]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
Merge remote-tracking branch 'mkp-scsi/4.9/scsi-fixes' into fixes
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
58
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
74 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75 EXT4_INODE_SIZE(inode->i_sb) -
76 offset);
77 }
78 }
79
80 return csum;
81 }
82
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85 {
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102 }
103
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106 {
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123 {
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136 }
137
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158
159 /*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166 {
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183 }
184
185 /*
186 * Called at the last iput() if i_nlink is zero.
187 */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks)
265 ext4_truncate(inode);
266
267 /*
268 * ext4_ext_truncate() doesn't reserve any slop when it
269 * restarts journal transactions; therefore there may not be
270 * enough credits left in the handle to remove the inode from
271 * the orphan list and set the dtime field.
272 */
273 if (!ext4_handle_has_enough_credits(handle, 3)) {
274 err = ext4_journal_extend(handle, 3);
275 if (err > 0)
276 err = ext4_journal_restart(handle, 3);
277 if (err != 0) {
278 ext4_warning(inode->i_sb,
279 "couldn't extend journal (err %d)", err);
280 stop_handle:
281 ext4_journal_stop(handle);
282 ext4_orphan_del(NULL, inode);
283 sb_end_intwrite(inode->i_sb);
284 goto no_delete;
285 }
286 }
287
288 /*
289 * Kill off the orphan record which ext4_truncate created.
290 * AKPM: I think this can be inside the above `if'.
291 * Note that ext4_orphan_del() has to be able to cope with the
292 * deletion of a non-existent orphan - this is because we don't
293 * know if ext4_truncate() actually created an orphan record.
294 * (Well, we could do this if we need to, but heck - it works)
295 */
296 ext4_orphan_del(handle, inode);
297 EXT4_I(inode)->i_dtime = get_seconds();
298
299 /*
300 * One subtle ordering requirement: if anything has gone wrong
301 * (transaction abort, IO errors, whatever), then we can still
302 * do these next steps (the fs will already have been marked as
303 * having errors), but we can't free the inode if the mark_dirty
304 * fails.
305 */
306 if (ext4_mark_inode_dirty(handle, inode))
307 /* If that failed, just do the required in-core inode clear. */
308 ext4_clear_inode(inode);
309 else
310 ext4_free_inode(handle, inode);
311 ext4_journal_stop(handle);
312 sb_end_intwrite(inode->i_sb);
313 return;
314 no_delete:
315 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
316 }
317
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321 return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324
325 /*
326 * Called with i_data_sem down, which is important since we can call
327 * ext4_discard_preallocations() from here.
328 */
329 void ext4_da_update_reserve_space(struct inode *inode,
330 int used, int quota_claim)
331 {
332 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 struct ext4_inode_info *ei = EXT4_I(inode);
334
335 spin_lock(&ei->i_block_reservation_lock);
336 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337 if (unlikely(used > ei->i_reserved_data_blocks)) {
338 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339 "with only %d reserved data blocks",
340 __func__, inode->i_ino, used,
341 ei->i_reserved_data_blocks);
342 WARN_ON(1);
343 used = ei->i_reserved_data_blocks;
344 }
345
346 /* Update per-inode reservations */
347 ei->i_reserved_data_blocks -= used;
348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349
350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351
352 /* Update quota subsystem for data blocks */
353 if (quota_claim)
354 dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 else {
356 /*
357 * We did fallocate with an offset that is already delayed
358 * allocated. So on delayed allocated writeback we should
359 * not re-claim the quota for fallocated blocks.
360 */
361 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 }
363
364 /*
365 * If we have done all the pending block allocations and if
366 * there aren't any writers on the inode, we can discard the
367 * inode's preallocations.
368 */
369 if ((ei->i_reserved_data_blocks == 0) &&
370 (atomic_read(&inode->i_writecount) == 0))
371 ext4_discard_preallocations(inode);
372 }
373
374 static int __check_block_validity(struct inode *inode, const char *func,
375 unsigned int line,
376 struct ext4_map_blocks *map)
377 {
378 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379 map->m_len)) {
380 ext4_error_inode(inode, func, line, map->m_pblk,
381 "lblock %lu mapped to illegal pblock "
382 "(length %d)", (unsigned long) map->m_lblk,
383 map->m_len);
384 return -EFSCORRUPTED;
385 }
386 return 0;
387 }
388
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390 ext4_lblk_t len)
391 {
392 int ret;
393
394 if (ext4_encrypted_inode(inode))
395 return fscrypt_zeroout_range(inode, lblk, pblk, len);
396
397 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398 if (ret > 0)
399 ret = 0;
400
401 return ret;
402 }
403
404 #define check_block_validity(inode, map) \
405 __check_block_validity((inode), __func__, __LINE__, (map))
406
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409 struct inode *inode,
410 struct ext4_map_blocks *es_map,
411 struct ext4_map_blocks *map,
412 int flags)
413 {
414 int retval;
415
416 map->m_flags = 0;
417 /*
418 * There is a race window that the result is not the same.
419 * e.g. xfstests #223 when dioread_nolock enables. The reason
420 * is that we lookup a block mapping in extent status tree with
421 * out taking i_data_sem. So at the time the unwritten extent
422 * could be converted.
423 */
424 down_read(&EXT4_I(inode)->i_data_sem);
425 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426 retval = ext4_ext_map_blocks(handle, inode, map, flags &
427 EXT4_GET_BLOCKS_KEEP_SIZE);
428 } else {
429 retval = ext4_ind_map_blocks(handle, inode, map, flags &
430 EXT4_GET_BLOCKS_KEEP_SIZE);
431 }
432 up_read((&EXT4_I(inode)->i_data_sem));
433
434 /*
435 * We don't check m_len because extent will be collpased in status
436 * tree. So the m_len might not equal.
437 */
438 if (es_map->m_lblk != map->m_lblk ||
439 es_map->m_flags != map->m_flags ||
440 es_map->m_pblk != map->m_pblk) {
441 printk("ES cache assertion failed for inode: %lu "
442 "es_cached ex [%d/%d/%llu/%x] != "
443 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444 inode->i_ino, es_map->m_lblk, es_map->m_len,
445 es_map->m_pblk, es_map->m_flags, map->m_lblk,
446 map->m_len, map->m_pblk, map->m_flags,
447 retval, flags);
448 }
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451
452 /*
453 * The ext4_map_blocks() function tries to look up the requested blocks,
454 * and returns if the blocks are already mapped.
455 *
456 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457 * and store the allocated blocks in the result buffer head and mark it
458 * mapped.
459 *
460 * If file type is extents based, it will call ext4_ext_map_blocks(),
461 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462 * based files
463 *
464 * On success, it returns the number of blocks being mapped or allocated. if
465 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467 *
468 * It returns 0 if plain look up failed (blocks have not been allocated), in
469 * that case, @map is returned as unmapped but we still do fill map->m_len to
470 * indicate the length of a hole starting at map->m_lblk.
471 *
472 * It returns the error in case of allocation failure.
473 */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475 struct ext4_map_blocks *map, int flags)
476 {
477 struct extent_status es;
478 int retval;
479 int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481 struct ext4_map_blocks orig_map;
482
483 memcpy(&orig_map, map, sizeof(*map));
484 #endif
485
486 map->m_flags = 0;
487 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488 "logical block %lu\n", inode->i_ino, flags, map->m_len,
489 (unsigned long) map->m_lblk);
490
491 /*
492 * ext4_map_blocks returns an int, and m_len is an unsigned int
493 */
494 if (unlikely(map->m_len > INT_MAX))
495 map->m_len = INT_MAX;
496
497 /* We can handle the block number less than EXT_MAX_BLOCKS */
498 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499 return -EFSCORRUPTED;
500
501 /* Lookup extent status tree firstly */
502 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504 map->m_pblk = ext4_es_pblock(&es) +
505 map->m_lblk - es.es_lblk;
506 map->m_flags |= ext4_es_is_written(&es) ?
507 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
512 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513 map->m_pblk = 0;
514 retval = es.es_len - (map->m_lblk - es.es_lblk);
515 if (retval > map->m_len)
516 retval = map->m_len;
517 map->m_len = retval;
518 retval = 0;
519 } else {
520 BUG_ON(1);
521 }
522 #ifdef ES_AGGRESSIVE_TEST
523 ext4_map_blocks_es_recheck(handle, inode, map,
524 &orig_map, flags);
525 #endif
526 goto found;
527 }
528
529 /*
530 * Try to see if we can get the block without requesting a new
531 * file system block.
532 */
533 down_read(&EXT4_I(inode)->i_data_sem);
534 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535 retval = ext4_ext_map_blocks(handle, inode, map, flags &
536 EXT4_GET_BLOCKS_KEEP_SIZE);
537 } else {
538 retval = ext4_ind_map_blocks(handle, inode, map, flags &
539 EXT4_GET_BLOCKS_KEEP_SIZE);
540 }
541 if (retval > 0) {
542 unsigned int status;
543
544 if (unlikely(retval != map->m_len)) {
545 ext4_warning(inode->i_sb,
546 "ES len assertion failed for inode "
547 "%lu: retval %d != map->m_len %d",
548 inode->i_ino, retval, map->m_len);
549 WARN_ON(1);
550 }
551
552 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555 !(status & EXTENT_STATUS_WRITTEN) &&
556 ext4_find_delalloc_range(inode, map->m_lblk,
557 map->m_lblk + map->m_len - 1))
558 status |= EXTENT_STATUS_DELAYED;
559 ret = ext4_es_insert_extent(inode, map->m_lblk,
560 map->m_len, map->m_pblk, status);
561 if (ret < 0)
562 retval = ret;
563 }
564 up_read((&EXT4_I(inode)->i_data_sem));
565
566 found:
567 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568 ret = check_block_validity(inode, map);
569 if (ret != 0)
570 return ret;
571 }
572
573 /* If it is only a block(s) look up */
574 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575 return retval;
576
577 /*
578 * Returns if the blocks have already allocated
579 *
580 * Note that if blocks have been preallocated
581 * ext4_ext_get_block() returns the create = 0
582 * with buffer head unmapped.
583 */
584 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585 /*
586 * If we need to convert extent to unwritten
587 * we continue and do the actual work in
588 * ext4_ext_map_blocks()
589 */
590 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591 return retval;
592
593 /*
594 * Here we clear m_flags because after allocating an new extent,
595 * it will be set again.
596 */
597 map->m_flags &= ~EXT4_MAP_FLAGS;
598
599 /*
600 * New blocks allocate and/or writing to unwritten extent
601 * will possibly result in updating i_data, so we take
602 * the write lock of i_data_sem, and call get_block()
603 * with create == 1 flag.
604 */
605 down_write(&EXT4_I(inode)->i_data_sem);
606
607 /*
608 * We need to check for EXT4 here because migrate
609 * could have changed the inode type in between
610 */
611 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612 retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 } else {
614 retval = ext4_ind_map_blocks(handle, inode, map, flags);
615
616 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 /*
618 * We allocated new blocks which will result in
619 * i_data's format changing. Force the migrate
620 * to fail by clearing migrate flags
621 */
622 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623 }
624
625 /*
626 * Update reserved blocks/metadata blocks after successful
627 * block allocation which had been deferred till now. We don't
628 * support fallocate for non extent files. So we can update
629 * reserve space here.
630 */
631 if ((retval > 0) &&
632 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 ext4_da_update_reserve_space(inode, retval, 1);
634 }
635
636 if (retval > 0) {
637 unsigned int status;
638
639 if (unlikely(retval != map->m_len)) {
640 ext4_warning(inode->i_sb,
641 "ES len assertion failed for inode "
642 "%lu: retval %d != map->m_len %d",
643 inode->i_ino, retval, map->m_len);
644 WARN_ON(1);
645 }
646
647 /*
648 * We have to zeroout blocks before inserting them into extent
649 * status tree. Otherwise someone could look them up there and
650 * use them before they are really zeroed. We also have to
651 * unmap metadata before zeroing as otherwise writeback can
652 * overwrite zeros with stale data from block device.
653 */
654 if (flags & EXT4_GET_BLOCKS_ZERO &&
655 map->m_flags & EXT4_MAP_MAPPED &&
656 map->m_flags & EXT4_MAP_NEW) {
657 ext4_lblk_t i;
658
659 for (i = 0; i < map->m_len; i++) {
660 unmap_underlying_metadata(inode->i_sb->s_bdev,
661 map->m_pblk + i);
662 }
663 ret = ext4_issue_zeroout(inode, map->m_lblk,
664 map->m_pblk, map->m_len);
665 if (ret) {
666 retval = ret;
667 goto out_sem;
668 }
669 }
670
671 /*
672 * If the extent has been zeroed out, we don't need to update
673 * extent status tree.
674 */
675 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
676 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
677 if (ext4_es_is_written(&es))
678 goto out_sem;
679 }
680 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
681 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
682 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
683 !(status & EXTENT_STATUS_WRITTEN) &&
684 ext4_find_delalloc_range(inode, map->m_lblk,
685 map->m_lblk + map->m_len - 1))
686 status |= EXTENT_STATUS_DELAYED;
687 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688 map->m_pblk, status);
689 if (ret < 0) {
690 retval = ret;
691 goto out_sem;
692 }
693 }
694
695 out_sem:
696 up_write((&EXT4_I(inode)->i_data_sem));
697 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
698 ret = check_block_validity(inode, map);
699 if (ret != 0)
700 return ret;
701
702 /*
703 * Inodes with freshly allocated blocks where contents will be
704 * visible after transaction commit must be on transaction's
705 * ordered data list.
706 */
707 if (map->m_flags & EXT4_MAP_NEW &&
708 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
709 !(flags & EXT4_GET_BLOCKS_ZERO) &&
710 !IS_NOQUOTA(inode) &&
711 ext4_should_order_data(inode)) {
712 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
713 ret = ext4_jbd2_inode_add_wait(handle, inode);
714 else
715 ret = ext4_jbd2_inode_add_write(handle, inode);
716 if (ret)
717 return ret;
718 }
719 }
720 return retval;
721 }
722
723 /*
724 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
725 * we have to be careful as someone else may be manipulating b_state as well.
726 */
727 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
728 {
729 unsigned long old_state;
730 unsigned long new_state;
731
732 flags &= EXT4_MAP_FLAGS;
733
734 /* Dummy buffer_head? Set non-atomically. */
735 if (!bh->b_page) {
736 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
737 return;
738 }
739 /*
740 * Someone else may be modifying b_state. Be careful! This is ugly but
741 * once we get rid of using bh as a container for mapping information
742 * to pass to / from get_block functions, this can go away.
743 */
744 do {
745 old_state = READ_ONCE(bh->b_state);
746 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
747 } while (unlikely(
748 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
749 }
750
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 struct buffer_head *bh, int flags)
753 {
754 struct ext4_map_blocks map;
755 int ret = 0;
756
757 if (ext4_has_inline_data(inode))
758 return -ERANGE;
759
760 map.m_lblk = iblock;
761 map.m_len = bh->b_size >> inode->i_blkbits;
762
763 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764 flags);
765 if (ret > 0) {
766 map_bh(bh, inode->i_sb, map.m_pblk);
767 ext4_update_bh_state(bh, map.m_flags);
768 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 ret = 0;
770 }
771 return ret;
772 }
773
774 int ext4_get_block(struct inode *inode, sector_t iblock,
775 struct buffer_head *bh, int create)
776 {
777 return _ext4_get_block(inode, iblock, bh,
778 create ? EXT4_GET_BLOCKS_CREATE : 0);
779 }
780
781 /*
782 * Get block function used when preparing for buffered write if we require
783 * creating an unwritten extent if blocks haven't been allocated. The extent
784 * will be converted to written after the IO is complete.
785 */
786 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh_result, int create)
788 {
789 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
790 inode->i_ino, create);
791 return _ext4_get_block(inode, iblock, bh_result,
792 EXT4_GET_BLOCKS_IO_CREATE_EXT);
793 }
794
795 /* Maximum number of blocks we map for direct IO at once. */
796 #define DIO_MAX_BLOCKS 4096
797
798 /*
799 * Get blocks function for the cases that need to start a transaction -
800 * generally difference cases of direct IO and DAX IO. It also handles retries
801 * in case of ENOSPC.
802 */
803 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
804 struct buffer_head *bh_result, int flags)
805 {
806 int dio_credits;
807 handle_t *handle;
808 int retries = 0;
809 int ret;
810
811 /* Trim mapping request to maximum we can map at once for DIO */
812 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
813 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
814 dio_credits = ext4_chunk_trans_blocks(inode,
815 bh_result->b_size >> inode->i_blkbits);
816 retry:
817 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
818 if (IS_ERR(handle))
819 return PTR_ERR(handle);
820
821 ret = _ext4_get_block(inode, iblock, bh_result, flags);
822 ext4_journal_stop(handle);
823
824 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
825 goto retry;
826 return ret;
827 }
828
829 /* Get block function for DIO reads and writes to inodes without extents */
830 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
831 struct buffer_head *bh, int create)
832 {
833 /* We don't expect handle for direct IO */
834 WARN_ON_ONCE(ext4_journal_current_handle());
835
836 if (!create)
837 return _ext4_get_block(inode, iblock, bh, 0);
838 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
839 }
840
841 /*
842 * Get block function for AIO DIO writes when we create unwritten extent if
843 * blocks are not allocated yet. The extent will be converted to written
844 * after IO is complete.
845 */
846 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
847 sector_t iblock, struct buffer_head *bh_result, int create)
848 {
849 int ret;
850
851 /* We don't expect handle for direct IO */
852 WARN_ON_ONCE(ext4_journal_current_handle());
853
854 ret = ext4_get_block_trans(inode, iblock, bh_result,
855 EXT4_GET_BLOCKS_IO_CREATE_EXT);
856
857 /*
858 * When doing DIO using unwritten extents, we need io_end to convert
859 * unwritten extents to written on IO completion. We allocate io_end
860 * once we spot unwritten extent and store it in b_private. Generic
861 * DIO code keeps b_private set and furthermore passes the value to
862 * our completion callback in 'private' argument.
863 */
864 if (!ret && buffer_unwritten(bh_result)) {
865 if (!bh_result->b_private) {
866 ext4_io_end_t *io_end;
867
868 io_end = ext4_init_io_end(inode, GFP_KERNEL);
869 if (!io_end)
870 return -ENOMEM;
871 bh_result->b_private = io_end;
872 ext4_set_io_unwritten_flag(inode, io_end);
873 }
874 set_buffer_defer_completion(bh_result);
875 }
876
877 return ret;
878 }
879
880 /*
881 * Get block function for non-AIO DIO writes when we create unwritten extent if
882 * blocks are not allocated yet. The extent will be converted to written
883 * after IO is complete from ext4_ext_direct_IO() function.
884 */
885 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
886 sector_t iblock, struct buffer_head *bh_result, int create)
887 {
888 int ret;
889
890 /* We don't expect handle for direct IO */
891 WARN_ON_ONCE(ext4_journal_current_handle());
892
893 ret = ext4_get_block_trans(inode, iblock, bh_result,
894 EXT4_GET_BLOCKS_IO_CREATE_EXT);
895
896 /*
897 * Mark inode as having pending DIO writes to unwritten extents.
898 * ext4_ext_direct_IO() checks this flag and converts extents to
899 * written.
900 */
901 if (!ret && buffer_unwritten(bh_result))
902 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
903
904 return ret;
905 }
906
907 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
908 struct buffer_head *bh_result, int create)
909 {
910 int ret;
911
912 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
913 inode->i_ino, create);
914 /* We don't expect handle for direct IO */
915 WARN_ON_ONCE(ext4_journal_current_handle());
916
917 ret = _ext4_get_block(inode, iblock, bh_result, 0);
918 /*
919 * Blocks should have been preallocated! ext4_file_write_iter() checks
920 * that.
921 */
922 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
923
924 return ret;
925 }
926
927
928 /*
929 * `handle' can be NULL if create is zero
930 */
931 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
932 ext4_lblk_t block, int map_flags)
933 {
934 struct ext4_map_blocks map;
935 struct buffer_head *bh;
936 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
937 int err;
938
939 J_ASSERT(handle != NULL || create == 0);
940
941 map.m_lblk = block;
942 map.m_len = 1;
943 err = ext4_map_blocks(handle, inode, &map, map_flags);
944
945 if (err == 0)
946 return create ? ERR_PTR(-ENOSPC) : NULL;
947 if (err < 0)
948 return ERR_PTR(err);
949
950 bh = sb_getblk(inode->i_sb, map.m_pblk);
951 if (unlikely(!bh))
952 return ERR_PTR(-ENOMEM);
953 if (map.m_flags & EXT4_MAP_NEW) {
954 J_ASSERT(create != 0);
955 J_ASSERT(handle != NULL);
956
957 /*
958 * Now that we do not always journal data, we should
959 * keep in mind whether this should always journal the
960 * new buffer as metadata. For now, regular file
961 * writes use ext4_get_block instead, so it's not a
962 * problem.
963 */
964 lock_buffer(bh);
965 BUFFER_TRACE(bh, "call get_create_access");
966 err = ext4_journal_get_create_access(handle, bh);
967 if (unlikely(err)) {
968 unlock_buffer(bh);
969 goto errout;
970 }
971 if (!buffer_uptodate(bh)) {
972 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
973 set_buffer_uptodate(bh);
974 }
975 unlock_buffer(bh);
976 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
977 err = ext4_handle_dirty_metadata(handle, inode, bh);
978 if (unlikely(err))
979 goto errout;
980 } else
981 BUFFER_TRACE(bh, "not a new buffer");
982 return bh;
983 errout:
984 brelse(bh);
985 return ERR_PTR(err);
986 }
987
988 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
989 ext4_lblk_t block, int map_flags)
990 {
991 struct buffer_head *bh;
992
993 bh = ext4_getblk(handle, inode, block, map_flags);
994 if (IS_ERR(bh))
995 return bh;
996 if (!bh || buffer_uptodate(bh))
997 return bh;
998 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
999 wait_on_buffer(bh);
1000 if (buffer_uptodate(bh))
1001 return bh;
1002 put_bh(bh);
1003 return ERR_PTR(-EIO);
1004 }
1005
1006 int ext4_walk_page_buffers(handle_t *handle,
1007 struct buffer_head *head,
1008 unsigned from,
1009 unsigned to,
1010 int *partial,
1011 int (*fn)(handle_t *handle,
1012 struct buffer_head *bh))
1013 {
1014 struct buffer_head *bh;
1015 unsigned block_start, block_end;
1016 unsigned blocksize = head->b_size;
1017 int err, ret = 0;
1018 struct buffer_head *next;
1019
1020 for (bh = head, block_start = 0;
1021 ret == 0 && (bh != head || !block_start);
1022 block_start = block_end, bh = next) {
1023 next = bh->b_this_page;
1024 block_end = block_start + blocksize;
1025 if (block_end <= from || block_start >= to) {
1026 if (partial && !buffer_uptodate(bh))
1027 *partial = 1;
1028 continue;
1029 }
1030 err = (*fn)(handle, bh);
1031 if (!ret)
1032 ret = err;
1033 }
1034 return ret;
1035 }
1036
1037 /*
1038 * To preserve ordering, it is essential that the hole instantiation and
1039 * the data write be encapsulated in a single transaction. We cannot
1040 * close off a transaction and start a new one between the ext4_get_block()
1041 * and the commit_write(). So doing the jbd2_journal_start at the start of
1042 * prepare_write() is the right place.
1043 *
1044 * Also, this function can nest inside ext4_writepage(). In that case, we
1045 * *know* that ext4_writepage() has generated enough buffer credits to do the
1046 * whole page. So we won't block on the journal in that case, which is good,
1047 * because the caller may be PF_MEMALLOC.
1048 *
1049 * By accident, ext4 can be reentered when a transaction is open via
1050 * quota file writes. If we were to commit the transaction while thus
1051 * reentered, there can be a deadlock - we would be holding a quota
1052 * lock, and the commit would never complete if another thread had a
1053 * transaction open and was blocking on the quota lock - a ranking
1054 * violation.
1055 *
1056 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1057 * will _not_ run commit under these circumstances because handle->h_ref
1058 * is elevated. We'll still have enough credits for the tiny quotafile
1059 * write.
1060 */
1061 int do_journal_get_write_access(handle_t *handle,
1062 struct buffer_head *bh)
1063 {
1064 int dirty = buffer_dirty(bh);
1065 int ret;
1066
1067 if (!buffer_mapped(bh) || buffer_freed(bh))
1068 return 0;
1069 /*
1070 * __block_write_begin() could have dirtied some buffers. Clean
1071 * the dirty bit as jbd2_journal_get_write_access() could complain
1072 * otherwise about fs integrity issues. Setting of the dirty bit
1073 * by __block_write_begin() isn't a real problem here as we clear
1074 * the bit before releasing a page lock and thus writeback cannot
1075 * ever write the buffer.
1076 */
1077 if (dirty)
1078 clear_buffer_dirty(bh);
1079 BUFFER_TRACE(bh, "get write access");
1080 ret = ext4_journal_get_write_access(handle, bh);
1081 if (!ret && dirty)
1082 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1083 return ret;
1084 }
1085
1086 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1087 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1088 get_block_t *get_block)
1089 {
1090 unsigned from = pos & (PAGE_SIZE - 1);
1091 unsigned to = from + len;
1092 struct inode *inode = page->mapping->host;
1093 unsigned block_start, block_end;
1094 sector_t block;
1095 int err = 0;
1096 unsigned blocksize = inode->i_sb->s_blocksize;
1097 unsigned bbits;
1098 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1099 bool decrypt = false;
1100
1101 BUG_ON(!PageLocked(page));
1102 BUG_ON(from > PAGE_SIZE);
1103 BUG_ON(to > PAGE_SIZE);
1104 BUG_ON(from > to);
1105
1106 if (!page_has_buffers(page))
1107 create_empty_buffers(page, blocksize, 0);
1108 head = page_buffers(page);
1109 bbits = ilog2(blocksize);
1110 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1111
1112 for (bh = head, block_start = 0; bh != head || !block_start;
1113 block++, block_start = block_end, bh = bh->b_this_page) {
1114 block_end = block_start + blocksize;
1115 if (block_end <= from || block_start >= to) {
1116 if (PageUptodate(page)) {
1117 if (!buffer_uptodate(bh))
1118 set_buffer_uptodate(bh);
1119 }
1120 continue;
1121 }
1122 if (buffer_new(bh))
1123 clear_buffer_new(bh);
1124 if (!buffer_mapped(bh)) {
1125 WARN_ON(bh->b_size != blocksize);
1126 err = get_block(inode, block, bh, 1);
1127 if (err)
1128 break;
1129 if (buffer_new(bh)) {
1130 unmap_underlying_metadata(bh->b_bdev,
1131 bh->b_blocknr);
1132 if (PageUptodate(page)) {
1133 clear_buffer_new(bh);
1134 set_buffer_uptodate(bh);
1135 mark_buffer_dirty(bh);
1136 continue;
1137 }
1138 if (block_end > to || block_start < from)
1139 zero_user_segments(page, to, block_end,
1140 block_start, from);
1141 continue;
1142 }
1143 }
1144 if (PageUptodate(page)) {
1145 if (!buffer_uptodate(bh))
1146 set_buffer_uptodate(bh);
1147 continue;
1148 }
1149 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1150 !buffer_unwritten(bh) &&
1151 (block_start < from || block_end > to)) {
1152 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1153 *wait_bh++ = bh;
1154 decrypt = ext4_encrypted_inode(inode) &&
1155 S_ISREG(inode->i_mode);
1156 }
1157 }
1158 /*
1159 * If we issued read requests, let them complete.
1160 */
1161 while (wait_bh > wait) {
1162 wait_on_buffer(*--wait_bh);
1163 if (!buffer_uptodate(*wait_bh))
1164 err = -EIO;
1165 }
1166 if (unlikely(err))
1167 page_zero_new_buffers(page, from, to);
1168 else if (decrypt)
1169 err = fscrypt_decrypt_page(page);
1170 return err;
1171 }
1172 #endif
1173
1174 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1175 loff_t pos, unsigned len, unsigned flags,
1176 struct page **pagep, void **fsdata)
1177 {
1178 struct inode *inode = mapping->host;
1179 int ret, needed_blocks;
1180 handle_t *handle;
1181 int retries = 0;
1182 struct page *page;
1183 pgoff_t index;
1184 unsigned from, to;
1185
1186 trace_ext4_write_begin(inode, pos, len, flags);
1187 /*
1188 * Reserve one block more for addition to orphan list in case
1189 * we allocate blocks but write fails for some reason
1190 */
1191 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1192 index = pos >> PAGE_SHIFT;
1193 from = pos & (PAGE_SIZE - 1);
1194 to = from + len;
1195
1196 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1197 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1198 flags, pagep);
1199 if (ret < 0)
1200 return ret;
1201 if (ret == 1)
1202 return 0;
1203 }
1204
1205 /*
1206 * grab_cache_page_write_begin() can take a long time if the
1207 * system is thrashing due to memory pressure, or if the page
1208 * is being written back. So grab it first before we start
1209 * the transaction handle. This also allows us to allocate
1210 * the page (if needed) without using GFP_NOFS.
1211 */
1212 retry_grab:
1213 page = grab_cache_page_write_begin(mapping, index, flags);
1214 if (!page)
1215 return -ENOMEM;
1216 unlock_page(page);
1217
1218 retry_journal:
1219 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1220 if (IS_ERR(handle)) {
1221 put_page(page);
1222 return PTR_ERR(handle);
1223 }
1224
1225 lock_page(page);
1226 if (page->mapping != mapping) {
1227 /* The page got truncated from under us */
1228 unlock_page(page);
1229 put_page(page);
1230 ext4_journal_stop(handle);
1231 goto retry_grab;
1232 }
1233 /* In case writeback began while the page was unlocked */
1234 wait_for_stable_page(page);
1235
1236 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1237 if (ext4_should_dioread_nolock(inode))
1238 ret = ext4_block_write_begin(page, pos, len,
1239 ext4_get_block_unwritten);
1240 else
1241 ret = ext4_block_write_begin(page, pos, len,
1242 ext4_get_block);
1243 #else
1244 if (ext4_should_dioread_nolock(inode))
1245 ret = __block_write_begin(page, pos, len,
1246 ext4_get_block_unwritten);
1247 else
1248 ret = __block_write_begin(page, pos, len, ext4_get_block);
1249 #endif
1250 if (!ret && ext4_should_journal_data(inode)) {
1251 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1252 from, to, NULL,
1253 do_journal_get_write_access);
1254 }
1255
1256 if (ret) {
1257 unlock_page(page);
1258 /*
1259 * __block_write_begin may have instantiated a few blocks
1260 * outside i_size. Trim these off again. Don't need
1261 * i_size_read because we hold i_mutex.
1262 *
1263 * Add inode to orphan list in case we crash before
1264 * truncate finishes
1265 */
1266 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1267 ext4_orphan_add(handle, inode);
1268
1269 ext4_journal_stop(handle);
1270 if (pos + len > inode->i_size) {
1271 ext4_truncate_failed_write(inode);
1272 /*
1273 * If truncate failed early the inode might
1274 * still be on the orphan list; we need to
1275 * make sure the inode is removed from the
1276 * orphan list in that case.
1277 */
1278 if (inode->i_nlink)
1279 ext4_orphan_del(NULL, inode);
1280 }
1281
1282 if (ret == -ENOSPC &&
1283 ext4_should_retry_alloc(inode->i_sb, &retries))
1284 goto retry_journal;
1285 put_page(page);
1286 return ret;
1287 }
1288 *pagep = page;
1289 return ret;
1290 }
1291
1292 /* For write_end() in data=journal mode */
1293 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1294 {
1295 int ret;
1296 if (!buffer_mapped(bh) || buffer_freed(bh))
1297 return 0;
1298 set_buffer_uptodate(bh);
1299 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1300 clear_buffer_meta(bh);
1301 clear_buffer_prio(bh);
1302 return ret;
1303 }
1304
1305 /*
1306 * We need to pick up the new inode size which generic_commit_write gave us
1307 * `file' can be NULL - eg, when called from page_symlink().
1308 *
1309 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1310 * buffers are managed internally.
1311 */
1312 static int ext4_write_end(struct file *file,
1313 struct address_space *mapping,
1314 loff_t pos, unsigned len, unsigned copied,
1315 struct page *page, void *fsdata)
1316 {
1317 handle_t *handle = ext4_journal_current_handle();
1318 struct inode *inode = mapping->host;
1319 loff_t old_size = inode->i_size;
1320 int ret = 0, ret2;
1321 int i_size_changed = 0;
1322
1323 trace_ext4_write_end(inode, pos, len, copied);
1324 if (ext4_has_inline_data(inode)) {
1325 ret = ext4_write_inline_data_end(inode, pos, len,
1326 copied, page);
1327 if (ret < 0)
1328 goto errout;
1329 copied = ret;
1330 } else
1331 copied = block_write_end(file, mapping, pos,
1332 len, copied, page, fsdata);
1333 /*
1334 * it's important to update i_size while still holding page lock:
1335 * page writeout could otherwise come in and zero beyond i_size.
1336 */
1337 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1338 unlock_page(page);
1339 put_page(page);
1340
1341 if (old_size < pos)
1342 pagecache_isize_extended(inode, old_size, pos);
1343 /*
1344 * Don't mark the inode dirty under page lock. First, it unnecessarily
1345 * makes the holding time of page lock longer. Second, it forces lock
1346 * ordering of page lock and transaction start for journaling
1347 * filesystems.
1348 */
1349 if (i_size_changed)
1350 ext4_mark_inode_dirty(handle, inode);
1351
1352 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1353 /* if we have allocated more blocks and copied
1354 * less. We will have blocks allocated outside
1355 * inode->i_size. So truncate them
1356 */
1357 ext4_orphan_add(handle, inode);
1358 errout:
1359 ret2 = ext4_journal_stop(handle);
1360 if (!ret)
1361 ret = ret2;
1362
1363 if (pos + len > inode->i_size) {
1364 ext4_truncate_failed_write(inode);
1365 /*
1366 * If truncate failed early the inode might still be
1367 * on the orphan list; we need to make sure the inode
1368 * is removed from the orphan list in that case.
1369 */
1370 if (inode->i_nlink)
1371 ext4_orphan_del(NULL, inode);
1372 }
1373
1374 return ret ? ret : copied;
1375 }
1376
1377 /*
1378 * This is a private version of page_zero_new_buffers() which doesn't
1379 * set the buffer to be dirty, since in data=journalled mode we need
1380 * to call ext4_handle_dirty_metadata() instead.
1381 */
1382 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1383 {
1384 unsigned int block_start = 0, block_end;
1385 struct buffer_head *head, *bh;
1386
1387 bh = head = page_buffers(page);
1388 do {
1389 block_end = block_start + bh->b_size;
1390 if (buffer_new(bh)) {
1391 if (block_end > from && block_start < to) {
1392 if (!PageUptodate(page)) {
1393 unsigned start, size;
1394
1395 start = max(from, block_start);
1396 size = min(to, block_end) - start;
1397
1398 zero_user(page, start, size);
1399 set_buffer_uptodate(bh);
1400 }
1401 clear_buffer_new(bh);
1402 }
1403 }
1404 block_start = block_end;
1405 bh = bh->b_this_page;
1406 } while (bh != head);
1407 }
1408
1409 static int ext4_journalled_write_end(struct file *file,
1410 struct address_space *mapping,
1411 loff_t pos, unsigned len, unsigned copied,
1412 struct page *page, void *fsdata)
1413 {
1414 handle_t *handle = ext4_journal_current_handle();
1415 struct inode *inode = mapping->host;
1416 loff_t old_size = inode->i_size;
1417 int ret = 0, ret2;
1418 int partial = 0;
1419 unsigned from, to;
1420 int size_changed = 0;
1421
1422 trace_ext4_journalled_write_end(inode, pos, len, copied);
1423 from = pos & (PAGE_SIZE - 1);
1424 to = from + len;
1425
1426 BUG_ON(!ext4_handle_valid(handle));
1427
1428 if (ext4_has_inline_data(inode))
1429 copied = ext4_write_inline_data_end(inode, pos, len,
1430 copied, page);
1431 else {
1432 if (copied < len) {
1433 if (!PageUptodate(page))
1434 copied = 0;
1435 zero_new_buffers(page, from+copied, to);
1436 }
1437
1438 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1439 to, &partial, write_end_fn);
1440 if (!partial)
1441 SetPageUptodate(page);
1442 }
1443 size_changed = ext4_update_inode_size(inode, pos + copied);
1444 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446 unlock_page(page);
1447 put_page(page);
1448
1449 if (old_size < pos)
1450 pagecache_isize_extended(inode, old_size, pos);
1451
1452 if (size_changed) {
1453 ret2 = ext4_mark_inode_dirty(handle, inode);
1454 if (!ret)
1455 ret = ret2;
1456 }
1457
1458 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1459 /* if we have allocated more blocks and copied
1460 * less. We will have blocks allocated outside
1461 * inode->i_size. So truncate them
1462 */
1463 ext4_orphan_add(handle, inode);
1464
1465 ret2 = ext4_journal_stop(handle);
1466 if (!ret)
1467 ret = ret2;
1468 if (pos + len > inode->i_size) {
1469 ext4_truncate_failed_write(inode);
1470 /*
1471 * If truncate failed early the inode might still be
1472 * on the orphan list; we need to make sure the inode
1473 * is removed from the orphan list in that case.
1474 */
1475 if (inode->i_nlink)
1476 ext4_orphan_del(NULL, inode);
1477 }
1478
1479 return ret ? ret : copied;
1480 }
1481
1482 /*
1483 * Reserve space for a single cluster
1484 */
1485 static int ext4_da_reserve_space(struct inode *inode)
1486 {
1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 struct ext4_inode_info *ei = EXT4_I(inode);
1489 int ret;
1490
1491 /*
1492 * We will charge metadata quota at writeout time; this saves
1493 * us from metadata over-estimation, though we may go over by
1494 * a small amount in the end. Here we just reserve for data.
1495 */
1496 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497 if (ret)
1498 return ret;
1499
1500 spin_lock(&ei->i_block_reservation_lock);
1501 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502 spin_unlock(&ei->i_block_reservation_lock);
1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504 return -ENOSPC;
1505 }
1506 ei->i_reserved_data_blocks++;
1507 trace_ext4_da_reserve_space(inode);
1508 spin_unlock(&ei->i_block_reservation_lock);
1509
1510 return 0; /* success */
1511 }
1512
1513 static void ext4_da_release_space(struct inode *inode, int to_free)
1514 {
1515 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518 if (!to_free)
1519 return; /* Nothing to release, exit */
1520
1521 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523 trace_ext4_da_release_space(inode, to_free);
1524 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525 /*
1526 * if there aren't enough reserved blocks, then the
1527 * counter is messed up somewhere. Since this
1528 * function is called from invalidate page, it's
1529 * harmless to return without any action.
1530 */
1531 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532 "ino %lu, to_free %d with only %d reserved "
1533 "data blocks", inode->i_ino, to_free,
1534 ei->i_reserved_data_blocks);
1535 WARN_ON(1);
1536 to_free = ei->i_reserved_data_blocks;
1537 }
1538 ei->i_reserved_data_blocks -= to_free;
1539
1540 /* update fs dirty data blocks counter */
1541 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546 }
1547
1548 static void ext4_da_page_release_reservation(struct page *page,
1549 unsigned int offset,
1550 unsigned int length)
1551 {
1552 int to_release = 0, contiguous_blks = 0;
1553 struct buffer_head *head, *bh;
1554 unsigned int curr_off = 0;
1555 struct inode *inode = page->mapping->host;
1556 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557 unsigned int stop = offset + length;
1558 int num_clusters;
1559 ext4_fsblk_t lblk;
1560
1561 BUG_ON(stop > PAGE_SIZE || stop < length);
1562
1563 head = page_buffers(page);
1564 bh = head;
1565 do {
1566 unsigned int next_off = curr_off + bh->b_size;
1567
1568 if (next_off > stop)
1569 break;
1570
1571 if ((offset <= curr_off) && (buffer_delay(bh))) {
1572 to_release++;
1573 contiguous_blks++;
1574 clear_buffer_delay(bh);
1575 } else if (contiguous_blks) {
1576 lblk = page->index <<
1577 (PAGE_SHIFT - inode->i_blkbits);
1578 lblk += (curr_off >> inode->i_blkbits) -
1579 contiguous_blks;
1580 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1581 contiguous_blks = 0;
1582 }
1583 curr_off = next_off;
1584 } while ((bh = bh->b_this_page) != head);
1585
1586 if (contiguous_blks) {
1587 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1588 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1589 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1590 }
1591
1592 /* If we have released all the blocks belonging to a cluster, then we
1593 * need to release the reserved space for that cluster. */
1594 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1595 while (num_clusters > 0) {
1596 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1597 ((num_clusters - 1) << sbi->s_cluster_bits);
1598 if (sbi->s_cluster_ratio == 1 ||
1599 !ext4_find_delalloc_cluster(inode, lblk))
1600 ext4_da_release_space(inode, 1);
1601
1602 num_clusters--;
1603 }
1604 }
1605
1606 /*
1607 * Delayed allocation stuff
1608 */
1609
1610 struct mpage_da_data {
1611 struct inode *inode;
1612 struct writeback_control *wbc;
1613
1614 pgoff_t first_page; /* The first page to write */
1615 pgoff_t next_page; /* Current page to examine */
1616 pgoff_t last_page; /* Last page to examine */
1617 /*
1618 * Extent to map - this can be after first_page because that can be
1619 * fully mapped. We somewhat abuse m_flags to store whether the extent
1620 * is delalloc or unwritten.
1621 */
1622 struct ext4_map_blocks map;
1623 struct ext4_io_submit io_submit; /* IO submission data */
1624 };
1625
1626 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1627 bool invalidate)
1628 {
1629 int nr_pages, i;
1630 pgoff_t index, end;
1631 struct pagevec pvec;
1632 struct inode *inode = mpd->inode;
1633 struct address_space *mapping = inode->i_mapping;
1634
1635 /* This is necessary when next_page == 0. */
1636 if (mpd->first_page >= mpd->next_page)
1637 return;
1638
1639 index = mpd->first_page;
1640 end = mpd->next_page - 1;
1641 if (invalidate) {
1642 ext4_lblk_t start, last;
1643 start = index << (PAGE_SHIFT - inode->i_blkbits);
1644 last = end << (PAGE_SHIFT - inode->i_blkbits);
1645 ext4_es_remove_extent(inode, start, last - start + 1);
1646 }
1647
1648 pagevec_init(&pvec, 0);
1649 while (index <= end) {
1650 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1651 if (nr_pages == 0)
1652 break;
1653 for (i = 0; i < nr_pages; i++) {
1654 struct page *page = pvec.pages[i];
1655 if (page->index > end)
1656 break;
1657 BUG_ON(!PageLocked(page));
1658 BUG_ON(PageWriteback(page));
1659 if (invalidate) {
1660 if (page_mapped(page))
1661 clear_page_dirty_for_io(page);
1662 block_invalidatepage(page, 0, PAGE_SIZE);
1663 ClearPageUptodate(page);
1664 }
1665 unlock_page(page);
1666 }
1667 index = pvec.pages[nr_pages - 1]->index + 1;
1668 pagevec_release(&pvec);
1669 }
1670 }
1671
1672 static void ext4_print_free_blocks(struct inode *inode)
1673 {
1674 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1675 struct super_block *sb = inode->i_sb;
1676 struct ext4_inode_info *ei = EXT4_I(inode);
1677
1678 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1679 EXT4_C2B(EXT4_SB(inode->i_sb),
1680 ext4_count_free_clusters(sb)));
1681 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1682 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1683 (long long) EXT4_C2B(EXT4_SB(sb),
1684 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1685 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1686 (long long) EXT4_C2B(EXT4_SB(sb),
1687 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1688 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1689 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1690 ei->i_reserved_data_blocks);
1691 return;
1692 }
1693
1694 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1695 {
1696 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1697 }
1698
1699 /*
1700 * This function is grabs code from the very beginning of
1701 * ext4_map_blocks, but assumes that the caller is from delayed write
1702 * time. This function looks up the requested blocks and sets the
1703 * buffer delay bit under the protection of i_data_sem.
1704 */
1705 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1706 struct ext4_map_blocks *map,
1707 struct buffer_head *bh)
1708 {
1709 struct extent_status es;
1710 int retval;
1711 sector_t invalid_block = ~((sector_t) 0xffff);
1712 #ifdef ES_AGGRESSIVE_TEST
1713 struct ext4_map_blocks orig_map;
1714
1715 memcpy(&orig_map, map, sizeof(*map));
1716 #endif
1717
1718 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1719 invalid_block = ~0;
1720
1721 map->m_flags = 0;
1722 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1723 "logical block %lu\n", inode->i_ino, map->m_len,
1724 (unsigned long) map->m_lblk);
1725
1726 /* Lookup extent status tree firstly */
1727 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1728 if (ext4_es_is_hole(&es)) {
1729 retval = 0;
1730 down_read(&EXT4_I(inode)->i_data_sem);
1731 goto add_delayed;
1732 }
1733
1734 /*
1735 * Delayed extent could be allocated by fallocate.
1736 * So we need to check it.
1737 */
1738 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1739 map_bh(bh, inode->i_sb, invalid_block);
1740 set_buffer_new(bh);
1741 set_buffer_delay(bh);
1742 return 0;
1743 }
1744
1745 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1746 retval = es.es_len - (iblock - es.es_lblk);
1747 if (retval > map->m_len)
1748 retval = map->m_len;
1749 map->m_len = retval;
1750 if (ext4_es_is_written(&es))
1751 map->m_flags |= EXT4_MAP_MAPPED;
1752 else if (ext4_es_is_unwritten(&es))
1753 map->m_flags |= EXT4_MAP_UNWRITTEN;
1754 else
1755 BUG_ON(1);
1756
1757 #ifdef ES_AGGRESSIVE_TEST
1758 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1759 #endif
1760 return retval;
1761 }
1762
1763 /*
1764 * Try to see if we can get the block without requesting a new
1765 * file system block.
1766 */
1767 down_read(&EXT4_I(inode)->i_data_sem);
1768 if (ext4_has_inline_data(inode))
1769 retval = 0;
1770 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1771 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1772 else
1773 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1774
1775 add_delayed:
1776 if (retval == 0) {
1777 int ret;
1778 /*
1779 * XXX: __block_prepare_write() unmaps passed block,
1780 * is it OK?
1781 */
1782 /*
1783 * If the block was allocated from previously allocated cluster,
1784 * then we don't need to reserve it again. However we still need
1785 * to reserve metadata for every block we're going to write.
1786 */
1787 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1788 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1789 ret = ext4_da_reserve_space(inode);
1790 if (ret) {
1791 /* not enough space to reserve */
1792 retval = ret;
1793 goto out_unlock;
1794 }
1795 }
1796
1797 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 ~0, EXTENT_STATUS_DELAYED);
1799 if (ret) {
1800 retval = ret;
1801 goto out_unlock;
1802 }
1803
1804 map_bh(bh, inode->i_sb, invalid_block);
1805 set_buffer_new(bh);
1806 set_buffer_delay(bh);
1807 } else if (retval > 0) {
1808 int ret;
1809 unsigned int status;
1810
1811 if (unlikely(retval != map->m_len)) {
1812 ext4_warning(inode->i_sb,
1813 "ES len assertion failed for inode "
1814 "%lu: retval %d != map->m_len %d",
1815 inode->i_ino, retval, map->m_len);
1816 WARN_ON(1);
1817 }
1818
1819 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1820 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1821 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1822 map->m_pblk, status);
1823 if (ret != 0)
1824 retval = ret;
1825 }
1826
1827 out_unlock:
1828 up_read((&EXT4_I(inode)->i_data_sem));
1829
1830 return retval;
1831 }
1832
1833 /*
1834 * This is a special get_block_t callback which is used by
1835 * ext4_da_write_begin(). It will either return mapped block or
1836 * reserve space for a single block.
1837 *
1838 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839 * We also have b_blocknr = -1 and b_bdev initialized properly
1840 *
1841 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843 * initialized properly.
1844 */
1845 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846 struct buffer_head *bh, int create)
1847 {
1848 struct ext4_map_blocks map;
1849 int ret = 0;
1850
1851 BUG_ON(create == 0);
1852 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853
1854 map.m_lblk = iblock;
1855 map.m_len = 1;
1856
1857 /*
1858 * first, we need to know whether the block is allocated already
1859 * preallocated blocks are unmapped but should treated
1860 * the same as allocated blocks.
1861 */
1862 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863 if (ret <= 0)
1864 return ret;
1865
1866 map_bh(bh, inode->i_sb, map.m_pblk);
1867 ext4_update_bh_state(bh, map.m_flags);
1868
1869 if (buffer_unwritten(bh)) {
1870 /* A delayed write to unwritten bh should be marked
1871 * new and mapped. Mapped ensures that we don't do
1872 * get_block multiple times when we write to the same
1873 * offset and new ensures that we do proper zero out
1874 * for partial write.
1875 */
1876 set_buffer_new(bh);
1877 set_buffer_mapped(bh);
1878 }
1879 return 0;
1880 }
1881
1882 static int bget_one(handle_t *handle, struct buffer_head *bh)
1883 {
1884 get_bh(bh);
1885 return 0;
1886 }
1887
1888 static int bput_one(handle_t *handle, struct buffer_head *bh)
1889 {
1890 put_bh(bh);
1891 return 0;
1892 }
1893
1894 static int __ext4_journalled_writepage(struct page *page,
1895 unsigned int len)
1896 {
1897 struct address_space *mapping = page->mapping;
1898 struct inode *inode = mapping->host;
1899 struct buffer_head *page_bufs = NULL;
1900 handle_t *handle = NULL;
1901 int ret = 0, err = 0;
1902 int inline_data = ext4_has_inline_data(inode);
1903 struct buffer_head *inode_bh = NULL;
1904
1905 ClearPageChecked(page);
1906
1907 if (inline_data) {
1908 BUG_ON(page->index != 0);
1909 BUG_ON(len > ext4_get_max_inline_size(inode));
1910 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1911 if (inode_bh == NULL)
1912 goto out;
1913 } else {
1914 page_bufs = page_buffers(page);
1915 if (!page_bufs) {
1916 BUG();
1917 goto out;
1918 }
1919 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1920 NULL, bget_one);
1921 }
1922 /*
1923 * We need to release the page lock before we start the
1924 * journal, so grab a reference so the page won't disappear
1925 * out from under us.
1926 */
1927 get_page(page);
1928 unlock_page(page);
1929
1930 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1931 ext4_writepage_trans_blocks(inode));
1932 if (IS_ERR(handle)) {
1933 ret = PTR_ERR(handle);
1934 put_page(page);
1935 goto out_no_pagelock;
1936 }
1937 BUG_ON(!ext4_handle_valid(handle));
1938
1939 lock_page(page);
1940 put_page(page);
1941 if (page->mapping != mapping) {
1942 /* The page got truncated from under us */
1943 ext4_journal_stop(handle);
1944 ret = 0;
1945 goto out;
1946 }
1947
1948 if (inline_data) {
1949 BUFFER_TRACE(inode_bh, "get write access");
1950 ret = ext4_journal_get_write_access(handle, inode_bh);
1951
1952 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1953
1954 } else {
1955 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1956 do_journal_get_write_access);
1957
1958 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1959 write_end_fn);
1960 }
1961 if (ret == 0)
1962 ret = err;
1963 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1964 err = ext4_journal_stop(handle);
1965 if (!ret)
1966 ret = err;
1967
1968 if (!ext4_has_inline_data(inode))
1969 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1970 NULL, bput_one);
1971 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1972 out:
1973 unlock_page(page);
1974 out_no_pagelock:
1975 brelse(inode_bh);
1976 return ret;
1977 }
1978
1979 /*
1980 * Note that we don't need to start a transaction unless we're journaling data
1981 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1982 * need to file the inode to the transaction's list in ordered mode because if
1983 * we are writing back data added by write(), the inode is already there and if
1984 * we are writing back data modified via mmap(), no one guarantees in which
1985 * transaction the data will hit the disk. In case we are journaling data, we
1986 * cannot start transaction directly because transaction start ranks above page
1987 * lock so we have to do some magic.
1988 *
1989 * This function can get called via...
1990 * - ext4_writepages after taking page lock (have journal handle)
1991 * - journal_submit_inode_data_buffers (no journal handle)
1992 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1993 * - grab_page_cache when doing write_begin (have journal handle)
1994 *
1995 * We don't do any block allocation in this function. If we have page with
1996 * multiple blocks we need to write those buffer_heads that are mapped. This
1997 * is important for mmaped based write. So if we do with blocksize 1K
1998 * truncate(f, 1024);
1999 * a = mmap(f, 0, 4096);
2000 * a[0] = 'a';
2001 * truncate(f, 4096);
2002 * we have in the page first buffer_head mapped via page_mkwrite call back
2003 * but other buffer_heads would be unmapped but dirty (dirty done via the
2004 * do_wp_page). So writepage should write the first block. If we modify
2005 * the mmap area beyond 1024 we will again get a page_fault and the
2006 * page_mkwrite callback will do the block allocation and mark the
2007 * buffer_heads mapped.
2008 *
2009 * We redirty the page if we have any buffer_heads that is either delay or
2010 * unwritten in the page.
2011 *
2012 * We can get recursively called as show below.
2013 *
2014 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2015 * ext4_writepage()
2016 *
2017 * But since we don't do any block allocation we should not deadlock.
2018 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2019 */
2020 static int ext4_writepage(struct page *page,
2021 struct writeback_control *wbc)
2022 {
2023 int ret = 0;
2024 loff_t size;
2025 unsigned int len;
2026 struct buffer_head *page_bufs = NULL;
2027 struct inode *inode = page->mapping->host;
2028 struct ext4_io_submit io_submit;
2029 bool keep_towrite = false;
2030
2031 trace_ext4_writepage(page);
2032 size = i_size_read(inode);
2033 if (page->index == size >> PAGE_SHIFT)
2034 len = size & ~PAGE_MASK;
2035 else
2036 len = PAGE_SIZE;
2037
2038 page_bufs = page_buffers(page);
2039 /*
2040 * We cannot do block allocation or other extent handling in this
2041 * function. If there are buffers needing that, we have to redirty
2042 * the page. But we may reach here when we do a journal commit via
2043 * journal_submit_inode_data_buffers() and in that case we must write
2044 * allocated buffers to achieve data=ordered mode guarantees.
2045 *
2046 * Also, if there is only one buffer per page (the fs block
2047 * size == the page size), if one buffer needs block
2048 * allocation or needs to modify the extent tree to clear the
2049 * unwritten flag, we know that the page can't be written at
2050 * all, so we might as well refuse the write immediately.
2051 * Unfortunately if the block size != page size, we can't as
2052 * easily detect this case using ext4_walk_page_buffers(), but
2053 * for the extremely common case, this is an optimization that
2054 * skips a useless round trip through ext4_bio_write_page().
2055 */
2056 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2057 ext4_bh_delay_or_unwritten)) {
2058 redirty_page_for_writepage(wbc, page);
2059 if ((current->flags & PF_MEMALLOC) ||
2060 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2061 /*
2062 * For memory cleaning there's no point in writing only
2063 * some buffers. So just bail out. Warn if we came here
2064 * from direct reclaim.
2065 */
2066 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2067 == PF_MEMALLOC);
2068 unlock_page(page);
2069 return 0;
2070 }
2071 keep_towrite = true;
2072 }
2073
2074 if (PageChecked(page) && ext4_should_journal_data(inode))
2075 /*
2076 * It's mmapped pagecache. Add buffers and journal it. There
2077 * doesn't seem much point in redirtying the page here.
2078 */
2079 return __ext4_journalled_writepage(page, len);
2080
2081 ext4_io_submit_init(&io_submit, wbc);
2082 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2083 if (!io_submit.io_end) {
2084 redirty_page_for_writepage(wbc, page);
2085 unlock_page(page);
2086 return -ENOMEM;
2087 }
2088 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2089 ext4_io_submit(&io_submit);
2090 /* Drop io_end reference we got from init */
2091 ext4_put_io_end_defer(io_submit.io_end);
2092 return ret;
2093 }
2094
2095 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2096 {
2097 int len;
2098 loff_t size = i_size_read(mpd->inode);
2099 int err;
2100
2101 BUG_ON(page->index != mpd->first_page);
2102 if (page->index == size >> PAGE_SHIFT)
2103 len = size & ~PAGE_MASK;
2104 else
2105 len = PAGE_SIZE;
2106 clear_page_dirty_for_io(page);
2107 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2108 if (!err)
2109 mpd->wbc->nr_to_write--;
2110 mpd->first_page++;
2111
2112 return err;
2113 }
2114
2115 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2116
2117 /*
2118 * mballoc gives us at most this number of blocks...
2119 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2120 * The rest of mballoc seems to handle chunks up to full group size.
2121 */
2122 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2123
2124 /*
2125 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2126 *
2127 * @mpd - extent of blocks
2128 * @lblk - logical number of the block in the file
2129 * @bh - buffer head we want to add to the extent
2130 *
2131 * The function is used to collect contig. blocks in the same state. If the
2132 * buffer doesn't require mapping for writeback and we haven't started the
2133 * extent of buffers to map yet, the function returns 'true' immediately - the
2134 * caller can write the buffer right away. Otherwise the function returns true
2135 * if the block has been added to the extent, false if the block couldn't be
2136 * added.
2137 */
2138 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2139 struct buffer_head *bh)
2140 {
2141 struct ext4_map_blocks *map = &mpd->map;
2142
2143 /* Buffer that doesn't need mapping for writeback? */
2144 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2145 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2146 /* So far no extent to map => we write the buffer right away */
2147 if (map->m_len == 0)
2148 return true;
2149 return false;
2150 }
2151
2152 /* First block in the extent? */
2153 if (map->m_len == 0) {
2154 map->m_lblk = lblk;
2155 map->m_len = 1;
2156 map->m_flags = bh->b_state & BH_FLAGS;
2157 return true;
2158 }
2159
2160 /* Don't go larger than mballoc is willing to allocate */
2161 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2162 return false;
2163
2164 /* Can we merge the block to our big extent? */
2165 if (lblk == map->m_lblk + map->m_len &&
2166 (bh->b_state & BH_FLAGS) == map->m_flags) {
2167 map->m_len++;
2168 return true;
2169 }
2170 return false;
2171 }
2172
2173 /*
2174 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2175 *
2176 * @mpd - extent of blocks for mapping
2177 * @head - the first buffer in the page
2178 * @bh - buffer we should start processing from
2179 * @lblk - logical number of the block in the file corresponding to @bh
2180 *
2181 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2182 * the page for IO if all buffers in this page were mapped and there's no
2183 * accumulated extent of buffers to map or add buffers in the page to the
2184 * extent of buffers to map. The function returns 1 if the caller can continue
2185 * by processing the next page, 0 if it should stop adding buffers to the
2186 * extent to map because we cannot extend it anymore. It can also return value
2187 * < 0 in case of error during IO submission.
2188 */
2189 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2190 struct buffer_head *head,
2191 struct buffer_head *bh,
2192 ext4_lblk_t lblk)
2193 {
2194 struct inode *inode = mpd->inode;
2195 int err;
2196 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2197 >> inode->i_blkbits;
2198
2199 do {
2200 BUG_ON(buffer_locked(bh));
2201
2202 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2203 /* Found extent to map? */
2204 if (mpd->map.m_len)
2205 return 0;
2206 /* Everything mapped so far and we hit EOF */
2207 break;
2208 }
2209 } while (lblk++, (bh = bh->b_this_page) != head);
2210 /* So far everything mapped? Submit the page for IO. */
2211 if (mpd->map.m_len == 0) {
2212 err = mpage_submit_page(mpd, head->b_page);
2213 if (err < 0)
2214 return err;
2215 }
2216 return lblk < blocks;
2217 }
2218
2219 /*
2220 * mpage_map_buffers - update buffers corresponding to changed extent and
2221 * submit fully mapped pages for IO
2222 *
2223 * @mpd - description of extent to map, on return next extent to map
2224 *
2225 * Scan buffers corresponding to changed extent (we expect corresponding pages
2226 * to be already locked) and update buffer state according to new extent state.
2227 * We map delalloc buffers to their physical location, clear unwritten bits,
2228 * and mark buffers as uninit when we perform writes to unwritten extents
2229 * and do extent conversion after IO is finished. If the last page is not fully
2230 * mapped, we update @map to the next extent in the last page that needs
2231 * mapping. Otherwise we submit the page for IO.
2232 */
2233 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2234 {
2235 struct pagevec pvec;
2236 int nr_pages, i;
2237 struct inode *inode = mpd->inode;
2238 struct buffer_head *head, *bh;
2239 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2240 pgoff_t start, end;
2241 ext4_lblk_t lblk;
2242 sector_t pblock;
2243 int err;
2244
2245 start = mpd->map.m_lblk >> bpp_bits;
2246 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2247 lblk = start << bpp_bits;
2248 pblock = mpd->map.m_pblk;
2249
2250 pagevec_init(&pvec, 0);
2251 while (start <= end) {
2252 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2253 PAGEVEC_SIZE);
2254 if (nr_pages == 0)
2255 break;
2256 for (i = 0; i < nr_pages; i++) {
2257 struct page *page = pvec.pages[i];
2258
2259 if (page->index > end)
2260 break;
2261 /* Up to 'end' pages must be contiguous */
2262 BUG_ON(page->index != start);
2263 bh = head = page_buffers(page);
2264 do {
2265 if (lblk < mpd->map.m_lblk)
2266 continue;
2267 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2268 /*
2269 * Buffer after end of mapped extent.
2270 * Find next buffer in the page to map.
2271 */
2272 mpd->map.m_len = 0;
2273 mpd->map.m_flags = 0;
2274 /*
2275 * FIXME: If dioread_nolock supports
2276 * blocksize < pagesize, we need to make
2277 * sure we add size mapped so far to
2278 * io_end->size as the following call
2279 * can submit the page for IO.
2280 */
2281 err = mpage_process_page_bufs(mpd, head,
2282 bh, lblk);
2283 pagevec_release(&pvec);
2284 if (err > 0)
2285 err = 0;
2286 return err;
2287 }
2288 if (buffer_delay(bh)) {
2289 clear_buffer_delay(bh);
2290 bh->b_blocknr = pblock++;
2291 }
2292 clear_buffer_unwritten(bh);
2293 } while (lblk++, (bh = bh->b_this_page) != head);
2294
2295 /*
2296 * FIXME: This is going to break if dioread_nolock
2297 * supports blocksize < pagesize as we will try to
2298 * convert potentially unmapped parts of inode.
2299 */
2300 mpd->io_submit.io_end->size += PAGE_SIZE;
2301 /* Page fully mapped - let IO run! */
2302 err = mpage_submit_page(mpd, page);
2303 if (err < 0) {
2304 pagevec_release(&pvec);
2305 return err;
2306 }
2307 start++;
2308 }
2309 pagevec_release(&pvec);
2310 }
2311 /* Extent fully mapped and matches with page boundary. We are done. */
2312 mpd->map.m_len = 0;
2313 mpd->map.m_flags = 0;
2314 return 0;
2315 }
2316
2317 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2318 {
2319 struct inode *inode = mpd->inode;
2320 struct ext4_map_blocks *map = &mpd->map;
2321 int get_blocks_flags;
2322 int err, dioread_nolock;
2323
2324 trace_ext4_da_write_pages_extent(inode, map);
2325 /*
2326 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2327 * to convert an unwritten extent to be initialized (in the case
2328 * where we have written into one or more preallocated blocks). It is
2329 * possible that we're going to need more metadata blocks than
2330 * previously reserved. However we must not fail because we're in
2331 * writeback and there is nothing we can do about it so it might result
2332 * in data loss. So use reserved blocks to allocate metadata if
2333 * possible.
2334 *
2335 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2336 * the blocks in question are delalloc blocks. This indicates
2337 * that the blocks and quotas has already been checked when
2338 * the data was copied into the page cache.
2339 */
2340 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2341 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2342 EXT4_GET_BLOCKS_IO_SUBMIT;
2343 dioread_nolock = ext4_should_dioread_nolock(inode);
2344 if (dioread_nolock)
2345 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2346 if (map->m_flags & (1 << BH_Delay))
2347 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2348
2349 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2350 if (err < 0)
2351 return err;
2352 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2353 if (!mpd->io_submit.io_end->handle &&
2354 ext4_handle_valid(handle)) {
2355 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2356 handle->h_rsv_handle = NULL;
2357 }
2358 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2359 }
2360
2361 BUG_ON(map->m_len == 0);
2362 if (map->m_flags & EXT4_MAP_NEW) {
2363 struct block_device *bdev = inode->i_sb->s_bdev;
2364 int i;
2365
2366 for (i = 0; i < map->m_len; i++)
2367 unmap_underlying_metadata(bdev, map->m_pblk + i);
2368 }
2369 return 0;
2370 }
2371
2372 /*
2373 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2374 * mpd->len and submit pages underlying it for IO
2375 *
2376 * @handle - handle for journal operations
2377 * @mpd - extent to map
2378 * @give_up_on_write - we set this to true iff there is a fatal error and there
2379 * is no hope of writing the data. The caller should discard
2380 * dirty pages to avoid infinite loops.
2381 *
2382 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2383 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2384 * them to initialized or split the described range from larger unwritten
2385 * extent. Note that we need not map all the described range since allocation
2386 * can return less blocks or the range is covered by more unwritten extents. We
2387 * cannot map more because we are limited by reserved transaction credits. On
2388 * the other hand we always make sure that the last touched page is fully
2389 * mapped so that it can be written out (and thus forward progress is
2390 * guaranteed). After mapping we submit all mapped pages for IO.
2391 */
2392 static int mpage_map_and_submit_extent(handle_t *handle,
2393 struct mpage_da_data *mpd,
2394 bool *give_up_on_write)
2395 {
2396 struct inode *inode = mpd->inode;
2397 struct ext4_map_blocks *map = &mpd->map;
2398 int err;
2399 loff_t disksize;
2400 int progress = 0;
2401
2402 mpd->io_submit.io_end->offset =
2403 ((loff_t)map->m_lblk) << inode->i_blkbits;
2404 do {
2405 err = mpage_map_one_extent(handle, mpd);
2406 if (err < 0) {
2407 struct super_block *sb = inode->i_sb;
2408
2409 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2410 goto invalidate_dirty_pages;
2411 /*
2412 * Let the uper layers retry transient errors.
2413 * In the case of ENOSPC, if ext4_count_free_blocks()
2414 * is non-zero, a commit should free up blocks.
2415 */
2416 if ((err == -ENOMEM) ||
2417 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2418 if (progress)
2419 goto update_disksize;
2420 return err;
2421 }
2422 ext4_msg(sb, KERN_CRIT,
2423 "Delayed block allocation failed for "
2424 "inode %lu at logical offset %llu with"
2425 " max blocks %u with error %d",
2426 inode->i_ino,
2427 (unsigned long long)map->m_lblk,
2428 (unsigned)map->m_len, -err);
2429 ext4_msg(sb, KERN_CRIT,
2430 "This should not happen!! Data will "
2431 "be lost\n");
2432 if (err == -ENOSPC)
2433 ext4_print_free_blocks(inode);
2434 invalidate_dirty_pages:
2435 *give_up_on_write = true;
2436 return err;
2437 }
2438 progress = 1;
2439 /*
2440 * Update buffer state, submit mapped pages, and get us new
2441 * extent to map
2442 */
2443 err = mpage_map_and_submit_buffers(mpd);
2444 if (err < 0)
2445 goto update_disksize;
2446 } while (map->m_len);
2447
2448 update_disksize:
2449 /*
2450 * Update on-disk size after IO is submitted. Races with
2451 * truncate are avoided by checking i_size under i_data_sem.
2452 */
2453 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2454 if (disksize > EXT4_I(inode)->i_disksize) {
2455 int err2;
2456 loff_t i_size;
2457
2458 down_write(&EXT4_I(inode)->i_data_sem);
2459 i_size = i_size_read(inode);
2460 if (disksize > i_size)
2461 disksize = i_size;
2462 if (disksize > EXT4_I(inode)->i_disksize)
2463 EXT4_I(inode)->i_disksize = disksize;
2464 err2 = ext4_mark_inode_dirty(handle, inode);
2465 up_write(&EXT4_I(inode)->i_data_sem);
2466 if (err2)
2467 ext4_error(inode->i_sb,
2468 "Failed to mark inode %lu dirty",
2469 inode->i_ino);
2470 if (!err)
2471 err = err2;
2472 }
2473 return err;
2474 }
2475
2476 /*
2477 * Calculate the total number of credits to reserve for one writepages
2478 * iteration. This is called from ext4_writepages(). We map an extent of
2479 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2480 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2481 * bpp - 1 blocks in bpp different extents.
2482 */
2483 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2484 {
2485 int bpp = ext4_journal_blocks_per_page(inode);
2486
2487 return ext4_meta_trans_blocks(inode,
2488 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2489 }
2490
2491 /*
2492 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2493 * and underlying extent to map
2494 *
2495 * @mpd - where to look for pages
2496 *
2497 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2498 * IO immediately. When we find a page which isn't mapped we start accumulating
2499 * extent of buffers underlying these pages that needs mapping (formed by
2500 * either delayed or unwritten buffers). We also lock the pages containing
2501 * these buffers. The extent found is returned in @mpd structure (starting at
2502 * mpd->lblk with length mpd->len blocks).
2503 *
2504 * Note that this function can attach bios to one io_end structure which are
2505 * neither logically nor physically contiguous. Although it may seem as an
2506 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2507 * case as we need to track IO to all buffers underlying a page in one io_end.
2508 */
2509 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2510 {
2511 struct address_space *mapping = mpd->inode->i_mapping;
2512 struct pagevec pvec;
2513 unsigned int nr_pages;
2514 long left = mpd->wbc->nr_to_write;
2515 pgoff_t index = mpd->first_page;
2516 pgoff_t end = mpd->last_page;
2517 int tag;
2518 int i, err = 0;
2519 int blkbits = mpd->inode->i_blkbits;
2520 ext4_lblk_t lblk;
2521 struct buffer_head *head;
2522
2523 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2524 tag = PAGECACHE_TAG_TOWRITE;
2525 else
2526 tag = PAGECACHE_TAG_DIRTY;
2527
2528 pagevec_init(&pvec, 0);
2529 mpd->map.m_len = 0;
2530 mpd->next_page = index;
2531 while (index <= end) {
2532 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2533 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2534 if (nr_pages == 0)
2535 goto out;
2536
2537 for (i = 0; i < nr_pages; i++) {
2538 struct page *page = pvec.pages[i];
2539
2540 /*
2541 * At this point, the page may be truncated or
2542 * invalidated (changing page->mapping to NULL), or
2543 * even swizzled back from swapper_space to tmpfs file
2544 * mapping. However, page->index will not change
2545 * because we have a reference on the page.
2546 */
2547 if (page->index > end)
2548 goto out;
2549
2550 /*
2551 * Accumulated enough dirty pages? This doesn't apply
2552 * to WB_SYNC_ALL mode. For integrity sync we have to
2553 * keep going because someone may be concurrently
2554 * dirtying pages, and we might have synced a lot of
2555 * newly appeared dirty pages, but have not synced all
2556 * of the old dirty pages.
2557 */
2558 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2559 goto out;
2560
2561 /* If we can't merge this page, we are done. */
2562 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2563 goto out;
2564
2565 lock_page(page);
2566 /*
2567 * If the page is no longer dirty, or its mapping no
2568 * longer corresponds to inode we are writing (which
2569 * means it has been truncated or invalidated), or the
2570 * page is already under writeback and we are not doing
2571 * a data integrity writeback, skip the page
2572 */
2573 if (!PageDirty(page) ||
2574 (PageWriteback(page) &&
2575 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2576 unlikely(page->mapping != mapping)) {
2577 unlock_page(page);
2578 continue;
2579 }
2580
2581 wait_on_page_writeback(page);
2582 BUG_ON(PageWriteback(page));
2583
2584 if (mpd->map.m_len == 0)
2585 mpd->first_page = page->index;
2586 mpd->next_page = page->index + 1;
2587 /* Add all dirty buffers to mpd */
2588 lblk = ((ext4_lblk_t)page->index) <<
2589 (PAGE_SHIFT - blkbits);
2590 head = page_buffers(page);
2591 err = mpage_process_page_bufs(mpd, head, head, lblk);
2592 if (err <= 0)
2593 goto out;
2594 err = 0;
2595 left--;
2596 }
2597 pagevec_release(&pvec);
2598 cond_resched();
2599 }
2600 return 0;
2601 out:
2602 pagevec_release(&pvec);
2603 return err;
2604 }
2605
2606 static int __writepage(struct page *page, struct writeback_control *wbc,
2607 void *data)
2608 {
2609 struct address_space *mapping = data;
2610 int ret = ext4_writepage(page, wbc);
2611 mapping_set_error(mapping, ret);
2612 return ret;
2613 }
2614
2615 static int ext4_writepages(struct address_space *mapping,
2616 struct writeback_control *wbc)
2617 {
2618 pgoff_t writeback_index = 0;
2619 long nr_to_write = wbc->nr_to_write;
2620 int range_whole = 0;
2621 int cycled = 1;
2622 handle_t *handle = NULL;
2623 struct mpage_da_data mpd;
2624 struct inode *inode = mapping->host;
2625 int needed_blocks, rsv_blocks = 0, ret = 0;
2626 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2627 bool done;
2628 struct blk_plug plug;
2629 bool give_up_on_write = false;
2630
2631 percpu_down_read(&sbi->s_journal_flag_rwsem);
2632 trace_ext4_writepages(inode, wbc);
2633
2634 if (dax_mapping(mapping)) {
2635 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2636 wbc);
2637 goto out_writepages;
2638 }
2639
2640 /*
2641 * No pages to write? This is mainly a kludge to avoid starting
2642 * a transaction for special inodes like journal inode on last iput()
2643 * because that could violate lock ordering on umount
2644 */
2645 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2646 goto out_writepages;
2647
2648 if (ext4_should_journal_data(inode)) {
2649 struct blk_plug plug;
2650
2651 blk_start_plug(&plug);
2652 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2653 blk_finish_plug(&plug);
2654 goto out_writepages;
2655 }
2656
2657 /*
2658 * If the filesystem has aborted, it is read-only, so return
2659 * right away instead of dumping stack traces later on that
2660 * will obscure the real source of the problem. We test
2661 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2662 * the latter could be true if the filesystem is mounted
2663 * read-only, and in that case, ext4_writepages should
2664 * *never* be called, so if that ever happens, we would want
2665 * the stack trace.
2666 */
2667 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2668 ret = -EROFS;
2669 goto out_writepages;
2670 }
2671
2672 if (ext4_should_dioread_nolock(inode)) {
2673 /*
2674 * We may need to convert up to one extent per block in
2675 * the page and we may dirty the inode.
2676 */
2677 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2678 }
2679
2680 /*
2681 * If we have inline data and arrive here, it means that
2682 * we will soon create the block for the 1st page, so
2683 * we'd better clear the inline data here.
2684 */
2685 if (ext4_has_inline_data(inode)) {
2686 /* Just inode will be modified... */
2687 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2688 if (IS_ERR(handle)) {
2689 ret = PTR_ERR(handle);
2690 goto out_writepages;
2691 }
2692 BUG_ON(ext4_test_inode_state(inode,
2693 EXT4_STATE_MAY_INLINE_DATA));
2694 ext4_destroy_inline_data(handle, inode);
2695 ext4_journal_stop(handle);
2696 }
2697
2698 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2699 range_whole = 1;
2700
2701 if (wbc->range_cyclic) {
2702 writeback_index = mapping->writeback_index;
2703 if (writeback_index)
2704 cycled = 0;
2705 mpd.first_page = writeback_index;
2706 mpd.last_page = -1;
2707 } else {
2708 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2709 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2710 }
2711
2712 mpd.inode = inode;
2713 mpd.wbc = wbc;
2714 ext4_io_submit_init(&mpd.io_submit, wbc);
2715 retry:
2716 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2717 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2718 done = false;
2719 blk_start_plug(&plug);
2720 while (!done && mpd.first_page <= mpd.last_page) {
2721 /* For each extent of pages we use new io_end */
2722 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2723 if (!mpd.io_submit.io_end) {
2724 ret = -ENOMEM;
2725 break;
2726 }
2727
2728 /*
2729 * We have two constraints: We find one extent to map and we
2730 * must always write out whole page (makes a difference when
2731 * blocksize < pagesize) so that we don't block on IO when we
2732 * try to write out the rest of the page. Journalled mode is
2733 * not supported by delalloc.
2734 */
2735 BUG_ON(ext4_should_journal_data(inode));
2736 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2737
2738 /* start a new transaction */
2739 handle = ext4_journal_start_with_reserve(inode,
2740 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2741 if (IS_ERR(handle)) {
2742 ret = PTR_ERR(handle);
2743 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2744 "%ld pages, ino %lu; err %d", __func__,
2745 wbc->nr_to_write, inode->i_ino, ret);
2746 /* Release allocated io_end */
2747 ext4_put_io_end(mpd.io_submit.io_end);
2748 break;
2749 }
2750
2751 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2752 ret = mpage_prepare_extent_to_map(&mpd);
2753 if (!ret) {
2754 if (mpd.map.m_len)
2755 ret = mpage_map_and_submit_extent(handle, &mpd,
2756 &give_up_on_write);
2757 else {
2758 /*
2759 * We scanned the whole range (or exhausted
2760 * nr_to_write), submitted what was mapped and
2761 * didn't find anything needing mapping. We are
2762 * done.
2763 */
2764 done = true;
2765 }
2766 }
2767 /*
2768 * Caution: If the handle is synchronous,
2769 * ext4_journal_stop() can wait for transaction commit
2770 * to finish which may depend on writeback of pages to
2771 * complete or on page lock to be released. In that
2772 * case, we have to wait until after after we have
2773 * submitted all the IO, released page locks we hold,
2774 * and dropped io_end reference (for extent conversion
2775 * to be able to complete) before stopping the handle.
2776 */
2777 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2778 ext4_journal_stop(handle);
2779 handle = NULL;
2780 }
2781 /* Submit prepared bio */
2782 ext4_io_submit(&mpd.io_submit);
2783 /* Unlock pages we didn't use */
2784 mpage_release_unused_pages(&mpd, give_up_on_write);
2785 /*
2786 * Drop our io_end reference we got from init. We have
2787 * to be careful and use deferred io_end finishing if
2788 * we are still holding the transaction as we can
2789 * release the last reference to io_end which may end
2790 * up doing unwritten extent conversion.
2791 */
2792 if (handle) {
2793 ext4_put_io_end_defer(mpd.io_submit.io_end);
2794 ext4_journal_stop(handle);
2795 } else
2796 ext4_put_io_end(mpd.io_submit.io_end);
2797
2798 if (ret == -ENOSPC && sbi->s_journal) {
2799 /*
2800 * Commit the transaction which would
2801 * free blocks released in the transaction
2802 * and try again
2803 */
2804 jbd2_journal_force_commit_nested(sbi->s_journal);
2805 ret = 0;
2806 continue;
2807 }
2808 /* Fatal error - ENOMEM, EIO... */
2809 if (ret)
2810 break;
2811 }
2812 blk_finish_plug(&plug);
2813 if (!ret && !cycled && wbc->nr_to_write > 0) {
2814 cycled = 1;
2815 mpd.last_page = writeback_index - 1;
2816 mpd.first_page = 0;
2817 goto retry;
2818 }
2819
2820 /* Update index */
2821 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2822 /*
2823 * Set the writeback_index so that range_cyclic
2824 * mode will write it back later
2825 */
2826 mapping->writeback_index = mpd.first_page;
2827
2828 out_writepages:
2829 trace_ext4_writepages_result(inode, wbc, ret,
2830 nr_to_write - wbc->nr_to_write);
2831 percpu_up_read(&sbi->s_journal_flag_rwsem);
2832 return ret;
2833 }
2834
2835 static int ext4_nonda_switch(struct super_block *sb)
2836 {
2837 s64 free_clusters, dirty_clusters;
2838 struct ext4_sb_info *sbi = EXT4_SB(sb);
2839
2840 /*
2841 * switch to non delalloc mode if we are running low
2842 * on free block. The free block accounting via percpu
2843 * counters can get slightly wrong with percpu_counter_batch getting
2844 * accumulated on each CPU without updating global counters
2845 * Delalloc need an accurate free block accounting. So switch
2846 * to non delalloc when we are near to error range.
2847 */
2848 free_clusters =
2849 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2850 dirty_clusters =
2851 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2852 /*
2853 * Start pushing delalloc when 1/2 of free blocks are dirty.
2854 */
2855 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2856 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2857
2858 if (2 * free_clusters < 3 * dirty_clusters ||
2859 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2860 /*
2861 * free block count is less than 150% of dirty blocks
2862 * or free blocks is less than watermark
2863 */
2864 return 1;
2865 }
2866 return 0;
2867 }
2868
2869 /* We always reserve for an inode update; the superblock could be there too */
2870 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2871 {
2872 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2873 return 1;
2874
2875 if (pos + len <= 0x7fffffffULL)
2876 return 1;
2877
2878 /* We might need to update the superblock to set LARGE_FILE */
2879 return 2;
2880 }
2881
2882 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2883 loff_t pos, unsigned len, unsigned flags,
2884 struct page **pagep, void **fsdata)
2885 {
2886 int ret, retries = 0;
2887 struct page *page;
2888 pgoff_t index;
2889 struct inode *inode = mapping->host;
2890 handle_t *handle;
2891
2892 index = pos >> PAGE_SHIFT;
2893
2894 if (ext4_nonda_switch(inode->i_sb)) {
2895 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2896 return ext4_write_begin(file, mapping, pos,
2897 len, flags, pagep, fsdata);
2898 }
2899 *fsdata = (void *)0;
2900 trace_ext4_da_write_begin(inode, pos, len, flags);
2901
2902 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2903 ret = ext4_da_write_inline_data_begin(mapping, inode,
2904 pos, len, flags,
2905 pagep, fsdata);
2906 if (ret < 0)
2907 return ret;
2908 if (ret == 1)
2909 return 0;
2910 }
2911
2912 /*
2913 * grab_cache_page_write_begin() can take a long time if the
2914 * system is thrashing due to memory pressure, or if the page
2915 * is being written back. So grab it first before we start
2916 * the transaction handle. This also allows us to allocate
2917 * the page (if needed) without using GFP_NOFS.
2918 */
2919 retry_grab:
2920 page = grab_cache_page_write_begin(mapping, index, flags);
2921 if (!page)
2922 return -ENOMEM;
2923 unlock_page(page);
2924
2925 /*
2926 * With delayed allocation, we don't log the i_disksize update
2927 * if there is delayed block allocation. But we still need
2928 * to journalling the i_disksize update if writes to the end
2929 * of file which has an already mapped buffer.
2930 */
2931 retry_journal:
2932 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2933 ext4_da_write_credits(inode, pos, len));
2934 if (IS_ERR(handle)) {
2935 put_page(page);
2936 return PTR_ERR(handle);
2937 }
2938
2939 lock_page(page);
2940 if (page->mapping != mapping) {
2941 /* The page got truncated from under us */
2942 unlock_page(page);
2943 put_page(page);
2944 ext4_journal_stop(handle);
2945 goto retry_grab;
2946 }
2947 /* In case writeback began while the page was unlocked */
2948 wait_for_stable_page(page);
2949
2950 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2951 ret = ext4_block_write_begin(page, pos, len,
2952 ext4_da_get_block_prep);
2953 #else
2954 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2955 #endif
2956 if (ret < 0) {
2957 unlock_page(page);
2958 ext4_journal_stop(handle);
2959 /*
2960 * block_write_begin may have instantiated a few blocks
2961 * outside i_size. Trim these off again. Don't need
2962 * i_size_read because we hold i_mutex.
2963 */
2964 if (pos + len > inode->i_size)
2965 ext4_truncate_failed_write(inode);
2966
2967 if (ret == -ENOSPC &&
2968 ext4_should_retry_alloc(inode->i_sb, &retries))
2969 goto retry_journal;
2970
2971 put_page(page);
2972 return ret;
2973 }
2974
2975 *pagep = page;
2976 return ret;
2977 }
2978
2979 /*
2980 * Check if we should update i_disksize
2981 * when write to the end of file but not require block allocation
2982 */
2983 static int ext4_da_should_update_i_disksize(struct page *page,
2984 unsigned long offset)
2985 {
2986 struct buffer_head *bh;
2987 struct inode *inode = page->mapping->host;
2988 unsigned int idx;
2989 int i;
2990
2991 bh = page_buffers(page);
2992 idx = offset >> inode->i_blkbits;
2993
2994 for (i = 0; i < idx; i++)
2995 bh = bh->b_this_page;
2996
2997 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2998 return 0;
2999 return 1;
3000 }
3001
3002 static int ext4_da_write_end(struct file *file,
3003 struct address_space *mapping,
3004 loff_t pos, unsigned len, unsigned copied,
3005 struct page *page, void *fsdata)
3006 {
3007 struct inode *inode = mapping->host;
3008 int ret = 0, ret2;
3009 handle_t *handle = ext4_journal_current_handle();
3010 loff_t new_i_size;
3011 unsigned long start, end;
3012 int write_mode = (int)(unsigned long)fsdata;
3013
3014 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3015 return ext4_write_end(file, mapping, pos,
3016 len, copied, page, fsdata);
3017
3018 trace_ext4_da_write_end(inode, pos, len, copied);
3019 start = pos & (PAGE_SIZE - 1);
3020 end = start + copied - 1;
3021
3022 /*
3023 * generic_write_end() will run mark_inode_dirty() if i_size
3024 * changes. So let's piggyback the i_disksize mark_inode_dirty
3025 * into that.
3026 */
3027 new_i_size = pos + copied;
3028 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3029 if (ext4_has_inline_data(inode) ||
3030 ext4_da_should_update_i_disksize(page, end)) {
3031 ext4_update_i_disksize(inode, new_i_size);
3032 /* We need to mark inode dirty even if
3033 * new_i_size is less that inode->i_size
3034 * bu greater than i_disksize.(hint delalloc)
3035 */
3036 ext4_mark_inode_dirty(handle, inode);
3037 }
3038 }
3039
3040 if (write_mode != CONVERT_INLINE_DATA &&
3041 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3042 ext4_has_inline_data(inode))
3043 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3044 page);
3045 else
3046 ret2 = generic_write_end(file, mapping, pos, len, copied,
3047 page, fsdata);
3048
3049 copied = ret2;
3050 if (ret2 < 0)
3051 ret = ret2;
3052 ret2 = ext4_journal_stop(handle);
3053 if (!ret)
3054 ret = ret2;
3055
3056 return ret ? ret : copied;
3057 }
3058
3059 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3060 unsigned int length)
3061 {
3062 /*
3063 * Drop reserved blocks
3064 */
3065 BUG_ON(!PageLocked(page));
3066 if (!page_has_buffers(page))
3067 goto out;
3068
3069 ext4_da_page_release_reservation(page, offset, length);
3070
3071 out:
3072 ext4_invalidatepage(page, offset, length);
3073
3074 return;
3075 }
3076
3077 /*
3078 * Force all delayed allocation blocks to be allocated for a given inode.
3079 */
3080 int ext4_alloc_da_blocks(struct inode *inode)
3081 {
3082 trace_ext4_alloc_da_blocks(inode);
3083
3084 if (!EXT4_I(inode)->i_reserved_data_blocks)
3085 return 0;
3086
3087 /*
3088 * We do something simple for now. The filemap_flush() will
3089 * also start triggering a write of the data blocks, which is
3090 * not strictly speaking necessary (and for users of
3091 * laptop_mode, not even desirable). However, to do otherwise
3092 * would require replicating code paths in:
3093 *
3094 * ext4_writepages() ->
3095 * write_cache_pages() ---> (via passed in callback function)
3096 * __mpage_da_writepage() -->
3097 * mpage_add_bh_to_extent()
3098 * mpage_da_map_blocks()
3099 *
3100 * The problem is that write_cache_pages(), located in
3101 * mm/page-writeback.c, marks pages clean in preparation for
3102 * doing I/O, which is not desirable if we're not planning on
3103 * doing I/O at all.
3104 *
3105 * We could call write_cache_pages(), and then redirty all of
3106 * the pages by calling redirty_page_for_writepage() but that
3107 * would be ugly in the extreme. So instead we would need to
3108 * replicate parts of the code in the above functions,
3109 * simplifying them because we wouldn't actually intend to
3110 * write out the pages, but rather only collect contiguous
3111 * logical block extents, call the multi-block allocator, and
3112 * then update the buffer heads with the block allocations.
3113 *
3114 * For now, though, we'll cheat by calling filemap_flush(),
3115 * which will map the blocks, and start the I/O, but not
3116 * actually wait for the I/O to complete.
3117 */
3118 return filemap_flush(inode->i_mapping);
3119 }
3120
3121 /*
3122 * bmap() is special. It gets used by applications such as lilo and by
3123 * the swapper to find the on-disk block of a specific piece of data.
3124 *
3125 * Naturally, this is dangerous if the block concerned is still in the
3126 * journal. If somebody makes a swapfile on an ext4 data-journaling
3127 * filesystem and enables swap, then they may get a nasty shock when the
3128 * data getting swapped to that swapfile suddenly gets overwritten by
3129 * the original zero's written out previously to the journal and
3130 * awaiting writeback in the kernel's buffer cache.
3131 *
3132 * So, if we see any bmap calls here on a modified, data-journaled file,
3133 * take extra steps to flush any blocks which might be in the cache.
3134 */
3135 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3136 {
3137 struct inode *inode = mapping->host;
3138 journal_t *journal;
3139 int err;
3140
3141 /*
3142 * We can get here for an inline file via the FIBMAP ioctl
3143 */
3144 if (ext4_has_inline_data(inode))
3145 return 0;
3146
3147 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3148 test_opt(inode->i_sb, DELALLOC)) {
3149 /*
3150 * With delalloc we want to sync the file
3151 * so that we can make sure we allocate
3152 * blocks for file
3153 */
3154 filemap_write_and_wait(mapping);
3155 }
3156
3157 if (EXT4_JOURNAL(inode) &&
3158 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3159 /*
3160 * This is a REALLY heavyweight approach, but the use of
3161 * bmap on dirty files is expected to be extremely rare:
3162 * only if we run lilo or swapon on a freshly made file
3163 * do we expect this to happen.
3164 *
3165 * (bmap requires CAP_SYS_RAWIO so this does not
3166 * represent an unprivileged user DOS attack --- we'd be
3167 * in trouble if mortal users could trigger this path at
3168 * will.)
3169 *
3170 * NB. EXT4_STATE_JDATA is not set on files other than
3171 * regular files. If somebody wants to bmap a directory
3172 * or symlink and gets confused because the buffer
3173 * hasn't yet been flushed to disk, they deserve
3174 * everything they get.
3175 */
3176
3177 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3178 journal = EXT4_JOURNAL(inode);
3179 jbd2_journal_lock_updates(journal);
3180 err = jbd2_journal_flush(journal);
3181 jbd2_journal_unlock_updates(journal);
3182
3183 if (err)
3184 return 0;
3185 }
3186
3187 return generic_block_bmap(mapping, block, ext4_get_block);
3188 }
3189
3190 static int ext4_readpage(struct file *file, struct page *page)
3191 {
3192 int ret = -EAGAIN;
3193 struct inode *inode = page->mapping->host;
3194
3195 trace_ext4_readpage(page);
3196
3197 if (ext4_has_inline_data(inode))
3198 ret = ext4_readpage_inline(inode, page);
3199
3200 if (ret == -EAGAIN)
3201 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3202
3203 return ret;
3204 }
3205
3206 static int
3207 ext4_readpages(struct file *file, struct address_space *mapping,
3208 struct list_head *pages, unsigned nr_pages)
3209 {
3210 struct inode *inode = mapping->host;
3211
3212 /* If the file has inline data, no need to do readpages. */
3213 if (ext4_has_inline_data(inode))
3214 return 0;
3215
3216 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3217 }
3218
3219 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3220 unsigned int length)
3221 {
3222 trace_ext4_invalidatepage(page, offset, length);
3223
3224 /* No journalling happens on data buffers when this function is used */
3225 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3226
3227 block_invalidatepage(page, offset, length);
3228 }
3229
3230 static int __ext4_journalled_invalidatepage(struct page *page,
3231 unsigned int offset,
3232 unsigned int length)
3233 {
3234 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3235
3236 trace_ext4_journalled_invalidatepage(page, offset, length);
3237
3238 /*
3239 * If it's a full truncate we just forget about the pending dirtying
3240 */
3241 if (offset == 0 && length == PAGE_SIZE)
3242 ClearPageChecked(page);
3243
3244 return jbd2_journal_invalidatepage(journal, page, offset, length);
3245 }
3246
3247 /* Wrapper for aops... */
3248 static void ext4_journalled_invalidatepage(struct page *page,
3249 unsigned int offset,
3250 unsigned int length)
3251 {
3252 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3253 }
3254
3255 static int ext4_releasepage(struct page *page, gfp_t wait)
3256 {
3257 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3258
3259 trace_ext4_releasepage(page);
3260
3261 /* Page has dirty journalled data -> cannot release */
3262 if (PageChecked(page))
3263 return 0;
3264 if (journal)
3265 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3266 else
3267 return try_to_free_buffers(page);
3268 }
3269
3270 #ifdef CONFIG_FS_DAX
3271 /*
3272 * Get block function for DAX IO and mmap faults. It takes care of converting
3273 * unwritten extents to written ones and initializes new / converted blocks
3274 * to zeros.
3275 */
3276 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3277 struct buffer_head *bh_result, int create)
3278 {
3279 int ret;
3280
3281 ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3282 if (!create)
3283 return _ext4_get_block(inode, iblock, bh_result, 0);
3284
3285 ret = ext4_get_block_trans(inode, iblock, bh_result,
3286 EXT4_GET_BLOCKS_PRE_IO |
3287 EXT4_GET_BLOCKS_CREATE_ZERO);
3288 if (ret < 0)
3289 return ret;
3290
3291 if (buffer_unwritten(bh_result)) {
3292 /*
3293 * We are protected by i_mmap_sem or i_mutex so we know block
3294 * cannot go away from under us even though we dropped
3295 * i_data_sem. Convert extent to written and write zeros there.
3296 */
3297 ret = ext4_get_block_trans(inode, iblock, bh_result,
3298 EXT4_GET_BLOCKS_CONVERT |
3299 EXT4_GET_BLOCKS_CREATE_ZERO);
3300 if (ret < 0)
3301 return ret;
3302 }
3303 /*
3304 * At least for now we have to clear BH_New so that DAX code
3305 * doesn't attempt to zero blocks again in a racy way.
3306 */
3307 clear_buffer_new(bh_result);
3308 return 0;
3309 }
3310 #else
3311 /* Just define empty function, it will never get called. */
3312 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3313 struct buffer_head *bh_result, int create)
3314 {
3315 BUG();
3316 return 0;
3317 }
3318 #endif
3319
3320 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3321 ssize_t size, void *private)
3322 {
3323 ext4_io_end_t *io_end = private;
3324
3325 /* if not async direct IO just return */
3326 if (!io_end)
3327 return 0;
3328
3329 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3330 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3331 io_end, io_end->inode->i_ino, iocb, offset, size);
3332
3333 /*
3334 * Error during AIO DIO. We cannot convert unwritten extents as the
3335 * data was not written. Just clear the unwritten flag and drop io_end.
3336 */
3337 if (size <= 0) {
3338 ext4_clear_io_unwritten_flag(io_end);
3339 size = 0;
3340 }
3341 io_end->offset = offset;
3342 io_end->size = size;
3343 ext4_put_io_end(io_end);
3344
3345 return 0;
3346 }
3347
3348 /*
3349 * Handling of direct IO writes.
3350 *
3351 * For ext4 extent files, ext4 will do direct-io write even to holes,
3352 * preallocated extents, and those write extend the file, no need to
3353 * fall back to buffered IO.
3354 *
3355 * For holes, we fallocate those blocks, mark them as unwritten
3356 * If those blocks were preallocated, we mark sure they are split, but
3357 * still keep the range to write as unwritten.
3358 *
3359 * The unwritten extents will be converted to written when DIO is completed.
3360 * For async direct IO, since the IO may still pending when return, we
3361 * set up an end_io call back function, which will do the conversion
3362 * when async direct IO completed.
3363 *
3364 * If the O_DIRECT write will extend the file then add this inode to the
3365 * orphan list. So recovery will truncate it back to the original size
3366 * if the machine crashes during the write.
3367 *
3368 */
3369 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3370 {
3371 struct file *file = iocb->ki_filp;
3372 struct inode *inode = file->f_mapping->host;
3373 struct ext4_inode_info *ei = EXT4_I(inode);
3374 ssize_t ret;
3375 loff_t offset = iocb->ki_pos;
3376 size_t count = iov_iter_count(iter);
3377 int overwrite = 0;
3378 get_block_t *get_block_func = NULL;
3379 int dio_flags = 0;
3380 loff_t final_size = offset + count;
3381 int orphan = 0;
3382 handle_t *handle;
3383
3384 if (final_size > inode->i_size) {
3385 /* Credits for sb + inode write */
3386 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3387 if (IS_ERR(handle)) {
3388 ret = PTR_ERR(handle);
3389 goto out;
3390 }
3391 ret = ext4_orphan_add(handle, inode);
3392 if (ret) {
3393 ext4_journal_stop(handle);
3394 goto out;
3395 }
3396 orphan = 1;
3397 ei->i_disksize = inode->i_size;
3398 ext4_journal_stop(handle);
3399 }
3400
3401 BUG_ON(iocb->private == NULL);
3402
3403 /*
3404 * Make all waiters for direct IO properly wait also for extent
3405 * conversion. This also disallows race between truncate() and
3406 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3407 */
3408 inode_dio_begin(inode);
3409
3410 /* If we do a overwrite dio, i_mutex locking can be released */
3411 overwrite = *((int *)iocb->private);
3412
3413 if (overwrite)
3414 inode_unlock(inode);
3415
3416 /*
3417 * For extent mapped files we could direct write to holes and fallocate.
3418 *
3419 * Allocated blocks to fill the hole are marked as unwritten to prevent
3420 * parallel buffered read to expose the stale data before DIO complete
3421 * the data IO.
3422 *
3423 * As to previously fallocated extents, ext4 get_block will just simply
3424 * mark the buffer mapped but still keep the extents unwritten.
3425 *
3426 * For non AIO case, we will convert those unwritten extents to written
3427 * after return back from blockdev_direct_IO. That way we save us from
3428 * allocating io_end structure and also the overhead of offloading
3429 * the extent convertion to a workqueue.
3430 *
3431 * For async DIO, the conversion needs to be deferred when the
3432 * IO is completed. The ext4 end_io callback function will be
3433 * called to take care of the conversion work. Here for async
3434 * case, we allocate an io_end structure to hook to the iocb.
3435 */
3436 iocb->private = NULL;
3437 if (overwrite)
3438 get_block_func = ext4_dio_get_block_overwrite;
3439 else if (IS_DAX(inode)) {
3440 /*
3441 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3442 * writes need zeroing either because they can race with page
3443 * faults or because they use partial blocks.
3444 */
3445 if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3446 ext4_aligned_io(inode, offset, count))
3447 get_block_func = ext4_dio_get_block;
3448 else
3449 get_block_func = ext4_dax_get_block;
3450 dio_flags = DIO_LOCKING;
3451 } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3452 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3453 get_block_func = ext4_dio_get_block;
3454 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3455 } else if (is_sync_kiocb(iocb)) {
3456 get_block_func = ext4_dio_get_block_unwritten_sync;
3457 dio_flags = DIO_LOCKING;
3458 } else {
3459 get_block_func = ext4_dio_get_block_unwritten_async;
3460 dio_flags = DIO_LOCKING;
3461 }
3462 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3463 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3464 #endif
3465 if (IS_DAX(inode)) {
3466 ret = dax_do_io(iocb, inode, iter, get_block_func,
3467 ext4_end_io_dio, dio_flags);
3468 } else
3469 ret = __blockdev_direct_IO(iocb, inode,
3470 inode->i_sb->s_bdev, iter,
3471 get_block_func,
3472 ext4_end_io_dio, NULL, dio_flags);
3473
3474 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3475 EXT4_STATE_DIO_UNWRITTEN)) {
3476 int err;
3477 /*
3478 * for non AIO case, since the IO is already
3479 * completed, we could do the conversion right here
3480 */
3481 err = ext4_convert_unwritten_extents(NULL, inode,
3482 offset, ret);
3483 if (err < 0)
3484 ret = err;
3485 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3486 }
3487
3488 inode_dio_end(inode);
3489 /* take i_mutex locking again if we do a ovewrite dio */
3490 if (overwrite)
3491 inode_lock(inode);
3492
3493 if (ret < 0 && final_size > inode->i_size)
3494 ext4_truncate_failed_write(inode);
3495
3496 /* Handle extending of i_size after direct IO write */
3497 if (orphan) {
3498 int err;
3499
3500 /* Credits for sb + inode write */
3501 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3502 if (IS_ERR(handle)) {
3503 /* This is really bad luck. We've written the data
3504 * but cannot extend i_size. Bail out and pretend
3505 * the write failed... */
3506 ret = PTR_ERR(handle);
3507 if (inode->i_nlink)
3508 ext4_orphan_del(NULL, inode);
3509
3510 goto out;
3511 }
3512 if (inode->i_nlink)
3513 ext4_orphan_del(handle, inode);
3514 if (ret > 0) {
3515 loff_t end = offset + ret;
3516 if (end > inode->i_size) {
3517 ei->i_disksize = end;
3518 i_size_write(inode, end);
3519 /*
3520 * We're going to return a positive `ret'
3521 * here due to non-zero-length I/O, so there's
3522 * no way of reporting error returns from
3523 * ext4_mark_inode_dirty() to userspace. So
3524 * ignore it.
3525 */
3526 ext4_mark_inode_dirty(handle, inode);
3527 }
3528 }
3529 err = ext4_journal_stop(handle);
3530 if (ret == 0)
3531 ret = err;
3532 }
3533 out:
3534 return ret;
3535 }
3536
3537 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3538 {
3539 struct address_space *mapping = iocb->ki_filp->f_mapping;
3540 struct inode *inode = mapping->host;
3541 ssize_t ret;
3542
3543 /*
3544 * Shared inode_lock is enough for us - it protects against concurrent
3545 * writes & truncates and since we take care of writing back page cache,
3546 * we are protected against page writeback as well.
3547 */
3548 inode_lock_shared(inode);
3549 if (IS_DAX(inode)) {
3550 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3551 } else {
3552 size_t count = iov_iter_count(iter);
3553
3554 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3555 iocb->ki_pos + count);
3556 if (ret)
3557 goto out_unlock;
3558 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3559 iter, ext4_dio_get_block,
3560 NULL, NULL, 0);
3561 }
3562 out_unlock:
3563 inode_unlock_shared(inode);
3564 return ret;
3565 }
3566
3567 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3568 {
3569 struct file *file = iocb->ki_filp;
3570 struct inode *inode = file->f_mapping->host;
3571 size_t count = iov_iter_count(iter);
3572 loff_t offset = iocb->ki_pos;
3573 ssize_t ret;
3574
3575 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3576 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3577 return 0;
3578 #endif
3579
3580 /*
3581 * If we are doing data journalling we don't support O_DIRECT
3582 */
3583 if (ext4_should_journal_data(inode))
3584 return 0;
3585
3586 /* Let buffer I/O handle the inline data case. */
3587 if (ext4_has_inline_data(inode))
3588 return 0;
3589
3590 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3591 if (iov_iter_rw(iter) == READ)
3592 ret = ext4_direct_IO_read(iocb, iter);
3593 else
3594 ret = ext4_direct_IO_write(iocb, iter);
3595 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3596 return ret;
3597 }
3598
3599 /*
3600 * Pages can be marked dirty completely asynchronously from ext4's journalling
3601 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3602 * much here because ->set_page_dirty is called under VFS locks. The page is
3603 * not necessarily locked.
3604 *
3605 * We cannot just dirty the page and leave attached buffers clean, because the
3606 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3607 * or jbddirty because all the journalling code will explode.
3608 *
3609 * So what we do is to mark the page "pending dirty" and next time writepage
3610 * is called, propagate that into the buffers appropriately.
3611 */
3612 static int ext4_journalled_set_page_dirty(struct page *page)
3613 {
3614 SetPageChecked(page);
3615 return __set_page_dirty_nobuffers(page);
3616 }
3617
3618 static const struct address_space_operations ext4_aops = {
3619 .readpage = ext4_readpage,
3620 .readpages = ext4_readpages,
3621 .writepage = ext4_writepage,
3622 .writepages = ext4_writepages,
3623 .write_begin = ext4_write_begin,
3624 .write_end = ext4_write_end,
3625 .bmap = ext4_bmap,
3626 .invalidatepage = ext4_invalidatepage,
3627 .releasepage = ext4_releasepage,
3628 .direct_IO = ext4_direct_IO,
3629 .migratepage = buffer_migrate_page,
3630 .is_partially_uptodate = block_is_partially_uptodate,
3631 .error_remove_page = generic_error_remove_page,
3632 };
3633
3634 static const struct address_space_operations ext4_journalled_aops = {
3635 .readpage = ext4_readpage,
3636 .readpages = ext4_readpages,
3637 .writepage = ext4_writepage,
3638 .writepages = ext4_writepages,
3639 .write_begin = ext4_write_begin,
3640 .write_end = ext4_journalled_write_end,
3641 .set_page_dirty = ext4_journalled_set_page_dirty,
3642 .bmap = ext4_bmap,
3643 .invalidatepage = ext4_journalled_invalidatepage,
3644 .releasepage = ext4_releasepage,
3645 .direct_IO = ext4_direct_IO,
3646 .is_partially_uptodate = block_is_partially_uptodate,
3647 .error_remove_page = generic_error_remove_page,
3648 };
3649
3650 static const struct address_space_operations ext4_da_aops = {
3651 .readpage = ext4_readpage,
3652 .readpages = ext4_readpages,
3653 .writepage = ext4_writepage,
3654 .writepages = ext4_writepages,
3655 .write_begin = ext4_da_write_begin,
3656 .write_end = ext4_da_write_end,
3657 .bmap = ext4_bmap,
3658 .invalidatepage = ext4_da_invalidatepage,
3659 .releasepage = ext4_releasepage,
3660 .direct_IO = ext4_direct_IO,
3661 .migratepage = buffer_migrate_page,
3662 .is_partially_uptodate = block_is_partially_uptodate,
3663 .error_remove_page = generic_error_remove_page,
3664 };
3665
3666 void ext4_set_aops(struct inode *inode)
3667 {
3668 switch (ext4_inode_journal_mode(inode)) {
3669 case EXT4_INODE_ORDERED_DATA_MODE:
3670 case EXT4_INODE_WRITEBACK_DATA_MODE:
3671 break;
3672 case EXT4_INODE_JOURNAL_DATA_MODE:
3673 inode->i_mapping->a_ops = &ext4_journalled_aops;
3674 return;
3675 default:
3676 BUG();
3677 }
3678 if (test_opt(inode->i_sb, DELALLOC))
3679 inode->i_mapping->a_ops = &ext4_da_aops;
3680 else
3681 inode->i_mapping->a_ops = &ext4_aops;
3682 }
3683
3684 static int __ext4_block_zero_page_range(handle_t *handle,
3685 struct address_space *mapping, loff_t from, loff_t length)
3686 {
3687 ext4_fsblk_t index = from >> PAGE_SHIFT;
3688 unsigned offset = from & (PAGE_SIZE-1);
3689 unsigned blocksize, pos;
3690 ext4_lblk_t iblock;
3691 struct inode *inode = mapping->host;
3692 struct buffer_head *bh;
3693 struct page *page;
3694 int err = 0;
3695
3696 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3697 mapping_gfp_constraint(mapping, ~__GFP_FS));
3698 if (!page)
3699 return -ENOMEM;
3700
3701 blocksize = inode->i_sb->s_blocksize;
3702
3703 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704
3705 if (!page_has_buffers(page))
3706 create_empty_buffers(page, blocksize, 0);
3707
3708 /* Find the buffer that contains "offset" */
3709 bh = page_buffers(page);
3710 pos = blocksize;
3711 while (offset >= pos) {
3712 bh = bh->b_this_page;
3713 iblock++;
3714 pos += blocksize;
3715 }
3716 if (buffer_freed(bh)) {
3717 BUFFER_TRACE(bh, "freed: skip");
3718 goto unlock;
3719 }
3720 if (!buffer_mapped(bh)) {
3721 BUFFER_TRACE(bh, "unmapped");
3722 ext4_get_block(inode, iblock, bh, 0);
3723 /* unmapped? It's a hole - nothing to do */
3724 if (!buffer_mapped(bh)) {
3725 BUFFER_TRACE(bh, "still unmapped");
3726 goto unlock;
3727 }
3728 }
3729
3730 /* Ok, it's mapped. Make sure it's up-to-date */
3731 if (PageUptodate(page))
3732 set_buffer_uptodate(bh);
3733
3734 if (!buffer_uptodate(bh)) {
3735 err = -EIO;
3736 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3737 wait_on_buffer(bh);
3738 /* Uhhuh. Read error. Complain and punt. */
3739 if (!buffer_uptodate(bh))
3740 goto unlock;
3741 if (S_ISREG(inode->i_mode) &&
3742 ext4_encrypted_inode(inode)) {
3743 /* We expect the key to be set. */
3744 BUG_ON(!fscrypt_has_encryption_key(inode));
3745 BUG_ON(blocksize != PAGE_SIZE);
3746 WARN_ON_ONCE(fscrypt_decrypt_page(page));
3747 }
3748 }
3749 if (ext4_should_journal_data(inode)) {
3750 BUFFER_TRACE(bh, "get write access");
3751 err = ext4_journal_get_write_access(handle, bh);
3752 if (err)
3753 goto unlock;
3754 }
3755 zero_user(page, offset, length);
3756 BUFFER_TRACE(bh, "zeroed end of block");
3757
3758 if (ext4_should_journal_data(inode)) {
3759 err = ext4_handle_dirty_metadata(handle, inode, bh);
3760 } else {
3761 err = 0;
3762 mark_buffer_dirty(bh);
3763 if (ext4_should_order_data(inode))
3764 err = ext4_jbd2_inode_add_write(handle, inode);
3765 }
3766
3767 unlock:
3768 unlock_page(page);
3769 put_page(page);
3770 return err;
3771 }
3772
3773 /*
3774 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3775 * starting from file offset 'from'. The range to be zero'd must
3776 * be contained with in one block. If the specified range exceeds
3777 * the end of the block it will be shortened to end of the block
3778 * that cooresponds to 'from'
3779 */
3780 static int ext4_block_zero_page_range(handle_t *handle,
3781 struct address_space *mapping, loff_t from, loff_t length)
3782 {
3783 struct inode *inode = mapping->host;
3784 unsigned offset = from & (PAGE_SIZE-1);
3785 unsigned blocksize = inode->i_sb->s_blocksize;
3786 unsigned max = blocksize - (offset & (blocksize - 1));
3787
3788 /*
3789 * correct length if it does not fall between
3790 * 'from' and the end of the block
3791 */
3792 if (length > max || length < 0)
3793 length = max;
3794
3795 if (IS_DAX(inode))
3796 return dax_zero_page_range(inode, from, length, ext4_get_block);
3797 return __ext4_block_zero_page_range(handle, mapping, from, length);
3798 }
3799
3800 /*
3801 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3802 * up to the end of the block which corresponds to `from'.
3803 * This required during truncate. We need to physically zero the tail end
3804 * of that block so it doesn't yield old data if the file is later grown.
3805 */
3806 static int ext4_block_truncate_page(handle_t *handle,
3807 struct address_space *mapping, loff_t from)
3808 {
3809 unsigned offset = from & (PAGE_SIZE-1);
3810 unsigned length;
3811 unsigned blocksize;
3812 struct inode *inode = mapping->host;
3813
3814 blocksize = inode->i_sb->s_blocksize;
3815 length = blocksize - (offset & (blocksize - 1));
3816
3817 return ext4_block_zero_page_range(handle, mapping, from, length);
3818 }
3819
3820 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3821 loff_t lstart, loff_t length)
3822 {
3823 struct super_block *sb = inode->i_sb;
3824 struct address_space *mapping = inode->i_mapping;
3825 unsigned partial_start, partial_end;
3826 ext4_fsblk_t start, end;
3827 loff_t byte_end = (lstart + length - 1);
3828 int err = 0;
3829
3830 partial_start = lstart & (sb->s_blocksize - 1);
3831 partial_end = byte_end & (sb->s_blocksize - 1);
3832
3833 start = lstart >> sb->s_blocksize_bits;
3834 end = byte_end >> sb->s_blocksize_bits;
3835
3836 /* Handle partial zero within the single block */
3837 if (start == end &&
3838 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3839 err = ext4_block_zero_page_range(handle, mapping,
3840 lstart, length);
3841 return err;
3842 }
3843 /* Handle partial zero out on the start of the range */
3844 if (partial_start) {
3845 err = ext4_block_zero_page_range(handle, mapping,
3846 lstart, sb->s_blocksize);
3847 if (err)
3848 return err;
3849 }
3850 /* Handle partial zero out on the end of the range */
3851 if (partial_end != sb->s_blocksize - 1)
3852 err = ext4_block_zero_page_range(handle, mapping,
3853 byte_end - partial_end,
3854 partial_end + 1);
3855 return err;
3856 }
3857
3858 int ext4_can_truncate(struct inode *inode)
3859 {
3860 if (S_ISREG(inode->i_mode))
3861 return 1;
3862 if (S_ISDIR(inode->i_mode))
3863 return 1;
3864 if (S_ISLNK(inode->i_mode))
3865 return !ext4_inode_is_fast_symlink(inode);
3866 return 0;
3867 }
3868
3869 /*
3870 * We have to make sure i_disksize gets properly updated before we truncate
3871 * page cache due to hole punching or zero range. Otherwise i_disksize update
3872 * can get lost as it may have been postponed to submission of writeback but
3873 * that will never happen after we truncate page cache.
3874 */
3875 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3876 loff_t len)
3877 {
3878 handle_t *handle;
3879 loff_t size = i_size_read(inode);
3880
3881 WARN_ON(!inode_is_locked(inode));
3882 if (offset > size || offset + len < size)
3883 return 0;
3884
3885 if (EXT4_I(inode)->i_disksize >= size)
3886 return 0;
3887
3888 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3889 if (IS_ERR(handle))
3890 return PTR_ERR(handle);
3891 ext4_update_i_disksize(inode, size);
3892 ext4_mark_inode_dirty(handle, inode);
3893 ext4_journal_stop(handle);
3894
3895 return 0;
3896 }
3897
3898 /*
3899 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3900 * associated with the given offset and length
3901 *
3902 * @inode: File inode
3903 * @offset: The offset where the hole will begin
3904 * @len: The length of the hole
3905 *
3906 * Returns: 0 on success or negative on failure
3907 */
3908
3909 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3910 {
3911 struct super_block *sb = inode->i_sb;
3912 ext4_lblk_t first_block, stop_block;
3913 struct address_space *mapping = inode->i_mapping;
3914 loff_t first_block_offset, last_block_offset;
3915 handle_t *handle;
3916 unsigned int credits;
3917 int ret = 0;
3918
3919 if (!S_ISREG(inode->i_mode))
3920 return -EOPNOTSUPP;
3921
3922 trace_ext4_punch_hole(inode, offset, length, 0);
3923
3924 /*
3925 * Write out all dirty pages to avoid race conditions
3926 * Then release them.
3927 */
3928 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3929 ret = filemap_write_and_wait_range(mapping, offset,
3930 offset + length - 1);
3931 if (ret)
3932 return ret;
3933 }
3934
3935 inode_lock(inode);
3936
3937 /* No need to punch hole beyond i_size */
3938 if (offset >= inode->i_size)
3939 goto out_mutex;
3940
3941 /*
3942 * If the hole extends beyond i_size, set the hole
3943 * to end after the page that contains i_size
3944 */
3945 if (offset + length > inode->i_size) {
3946 length = inode->i_size +
3947 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3948 offset;
3949 }
3950
3951 if (offset & (sb->s_blocksize - 1) ||
3952 (offset + length) & (sb->s_blocksize - 1)) {
3953 /*
3954 * Attach jinode to inode for jbd2 if we do any zeroing of
3955 * partial block
3956 */
3957 ret = ext4_inode_attach_jinode(inode);
3958 if (ret < 0)
3959 goto out_mutex;
3960
3961 }
3962
3963 /* Wait all existing dio workers, newcomers will block on i_mutex */
3964 ext4_inode_block_unlocked_dio(inode);
3965 inode_dio_wait(inode);
3966
3967 /*
3968 * Prevent page faults from reinstantiating pages we have released from
3969 * page cache.
3970 */
3971 down_write(&EXT4_I(inode)->i_mmap_sem);
3972 first_block_offset = round_up(offset, sb->s_blocksize);
3973 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3974
3975 /* Now release the pages and zero block aligned part of pages*/
3976 if (last_block_offset > first_block_offset) {
3977 ret = ext4_update_disksize_before_punch(inode, offset, length);
3978 if (ret)
3979 goto out_dio;
3980 truncate_pagecache_range(inode, first_block_offset,
3981 last_block_offset);
3982 }
3983
3984 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3985 credits = ext4_writepage_trans_blocks(inode);
3986 else
3987 credits = ext4_blocks_for_truncate(inode);
3988 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3989 if (IS_ERR(handle)) {
3990 ret = PTR_ERR(handle);
3991 ext4_std_error(sb, ret);
3992 goto out_dio;
3993 }
3994
3995 ret = ext4_zero_partial_blocks(handle, inode, offset,
3996 length);
3997 if (ret)
3998 goto out_stop;
3999
4000 first_block = (offset + sb->s_blocksize - 1) >>
4001 EXT4_BLOCK_SIZE_BITS(sb);
4002 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4003
4004 /* If there are no blocks to remove, return now */
4005 if (first_block >= stop_block)
4006 goto out_stop;
4007
4008 down_write(&EXT4_I(inode)->i_data_sem);
4009 ext4_discard_preallocations(inode);
4010
4011 ret = ext4_es_remove_extent(inode, first_block,
4012 stop_block - first_block);
4013 if (ret) {
4014 up_write(&EXT4_I(inode)->i_data_sem);
4015 goto out_stop;
4016 }
4017
4018 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4019 ret = ext4_ext_remove_space(inode, first_block,
4020 stop_block - 1);
4021 else
4022 ret = ext4_ind_remove_space(handle, inode, first_block,
4023 stop_block);
4024
4025 up_write(&EXT4_I(inode)->i_data_sem);
4026 if (IS_SYNC(inode))
4027 ext4_handle_sync(handle);
4028
4029 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4030 ext4_mark_inode_dirty(handle, inode);
4031 out_stop:
4032 ext4_journal_stop(handle);
4033 out_dio:
4034 up_write(&EXT4_I(inode)->i_mmap_sem);
4035 ext4_inode_resume_unlocked_dio(inode);
4036 out_mutex:
4037 inode_unlock(inode);
4038 return ret;
4039 }
4040
4041 int ext4_inode_attach_jinode(struct inode *inode)
4042 {
4043 struct ext4_inode_info *ei = EXT4_I(inode);
4044 struct jbd2_inode *jinode;
4045
4046 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4047 return 0;
4048
4049 jinode = jbd2_alloc_inode(GFP_KERNEL);
4050 spin_lock(&inode->i_lock);
4051 if (!ei->jinode) {
4052 if (!jinode) {
4053 spin_unlock(&inode->i_lock);
4054 return -ENOMEM;
4055 }
4056 ei->jinode = jinode;
4057 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4058 jinode = NULL;
4059 }
4060 spin_unlock(&inode->i_lock);
4061 if (unlikely(jinode != NULL))
4062 jbd2_free_inode(jinode);
4063 return 0;
4064 }
4065
4066 /*
4067 * ext4_truncate()
4068 *
4069 * We block out ext4_get_block() block instantiations across the entire
4070 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4071 * simultaneously on behalf of the same inode.
4072 *
4073 * As we work through the truncate and commit bits of it to the journal there
4074 * is one core, guiding principle: the file's tree must always be consistent on
4075 * disk. We must be able to restart the truncate after a crash.
4076 *
4077 * The file's tree may be transiently inconsistent in memory (although it
4078 * probably isn't), but whenever we close off and commit a journal transaction,
4079 * the contents of (the filesystem + the journal) must be consistent and
4080 * restartable. It's pretty simple, really: bottom up, right to left (although
4081 * left-to-right works OK too).
4082 *
4083 * Note that at recovery time, journal replay occurs *before* the restart of
4084 * truncate against the orphan inode list.
4085 *
4086 * The committed inode has the new, desired i_size (which is the same as
4087 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4088 * that this inode's truncate did not complete and it will again call
4089 * ext4_truncate() to have another go. So there will be instantiated blocks
4090 * to the right of the truncation point in a crashed ext4 filesystem. But
4091 * that's fine - as long as they are linked from the inode, the post-crash
4092 * ext4_truncate() run will find them and release them.
4093 */
4094 void ext4_truncate(struct inode *inode)
4095 {
4096 struct ext4_inode_info *ei = EXT4_I(inode);
4097 unsigned int credits;
4098 handle_t *handle;
4099 struct address_space *mapping = inode->i_mapping;
4100
4101 /*
4102 * There is a possibility that we're either freeing the inode
4103 * or it's a completely new inode. In those cases we might not
4104 * have i_mutex locked because it's not necessary.
4105 */
4106 if (!(inode->i_state & (I_NEW|I_FREEING)))
4107 WARN_ON(!inode_is_locked(inode));
4108 trace_ext4_truncate_enter(inode);
4109
4110 if (!ext4_can_truncate(inode))
4111 return;
4112
4113 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4114
4115 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4116 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4117
4118 if (ext4_has_inline_data(inode)) {
4119 int has_inline = 1;
4120
4121 ext4_inline_data_truncate(inode, &has_inline);
4122 if (has_inline)
4123 return;
4124 }
4125
4126 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4127 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4128 if (ext4_inode_attach_jinode(inode) < 0)
4129 return;
4130 }
4131
4132 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4133 credits = ext4_writepage_trans_blocks(inode);
4134 else
4135 credits = ext4_blocks_for_truncate(inode);
4136
4137 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4138 if (IS_ERR(handle)) {
4139 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4140 return;
4141 }
4142
4143 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4144 ext4_block_truncate_page(handle, mapping, inode->i_size);
4145
4146 /*
4147 * We add the inode to the orphan list, so that if this
4148 * truncate spans multiple transactions, and we crash, we will
4149 * resume the truncate when the filesystem recovers. It also
4150 * marks the inode dirty, to catch the new size.
4151 *
4152 * Implication: the file must always be in a sane, consistent
4153 * truncatable state while each transaction commits.
4154 */
4155 if (ext4_orphan_add(handle, inode))
4156 goto out_stop;
4157
4158 down_write(&EXT4_I(inode)->i_data_sem);
4159
4160 ext4_discard_preallocations(inode);
4161
4162 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4163 ext4_ext_truncate(handle, inode);
4164 else
4165 ext4_ind_truncate(handle, inode);
4166
4167 up_write(&ei->i_data_sem);
4168
4169 if (IS_SYNC(inode))
4170 ext4_handle_sync(handle);
4171
4172 out_stop:
4173 /*
4174 * If this was a simple ftruncate() and the file will remain alive,
4175 * then we need to clear up the orphan record which we created above.
4176 * However, if this was a real unlink then we were called by
4177 * ext4_evict_inode(), and we allow that function to clean up the
4178 * orphan info for us.
4179 */
4180 if (inode->i_nlink)
4181 ext4_orphan_del(handle, inode);
4182
4183 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4184 ext4_mark_inode_dirty(handle, inode);
4185 ext4_journal_stop(handle);
4186
4187 trace_ext4_truncate_exit(inode);
4188 }
4189
4190 /*
4191 * ext4_get_inode_loc returns with an extra refcount against the inode's
4192 * underlying buffer_head on success. If 'in_mem' is true, we have all
4193 * data in memory that is needed to recreate the on-disk version of this
4194 * inode.
4195 */
4196 static int __ext4_get_inode_loc(struct inode *inode,
4197 struct ext4_iloc *iloc, int in_mem)
4198 {
4199 struct ext4_group_desc *gdp;
4200 struct buffer_head *bh;
4201 struct super_block *sb = inode->i_sb;
4202 ext4_fsblk_t block;
4203 int inodes_per_block, inode_offset;
4204
4205 iloc->bh = NULL;
4206 if (!ext4_valid_inum(sb, inode->i_ino))
4207 return -EFSCORRUPTED;
4208
4209 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4210 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4211 if (!gdp)
4212 return -EIO;
4213
4214 /*
4215 * Figure out the offset within the block group inode table
4216 */
4217 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4218 inode_offset = ((inode->i_ino - 1) %
4219 EXT4_INODES_PER_GROUP(sb));
4220 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4221 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4222
4223 bh = sb_getblk(sb, block);
4224 if (unlikely(!bh))
4225 return -ENOMEM;
4226 if (!buffer_uptodate(bh)) {
4227 lock_buffer(bh);
4228
4229 /*
4230 * If the buffer has the write error flag, we have failed
4231 * to write out another inode in the same block. In this
4232 * case, we don't have to read the block because we may
4233 * read the old inode data successfully.
4234 */
4235 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4236 set_buffer_uptodate(bh);
4237
4238 if (buffer_uptodate(bh)) {
4239 /* someone brought it uptodate while we waited */
4240 unlock_buffer(bh);
4241 goto has_buffer;
4242 }
4243
4244 /*
4245 * If we have all information of the inode in memory and this
4246 * is the only valid inode in the block, we need not read the
4247 * block.
4248 */
4249 if (in_mem) {
4250 struct buffer_head *bitmap_bh;
4251 int i, start;
4252
4253 start = inode_offset & ~(inodes_per_block - 1);
4254
4255 /* Is the inode bitmap in cache? */
4256 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4257 if (unlikely(!bitmap_bh))
4258 goto make_io;
4259
4260 /*
4261 * If the inode bitmap isn't in cache then the
4262 * optimisation may end up performing two reads instead
4263 * of one, so skip it.
4264 */
4265 if (!buffer_uptodate(bitmap_bh)) {
4266 brelse(bitmap_bh);
4267 goto make_io;
4268 }
4269 for (i = start; i < start + inodes_per_block; i++) {
4270 if (i == inode_offset)
4271 continue;
4272 if (ext4_test_bit(i, bitmap_bh->b_data))
4273 break;
4274 }
4275 brelse(bitmap_bh);
4276 if (i == start + inodes_per_block) {
4277 /* all other inodes are free, so skip I/O */
4278 memset(bh->b_data, 0, bh->b_size);
4279 set_buffer_uptodate(bh);
4280 unlock_buffer(bh);
4281 goto has_buffer;
4282 }
4283 }
4284
4285 make_io:
4286 /*
4287 * If we need to do any I/O, try to pre-readahead extra
4288 * blocks from the inode table.
4289 */
4290 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4291 ext4_fsblk_t b, end, table;
4292 unsigned num;
4293 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4294
4295 table = ext4_inode_table(sb, gdp);
4296 /* s_inode_readahead_blks is always a power of 2 */
4297 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4298 if (table > b)
4299 b = table;
4300 end = b + ra_blks;
4301 num = EXT4_INODES_PER_GROUP(sb);
4302 if (ext4_has_group_desc_csum(sb))
4303 num -= ext4_itable_unused_count(sb, gdp);
4304 table += num / inodes_per_block;
4305 if (end > table)
4306 end = table;
4307 while (b <= end)
4308 sb_breadahead(sb, b++);
4309 }
4310
4311 /*
4312 * There are other valid inodes in the buffer, this inode
4313 * has in-inode xattrs, or we don't have this inode in memory.
4314 * Read the block from disk.
4315 */
4316 trace_ext4_load_inode(inode);
4317 get_bh(bh);
4318 bh->b_end_io = end_buffer_read_sync;
4319 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4320 wait_on_buffer(bh);
4321 if (!buffer_uptodate(bh)) {
4322 EXT4_ERROR_INODE_BLOCK(inode, block,
4323 "unable to read itable block");
4324 brelse(bh);
4325 return -EIO;
4326 }
4327 }
4328 has_buffer:
4329 iloc->bh = bh;
4330 return 0;
4331 }
4332
4333 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4334 {
4335 /* We have all inode data except xattrs in memory here. */
4336 return __ext4_get_inode_loc(inode, iloc,
4337 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4338 }
4339
4340 void ext4_set_inode_flags(struct inode *inode)
4341 {
4342 unsigned int flags = EXT4_I(inode)->i_flags;
4343 unsigned int new_fl = 0;
4344
4345 if (flags & EXT4_SYNC_FL)
4346 new_fl |= S_SYNC;
4347 if (flags & EXT4_APPEND_FL)
4348 new_fl |= S_APPEND;
4349 if (flags & EXT4_IMMUTABLE_FL)
4350 new_fl |= S_IMMUTABLE;
4351 if (flags & EXT4_NOATIME_FL)
4352 new_fl |= S_NOATIME;
4353 if (flags & EXT4_DIRSYNC_FL)
4354 new_fl |= S_DIRSYNC;
4355 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4356 new_fl |= S_DAX;
4357 inode_set_flags(inode, new_fl,
4358 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4359 }
4360
4361 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4362 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4363 {
4364 unsigned int vfs_fl;
4365 unsigned long old_fl, new_fl;
4366
4367 do {
4368 vfs_fl = ei->vfs_inode.i_flags;
4369 old_fl = ei->i_flags;
4370 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4371 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4372 EXT4_DIRSYNC_FL);
4373 if (vfs_fl & S_SYNC)
4374 new_fl |= EXT4_SYNC_FL;
4375 if (vfs_fl & S_APPEND)
4376 new_fl |= EXT4_APPEND_FL;
4377 if (vfs_fl & S_IMMUTABLE)
4378 new_fl |= EXT4_IMMUTABLE_FL;
4379 if (vfs_fl & S_NOATIME)
4380 new_fl |= EXT4_NOATIME_FL;
4381 if (vfs_fl & S_DIRSYNC)
4382 new_fl |= EXT4_DIRSYNC_FL;
4383 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4384 }
4385
4386 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4387 struct ext4_inode_info *ei)
4388 {
4389 blkcnt_t i_blocks ;
4390 struct inode *inode = &(ei->vfs_inode);
4391 struct super_block *sb = inode->i_sb;
4392
4393 if (ext4_has_feature_huge_file(sb)) {
4394 /* we are using combined 48 bit field */
4395 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4396 le32_to_cpu(raw_inode->i_blocks_lo);
4397 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4398 /* i_blocks represent file system block size */
4399 return i_blocks << (inode->i_blkbits - 9);
4400 } else {
4401 return i_blocks;
4402 }
4403 } else {
4404 return le32_to_cpu(raw_inode->i_blocks_lo);
4405 }
4406 }
4407
4408 static inline void ext4_iget_extra_inode(struct inode *inode,
4409 struct ext4_inode *raw_inode,
4410 struct ext4_inode_info *ei)
4411 {
4412 __le32 *magic = (void *)raw_inode +
4413 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4414 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4415 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4416 ext4_find_inline_data_nolock(inode);
4417 } else
4418 EXT4_I(inode)->i_inline_off = 0;
4419 }
4420
4421 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4422 {
4423 if (!ext4_has_feature_project(inode->i_sb))
4424 return -EOPNOTSUPP;
4425 *projid = EXT4_I(inode)->i_projid;
4426 return 0;
4427 }
4428
4429 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4430 {
4431 struct ext4_iloc iloc;
4432 struct ext4_inode *raw_inode;
4433 struct ext4_inode_info *ei;
4434 struct inode *inode;
4435 journal_t *journal = EXT4_SB(sb)->s_journal;
4436 long ret;
4437 int block;
4438 uid_t i_uid;
4439 gid_t i_gid;
4440 projid_t i_projid;
4441
4442 inode = iget_locked(sb, ino);
4443 if (!inode)
4444 return ERR_PTR(-ENOMEM);
4445 if (!(inode->i_state & I_NEW))
4446 return inode;
4447
4448 ei = EXT4_I(inode);
4449 iloc.bh = NULL;
4450
4451 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4452 if (ret < 0)
4453 goto bad_inode;
4454 raw_inode = ext4_raw_inode(&iloc);
4455
4456 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4457 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4458 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4459 EXT4_INODE_SIZE(inode->i_sb)) {
4460 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4461 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4462 EXT4_INODE_SIZE(inode->i_sb));
4463 ret = -EFSCORRUPTED;
4464 goto bad_inode;
4465 }
4466 } else
4467 ei->i_extra_isize = 0;
4468
4469 /* Precompute checksum seed for inode metadata */
4470 if (ext4_has_metadata_csum(sb)) {
4471 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4472 __u32 csum;
4473 __le32 inum = cpu_to_le32(inode->i_ino);
4474 __le32 gen = raw_inode->i_generation;
4475 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4476 sizeof(inum));
4477 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4478 sizeof(gen));
4479 }
4480
4481 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4482 EXT4_ERROR_INODE(inode, "checksum invalid");
4483 ret = -EFSBADCRC;
4484 goto bad_inode;
4485 }
4486
4487 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4488 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4489 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4490 if (ext4_has_feature_project(sb) &&
4491 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4492 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4493 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4494 else
4495 i_projid = EXT4_DEF_PROJID;
4496
4497 if (!(test_opt(inode->i_sb, NO_UID32))) {
4498 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4499 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4500 }
4501 i_uid_write(inode, i_uid);
4502 i_gid_write(inode, i_gid);
4503 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4504 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4505
4506 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4507 ei->i_inline_off = 0;
4508 ei->i_dir_start_lookup = 0;
4509 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4510 /* We now have enough fields to check if the inode was active or not.
4511 * This is needed because nfsd might try to access dead inodes
4512 * the test is that same one that e2fsck uses
4513 * NeilBrown 1999oct15
4514 */
4515 if (inode->i_nlink == 0) {
4516 if ((inode->i_mode == 0 ||
4517 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4518 ino != EXT4_BOOT_LOADER_INO) {
4519 /* this inode is deleted */
4520 ret = -ESTALE;
4521 goto bad_inode;
4522 }
4523 /* The only unlinked inodes we let through here have
4524 * valid i_mode and are being read by the orphan
4525 * recovery code: that's fine, we're about to complete
4526 * the process of deleting those.
4527 * OR it is the EXT4_BOOT_LOADER_INO which is
4528 * not initialized on a new filesystem. */
4529 }
4530 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4531 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4532 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4533 if (ext4_has_feature_64bit(sb))
4534 ei->i_file_acl |=
4535 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4536 inode->i_size = ext4_isize(raw_inode);
4537 ei->i_disksize = inode->i_size;
4538 #ifdef CONFIG_QUOTA
4539 ei->i_reserved_quota = 0;
4540 #endif
4541 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4542 ei->i_block_group = iloc.block_group;
4543 ei->i_last_alloc_group = ~0;
4544 /*
4545 * NOTE! The in-memory inode i_data array is in little-endian order
4546 * even on big-endian machines: we do NOT byteswap the block numbers!
4547 */
4548 for (block = 0; block < EXT4_N_BLOCKS; block++)
4549 ei->i_data[block] = raw_inode->i_block[block];
4550 INIT_LIST_HEAD(&ei->i_orphan);
4551
4552 /*
4553 * Set transaction id's of transactions that have to be committed
4554 * to finish f[data]sync. We set them to currently running transaction
4555 * as we cannot be sure that the inode or some of its metadata isn't
4556 * part of the transaction - the inode could have been reclaimed and
4557 * now it is reread from disk.
4558 */
4559 if (journal) {
4560 transaction_t *transaction;
4561 tid_t tid;
4562
4563 read_lock(&journal->j_state_lock);
4564 if (journal->j_running_transaction)
4565 transaction = journal->j_running_transaction;
4566 else
4567 transaction = journal->j_committing_transaction;
4568 if (transaction)
4569 tid = transaction->t_tid;
4570 else
4571 tid = journal->j_commit_sequence;
4572 read_unlock(&journal->j_state_lock);
4573 ei->i_sync_tid = tid;
4574 ei->i_datasync_tid = tid;
4575 }
4576
4577 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4578 if (ei->i_extra_isize == 0) {
4579 /* The extra space is currently unused. Use it. */
4580 ei->i_extra_isize = sizeof(struct ext4_inode) -
4581 EXT4_GOOD_OLD_INODE_SIZE;
4582 } else {
4583 ext4_iget_extra_inode(inode, raw_inode, ei);
4584 }
4585 }
4586
4587 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4588 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4589 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4590 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4591
4592 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4593 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4594 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4595 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4596 inode->i_version |=
4597 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4598 }
4599 }
4600
4601 ret = 0;
4602 if (ei->i_file_acl &&
4603 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4604 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4605 ei->i_file_acl);
4606 ret = -EFSCORRUPTED;
4607 goto bad_inode;
4608 } else if (!ext4_has_inline_data(inode)) {
4609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4610 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4611 (S_ISLNK(inode->i_mode) &&
4612 !ext4_inode_is_fast_symlink(inode))))
4613 /* Validate extent which is part of inode */
4614 ret = ext4_ext_check_inode(inode);
4615 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4616 (S_ISLNK(inode->i_mode) &&
4617 !ext4_inode_is_fast_symlink(inode))) {
4618 /* Validate block references which are part of inode */
4619 ret = ext4_ind_check_inode(inode);
4620 }
4621 }
4622 if (ret)
4623 goto bad_inode;
4624
4625 if (S_ISREG(inode->i_mode)) {
4626 inode->i_op = &ext4_file_inode_operations;
4627 inode->i_fop = &ext4_file_operations;
4628 ext4_set_aops(inode);
4629 } else if (S_ISDIR(inode->i_mode)) {
4630 inode->i_op = &ext4_dir_inode_operations;
4631 inode->i_fop = &ext4_dir_operations;
4632 } else if (S_ISLNK(inode->i_mode)) {
4633 if (ext4_encrypted_inode(inode)) {
4634 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4635 ext4_set_aops(inode);
4636 } else if (ext4_inode_is_fast_symlink(inode)) {
4637 inode->i_link = (char *)ei->i_data;
4638 inode->i_op = &ext4_fast_symlink_inode_operations;
4639 nd_terminate_link(ei->i_data, inode->i_size,
4640 sizeof(ei->i_data) - 1);
4641 } else {
4642 inode->i_op = &ext4_symlink_inode_operations;
4643 ext4_set_aops(inode);
4644 }
4645 inode_nohighmem(inode);
4646 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4647 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4648 inode->i_op = &ext4_special_inode_operations;
4649 if (raw_inode->i_block[0])
4650 init_special_inode(inode, inode->i_mode,
4651 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4652 else
4653 init_special_inode(inode, inode->i_mode,
4654 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4655 } else if (ino == EXT4_BOOT_LOADER_INO) {
4656 make_bad_inode(inode);
4657 } else {
4658 ret = -EFSCORRUPTED;
4659 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4660 goto bad_inode;
4661 }
4662 brelse(iloc.bh);
4663 ext4_set_inode_flags(inode);
4664 unlock_new_inode(inode);
4665 return inode;
4666
4667 bad_inode:
4668 brelse(iloc.bh);
4669 iget_failed(inode);
4670 return ERR_PTR(ret);
4671 }
4672
4673 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4674 {
4675 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4676 return ERR_PTR(-EFSCORRUPTED);
4677 return ext4_iget(sb, ino);
4678 }
4679
4680 static int ext4_inode_blocks_set(handle_t *handle,
4681 struct ext4_inode *raw_inode,
4682 struct ext4_inode_info *ei)
4683 {
4684 struct inode *inode = &(ei->vfs_inode);
4685 u64 i_blocks = inode->i_blocks;
4686 struct super_block *sb = inode->i_sb;
4687
4688 if (i_blocks <= ~0U) {
4689 /*
4690 * i_blocks can be represented in a 32 bit variable
4691 * as multiple of 512 bytes
4692 */
4693 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4694 raw_inode->i_blocks_high = 0;
4695 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4696 return 0;
4697 }
4698 if (!ext4_has_feature_huge_file(sb))
4699 return -EFBIG;
4700
4701 if (i_blocks <= 0xffffffffffffULL) {
4702 /*
4703 * i_blocks can be represented in a 48 bit variable
4704 * as multiple of 512 bytes
4705 */
4706 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4707 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4708 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4709 } else {
4710 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4711 /* i_block is stored in file system block size */
4712 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4713 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4714 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4715 }
4716 return 0;
4717 }
4718
4719 struct other_inode {
4720 unsigned long orig_ino;
4721 struct ext4_inode *raw_inode;
4722 };
4723
4724 static int other_inode_match(struct inode * inode, unsigned long ino,
4725 void *data)
4726 {
4727 struct other_inode *oi = (struct other_inode *) data;
4728
4729 if ((inode->i_ino != ino) ||
4730 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4731 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4732 ((inode->i_state & I_DIRTY_TIME) == 0))
4733 return 0;
4734 spin_lock(&inode->i_lock);
4735 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4736 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4737 (inode->i_state & I_DIRTY_TIME)) {
4738 struct ext4_inode_info *ei = EXT4_I(inode);
4739
4740 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4741 spin_unlock(&inode->i_lock);
4742
4743 spin_lock(&ei->i_raw_lock);
4744 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4745 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4746 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4747 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4748 spin_unlock(&ei->i_raw_lock);
4749 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4750 return -1;
4751 }
4752 spin_unlock(&inode->i_lock);
4753 return -1;
4754 }
4755
4756 /*
4757 * Opportunistically update the other time fields for other inodes in
4758 * the same inode table block.
4759 */
4760 static void ext4_update_other_inodes_time(struct super_block *sb,
4761 unsigned long orig_ino, char *buf)
4762 {
4763 struct other_inode oi;
4764 unsigned long ino;
4765 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4766 int inode_size = EXT4_INODE_SIZE(sb);
4767
4768 oi.orig_ino = orig_ino;
4769 /*
4770 * Calculate the first inode in the inode table block. Inode
4771 * numbers are one-based. That is, the first inode in a block
4772 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4773 */
4774 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4775 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4776 if (ino == orig_ino)
4777 continue;
4778 oi.raw_inode = (struct ext4_inode *) buf;
4779 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4780 }
4781 }
4782
4783 /*
4784 * Post the struct inode info into an on-disk inode location in the
4785 * buffer-cache. This gobbles the caller's reference to the
4786 * buffer_head in the inode location struct.
4787 *
4788 * The caller must have write access to iloc->bh.
4789 */
4790 static int ext4_do_update_inode(handle_t *handle,
4791 struct inode *inode,
4792 struct ext4_iloc *iloc)
4793 {
4794 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4795 struct ext4_inode_info *ei = EXT4_I(inode);
4796 struct buffer_head *bh = iloc->bh;
4797 struct super_block *sb = inode->i_sb;
4798 int err = 0, rc, block;
4799 int need_datasync = 0, set_large_file = 0;
4800 uid_t i_uid;
4801 gid_t i_gid;
4802 projid_t i_projid;
4803
4804 spin_lock(&ei->i_raw_lock);
4805
4806 /* For fields not tracked in the in-memory inode,
4807 * initialise them to zero for new inodes. */
4808 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4809 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4810
4811 ext4_get_inode_flags(ei);
4812 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4813 i_uid = i_uid_read(inode);
4814 i_gid = i_gid_read(inode);
4815 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4816 if (!(test_opt(inode->i_sb, NO_UID32))) {
4817 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4818 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4819 /*
4820 * Fix up interoperability with old kernels. Otherwise, old inodes get
4821 * re-used with the upper 16 bits of the uid/gid intact
4822 */
4823 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4824 raw_inode->i_uid_high = 0;
4825 raw_inode->i_gid_high = 0;
4826 } else {
4827 raw_inode->i_uid_high =
4828 cpu_to_le16(high_16_bits(i_uid));
4829 raw_inode->i_gid_high =
4830 cpu_to_le16(high_16_bits(i_gid));
4831 }
4832 } else {
4833 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4834 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4835 raw_inode->i_uid_high = 0;
4836 raw_inode->i_gid_high = 0;
4837 }
4838 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4839
4840 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4841 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4842 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4843 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4844
4845 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4846 if (err) {
4847 spin_unlock(&ei->i_raw_lock);
4848 goto out_brelse;
4849 }
4850 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4851 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4852 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4853 raw_inode->i_file_acl_high =
4854 cpu_to_le16(ei->i_file_acl >> 32);
4855 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4856 if (ei->i_disksize != ext4_isize(raw_inode)) {
4857 ext4_isize_set(raw_inode, ei->i_disksize);
4858 need_datasync = 1;
4859 }
4860 if (ei->i_disksize > 0x7fffffffULL) {
4861 if (!ext4_has_feature_large_file(sb) ||
4862 EXT4_SB(sb)->s_es->s_rev_level ==
4863 cpu_to_le32(EXT4_GOOD_OLD_REV))
4864 set_large_file = 1;
4865 }
4866 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4867 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4868 if (old_valid_dev(inode->i_rdev)) {
4869 raw_inode->i_block[0] =
4870 cpu_to_le32(old_encode_dev(inode->i_rdev));
4871 raw_inode->i_block[1] = 0;
4872 } else {
4873 raw_inode->i_block[0] = 0;
4874 raw_inode->i_block[1] =
4875 cpu_to_le32(new_encode_dev(inode->i_rdev));
4876 raw_inode->i_block[2] = 0;
4877 }
4878 } else if (!ext4_has_inline_data(inode)) {
4879 for (block = 0; block < EXT4_N_BLOCKS; block++)
4880 raw_inode->i_block[block] = ei->i_data[block];
4881 }
4882
4883 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4884 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4885 if (ei->i_extra_isize) {
4886 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4887 raw_inode->i_version_hi =
4888 cpu_to_le32(inode->i_version >> 32);
4889 raw_inode->i_extra_isize =
4890 cpu_to_le16(ei->i_extra_isize);
4891 }
4892 }
4893
4894 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4895 i_projid != EXT4_DEF_PROJID);
4896
4897 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4898 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4899 raw_inode->i_projid = cpu_to_le32(i_projid);
4900
4901 ext4_inode_csum_set(inode, raw_inode, ei);
4902 spin_unlock(&ei->i_raw_lock);
4903 if (inode->i_sb->s_flags & MS_LAZYTIME)
4904 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4905 bh->b_data);
4906
4907 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4908 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4909 if (!err)
4910 err = rc;
4911 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4912 if (set_large_file) {
4913 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4914 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4915 if (err)
4916 goto out_brelse;
4917 ext4_update_dynamic_rev(sb);
4918 ext4_set_feature_large_file(sb);
4919 ext4_handle_sync(handle);
4920 err = ext4_handle_dirty_super(handle, sb);
4921 }
4922 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4923 out_brelse:
4924 brelse(bh);
4925 ext4_std_error(inode->i_sb, err);
4926 return err;
4927 }
4928
4929 /*
4930 * ext4_write_inode()
4931 *
4932 * We are called from a few places:
4933 *
4934 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4935 * Here, there will be no transaction running. We wait for any running
4936 * transaction to commit.
4937 *
4938 * - Within flush work (sys_sync(), kupdate and such).
4939 * We wait on commit, if told to.
4940 *
4941 * - Within iput_final() -> write_inode_now()
4942 * We wait on commit, if told to.
4943 *
4944 * In all cases it is actually safe for us to return without doing anything,
4945 * because the inode has been copied into a raw inode buffer in
4946 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4947 * writeback.
4948 *
4949 * Note that we are absolutely dependent upon all inode dirtiers doing the
4950 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4951 * which we are interested.
4952 *
4953 * It would be a bug for them to not do this. The code:
4954 *
4955 * mark_inode_dirty(inode)
4956 * stuff();
4957 * inode->i_size = expr;
4958 *
4959 * is in error because write_inode() could occur while `stuff()' is running,
4960 * and the new i_size will be lost. Plus the inode will no longer be on the
4961 * superblock's dirty inode list.
4962 */
4963 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4964 {
4965 int err;
4966
4967 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4968 return 0;
4969
4970 if (EXT4_SB(inode->i_sb)->s_journal) {
4971 if (ext4_journal_current_handle()) {
4972 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4973 dump_stack();
4974 return -EIO;
4975 }
4976
4977 /*
4978 * No need to force transaction in WB_SYNC_NONE mode. Also
4979 * ext4_sync_fs() will force the commit after everything is
4980 * written.
4981 */
4982 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4983 return 0;
4984
4985 err = ext4_force_commit(inode->i_sb);
4986 } else {
4987 struct ext4_iloc iloc;
4988
4989 err = __ext4_get_inode_loc(inode, &iloc, 0);
4990 if (err)
4991 return err;
4992 /*
4993 * sync(2) will flush the whole buffer cache. No need to do
4994 * it here separately for each inode.
4995 */
4996 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4997 sync_dirty_buffer(iloc.bh);
4998 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4999 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5000 "IO error syncing inode");
5001 err = -EIO;
5002 }
5003 brelse(iloc.bh);
5004 }
5005 return err;
5006 }
5007
5008 /*
5009 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5010 * buffers that are attached to a page stradding i_size and are undergoing
5011 * commit. In that case we have to wait for commit to finish and try again.
5012 */
5013 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5014 {
5015 struct page *page;
5016 unsigned offset;
5017 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5018 tid_t commit_tid = 0;
5019 int ret;
5020
5021 offset = inode->i_size & (PAGE_SIZE - 1);
5022 /*
5023 * All buffers in the last page remain valid? Then there's nothing to
5024 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5025 * blocksize case
5026 */
5027 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5028 return;
5029 while (1) {
5030 page = find_lock_page(inode->i_mapping,
5031 inode->i_size >> PAGE_SHIFT);
5032 if (!page)
5033 return;
5034 ret = __ext4_journalled_invalidatepage(page, offset,
5035 PAGE_SIZE - offset);
5036 unlock_page(page);
5037 put_page(page);
5038 if (ret != -EBUSY)
5039 return;
5040 commit_tid = 0;
5041 read_lock(&journal->j_state_lock);
5042 if (journal->j_committing_transaction)
5043 commit_tid = journal->j_committing_transaction->t_tid;
5044 read_unlock(&journal->j_state_lock);
5045 if (commit_tid)
5046 jbd2_log_wait_commit(journal, commit_tid);
5047 }
5048 }
5049
5050 /*
5051 * ext4_setattr()
5052 *
5053 * Called from notify_change.
5054 *
5055 * We want to trap VFS attempts to truncate the file as soon as
5056 * possible. In particular, we want to make sure that when the VFS
5057 * shrinks i_size, we put the inode on the orphan list and modify
5058 * i_disksize immediately, so that during the subsequent flushing of
5059 * dirty pages and freeing of disk blocks, we can guarantee that any
5060 * commit will leave the blocks being flushed in an unused state on
5061 * disk. (On recovery, the inode will get truncated and the blocks will
5062 * be freed, so we have a strong guarantee that no future commit will
5063 * leave these blocks visible to the user.)
5064 *
5065 * Another thing we have to assure is that if we are in ordered mode
5066 * and inode is still attached to the committing transaction, we must
5067 * we start writeout of all the dirty pages which are being truncated.
5068 * This way we are sure that all the data written in the previous
5069 * transaction are already on disk (truncate waits for pages under
5070 * writeback).
5071 *
5072 * Called with inode->i_mutex down.
5073 */
5074 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5075 {
5076 struct inode *inode = d_inode(dentry);
5077 int error, rc = 0;
5078 int orphan = 0;
5079 const unsigned int ia_valid = attr->ia_valid;
5080
5081 error = setattr_prepare(dentry, attr);
5082 if (error)
5083 return error;
5084
5085 if (is_quota_modification(inode, attr)) {
5086 error = dquot_initialize(inode);
5087 if (error)
5088 return error;
5089 }
5090 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5091 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5092 handle_t *handle;
5093
5094 /* (user+group)*(old+new) structure, inode write (sb,
5095 * inode block, ? - but truncate inode update has it) */
5096 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5097 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5098 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5099 if (IS_ERR(handle)) {
5100 error = PTR_ERR(handle);
5101 goto err_out;
5102 }
5103 error = dquot_transfer(inode, attr);
5104 if (error) {
5105 ext4_journal_stop(handle);
5106 return error;
5107 }
5108 /* Update corresponding info in inode so that everything is in
5109 * one transaction */
5110 if (attr->ia_valid & ATTR_UID)
5111 inode->i_uid = attr->ia_uid;
5112 if (attr->ia_valid & ATTR_GID)
5113 inode->i_gid = attr->ia_gid;
5114 error = ext4_mark_inode_dirty(handle, inode);
5115 ext4_journal_stop(handle);
5116 }
5117
5118 if (attr->ia_valid & ATTR_SIZE) {
5119 handle_t *handle;
5120 loff_t oldsize = inode->i_size;
5121 int shrink = (attr->ia_size <= inode->i_size);
5122
5123 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5124 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5125
5126 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5127 return -EFBIG;
5128 }
5129 if (!S_ISREG(inode->i_mode))
5130 return -EINVAL;
5131
5132 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5133 inode_inc_iversion(inode);
5134
5135 if (ext4_should_order_data(inode) &&
5136 (attr->ia_size < inode->i_size)) {
5137 error = ext4_begin_ordered_truncate(inode,
5138 attr->ia_size);
5139 if (error)
5140 goto err_out;
5141 }
5142 if (attr->ia_size != inode->i_size) {
5143 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5144 if (IS_ERR(handle)) {
5145 error = PTR_ERR(handle);
5146 goto err_out;
5147 }
5148 if (ext4_handle_valid(handle) && shrink) {
5149 error = ext4_orphan_add(handle, inode);
5150 orphan = 1;
5151 }
5152 /*
5153 * Update c/mtime on truncate up, ext4_truncate() will
5154 * update c/mtime in shrink case below
5155 */
5156 if (!shrink) {
5157 inode->i_mtime = ext4_current_time(inode);
5158 inode->i_ctime = inode->i_mtime;
5159 }
5160 down_write(&EXT4_I(inode)->i_data_sem);
5161 EXT4_I(inode)->i_disksize = attr->ia_size;
5162 rc = ext4_mark_inode_dirty(handle, inode);
5163 if (!error)
5164 error = rc;
5165 /*
5166 * We have to update i_size under i_data_sem together
5167 * with i_disksize to avoid races with writeback code
5168 * running ext4_wb_update_i_disksize().
5169 */
5170 if (!error)
5171 i_size_write(inode, attr->ia_size);
5172 up_write(&EXT4_I(inode)->i_data_sem);
5173 ext4_journal_stop(handle);
5174 if (error) {
5175 if (orphan)
5176 ext4_orphan_del(NULL, inode);
5177 goto err_out;
5178 }
5179 }
5180 if (!shrink)
5181 pagecache_isize_extended(inode, oldsize, inode->i_size);
5182
5183 /*
5184 * Blocks are going to be removed from the inode. Wait
5185 * for dio in flight. Temporarily disable
5186 * dioread_nolock to prevent livelock.
5187 */
5188 if (orphan) {
5189 if (!ext4_should_journal_data(inode)) {
5190 ext4_inode_block_unlocked_dio(inode);
5191 inode_dio_wait(inode);
5192 ext4_inode_resume_unlocked_dio(inode);
5193 } else
5194 ext4_wait_for_tail_page_commit(inode);
5195 }
5196 down_write(&EXT4_I(inode)->i_mmap_sem);
5197 /*
5198 * Truncate pagecache after we've waited for commit
5199 * in data=journal mode to make pages freeable.
5200 */
5201 truncate_pagecache(inode, inode->i_size);
5202 if (shrink)
5203 ext4_truncate(inode);
5204 up_write(&EXT4_I(inode)->i_mmap_sem);
5205 }
5206
5207 if (!rc) {
5208 setattr_copy(inode, attr);
5209 mark_inode_dirty(inode);
5210 }
5211
5212 /*
5213 * If the call to ext4_truncate failed to get a transaction handle at
5214 * all, we need to clean up the in-core orphan list manually.
5215 */
5216 if (orphan && inode->i_nlink)
5217 ext4_orphan_del(NULL, inode);
5218
5219 if (!rc && (ia_valid & ATTR_MODE))
5220 rc = posix_acl_chmod(inode, inode->i_mode);
5221
5222 err_out:
5223 ext4_std_error(inode->i_sb, error);
5224 if (!error)
5225 error = rc;
5226 return error;
5227 }
5228
5229 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5230 struct kstat *stat)
5231 {
5232 struct inode *inode;
5233 unsigned long long delalloc_blocks;
5234
5235 inode = d_inode(dentry);
5236 generic_fillattr(inode, stat);
5237
5238 /*
5239 * If there is inline data in the inode, the inode will normally not
5240 * have data blocks allocated (it may have an external xattr block).
5241 * Report at least one sector for such files, so tools like tar, rsync,
5242 * others doen't incorrectly think the file is completely sparse.
5243 */
5244 if (unlikely(ext4_has_inline_data(inode)))
5245 stat->blocks += (stat->size + 511) >> 9;
5246
5247 /*
5248 * We can't update i_blocks if the block allocation is delayed
5249 * otherwise in the case of system crash before the real block
5250 * allocation is done, we will have i_blocks inconsistent with
5251 * on-disk file blocks.
5252 * We always keep i_blocks updated together with real
5253 * allocation. But to not confuse with user, stat
5254 * will return the blocks that include the delayed allocation
5255 * blocks for this file.
5256 */
5257 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5258 EXT4_I(inode)->i_reserved_data_blocks);
5259 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5260 return 0;
5261 }
5262
5263 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5264 int pextents)
5265 {
5266 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5267 return ext4_ind_trans_blocks(inode, lblocks);
5268 return ext4_ext_index_trans_blocks(inode, pextents);
5269 }
5270
5271 /*
5272 * Account for index blocks, block groups bitmaps and block group
5273 * descriptor blocks if modify datablocks and index blocks
5274 * worse case, the indexs blocks spread over different block groups
5275 *
5276 * If datablocks are discontiguous, they are possible to spread over
5277 * different block groups too. If they are contiguous, with flexbg,
5278 * they could still across block group boundary.
5279 *
5280 * Also account for superblock, inode, quota and xattr blocks
5281 */
5282 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5283 int pextents)
5284 {
5285 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5286 int gdpblocks;
5287 int idxblocks;
5288 int ret = 0;
5289
5290 /*
5291 * How many index blocks need to touch to map @lblocks logical blocks
5292 * to @pextents physical extents?
5293 */
5294 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5295
5296 ret = idxblocks;
5297
5298 /*
5299 * Now let's see how many group bitmaps and group descriptors need
5300 * to account
5301 */
5302 groups = idxblocks + pextents;
5303 gdpblocks = groups;
5304 if (groups > ngroups)
5305 groups = ngroups;
5306 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5307 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5308
5309 /* bitmaps and block group descriptor blocks */
5310 ret += groups + gdpblocks;
5311
5312 /* Blocks for super block, inode, quota and xattr blocks */
5313 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5314
5315 return ret;
5316 }
5317
5318 /*
5319 * Calculate the total number of credits to reserve to fit
5320 * the modification of a single pages into a single transaction,
5321 * which may include multiple chunks of block allocations.
5322 *
5323 * This could be called via ext4_write_begin()
5324 *
5325 * We need to consider the worse case, when
5326 * one new block per extent.
5327 */
5328 int ext4_writepage_trans_blocks(struct inode *inode)
5329 {
5330 int bpp = ext4_journal_blocks_per_page(inode);
5331 int ret;
5332
5333 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5334
5335 /* Account for data blocks for journalled mode */
5336 if (ext4_should_journal_data(inode))
5337 ret += bpp;
5338 return ret;
5339 }
5340
5341 /*
5342 * Calculate the journal credits for a chunk of data modification.
5343 *
5344 * This is called from DIO, fallocate or whoever calling
5345 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5346 *
5347 * journal buffers for data blocks are not included here, as DIO
5348 * and fallocate do no need to journal data buffers.
5349 */
5350 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5351 {
5352 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5353 }
5354
5355 /*
5356 * The caller must have previously called ext4_reserve_inode_write().
5357 * Give this, we know that the caller already has write access to iloc->bh.
5358 */
5359 int ext4_mark_iloc_dirty(handle_t *handle,
5360 struct inode *inode, struct ext4_iloc *iloc)
5361 {
5362 int err = 0;
5363
5364 if (IS_I_VERSION(inode))
5365 inode_inc_iversion(inode);
5366
5367 /* the do_update_inode consumes one bh->b_count */
5368 get_bh(iloc->bh);
5369
5370 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5371 err = ext4_do_update_inode(handle, inode, iloc);
5372 put_bh(iloc->bh);
5373 return err;
5374 }
5375
5376 /*
5377 * On success, We end up with an outstanding reference count against
5378 * iloc->bh. This _must_ be cleaned up later.
5379 */
5380
5381 int
5382 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5383 struct ext4_iloc *iloc)
5384 {
5385 int err;
5386
5387 err = ext4_get_inode_loc(inode, iloc);
5388 if (!err) {
5389 BUFFER_TRACE(iloc->bh, "get_write_access");
5390 err = ext4_journal_get_write_access(handle, iloc->bh);
5391 if (err) {
5392 brelse(iloc->bh);
5393 iloc->bh = NULL;
5394 }
5395 }
5396 ext4_std_error(inode->i_sb, err);
5397 return err;
5398 }
5399
5400 /*
5401 * Expand an inode by new_extra_isize bytes.
5402 * Returns 0 on success or negative error number on failure.
5403 */
5404 static int ext4_expand_extra_isize(struct inode *inode,
5405 unsigned int new_extra_isize,
5406 struct ext4_iloc iloc,
5407 handle_t *handle)
5408 {
5409 struct ext4_inode *raw_inode;
5410 struct ext4_xattr_ibody_header *header;
5411
5412 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5413 return 0;
5414
5415 raw_inode = ext4_raw_inode(&iloc);
5416
5417 header = IHDR(inode, raw_inode);
5418
5419 /* No extended attributes present */
5420 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5421 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5422 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5423 new_extra_isize);
5424 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5425 return 0;
5426 }
5427
5428 /* try to expand with EAs present */
5429 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5430 raw_inode, handle);
5431 }
5432
5433 /*
5434 * What we do here is to mark the in-core inode as clean with respect to inode
5435 * dirtiness (it may still be data-dirty).
5436 * This means that the in-core inode may be reaped by prune_icache
5437 * without having to perform any I/O. This is a very good thing,
5438 * because *any* task may call prune_icache - even ones which
5439 * have a transaction open against a different journal.
5440 *
5441 * Is this cheating? Not really. Sure, we haven't written the
5442 * inode out, but prune_icache isn't a user-visible syncing function.
5443 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5444 * we start and wait on commits.
5445 */
5446 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5447 {
5448 struct ext4_iloc iloc;
5449 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5450 static unsigned int mnt_count;
5451 int err, ret;
5452
5453 might_sleep();
5454 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5455 err = ext4_reserve_inode_write(handle, inode, &iloc);
5456 if (err)
5457 return err;
5458 if (ext4_handle_valid(handle) &&
5459 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5460 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5461 /*
5462 * We need extra buffer credits since we may write into EA block
5463 * with this same handle. If journal_extend fails, then it will
5464 * only result in a minor loss of functionality for that inode.
5465 * If this is felt to be critical, then e2fsck should be run to
5466 * force a large enough s_min_extra_isize.
5467 */
5468 if ((jbd2_journal_extend(handle,
5469 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5470 ret = ext4_expand_extra_isize(inode,
5471 sbi->s_want_extra_isize,
5472 iloc, handle);
5473 if (ret) {
5474 if (mnt_count !=
5475 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5476 ext4_warning(inode->i_sb,
5477 "Unable to expand inode %lu. Delete"
5478 " some EAs or run e2fsck.",
5479 inode->i_ino);
5480 mnt_count =
5481 le16_to_cpu(sbi->s_es->s_mnt_count);
5482 }
5483 }
5484 }
5485 }
5486 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5487 }
5488
5489 /*
5490 * ext4_dirty_inode() is called from __mark_inode_dirty()
5491 *
5492 * We're really interested in the case where a file is being extended.
5493 * i_size has been changed by generic_commit_write() and we thus need
5494 * to include the updated inode in the current transaction.
5495 *
5496 * Also, dquot_alloc_block() will always dirty the inode when blocks
5497 * are allocated to the file.
5498 *
5499 * If the inode is marked synchronous, we don't honour that here - doing
5500 * so would cause a commit on atime updates, which we don't bother doing.
5501 * We handle synchronous inodes at the highest possible level.
5502 *
5503 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5504 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5505 * to copy into the on-disk inode structure are the timestamp files.
5506 */
5507 void ext4_dirty_inode(struct inode *inode, int flags)
5508 {
5509 handle_t *handle;
5510
5511 if (flags == I_DIRTY_TIME)
5512 return;
5513 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5514 if (IS_ERR(handle))
5515 goto out;
5516
5517 ext4_mark_inode_dirty(handle, inode);
5518
5519 ext4_journal_stop(handle);
5520 out:
5521 return;
5522 }
5523
5524 #if 0
5525 /*
5526 * Bind an inode's backing buffer_head into this transaction, to prevent
5527 * it from being flushed to disk early. Unlike
5528 * ext4_reserve_inode_write, this leaves behind no bh reference and
5529 * returns no iloc structure, so the caller needs to repeat the iloc
5530 * lookup to mark the inode dirty later.
5531 */
5532 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5533 {
5534 struct ext4_iloc iloc;
5535
5536 int err = 0;
5537 if (handle) {
5538 err = ext4_get_inode_loc(inode, &iloc);
5539 if (!err) {
5540 BUFFER_TRACE(iloc.bh, "get_write_access");
5541 err = jbd2_journal_get_write_access(handle, iloc.bh);
5542 if (!err)
5543 err = ext4_handle_dirty_metadata(handle,
5544 NULL,
5545 iloc.bh);
5546 brelse(iloc.bh);
5547 }
5548 }
5549 ext4_std_error(inode->i_sb, err);
5550 return err;
5551 }
5552 #endif
5553
5554 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5555 {
5556 journal_t *journal;
5557 handle_t *handle;
5558 int err;
5559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5560
5561 /*
5562 * We have to be very careful here: changing a data block's
5563 * journaling status dynamically is dangerous. If we write a
5564 * data block to the journal, change the status and then delete
5565 * that block, we risk forgetting to revoke the old log record
5566 * from the journal and so a subsequent replay can corrupt data.
5567 * So, first we make sure that the journal is empty and that
5568 * nobody is changing anything.
5569 */
5570
5571 journal = EXT4_JOURNAL(inode);
5572 if (!journal)
5573 return 0;
5574 if (is_journal_aborted(journal))
5575 return -EROFS;
5576
5577 /* Wait for all existing dio workers */
5578 ext4_inode_block_unlocked_dio(inode);
5579 inode_dio_wait(inode);
5580
5581 /*
5582 * Before flushing the journal and switching inode's aops, we have
5583 * to flush all dirty data the inode has. There can be outstanding
5584 * delayed allocations, there can be unwritten extents created by
5585 * fallocate or buffered writes in dioread_nolock mode covered by
5586 * dirty data which can be converted only after flushing the dirty
5587 * data (and journalled aops don't know how to handle these cases).
5588 */
5589 if (val) {
5590 down_write(&EXT4_I(inode)->i_mmap_sem);
5591 err = filemap_write_and_wait(inode->i_mapping);
5592 if (err < 0) {
5593 up_write(&EXT4_I(inode)->i_mmap_sem);
5594 ext4_inode_resume_unlocked_dio(inode);
5595 return err;
5596 }
5597 }
5598
5599 percpu_down_write(&sbi->s_journal_flag_rwsem);
5600 jbd2_journal_lock_updates(journal);
5601
5602 /*
5603 * OK, there are no updates running now, and all cached data is
5604 * synced to disk. We are now in a completely consistent state
5605 * which doesn't have anything in the journal, and we know that
5606 * no filesystem updates are running, so it is safe to modify
5607 * the inode's in-core data-journaling state flag now.
5608 */
5609
5610 if (val)
5611 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5612 else {
5613 err = jbd2_journal_flush(journal);
5614 if (err < 0) {
5615 jbd2_journal_unlock_updates(journal);
5616 percpu_up_write(&sbi->s_journal_flag_rwsem);
5617 ext4_inode_resume_unlocked_dio(inode);
5618 return err;
5619 }
5620 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5621 }
5622 ext4_set_aops(inode);
5623
5624 jbd2_journal_unlock_updates(journal);
5625 percpu_up_write(&sbi->s_journal_flag_rwsem);
5626
5627 if (val)
5628 up_write(&EXT4_I(inode)->i_mmap_sem);
5629 ext4_inode_resume_unlocked_dio(inode);
5630
5631 /* Finally we can mark the inode as dirty. */
5632
5633 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5634 if (IS_ERR(handle))
5635 return PTR_ERR(handle);
5636
5637 err = ext4_mark_inode_dirty(handle, inode);
5638 ext4_handle_sync(handle);
5639 ext4_journal_stop(handle);
5640 ext4_std_error(inode->i_sb, err);
5641
5642 return err;
5643 }
5644
5645 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5646 {
5647 return !buffer_mapped(bh);
5648 }
5649
5650 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5651 {
5652 struct page *page = vmf->page;
5653 loff_t size;
5654 unsigned long len;
5655 int ret;
5656 struct file *file = vma->vm_file;
5657 struct inode *inode = file_inode(file);
5658 struct address_space *mapping = inode->i_mapping;
5659 handle_t *handle;
5660 get_block_t *get_block;
5661 int retries = 0;
5662
5663 sb_start_pagefault(inode->i_sb);
5664 file_update_time(vma->vm_file);
5665
5666 down_read(&EXT4_I(inode)->i_mmap_sem);
5667 /* Delalloc case is easy... */
5668 if (test_opt(inode->i_sb, DELALLOC) &&
5669 !ext4_should_journal_data(inode) &&
5670 !ext4_nonda_switch(inode->i_sb)) {
5671 do {
5672 ret = block_page_mkwrite(vma, vmf,
5673 ext4_da_get_block_prep);
5674 } while (ret == -ENOSPC &&
5675 ext4_should_retry_alloc(inode->i_sb, &retries));
5676 goto out_ret;
5677 }
5678
5679 lock_page(page);
5680 size = i_size_read(inode);
5681 /* Page got truncated from under us? */
5682 if (page->mapping != mapping || page_offset(page) > size) {
5683 unlock_page(page);
5684 ret = VM_FAULT_NOPAGE;
5685 goto out;
5686 }
5687
5688 if (page->index == size >> PAGE_SHIFT)
5689 len = size & ~PAGE_MASK;
5690 else
5691 len = PAGE_SIZE;
5692 /*
5693 * Return if we have all the buffers mapped. This avoids the need to do
5694 * journal_start/journal_stop which can block and take a long time
5695 */
5696 if (page_has_buffers(page)) {
5697 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5698 0, len, NULL,
5699 ext4_bh_unmapped)) {
5700 /* Wait so that we don't change page under IO */
5701 wait_for_stable_page(page);
5702 ret = VM_FAULT_LOCKED;
5703 goto out;
5704 }
5705 }
5706 unlock_page(page);
5707 /* OK, we need to fill the hole... */
5708 if (ext4_should_dioread_nolock(inode))
5709 get_block = ext4_get_block_unwritten;
5710 else
5711 get_block = ext4_get_block;
5712 retry_alloc:
5713 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5714 ext4_writepage_trans_blocks(inode));
5715 if (IS_ERR(handle)) {
5716 ret = VM_FAULT_SIGBUS;
5717 goto out;
5718 }
5719 ret = block_page_mkwrite(vma, vmf, get_block);
5720 if (!ret && ext4_should_journal_data(inode)) {
5721 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5722 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5723 unlock_page(page);
5724 ret = VM_FAULT_SIGBUS;
5725 ext4_journal_stop(handle);
5726 goto out;
5727 }
5728 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5729 }
5730 ext4_journal_stop(handle);
5731 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5732 goto retry_alloc;
5733 out_ret:
5734 ret = block_page_mkwrite_return(ret);
5735 out:
5736 up_read(&EXT4_I(inode)->i_mmap_sem);
5737 sb_end_pagefault(inode->i_sb);
5738 return ret;
5739 }
5740
5741 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5742 {
5743 struct inode *inode = file_inode(vma->vm_file);
5744 int err;
5745
5746 down_read(&EXT4_I(inode)->i_mmap_sem);
5747 err = filemap_fault(vma, vmf);
5748 up_read(&EXT4_I(inode)->i_mmap_sem);
5749
5750 return err;
5751 }
5752
5753 /*
5754 * Find the first extent at or after @lblk in an inode that is not a hole.
5755 * Search for @map_len blocks at most. The extent is returned in @result.
5756 *
5757 * The function returns 1 if we found an extent. The function returns 0 in
5758 * case there is no extent at or after @lblk and in that case also sets
5759 * @result->es_len to 0. In case of error, the error code is returned.
5760 */
5761 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5762 unsigned int map_len, struct extent_status *result)
5763 {
5764 struct ext4_map_blocks map;
5765 struct extent_status es = {};
5766 int ret;
5767
5768 map.m_lblk = lblk;
5769 map.m_len = map_len;
5770
5771 /*
5772 * For non-extent based files this loop may iterate several times since
5773 * we do not determine full hole size.
5774 */
5775 while (map.m_len > 0) {
5776 ret = ext4_map_blocks(NULL, inode, &map, 0);
5777 if (ret < 0)
5778 return ret;
5779 /* There's extent covering m_lblk? Just return it. */
5780 if (ret > 0) {
5781 int status;
5782
5783 ext4_es_store_pblock(result, map.m_pblk);
5784 result->es_lblk = map.m_lblk;
5785 result->es_len = map.m_len;
5786 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5787 status = EXTENT_STATUS_UNWRITTEN;
5788 else
5789 status = EXTENT_STATUS_WRITTEN;
5790 ext4_es_store_status(result, status);
5791 return 1;
5792 }
5793 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5794 map.m_lblk + map.m_len - 1,
5795 &es);
5796 /* Is delalloc data before next block in extent tree? */
5797 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5798 ext4_lblk_t offset = 0;
5799
5800 if (es.es_lblk < lblk)
5801 offset = lblk - es.es_lblk;
5802 result->es_lblk = es.es_lblk + offset;
5803 ext4_es_store_pblock(result,
5804 ext4_es_pblock(&es) + offset);
5805 result->es_len = es.es_len - offset;
5806 ext4_es_store_status(result, ext4_es_status(&es));
5807
5808 return 1;
5809 }
5810 /* There's a hole at m_lblk, advance us after it */
5811 map.m_lblk += map.m_len;
5812 map_len -= map.m_len;
5813 map.m_len = map_len;
5814 cond_resched();
5815 }
5816 result->es_len = 0;
5817 return 0;
5818 }