102 struct address_space *mapping = inode->i_mapping;
4103 loff_t first_block_offset, last_block_offset;
4104 handle_t *handle;
4105 unsigned int credits;
4106 int ret = 0;
4107
4108 if (!S_ISREG(inode->i_mode))
4109 return -EOPNOTSUPP;
4110
4111 trace_ext4_punch_hole(inode, offset, length, 0);
4112
4113 /*
4114 * Write out all dirty pages to avoid race conditions
4115 * Then release them.
4116 */
4117 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4118 ret = filemap_write_and_wait_range(mapping, offset,
4119 offset + length - 1);
4120 if (ret)
4121 return ret;
4122 }
4123
4124 inode_lock(inode);
4125
4126 /* No need to punch hole beyond i_size */
4127 if (offset >= inode->i_size)
4128 goto out_mutex;
4129
4130 /*
4131 * If the hole extends beyond i_size, set the hole
4132 * to end after the page that contains i_size
4133 */
4134 if (offset + length > inode->i_size) {
4135 length = inode->i_size +
4136 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4137 offset;
4138 }
4139
4140 if (offset & (sb->s_blocksize - 1) ||
4141 (offset + length) & (sb->s_blocksize - 1)) {
4142 /*
4143 * Attach jinode to inode for jbd2 if we do any zeroing of
4144 * partial block
4145 */
4146 ret = ext4_inode_attach_jinode(inode);
4147 if (ret < 0)
4148 goto out_mutex;
4149
4150 }
4151
4152 /* Wait all existing dio workers, newcomers will block on i_mutex */
4153 ext4_inode_block_unlocked_dio(inode);
4154 inode_dio_wait(inode);
4155
4156 /*
4157 * Prevent page faults from reinstantiating pages we have released from
4158 * page cache.
4159 */
4160 down_write(&EXT4_I(inode)->i_mmap_sem);
4161 first_block_offset = round_up(offset, sb->s_blocksize);
4162 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4163
4164 /* Now release the pages and zero block aligned part of pages*/
4165 if (last_block_offset > first_block_offset) {
4166 ret = ext4_update_disksize_before_punch(inode, offset, length);
4167 if (ret)
4168 goto out_dio;
4169 truncate_pagecache_range(inode, first_block_offset,
4170 last_block_offset);
4171 }
4172
4173 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4174 credits = ext4_writepage_trans_blocks(inode);
4175 else
4176 credits = ext4_blocks_for_truncate(inode);
4177 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4178 if (IS_ERR(handle)) {
4179 ret = PTR_ERR(handle);
4180 ext4_std_error(sb, ret);
4181 goto out_dio;
4182 }
4183
4184 ret = ext4_zero_partial_blocks(handle, inode, offset,
4185 length);
4186 if (ret)
4187 goto out_stop;
4188
4189 first_block = (offset + sb->s_blocksize - 1) >>
4190 EXT4_BLOCK_SIZE_BITS(sb);
4191 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4192
4193 /* If there are no blocks to remove, return now */
4194 if (first_block >= stop_block)
4195 goto out_stop;
4196
4197 down_write(&EXT4_I(inode)->i_data_sem);
4198 ext4_discard_preallocations(inode);
4199
4200 ret = ext4_es_remove_extent(inode, first_block,
4201 stop_block - first_block);
4202 if (ret) {
4203 up_write(&EXT4_I(inode)->i_data_sem);
4204 goto out_stop;
4205 }
4206
4207 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4208 ret = ext4_ext_remove_space(inode, first_block,
4209 stop_block - 1);
4210 else
4211 ret = ext4_ind_remove_space(handle, inode, first_block,
4212 stop_block);
4213
4214 up_write(&EXT4_I(inode)->i_data_sem);
4215 if (IS_SYNC(inode))
4216 ext4_handle_sync(handle);
4217
4218 inode->i_mtime = inode->i_ctime = current_time(inode);
4219 ext4_mark_inode_dirty(handle, inode);
4220 if (ret >= 0)
4221 ext4_update_inode_fsync_trans(handle, inode, 1);
4222 out_stop:
4223 ext4_journal_stop(handle);
4224 out_dio:
4225 up_write(&EXT4_I(inode)->i_mmap_sem);
4226 ext4_inode_resume_unlocked_dio(inode);
4227 out_mutex:
4228 inode_unlock(inode);
4229 return ret;
4230 }
4231
4232 int ext4_inode_attach_jinode(struct inode *inode)
4233 {
4234 struct ext4_inode_info *ei = EXT4_I(inode);
4235 struct jbd2_inode *jinode;
4236
4237 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4238 return 0;
4239
4240 jinode = jbd2_alloc_inode(GFP_KERNEL);
4241 spin_lock(&inode->i_lock);
4242 if (!ei->jinode) {
4243 if (!jinode) {
4244 spin_unlock(&inode->i_lock);
4245 return -ENOMEM;
4246 }
4247 ei->jinode = jinode;
4248 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4249 jinode = NULL;
4250 }
4251 spin_unlock(&inode->i_lock);
4252 if (unlikely(jinode != NULL))
4253 jbd2_free_inode(jinode);
4254 return 0;
4255 }
4256
4257 /*
4258 * ext4_truncate()
4259 *
4260 * We block out ext4_get_block() block instantiations across the entire
4261 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4262 * simultaneously on behalf of the same inode.
4263 *
4264 * As we work through the truncate and commit bits of it to the journal there
4265 * is one core, guiding principle: the file's tree must always be consistent on
4266 * disk. We must be able to restart the truncate after a crash.
4267 *
4268 * The file's tree may be transiently inconsistent in memory (although it
4269 * probably isn't), but whenever we close off and commit a journal transaction,
4270 * the contents of (the filesystem + the journal) must be consistent and
4271 * restartable. It's pretty simple, really: bottom up, right to left (although
4272 * left-to-right works OK too).
4273 *
4274 * Note that at recovery time, journal replay occurs *before* the restart of
4275 * truncate against the orphan inode list.
4276 *
4277 * The committed inode has the new, desired i_size (which is the same as
4278 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4279 * that this inode's truncate did not complete and it will again call
4280 * ext4_truncate() to have another go. So there will be instantiated blocks
4281 * to the right of the truncation point in a crashed ext4 filesystem. But
4282 * that's fine - as long as they are linked from the inode, the post-crash
4283 * ext4_truncate() run will find them and release them.
4284 */
4285 int ext4_truncate(struct inode *inode)
4286 {
4287 struct ext4_inode_info *ei = EXT4_I(inode);
4288 unsigned int credits;
4289 int err = 0;
4290 handle_t *handle;
4291 struct address_space *mapping = inode->i_mapping;
4292
4293 /*
4294 * There is a possibility that we're either freeing the inode
4295 * or it's a completely new inode. In those cases we might not
4296 * have i_mutex locked because it's not necessary.
4297 */
4298 if (!(inode->i_state & (I_NEW|I_FREEING)))
4299 WARN_ON(!inode_is_locked(inode));
4300 trace_ext4_truncate_enter(inode);
4301
4302 if (!ext4_can_truncate(inode))
4303 return 0;
4304
4305 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4306
4307 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4308 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4309
4310 if (ext4_has_inline_data(inode)) {
4311 int has_inline = 1;
4312
4313 err = ext4_inline_data_truncate(inode, &has_inline);
4314 if (err)
4315 return err;
4316 if (has_inline)
4317 return 0;
4318 }
4319
4320 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4321 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4322 if (ext4_inode_attach_jinode(inode) < 0)
4323 return 0;
4324 }
4325
4326 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4327 credits = ext4_writepage_trans_blocks(inode);
4328 else
4329 credits = ext4_blocks_for_truncate(inode);
4330
4331 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4332 if (IS_ERR(handle))
4333 return PTR_ERR(handle);
4334
4335 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4336 ext4_block_truncate_page(handle, mapping, inode->i_size);
4337
4338 /*
4339 * We add the inode to the orphan list, so that if this
4340 * truncate spans multiple transactions, and we crash, we will
4341 * resume the truncate when the filesystem recovers. It also
4342 * marks the inode dirty, to catch the new size.
4343 *
4344 * Implication: the file must always be in a sane, consistent
4345 * truncatable state while each transaction commits.
4346 */
4347 err = ext4_orphan_add(handle, inode);
4348 if (err)
4349 goto out_stop;
4350
4351 down_write(&EXT4_I(inode)->i_data_sem);
4352
4353 ext4_discard_preallocations(inode);
4354
4355 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4356 err = ext4_ext_truncate(handle, inode);
4357 else
4358 ext4_ind_truncate(handle, inode);
4359
4360 up_write(&ei->i_data_sem);
4361 if (err)
4362 goto out_stop;
4363
4364 if (IS_SYNC(inode))
4365 ext4_handle_sync(handle);
4366
4367 out_stop:
4368 /*
4369 * If this was a simple ftruncate() and the file will remain alive,
4370 * then we need to clear up the orphan record which we created above.
4371 * However, if this was a real unlink then we were called by
4372 * ext4_evict_inode(), and we allow that function to clean up the
4373 * orphan info for us.
4374 */
4375 if (inode->i_nlink)
4376 ext4_orphan_del(handle, inode);
4377
4378 inode->i_mtime = inode->i_ctime = current_time(inode);
4379 ext4_mark_inode_dirty(handle, inode);
4380 ext4_journal_stop(handle);
4381
4382 trace_ext4_truncate_exit(inode);
4383 return err;
4384 }
4385
4386 /*
4387 * ext4_get_inode_loc returns with an extra refcount against the inode's
4388 * underlying buffer_head on success. If 'in_mem' is true, we have all
4389 * data in memory that is needed to recreate the on-disk version of this
4390 * inode.
4391 */
4392 static int __ext4_get_inode_loc(struct inode *inode,
4393 struct ext4_iloc *iloc, int in_mem)
4394 {
4395 struct ext4_group_desc *gdp;
4396 struct buffer_head *bh;
4397 struct super_block *sb = inode->i_sb;
4398 ext4_fsblk_t block;
4399 int inodes_per_block, inode_offset;
4400
4401 iloc->bh = NULL;
4402 if (!ext4_valid_inum(sb, inode->i_ino))
4403 return -EFSCORRUPTED;
4404
4405 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4406 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4407 if (!gdp)
4408 return -EIO;
4409
4410 /*
4411 * Figure out the offset within the block group inode table
4412 */
4413 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4414 inode_offset = ((inode->i_ino - 1) %
4415 EXT4_INODES_PER_GROUP(sb));
4416 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4417 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4418
4419 bh = sb_getblk(sb, block);
4420 if (unlikely(!bh))
4421 return -ENOMEM;
4422 if (!buffer_uptodate(bh)) {
4423 lock_buffer(bh);
4424
4425 /*
4426 * If the buffer has the write error flag, we have failed
4427 * to write out another inode in the same block. In this
4428 * case, we don't have to read the block because we may
4429 * read the old inode data successfully.
4430 */
4431 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4432 set_buffer_uptodate(bh);
4433
4434 if (buffer_uptodate(bh)) {
4435 /* someone brought it uptodate while we waited */
4436 unlock_buffer(bh);
4437 goto has_buffer;
4438 }
4439
4440 /*
4441 * If we have all information of the inode in memory and this
4442 * is the only valid inode in the block, we need not read the
4443 * block.
4444 */
4445 if (in_mem) {
4446 struct buffer_head *bitmap_bh;
4447 int i, start;
4448
4449 start = inode_offset & ~(inodes_per_block - 1);
4450
4451 /* Is the inode bitmap in cache? */
4452 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4453 if (unlikely(!bitmap_bh))
4454 goto make_io;
4455
4456 /*
4457 * If the inode bitmap isn't in cache then the
4458 * optimisation may end up performing two reads instead
4459 * of one, so skip it.
4460 */
4461 if (!buffer_uptodate(bitmap_bh)) {
4462 brelse(bitmap_bh);
4463 goto make_io;
4464 }
4465 for (i = start; i < start + inodes_per_block; i++) {
4466 if (i == inode_offset)
4467 continue;
4468 if (ext4_test_bit(i, bitmap_bh->b_data))
4469 break;
4470 }
4471 brelse(bitmap_bh);
4472 if (i == start + inodes_per_block) {
4473 /* all other inodes are free, so skip I/O */
4474 memset(bh->b_data, 0, bh->b_size);
4475 set_buffer_uptodate(bh);
4476 unlock_buffer(bh);
4477 goto has_buffer;
4478 }
4479 }
4480
4481 make_io:
4482 /*
4483 * If we need to do any I/O, try to pre-readahead extra
4484 * blocks from the inode table.
4485 */
4486 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4487 ext4_fsblk_t b, end, table;
4488 unsigned num;
4489 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4490
4491 table = ext4_inode_table(sb, gdp);
4492 /* s_inode_readahead_blks is always a power of 2 */
4493 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4494 if (table > b)
4495 b = table;
4496 end = b + ra_blks;
4497 num = EXT4_INODES_PER_GROUP(sb);
4498 if (ext4_has_group_desc_csum(sb))
4499 num -= ext4_itable_unused_count(sb, gdp);
4500 table += num / inodes_per_block;
4501 if (end > table)
4502 end = table;
4503 while (b <= end)
4504 sb_breadahead(sb, b++);
4505 }
4506
4507 /*
4508 * There are other valid inodes in the buffer, this inode
4509 * has in-inode xattrs, or we don't have this inode in memory.
4510 * Read the block from disk.
4511 */
4512 trace_ext4_load_inode(inode);
4513 get_bh(bh);
4514 bh->b_end_io = end_buffer_read_sync;
4515 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4516 wait_on_buffer(bh);
4517 if (!buffer_uptodate(bh)) {
4518 EXT4_ERROR_INODE_BLOCK(inode, block,
4519 "unable to read itable block");
4520 brelse(bh);
4521 return -EIO;
4522 }
4523 }
4524 has_buffer:
4525 iloc->bh = bh;
4526 return 0;
4527 }
4528
4529 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4530 {
4531 /* We have all inode data except xattrs in memory here. */
4532 return __ext4_get_inode_loc(inode, iloc,
4533 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4534 }
4535
4536 void ext4_set_inode_flags(struct inode *inode)
4537 {
4538 unsigned int flags = EXT4_I(inode)->i_flags;
4539 unsigned int new_fl = 0;
4540
4541 if (flags & EXT4_SYNC_FL)
4542 new_fl |= S_SYNC;
4543 if (flags & EXT4_APPEND_FL)
4544 new_fl |= S_APPEND;
4545 if (flags & EXT4_IMMUTABLE_FL)
4546 new_fl |= S_IMMUTABLE;
4547 if (flags & EXT4_NOATIME_FL)
4548 new_fl |= S_NOATIME;
4549 if (flags & EXT4_DIRSYNC_FL)
4550 new_fl |= S_DIRSYNC;
4551 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4552 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4553 !ext4_encrypted_inode(inode))
4554 new_fl |= S_DAX;
4555 inode_set_flags(inode, new_fl,
4556 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4557 }
4558
4559 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4560 struct ext4_inode_info *ei)
4561 {
4562 blkcnt_t i_blocks ;
4563 struct inode *inode = &(ei->vfs_inode);
4564 struct super_block *sb = inode->i_sb;
4565
4566 if (ext4_has_feature_huge_file(sb)) {
4567 /* we are using combined 48 bit field */
4568 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4569 le32_to_cpu(raw_inode->i_blocks_lo);
4570 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4571 /* i_blocks represent file system block size */
4572 return i_blocks << (inode->i_blkbits - 9);
4573 } else {
4574 return i_blocks;
4575 }
4576 } else {
4577 return le32_to_cpu(raw_inode->i_blocks_lo);
4578 }
4579 }
4580
4581 static inline void ext4_iget_extra_inode(struct inode *inode,
4582 struct ext4_inode *raw_inode,
4583 struct ext4_inode_info *ei)
4584 {
4585 __le32 *magic = (void *)raw_inode +
4586 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4587 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4588 EXT4_INODE_SIZE(inode->i_sb) &&
4589 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4590 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4591 ext4_find_inline_data_nolock(inode);
4592 } else
4593 EXT4_I(inode)->i_inline_off = 0;
4594 }
4595
4596 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4597 {
4598 if (!ext4_has_feature_project(inode->i_sb))
4599 return -EOPNOTSUPP;
4600 *projid = EXT4_I(inode)->i_projid;
4601 return 0;
4602 }
4603
4604 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4605 {
4606 struct ext4_iloc iloc;
4607 struct ext4_inode *raw_inode;
4608 struct ext4_inode_info *ei;
4609 struct inode *inode;
4610 journal_t *journal = EXT4_SB(sb)->s_journal;
4611 long ret;
4612 loff_t size;
4613 int block;
4614 uid_t i_uid;
4615 gid_t i_gid;
4616 projid_t i_projid;
4617
4618 inode = iget_locked(sb, ino);
4619 if (!inode)
4620 return ERR_PTR(-ENOMEM);
4621 if (!(inode->i_state & I_NEW))
4622 return inode;
4623
4624 ei = EXT4_I(inode);
4625 iloc.bh = NULL;
4626
4627 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4628 if (ret < 0)
4629 goto bad_inode;
4630 raw_inode = ext4_raw_inode(&iloc);
4631
4632 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4633 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4634 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4635 EXT4_INODE_SIZE(inode->i_sb) ||
4636 (ei->i_extra_isize & 3)) {
4637 EXT4_ERROR_INODE(inode,
4638 "bad extra_isize %u (inode size %u)",
4639 ei->i_extra_isize,
4640 EXT4_INODE_SIZE(inode->i_sb));
4641 ret = -EFSCORRUPTED;
4642 goto bad_inode;
4643 }
4644 } else
4645 ei->i_extra_isize = 0;
4646
4647 /* Precompute checksum seed for inode metadata */
4648 if (ext4_has_metadata_csum(sb)) {
4649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4650 __u32 csum;
4651 __le32 inum = cpu_to_le32(inode->i_ino);
4652 __le32 gen = raw_inode->i_generation;
4653 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4654 sizeof(inum));
4655 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4656 sizeof(gen));
4657 }
4658
4659 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4660 EXT4_ERROR_INODE(inode, "checksum invalid");
4661 ret = -EFSBADCRC;
4662 goto bad_inode;
4663 }
4664
4665 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4666 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4667 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4668 if (ext4_has_feature_project(sb) &&
4669 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4670 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4671 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4672 else
4673 i_projid = EXT4_DEF_PROJID;
4674
4675 if (!(test_opt(inode->i_sb, NO_UID32))) {
4676 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4677 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4678 }
4679 i_uid_write(inode, i_uid);
4680 i_gid_write(inode, i_gid);
4681 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4682 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4683
4684 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4685 ei->i_inline_off = 0;
4686 ei->i_dir_start_lookup = 0;
4687 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4688 /* We now have enough fields to check if the inode was active or not.
4689 * This is needed because nfsd might try to access dead inodes
4690 * the test is that same one that e2fsck uses
4691 * NeilBrown 1999oct15
4692 */
4693 if (inode->i_nlink == 0) {
4694 if ((inode->i_mode == 0 ||
4695 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4696 ino != EXT4_BOOT_LOADER_INO) {
4697 /* this inode is deleted */
4698 ret = -ESTALE;
4699 goto bad_inode;
4700 }
4701 /* The only unlinked inodes we let through here have
4702 * valid i_mode and are being read by the orphan
4703 * recovery code: that's fine, we're about to complete
4704 * the process of deleting those.
4705 * OR it is the EXT4_BOOT_LOADER_INO which is
4706 * not initialized on a new filesystem. */
4707 }
4708 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4709 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4710 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4711 if (ext4_has_feature_64bit(sb))
4712 ei->i_file_acl |=
4713 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4714 inode->i_size = ext4_isize(sb, raw_inode);
4715 if ((size = i_size_read(inode)) < 0) {
4716 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4717 ret = -EFSCORRUPTED;
4718 goto bad_inode;
4719 }
4720 ei->i_disksize = inode->i_size;
4721 #ifdef CONFIG_QUOTA
4722 ei->i_reserved_quota = 0;
4723 #endif
4724 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4725 ei->i_block_group = iloc.block_group;
4726 ei->i_last_alloc_group = ~0;
4727 /*
4728 * NOTE! The in-memory inode i_data array is in little-endian order
4729 * even on big-endian machines: we do NOT byteswap the block numbers!
4730 */
4731 for (block = 0; block < EXT4_N_BLOCKS; block++)
4732 ei->i_data[block] = raw_inode->i_block[block];
4733 INIT_LIST_HEAD(&ei->i_orphan);
4734
4735 /*
4736 * Set transaction id's of transactions that have to be committed
4737 * to finish f[data]sync. We set them to currently running transaction
4738 * as we cannot be sure that the inode or some of its metadata isn't
4739 * part of the transaction - the inode could have been reclaimed and
4740 * now it is reread from disk.
4741 */
4742 if (journal) {
4743 transaction_t *transaction;
4744 tid_t tid;
4745
4746 read_lock(&journal->j_state_lock);
4747 if (journal->j_running_transaction)
4748 transaction = journal->j_running_transaction;
4749 else
4750 transaction = journal->j_committing_transaction;
4751 if (transaction)
4752 tid = transaction->t_tid;
4753 else
4754 tid = journal->j_commit_sequence;
4755 read_unlock(&journal->j_state_lock);
4756 ei->i_sync_tid = tid;
4757 ei->i_datasync_tid = tid;
4758 }
4759
4760 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4761 if (ei->i_extra_isize == 0) {
4762 /* The extra space is currently unused. Use it. */
4763 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4764 ei->i_extra_isize = sizeof(struct ext4_inode) -
4765 EXT4_GOOD_OLD_INODE_SIZE;
4766 } else {
4767 ext4_iget_extra_inode(inode, raw_inode, ei);
4768 }
4769 }
4770
4771 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4772 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4773 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4774 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4775
4776 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4777 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4778 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4779 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4780 inode->i_version |=
4781 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4782 }
4783 }
4784
4785 ret = 0;
4786 if (ei->i_file_acl &&
4787 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4788 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4789 ei->i_file_acl);
4790 ret = -EFSCORRUPTED;
4791 goto bad_inode;
4792 } else if (!ext4_has_inline_data(inode)) {
4793 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4794 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4795 (S_ISLNK(inode->i_mode) &&
4796 !ext4_inode_is_fast_symlink(inode))))
4797 /* Validate extent which is part of inode */
4798 ret = ext4_ext_check_inode(inode);
4799 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4800 (S_ISLNK(inode->i_mode) &&
4801 !ext4_inode_is_fast_symlink(inode))) {
4802 /* Validate block references which are part of inode */
4803 ret = ext4_ind_check_inode(inode);
4804 }
4805 }
4806 if (ret)
4807 goto bad_inode;
4808
4809 if (S_ISREG(inode->i_mode)) {
4810 inode->i_op = &ext4_file_inode_operations;
4811 inode->i_fop = &ext4_file_operations;
4812 ext4_set_aops(inode);
4813 } else if (S_ISDIR(inode->i_mode)) {
4814 inode->i_op = &ext4_dir_inode_operations;
4815 inode->i_fop = &ext4_dir_operations;
4816 } else if (S_ISLNK(inode->i_mode)) {
4817 if (ext4_encrypted_inode(inode)) {
4818 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4819 ext4_set_aops(inode);
4820 } else if (ext4_inode_is_fast_symlink(inode)) {
4821 inode->i_link = (char *)ei->i_data;
4822 inode->i_op = &ext4_fast_symlink_inode_operations;
4823 nd_terminate_link(ei->i_data, inode->i_size,
4824 sizeof(ei->i_data) - 1);
4825 } else {
4826 inode->i_op = &ext4_symlink_inode_operations;
4827 ext4_set_aops(inode);
4828 }
4829 inode_nohighmem(inode);
4830 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4831 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4832 inode->i_op = &ext4_special_inode_operations;
4833 if (raw_inode->i_block[0])
4834 init_special_inode(inode, inode->i_mode,
4835 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4836 else
4837 init_special_inode(inode, inode->i_mode,
4838 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4839 } else if (ino == EXT4_BOOT_LOADER_INO) {
4840 make_bad_inode(inode);
4841 } else {
4842 ret = -EFSCORRUPTED;
4843 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4844 goto bad_inode;
4845 }
4846 brelse(iloc.bh);
4847 ext4_set_inode_flags(inode);
4848
4849 if (ei->i_flags & EXT4_EA_INODE_FL) {
4850 ext4_xattr_inode_set_class(inode);
4851
4852 inode_lock(inode);
4853 inode->i_flags |= S_NOQUOTA;
4854 inode_unlock(inode);
4855 }
4856
4857 unlock_new_inode(inode);
4858 return inode;
4859
4860 bad_inode:
4861 brelse(iloc.bh);
4862 iget_failed(inode);
4863 return ERR_PTR(ret);
4864 }
4865
4866 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4867 {
4868 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4869 return ERR_PTR(-EFSCORRUPTED);
4870 return ext4_iget(sb, ino);
4871 }
4872
4873 static int ext4_inode_blocks_set(handle_t *handle,
4874 struct ext4_inode *raw_inode,
4875 struct ext4_inode_info *ei)
4876 {
4877 struct inode *inode = &(ei->vfs_inode);
4878 u64 i_blocks = inode->i_blocks;
4879 struct super_block *sb = inode->i_sb;
4880
4881 if (i_blocks <= ~0U) {
4882 /*
4883 * i_blocks can be represented in a 32 bit variable
4884 * as multiple of 512 bytes
4885 */
4886 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4887 raw_inode->i_blocks_high = 0;
4888 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4889 return 0;
4890 }
4891 if (!ext4_has_feature_huge_file(sb))
4892 return -EFBIG;
4893
4894 if (i_blocks <= 0xffffffffffffULL) {
4895 /*
4896 * i_blocks can be represented in a 48 bit variable
4897 * as multiple of 512 bytes
4898 */
4899 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4900 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4901 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4902 } else {
4903 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4904 /* i_block is stored in file system block size */
4905 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4906 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4907 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4908 }
4909 return 0;
4910 }
4911
4912 struct other_inode {
4913 unsigned long orig_ino;
4914 struct ext4_inode *raw_inode;
4915 };
4916
4917 static int other_inode_match(struct inode * inode, unsigned long ino,
4918 void *data)
4919 {
4920 struct other_inode *oi = (struct other_inode *) data;
4921
4922 if ((inode->i_ino != ino) ||
4923 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4924 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4925 ((inode->i_state & I_DIRTY_TIME) == 0))
4926 return 0;
4927 spin_lock(&inode->i_lock);
4928 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4929 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4930 (inode->i_state & I_DIRTY_TIME)) {
4931 struct ext4_inode_info *ei = EXT4_I(inode);
4932
4933 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4934 spin_unlock(&inode->i_lock);
4935
4936 spin_lock(&ei->i_raw_lock);
4937 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4938 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4939 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4940 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4941 spin_unlock(&ei->i_raw_lock);
4942 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4943 return -1;
4944 }
4945 spin_unlock(&inode->i_lock);
4946 return -1;
4947 }
4948
4949 /*
4950 * Opportunistically update the other time fields for other inodes in
4951 * the same inode table block.
4952 */
4953 static void ext4_update_other_inodes_time(struct super_block *sb,
4954 unsigned long orig_ino, char *buf)
4955 {
4956 struct other_inode oi;
4957 unsigned long ino;
4958 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4959 int inode_size = EXT4_INODE_SIZE(sb);
4960
4961 oi.orig_ino = orig_ino;
4962 /*
4963 * Calculate the first inode in the inode table block. Inode
4964 * numbers are one-based. That is, the first inode in a block
4965 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4966 */
4967 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4968 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4969 if (ino == orig_ino)
4970 continue;
4971 oi.raw_inode = (struct ext4_inode *) buf;
4972 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4973 }
4974 }
4975
4976 /*
4977 * Post the struct inode info into an on-disk inode location in the
4978 * buffer-cache. This gobbles the caller's reference to the
4979 * buffer_head in the inode location struct.
4980 *
4981 * The caller must have write access to iloc->bh.
4982 */
4983 static int ext4_do_update_inode(handle_t *handle,
4984 struct inode *inode,
4985 struct ext4_iloc *iloc)
4986 {
4987 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4988 struct ext4_inode_info *ei = EXT4_I(inode);
4989 struct buffer_head *bh = iloc->bh;
4990 struct super_block *sb = inode->i_sb;
4991 int err = 0, rc, block;
4992 int need_datasync = 0, set_large_file = 0;
4993 uid_t i_uid;
4994 gid_t i_gid;
4995 projid_t i_projid;
4996
4997 spin_lock(&ei->i_raw_lock);
4998
4999 /* For fields not tracked in the in-memory inode,
5000 * initialise them to zero for new inodes. */
5001 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5002 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5003
5004 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5005 i_uid = i_uid_read(inode);
5006 i_gid = i_gid_read(inode);
5007 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5008 if (!(test_opt(inode->i_sb, NO_UID32))) {
5009 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5010 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5011 /*
5012 * Fix up interoperability with old kernels. Otherwise, old inodes get
5013 * re-used with the upper 16 bits of the uid/gid intact
5014 */
5015 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5016 raw_inode->i_uid_high = 0;
5017 raw_inode->i_gid_high = 0;
5018 } else {
5019 raw_inode->i_uid_high =
5020 cpu_to_le16(high_16_bits(i_uid));
5021 raw_inode->i_gid_high =
5022 cpu_to_le16(high_16_bits(i_gid));
5023 }
5024 } else {
5025 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5026 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5027 raw_inode->i_uid_high = 0;
5028 raw_inode->i_gid_high = 0;
5029 }
5030 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5031
5032 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5033 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5034 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5035 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5036
5037 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5038 if (err) {
5039 spin_unlock(&ei->i_raw_lock);
5040 goto out_brelse;
5041 }
5042 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5043 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5044 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5045 raw_inode->i_file_acl_high =
5046 cpu_to_le16(ei->i_file_acl >> 32);
5047 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5048 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5049 ext4_isize_set(raw_inode, ei->i_disksize);
5050 need_datasync = 1;
5051 }
5052 if (ei->i_disksize > 0x7fffffffULL) {
5053 if (!ext4_has_feature_large_file(sb) ||
5054 EXT4_SB(sb)->s_es->s_rev_level ==
5055 cpu_to_le32(EXT4_GOOD_OLD_REV))
5056 set_large_file = 1;
5057 }
5058 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5059 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5060 if (old_valid_dev(inode->i_rdev)) {
5061 raw_inode->i_block[0] =
5062 cpu_to_le32(old_encode_dev(inode->i_rdev));
5063 raw_inode->i_block[1] = 0;
5064 } else {
5065 raw_inode->i_block[0] = 0;
5066 raw_inode->i_block[1] =
5067 cpu_to_le32(new_encode_dev(inode->i_rdev));
5068 raw_inode->i_block[2] = 0;
5069 }
5070 } else if (!ext4_has_inline_data(inode)) {
5071 for (block = 0; block < EXT4_N_BLOCKS; block++)
5072 raw_inode->i_block[block] = ei->i_data[block];
5073 }
5074
5075 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5076 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5077 if (ei->i_extra_isize) {
5078 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5079 raw_inode->i_version_hi =
5080 cpu_to_le32(inode->i_version >> 32);
5081 raw_inode->i_extra_isize =
5082 cpu_to_le16(ei->i_extra_isize);
5083 }
5084 }
5085
5086 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5087 i_projid != EXT4_DEF_PROJID);
5088
5089 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5090 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5091 raw_inode->i_projid = cpu_to_le32(i_projid);
5092
5093 ext4_inode_csum_set(inode, raw_inode, ei);
5094 spin_unlock(&ei->i_raw_lock);
5095 if (inode->i_sb->s_flags & MS_LAZYTIME)
5096 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5097 bh->b_data);
5098
5099 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5100 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5101 if (!err)
5102 err = rc;
5103 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5104 if (set_large_file) {
5105 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5106 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5107 if (err)
5108 goto out_brelse;
5109 ext4_update_dynamic_rev(sb);
5110 ext4_set_feature_large_file(sb);
5111 ext4_handle_sync(handle);
5112 err = ext4_handle_dirty_super(handle, sb);
5113 }
5114 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5115 out_brelse:
5116 brelse(bh);
5117 ext4_std_error(inode->i_sb, err);
5118 return err;
5119 }
5120
5121 /*
5122 * ext4_write_inode()
5123 *
5124 * We are called from a few places:
5125 *
5126 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5127 * Here, there will be no transaction running. We wait for any running
5128 * transaction to commit.
5129 *
5130 * - Within flush work (sys_sync(), kupdate and such).
5131 * We wait on commit, if told to.
5132 *
5133 * - Within iput_final() -> write_inode_now()
5134 * We wait on commit, if told to.
5135 *
5136 * In all cases it is actually safe for us to return without doing anything,
5137 * because the inode has been copied into a raw inode buffer in
5138 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5139 * writeback.
5140 *
5141 * Note that we are absolutely dependent upon all inode dirtiers doing the
5142 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5143 * which we are interested.
5144 *
5145 * It would be a bug for them to not do this. The code:
5146 *
5147 * mark_inode_dirty(inode)
5148 * stuff();
5149 * inode->i_size = expr;
5150 *
5151 * is in error because write_inode() could occur while `stuff()' is running,
5152 * and the new i_size will be lost. Plus the inode will no longer be on the
5153 * superblock's dirty inode list.
5154 */
5155 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5156 {
5157 int err;
5158
5159 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5160 return 0;
5161
5162 if (EXT4_SB(inode->i_sb)->s_journal) {
5163 if (ext4_journal_current_handle()) {
5164 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5165 dump_stack();
5166 return -EIO;
5167 }
5168
5169 /*
5170 * No need to force transaction in WB_SYNC_NONE mode. Also
5171 * ext4_sync_fs() will force the commit after everything is
5172 * written.
5173 */
5174 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5175 return 0;
5176
5177 err = ext4_force_commit(inode->i_sb);
5178 } else {
5179 struct ext4_iloc iloc;
5180
5181 err = __ext4_get_inode_loc(inode, &iloc, 0);
5182 if (err)
5183 return err;
5184 /*
5185 * sync(2) will flush the whole buffer cache. No need to do
5186 * it here separately for each inode.
5187 */
5188 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5189 sync_dirty_buffer(iloc.bh);
5190 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5191 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5192 "IO error syncing inode");
5193 err = -EIO;
5194 }
5195 brelse(iloc.bh);
5196 }
5197 return err;
5198 }
5199
5200 /*
5201 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5202 * buffers that are attached to a page stradding i_size and are undergoing
5203 * commit. In that case we have to wait for commit to finish and try again.
5204 */
5205 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5206 {
5207 struct page *page;
5208 unsigned offset;
5209 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5210 tid_t commit_tid = 0;
5211 int ret;
5212
5213 offset = inode->i_size & (PAGE_SIZE - 1);
5214 /*
5215 * All buffers in the last page remain valid? Then there's nothing to
5216 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5217 * blocksize case
5218 */
5219 if (offset > PAGE_SIZE - i_blocksize(inode))
5220 return;
5221 while (1) {
5222 page = find_lock_page(inode->i_mapping,
5223 inode->i_size >> PAGE_SHIFT);
5224 if (!page)
5225 return;
5226 ret = __ext4_journalled_invalidatepage(page, offset,
5227 PAGE_SIZE - offset);
5228 unlock_page(page);
5229 put_page(page);
5230 if (ret != -EBUSY)
5231 return;
5232 commit_tid = 0;
5233 read_lock(&journal->j_state_lock);
5234 if (journal->j_committing_transaction)
5235 commit_tid = journal->j_committing_transaction->t_tid;
5236 read_unlock(&journal->j_state_lock);
5237 if (commit_tid)
5238 jbd2_log_wait_commit(journal, commit_tid);
5239 }
5240 }
5241
5242 /*
5243 * ext4_setattr()
5244 *
5245 * Called from notify_change.
5246 *
5247 * We want to trap VFS attempts to truncate the file as soon as
5248 * possible. In particular, we want to make sure that when the VFS
5249 * shrinks i_size, we put the inode on the orphan list and modify
5250 * i_disksize immediately, so that during the subsequent flushing of
5251 * dirty pages and freeing of disk blocks, we can guarantee that any
5252 * commit will leave the blocks being flushed in an unused state on
5253 * disk. (On recovery, the inode will get truncated and the blocks will
5254 * be freed, so we have a strong guarantee that no future commit will
5255 * leave these blocks visible to the user.)
5256 *
5257 * Another thing we have to assure is that if we are in ordered mode
5258 * and inode is still attached to the committing transaction, we must
5259 * we start writeout of all the dirty pages which are being truncated.
5260 * This way we are sure that all the data written in the previous
5261 * transaction are already on disk (truncate waits for pages under
5262 * writeback).
5263 *
5264 * Called with inode->i_mutex down.
5265 */
5266 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5267 {
5268 struct inode *inode = d_inode(dentry);
5269 int error, rc = 0;
5270 int orphan = 0;
5271 const unsigned int ia_valid = attr->ia_valid;
5272
5273 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5274 return -EIO;
5275
5276 error = setattr_prepare(dentry, attr);
5277 if (error)
5278 return error;
5279
5280 if (is_quota_modification(inode, attr)) {
5281 error = dquot_initialize(inode);
5282 if (error)
5283 return error;
5284 }
5285 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5286 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5287 handle_t *handle;
5288
5289 /* (user+group)*(old+new) structure, inode write (sb,
5290 * inode block, ? - but truncate inode update has it) */
5291 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5292 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5293 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5294 if (IS_ERR(handle)) {
5295 error = PTR_ERR(handle);
5296 goto err_out;
5297 }
5298 error = dquot_transfer(inode, attr);
5299 if (error) {
5300 ext4_journal_stop(handle);
5301 return error;
5302 }
5303 /* Update corresponding info in inode so that everything is in
5304 * one transaction */
5305 if (attr->ia_valid & ATTR_UID)
5306 inode->i_uid = attr->ia_uid;
5307 if (attr->ia_valid & ATTR_GID)
5308 inode->i_gid = attr->ia_gid;
5309 error = ext4_mark_inode_dirty(handle, inode);
5310 ext4_journal_stop(handle);
5311 }
5312
5313 if (attr->ia_valid & ATTR_SIZE) {
5314 handle_t *handle;
5315 loff_t oldsize = inode->i_size;
5316 int shrink = (attr->ia_size <= inode->i_size);
5317
5318 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5319 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5320
5321 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5322 return -EFBIG;
5323 }
5324 if (!S_ISREG(inode->i_mode))
5325 return -EINVAL;
5326
5327 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5328 inode_inc_iversion(inode);
5329
5330 if (ext4_should_order_data(inode) &&
5331 (attr->ia_size < inode->i_size)) {
5332 error = ext4_begin_ordered_truncate(inode,
5333 attr->ia_size);
5334 if (error)
5335 goto err_out;
5336 }
5337 if (attr->ia_size != inode->i_size) {
5338 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5339 if (IS_ERR(handle)) {
5340 error = PTR_ERR(handle);
5341 goto err_out;
5342 }
5343 if (ext4_handle_valid(handle) && shrink) {
5344 error = ext4_orphan_add(handle, inode);
5345 orphan = 1;
5346 }
5347 /*
5348 * Update c/mtime on truncate up, ext4_truncate() will
5349 * update c/mtime in shrink case below
5350 */
5351 if (!shrink) {
5352 inode->i_mtime = current_time(inode);
5353 inode->i_ctime = inode->i_mtime;
5354 }
5355 down_write(&EXT4_I(inode)->i_data_sem);
5356 EXT4_I(inode)->i_disksize = attr->ia_size;
5357 rc = ext4_mark_inode_dirty(handle, inode);
5358 if (!error)
5359 error = rc;
5360 /*
5361 * We have to update i_size under i_data_sem together
5362 * with i_disksize to avoid races with writeback code
5363 * running ext4_wb_update_i_disksize().
5364 */
5365 if (!error)
5366 i_size_write(inode, attr->ia_size);
5367 up_write(&EXT4_I(inode)->i_data_sem);
5368 ext4_journal_stop(handle);
5369 if (error) {
5370 if (orphan)
5371 ext4_orphan_del(NULL, inode);
5372 goto err_out;
5373 }
5374 }
5375 if (!shrink)
5376 pagecache_isize_extended(inode, oldsize, inode->i_size);
5377
5378 /*
5379 * Blocks are going to be removed from the inode. Wait
5380 * for dio in flight. Temporarily disable
5381 * dioread_nolock to prevent livelock.
5382 */
5383 if (orphan) {
5384 if (!ext4_should_journal_data(inode)) {
5385 ext4_inode_block_unlocked_dio(inode);
5386 inode_dio_wait(inode);
5387 ext4_inode_resume_unlocked_dio(inode);
5388 } else
5389 ext4_wait_for_tail_page_commit(inode);
5390 }
5391 down_write(&EXT4_I(inode)->i_mmap_sem);
5392 /*
5393 * Truncate pagecache after we've waited for commit
5394 * in data=journal mode to make pages freeable.
5395 */
5396 truncate_pagecache(inode, inode->i_size);
5397 if (shrink) {
5398 rc = ext4_truncate(inode);
5399 if (rc)
5400 error = rc;
5401 }
5402 up_write(&EXT4_I(inode)->i_mmap_sem);
5403 }
5404
5405 if (!error) {
5406 setattr_copy(inode, attr);
5407 mark_inode_dirty(inode);
5408 }
5409
5410 /*
5411 * If the call to ext4_truncate failed to get a transaction handle at
5412 * all, we need to clean up the in-core orphan list manually.
5413 */
5414 if (orphan && inode->i_nlink)
5415 ext4_orphan_del(NULL, inode);
5416
5417 if (!error && (ia_valid & ATTR_MODE))
5418 rc = posix_acl_chmod(inode, inode->i_mode);
5419
5420 err_out:
5421 ext4_std_error(inode->i_sb, error);
5422 if (!error)
5423 error = rc;
5424 return error;
5425 }
5426
5427 int ext4_getattr(const struct path *path, struct kstat *stat,
5428 u32 request_mask, unsigned int query_flags)
5429 {
5430 struct inode *inode = d_inode(path->dentry);
5431 struct ext4_inode *raw_inode;
5432 struct ext4_inode_info *ei = EXT4_I(inode);
5433 unsigned int flags;
5434
5435 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5436 stat->result_mask |= STATX_BTIME;
5437 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5438 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5439 }
5440
5441 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5442 if (flags & EXT4_APPEND_FL)
5443 stat->attributes |= STATX_ATTR_APPEND;
5444 if (flags & EXT4_COMPR_FL)
5445 stat->attributes |= STATX_ATTR_COMPRESSED;
5446 if (flags & EXT4_ENCRYPT_FL)
5447 stat->attributes |= STATX_ATTR_ENCRYPTED;
5448 if (flags & EXT4_IMMUTABLE_FL)
5449 stat->attributes |= STATX_ATTR_IMMUTABLE;
5450 if (flags & EXT4_NODUMP_FL)
5451 stat->attributes |= STATX_ATTR_NODUMP;
5452
5453 stat->attributes_mask |= (STATX_ATTR_APPEND |
5454 STATX_ATTR_COMPRESSED |
5455 STATX_ATTR_ENCRYPTED |
5456 STATX_ATTR_IMMUTABLE |
5457 STATX_ATTR_NODUMP);
5458
5459 generic_fillattr(inode, stat);
5460 return 0;
5461 }
5462
5463 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5464 u32 request_mask, unsigned int query_flags)
5465 {
5466 struct inode *inode = d_inode(path->dentry);
5467 u64 delalloc_blocks;
5468
5469 ext4_getattr(path, stat, request_mask, query_flags);
5470
5471 /*
5472 * If there is inline data in the inode, the inode will normally not
5473 * have data blocks allocated (it may have an external xattr block).
5474 * Report at least one sector for such files, so tools like tar, rsync,
5475 * others don't incorrectly think the file is completely sparse.
5476 */
5477 if (unlikely(ext4_has_inline_data(inode)))
5478 stat->blocks += (stat->size + 511) >> 9;
5479
5480 /*
5481 * We can't update i_blocks if the block allocation is delayed
5482 * otherwise in the case of system crash before the real block
5483 * allocation is done, we will have i_blocks inconsistent with
5484 * on-disk file blocks.
5485 * We always keep i_blocks updated together with real
5486 * allocation. But to not confuse with user, stat
5487 * will return the blocks that include the delayed allocation
5488 * blocks for this file.
5489 */
5490 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5491 EXT4_I(inode)->i_reserved_data_blocks);
5492 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5493 return 0;
5494 }
5495
5496 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5497 int pextents)
5498 {
5499 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5500 return ext4_ind_trans_blocks(inode, lblocks);
5501 return ext4_ext_index_trans_blocks(inode, pextents);
5502 }
5503
5504 /*
5505 * Account for index blocks, block groups bitmaps and block group
5506 * descriptor blocks if modify datablocks and index blocks
5507 * worse case, the indexs blocks spread over different block groups
5508 *
5509 * If datablocks are discontiguous, they are possible to spread over
5510 * different block groups too. If they are contiguous, with flexbg,
5511 * they could still across block group boundary.
5512 *
5513 * Also account for superblock, inode, quota and xattr blocks
5514 */
5515 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5516 int pextents)
5517 {
5518 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5519 int gdpblocks;
5520 int idxblocks;
5521 int ret = 0;
5522
5523 /*
5524 * How many index blocks need to touch to map @lblocks logical blocks
5525 * to @pextents physical extents?
5526 */
5527 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5528
5529 ret = idxblocks;
5530
5531 /*
5532 * Now let's see how many group bitmaps and group descriptors need
5533 * to account
5534 */
5535 groups = idxblocks + pextents;
5536 gdpblocks = groups;
5537 if (groups > ngroups)
5538 groups = ngroups;
5539 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5540 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5541
5542 /* bitmaps and block group descriptor blocks */
5543 ret += groups + gdpblocks;
5544
5545 /* Blocks for super block, inode, quota and xattr blocks */
5546 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5547
5548 return ret;
5549 }
5550
5551 /*
5552 * Calculate the total number of credits to reserve to fit
5553 * the modification of a single pages into a single transaction,
5554 * which may include multiple chunks of block allocations.
5555 *
5556 * This could be called via ext4_write_begin()
5557 *
5558 * We need to consider the worse case, when
5559 * one new block per extent.
5560 */
5561 int ext4_writepage_trans_blocks(struct inode *inode)
5562 {
5563 int bpp = ext4_journal_blocks_per_page(inode);
5564 int ret;
5565
5566 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5567
5568 /* Account for data blocks for journalled mode */
5569 if (ext4_should_journal_data(inode))
5570 ret += bpp;
5571 return ret;
5572 }
5573
5574 /*
5575 * Calculate the journal credits for a chunk of data modification.
5576 *
5577 * This is called from DIO, fallocate or whoever calling
5578 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5579 *
5580 * journal buffers for data blocks are not included here, as DIO
5581 * and fallocate do no need to journal data buffers.
5582 */
5583 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5584 {
5585 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5586 }
5587
5588 /*
5589 * The caller must have previously called ext4_reserve_inode_write().
5590 * Give this, we know that the caller already has write access to iloc->bh.
5591 */
5592 int ext4_mark_iloc_dirty(handle_t *handle,
5593 struct inode *inode, struct ext4_iloc *iloc)
5594 {
5595 int err = 0;
5596
5597 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5598 return -EIO;
5599
5600 if (IS_I_VERSION(inode))
5601 inode_inc_iversion(inode);
5602
5603 /* the do_update_inode consumes one bh->b_count */
5604 get_bh(iloc->bh);
5605
5606 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5607 err = ext4_do_update_inode(handle, inode, iloc);
5608 put_bh(iloc->bh);
5609 return err;
5610 }
5611
5612 /*
5613 * On success, We end up with an outstanding reference count against
5614 * iloc->bh. This _must_ be cleaned up later.
5615 */
5616
5617 int
5618 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5619 struct ext4_iloc *iloc)
5620 {
5621 int err;
5622
5623 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5624 return -EIO;
5625
5626 err = ext4_get_inode_loc(inode, iloc);
5627 if (!err) {
5628 BUFFER_TRACE(iloc->bh, "get_write_access");
5629 err = ext4_journal_get_write_access(handle, iloc->bh);
5630 if (err) {
5631 brelse(iloc->bh);
5632 iloc->bh = NULL;
5633 }
5634 }
5635 ext4_std_error(inode->i_sb, err);
5636 return err;
5637 }
5638
5639 /*
5640 * Expand an inode by new_extra_isize bytes.
5641 * Returns 0 on success or negative error number on failure.
5642 */
5643 static int ext4_expand_extra_isize(struct inode *inode,
5644 unsigned int new_extra_isize,
5645 struct ext4_iloc iloc,
5646 handle_t *handle)
5647 {
5648 struct ext4_inode *raw_inode;
5649 struct ext4_xattr_ibody_header *header;
5650
5651 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5652 return 0;
5653
5654 raw_inode = ext4_raw_inode(&iloc);
5655
5656 header = IHDR(inode, raw_inode);
5657
5658 /* No extended attributes present */
5659 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5660 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5661 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5662 EXT4_I(inode)->i_extra_isize, 0,
5663 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5664 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5665 return 0;
5666 }
5667
5668 /* try to expand with EAs present */
5669 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5670 raw_inode, handle);
5671 }
5672
5673 /*
5674 * What we do here is to mark the in-core inode as clean with respect to inode
5675 * dirtiness (it may still be data-dirty).
5676 * This means that the in-core inode may be reaped by prune_icache
5677 * without having to perform any I/O. This is a very good thing,
5678 * because *any* task may call prune_icache - even ones which
5679 * have a transaction open against a different journal.
5680 *
5681 * Is this cheating? Not really. Sure, we haven't written the
5682 * inode out, but prune_icache isn't a user-visible syncing function.
5683 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5684 * we start and wait on commits.
5685 */
5686 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5687 {
5688 struct ext4_iloc iloc;
5689 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5690 static unsigned int mnt_count;
5691 int err, ret;
5692
5693 might_sleep();
5694 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5695 err = ext4_reserve_inode_write(handle, inode, &iloc);
5696 if (err)
5697 return err;
5698 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5699 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5700 /*
5701 * In nojournal mode, we can immediately attempt to expand
5702 * the inode. When journaled, we first need to obtain extra
5703 * buffer credits since we may write into the EA block
5704 * with this same handle. If journal_extend fails, then it will
5705 * only result in a minor loss of functionality for that inode.
5706 * If this is felt to be critical, then e2fsck should be run to
5707 * force a large enough s_min_extra_isize.
5708 */
5709 if (!ext4_handle_valid(handle) ||
5710 jbd2_journal_extend(handle,
5711 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5712 ret = ext4_expand_extra_isize(inode,
5713 sbi->s_want_extra_isize,
5714 iloc, handle);
5715 if (ret) {
5716 if (mnt_count !=
5717 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5718 ext4_warning(inode->i_sb,
5719 "Unable to expand inode %lu. Delete"
5720 " some EAs or run e2fsck.",
5721 inode->i_ino);
5722 mnt_count =
5723 le16_to_cpu(sbi->s_es->s_mnt_count);
5724 }
5725 }
5726 }
5727 }
5728 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5729 }
5730
5731 /*
5732 * ext4_dirty_inode() is called from __mark_inode_dirty()
5733 *
5734 * We're really interested in the case where a file is being extended.
5735 * i_size has been changed by generic_commit_write() and we thus need
5736 * to include the updated inode in the current transaction.
5737 *
5738 * Also, dquot_alloc_block() will always dirty the inode when blocks
5739 * are allocated to the file.
5740 *
5741 * If the inode is marked synchronous, we don't honour that here - doing
5742 * so would cause a commit on atime updates, which we don't bother doing.
5743 * We handle synchronous inodes at the highest possible level.
5744 *
5745 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5746 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5747 * to copy into the on-disk inode structure are the timestamp files.
5748 */
5749 void ext4_dirty_inode(struct inode *inode, int flags)
5750 {
5751 handle_t *handle;
5752
5753 if (flags == I_DIRTY_TIME)
5754 return;
5755 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5756 if (IS_ERR(handle))
5757 goto out;
5758
5759 ext4_mark_inode_dirty(handle, inode);
5760
5761 ext4_journal_stop(handle);
5762 out:
5763 return;
5764 }
5765
5766 #if 0
5767 /*
5768 * Bind an inode's backing buffer_head into this transaction, to prevent
5769 * it from being flushed to disk early. Unlike
5770 * ext4_reserve_inode_write, this leaves behind no bh reference and
5771 * returns no iloc structure, so the caller needs to repeat the iloc
5772 * lookup to mark the inode dirty later.
5773 */
5774 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5775 {
5776 struct ext4_iloc iloc;
5777
5778 int err = 0;
5779 if (handle) {
5780 err = ext4_get_inode_loc(inode, &iloc);
5781 if (!err) {
5782 BUFFER_TRACE(iloc.bh, "get_write_access");
5783 err = jbd2_journal_get_write_access(handle, iloc.bh);
5784 if (!err)
5785 err = ext4_handle_dirty_metadata(handle,
5786 NULL,
5787 iloc.bh);
5788 brelse(iloc.bh);
5789 }
5790 }
5791 ext4_std_error(inode->i_sb, err);
5792 return err;
5793 }
5794 #endif
5795
5796 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5797 {
5798 journal_t *journal;
5799 handle_t *handle;
5800 int err;
5801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5802
5803 /*
5804 * We have to be very careful here: changing a data block's
5805 * journaling status dynamically is dangerous. If we write a
5806 * data block to the journal, change the status and then delete
5807 * that block, we risk forgetting to revoke the old log record
5808 * from the journal and so a subsequent replay can corrupt data.
5809 * So, first we make sure that the journal is empty and that
5810 * nobody is changing anything.
5811 */
5812
5813 journal = EXT4_JOURNAL(inode);
5814 if (!journal)
5815 return 0;
5816 if (is_journal_aborted(journal))
5817 return -EROFS;
5818
5819 /* Wait for all existing dio workers */
5820 ext4_inode_block_unlocked_dio(inode);
5821 inode_dio_wait(inode);
5822
5823 /*
5824 * Before flushing the journal and switching inode's aops, we have
5825 * to flush all dirty data the inode has. There can be outstanding
5826 * delayed allocations, there can be unwritten extents created by
5827 * fallocate or buffered writes in dioread_nolock mode covered by
5828 * dirty data which can be converted only after flushing the dirty
5829 * data (and journalled aops don't know how to handle these cases).
5830 */
5831 if (val) {
5832 down_write(&EXT4_I(inode)->i_mmap_sem);
5833 err = filemap_write_and_wait(inode->i_mapping);
5834 if (err < 0) {
5835 up_write(&EXT4_I(inode)->i_mmap_sem);
5836 ext4_inode_resume_unlocked_dio(inode);
5837 return err;
5838 }
5839 }
5840
5841 percpu_down_write(&sbi->s_journal_flag_rwsem);
5842 jbd2_journal_lock_updates(journal);
5843
5844 /*
5845 * OK, there are no updates running now, and all cached data is
5846 * synced to disk. We are now in a completely consistent state
5847 * which doesn't have anything in the journal, and we know that
5848 * no filesystem updates are running, so it is safe to modify
5849 * the inode's in-core data-journaling state flag now.
5850 */
5851
5852 if (val)
5853 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5854 else {
5855 err = jbd2_journal_flush(journal);
5856 if (err < 0) {
5857 jbd2_journal_unlock_updates(journal);
5858 percpu_up_write(&sbi->s_journal_flag_rwsem);
5859 ext4_inode_resume_unlocked_dio(inode);
5860 return err;
5861 }
5862 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5863 }
5864 ext4_set_aops(inode);
5865 /*
5866 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5867 * E.g. S_DAX may get cleared / set.
5868 */
5869 ext4_set_inode_flags(inode);
5870
5871 jbd2_journal_unlock_updates(journal);
5872 percpu_up_write(&sbi->s_journal_flag_rwsem);
5873
5874 if (val)
5875 up_write(&EXT4_I(inode)->i_mmap_sem);
5876 ext4_inode_resume_unlocked_dio(inode);
5877
5878 /* Finally we can mark the inode as dirty. */
5879
5880 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5881 if (IS_ERR(handle))
5882 return PTR_ERR(handle);
5883
5884 err = ext4_mark_inode_dirty(handle, inode);
5885 ext4_handle_sync(handle);
5886 ext4_journal_stop(handle);
5887 ext4_std_error(inode->i_sb, err);
5888
5889 return err;
5890 }
5891
5892 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5893 {
5894 return !buffer_mapped(bh);
5895 }
5896
5897 int ext4_page_mkwrite(struct vm_fault *vmf)
5898 {
5899 struct vm_area_struct *vma = vmf->vma;
5900 struct page *page = vmf->page;
5901 loff_t size;
5902 unsigned long len;
5903 int ret;
5904 struct file *file = vma->vm_file;
5905 struct inode *inode = file_inode(file);
5906 struct address_space *mapping = inode->i_mapping;
5907 handle_t *handle;
5908 get_block_t *get_block;
5909 int retries = 0;
5910
5911 sb_start_pagefault(inode->i_sb);
5912 file_update_time(vma->vm_file);
5913
5914 down_read(&EXT4_I(inode)->i_mmap_sem);
5915
5916 ret = ext4_convert_inline_data(inode);
5917 if (ret)
5918 goto out_ret;
5919
5920 /* Delalloc case is easy... */
5921 if (test_opt(inode->i_sb, DELALLOC) &&
5922 !ext4_should_journal_data(inode) &&
5923 !ext4_nonda_switch(inode->i_sb)) {
5924 do {
5925 ret = block_page_mkwrite(vma, vmf,
5926 ext4_da_get_block_prep);
5927 } while (ret == -ENOSPC &&
5928 ext4_should_retry_alloc(inode->i_sb, &retries));
5929 goto out_ret;
5930 }
5931
5932 lock_page(page);
5933 size = i_size_read(inode);
5934 /* Page got truncated from under us? */
5935 if (page->mapping != mapping || page_offset(page) > size) {
5936 unlock_page(page);
5937 ret = VM_FAULT_NOPAGE;
5938 goto out;
5939 }
5940
5941 if (page->index == size >> PAGE_SHIFT)
5942 len = size & ~PAGE_MASK;
5943 else
5944 len = PAGE_SIZE;
5945 /*
5946 * Return if we have all the buffers mapped. This avoids the need to do
5947 * journal_start/journal_stop which can block and take a long time
5948 */
5949 if (page_has_buffers(page)) {
5950 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5951 0, len, NULL,
5952 ext4_bh_unmapped)) {
5953 /* Wait so that we don't change page under IO */
5954 wait_for_stable_page(page);
5955 ret = VM_FAULT_LOCKED;
5956 goto out;
5957 }
5958 }
5959 unlock_page(page);
5960 /* OK, we need to fill the hole... */
5961 if (ext4_should_dioread_nolock(inode))
5962 get_block = ext4_get_block_unwritten;
5963 else
5964 get_block = ext4_get_block;
5965 retry_alloc:
5966 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5967 ext4_writepage_trans_blocks(inode));
5968 if (IS_ERR(handle)) {
5969 ret = VM_FAULT_SIGBUS;
5970 goto out;
5971 }
5972 ret = block_page_mkwrite(vma, vmf, get_block);
5973 if (!ret && ext4_should_journal_data(inode)) {
5974 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5975 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5976 unlock_page(page);
5977 ret = VM_FAULT_SIGBUS;
5978 ext4_journal_stop(handle);
5979 goto out;
5980 }
5981 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5982 }
5983 ext4_journal_stop(handle);
5984 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5985 goto retry_alloc;
5986 out_ret:
5987 ret = block_page_mkwrite_return(ret);
5988 out:
5989 up_read(&EXT4_I(inode)->i_mmap_sem);
5990 sb_end_pagefault(inode->i_sb);
5991 return ret;
5992 }
5993
5994 int ext4_filemap_fault(struct vm_fault *vmf)
5995 {
5996 struct inode *inode = file_inode(vmf->vma->vm_file);
5997 int err;
5998
5999 down_read(&EXT4_I(inode)->i_mmap_sem);
6000 err = filemap_fault(vmf);
6001 up_read(&EXT4_I(inode)->i_mmap_sem);
6002
6003 return err;
6004 }
6005
6006 /*
6007 * Find the first extent at or after @lblk in an inode that is not a hole.
6008 * Search for @map_len blocks at most. The extent is returned in @result.
6009 *
6010 * The function returns 1 if we found an extent. The function returns 0 in
6011 * case there is no extent at or after @lblk and in that case also sets
6012 * @result->es_len to 0. In case of error, the error code is returned.
6013 */
6014 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
6015 unsigned int map_len, struct extent_status *result)
6016 {
6017 struct ext4_map_blocks map;
6018 struct extent_status es = {};
6019 int ret;
6020
6021 map.m_lblk = lblk;
6022 map.m_len = map_len;
6023
6024 /*
6025 * For non-extent based files this loop may iterate several times since
6026 * we do not determine full hole size.
6027 */
6028 while (map.m_len > 0) {
6029 ret = ext4_map_blocks(NULL, inode, &map, 0);
6030 if (ret < 0)
6031 return ret;
6032 /* There's extent covering m_lblk? Just return it. */
6033 if (ret > 0) {
6034 int status;
6035
6036 ext4_es_store_pblock(result, map.m_pblk);
6037 result->es_lblk = map.m_lblk;
6038 result->es_len = map.m_len;
6039 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6040 status = EXTENT_STATUS_UNWRITTEN;
6041 else
6042 status = EXTENT_STATUS_WRITTEN;
6043 ext4_es_store_status(result, status);
6044 return 1;
6045 }
6046 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6047 map.m_lblk + map.m_len - 1,
6048 &es);
6049 /* Is delalloc data before next block in extent tree? */
6050 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6051 ext4_lblk_t offset = 0;
6052
6053 if (es.es_lblk < lblk)
6054 offset = lblk - es.es_lblk;
6055 result->es_lblk = es.es_lblk + offset;
6056 ext4_es_store_pblock(result,
6057 ext4_es_pblock(&es) + offset);
6058 result->es_len = es.es_len - offset;
6059 ext4_es_store_status(result, ext4_es_status(&es));
6060
6061 return 1;
6062 }
6063 /* There's a hole at m_lblk, advance us after it */
6064 map.m_lblk += map.m_len;
6065 map_len -= map.m_len;
6066 map.m_len = map_len;
6067 cond_resched();
6068 }
6069 result->es_len = 0;
6070 return 0;
6071 }