]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
ext4: don't print scary messages for allocation failures post-abort
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55 {
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
64 /*
65 * Test whether an inode is a fast symlink.
66 */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74
75 /*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81 ext4_lblk_t needed;
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
88 * like a regular file for ext4 to try to delete it. Things
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
98
99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101
102 /*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114 handle_t *result;
115
116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 if (!IS_ERR(result))
118 return result;
119
120 ext4_std_error(inode->i_sb, PTR_ERR(result));
121 return result;
122 }
123
124 /*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 return 0;
136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 return 0;
138 return 1;
139 }
140
141 /*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 int nblocks)
148 {
149 int ret;
150
151 /*
152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 jbd_debug(2, "restarting handle %p\n", handle);
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
162 ext4_discard_preallocations(inode);
163
164 return ret;
165 }
166
167 /*
168 * Called at the last iput() if i_nlink is zero.
169 */
170 void ext4_delete_inode(struct inode *inode)
171 {
172 handle_t *handle;
173 int err;
174
175 if (!is_bad_inode(inode))
176 dquot_initialize(inode);
177
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186 if (IS_ERR(handle)) {
187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
193 ext4_orphan_del(NULL, inode);
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
198 ext4_handle_sync(handle);
199 inode->i_size = 0;
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
202 ext4_warning(inode->i_sb,
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
206 if (inode->i_blocks)
207 ext4_truncate(inode);
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
215 if (!ext4_handle_has_enough_credits(handle, 3)) {
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
220 ext4_warning(inode->i_sb,
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
228 /*
229 * Kill off the orphan record which ext4_truncate created.
230 * AKPM: I think this can be inside the above `if'.
231 * Note that ext4_orphan_del() has to be able to cope with the
232 * deletion of a non-existent orphan - this is because we don't
233 * know if ext4_truncate() actually created an orphan record.
234 * (Well, we could do this if we need to, but heck - it works)
235 */
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
246 if (ext4_mark_inode_dirty(handle, inode))
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
252 return;
253 no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255 }
256
257 typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261 } Indirect;
262
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264 {
265 p->key = *(p->p = v);
266 p->bh = bh;
267 }
268
269 /**
270 * ext4_block_to_path - parse the block number into array of offsets
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
276 *
277 * To store the locations of file's data ext4 uses a data structure common
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290 /*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
300 static int ext4_block_to_path(struct inode *inode,
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
303 {
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
312 if (i_block < direct_blocks) {
313 offsets[n++] = i_block;
314 final = direct_blocks;
315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
316 offsets[n++] = EXT4_IND_BLOCK;
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
320 offsets[n++] = EXT4_DIND_BLOCK;
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 offsets[n++] = EXT4_TIND_BLOCK;
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338 }
339
340 static int __ext4_check_blockref(const char *function, unsigned int line,
341 struct inode *inode,
342 __le32 *p, unsigned int max)
343 {
344 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
345 __le32 *bref = p;
346 unsigned int blk;
347
348 while (bref < p+max) {
349 blk = le32_to_cpu(*bref++);
350 if (blk &&
351 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
352 blk, 1))) {
353 es->s_last_error_block = cpu_to_le64(blk);
354 ext4_error_inode(inode, function, line, blk,
355 "invalid block");
356 return -EIO;
357 }
358 }
359 return 0;
360 }
361
362
363 #define ext4_check_indirect_blockref(inode, bh) \
364 __ext4_check_blockref(__func__, __LINE__, inode, \
365 (__le32 *)(bh)->b_data, \
366 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
367
368 #define ext4_check_inode_blockref(inode) \
369 __ext4_check_blockref(__func__, __LINE__, inode, \
370 EXT4_I(inode)->i_data, \
371 EXT4_NDIR_BLOCKS)
372
373 /**
374 * ext4_get_branch - read the chain of indirect blocks leading to data
375 * @inode: inode in question
376 * @depth: depth of the chain (1 - direct pointer, etc.)
377 * @offsets: offsets of pointers in inode/indirect blocks
378 * @chain: place to store the result
379 * @err: here we store the error value
380 *
381 * Function fills the array of triples <key, p, bh> and returns %NULL
382 * if everything went OK or the pointer to the last filled triple
383 * (incomplete one) otherwise. Upon the return chain[i].key contains
384 * the number of (i+1)-th block in the chain (as it is stored in memory,
385 * i.e. little-endian 32-bit), chain[i].p contains the address of that
386 * number (it points into struct inode for i==0 and into the bh->b_data
387 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
388 * block for i>0 and NULL for i==0. In other words, it holds the block
389 * numbers of the chain, addresses they were taken from (and where we can
390 * verify that chain did not change) and buffer_heads hosting these
391 * numbers.
392 *
393 * Function stops when it stumbles upon zero pointer (absent block)
394 * (pointer to last triple returned, *@err == 0)
395 * or when it gets an IO error reading an indirect block
396 * (ditto, *@err == -EIO)
397 * or when it reads all @depth-1 indirect blocks successfully and finds
398 * the whole chain, all way to the data (returns %NULL, *err == 0).
399 *
400 * Need to be called with
401 * down_read(&EXT4_I(inode)->i_data_sem)
402 */
403 static Indirect *ext4_get_branch(struct inode *inode, int depth,
404 ext4_lblk_t *offsets,
405 Indirect chain[4], int *err)
406 {
407 struct super_block *sb = inode->i_sb;
408 Indirect *p = chain;
409 struct buffer_head *bh;
410
411 *err = 0;
412 /* i_data is not going away, no lock needed */
413 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
414 if (!p->key)
415 goto no_block;
416 while (--depth) {
417 bh = sb_getblk(sb, le32_to_cpu(p->key));
418 if (unlikely(!bh))
419 goto failure;
420
421 if (!bh_uptodate_or_lock(bh)) {
422 if (bh_submit_read(bh) < 0) {
423 put_bh(bh);
424 goto failure;
425 }
426 /* validate block references */
427 if (ext4_check_indirect_blockref(inode, bh)) {
428 put_bh(bh);
429 goto failure;
430 }
431 }
432
433 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
434 /* Reader: end */
435 if (!p->key)
436 goto no_block;
437 }
438 return NULL;
439
440 failure:
441 *err = -EIO;
442 no_block:
443 return p;
444 }
445
446 /**
447 * ext4_find_near - find a place for allocation with sufficient locality
448 * @inode: owner
449 * @ind: descriptor of indirect block.
450 *
451 * This function returns the preferred place for block allocation.
452 * It is used when heuristic for sequential allocation fails.
453 * Rules are:
454 * + if there is a block to the left of our position - allocate near it.
455 * + if pointer will live in indirect block - allocate near that block.
456 * + if pointer will live in inode - allocate in the same
457 * cylinder group.
458 *
459 * In the latter case we colour the starting block by the callers PID to
460 * prevent it from clashing with concurrent allocations for a different inode
461 * in the same block group. The PID is used here so that functionally related
462 * files will be close-by on-disk.
463 *
464 * Caller must make sure that @ind is valid and will stay that way.
465 */
466 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
467 {
468 struct ext4_inode_info *ei = EXT4_I(inode);
469 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
470 __le32 *p;
471 ext4_fsblk_t bg_start;
472 ext4_fsblk_t last_block;
473 ext4_grpblk_t colour;
474 ext4_group_t block_group;
475 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
476
477 /* Try to find previous block */
478 for (p = ind->p - 1; p >= start; p--) {
479 if (*p)
480 return le32_to_cpu(*p);
481 }
482
483 /* No such thing, so let's try location of indirect block */
484 if (ind->bh)
485 return ind->bh->b_blocknr;
486
487 /*
488 * It is going to be referred to from the inode itself? OK, just put it
489 * into the same cylinder group then.
490 */
491 block_group = ei->i_block_group;
492 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
493 block_group &= ~(flex_size-1);
494 if (S_ISREG(inode->i_mode))
495 block_group++;
496 }
497 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
498 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
499
500 /*
501 * If we are doing delayed allocation, we don't need take
502 * colour into account.
503 */
504 if (test_opt(inode->i_sb, DELALLOC))
505 return bg_start;
506
507 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
508 colour = (current->pid % 16) *
509 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
510 else
511 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
512 return bg_start + colour;
513 }
514
515 /**
516 * ext4_find_goal - find a preferred place for allocation.
517 * @inode: owner
518 * @block: block we want
519 * @partial: pointer to the last triple within a chain
520 *
521 * Normally this function find the preferred place for block allocation,
522 * returns it.
523 * Because this is only used for non-extent files, we limit the block nr
524 * to 32 bits.
525 */
526 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
527 Indirect *partial)
528 {
529 ext4_fsblk_t goal;
530
531 /*
532 * XXX need to get goal block from mballoc's data structures
533 */
534
535 goal = ext4_find_near(inode, partial);
536 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
537 return goal;
538 }
539
540 /**
541 * ext4_blks_to_allocate: Look up the block map and count the number
542 * of direct blocks need to be allocated for the given branch.
543 *
544 * @branch: chain of indirect blocks
545 * @k: number of blocks need for indirect blocks
546 * @blks: number of data blocks to be mapped.
547 * @blocks_to_boundary: the offset in the indirect block
548 *
549 * return the total number of blocks to be allocate, including the
550 * direct and indirect blocks.
551 */
552 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
553 int blocks_to_boundary)
554 {
555 unsigned int count = 0;
556
557 /*
558 * Simple case, [t,d]Indirect block(s) has not allocated yet
559 * then it's clear blocks on that path have not allocated
560 */
561 if (k > 0) {
562 /* right now we don't handle cross boundary allocation */
563 if (blks < blocks_to_boundary + 1)
564 count += blks;
565 else
566 count += blocks_to_boundary + 1;
567 return count;
568 }
569
570 count++;
571 while (count < blks && count <= blocks_to_boundary &&
572 le32_to_cpu(*(branch[0].p + count)) == 0) {
573 count++;
574 }
575 return count;
576 }
577
578 /**
579 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
580 * @indirect_blks: the number of blocks need to allocate for indirect
581 * blocks
582 *
583 * @new_blocks: on return it will store the new block numbers for
584 * the indirect blocks(if needed) and the first direct block,
585 * @blks: on return it will store the total number of allocated
586 * direct blocks
587 */
588 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
589 ext4_lblk_t iblock, ext4_fsblk_t goal,
590 int indirect_blks, int blks,
591 ext4_fsblk_t new_blocks[4], int *err)
592 {
593 struct ext4_allocation_request ar;
594 int target, i;
595 unsigned long count = 0, blk_allocated = 0;
596 int index = 0;
597 ext4_fsblk_t current_block = 0;
598 int ret = 0;
599
600 /*
601 * Here we try to allocate the requested multiple blocks at once,
602 * on a best-effort basis.
603 * To build a branch, we should allocate blocks for
604 * the indirect blocks(if not allocated yet), and at least
605 * the first direct block of this branch. That's the
606 * minimum number of blocks need to allocate(required)
607 */
608 /* first we try to allocate the indirect blocks */
609 target = indirect_blks;
610 while (target > 0) {
611 count = target;
612 /* allocating blocks for indirect blocks and direct blocks */
613 current_block = ext4_new_meta_blocks(handle, inode,
614 goal, &count, err);
615 if (*err)
616 goto failed_out;
617
618 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
619 EXT4_ERROR_INODE(inode,
620 "current_block %llu + count %lu > %d!",
621 current_block, count,
622 EXT4_MAX_BLOCK_FILE_PHYS);
623 *err = -EIO;
624 goto failed_out;
625 }
626
627 target -= count;
628 /* allocate blocks for indirect blocks */
629 while (index < indirect_blks && count) {
630 new_blocks[index++] = current_block++;
631 count--;
632 }
633 if (count > 0) {
634 /*
635 * save the new block number
636 * for the first direct block
637 */
638 new_blocks[index] = current_block;
639 printk(KERN_INFO "%s returned more blocks than "
640 "requested\n", __func__);
641 WARN_ON(1);
642 break;
643 }
644 }
645
646 target = blks - count ;
647 blk_allocated = count;
648 if (!target)
649 goto allocated;
650 /* Now allocate data blocks */
651 memset(&ar, 0, sizeof(ar));
652 ar.inode = inode;
653 ar.goal = goal;
654 ar.len = target;
655 ar.logical = iblock;
656 if (S_ISREG(inode->i_mode))
657 /* enable in-core preallocation only for regular files */
658 ar.flags = EXT4_MB_HINT_DATA;
659
660 current_block = ext4_mb_new_blocks(handle, &ar, err);
661 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
662 EXT4_ERROR_INODE(inode,
663 "current_block %llu + ar.len %d > %d!",
664 current_block, ar.len,
665 EXT4_MAX_BLOCK_FILE_PHYS);
666 *err = -EIO;
667 goto failed_out;
668 }
669
670 if (*err && (target == blks)) {
671 /*
672 * if the allocation failed and we didn't allocate
673 * any blocks before
674 */
675 goto failed_out;
676 }
677 if (!*err) {
678 if (target == blks) {
679 /*
680 * save the new block number
681 * for the first direct block
682 */
683 new_blocks[index] = current_block;
684 }
685 blk_allocated += ar.len;
686 }
687 allocated:
688 /* total number of blocks allocated for direct blocks */
689 ret = blk_allocated;
690 *err = 0;
691 return ret;
692 failed_out:
693 for (i = 0; i < index; i++)
694 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
695 return ret;
696 }
697
698 /**
699 * ext4_alloc_branch - allocate and set up a chain of blocks.
700 * @inode: owner
701 * @indirect_blks: number of allocated indirect blocks
702 * @blks: number of allocated direct blocks
703 * @offsets: offsets (in the blocks) to store the pointers to next.
704 * @branch: place to store the chain in.
705 *
706 * This function allocates blocks, zeroes out all but the last one,
707 * links them into chain and (if we are synchronous) writes them to disk.
708 * In other words, it prepares a branch that can be spliced onto the
709 * inode. It stores the information about that chain in the branch[], in
710 * the same format as ext4_get_branch() would do. We are calling it after
711 * we had read the existing part of chain and partial points to the last
712 * triple of that (one with zero ->key). Upon the exit we have the same
713 * picture as after the successful ext4_get_block(), except that in one
714 * place chain is disconnected - *branch->p is still zero (we did not
715 * set the last link), but branch->key contains the number that should
716 * be placed into *branch->p to fill that gap.
717 *
718 * If allocation fails we free all blocks we've allocated (and forget
719 * their buffer_heads) and return the error value the from failed
720 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
721 * as described above and return 0.
722 */
723 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
724 ext4_lblk_t iblock, int indirect_blks,
725 int *blks, ext4_fsblk_t goal,
726 ext4_lblk_t *offsets, Indirect *branch)
727 {
728 int blocksize = inode->i_sb->s_blocksize;
729 int i, n = 0;
730 int err = 0;
731 struct buffer_head *bh;
732 int num;
733 ext4_fsblk_t new_blocks[4];
734 ext4_fsblk_t current_block;
735
736 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
737 *blks, new_blocks, &err);
738 if (err)
739 return err;
740
741 branch[0].key = cpu_to_le32(new_blocks[0]);
742 /*
743 * metadata blocks and data blocks are allocated.
744 */
745 for (n = 1; n <= indirect_blks; n++) {
746 /*
747 * Get buffer_head for parent block, zero it out
748 * and set the pointer to new one, then send
749 * parent to disk.
750 */
751 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
752 branch[n].bh = bh;
753 lock_buffer(bh);
754 BUFFER_TRACE(bh, "call get_create_access");
755 err = ext4_journal_get_create_access(handle, bh);
756 if (err) {
757 /* Don't brelse(bh) here; it's done in
758 * ext4_journal_forget() below */
759 unlock_buffer(bh);
760 goto failed;
761 }
762
763 memset(bh->b_data, 0, blocksize);
764 branch[n].p = (__le32 *) bh->b_data + offsets[n];
765 branch[n].key = cpu_to_le32(new_blocks[n]);
766 *branch[n].p = branch[n].key;
767 if (n == indirect_blks) {
768 current_block = new_blocks[n];
769 /*
770 * End of chain, update the last new metablock of
771 * the chain to point to the new allocated
772 * data blocks numbers
773 */
774 for (i = 1; i < num; i++)
775 *(branch[n].p + i) = cpu_to_le32(++current_block);
776 }
777 BUFFER_TRACE(bh, "marking uptodate");
778 set_buffer_uptodate(bh);
779 unlock_buffer(bh);
780
781 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
782 err = ext4_handle_dirty_metadata(handle, inode, bh);
783 if (err)
784 goto failed;
785 }
786 *blks = num;
787 return err;
788 failed:
789 /* Allocation failed, free what we already allocated */
790 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
791 for (i = 1; i <= n ; i++) {
792 /*
793 * branch[i].bh is newly allocated, so there is no
794 * need to revoke the block, which is why we don't
795 * need to set EXT4_FREE_BLOCKS_METADATA.
796 */
797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
798 EXT4_FREE_BLOCKS_FORGET);
799 }
800 for (i = n+1; i < indirect_blks; i++)
801 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
802
803 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
804
805 return err;
806 }
807
808 /**
809 * ext4_splice_branch - splice the allocated branch onto inode.
810 * @inode: owner
811 * @block: (logical) number of block we are adding
812 * @chain: chain of indirect blocks (with a missing link - see
813 * ext4_alloc_branch)
814 * @where: location of missing link
815 * @num: number of indirect blocks we are adding
816 * @blks: number of direct blocks we are adding
817 *
818 * This function fills the missing link and does all housekeeping needed in
819 * inode (->i_blocks, etc.). In case of success we end up with the full
820 * chain to new block and return 0.
821 */
822 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
823 ext4_lblk_t block, Indirect *where, int num,
824 int blks)
825 {
826 int i;
827 int err = 0;
828 ext4_fsblk_t current_block;
829
830 /*
831 * If we're splicing into a [td]indirect block (as opposed to the
832 * inode) then we need to get write access to the [td]indirect block
833 * before the splice.
834 */
835 if (where->bh) {
836 BUFFER_TRACE(where->bh, "get_write_access");
837 err = ext4_journal_get_write_access(handle, where->bh);
838 if (err)
839 goto err_out;
840 }
841 /* That's it */
842
843 *where->p = where->key;
844
845 /*
846 * Update the host buffer_head or inode to point to more just allocated
847 * direct blocks blocks
848 */
849 if (num == 0 && blks > 1) {
850 current_block = le32_to_cpu(where->key) + 1;
851 for (i = 1; i < blks; i++)
852 *(where->p + i) = cpu_to_le32(current_block++);
853 }
854
855 /* We are done with atomic stuff, now do the rest of housekeeping */
856 /* had we spliced it onto indirect block? */
857 if (where->bh) {
858 /*
859 * If we spliced it onto an indirect block, we haven't
860 * altered the inode. Note however that if it is being spliced
861 * onto an indirect block at the very end of the file (the
862 * file is growing) then we *will* alter the inode to reflect
863 * the new i_size. But that is not done here - it is done in
864 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
865 */
866 jbd_debug(5, "splicing indirect only\n");
867 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
868 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
869 if (err)
870 goto err_out;
871 } else {
872 /*
873 * OK, we spliced it into the inode itself on a direct block.
874 */
875 ext4_mark_inode_dirty(handle, inode);
876 jbd_debug(5, "splicing direct\n");
877 }
878 return err;
879
880 err_out:
881 for (i = 1; i <= num; i++) {
882 /*
883 * branch[i].bh is newly allocated, so there is no
884 * need to revoke the block, which is why we don't
885 * need to set EXT4_FREE_BLOCKS_METADATA.
886 */
887 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
888 EXT4_FREE_BLOCKS_FORGET);
889 }
890 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
891 blks, 0);
892
893 return err;
894 }
895
896 /*
897 * The ext4_ind_map_blocks() function handles non-extents inodes
898 * (i.e., using the traditional indirect/double-indirect i_blocks
899 * scheme) for ext4_map_blocks().
900 *
901 * Allocation strategy is simple: if we have to allocate something, we will
902 * have to go the whole way to leaf. So let's do it before attaching anything
903 * to tree, set linkage between the newborn blocks, write them if sync is
904 * required, recheck the path, free and repeat if check fails, otherwise
905 * set the last missing link (that will protect us from any truncate-generated
906 * removals - all blocks on the path are immune now) and possibly force the
907 * write on the parent block.
908 * That has a nice additional property: no special recovery from the failed
909 * allocations is needed - we simply release blocks and do not touch anything
910 * reachable from inode.
911 *
912 * `handle' can be NULL if create == 0.
913 *
914 * return > 0, # of blocks mapped or allocated.
915 * return = 0, if plain lookup failed.
916 * return < 0, error case.
917 *
918 * The ext4_ind_get_blocks() function should be called with
919 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
920 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
921 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
922 * blocks.
923 */
924 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
925 struct ext4_map_blocks *map,
926 int flags)
927 {
928 int err = -EIO;
929 ext4_lblk_t offsets[4];
930 Indirect chain[4];
931 Indirect *partial;
932 ext4_fsblk_t goal;
933 int indirect_blks;
934 int blocks_to_boundary = 0;
935 int depth;
936 int count = 0;
937 ext4_fsblk_t first_block = 0;
938
939 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
940 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
941 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
942 &blocks_to_boundary);
943
944 if (depth == 0)
945 goto out;
946
947 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
948
949 /* Simplest case - block found, no allocation needed */
950 if (!partial) {
951 first_block = le32_to_cpu(chain[depth - 1].key);
952 count++;
953 /*map more blocks*/
954 while (count < map->m_len && count <= blocks_to_boundary) {
955 ext4_fsblk_t blk;
956
957 blk = le32_to_cpu(*(chain[depth-1].p + count));
958
959 if (blk == first_block + count)
960 count++;
961 else
962 break;
963 }
964 goto got_it;
965 }
966
967 /* Next simple case - plain lookup or failed read of indirect block */
968 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
969 goto cleanup;
970
971 /*
972 * Okay, we need to do block allocation.
973 */
974 goal = ext4_find_goal(inode, map->m_lblk, partial);
975
976 /* the number of blocks need to allocate for [d,t]indirect blocks */
977 indirect_blks = (chain + depth) - partial - 1;
978
979 /*
980 * Next look up the indirect map to count the totoal number of
981 * direct blocks to allocate for this branch.
982 */
983 count = ext4_blks_to_allocate(partial, indirect_blks,
984 map->m_len, blocks_to_boundary);
985 /*
986 * Block out ext4_truncate while we alter the tree
987 */
988 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
989 &count, goal,
990 offsets + (partial - chain), partial);
991
992 /*
993 * The ext4_splice_branch call will free and forget any buffers
994 * on the new chain if there is a failure, but that risks using
995 * up transaction credits, especially for bitmaps where the
996 * credits cannot be returned. Can we handle this somehow? We
997 * may need to return -EAGAIN upwards in the worst case. --sct
998 */
999 if (!err)
1000 err = ext4_splice_branch(handle, inode, map->m_lblk,
1001 partial, indirect_blks, count);
1002 if (err)
1003 goto cleanup;
1004
1005 map->m_flags |= EXT4_MAP_NEW;
1006
1007 ext4_update_inode_fsync_trans(handle, inode, 1);
1008 got_it:
1009 map->m_flags |= EXT4_MAP_MAPPED;
1010 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1011 map->m_len = count;
1012 if (count > blocks_to_boundary)
1013 map->m_flags |= EXT4_MAP_BOUNDARY;
1014 err = count;
1015 /* Clean up and exit */
1016 partial = chain + depth - 1; /* the whole chain */
1017 cleanup:
1018 while (partial > chain) {
1019 BUFFER_TRACE(partial->bh, "call brelse");
1020 brelse(partial->bh);
1021 partial--;
1022 }
1023 out:
1024 return err;
1025 }
1026
1027 #ifdef CONFIG_QUOTA
1028 qsize_t *ext4_get_reserved_space(struct inode *inode)
1029 {
1030 return &EXT4_I(inode)->i_reserved_quota;
1031 }
1032 #endif
1033
1034 /*
1035 * Calculate the number of metadata blocks need to reserve
1036 * to allocate a new block at @lblocks for non extent file based file
1037 */
1038 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1039 sector_t lblock)
1040 {
1041 struct ext4_inode_info *ei = EXT4_I(inode);
1042 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1043 int blk_bits;
1044
1045 if (lblock < EXT4_NDIR_BLOCKS)
1046 return 0;
1047
1048 lblock -= EXT4_NDIR_BLOCKS;
1049
1050 if (ei->i_da_metadata_calc_len &&
1051 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1052 ei->i_da_metadata_calc_len++;
1053 return 0;
1054 }
1055 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1056 ei->i_da_metadata_calc_len = 1;
1057 blk_bits = order_base_2(lblock);
1058 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1059 }
1060
1061 /*
1062 * Calculate the number of metadata blocks need to reserve
1063 * to allocate a block located at @lblock
1064 */
1065 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1066 {
1067 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1068 return ext4_ext_calc_metadata_amount(inode, lblock);
1069
1070 return ext4_indirect_calc_metadata_amount(inode, lblock);
1071 }
1072
1073 /*
1074 * Called with i_data_sem down, which is important since we can call
1075 * ext4_discard_preallocations() from here.
1076 */
1077 void ext4_da_update_reserve_space(struct inode *inode,
1078 int used, int quota_claim)
1079 {
1080 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1081 struct ext4_inode_info *ei = EXT4_I(inode);
1082
1083 spin_lock(&ei->i_block_reservation_lock);
1084 trace_ext4_da_update_reserve_space(inode, used);
1085 if (unlikely(used > ei->i_reserved_data_blocks)) {
1086 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1087 "with only %d reserved data blocks\n",
1088 __func__, inode->i_ino, used,
1089 ei->i_reserved_data_blocks);
1090 WARN_ON(1);
1091 used = ei->i_reserved_data_blocks;
1092 }
1093
1094 /* Update per-inode reservations */
1095 ei->i_reserved_data_blocks -= used;
1096 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1097 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1098 used + ei->i_allocated_meta_blocks);
1099 ei->i_allocated_meta_blocks = 0;
1100
1101 if (ei->i_reserved_data_blocks == 0) {
1102 /*
1103 * We can release all of the reserved metadata blocks
1104 * only when we have written all of the delayed
1105 * allocation blocks.
1106 */
1107 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1108 ei->i_reserved_meta_blocks);
1109 ei->i_reserved_meta_blocks = 0;
1110 ei->i_da_metadata_calc_len = 0;
1111 }
1112 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1113
1114 /* Update quota subsystem for data blocks */
1115 if (quota_claim)
1116 dquot_claim_block(inode, used);
1117 else {
1118 /*
1119 * We did fallocate with an offset that is already delayed
1120 * allocated. So on delayed allocated writeback we should
1121 * not re-claim the quota for fallocated blocks.
1122 */
1123 dquot_release_reservation_block(inode, used);
1124 }
1125
1126 /*
1127 * If we have done all the pending block allocations and if
1128 * there aren't any writers on the inode, we can discard the
1129 * inode's preallocations.
1130 */
1131 if ((ei->i_reserved_data_blocks == 0) &&
1132 (atomic_read(&inode->i_writecount) == 0))
1133 ext4_discard_preallocations(inode);
1134 }
1135
1136 static int __check_block_validity(struct inode *inode, const char *func,
1137 unsigned int line,
1138 struct ext4_map_blocks *map)
1139 {
1140 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1141 map->m_len)) {
1142 ext4_error_inode(inode, func, line, map->m_pblk,
1143 "lblock %lu mapped to illegal pblock "
1144 "(length %d)", (unsigned long) map->m_lblk,
1145 map->m_len);
1146 return -EIO;
1147 }
1148 return 0;
1149 }
1150
1151 #define check_block_validity(inode, map) \
1152 __check_block_validity((inode), __func__, __LINE__, (map))
1153
1154 /*
1155 * Return the number of contiguous dirty pages in a given inode
1156 * starting at page frame idx.
1157 */
1158 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1159 unsigned int max_pages)
1160 {
1161 struct address_space *mapping = inode->i_mapping;
1162 pgoff_t index;
1163 struct pagevec pvec;
1164 pgoff_t num = 0;
1165 int i, nr_pages, done = 0;
1166
1167 if (max_pages == 0)
1168 return 0;
1169 pagevec_init(&pvec, 0);
1170 while (!done) {
1171 index = idx;
1172 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1173 PAGECACHE_TAG_DIRTY,
1174 (pgoff_t)PAGEVEC_SIZE);
1175 if (nr_pages == 0)
1176 break;
1177 for (i = 0; i < nr_pages; i++) {
1178 struct page *page = pvec.pages[i];
1179 struct buffer_head *bh, *head;
1180
1181 lock_page(page);
1182 if (unlikely(page->mapping != mapping) ||
1183 !PageDirty(page) ||
1184 PageWriteback(page) ||
1185 page->index != idx) {
1186 done = 1;
1187 unlock_page(page);
1188 break;
1189 }
1190 if (page_has_buffers(page)) {
1191 bh = head = page_buffers(page);
1192 do {
1193 if (!buffer_delay(bh) &&
1194 !buffer_unwritten(bh))
1195 done = 1;
1196 bh = bh->b_this_page;
1197 } while (!done && (bh != head));
1198 }
1199 unlock_page(page);
1200 if (done)
1201 break;
1202 idx++;
1203 num++;
1204 if (num >= max_pages)
1205 break;
1206 }
1207 pagevec_release(&pvec);
1208 }
1209 return num;
1210 }
1211
1212 /*
1213 * The ext4_map_blocks() function tries to look up the requested blocks,
1214 * and returns if the blocks are already mapped.
1215 *
1216 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1217 * and store the allocated blocks in the result buffer head and mark it
1218 * mapped.
1219 *
1220 * If file type is extents based, it will call ext4_ext_map_blocks(),
1221 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1222 * based files
1223 *
1224 * On success, it returns the number of blocks being mapped or allocate.
1225 * if create==0 and the blocks are pre-allocated and uninitialized block,
1226 * the result buffer head is unmapped. If the create ==1, it will make sure
1227 * the buffer head is mapped.
1228 *
1229 * It returns 0 if plain look up failed (blocks have not been allocated), in
1230 * that casem, buffer head is unmapped
1231 *
1232 * It returns the error in case of allocation failure.
1233 */
1234 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1235 struct ext4_map_blocks *map, int flags)
1236 {
1237 int retval;
1238
1239 map->m_flags = 0;
1240 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1241 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1242 (unsigned long) map->m_lblk);
1243 /*
1244 * Try to see if we can get the block without requesting a new
1245 * file system block.
1246 */
1247 down_read((&EXT4_I(inode)->i_data_sem));
1248 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1249 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1250 } else {
1251 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1252 }
1253 up_read((&EXT4_I(inode)->i_data_sem));
1254
1255 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1256 int ret = check_block_validity(inode, map);
1257 if (ret != 0)
1258 return ret;
1259 }
1260
1261 /* If it is only a block(s) look up */
1262 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1263 return retval;
1264
1265 /*
1266 * Returns if the blocks have already allocated
1267 *
1268 * Note that if blocks have been preallocated
1269 * ext4_ext_get_block() returns th create = 0
1270 * with buffer head unmapped.
1271 */
1272 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1273 return retval;
1274
1275 /*
1276 * When we call get_blocks without the create flag, the
1277 * BH_Unwritten flag could have gotten set if the blocks
1278 * requested were part of a uninitialized extent. We need to
1279 * clear this flag now that we are committed to convert all or
1280 * part of the uninitialized extent to be an initialized
1281 * extent. This is because we need to avoid the combination
1282 * of BH_Unwritten and BH_Mapped flags being simultaneously
1283 * set on the buffer_head.
1284 */
1285 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1286
1287 /*
1288 * New blocks allocate and/or writing to uninitialized extent
1289 * will possibly result in updating i_data, so we take
1290 * the write lock of i_data_sem, and call get_blocks()
1291 * with create == 1 flag.
1292 */
1293 down_write((&EXT4_I(inode)->i_data_sem));
1294
1295 /*
1296 * if the caller is from delayed allocation writeout path
1297 * we have already reserved fs blocks for allocation
1298 * let the underlying get_block() function know to
1299 * avoid double accounting
1300 */
1301 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1302 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1303 /*
1304 * We need to check for EXT4 here because migrate
1305 * could have changed the inode type in between
1306 */
1307 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1308 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1309 } else {
1310 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1311
1312 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1313 /*
1314 * We allocated new blocks which will result in
1315 * i_data's format changing. Force the migrate
1316 * to fail by clearing migrate flags
1317 */
1318 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1319 }
1320
1321 /*
1322 * Update reserved blocks/metadata blocks after successful
1323 * block allocation which had been deferred till now. We don't
1324 * support fallocate for non extent files. So we can update
1325 * reserve space here.
1326 */
1327 if ((retval > 0) &&
1328 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1329 ext4_da_update_reserve_space(inode, retval, 1);
1330 }
1331 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1332 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1333
1334 up_write((&EXT4_I(inode)->i_data_sem));
1335 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1336 int ret = check_block_validity(inode, map);
1337 if (ret != 0)
1338 return ret;
1339 }
1340 return retval;
1341 }
1342
1343 /* Maximum number of blocks we map for direct IO at once. */
1344 #define DIO_MAX_BLOCKS 4096
1345
1346 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1347 struct buffer_head *bh, int flags)
1348 {
1349 handle_t *handle = ext4_journal_current_handle();
1350 struct ext4_map_blocks map;
1351 int ret = 0, started = 0;
1352 int dio_credits;
1353
1354 map.m_lblk = iblock;
1355 map.m_len = bh->b_size >> inode->i_blkbits;
1356
1357 if (flags && !handle) {
1358 /* Direct IO write... */
1359 if (map.m_len > DIO_MAX_BLOCKS)
1360 map.m_len = DIO_MAX_BLOCKS;
1361 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1362 handle = ext4_journal_start(inode, dio_credits);
1363 if (IS_ERR(handle)) {
1364 ret = PTR_ERR(handle);
1365 return ret;
1366 }
1367 started = 1;
1368 }
1369
1370 ret = ext4_map_blocks(handle, inode, &map, flags);
1371 if (ret > 0) {
1372 map_bh(bh, inode->i_sb, map.m_pblk);
1373 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1374 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1375 ret = 0;
1376 }
1377 if (started)
1378 ext4_journal_stop(handle);
1379 return ret;
1380 }
1381
1382 int ext4_get_block(struct inode *inode, sector_t iblock,
1383 struct buffer_head *bh, int create)
1384 {
1385 return _ext4_get_block(inode, iblock, bh,
1386 create ? EXT4_GET_BLOCKS_CREATE : 0);
1387 }
1388
1389 /*
1390 * `handle' can be NULL if create is zero
1391 */
1392 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1393 ext4_lblk_t block, int create, int *errp)
1394 {
1395 struct ext4_map_blocks map;
1396 struct buffer_head *bh;
1397 int fatal = 0, err;
1398
1399 J_ASSERT(handle != NULL || create == 0);
1400
1401 map.m_lblk = block;
1402 map.m_len = 1;
1403 err = ext4_map_blocks(handle, inode, &map,
1404 create ? EXT4_GET_BLOCKS_CREATE : 0);
1405
1406 if (err < 0)
1407 *errp = err;
1408 if (err <= 0)
1409 return NULL;
1410 *errp = 0;
1411
1412 bh = sb_getblk(inode->i_sb, map.m_pblk);
1413 if (!bh) {
1414 *errp = -EIO;
1415 return NULL;
1416 }
1417 if (map.m_flags & EXT4_MAP_NEW) {
1418 J_ASSERT(create != 0);
1419 J_ASSERT(handle != NULL);
1420
1421 /*
1422 * Now that we do not always journal data, we should
1423 * keep in mind whether this should always journal the
1424 * new buffer as metadata. For now, regular file
1425 * writes use ext4_get_block instead, so it's not a
1426 * problem.
1427 */
1428 lock_buffer(bh);
1429 BUFFER_TRACE(bh, "call get_create_access");
1430 fatal = ext4_journal_get_create_access(handle, bh);
1431 if (!fatal && !buffer_uptodate(bh)) {
1432 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1433 set_buffer_uptodate(bh);
1434 }
1435 unlock_buffer(bh);
1436 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 err = ext4_handle_dirty_metadata(handle, inode, bh);
1438 if (!fatal)
1439 fatal = err;
1440 } else {
1441 BUFFER_TRACE(bh, "not a new buffer");
1442 }
1443 if (fatal) {
1444 *errp = fatal;
1445 brelse(bh);
1446 bh = NULL;
1447 }
1448 return bh;
1449 }
1450
1451 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1452 ext4_lblk_t block, int create, int *err)
1453 {
1454 struct buffer_head *bh;
1455
1456 bh = ext4_getblk(handle, inode, block, create, err);
1457 if (!bh)
1458 return bh;
1459 if (buffer_uptodate(bh))
1460 return bh;
1461 ll_rw_block(READ_META, 1, &bh);
1462 wait_on_buffer(bh);
1463 if (buffer_uptodate(bh))
1464 return bh;
1465 put_bh(bh);
1466 *err = -EIO;
1467 return NULL;
1468 }
1469
1470 static int walk_page_buffers(handle_t *handle,
1471 struct buffer_head *head,
1472 unsigned from,
1473 unsigned to,
1474 int *partial,
1475 int (*fn)(handle_t *handle,
1476 struct buffer_head *bh))
1477 {
1478 struct buffer_head *bh;
1479 unsigned block_start, block_end;
1480 unsigned blocksize = head->b_size;
1481 int err, ret = 0;
1482 struct buffer_head *next;
1483
1484 for (bh = head, block_start = 0;
1485 ret == 0 && (bh != head || !block_start);
1486 block_start = block_end, bh = next) {
1487 next = bh->b_this_page;
1488 block_end = block_start + blocksize;
1489 if (block_end <= from || block_start >= to) {
1490 if (partial && !buffer_uptodate(bh))
1491 *partial = 1;
1492 continue;
1493 }
1494 err = (*fn)(handle, bh);
1495 if (!ret)
1496 ret = err;
1497 }
1498 return ret;
1499 }
1500
1501 /*
1502 * To preserve ordering, it is essential that the hole instantiation and
1503 * the data write be encapsulated in a single transaction. We cannot
1504 * close off a transaction and start a new one between the ext4_get_block()
1505 * and the commit_write(). So doing the jbd2_journal_start at the start of
1506 * prepare_write() is the right place.
1507 *
1508 * Also, this function can nest inside ext4_writepage() ->
1509 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1510 * has generated enough buffer credits to do the whole page. So we won't
1511 * block on the journal in that case, which is good, because the caller may
1512 * be PF_MEMALLOC.
1513 *
1514 * By accident, ext4 can be reentered when a transaction is open via
1515 * quota file writes. If we were to commit the transaction while thus
1516 * reentered, there can be a deadlock - we would be holding a quota
1517 * lock, and the commit would never complete if another thread had a
1518 * transaction open and was blocking on the quota lock - a ranking
1519 * violation.
1520 *
1521 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1522 * will _not_ run commit under these circumstances because handle->h_ref
1523 * is elevated. We'll still have enough credits for the tiny quotafile
1524 * write.
1525 */
1526 static int do_journal_get_write_access(handle_t *handle,
1527 struct buffer_head *bh)
1528 {
1529 if (!buffer_mapped(bh) || buffer_freed(bh))
1530 return 0;
1531 return ext4_journal_get_write_access(handle, bh);
1532 }
1533
1534 /*
1535 * Truncate blocks that were not used by write. We have to truncate the
1536 * pagecache as well so that corresponding buffers get properly unmapped.
1537 */
1538 static void ext4_truncate_failed_write(struct inode *inode)
1539 {
1540 truncate_inode_pages(inode->i_mapping, inode->i_size);
1541 ext4_truncate(inode);
1542 }
1543
1544 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1545 struct buffer_head *bh_result, int create);
1546 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1547 loff_t pos, unsigned len, unsigned flags,
1548 struct page **pagep, void **fsdata)
1549 {
1550 struct inode *inode = mapping->host;
1551 int ret, needed_blocks;
1552 handle_t *handle;
1553 int retries = 0;
1554 struct page *page;
1555 pgoff_t index;
1556 unsigned from, to;
1557
1558 trace_ext4_write_begin(inode, pos, len, flags);
1559 /*
1560 * Reserve one block more for addition to orphan list in case
1561 * we allocate blocks but write fails for some reason
1562 */
1563 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1564 index = pos >> PAGE_CACHE_SHIFT;
1565 from = pos & (PAGE_CACHE_SIZE - 1);
1566 to = from + len;
1567
1568 retry:
1569 handle = ext4_journal_start(inode, needed_blocks);
1570 if (IS_ERR(handle)) {
1571 ret = PTR_ERR(handle);
1572 goto out;
1573 }
1574
1575 /* We cannot recurse into the filesystem as the transaction is already
1576 * started */
1577 flags |= AOP_FLAG_NOFS;
1578
1579 page = grab_cache_page_write_begin(mapping, index, flags);
1580 if (!page) {
1581 ext4_journal_stop(handle);
1582 ret = -ENOMEM;
1583 goto out;
1584 }
1585 *pagep = page;
1586
1587 if (ext4_should_dioread_nolock(inode))
1588 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1589 fsdata, ext4_get_block_write);
1590 else
1591 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1592 fsdata, ext4_get_block);
1593
1594 if (!ret && ext4_should_journal_data(inode)) {
1595 ret = walk_page_buffers(handle, page_buffers(page),
1596 from, to, NULL, do_journal_get_write_access);
1597 }
1598
1599 if (ret) {
1600 unlock_page(page);
1601 page_cache_release(page);
1602 /*
1603 * block_write_begin may have instantiated a few blocks
1604 * outside i_size. Trim these off again. Don't need
1605 * i_size_read because we hold i_mutex.
1606 *
1607 * Add inode to orphan list in case we crash before
1608 * truncate finishes
1609 */
1610 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1611 ext4_orphan_add(handle, inode);
1612
1613 ext4_journal_stop(handle);
1614 if (pos + len > inode->i_size) {
1615 ext4_truncate_failed_write(inode);
1616 /*
1617 * If truncate failed early the inode might
1618 * still be on the orphan list; we need to
1619 * make sure the inode is removed from the
1620 * orphan list in that case.
1621 */
1622 if (inode->i_nlink)
1623 ext4_orphan_del(NULL, inode);
1624 }
1625 }
1626
1627 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1628 goto retry;
1629 out:
1630 return ret;
1631 }
1632
1633 /* For write_end() in data=journal mode */
1634 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1635 {
1636 if (!buffer_mapped(bh) || buffer_freed(bh))
1637 return 0;
1638 set_buffer_uptodate(bh);
1639 return ext4_handle_dirty_metadata(handle, NULL, bh);
1640 }
1641
1642 static int ext4_generic_write_end(struct file *file,
1643 struct address_space *mapping,
1644 loff_t pos, unsigned len, unsigned copied,
1645 struct page *page, void *fsdata)
1646 {
1647 int i_size_changed = 0;
1648 struct inode *inode = mapping->host;
1649 handle_t *handle = ext4_journal_current_handle();
1650
1651 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1652
1653 /*
1654 * No need to use i_size_read() here, the i_size
1655 * cannot change under us because we hold i_mutex.
1656 *
1657 * But it's important to update i_size while still holding page lock:
1658 * page writeout could otherwise come in and zero beyond i_size.
1659 */
1660 if (pos + copied > inode->i_size) {
1661 i_size_write(inode, pos + copied);
1662 i_size_changed = 1;
1663 }
1664
1665 if (pos + copied > EXT4_I(inode)->i_disksize) {
1666 /* We need to mark inode dirty even if
1667 * new_i_size is less that inode->i_size
1668 * bu greater than i_disksize.(hint delalloc)
1669 */
1670 ext4_update_i_disksize(inode, (pos + copied));
1671 i_size_changed = 1;
1672 }
1673 unlock_page(page);
1674 page_cache_release(page);
1675
1676 /*
1677 * Don't mark the inode dirty under page lock. First, it unnecessarily
1678 * makes the holding time of page lock longer. Second, it forces lock
1679 * ordering of page lock and transaction start for journaling
1680 * filesystems.
1681 */
1682 if (i_size_changed)
1683 ext4_mark_inode_dirty(handle, inode);
1684
1685 return copied;
1686 }
1687
1688 /*
1689 * We need to pick up the new inode size which generic_commit_write gave us
1690 * `file' can be NULL - eg, when called from page_symlink().
1691 *
1692 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1693 * buffers are managed internally.
1694 */
1695 static int ext4_ordered_write_end(struct file *file,
1696 struct address_space *mapping,
1697 loff_t pos, unsigned len, unsigned copied,
1698 struct page *page, void *fsdata)
1699 {
1700 handle_t *handle = ext4_journal_current_handle();
1701 struct inode *inode = mapping->host;
1702 int ret = 0, ret2;
1703
1704 trace_ext4_ordered_write_end(inode, pos, len, copied);
1705 ret = ext4_jbd2_file_inode(handle, inode);
1706
1707 if (ret == 0) {
1708 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1709 page, fsdata);
1710 copied = ret2;
1711 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1712 /* if we have allocated more blocks and copied
1713 * less. We will have blocks allocated outside
1714 * inode->i_size. So truncate them
1715 */
1716 ext4_orphan_add(handle, inode);
1717 if (ret2 < 0)
1718 ret = ret2;
1719 }
1720 ret2 = ext4_journal_stop(handle);
1721 if (!ret)
1722 ret = ret2;
1723
1724 if (pos + len > inode->i_size) {
1725 ext4_truncate_failed_write(inode);
1726 /*
1727 * If truncate failed early the inode might still be
1728 * on the orphan list; we need to make sure the inode
1729 * is removed from the orphan list in that case.
1730 */
1731 if (inode->i_nlink)
1732 ext4_orphan_del(NULL, inode);
1733 }
1734
1735
1736 return ret ? ret : copied;
1737 }
1738
1739 static int ext4_writeback_write_end(struct file *file,
1740 struct address_space *mapping,
1741 loff_t pos, unsigned len, unsigned copied,
1742 struct page *page, void *fsdata)
1743 {
1744 handle_t *handle = ext4_journal_current_handle();
1745 struct inode *inode = mapping->host;
1746 int ret = 0, ret2;
1747
1748 trace_ext4_writeback_write_end(inode, pos, len, copied);
1749 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1750 page, fsdata);
1751 copied = ret2;
1752 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1753 /* if we have allocated more blocks and copied
1754 * less. We will have blocks allocated outside
1755 * inode->i_size. So truncate them
1756 */
1757 ext4_orphan_add(handle, inode);
1758
1759 if (ret2 < 0)
1760 ret = ret2;
1761
1762 ret2 = ext4_journal_stop(handle);
1763 if (!ret)
1764 ret = ret2;
1765
1766 if (pos + len > inode->i_size) {
1767 ext4_truncate_failed_write(inode);
1768 /*
1769 * If truncate failed early the inode might still be
1770 * on the orphan list; we need to make sure the inode
1771 * is removed from the orphan list in that case.
1772 */
1773 if (inode->i_nlink)
1774 ext4_orphan_del(NULL, inode);
1775 }
1776
1777 return ret ? ret : copied;
1778 }
1779
1780 static int ext4_journalled_write_end(struct file *file,
1781 struct address_space *mapping,
1782 loff_t pos, unsigned len, unsigned copied,
1783 struct page *page, void *fsdata)
1784 {
1785 handle_t *handle = ext4_journal_current_handle();
1786 struct inode *inode = mapping->host;
1787 int ret = 0, ret2;
1788 int partial = 0;
1789 unsigned from, to;
1790 loff_t new_i_size;
1791
1792 trace_ext4_journalled_write_end(inode, pos, len, copied);
1793 from = pos & (PAGE_CACHE_SIZE - 1);
1794 to = from + len;
1795
1796 if (copied < len) {
1797 if (!PageUptodate(page))
1798 copied = 0;
1799 page_zero_new_buffers(page, from+copied, to);
1800 }
1801
1802 ret = walk_page_buffers(handle, page_buffers(page), from,
1803 to, &partial, write_end_fn);
1804 if (!partial)
1805 SetPageUptodate(page);
1806 new_i_size = pos + copied;
1807 if (new_i_size > inode->i_size)
1808 i_size_write(inode, pos+copied);
1809 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1810 if (new_i_size > EXT4_I(inode)->i_disksize) {
1811 ext4_update_i_disksize(inode, new_i_size);
1812 ret2 = ext4_mark_inode_dirty(handle, inode);
1813 if (!ret)
1814 ret = ret2;
1815 }
1816
1817 unlock_page(page);
1818 page_cache_release(page);
1819 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1820 /* if we have allocated more blocks and copied
1821 * less. We will have blocks allocated outside
1822 * inode->i_size. So truncate them
1823 */
1824 ext4_orphan_add(handle, inode);
1825
1826 ret2 = ext4_journal_stop(handle);
1827 if (!ret)
1828 ret = ret2;
1829 if (pos + len > inode->i_size) {
1830 ext4_truncate_failed_write(inode);
1831 /*
1832 * If truncate failed early the inode might still be
1833 * on the orphan list; we need to make sure the inode
1834 * is removed from the orphan list in that case.
1835 */
1836 if (inode->i_nlink)
1837 ext4_orphan_del(NULL, inode);
1838 }
1839
1840 return ret ? ret : copied;
1841 }
1842
1843 /*
1844 * Reserve a single block located at lblock
1845 */
1846 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1847 {
1848 int retries = 0;
1849 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1850 struct ext4_inode_info *ei = EXT4_I(inode);
1851 unsigned long md_needed;
1852 int ret;
1853
1854 /*
1855 * recalculate the amount of metadata blocks to reserve
1856 * in order to allocate nrblocks
1857 * worse case is one extent per block
1858 */
1859 repeat:
1860 spin_lock(&ei->i_block_reservation_lock);
1861 md_needed = ext4_calc_metadata_amount(inode, lblock);
1862 trace_ext4_da_reserve_space(inode, md_needed);
1863 spin_unlock(&ei->i_block_reservation_lock);
1864
1865 /*
1866 * We will charge metadata quota at writeout time; this saves
1867 * us from metadata over-estimation, though we may go over by
1868 * a small amount in the end. Here we just reserve for data.
1869 */
1870 ret = dquot_reserve_block(inode, 1);
1871 if (ret)
1872 return ret;
1873 /*
1874 * We do still charge estimated metadata to the sb though;
1875 * we cannot afford to run out of free blocks.
1876 */
1877 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1878 dquot_release_reservation_block(inode, 1);
1879 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1880 yield();
1881 goto repeat;
1882 }
1883 return -ENOSPC;
1884 }
1885 spin_lock(&ei->i_block_reservation_lock);
1886 ei->i_reserved_data_blocks++;
1887 ei->i_reserved_meta_blocks += md_needed;
1888 spin_unlock(&ei->i_block_reservation_lock);
1889
1890 return 0; /* success */
1891 }
1892
1893 static void ext4_da_release_space(struct inode *inode, int to_free)
1894 {
1895 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1896 struct ext4_inode_info *ei = EXT4_I(inode);
1897
1898 if (!to_free)
1899 return; /* Nothing to release, exit */
1900
1901 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1902
1903 trace_ext4_da_release_space(inode, to_free);
1904 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1905 /*
1906 * if there aren't enough reserved blocks, then the
1907 * counter is messed up somewhere. Since this
1908 * function is called from invalidate page, it's
1909 * harmless to return without any action.
1910 */
1911 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1912 "ino %lu, to_free %d with only %d reserved "
1913 "data blocks\n", inode->i_ino, to_free,
1914 ei->i_reserved_data_blocks);
1915 WARN_ON(1);
1916 to_free = ei->i_reserved_data_blocks;
1917 }
1918 ei->i_reserved_data_blocks -= to_free;
1919
1920 if (ei->i_reserved_data_blocks == 0) {
1921 /*
1922 * We can release all of the reserved metadata blocks
1923 * only when we have written all of the delayed
1924 * allocation blocks.
1925 */
1926 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1927 ei->i_reserved_meta_blocks);
1928 ei->i_reserved_meta_blocks = 0;
1929 ei->i_da_metadata_calc_len = 0;
1930 }
1931
1932 /* update fs dirty data blocks counter */
1933 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1934
1935 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1936
1937 dquot_release_reservation_block(inode, to_free);
1938 }
1939
1940 static void ext4_da_page_release_reservation(struct page *page,
1941 unsigned long offset)
1942 {
1943 int to_release = 0;
1944 struct buffer_head *head, *bh;
1945 unsigned int curr_off = 0;
1946
1947 head = page_buffers(page);
1948 bh = head;
1949 do {
1950 unsigned int next_off = curr_off + bh->b_size;
1951
1952 if ((offset <= curr_off) && (buffer_delay(bh))) {
1953 to_release++;
1954 clear_buffer_delay(bh);
1955 }
1956 curr_off = next_off;
1957 } while ((bh = bh->b_this_page) != head);
1958 ext4_da_release_space(page->mapping->host, to_release);
1959 }
1960
1961 /*
1962 * Delayed allocation stuff
1963 */
1964
1965 /*
1966 * mpage_da_submit_io - walks through extent of pages and try to write
1967 * them with writepage() call back
1968 *
1969 * @mpd->inode: inode
1970 * @mpd->first_page: first page of the extent
1971 * @mpd->next_page: page after the last page of the extent
1972 *
1973 * By the time mpage_da_submit_io() is called we expect all blocks
1974 * to be allocated. this may be wrong if allocation failed.
1975 *
1976 * As pages are already locked by write_cache_pages(), we can't use it
1977 */
1978 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1979 {
1980 long pages_skipped;
1981 struct pagevec pvec;
1982 unsigned long index, end;
1983 int ret = 0, err, nr_pages, i;
1984 struct inode *inode = mpd->inode;
1985 struct address_space *mapping = inode->i_mapping;
1986
1987 BUG_ON(mpd->next_page <= mpd->first_page);
1988 /*
1989 * We need to start from the first_page to the next_page - 1
1990 * to make sure we also write the mapped dirty buffer_heads.
1991 * If we look at mpd->b_blocknr we would only be looking
1992 * at the currently mapped buffer_heads.
1993 */
1994 index = mpd->first_page;
1995 end = mpd->next_page - 1;
1996
1997 pagevec_init(&pvec, 0);
1998 while (index <= end) {
1999 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2000 if (nr_pages == 0)
2001 break;
2002 for (i = 0; i < nr_pages; i++) {
2003 struct page *page = pvec.pages[i];
2004
2005 index = page->index;
2006 if (index > end)
2007 break;
2008 index++;
2009
2010 BUG_ON(!PageLocked(page));
2011 BUG_ON(PageWriteback(page));
2012
2013 pages_skipped = mpd->wbc->pages_skipped;
2014 err = mapping->a_ops->writepage(page, mpd->wbc);
2015 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2016 /*
2017 * have successfully written the page
2018 * without skipping the same
2019 */
2020 mpd->pages_written++;
2021 /*
2022 * In error case, we have to continue because
2023 * remaining pages are still locked
2024 * XXX: unlock and re-dirty them?
2025 */
2026 if (ret == 0)
2027 ret = err;
2028 }
2029 pagevec_release(&pvec);
2030 }
2031 return ret;
2032 }
2033
2034 /*
2035 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2036 *
2037 * the function goes through all passed space and put actual disk
2038 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2039 */
2040 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2041 struct ext4_map_blocks *map)
2042 {
2043 struct inode *inode = mpd->inode;
2044 struct address_space *mapping = inode->i_mapping;
2045 int blocks = map->m_len;
2046 sector_t pblock = map->m_pblk, cur_logical;
2047 struct buffer_head *head, *bh;
2048 pgoff_t index, end;
2049 struct pagevec pvec;
2050 int nr_pages, i;
2051
2052 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2053 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2054 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2055
2056 pagevec_init(&pvec, 0);
2057
2058 while (index <= end) {
2059 /* XXX: optimize tail */
2060 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2061 if (nr_pages == 0)
2062 break;
2063 for (i = 0; i < nr_pages; i++) {
2064 struct page *page = pvec.pages[i];
2065
2066 index = page->index;
2067 if (index > end)
2068 break;
2069 index++;
2070
2071 BUG_ON(!PageLocked(page));
2072 BUG_ON(PageWriteback(page));
2073 BUG_ON(!page_has_buffers(page));
2074
2075 bh = page_buffers(page);
2076 head = bh;
2077
2078 /* skip blocks out of the range */
2079 do {
2080 if (cur_logical >= map->m_lblk)
2081 break;
2082 cur_logical++;
2083 } while ((bh = bh->b_this_page) != head);
2084
2085 do {
2086 if (cur_logical >= map->m_lblk + blocks)
2087 break;
2088
2089 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2090
2091 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2092
2093 if (buffer_delay(bh)) {
2094 clear_buffer_delay(bh);
2095 bh->b_blocknr = pblock;
2096 } else {
2097 /*
2098 * unwritten already should have
2099 * blocknr assigned. Verify that
2100 */
2101 clear_buffer_unwritten(bh);
2102 BUG_ON(bh->b_blocknr != pblock);
2103 }
2104
2105 } else if (buffer_mapped(bh))
2106 BUG_ON(bh->b_blocknr != pblock);
2107
2108 if (map->m_flags & EXT4_MAP_UNINIT)
2109 set_buffer_uninit(bh);
2110 cur_logical++;
2111 pblock++;
2112 } while ((bh = bh->b_this_page) != head);
2113 }
2114 pagevec_release(&pvec);
2115 }
2116 }
2117
2118
2119 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2120 sector_t logical, long blk_cnt)
2121 {
2122 int nr_pages, i;
2123 pgoff_t index, end;
2124 struct pagevec pvec;
2125 struct inode *inode = mpd->inode;
2126 struct address_space *mapping = inode->i_mapping;
2127
2128 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2129 end = (logical + blk_cnt - 1) >>
2130 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2131 while (index <= end) {
2132 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2133 if (nr_pages == 0)
2134 break;
2135 for (i = 0; i < nr_pages; i++) {
2136 struct page *page = pvec.pages[i];
2137 if (page->index > end)
2138 break;
2139 BUG_ON(!PageLocked(page));
2140 BUG_ON(PageWriteback(page));
2141 block_invalidatepage(page, 0);
2142 ClearPageUptodate(page);
2143 unlock_page(page);
2144 }
2145 index = pvec.pages[nr_pages - 1]->index + 1;
2146 pagevec_release(&pvec);
2147 }
2148 return;
2149 }
2150
2151 static void ext4_print_free_blocks(struct inode *inode)
2152 {
2153 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2154 printk(KERN_CRIT "Total free blocks count %lld\n",
2155 ext4_count_free_blocks(inode->i_sb));
2156 printk(KERN_CRIT "Free/Dirty block details\n");
2157 printk(KERN_CRIT "free_blocks=%lld\n",
2158 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2159 printk(KERN_CRIT "dirty_blocks=%lld\n",
2160 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2161 printk(KERN_CRIT "Block reservation details\n");
2162 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2163 EXT4_I(inode)->i_reserved_data_blocks);
2164 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2165 EXT4_I(inode)->i_reserved_meta_blocks);
2166 return;
2167 }
2168
2169 /*
2170 * mpage_da_map_blocks - go through given space
2171 *
2172 * @mpd - bh describing space
2173 *
2174 * The function skips space we know is already mapped to disk blocks.
2175 *
2176 */
2177 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2178 {
2179 int err, blks, get_blocks_flags;
2180 struct ext4_map_blocks map;
2181 sector_t next = mpd->b_blocknr;
2182 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2183 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2184 handle_t *handle = NULL;
2185
2186 /*
2187 * We consider only non-mapped and non-allocated blocks
2188 */
2189 if ((mpd->b_state & (1 << BH_Mapped)) &&
2190 !(mpd->b_state & (1 << BH_Delay)) &&
2191 !(mpd->b_state & (1 << BH_Unwritten)))
2192 return 0;
2193
2194 /*
2195 * If we didn't accumulate anything to write simply return
2196 */
2197 if (!mpd->b_size)
2198 return 0;
2199
2200 handle = ext4_journal_current_handle();
2201 BUG_ON(!handle);
2202
2203 /*
2204 * Call ext4_map_blocks() to allocate any delayed allocation
2205 * blocks, or to convert an uninitialized extent to be
2206 * initialized (in the case where we have written into
2207 * one or more preallocated blocks).
2208 *
2209 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2210 * indicate that we are on the delayed allocation path. This
2211 * affects functions in many different parts of the allocation
2212 * call path. This flag exists primarily because we don't
2213 * want to change *many* call functions, so ext4_map_blocks()
2214 * will set the magic i_delalloc_reserved_flag once the
2215 * inode's allocation semaphore is taken.
2216 *
2217 * If the blocks in questions were delalloc blocks, set
2218 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2219 * variables are updated after the blocks have been allocated.
2220 */
2221 map.m_lblk = next;
2222 map.m_len = max_blocks;
2223 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2224 if (ext4_should_dioread_nolock(mpd->inode))
2225 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2226 if (mpd->b_state & (1 << BH_Delay))
2227 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2228
2229 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2230 if (blks < 0) {
2231 struct super_block *sb = mpd->inode->i_sb;
2232
2233 err = blks;
2234 /*
2235 * If get block returns with error we simply
2236 * return. Later writepage will redirty the page and
2237 * writepages will find the dirty page again
2238 */
2239 if (err == -EAGAIN)
2240 return 0;
2241
2242 if (err == -ENOSPC &&
2243 ext4_count_free_blocks(sb)) {
2244 mpd->retval = err;
2245 return 0;
2246 }
2247
2248 /*
2249 * get block failure will cause us to loop in
2250 * writepages, because a_ops->writepage won't be able
2251 * to make progress. The page will be redirtied by
2252 * writepage and writepages will again try to write
2253 * the same.
2254 */
2255 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2256 ext4_msg(sb, KERN_CRIT,
2257 "delayed block allocation failed for inode %lu "
2258 "at logical offset %llu with max blocks %zd "
2259 "with error %d", mpd->inode->i_ino,
2260 (unsigned long long) next,
2261 mpd->b_size >> mpd->inode->i_blkbits, err);
2262 ext4_msg(sb, KERN_CRIT,
2263 "This should not happen!! Data will be lost\n");
2264 if (err == -ENOSPC)
2265 ext4_print_free_blocks(mpd->inode);
2266 }
2267 /* invalidate all the pages */
2268 ext4_da_block_invalidatepages(mpd, next,
2269 mpd->b_size >> mpd->inode->i_blkbits);
2270 return err;
2271 }
2272 BUG_ON(blks == 0);
2273
2274 if (map.m_flags & EXT4_MAP_NEW) {
2275 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2276 int i;
2277
2278 for (i = 0; i < map.m_len; i++)
2279 unmap_underlying_metadata(bdev, map.m_pblk + i);
2280 }
2281
2282 /*
2283 * If blocks are delayed marked, we need to
2284 * put actual blocknr and drop delayed bit
2285 */
2286 if ((mpd->b_state & (1 << BH_Delay)) ||
2287 (mpd->b_state & (1 << BH_Unwritten)))
2288 mpage_put_bnr_to_bhs(mpd, &map);
2289
2290 if (ext4_should_order_data(mpd->inode)) {
2291 err = ext4_jbd2_file_inode(handle, mpd->inode);
2292 if (err)
2293 return err;
2294 }
2295
2296 /*
2297 * Update on-disk size along with block allocation.
2298 */
2299 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2300 if (disksize > i_size_read(mpd->inode))
2301 disksize = i_size_read(mpd->inode);
2302 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2303 ext4_update_i_disksize(mpd->inode, disksize);
2304 return ext4_mark_inode_dirty(handle, mpd->inode);
2305 }
2306
2307 return 0;
2308 }
2309
2310 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2311 (1 << BH_Delay) | (1 << BH_Unwritten))
2312
2313 /*
2314 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2315 *
2316 * @mpd->lbh - extent of blocks
2317 * @logical - logical number of the block in the file
2318 * @bh - bh of the block (used to access block's state)
2319 *
2320 * the function is used to collect contig. blocks in same state
2321 */
2322 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2323 sector_t logical, size_t b_size,
2324 unsigned long b_state)
2325 {
2326 sector_t next;
2327 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2328
2329 /*
2330 * XXX Don't go larger than mballoc is willing to allocate
2331 * This is a stopgap solution. We eventually need to fold
2332 * mpage_da_submit_io() into this function and then call
2333 * ext4_map_blocks() multiple times in a loop
2334 */
2335 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2336 goto flush_it;
2337
2338 /* check if thereserved journal credits might overflow */
2339 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2340 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2341 /*
2342 * With non-extent format we are limited by the journal
2343 * credit available. Total credit needed to insert
2344 * nrblocks contiguous blocks is dependent on the
2345 * nrblocks. So limit nrblocks.
2346 */
2347 goto flush_it;
2348 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2349 EXT4_MAX_TRANS_DATA) {
2350 /*
2351 * Adding the new buffer_head would make it cross the
2352 * allowed limit for which we have journal credit
2353 * reserved. So limit the new bh->b_size
2354 */
2355 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2356 mpd->inode->i_blkbits;
2357 /* we will do mpage_da_submit_io in the next loop */
2358 }
2359 }
2360 /*
2361 * First block in the extent
2362 */
2363 if (mpd->b_size == 0) {
2364 mpd->b_blocknr = logical;
2365 mpd->b_size = b_size;
2366 mpd->b_state = b_state & BH_FLAGS;
2367 return;
2368 }
2369
2370 next = mpd->b_blocknr + nrblocks;
2371 /*
2372 * Can we merge the block to our big extent?
2373 */
2374 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2375 mpd->b_size += b_size;
2376 return;
2377 }
2378
2379 flush_it:
2380 /*
2381 * We couldn't merge the block to our extent, so we
2382 * need to flush current extent and start new one
2383 */
2384 if (mpage_da_map_blocks(mpd) == 0)
2385 mpage_da_submit_io(mpd);
2386 mpd->io_done = 1;
2387 return;
2388 }
2389
2390 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2391 {
2392 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2393 }
2394
2395 /*
2396 * __mpage_da_writepage - finds extent of pages and blocks
2397 *
2398 * @page: page to consider
2399 * @wbc: not used, we just follow rules
2400 * @data: context
2401 *
2402 * The function finds extents of pages and scan them for all blocks.
2403 */
2404 static int __mpage_da_writepage(struct page *page,
2405 struct writeback_control *wbc, void *data)
2406 {
2407 struct mpage_da_data *mpd = data;
2408 struct inode *inode = mpd->inode;
2409 struct buffer_head *bh, *head;
2410 sector_t logical;
2411
2412 /*
2413 * Can we merge this page to current extent?
2414 */
2415 if (mpd->next_page != page->index) {
2416 /*
2417 * Nope, we can't. So, we map non-allocated blocks
2418 * and start IO on them using writepage()
2419 */
2420 if (mpd->next_page != mpd->first_page) {
2421 if (mpage_da_map_blocks(mpd) == 0)
2422 mpage_da_submit_io(mpd);
2423 /*
2424 * skip rest of the page in the page_vec
2425 */
2426 mpd->io_done = 1;
2427 redirty_page_for_writepage(wbc, page);
2428 unlock_page(page);
2429 return MPAGE_DA_EXTENT_TAIL;
2430 }
2431
2432 /*
2433 * Start next extent of pages ...
2434 */
2435 mpd->first_page = page->index;
2436
2437 /*
2438 * ... and blocks
2439 */
2440 mpd->b_size = 0;
2441 mpd->b_state = 0;
2442 mpd->b_blocknr = 0;
2443 }
2444
2445 mpd->next_page = page->index + 1;
2446 logical = (sector_t) page->index <<
2447 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2448
2449 if (!page_has_buffers(page)) {
2450 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2451 (1 << BH_Dirty) | (1 << BH_Uptodate));
2452 if (mpd->io_done)
2453 return MPAGE_DA_EXTENT_TAIL;
2454 } else {
2455 /*
2456 * Page with regular buffer heads, just add all dirty ones
2457 */
2458 head = page_buffers(page);
2459 bh = head;
2460 do {
2461 BUG_ON(buffer_locked(bh));
2462 /*
2463 * We need to try to allocate
2464 * unmapped blocks in the same page.
2465 * Otherwise we won't make progress
2466 * with the page in ext4_writepage
2467 */
2468 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2469 mpage_add_bh_to_extent(mpd, logical,
2470 bh->b_size,
2471 bh->b_state);
2472 if (mpd->io_done)
2473 return MPAGE_DA_EXTENT_TAIL;
2474 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2475 /*
2476 * mapped dirty buffer. We need to update
2477 * the b_state because we look at
2478 * b_state in mpage_da_map_blocks. We don't
2479 * update b_size because if we find an
2480 * unmapped buffer_head later we need to
2481 * use the b_state flag of that buffer_head.
2482 */
2483 if (mpd->b_size == 0)
2484 mpd->b_state = bh->b_state & BH_FLAGS;
2485 }
2486 logical++;
2487 } while ((bh = bh->b_this_page) != head);
2488 }
2489
2490 return 0;
2491 }
2492
2493 /*
2494 * This is a special get_blocks_t callback which is used by
2495 * ext4_da_write_begin(). It will either return mapped block or
2496 * reserve space for a single block.
2497 *
2498 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2499 * We also have b_blocknr = -1 and b_bdev initialized properly
2500 *
2501 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2502 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2503 * initialized properly.
2504 */
2505 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2506 struct buffer_head *bh, int create)
2507 {
2508 struct ext4_map_blocks map;
2509 int ret = 0;
2510 sector_t invalid_block = ~((sector_t) 0xffff);
2511
2512 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2513 invalid_block = ~0;
2514
2515 BUG_ON(create == 0);
2516 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2517
2518 map.m_lblk = iblock;
2519 map.m_len = 1;
2520
2521 /*
2522 * first, we need to know whether the block is allocated already
2523 * preallocated blocks are unmapped but should treated
2524 * the same as allocated blocks.
2525 */
2526 ret = ext4_map_blocks(NULL, inode, &map, 0);
2527 if (ret < 0)
2528 return ret;
2529 if (ret == 0) {
2530 if (buffer_delay(bh))
2531 return 0; /* Not sure this could or should happen */
2532 /*
2533 * XXX: __block_prepare_write() unmaps passed block,
2534 * is it OK?
2535 */
2536 ret = ext4_da_reserve_space(inode, iblock);
2537 if (ret)
2538 /* not enough space to reserve */
2539 return ret;
2540
2541 map_bh(bh, inode->i_sb, invalid_block);
2542 set_buffer_new(bh);
2543 set_buffer_delay(bh);
2544 return 0;
2545 }
2546
2547 map_bh(bh, inode->i_sb, map.m_pblk);
2548 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2549
2550 if (buffer_unwritten(bh)) {
2551 /* A delayed write to unwritten bh should be marked
2552 * new and mapped. Mapped ensures that we don't do
2553 * get_block multiple times when we write to the same
2554 * offset and new ensures that we do proper zero out
2555 * for partial write.
2556 */
2557 set_buffer_new(bh);
2558 set_buffer_mapped(bh);
2559 }
2560 return 0;
2561 }
2562
2563 /*
2564 * This function is used as a standard get_block_t calback function
2565 * when there is no desire to allocate any blocks. It is used as a
2566 * callback function for block_prepare_write() and block_write_full_page().
2567 * These functions should only try to map a single block at a time.
2568 *
2569 * Since this function doesn't do block allocations even if the caller
2570 * requests it by passing in create=1, it is critically important that
2571 * any caller checks to make sure that any buffer heads are returned
2572 * by this function are either all already mapped or marked for
2573 * delayed allocation before calling block_write_full_page(). Otherwise,
2574 * b_blocknr could be left unitialized, and the page write functions will
2575 * be taken by surprise.
2576 */
2577 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2578 struct buffer_head *bh_result, int create)
2579 {
2580 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2581 return _ext4_get_block(inode, iblock, bh_result, 0);
2582 }
2583
2584 static int bget_one(handle_t *handle, struct buffer_head *bh)
2585 {
2586 get_bh(bh);
2587 return 0;
2588 }
2589
2590 static int bput_one(handle_t *handle, struct buffer_head *bh)
2591 {
2592 put_bh(bh);
2593 return 0;
2594 }
2595
2596 static int __ext4_journalled_writepage(struct page *page,
2597 unsigned int len)
2598 {
2599 struct address_space *mapping = page->mapping;
2600 struct inode *inode = mapping->host;
2601 struct buffer_head *page_bufs;
2602 handle_t *handle = NULL;
2603 int ret = 0;
2604 int err;
2605
2606 page_bufs = page_buffers(page);
2607 BUG_ON(!page_bufs);
2608 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2609 /* As soon as we unlock the page, it can go away, but we have
2610 * references to buffers so we are safe */
2611 unlock_page(page);
2612
2613 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2614 if (IS_ERR(handle)) {
2615 ret = PTR_ERR(handle);
2616 goto out;
2617 }
2618
2619 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2620 do_journal_get_write_access);
2621
2622 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2623 write_end_fn);
2624 if (ret == 0)
2625 ret = err;
2626 err = ext4_journal_stop(handle);
2627 if (!ret)
2628 ret = err;
2629
2630 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2631 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2632 out:
2633 return ret;
2634 }
2635
2636 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2637 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2638
2639 /*
2640 * Note that we don't need to start a transaction unless we're journaling data
2641 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2642 * need to file the inode to the transaction's list in ordered mode because if
2643 * we are writing back data added by write(), the inode is already there and if
2644 * we are writing back data modified via mmap(), noone guarantees in which
2645 * transaction the data will hit the disk. In case we are journaling data, we
2646 * cannot start transaction directly because transaction start ranks above page
2647 * lock so we have to do some magic.
2648 *
2649 * This function can get called via...
2650 * - ext4_da_writepages after taking page lock (have journal handle)
2651 * - journal_submit_inode_data_buffers (no journal handle)
2652 * - shrink_page_list via pdflush (no journal handle)
2653 * - grab_page_cache when doing write_begin (have journal handle)
2654 *
2655 * We don't do any block allocation in this function. If we have page with
2656 * multiple blocks we need to write those buffer_heads that are mapped. This
2657 * is important for mmaped based write. So if we do with blocksize 1K
2658 * truncate(f, 1024);
2659 * a = mmap(f, 0, 4096);
2660 * a[0] = 'a';
2661 * truncate(f, 4096);
2662 * we have in the page first buffer_head mapped via page_mkwrite call back
2663 * but other bufer_heads would be unmapped but dirty(dirty done via the
2664 * do_wp_page). So writepage should write the first block. If we modify
2665 * the mmap area beyond 1024 we will again get a page_fault and the
2666 * page_mkwrite callback will do the block allocation and mark the
2667 * buffer_heads mapped.
2668 *
2669 * We redirty the page if we have any buffer_heads that is either delay or
2670 * unwritten in the page.
2671 *
2672 * We can get recursively called as show below.
2673 *
2674 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2675 * ext4_writepage()
2676 *
2677 * But since we don't do any block allocation we should not deadlock.
2678 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2679 */
2680 static int ext4_writepage(struct page *page,
2681 struct writeback_control *wbc)
2682 {
2683 int ret = 0;
2684 loff_t size;
2685 unsigned int len;
2686 struct buffer_head *page_bufs = NULL;
2687 struct inode *inode = page->mapping->host;
2688
2689 trace_ext4_writepage(inode, page);
2690 size = i_size_read(inode);
2691 if (page->index == size >> PAGE_CACHE_SHIFT)
2692 len = size & ~PAGE_CACHE_MASK;
2693 else
2694 len = PAGE_CACHE_SIZE;
2695
2696 if (page_has_buffers(page)) {
2697 page_bufs = page_buffers(page);
2698 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2699 ext4_bh_delay_or_unwritten)) {
2700 /*
2701 * We don't want to do block allocation
2702 * So redirty the page and return
2703 * We may reach here when we do a journal commit
2704 * via journal_submit_inode_data_buffers.
2705 * If we don't have mapping block we just ignore
2706 * them. We can also reach here via shrink_page_list
2707 */
2708 redirty_page_for_writepage(wbc, page);
2709 unlock_page(page);
2710 return 0;
2711 }
2712 } else {
2713 /*
2714 * The test for page_has_buffers() is subtle:
2715 * We know the page is dirty but it lost buffers. That means
2716 * that at some moment in time after write_begin()/write_end()
2717 * has been called all buffers have been clean and thus they
2718 * must have been written at least once. So they are all
2719 * mapped and we can happily proceed with mapping them
2720 * and writing the page.
2721 *
2722 * Try to initialize the buffer_heads and check whether
2723 * all are mapped and non delay. We don't want to
2724 * do block allocation here.
2725 */
2726 ret = block_prepare_write(page, 0, len,
2727 noalloc_get_block_write);
2728 if (!ret) {
2729 page_bufs = page_buffers(page);
2730 /* check whether all are mapped and non delay */
2731 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2732 ext4_bh_delay_or_unwritten)) {
2733 redirty_page_for_writepage(wbc, page);
2734 unlock_page(page);
2735 return 0;
2736 }
2737 } else {
2738 /*
2739 * We can't do block allocation here
2740 * so just redity the page and unlock
2741 * and return
2742 */
2743 redirty_page_for_writepage(wbc, page);
2744 unlock_page(page);
2745 return 0;
2746 }
2747 /* now mark the buffer_heads as dirty and uptodate */
2748 block_commit_write(page, 0, len);
2749 }
2750
2751 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2752 /*
2753 * It's mmapped pagecache. Add buffers and journal it. There
2754 * doesn't seem much point in redirtying the page here.
2755 */
2756 ClearPageChecked(page);
2757 return __ext4_journalled_writepage(page, len);
2758 }
2759
2760 if (page_bufs && buffer_uninit(page_bufs)) {
2761 ext4_set_bh_endio(page_bufs, inode);
2762 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2763 wbc, ext4_end_io_buffer_write);
2764 } else
2765 ret = block_write_full_page(page, noalloc_get_block_write,
2766 wbc);
2767
2768 return ret;
2769 }
2770
2771 /*
2772 * This is called via ext4_da_writepages() to
2773 * calulate the total number of credits to reserve to fit
2774 * a single extent allocation into a single transaction,
2775 * ext4_da_writpeages() will loop calling this before
2776 * the block allocation.
2777 */
2778
2779 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2780 {
2781 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2782
2783 /*
2784 * With non-extent format the journal credit needed to
2785 * insert nrblocks contiguous block is dependent on
2786 * number of contiguous block. So we will limit
2787 * number of contiguous block to a sane value
2788 */
2789 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2790 (max_blocks > EXT4_MAX_TRANS_DATA))
2791 max_blocks = EXT4_MAX_TRANS_DATA;
2792
2793 return ext4_chunk_trans_blocks(inode, max_blocks);
2794 }
2795
2796 /*
2797 * write_cache_pages_da - walk the list of dirty pages of the given
2798 * address space and call the callback function (which usually writes
2799 * the pages).
2800 *
2801 * This is a forked version of write_cache_pages(). Differences:
2802 * Range cyclic is ignored.
2803 * no_nrwrite_index_update is always presumed true
2804 */
2805 static int write_cache_pages_da(struct address_space *mapping,
2806 struct writeback_control *wbc,
2807 struct mpage_da_data *mpd)
2808 {
2809 int ret = 0;
2810 int done = 0;
2811 struct pagevec pvec;
2812 int nr_pages;
2813 pgoff_t index;
2814 pgoff_t end; /* Inclusive */
2815 long nr_to_write = wbc->nr_to_write;
2816
2817 pagevec_init(&pvec, 0);
2818 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2819 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2820
2821 while (!done && (index <= end)) {
2822 int i;
2823
2824 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2825 PAGECACHE_TAG_DIRTY,
2826 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2827 if (nr_pages == 0)
2828 break;
2829
2830 for (i = 0; i < nr_pages; i++) {
2831 struct page *page = pvec.pages[i];
2832
2833 /*
2834 * At this point, the page may be truncated or
2835 * invalidated (changing page->mapping to NULL), or
2836 * even swizzled back from swapper_space to tmpfs file
2837 * mapping. However, page->index will not change
2838 * because we have a reference on the page.
2839 */
2840 if (page->index > end) {
2841 done = 1;
2842 break;
2843 }
2844
2845 lock_page(page);
2846
2847 /*
2848 * Page truncated or invalidated. We can freely skip it
2849 * then, even for data integrity operations: the page
2850 * has disappeared concurrently, so there could be no
2851 * real expectation of this data interity operation
2852 * even if there is now a new, dirty page at the same
2853 * pagecache address.
2854 */
2855 if (unlikely(page->mapping != mapping)) {
2856 continue_unlock:
2857 unlock_page(page);
2858 continue;
2859 }
2860
2861 if (!PageDirty(page)) {
2862 /* someone wrote it for us */
2863 goto continue_unlock;
2864 }
2865
2866 if (PageWriteback(page)) {
2867 if (wbc->sync_mode != WB_SYNC_NONE)
2868 wait_on_page_writeback(page);
2869 else
2870 goto continue_unlock;
2871 }
2872
2873 BUG_ON(PageWriteback(page));
2874 if (!clear_page_dirty_for_io(page))
2875 goto continue_unlock;
2876
2877 ret = __mpage_da_writepage(page, wbc, mpd);
2878 if (unlikely(ret)) {
2879 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2880 unlock_page(page);
2881 ret = 0;
2882 } else {
2883 done = 1;
2884 break;
2885 }
2886 }
2887
2888 if (nr_to_write > 0) {
2889 nr_to_write--;
2890 if (nr_to_write == 0 &&
2891 wbc->sync_mode == WB_SYNC_NONE) {
2892 /*
2893 * We stop writing back only if we are
2894 * not doing integrity sync. In case of
2895 * integrity sync we have to keep going
2896 * because someone may be concurrently
2897 * dirtying pages, and we might have
2898 * synced a lot of newly appeared dirty
2899 * pages, but have not synced all of the
2900 * old dirty pages.
2901 */
2902 done = 1;
2903 break;
2904 }
2905 }
2906 }
2907 pagevec_release(&pvec);
2908 cond_resched();
2909 }
2910 return ret;
2911 }
2912
2913
2914 static int ext4_da_writepages(struct address_space *mapping,
2915 struct writeback_control *wbc)
2916 {
2917 pgoff_t index;
2918 int range_whole = 0;
2919 handle_t *handle = NULL;
2920 struct mpage_da_data mpd;
2921 struct inode *inode = mapping->host;
2922 int pages_written = 0;
2923 long pages_skipped;
2924 unsigned int max_pages;
2925 int range_cyclic, cycled = 1, io_done = 0;
2926 int needed_blocks, ret = 0;
2927 long desired_nr_to_write, nr_to_writebump = 0;
2928 loff_t range_start = wbc->range_start;
2929 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2930
2931 trace_ext4_da_writepages(inode, wbc);
2932
2933 /*
2934 * No pages to write? This is mainly a kludge to avoid starting
2935 * a transaction for special inodes like journal inode on last iput()
2936 * because that could violate lock ordering on umount
2937 */
2938 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2939 return 0;
2940
2941 /*
2942 * If the filesystem has aborted, it is read-only, so return
2943 * right away instead of dumping stack traces later on that
2944 * will obscure the real source of the problem. We test
2945 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2946 * the latter could be true if the filesystem is mounted
2947 * read-only, and in that case, ext4_da_writepages should
2948 * *never* be called, so if that ever happens, we would want
2949 * the stack trace.
2950 */
2951 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2952 return -EROFS;
2953
2954 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2955 range_whole = 1;
2956
2957 range_cyclic = wbc->range_cyclic;
2958 if (wbc->range_cyclic) {
2959 index = mapping->writeback_index;
2960 if (index)
2961 cycled = 0;
2962 wbc->range_start = index << PAGE_CACHE_SHIFT;
2963 wbc->range_end = LLONG_MAX;
2964 wbc->range_cyclic = 0;
2965 } else
2966 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2967
2968 /*
2969 * This works around two forms of stupidity. The first is in
2970 * the writeback code, which caps the maximum number of pages
2971 * written to be 1024 pages. This is wrong on multiple
2972 * levels; different architectues have a different page size,
2973 * which changes the maximum amount of data which gets
2974 * written. Secondly, 4 megabytes is way too small. XFS
2975 * forces this value to be 16 megabytes by multiplying
2976 * nr_to_write parameter by four, and then relies on its
2977 * allocator to allocate larger extents to make them
2978 * contiguous. Unfortunately this brings us to the second
2979 * stupidity, which is that ext4's mballoc code only allocates
2980 * at most 2048 blocks. So we force contiguous writes up to
2981 * the number of dirty blocks in the inode, or
2982 * sbi->max_writeback_mb_bump whichever is smaller.
2983 */
2984 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2985 if (!range_cyclic && range_whole)
2986 desired_nr_to_write = wbc->nr_to_write * 8;
2987 else
2988 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2989 max_pages);
2990 if (desired_nr_to_write > max_pages)
2991 desired_nr_to_write = max_pages;
2992
2993 if (wbc->nr_to_write < desired_nr_to_write) {
2994 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2995 wbc->nr_to_write = desired_nr_to_write;
2996 }
2997
2998 mpd.wbc = wbc;
2999 mpd.inode = mapping->host;
3000
3001 pages_skipped = wbc->pages_skipped;
3002
3003 retry:
3004 while (!ret && wbc->nr_to_write > 0) {
3005
3006 /*
3007 * we insert one extent at a time. So we need
3008 * credit needed for single extent allocation.
3009 * journalled mode is currently not supported
3010 * by delalloc
3011 */
3012 BUG_ON(ext4_should_journal_data(inode));
3013 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3014
3015 /* start a new transaction*/
3016 handle = ext4_journal_start(inode, needed_blocks);
3017 if (IS_ERR(handle)) {
3018 ret = PTR_ERR(handle);
3019 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3020 "%ld pages, ino %lu; err %d", __func__,
3021 wbc->nr_to_write, inode->i_ino, ret);
3022 goto out_writepages;
3023 }
3024
3025 /*
3026 * Now call __mpage_da_writepage to find the next
3027 * contiguous region of logical blocks that need
3028 * blocks to be allocated by ext4. We don't actually
3029 * submit the blocks for I/O here, even though
3030 * write_cache_pages thinks it will, and will set the
3031 * pages as clean for write before calling
3032 * __mpage_da_writepage().
3033 */
3034 mpd.b_size = 0;
3035 mpd.b_state = 0;
3036 mpd.b_blocknr = 0;
3037 mpd.first_page = 0;
3038 mpd.next_page = 0;
3039 mpd.io_done = 0;
3040 mpd.pages_written = 0;
3041 mpd.retval = 0;
3042 ret = write_cache_pages_da(mapping, wbc, &mpd);
3043 /*
3044 * If we have a contiguous extent of pages and we
3045 * haven't done the I/O yet, map the blocks and submit
3046 * them for I/O.
3047 */
3048 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3049 if (mpage_da_map_blocks(&mpd) == 0)
3050 mpage_da_submit_io(&mpd);
3051 mpd.io_done = 1;
3052 ret = MPAGE_DA_EXTENT_TAIL;
3053 }
3054 trace_ext4_da_write_pages(inode, &mpd);
3055 wbc->nr_to_write -= mpd.pages_written;
3056
3057 ext4_journal_stop(handle);
3058
3059 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3060 /* commit the transaction which would
3061 * free blocks released in the transaction
3062 * and try again
3063 */
3064 jbd2_journal_force_commit_nested(sbi->s_journal);
3065 wbc->pages_skipped = pages_skipped;
3066 ret = 0;
3067 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3068 /*
3069 * got one extent now try with
3070 * rest of the pages
3071 */
3072 pages_written += mpd.pages_written;
3073 wbc->pages_skipped = pages_skipped;
3074 ret = 0;
3075 io_done = 1;
3076 } else if (wbc->nr_to_write)
3077 /*
3078 * There is no more writeout needed
3079 * or we requested for a noblocking writeout
3080 * and we found the device congested
3081 */
3082 break;
3083 }
3084 if (!io_done && !cycled) {
3085 cycled = 1;
3086 index = 0;
3087 wbc->range_start = index << PAGE_CACHE_SHIFT;
3088 wbc->range_end = mapping->writeback_index - 1;
3089 goto retry;
3090 }
3091 if (pages_skipped != wbc->pages_skipped)
3092 ext4_msg(inode->i_sb, KERN_CRIT,
3093 "This should not happen leaving %s "
3094 "with nr_to_write = %ld ret = %d",
3095 __func__, wbc->nr_to_write, ret);
3096
3097 /* Update index */
3098 index += pages_written;
3099 wbc->range_cyclic = range_cyclic;
3100 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3101 /*
3102 * set the writeback_index so that range_cyclic
3103 * mode will write it back later
3104 */
3105 mapping->writeback_index = index;
3106
3107 out_writepages:
3108 wbc->nr_to_write -= nr_to_writebump;
3109 wbc->range_start = range_start;
3110 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3111 return ret;
3112 }
3113
3114 #define FALL_BACK_TO_NONDELALLOC 1
3115 static int ext4_nonda_switch(struct super_block *sb)
3116 {
3117 s64 free_blocks, dirty_blocks;
3118 struct ext4_sb_info *sbi = EXT4_SB(sb);
3119
3120 /*
3121 * switch to non delalloc mode if we are running low
3122 * on free block. The free block accounting via percpu
3123 * counters can get slightly wrong with percpu_counter_batch getting
3124 * accumulated on each CPU without updating global counters
3125 * Delalloc need an accurate free block accounting. So switch
3126 * to non delalloc when we are near to error range.
3127 */
3128 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3129 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3130 if (2 * free_blocks < 3 * dirty_blocks ||
3131 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3132 /*
3133 * free block count is less than 150% of dirty blocks
3134 * or free blocks is less than watermark
3135 */
3136 return 1;
3137 }
3138 /*
3139 * Even if we don't switch but are nearing capacity,
3140 * start pushing delalloc when 1/2 of free blocks are dirty.
3141 */
3142 if (free_blocks < 2 * dirty_blocks)
3143 writeback_inodes_sb_if_idle(sb);
3144
3145 return 0;
3146 }
3147
3148 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3149 loff_t pos, unsigned len, unsigned flags,
3150 struct page **pagep, void **fsdata)
3151 {
3152 int ret, retries = 0;
3153 struct page *page;
3154 pgoff_t index;
3155 struct inode *inode = mapping->host;
3156 handle_t *handle;
3157
3158 index = pos >> PAGE_CACHE_SHIFT;
3159
3160 if (ext4_nonda_switch(inode->i_sb)) {
3161 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3162 return ext4_write_begin(file, mapping, pos,
3163 len, flags, pagep, fsdata);
3164 }
3165 *fsdata = (void *)0;
3166 trace_ext4_da_write_begin(inode, pos, len, flags);
3167 retry:
3168 /*
3169 * With delayed allocation, we don't log the i_disksize update
3170 * if there is delayed block allocation. But we still need
3171 * to journalling the i_disksize update if writes to the end
3172 * of file which has an already mapped buffer.
3173 */
3174 handle = ext4_journal_start(inode, 1);
3175 if (IS_ERR(handle)) {
3176 ret = PTR_ERR(handle);
3177 goto out;
3178 }
3179 /* We cannot recurse into the filesystem as the transaction is already
3180 * started */
3181 flags |= AOP_FLAG_NOFS;
3182
3183 page = grab_cache_page_write_begin(mapping, index, flags);
3184 if (!page) {
3185 ext4_journal_stop(handle);
3186 ret = -ENOMEM;
3187 goto out;
3188 }
3189 *pagep = page;
3190
3191 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3192 ext4_da_get_block_prep);
3193 if (ret < 0) {
3194 unlock_page(page);
3195 ext4_journal_stop(handle);
3196 page_cache_release(page);
3197 /*
3198 * block_write_begin may have instantiated a few blocks
3199 * outside i_size. Trim these off again. Don't need
3200 * i_size_read because we hold i_mutex.
3201 */
3202 if (pos + len > inode->i_size)
3203 ext4_truncate_failed_write(inode);
3204 }
3205
3206 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3207 goto retry;
3208 out:
3209 return ret;
3210 }
3211
3212 /*
3213 * Check if we should update i_disksize
3214 * when write to the end of file but not require block allocation
3215 */
3216 static int ext4_da_should_update_i_disksize(struct page *page,
3217 unsigned long offset)
3218 {
3219 struct buffer_head *bh;
3220 struct inode *inode = page->mapping->host;
3221 unsigned int idx;
3222 int i;
3223
3224 bh = page_buffers(page);
3225 idx = offset >> inode->i_blkbits;
3226
3227 for (i = 0; i < idx; i++)
3228 bh = bh->b_this_page;
3229
3230 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3231 return 0;
3232 return 1;
3233 }
3234
3235 static int ext4_da_write_end(struct file *file,
3236 struct address_space *mapping,
3237 loff_t pos, unsigned len, unsigned copied,
3238 struct page *page, void *fsdata)
3239 {
3240 struct inode *inode = mapping->host;
3241 int ret = 0, ret2;
3242 handle_t *handle = ext4_journal_current_handle();
3243 loff_t new_i_size;
3244 unsigned long start, end;
3245 int write_mode = (int)(unsigned long)fsdata;
3246
3247 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3248 if (ext4_should_order_data(inode)) {
3249 return ext4_ordered_write_end(file, mapping, pos,
3250 len, copied, page, fsdata);
3251 } else if (ext4_should_writeback_data(inode)) {
3252 return ext4_writeback_write_end(file, mapping, pos,
3253 len, copied, page, fsdata);
3254 } else {
3255 BUG();
3256 }
3257 }
3258
3259 trace_ext4_da_write_end(inode, pos, len, copied);
3260 start = pos & (PAGE_CACHE_SIZE - 1);
3261 end = start + copied - 1;
3262
3263 /*
3264 * generic_write_end() will run mark_inode_dirty() if i_size
3265 * changes. So let's piggyback the i_disksize mark_inode_dirty
3266 * into that.
3267 */
3268
3269 new_i_size = pos + copied;
3270 if (new_i_size > EXT4_I(inode)->i_disksize) {
3271 if (ext4_da_should_update_i_disksize(page, end)) {
3272 down_write(&EXT4_I(inode)->i_data_sem);
3273 if (new_i_size > EXT4_I(inode)->i_disksize) {
3274 /*
3275 * Updating i_disksize when extending file
3276 * without needing block allocation
3277 */
3278 if (ext4_should_order_data(inode))
3279 ret = ext4_jbd2_file_inode(handle,
3280 inode);
3281
3282 EXT4_I(inode)->i_disksize = new_i_size;
3283 }
3284 up_write(&EXT4_I(inode)->i_data_sem);
3285 /* We need to mark inode dirty even if
3286 * new_i_size is less that inode->i_size
3287 * bu greater than i_disksize.(hint delalloc)
3288 */
3289 ext4_mark_inode_dirty(handle, inode);
3290 }
3291 }
3292 ret2 = generic_write_end(file, mapping, pos, len, copied,
3293 page, fsdata);
3294 copied = ret2;
3295 if (ret2 < 0)
3296 ret = ret2;
3297 ret2 = ext4_journal_stop(handle);
3298 if (!ret)
3299 ret = ret2;
3300
3301 return ret ? ret : copied;
3302 }
3303
3304 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3305 {
3306 /*
3307 * Drop reserved blocks
3308 */
3309 BUG_ON(!PageLocked(page));
3310 if (!page_has_buffers(page))
3311 goto out;
3312
3313 ext4_da_page_release_reservation(page, offset);
3314
3315 out:
3316 ext4_invalidatepage(page, offset);
3317
3318 return;
3319 }
3320
3321 /*
3322 * Force all delayed allocation blocks to be allocated for a given inode.
3323 */
3324 int ext4_alloc_da_blocks(struct inode *inode)
3325 {
3326 trace_ext4_alloc_da_blocks(inode);
3327
3328 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3329 !EXT4_I(inode)->i_reserved_meta_blocks)
3330 return 0;
3331
3332 /*
3333 * We do something simple for now. The filemap_flush() will
3334 * also start triggering a write of the data blocks, which is
3335 * not strictly speaking necessary (and for users of
3336 * laptop_mode, not even desirable). However, to do otherwise
3337 * would require replicating code paths in:
3338 *
3339 * ext4_da_writepages() ->
3340 * write_cache_pages() ---> (via passed in callback function)
3341 * __mpage_da_writepage() -->
3342 * mpage_add_bh_to_extent()
3343 * mpage_da_map_blocks()
3344 *
3345 * The problem is that write_cache_pages(), located in
3346 * mm/page-writeback.c, marks pages clean in preparation for
3347 * doing I/O, which is not desirable if we're not planning on
3348 * doing I/O at all.
3349 *
3350 * We could call write_cache_pages(), and then redirty all of
3351 * the pages by calling redirty_page_for_writeback() but that
3352 * would be ugly in the extreme. So instead we would need to
3353 * replicate parts of the code in the above functions,
3354 * simplifying them becuase we wouldn't actually intend to
3355 * write out the pages, but rather only collect contiguous
3356 * logical block extents, call the multi-block allocator, and
3357 * then update the buffer heads with the block allocations.
3358 *
3359 * For now, though, we'll cheat by calling filemap_flush(),
3360 * which will map the blocks, and start the I/O, but not
3361 * actually wait for the I/O to complete.
3362 */
3363 return filemap_flush(inode->i_mapping);
3364 }
3365
3366 /*
3367 * bmap() is special. It gets used by applications such as lilo and by
3368 * the swapper to find the on-disk block of a specific piece of data.
3369 *
3370 * Naturally, this is dangerous if the block concerned is still in the
3371 * journal. If somebody makes a swapfile on an ext4 data-journaling
3372 * filesystem and enables swap, then they may get a nasty shock when the
3373 * data getting swapped to that swapfile suddenly gets overwritten by
3374 * the original zero's written out previously to the journal and
3375 * awaiting writeback in the kernel's buffer cache.
3376 *
3377 * So, if we see any bmap calls here on a modified, data-journaled file,
3378 * take extra steps to flush any blocks which might be in the cache.
3379 */
3380 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3381 {
3382 struct inode *inode = mapping->host;
3383 journal_t *journal;
3384 int err;
3385
3386 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3387 test_opt(inode->i_sb, DELALLOC)) {
3388 /*
3389 * With delalloc we want to sync the file
3390 * so that we can make sure we allocate
3391 * blocks for file
3392 */
3393 filemap_write_and_wait(mapping);
3394 }
3395
3396 if (EXT4_JOURNAL(inode) &&
3397 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3398 /*
3399 * This is a REALLY heavyweight approach, but the use of
3400 * bmap on dirty files is expected to be extremely rare:
3401 * only if we run lilo or swapon on a freshly made file
3402 * do we expect this to happen.
3403 *
3404 * (bmap requires CAP_SYS_RAWIO so this does not
3405 * represent an unprivileged user DOS attack --- we'd be
3406 * in trouble if mortal users could trigger this path at
3407 * will.)
3408 *
3409 * NB. EXT4_STATE_JDATA is not set on files other than
3410 * regular files. If somebody wants to bmap a directory
3411 * or symlink and gets confused because the buffer
3412 * hasn't yet been flushed to disk, they deserve
3413 * everything they get.
3414 */
3415
3416 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3417 journal = EXT4_JOURNAL(inode);
3418 jbd2_journal_lock_updates(journal);
3419 err = jbd2_journal_flush(journal);
3420 jbd2_journal_unlock_updates(journal);
3421
3422 if (err)
3423 return 0;
3424 }
3425
3426 return generic_block_bmap(mapping, block, ext4_get_block);
3427 }
3428
3429 static int ext4_readpage(struct file *file, struct page *page)
3430 {
3431 return mpage_readpage(page, ext4_get_block);
3432 }
3433
3434 static int
3435 ext4_readpages(struct file *file, struct address_space *mapping,
3436 struct list_head *pages, unsigned nr_pages)
3437 {
3438 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3439 }
3440
3441 static void ext4_free_io_end(ext4_io_end_t *io)
3442 {
3443 BUG_ON(!io);
3444 if (io->page)
3445 put_page(io->page);
3446 iput(io->inode);
3447 kfree(io);
3448 }
3449
3450 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3451 {
3452 struct buffer_head *head, *bh;
3453 unsigned int curr_off = 0;
3454
3455 if (!page_has_buffers(page))
3456 return;
3457 head = bh = page_buffers(page);
3458 do {
3459 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3460 && bh->b_private) {
3461 ext4_free_io_end(bh->b_private);
3462 bh->b_private = NULL;
3463 bh->b_end_io = NULL;
3464 }
3465 curr_off = curr_off + bh->b_size;
3466 bh = bh->b_this_page;
3467 } while (bh != head);
3468 }
3469
3470 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3471 {
3472 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3473
3474 /*
3475 * free any io_end structure allocated for buffers to be discarded
3476 */
3477 if (ext4_should_dioread_nolock(page->mapping->host))
3478 ext4_invalidatepage_free_endio(page, offset);
3479 /*
3480 * If it's a full truncate we just forget about the pending dirtying
3481 */
3482 if (offset == 0)
3483 ClearPageChecked(page);
3484
3485 if (journal)
3486 jbd2_journal_invalidatepage(journal, page, offset);
3487 else
3488 block_invalidatepage(page, offset);
3489 }
3490
3491 static int ext4_releasepage(struct page *page, gfp_t wait)
3492 {
3493 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3494
3495 WARN_ON(PageChecked(page));
3496 if (!page_has_buffers(page))
3497 return 0;
3498 if (journal)
3499 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3500 else
3501 return try_to_free_buffers(page);
3502 }
3503
3504 /*
3505 * O_DIRECT for ext3 (or indirect map) based files
3506 *
3507 * If the O_DIRECT write will extend the file then add this inode to the
3508 * orphan list. So recovery will truncate it back to the original size
3509 * if the machine crashes during the write.
3510 *
3511 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3512 * crashes then stale disk data _may_ be exposed inside the file. But current
3513 * VFS code falls back into buffered path in that case so we are safe.
3514 */
3515 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3516 const struct iovec *iov, loff_t offset,
3517 unsigned long nr_segs)
3518 {
3519 struct file *file = iocb->ki_filp;
3520 struct inode *inode = file->f_mapping->host;
3521 struct ext4_inode_info *ei = EXT4_I(inode);
3522 handle_t *handle;
3523 ssize_t ret;
3524 int orphan = 0;
3525 size_t count = iov_length(iov, nr_segs);
3526 int retries = 0;
3527
3528 if (rw == WRITE) {
3529 loff_t final_size = offset + count;
3530
3531 if (final_size > inode->i_size) {
3532 /* Credits for sb + inode write */
3533 handle = ext4_journal_start(inode, 2);
3534 if (IS_ERR(handle)) {
3535 ret = PTR_ERR(handle);
3536 goto out;
3537 }
3538 ret = ext4_orphan_add(handle, inode);
3539 if (ret) {
3540 ext4_journal_stop(handle);
3541 goto out;
3542 }
3543 orphan = 1;
3544 ei->i_disksize = inode->i_size;
3545 ext4_journal_stop(handle);
3546 }
3547 }
3548
3549 retry:
3550 if (rw == READ && ext4_should_dioread_nolock(inode))
3551 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3552 inode->i_sb->s_bdev, iov,
3553 offset, nr_segs,
3554 ext4_get_block, NULL);
3555 else
3556 ret = blockdev_direct_IO(rw, iocb, inode,
3557 inode->i_sb->s_bdev, iov,
3558 offset, nr_segs,
3559 ext4_get_block, NULL);
3560 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3561 goto retry;
3562
3563 if (orphan) {
3564 int err;
3565
3566 /* Credits for sb + inode write */
3567 handle = ext4_journal_start(inode, 2);
3568 if (IS_ERR(handle)) {
3569 /* This is really bad luck. We've written the data
3570 * but cannot extend i_size. Bail out and pretend
3571 * the write failed... */
3572 ret = PTR_ERR(handle);
3573 if (inode->i_nlink)
3574 ext4_orphan_del(NULL, inode);
3575
3576 goto out;
3577 }
3578 if (inode->i_nlink)
3579 ext4_orphan_del(handle, inode);
3580 if (ret > 0) {
3581 loff_t end = offset + ret;
3582 if (end > inode->i_size) {
3583 ei->i_disksize = end;
3584 i_size_write(inode, end);
3585 /*
3586 * We're going to return a positive `ret'
3587 * here due to non-zero-length I/O, so there's
3588 * no way of reporting error returns from
3589 * ext4_mark_inode_dirty() to userspace. So
3590 * ignore it.
3591 */
3592 ext4_mark_inode_dirty(handle, inode);
3593 }
3594 }
3595 err = ext4_journal_stop(handle);
3596 if (ret == 0)
3597 ret = err;
3598 }
3599 out:
3600 return ret;
3601 }
3602
3603 /*
3604 * ext4_get_block used when preparing for a DIO write or buffer write.
3605 * We allocate an uinitialized extent if blocks haven't been allocated.
3606 * The extent will be converted to initialized after the IO is complete.
3607 */
3608 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3609 struct buffer_head *bh_result, int create)
3610 {
3611 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3612 inode->i_ino, create);
3613 return _ext4_get_block(inode, iblock, bh_result,
3614 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3615 }
3616
3617 static void dump_completed_IO(struct inode * inode)
3618 {
3619 #ifdef EXT4_DEBUG
3620 struct list_head *cur, *before, *after;
3621 ext4_io_end_t *io, *io0, *io1;
3622 unsigned long flags;
3623
3624 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3625 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3626 return;
3627 }
3628
3629 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3630 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3631 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3632 cur = &io->list;
3633 before = cur->prev;
3634 io0 = container_of(before, ext4_io_end_t, list);
3635 after = cur->next;
3636 io1 = container_of(after, ext4_io_end_t, list);
3637
3638 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3639 io, inode->i_ino, io0, io1);
3640 }
3641 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3642 #endif
3643 }
3644
3645 /*
3646 * check a range of space and convert unwritten extents to written.
3647 */
3648 static int ext4_end_io_nolock(ext4_io_end_t *io)
3649 {
3650 struct inode *inode = io->inode;
3651 loff_t offset = io->offset;
3652 ssize_t size = io->size;
3653 int ret = 0;
3654
3655 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3656 "list->prev 0x%p\n",
3657 io, inode->i_ino, io->list.next, io->list.prev);
3658
3659 if (list_empty(&io->list))
3660 return ret;
3661
3662 if (io->flag != EXT4_IO_UNWRITTEN)
3663 return ret;
3664
3665 ret = ext4_convert_unwritten_extents(inode, offset, size);
3666 if (ret < 0) {
3667 printk(KERN_EMERG "%s: failed to convert unwritten"
3668 "extents to written extents, error is %d"
3669 " io is still on inode %lu aio dio list\n",
3670 __func__, ret, inode->i_ino);
3671 return ret;
3672 }
3673
3674 if (io->iocb)
3675 aio_complete(io->iocb, io->result, 0);
3676 /* clear the DIO AIO unwritten flag */
3677 io->flag = 0;
3678 return ret;
3679 }
3680
3681 /*
3682 * work on completed aio dio IO, to convert unwritten extents to extents
3683 */
3684 static void ext4_end_io_work(struct work_struct *work)
3685 {
3686 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3687 struct inode *inode = io->inode;
3688 struct ext4_inode_info *ei = EXT4_I(inode);
3689 unsigned long flags;
3690 int ret;
3691
3692 mutex_lock(&inode->i_mutex);
3693 ret = ext4_end_io_nolock(io);
3694 if (ret < 0) {
3695 mutex_unlock(&inode->i_mutex);
3696 return;
3697 }
3698
3699 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3700 if (!list_empty(&io->list))
3701 list_del_init(&io->list);
3702 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3703 mutex_unlock(&inode->i_mutex);
3704 ext4_free_io_end(io);
3705 }
3706
3707 /*
3708 * This function is called from ext4_sync_file().
3709 *
3710 * When IO is completed, the work to convert unwritten extents to
3711 * written is queued on workqueue but may not get immediately
3712 * scheduled. When fsync is called, we need to ensure the
3713 * conversion is complete before fsync returns.
3714 * The inode keeps track of a list of pending/completed IO that
3715 * might needs to do the conversion. This function walks through
3716 * the list and convert the related unwritten extents for completed IO
3717 * to written.
3718 * The function return the number of pending IOs on success.
3719 */
3720 int flush_completed_IO(struct inode *inode)
3721 {
3722 ext4_io_end_t *io;
3723 struct ext4_inode_info *ei = EXT4_I(inode);
3724 unsigned long flags;
3725 int ret = 0;
3726 int ret2 = 0;
3727
3728 if (list_empty(&ei->i_completed_io_list))
3729 return ret;
3730
3731 dump_completed_IO(inode);
3732 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3733 while (!list_empty(&ei->i_completed_io_list)){
3734 io = list_entry(ei->i_completed_io_list.next,
3735 ext4_io_end_t, list);
3736 /*
3737 * Calling ext4_end_io_nolock() to convert completed
3738 * IO to written.
3739 *
3740 * When ext4_sync_file() is called, run_queue() may already
3741 * about to flush the work corresponding to this io structure.
3742 * It will be upset if it founds the io structure related
3743 * to the work-to-be schedule is freed.
3744 *
3745 * Thus we need to keep the io structure still valid here after
3746 * convertion finished. The io structure has a flag to
3747 * avoid double converting from both fsync and background work
3748 * queue work.
3749 */
3750 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3751 ret = ext4_end_io_nolock(io);
3752 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3753 if (ret < 0)
3754 ret2 = ret;
3755 else
3756 list_del_init(&io->list);
3757 }
3758 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3759 return (ret2 < 0) ? ret2 : 0;
3760 }
3761
3762 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3763 {
3764 ext4_io_end_t *io = NULL;
3765
3766 io = kmalloc(sizeof(*io), flags);
3767
3768 if (io) {
3769 igrab(inode);
3770 io->inode = inode;
3771 io->flag = 0;
3772 io->offset = 0;
3773 io->size = 0;
3774 io->page = NULL;
3775 io->iocb = NULL;
3776 io->result = 0;
3777 INIT_WORK(&io->work, ext4_end_io_work);
3778 INIT_LIST_HEAD(&io->list);
3779 }
3780
3781 return io;
3782 }
3783
3784 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3785 ssize_t size, void *private, int ret,
3786 bool is_async)
3787 {
3788 ext4_io_end_t *io_end = iocb->private;
3789 struct workqueue_struct *wq;
3790 unsigned long flags;
3791 struct ext4_inode_info *ei;
3792
3793 /* if not async direct IO or dio with 0 bytes write, just return */
3794 if (!io_end || !size)
3795 goto out;
3796
3797 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3798 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3799 iocb->private, io_end->inode->i_ino, iocb, offset,
3800 size);
3801
3802 /* if not aio dio with unwritten extents, just free io and return */
3803 if (io_end->flag != EXT4_IO_UNWRITTEN){
3804 ext4_free_io_end(io_end);
3805 iocb->private = NULL;
3806 out:
3807 if (is_async)
3808 aio_complete(iocb, ret, 0);
3809 return;
3810 }
3811
3812 io_end->offset = offset;
3813 io_end->size = size;
3814 if (is_async) {
3815 io_end->iocb = iocb;
3816 io_end->result = ret;
3817 }
3818 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3819
3820 /* queue the work to convert unwritten extents to written */
3821 queue_work(wq, &io_end->work);
3822
3823 /* Add the io_end to per-inode completed aio dio list*/
3824 ei = EXT4_I(io_end->inode);
3825 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3826 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3827 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3828 iocb->private = NULL;
3829 }
3830
3831 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3832 {
3833 ext4_io_end_t *io_end = bh->b_private;
3834 struct workqueue_struct *wq;
3835 struct inode *inode;
3836 unsigned long flags;
3837
3838 if (!test_clear_buffer_uninit(bh) || !io_end)
3839 goto out;
3840
3841 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3842 printk("sb umounted, discard end_io request for inode %lu\n",
3843 io_end->inode->i_ino);
3844 ext4_free_io_end(io_end);
3845 goto out;
3846 }
3847
3848 io_end->flag = EXT4_IO_UNWRITTEN;
3849 inode = io_end->inode;
3850
3851 /* Add the io_end to per-inode completed io list*/
3852 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3853 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3854 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3855
3856 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3857 /* queue the work to convert unwritten extents to written */
3858 queue_work(wq, &io_end->work);
3859 out:
3860 bh->b_private = NULL;
3861 bh->b_end_io = NULL;
3862 clear_buffer_uninit(bh);
3863 end_buffer_async_write(bh, uptodate);
3864 }
3865
3866 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3867 {
3868 ext4_io_end_t *io_end;
3869 struct page *page = bh->b_page;
3870 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3871 size_t size = bh->b_size;
3872
3873 retry:
3874 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3875 if (!io_end) {
3876 if (printk_ratelimit())
3877 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3878 schedule();
3879 goto retry;
3880 }
3881 io_end->offset = offset;
3882 io_end->size = size;
3883 /*
3884 * We need to hold a reference to the page to make sure it
3885 * doesn't get evicted before ext4_end_io_work() has a chance
3886 * to convert the extent from written to unwritten.
3887 */
3888 io_end->page = page;
3889 get_page(io_end->page);
3890
3891 bh->b_private = io_end;
3892 bh->b_end_io = ext4_end_io_buffer_write;
3893 return 0;
3894 }
3895
3896 /*
3897 * For ext4 extent files, ext4 will do direct-io write to holes,
3898 * preallocated extents, and those write extend the file, no need to
3899 * fall back to buffered IO.
3900 *
3901 * For holes, we fallocate those blocks, mark them as unintialized
3902 * If those blocks were preallocated, we mark sure they are splited, but
3903 * still keep the range to write as unintialized.
3904 *
3905 * The unwrritten extents will be converted to written when DIO is completed.
3906 * For async direct IO, since the IO may still pending when return, we
3907 * set up an end_io call back function, which will do the convertion
3908 * when async direct IO completed.
3909 *
3910 * If the O_DIRECT write will extend the file then add this inode to the
3911 * orphan list. So recovery will truncate it back to the original size
3912 * if the machine crashes during the write.
3913 *
3914 */
3915 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3916 const struct iovec *iov, loff_t offset,
3917 unsigned long nr_segs)
3918 {
3919 struct file *file = iocb->ki_filp;
3920 struct inode *inode = file->f_mapping->host;
3921 ssize_t ret;
3922 size_t count = iov_length(iov, nr_segs);
3923
3924 loff_t final_size = offset + count;
3925 if (rw == WRITE && final_size <= inode->i_size) {
3926 /*
3927 * We could direct write to holes and fallocate.
3928 *
3929 * Allocated blocks to fill the hole are marked as uninitialized
3930 * to prevent paralel buffered read to expose the stale data
3931 * before DIO complete the data IO.
3932 *
3933 * As to previously fallocated extents, ext4 get_block
3934 * will just simply mark the buffer mapped but still
3935 * keep the extents uninitialized.
3936 *
3937 * for non AIO case, we will convert those unwritten extents
3938 * to written after return back from blockdev_direct_IO.
3939 *
3940 * for async DIO, the conversion needs to be defered when
3941 * the IO is completed. The ext4 end_io callback function
3942 * will be called to take care of the conversion work.
3943 * Here for async case, we allocate an io_end structure to
3944 * hook to the iocb.
3945 */
3946 iocb->private = NULL;
3947 EXT4_I(inode)->cur_aio_dio = NULL;
3948 if (!is_sync_kiocb(iocb)) {
3949 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3950 if (!iocb->private)
3951 return -ENOMEM;
3952 /*
3953 * we save the io structure for current async
3954 * direct IO, so that later ext4_map_blocks()
3955 * could flag the io structure whether there
3956 * is a unwritten extents needs to be converted
3957 * when IO is completed.
3958 */
3959 EXT4_I(inode)->cur_aio_dio = iocb->private;
3960 }
3961
3962 ret = blockdev_direct_IO(rw, iocb, inode,
3963 inode->i_sb->s_bdev, iov,
3964 offset, nr_segs,
3965 ext4_get_block_write,
3966 ext4_end_io_dio);
3967 if (iocb->private)
3968 EXT4_I(inode)->cur_aio_dio = NULL;
3969 /*
3970 * The io_end structure takes a reference to the inode,
3971 * that structure needs to be destroyed and the
3972 * reference to the inode need to be dropped, when IO is
3973 * complete, even with 0 byte write, or failed.
3974 *
3975 * In the successful AIO DIO case, the io_end structure will be
3976 * desctroyed and the reference to the inode will be dropped
3977 * after the end_io call back function is called.
3978 *
3979 * In the case there is 0 byte write, or error case, since
3980 * VFS direct IO won't invoke the end_io call back function,
3981 * we need to free the end_io structure here.
3982 */
3983 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3984 ext4_free_io_end(iocb->private);
3985 iocb->private = NULL;
3986 } else if (ret > 0 && ext4_test_inode_state(inode,
3987 EXT4_STATE_DIO_UNWRITTEN)) {
3988 int err;
3989 /*
3990 * for non AIO case, since the IO is already
3991 * completed, we could do the convertion right here
3992 */
3993 err = ext4_convert_unwritten_extents(inode,
3994 offset, ret);
3995 if (err < 0)
3996 ret = err;
3997 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3998 }
3999 return ret;
4000 }
4001
4002 /* for write the the end of file case, we fall back to old way */
4003 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4004 }
4005
4006 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4007 const struct iovec *iov, loff_t offset,
4008 unsigned long nr_segs)
4009 {
4010 struct file *file = iocb->ki_filp;
4011 struct inode *inode = file->f_mapping->host;
4012
4013 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4014 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4015
4016 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4017 }
4018
4019 /*
4020 * Pages can be marked dirty completely asynchronously from ext4's journalling
4021 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4022 * much here because ->set_page_dirty is called under VFS locks. The page is
4023 * not necessarily locked.
4024 *
4025 * We cannot just dirty the page and leave attached buffers clean, because the
4026 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4027 * or jbddirty because all the journalling code will explode.
4028 *
4029 * So what we do is to mark the page "pending dirty" and next time writepage
4030 * is called, propagate that into the buffers appropriately.
4031 */
4032 static int ext4_journalled_set_page_dirty(struct page *page)
4033 {
4034 SetPageChecked(page);
4035 return __set_page_dirty_nobuffers(page);
4036 }
4037
4038 static const struct address_space_operations ext4_ordered_aops = {
4039 .readpage = ext4_readpage,
4040 .readpages = ext4_readpages,
4041 .writepage = ext4_writepage,
4042 .sync_page = block_sync_page,
4043 .write_begin = ext4_write_begin,
4044 .write_end = ext4_ordered_write_end,
4045 .bmap = ext4_bmap,
4046 .invalidatepage = ext4_invalidatepage,
4047 .releasepage = ext4_releasepage,
4048 .direct_IO = ext4_direct_IO,
4049 .migratepage = buffer_migrate_page,
4050 .is_partially_uptodate = block_is_partially_uptodate,
4051 .error_remove_page = generic_error_remove_page,
4052 };
4053
4054 static const struct address_space_operations ext4_writeback_aops = {
4055 .readpage = ext4_readpage,
4056 .readpages = ext4_readpages,
4057 .writepage = ext4_writepage,
4058 .sync_page = block_sync_page,
4059 .write_begin = ext4_write_begin,
4060 .write_end = ext4_writeback_write_end,
4061 .bmap = ext4_bmap,
4062 .invalidatepage = ext4_invalidatepage,
4063 .releasepage = ext4_releasepage,
4064 .direct_IO = ext4_direct_IO,
4065 .migratepage = buffer_migrate_page,
4066 .is_partially_uptodate = block_is_partially_uptodate,
4067 .error_remove_page = generic_error_remove_page,
4068 };
4069
4070 static const struct address_space_operations ext4_journalled_aops = {
4071 .readpage = ext4_readpage,
4072 .readpages = ext4_readpages,
4073 .writepage = ext4_writepage,
4074 .sync_page = block_sync_page,
4075 .write_begin = ext4_write_begin,
4076 .write_end = ext4_journalled_write_end,
4077 .set_page_dirty = ext4_journalled_set_page_dirty,
4078 .bmap = ext4_bmap,
4079 .invalidatepage = ext4_invalidatepage,
4080 .releasepage = ext4_releasepage,
4081 .is_partially_uptodate = block_is_partially_uptodate,
4082 .error_remove_page = generic_error_remove_page,
4083 };
4084
4085 static const struct address_space_operations ext4_da_aops = {
4086 .readpage = ext4_readpage,
4087 .readpages = ext4_readpages,
4088 .writepage = ext4_writepage,
4089 .writepages = ext4_da_writepages,
4090 .sync_page = block_sync_page,
4091 .write_begin = ext4_da_write_begin,
4092 .write_end = ext4_da_write_end,
4093 .bmap = ext4_bmap,
4094 .invalidatepage = ext4_da_invalidatepage,
4095 .releasepage = ext4_releasepage,
4096 .direct_IO = ext4_direct_IO,
4097 .migratepage = buffer_migrate_page,
4098 .is_partially_uptodate = block_is_partially_uptodate,
4099 .error_remove_page = generic_error_remove_page,
4100 };
4101
4102 void ext4_set_aops(struct inode *inode)
4103 {
4104 if (ext4_should_order_data(inode) &&
4105 test_opt(inode->i_sb, DELALLOC))
4106 inode->i_mapping->a_ops = &ext4_da_aops;
4107 else if (ext4_should_order_data(inode))
4108 inode->i_mapping->a_ops = &ext4_ordered_aops;
4109 else if (ext4_should_writeback_data(inode) &&
4110 test_opt(inode->i_sb, DELALLOC))
4111 inode->i_mapping->a_ops = &ext4_da_aops;
4112 else if (ext4_should_writeback_data(inode))
4113 inode->i_mapping->a_ops = &ext4_writeback_aops;
4114 else
4115 inode->i_mapping->a_ops = &ext4_journalled_aops;
4116 }
4117
4118 /*
4119 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4120 * up to the end of the block which corresponds to `from'.
4121 * This required during truncate. We need to physically zero the tail end
4122 * of that block so it doesn't yield old data if the file is later grown.
4123 */
4124 int ext4_block_truncate_page(handle_t *handle,
4125 struct address_space *mapping, loff_t from)
4126 {
4127 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4128 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4129 unsigned blocksize, length, pos;
4130 ext4_lblk_t iblock;
4131 struct inode *inode = mapping->host;
4132 struct buffer_head *bh;
4133 struct page *page;
4134 int err = 0;
4135
4136 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4137 mapping_gfp_mask(mapping) & ~__GFP_FS);
4138 if (!page)
4139 return -EINVAL;
4140
4141 blocksize = inode->i_sb->s_blocksize;
4142 length = blocksize - (offset & (blocksize - 1));
4143 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4144
4145 if (!page_has_buffers(page))
4146 create_empty_buffers(page, blocksize, 0);
4147
4148 /* Find the buffer that contains "offset" */
4149 bh = page_buffers(page);
4150 pos = blocksize;
4151 while (offset >= pos) {
4152 bh = bh->b_this_page;
4153 iblock++;
4154 pos += blocksize;
4155 }
4156
4157 err = 0;
4158 if (buffer_freed(bh)) {
4159 BUFFER_TRACE(bh, "freed: skip");
4160 goto unlock;
4161 }
4162
4163 if (!buffer_mapped(bh)) {
4164 BUFFER_TRACE(bh, "unmapped");
4165 ext4_get_block(inode, iblock, bh, 0);
4166 /* unmapped? It's a hole - nothing to do */
4167 if (!buffer_mapped(bh)) {
4168 BUFFER_TRACE(bh, "still unmapped");
4169 goto unlock;
4170 }
4171 }
4172
4173 /* Ok, it's mapped. Make sure it's up-to-date */
4174 if (PageUptodate(page))
4175 set_buffer_uptodate(bh);
4176
4177 if (!buffer_uptodate(bh)) {
4178 err = -EIO;
4179 ll_rw_block(READ, 1, &bh);
4180 wait_on_buffer(bh);
4181 /* Uhhuh. Read error. Complain and punt. */
4182 if (!buffer_uptodate(bh))
4183 goto unlock;
4184 }
4185
4186 if (ext4_should_journal_data(inode)) {
4187 BUFFER_TRACE(bh, "get write access");
4188 err = ext4_journal_get_write_access(handle, bh);
4189 if (err)
4190 goto unlock;
4191 }
4192
4193 zero_user(page, offset, length);
4194
4195 BUFFER_TRACE(bh, "zeroed end of block");
4196
4197 err = 0;
4198 if (ext4_should_journal_data(inode)) {
4199 err = ext4_handle_dirty_metadata(handle, inode, bh);
4200 } else {
4201 if (ext4_should_order_data(inode))
4202 err = ext4_jbd2_file_inode(handle, inode);
4203 mark_buffer_dirty(bh);
4204 }
4205
4206 unlock:
4207 unlock_page(page);
4208 page_cache_release(page);
4209 return err;
4210 }
4211
4212 /*
4213 * Probably it should be a library function... search for first non-zero word
4214 * or memcmp with zero_page, whatever is better for particular architecture.
4215 * Linus?
4216 */
4217 static inline int all_zeroes(__le32 *p, __le32 *q)
4218 {
4219 while (p < q)
4220 if (*p++)
4221 return 0;
4222 return 1;
4223 }
4224
4225 /**
4226 * ext4_find_shared - find the indirect blocks for partial truncation.
4227 * @inode: inode in question
4228 * @depth: depth of the affected branch
4229 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4230 * @chain: place to store the pointers to partial indirect blocks
4231 * @top: place to the (detached) top of branch
4232 *
4233 * This is a helper function used by ext4_truncate().
4234 *
4235 * When we do truncate() we may have to clean the ends of several
4236 * indirect blocks but leave the blocks themselves alive. Block is
4237 * partially truncated if some data below the new i_size is refered
4238 * from it (and it is on the path to the first completely truncated
4239 * data block, indeed). We have to free the top of that path along
4240 * with everything to the right of the path. Since no allocation
4241 * past the truncation point is possible until ext4_truncate()
4242 * finishes, we may safely do the latter, but top of branch may
4243 * require special attention - pageout below the truncation point
4244 * might try to populate it.
4245 *
4246 * We atomically detach the top of branch from the tree, store the
4247 * block number of its root in *@top, pointers to buffer_heads of
4248 * partially truncated blocks - in @chain[].bh and pointers to
4249 * their last elements that should not be removed - in
4250 * @chain[].p. Return value is the pointer to last filled element
4251 * of @chain.
4252 *
4253 * The work left to caller to do the actual freeing of subtrees:
4254 * a) free the subtree starting from *@top
4255 * b) free the subtrees whose roots are stored in
4256 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4257 * c) free the subtrees growing from the inode past the @chain[0].
4258 * (no partially truncated stuff there). */
4259
4260 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4261 ext4_lblk_t offsets[4], Indirect chain[4],
4262 __le32 *top)
4263 {
4264 Indirect *partial, *p;
4265 int k, err;
4266
4267 *top = 0;
4268 /* Make k index the deepest non-null offset + 1 */
4269 for (k = depth; k > 1 && !offsets[k-1]; k--)
4270 ;
4271 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4272 /* Writer: pointers */
4273 if (!partial)
4274 partial = chain + k-1;
4275 /*
4276 * If the branch acquired continuation since we've looked at it -
4277 * fine, it should all survive and (new) top doesn't belong to us.
4278 */
4279 if (!partial->key && *partial->p)
4280 /* Writer: end */
4281 goto no_top;
4282 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4283 ;
4284 /*
4285 * OK, we've found the last block that must survive. The rest of our
4286 * branch should be detached before unlocking. However, if that rest
4287 * of branch is all ours and does not grow immediately from the inode
4288 * it's easier to cheat and just decrement partial->p.
4289 */
4290 if (p == chain + k - 1 && p > chain) {
4291 p->p--;
4292 } else {
4293 *top = *p->p;
4294 /* Nope, don't do this in ext4. Must leave the tree intact */
4295 #if 0
4296 *p->p = 0;
4297 #endif
4298 }
4299 /* Writer: end */
4300
4301 while (partial > p) {
4302 brelse(partial->bh);
4303 partial--;
4304 }
4305 no_top:
4306 return partial;
4307 }
4308
4309 /*
4310 * Zero a number of block pointers in either an inode or an indirect block.
4311 * If we restart the transaction we must again get write access to the
4312 * indirect block for further modification.
4313 *
4314 * We release `count' blocks on disk, but (last - first) may be greater
4315 * than `count' because there can be holes in there.
4316 */
4317 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4318 struct buffer_head *bh,
4319 ext4_fsblk_t block_to_free,
4320 unsigned long count, __le32 *first,
4321 __le32 *last)
4322 {
4323 __le32 *p;
4324 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4325
4326 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4327 flags |= EXT4_FREE_BLOCKS_METADATA;
4328
4329 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4330 count)) {
4331 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4332 "blocks %llu len %lu",
4333 (unsigned long long) block_to_free, count);
4334 return 1;
4335 }
4336
4337 if (try_to_extend_transaction(handle, inode)) {
4338 if (bh) {
4339 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4340 ext4_handle_dirty_metadata(handle, inode, bh);
4341 }
4342 ext4_mark_inode_dirty(handle, inode);
4343 ext4_truncate_restart_trans(handle, inode,
4344 blocks_for_truncate(inode));
4345 if (bh) {
4346 BUFFER_TRACE(bh, "retaking write access");
4347 ext4_journal_get_write_access(handle, bh);
4348 }
4349 }
4350
4351 for (p = first; p < last; p++)
4352 *p = 0;
4353
4354 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4355 return 0;
4356 }
4357
4358 /**
4359 * ext4_free_data - free a list of data blocks
4360 * @handle: handle for this transaction
4361 * @inode: inode we are dealing with
4362 * @this_bh: indirect buffer_head which contains *@first and *@last
4363 * @first: array of block numbers
4364 * @last: points immediately past the end of array
4365 *
4366 * We are freeing all blocks refered from that array (numbers are stored as
4367 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4368 *
4369 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4370 * blocks are contiguous then releasing them at one time will only affect one
4371 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4372 * actually use a lot of journal space.
4373 *
4374 * @this_bh will be %NULL if @first and @last point into the inode's direct
4375 * block pointers.
4376 */
4377 static void ext4_free_data(handle_t *handle, struct inode *inode,
4378 struct buffer_head *this_bh,
4379 __le32 *first, __le32 *last)
4380 {
4381 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4382 unsigned long count = 0; /* Number of blocks in the run */
4383 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4384 corresponding to
4385 block_to_free */
4386 ext4_fsblk_t nr; /* Current block # */
4387 __le32 *p; /* Pointer into inode/ind
4388 for current block */
4389 int err;
4390
4391 if (this_bh) { /* For indirect block */
4392 BUFFER_TRACE(this_bh, "get_write_access");
4393 err = ext4_journal_get_write_access(handle, this_bh);
4394 /* Important: if we can't update the indirect pointers
4395 * to the blocks, we can't free them. */
4396 if (err)
4397 return;
4398 }
4399
4400 for (p = first; p < last; p++) {
4401 nr = le32_to_cpu(*p);
4402 if (nr) {
4403 /* accumulate blocks to free if they're contiguous */
4404 if (count == 0) {
4405 block_to_free = nr;
4406 block_to_free_p = p;
4407 count = 1;
4408 } else if (nr == block_to_free + count) {
4409 count++;
4410 } else {
4411 if (ext4_clear_blocks(handle, inode, this_bh,
4412 block_to_free, count,
4413 block_to_free_p, p))
4414 break;
4415 block_to_free = nr;
4416 block_to_free_p = p;
4417 count = 1;
4418 }
4419 }
4420 }
4421
4422 if (count > 0)
4423 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4424 count, block_to_free_p, p);
4425
4426 if (this_bh) {
4427 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4428
4429 /*
4430 * The buffer head should have an attached journal head at this
4431 * point. However, if the data is corrupted and an indirect
4432 * block pointed to itself, it would have been detached when
4433 * the block was cleared. Check for this instead of OOPSing.
4434 */
4435 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4436 ext4_handle_dirty_metadata(handle, inode, this_bh);
4437 else
4438 EXT4_ERROR_INODE(inode,
4439 "circular indirect block detected at "
4440 "block %llu",
4441 (unsigned long long) this_bh->b_blocknr);
4442 }
4443 }
4444
4445 /**
4446 * ext4_free_branches - free an array of branches
4447 * @handle: JBD handle for this transaction
4448 * @inode: inode we are dealing with
4449 * @parent_bh: the buffer_head which contains *@first and *@last
4450 * @first: array of block numbers
4451 * @last: pointer immediately past the end of array
4452 * @depth: depth of the branches to free
4453 *
4454 * We are freeing all blocks refered from these branches (numbers are
4455 * stored as little-endian 32-bit) and updating @inode->i_blocks
4456 * appropriately.
4457 */
4458 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4459 struct buffer_head *parent_bh,
4460 __le32 *first, __le32 *last, int depth)
4461 {
4462 ext4_fsblk_t nr;
4463 __le32 *p;
4464
4465 if (ext4_handle_is_aborted(handle))
4466 return;
4467
4468 if (depth--) {
4469 struct buffer_head *bh;
4470 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4471 p = last;
4472 while (--p >= first) {
4473 nr = le32_to_cpu(*p);
4474 if (!nr)
4475 continue; /* A hole */
4476
4477 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4478 nr, 1)) {
4479 EXT4_ERROR_INODE(inode,
4480 "invalid indirect mapped "
4481 "block %lu (level %d)",
4482 (unsigned long) nr, depth);
4483 break;
4484 }
4485
4486 /* Go read the buffer for the next level down */
4487 bh = sb_bread(inode->i_sb, nr);
4488
4489 /*
4490 * A read failure? Report error and clear slot
4491 * (should be rare).
4492 */
4493 if (!bh) {
4494 EXT4_ERROR_INODE_BLOCK(inode, nr,
4495 "Read failure");
4496 continue;
4497 }
4498
4499 /* This zaps the entire block. Bottom up. */
4500 BUFFER_TRACE(bh, "free child branches");
4501 ext4_free_branches(handle, inode, bh,
4502 (__le32 *) bh->b_data,
4503 (__le32 *) bh->b_data + addr_per_block,
4504 depth);
4505
4506 /*
4507 * Everything below this this pointer has been
4508 * released. Now let this top-of-subtree go.
4509 *
4510 * We want the freeing of this indirect block to be
4511 * atomic in the journal with the updating of the
4512 * bitmap block which owns it. So make some room in
4513 * the journal.
4514 *
4515 * We zero the parent pointer *after* freeing its
4516 * pointee in the bitmaps, so if extend_transaction()
4517 * for some reason fails to put the bitmap changes and
4518 * the release into the same transaction, recovery
4519 * will merely complain about releasing a free block,
4520 * rather than leaking blocks.
4521 */
4522 if (ext4_handle_is_aborted(handle))
4523 return;
4524 if (try_to_extend_transaction(handle, inode)) {
4525 ext4_mark_inode_dirty(handle, inode);
4526 ext4_truncate_restart_trans(handle, inode,
4527 blocks_for_truncate(inode));
4528 }
4529
4530 /*
4531 * The forget flag here is critical because if
4532 * we are journaling (and not doing data
4533 * journaling), we have to make sure a revoke
4534 * record is written to prevent the journal
4535 * replay from overwriting the (former)
4536 * indirect block if it gets reallocated as a
4537 * data block. This must happen in the same
4538 * transaction where the data blocks are
4539 * actually freed.
4540 */
4541 ext4_free_blocks(handle, inode, 0, nr, 1,
4542 EXT4_FREE_BLOCKS_METADATA|
4543 EXT4_FREE_BLOCKS_FORGET);
4544
4545 if (parent_bh) {
4546 /*
4547 * The block which we have just freed is
4548 * pointed to by an indirect block: journal it
4549 */
4550 BUFFER_TRACE(parent_bh, "get_write_access");
4551 if (!ext4_journal_get_write_access(handle,
4552 parent_bh)){
4553 *p = 0;
4554 BUFFER_TRACE(parent_bh,
4555 "call ext4_handle_dirty_metadata");
4556 ext4_handle_dirty_metadata(handle,
4557 inode,
4558 parent_bh);
4559 }
4560 }
4561 }
4562 } else {
4563 /* We have reached the bottom of the tree. */
4564 BUFFER_TRACE(parent_bh, "free data blocks");
4565 ext4_free_data(handle, inode, parent_bh, first, last);
4566 }
4567 }
4568
4569 int ext4_can_truncate(struct inode *inode)
4570 {
4571 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4572 return 0;
4573 if (S_ISREG(inode->i_mode))
4574 return 1;
4575 if (S_ISDIR(inode->i_mode))
4576 return 1;
4577 if (S_ISLNK(inode->i_mode))
4578 return !ext4_inode_is_fast_symlink(inode);
4579 return 0;
4580 }
4581
4582 /*
4583 * ext4_truncate()
4584 *
4585 * We block out ext4_get_block() block instantiations across the entire
4586 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4587 * simultaneously on behalf of the same inode.
4588 *
4589 * As we work through the truncate and commmit bits of it to the journal there
4590 * is one core, guiding principle: the file's tree must always be consistent on
4591 * disk. We must be able to restart the truncate after a crash.
4592 *
4593 * The file's tree may be transiently inconsistent in memory (although it
4594 * probably isn't), but whenever we close off and commit a journal transaction,
4595 * the contents of (the filesystem + the journal) must be consistent and
4596 * restartable. It's pretty simple, really: bottom up, right to left (although
4597 * left-to-right works OK too).
4598 *
4599 * Note that at recovery time, journal replay occurs *before* the restart of
4600 * truncate against the orphan inode list.
4601 *
4602 * The committed inode has the new, desired i_size (which is the same as
4603 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4604 * that this inode's truncate did not complete and it will again call
4605 * ext4_truncate() to have another go. So there will be instantiated blocks
4606 * to the right of the truncation point in a crashed ext4 filesystem. But
4607 * that's fine - as long as they are linked from the inode, the post-crash
4608 * ext4_truncate() run will find them and release them.
4609 */
4610 void ext4_truncate(struct inode *inode)
4611 {
4612 handle_t *handle;
4613 struct ext4_inode_info *ei = EXT4_I(inode);
4614 __le32 *i_data = ei->i_data;
4615 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4616 struct address_space *mapping = inode->i_mapping;
4617 ext4_lblk_t offsets[4];
4618 Indirect chain[4];
4619 Indirect *partial;
4620 __le32 nr = 0;
4621 int n;
4622 ext4_lblk_t last_block;
4623 unsigned blocksize = inode->i_sb->s_blocksize;
4624
4625 if (!ext4_can_truncate(inode))
4626 return;
4627
4628 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4629
4630 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4631 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4632
4633 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4634 ext4_ext_truncate(inode);
4635 return;
4636 }
4637
4638 handle = start_transaction(inode);
4639 if (IS_ERR(handle))
4640 return; /* AKPM: return what? */
4641
4642 last_block = (inode->i_size + blocksize-1)
4643 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4644
4645 if (inode->i_size & (blocksize - 1))
4646 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4647 goto out_stop;
4648
4649 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4650 if (n == 0)
4651 goto out_stop; /* error */
4652
4653 /*
4654 * OK. This truncate is going to happen. We add the inode to the
4655 * orphan list, so that if this truncate spans multiple transactions,
4656 * and we crash, we will resume the truncate when the filesystem
4657 * recovers. It also marks the inode dirty, to catch the new size.
4658 *
4659 * Implication: the file must always be in a sane, consistent
4660 * truncatable state while each transaction commits.
4661 */
4662 if (ext4_orphan_add(handle, inode))
4663 goto out_stop;
4664
4665 /*
4666 * From here we block out all ext4_get_block() callers who want to
4667 * modify the block allocation tree.
4668 */
4669 down_write(&ei->i_data_sem);
4670
4671 ext4_discard_preallocations(inode);
4672
4673 /*
4674 * The orphan list entry will now protect us from any crash which
4675 * occurs before the truncate completes, so it is now safe to propagate
4676 * the new, shorter inode size (held for now in i_size) into the
4677 * on-disk inode. We do this via i_disksize, which is the value which
4678 * ext4 *really* writes onto the disk inode.
4679 */
4680 ei->i_disksize = inode->i_size;
4681
4682 if (n == 1) { /* direct blocks */
4683 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4684 i_data + EXT4_NDIR_BLOCKS);
4685 goto do_indirects;
4686 }
4687
4688 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4689 /* Kill the top of shared branch (not detached) */
4690 if (nr) {
4691 if (partial == chain) {
4692 /* Shared branch grows from the inode */
4693 ext4_free_branches(handle, inode, NULL,
4694 &nr, &nr+1, (chain+n-1) - partial);
4695 *partial->p = 0;
4696 /*
4697 * We mark the inode dirty prior to restart,
4698 * and prior to stop. No need for it here.
4699 */
4700 } else {
4701 /* Shared branch grows from an indirect block */
4702 BUFFER_TRACE(partial->bh, "get_write_access");
4703 ext4_free_branches(handle, inode, partial->bh,
4704 partial->p,
4705 partial->p+1, (chain+n-1) - partial);
4706 }
4707 }
4708 /* Clear the ends of indirect blocks on the shared branch */
4709 while (partial > chain) {
4710 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4711 (__le32*)partial->bh->b_data+addr_per_block,
4712 (chain+n-1) - partial);
4713 BUFFER_TRACE(partial->bh, "call brelse");
4714 brelse(partial->bh);
4715 partial--;
4716 }
4717 do_indirects:
4718 /* Kill the remaining (whole) subtrees */
4719 switch (offsets[0]) {
4720 default:
4721 nr = i_data[EXT4_IND_BLOCK];
4722 if (nr) {
4723 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4724 i_data[EXT4_IND_BLOCK] = 0;
4725 }
4726 case EXT4_IND_BLOCK:
4727 nr = i_data[EXT4_DIND_BLOCK];
4728 if (nr) {
4729 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4730 i_data[EXT4_DIND_BLOCK] = 0;
4731 }
4732 case EXT4_DIND_BLOCK:
4733 nr = i_data[EXT4_TIND_BLOCK];
4734 if (nr) {
4735 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4736 i_data[EXT4_TIND_BLOCK] = 0;
4737 }
4738 case EXT4_TIND_BLOCK:
4739 ;
4740 }
4741
4742 up_write(&ei->i_data_sem);
4743 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4744 ext4_mark_inode_dirty(handle, inode);
4745
4746 /*
4747 * In a multi-transaction truncate, we only make the final transaction
4748 * synchronous
4749 */
4750 if (IS_SYNC(inode))
4751 ext4_handle_sync(handle);
4752 out_stop:
4753 /*
4754 * If this was a simple ftruncate(), and the file will remain alive
4755 * then we need to clear up the orphan record which we created above.
4756 * However, if this was a real unlink then we were called by
4757 * ext4_delete_inode(), and we allow that function to clean up the
4758 * orphan info for us.
4759 */
4760 if (inode->i_nlink)
4761 ext4_orphan_del(handle, inode);
4762
4763 ext4_journal_stop(handle);
4764 }
4765
4766 /*
4767 * ext4_get_inode_loc returns with an extra refcount against the inode's
4768 * underlying buffer_head on success. If 'in_mem' is true, we have all
4769 * data in memory that is needed to recreate the on-disk version of this
4770 * inode.
4771 */
4772 static int __ext4_get_inode_loc(struct inode *inode,
4773 struct ext4_iloc *iloc, int in_mem)
4774 {
4775 struct ext4_group_desc *gdp;
4776 struct buffer_head *bh;
4777 struct super_block *sb = inode->i_sb;
4778 ext4_fsblk_t block;
4779 int inodes_per_block, inode_offset;
4780
4781 iloc->bh = NULL;
4782 if (!ext4_valid_inum(sb, inode->i_ino))
4783 return -EIO;
4784
4785 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4786 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4787 if (!gdp)
4788 return -EIO;
4789
4790 /*
4791 * Figure out the offset within the block group inode table
4792 */
4793 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4794 inode_offset = ((inode->i_ino - 1) %
4795 EXT4_INODES_PER_GROUP(sb));
4796 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4797 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4798
4799 bh = sb_getblk(sb, block);
4800 if (!bh) {
4801 EXT4_ERROR_INODE_BLOCK(inode, block,
4802 "unable to read itable block");
4803 return -EIO;
4804 }
4805 if (!buffer_uptodate(bh)) {
4806 lock_buffer(bh);
4807
4808 /*
4809 * If the buffer has the write error flag, we have failed
4810 * to write out another inode in the same block. In this
4811 * case, we don't have to read the block because we may
4812 * read the old inode data successfully.
4813 */
4814 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4815 set_buffer_uptodate(bh);
4816
4817 if (buffer_uptodate(bh)) {
4818 /* someone brought it uptodate while we waited */
4819 unlock_buffer(bh);
4820 goto has_buffer;
4821 }
4822
4823 /*
4824 * If we have all information of the inode in memory and this
4825 * is the only valid inode in the block, we need not read the
4826 * block.
4827 */
4828 if (in_mem) {
4829 struct buffer_head *bitmap_bh;
4830 int i, start;
4831
4832 start = inode_offset & ~(inodes_per_block - 1);
4833
4834 /* Is the inode bitmap in cache? */
4835 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4836 if (!bitmap_bh)
4837 goto make_io;
4838
4839 /*
4840 * If the inode bitmap isn't in cache then the
4841 * optimisation may end up performing two reads instead
4842 * of one, so skip it.
4843 */
4844 if (!buffer_uptodate(bitmap_bh)) {
4845 brelse(bitmap_bh);
4846 goto make_io;
4847 }
4848 for (i = start; i < start + inodes_per_block; i++) {
4849 if (i == inode_offset)
4850 continue;
4851 if (ext4_test_bit(i, bitmap_bh->b_data))
4852 break;
4853 }
4854 brelse(bitmap_bh);
4855 if (i == start + inodes_per_block) {
4856 /* all other inodes are free, so skip I/O */
4857 memset(bh->b_data, 0, bh->b_size);
4858 set_buffer_uptodate(bh);
4859 unlock_buffer(bh);
4860 goto has_buffer;
4861 }
4862 }
4863
4864 make_io:
4865 /*
4866 * If we need to do any I/O, try to pre-readahead extra
4867 * blocks from the inode table.
4868 */
4869 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4870 ext4_fsblk_t b, end, table;
4871 unsigned num;
4872
4873 table = ext4_inode_table(sb, gdp);
4874 /* s_inode_readahead_blks is always a power of 2 */
4875 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4876 if (table > b)
4877 b = table;
4878 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4879 num = EXT4_INODES_PER_GROUP(sb);
4880 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4881 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4882 num -= ext4_itable_unused_count(sb, gdp);
4883 table += num / inodes_per_block;
4884 if (end > table)
4885 end = table;
4886 while (b <= end)
4887 sb_breadahead(sb, b++);
4888 }
4889
4890 /*
4891 * There are other valid inodes in the buffer, this inode
4892 * has in-inode xattrs, or we don't have this inode in memory.
4893 * Read the block from disk.
4894 */
4895 get_bh(bh);
4896 bh->b_end_io = end_buffer_read_sync;
4897 submit_bh(READ_META, bh);
4898 wait_on_buffer(bh);
4899 if (!buffer_uptodate(bh)) {
4900 EXT4_ERROR_INODE_BLOCK(inode, block,
4901 "unable to read itable block");
4902 brelse(bh);
4903 return -EIO;
4904 }
4905 }
4906 has_buffer:
4907 iloc->bh = bh;
4908 return 0;
4909 }
4910
4911 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4912 {
4913 /* We have all inode data except xattrs in memory here. */
4914 return __ext4_get_inode_loc(inode, iloc,
4915 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4916 }
4917
4918 void ext4_set_inode_flags(struct inode *inode)
4919 {
4920 unsigned int flags = EXT4_I(inode)->i_flags;
4921
4922 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4923 if (flags & EXT4_SYNC_FL)
4924 inode->i_flags |= S_SYNC;
4925 if (flags & EXT4_APPEND_FL)
4926 inode->i_flags |= S_APPEND;
4927 if (flags & EXT4_IMMUTABLE_FL)
4928 inode->i_flags |= S_IMMUTABLE;
4929 if (flags & EXT4_NOATIME_FL)
4930 inode->i_flags |= S_NOATIME;
4931 if (flags & EXT4_DIRSYNC_FL)
4932 inode->i_flags |= S_DIRSYNC;
4933 }
4934
4935 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4936 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4937 {
4938 unsigned int vfs_fl;
4939 unsigned long old_fl, new_fl;
4940
4941 do {
4942 vfs_fl = ei->vfs_inode.i_flags;
4943 old_fl = ei->i_flags;
4944 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4945 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4946 EXT4_DIRSYNC_FL);
4947 if (vfs_fl & S_SYNC)
4948 new_fl |= EXT4_SYNC_FL;
4949 if (vfs_fl & S_APPEND)
4950 new_fl |= EXT4_APPEND_FL;
4951 if (vfs_fl & S_IMMUTABLE)
4952 new_fl |= EXT4_IMMUTABLE_FL;
4953 if (vfs_fl & S_NOATIME)
4954 new_fl |= EXT4_NOATIME_FL;
4955 if (vfs_fl & S_DIRSYNC)
4956 new_fl |= EXT4_DIRSYNC_FL;
4957 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4958 }
4959
4960 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4961 struct ext4_inode_info *ei)
4962 {
4963 blkcnt_t i_blocks ;
4964 struct inode *inode = &(ei->vfs_inode);
4965 struct super_block *sb = inode->i_sb;
4966
4967 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4968 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4969 /* we are using combined 48 bit field */
4970 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4971 le32_to_cpu(raw_inode->i_blocks_lo);
4972 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4973 /* i_blocks represent file system block size */
4974 return i_blocks << (inode->i_blkbits - 9);
4975 } else {
4976 return i_blocks;
4977 }
4978 } else {
4979 return le32_to_cpu(raw_inode->i_blocks_lo);
4980 }
4981 }
4982
4983 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4984 {
4985 struct ext4_iloc iloc;
4986 struct ext4_inode *raw_inode;
4987 struct ext4_inode_info *ei;
4988 struct inode *inode;
4989 journal_t *journal = EXT4_SB(sb)->s_journal;
4990 long ret;
4991 int block;
4992
4993 inode = iget_locked(sb, ino);
4994 if (!inode)
4995 return ERR_PTR(-ENOMEM);
4996 if (!(inode->i_state & I_NEW))
4997 return inode;
4998
4999 ei = EXT4_I(inode);
5000 iloc.bh = 0;
5001
5002 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5003 if (ret < 0)
5004 goto bad_inode;
5005 raw_inode = ext4_raw_inode(&iloc);
5006 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5007 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5008 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5009 if (!(test_opt(inode->i_sb, NO_UID32))) {
5010 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5011 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5012 }
5013 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5014
5015 ei->i_state_flags = 0;
5016 ei->i_dir_start_lookup = 0;
5017 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5018 /* We now have enough fields to check if the inode was active or not.
5019 * This is needed because nfsd might try to access dead inodes
5020 * the test is that same one that e2fsck uses
5021 * NeilBrown 1999oct15
5022 */
5023 if (inode->i_nlink == 0) {
5024 if (inode->i_mode == 0 ||
5025 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5026 /* this inode is deleted */
5027 ret = -ESTALE;
5028 goto bad_inode;
5029 }
5030 /* The only unlinked inodes we let through here have
5031 * valid i_mode and are being read by the orphan
5032 * recovery code: that's fine, we're about to complete
5033 * the process of deleting those. */
5034 }
5035 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5036 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5037 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5038 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5039 ei->i_file_acl |=
5040 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5041 inode->i_size = ext4_isize(raw_inode);
5042 ei->i_disksize = inode->i_size;
5043 #ifdef CONFIG_QUOTA
5044 ei->i_reserved_quota = 0;
5045 #endif
5046 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5047 ei->i_block_group = iloc.block_group;
5048 ei->i_last_alloc_group = ~0;
5049 /*
5050 * NOTE! The in-memory inode i_data array is in little-endian order
5051 * even on big-endian machines: we do NOT byteswap the block numbers!
5052 */
5053 for (block = 0; block < EXT4_N_BLOCKS; block++)
5054 ei->i_data[block] = raw_inode->i_block[block];
5055 INIT_LIST_HEAD(&ei->i_orphan);
5056
5057 /*
5058 * Set transaction id's of transactions that have to be committed
5059 * to finish f[data]sync. We set them to currently running transaction
5060 * as we cannot be sure that the inode or some of its metadata isn't
5061 * part of the transaction - the inode could have been reclaimed and
5062 * now it is reread from disk.
5063 */
5064 if (journal) {
5065 transaction_t *transaction;
5066 tid_t tid;
5067
5068 spin_lock(&journal->j_state_lock);
5069 if (journal->j_running_transaction)
5070 transaction = journal->j_running_transaction;
5071 else
5072 transaction = journal->j_committing_transaction;
5073 if (transaction)
5074 tid = transaction->t_tid;
5075 else
5076 tid = journal->j_commit_sequence;
5077 spin_unlock(&journal->j_state_lock);
5078 ei->i_sync_tid = tid;
5079 ei->i_datasync_tid = tid;
5080 }
5081
5082 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5083 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5084 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5085 EXT4_INODE_SIZE(inode->i_sb)) {
5086 ret = -EIO;
5087 goto bad_inode;
5088 }
5089 if (ei->i_extra_isize == 0) {
5090 /* The extra space is currently unused. Use it. */
5091 ei->i_extra_isize = sizeof(struct ext4_inode) -
5092 EXT4_GOOD_OLD_INODE_SIZE;
5093 } else {
5094 __le32 *magic = (void *)raw_inode +
5095 EXT4_GOOD_OLD_INODE_SIZE +
5096 ei->i_extra_isize;
5097 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5098 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5099 }
5100 } else
5101 ei->i_extra_isize = 0;
5102
5103 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5104 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5105 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5106 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5107
5108 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5110 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5111 inode->i_version |=
5112 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5113 }
5114
5115 ret = 0;
5116 if (ei->i_file_acl &&
5117 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5118 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5119 ei->i_file_acl);
5120 ret = -EIO;
5121 goto bad_inode;
5122 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
5123 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5124 (S_ISLNK(inode->i_mode) &&
5125 !ext4_inode_is_fast_symlink(inode)))
5126 /* Validate extent which is part of inode */
5127 ret = ext4_ext_check_inode(inode);
5128 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5129 (S_ISLNK(inode->i_mode) &&
5130 !ext4_inode_is_fast_symlink(inode))) {
5131 /* Validate block references which are part of inode */
5132 ret = ext4_check_inode_blockref(inode);
5133 }
5134 if (ret)
5135 goto bad_inode;
5136
5137 if (S_ISREG(inode->i_mode)) {
5138 inode->i_op = &ext4_file_inode_operations;
5139 inode->i_fop = &ext4_file_operations;
5140 ext4_set_aops(inode);
5141 } else if (S_ISDIR(inode->i_mode)) {
5142 inode->i_op = &ext4_dir_inode_operations;
5143 inode->i_fop = &ext4_dir_operations;
5144 } else if (S_ISLNK(inode->i_mode)) {
5145 if (ext4_inode_is_fast_symlink(inode)) {
5146 inode->i_op = &ext4_fast_symlink_inode_operations;
5147 nd_terminate_link(ei->i_data, inode->i_size,
5148 sizeof(ei->i_data) - 1);
5149 } else {
5150 inode->i_op = &ext4_symlink_inode_operations;
5151 ext4_set_aops(inode);
5152 }
5153 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5154 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5155 inode->i_op = &ext4_special_inode_operations;
5156 if (raw_inode->i_block[0])
5157 init_special_inode(inode, inode->i_mode,
5158 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5159 else
5160 init_special_inode(inode, inode->i_mode,
5161 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5162 } else {
5163 ret = -EIO;
5164 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5165 goto bad_inode;
5166 }
5167 brelse(iloc.bh);
5168 ext4_set_inode_flags(inode);
5169 unlock_new_inode(inode);
5170 return inode;
5171
5172 bad_inode:
5173 brelse(iloc.bh);
5174 iget_failed(inode);
5175 return ERR_PTR(ret);
5176 }
5177
5178 static int ext4_inode_blocks_set(handle_t *handle,
5179 struct ext4_inode *raw_inode,
5180 struct ext4_inode_info *ei)
5181 {
5182 struct inode *inode = &(ei->vfs_inode);
5183 u64 i_blocks = inode->i_blocks;
5184 struct super_block *sb = inode->i_sb;
5185
5186 if (i_blocks <= ~0U) {
5187 /*
5188 * i_blocks can be represnted in a 32 bit variable
5189 * as multiple of 512 bytes
5190 */
5191 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5192 raw_inode->i_blocks_high = 0;
5193 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5194 return 0;
5195 }
5196 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5197 return -EFBIG;
5198
5199 if (i_blocks <= 0xffffffffffffULL) {
5200 /*
5201 * i_blocks can be represented in a 48 bit variable
5202 * as multiple of 512 bytes
5203 */
5204 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5205 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5206 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5207 } else {
5208 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5209 /* i_block is stored in file system block size */
5210 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5211 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5212 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5213 }
5214 return 0;
5215 }
5216
5217 /*
5218 * Post the struct inode info into an on-disk inode location in the
5219 * buffer-cache. This gobbles the caller's reference to the
5220 * buffer_head in the inode location struct.
5221 *
5222 * The caller must have write access to iloc->bh.
5223 */
5224 static int ext4_do_update_inode(handle_t *handle,
5225 struct inode *inode,
5226 struct ext4_iloc *iloc)
5227 {
5228 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5229 struct ext4_inode_info *ei = EXT4_I(inode);
5230 struct buffer_head *bh = iloc->bh;
5231 int err = 0, rc, block;
5232
5233 /* For fields not not tracking in the in-memory inode,
5234 * initialise them to zero for new inodes. */
5235 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5236 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5237
5238 ext4_get_inode_flags(ei);
5239 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5240 if (!(test_opt(inode->i_sb, NO_UID32))) {
5241 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5242 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5243 /*
5244 * Fix up interoperability with old kernels. Otherwise, old inodes get
5245 * re-used with the upper 16 bits of the uid/gid intact
5246 */
5247 if (!ei->i_dtime) {
5248 raw_inode->i_uid_high =
5249 cpu_to_le16(high_16_bits(inode->i_uid));
5250 raw_inode->i_gid_high =
5251 cpu_to_le16(high_16_bits(inode->i_gid));
5252 } else {
5253 raw_inode->i_uid_high = 0;
5254 raw_inode->i_gid_high = 0;
5255 }
5256 } else {
5257 raw_inode->i_uid_low =
5258 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5259 raw_inode->i_gid_low =
5260 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5261 raw_inode->i_uid_high = 0;
5262 raw_inode->i_gid_high = 0;
5263 }
5264 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5265
5266 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5267 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5268 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5269 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5270
5271 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5272 goto out_brelse;
5273 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5274 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5275 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5276 cpu_to_le32(EXT4_OS_HURD))
5277 raw_inode->i_file_acl_high =
5278 cpu_to_le16(ei->i_file_acl >> 32);
5279 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5280 ext4_isize_set(raw_inode, ei->i_disksize);
5281 if (ei->i_disksize > 0x7fffffffULL) {
5282 struct super_block *sb = inode->i_sb;
5283 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5284 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5285 EXT4_SB(sb)->s_es->s_rev_level ==
5286 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5287 /* If this is the first large file
5288 * created, add a flag to the superblock.
5289 */
5290 err = ext4_journal_get_write_access(handle,
5291 EXT4_SB(sb)->s_sbh);
5292 if (err)
5293 goto out_brelse;
5294 ext4_update_dynamic_rev(sb);
5295 EXT4_SET_RO_COMPAT_FEATURE(sb,
5296 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5297 sb->s_dirt = 1;
5298 ext4_handle_sync(handle);
5299 err = ext4_handle_dirty_metadata(handle, NULL,
5300 EXT4_SB(sb)->s_sbh);
5301 }
5302 }
5303 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5304 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5305 if (old_valid_dev(inode->i_rdev)) {
5306 raw_inode->i_block[0] =
5307 cpu_to_le32(old_encode_dev(inode->i_rdev));
5308 raw_inode->i_block[1] = 0;
5309 } else {
5310 raw_inode->i_block[0] = 0;
5311 raw_inode->i_block[1] =
5312 cpu_to_le32(new_encode_dev(inode->i_rdev));
5313 raw_inode->i_block[2] = 0;
5314 }
5315 } else
5316 for (block = 0; block < EXT4_N_BLOCKS; block++)
5317 raw_inode->i_block[block] = ei->i_data[block];
5318
5319 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5320 if (ei->i_extra_isize) {
5321 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5322 raw_inode->i_version_hi =
5323 cpu_to_le32(inode->i_version >> 32);
5324 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5325 }
5326
5327 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5328 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5329 if (!err)
5330 err = rc;
5331 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5332
5333 ext4_update_inode_fsync_trans(handle, inode, 0);
5334 out_brelse:
5335 brelse(bh);
5336 ext4_std_error(inode->i_sb, err);
5337 return err;
5338 }
5339
5340 /*
5341 * ext4_write_inode()
5342 *
5343 * We are called from a few places:
5344 *
5345 * - Within generic_file_write() for O_SYNC files.
5346 * Here, there will be no transaction running. We wait for any running
5347 * trasnaction to commit.
5348 *
5349 * - Within sys_sync(), kupdate and such.
5350 * We wait on commit, if tol to.
5351 *
5352 * - Within prune_icache() (PF_MEMALLOC == true)
5353 * Here we simply return. We can't afford to block kswapd on the
5354 * journal commit.
5355 *
5356 * In all cases it is actually safe for us to return without doing anything,
5357 * because the inode has been copied into a raw inode buffer in
5358 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5359 * knfsd.
5360 *
5361 * Note that we are absolutely dependent upon all inode dirtiers doing the
5362 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5363 * which we are interested.
5364 *
5365 * It would be a bug for them to not do this. The code:
5366 *
5367 * mark_inode_dirty(inode)
5368 * stuff();
5369 * inode->i_size = expr;
5370 *
5371 * is in error because a kswapd-driven write_inode() could occur while
5372 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5373 * will no longer be on the superblock's dirty inode list.
5374 */
5375 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5376 {
5377 int err;
5378
5379 if (current->flags & PF_MEMALLOC)
5380 return 0;
5381
5382 if (EXT4_SB(inode->i_sb)->s_journal) {
5383 if (ext4_journal_current_handle()) {
5384 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5385 dump_stack();
5386 return -EIO;
5387 }
5388
5389 if (wbc->sync_mode != WB_SYNC_ALL)
5390 return 0;
5391
5392 err = ext4_force_commit(inode->i_sb);
5393 } else {
5394 struct ext4_iloc iloc;
5395
5396 err = __ext4_get_inode_loc(inode, &iloc, 0);
5397 if (err)
5398 return err;
5399 if (wbc->sync_mode == WB_SYNC_ALL)
5400 sync_dirty_buffer(iloc.bh);
5401 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5402 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5403 "IO error syncing inode");
5404 err = -EIO;
5405 }
5406 brelse(iloc.bh);
5407 }
5408 return err;
5409 }
5410
5411 /*
5412 * ext4_setattr()
5413 *
5414 * Called from notify_change.
5415 *
5416 * We want to trap VFS attempts to truncate the file as soon as
5417 * possible. In particular, we want to make sure that when the VFS
5418 * shrinks i_size, we put the inode on the orphan list and modify
5419 * i_disksize immediately, so that during the subsequent flushing of
5420 * dirty pages and freeing of disk blocks, we can guarantee that any
5421 * commit will leave the blocks being flushed in an unused state on
5422 * disk. (On recovery, the inode will get truncated and the blocks will
5423 * be freed, so we have a strong guarantee that no future commit will
5424 * leave these blocks visible to the user.)
5425 *
5426 * Another thing we have to assure is that if we are in ordered mode
5427 * and inode is still attached to the committing transaction, we must
5428 * we start writeout of all the dirty pages which are being truncated.
5429 * This way we are sure that all the data written in the previous
5430 * transaction are already on disk (truncate waits for pages under
5431 * writeback).
5432 *
5433 * Called with inode->i_mutex down.
5434 */
5435 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5436 {
5437 struct inode *inode = dentry->d_inode;
5438 int error, rc = 0;
5439 const unsigned int ia_valid = attr->ia_valid;
5440
5441 error = inode_change_ok(inode, attr);
5442 if (error)
5443 return error;
5444
5445 if (is_quota_modification(inode, attr))
5446 dquot_initialize(inode);
5447 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5448 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5449 handle_t *handle;
5450
5451 /* (user+group)*(old+new) structure, inode write (sb,
5452 * inode block, ? - but truncate inode update has it) */
5453 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5454 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5455 if (IS_ERR(handle)) {
5456 error = PTR_ERR(handle);
5457 goto err_out;
5458 }
5459 error = dquot_transfer(inode, attr);
5460 if (error) {
5461 ext4_journal_stop(handle);
5462 return error;
5463 }
5464 /* Update corresponding info in inode so that everything is in
5465 * one transaction */
5466 if (attr->ia_valid & ATTR_UID)
5467 inode->i_uid = attr->ia_uid;
5468 if (attr->ia_valid & ATTR_GID)
5469 inode->i_gid = attr->ia_gid;
5470 error = ext4_mark_inode_dirty(handle, inode);
5471 ext4_journal_stop(handle);
5472 }
5473
5474 if (attr->ia_valid & ATTR_SIZE) {
5475 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5476 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5477
5478 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5479 return -EFBIG;
5480 }
5481 }
5482
5483 if (S_ISREG(inode->i_mode) &&
5484 attr->ia_valid & ATTR_SIZE &&
5485 (attr->ia_size < inode->i_size ||
5486 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5487 handle_t *handle;
5488
5489 handle = ext4_journal_start(inode, 3);
5490 if (IS_ERR(handle)) {
5491 error = PTR_ERR(handle);
5492 goto err_out;
5493 }
5494
5495 error = ext4_orphan_add(handle, inode);
5496 EXT4_I(inode)->i_disksize = attr->ia_size;
5497 rc = ext4_mark_inode_dirty(handle, inode);
5498 if (!error)
5499 error = rc;
5500 ext4_journal_stop(handle);
5501
5502 if (ext4_should_order_data(inode)) {
5503 error = ext4_begin_ordered_truncate(inode,
5504 attr->ia_size);
5505 if (error) {
5506 /* Do as much error cleanup as possible */
5507 handle = ext4_journal_start(inode, 3);
5508 if (IS_ERR(handle)) {
5509 ext4_orphan_del(NULL, inode);
5510 goto err_out;
5511 }
5512 ext4_orphan_del(handle, inode);
5513 ext4_journal_stop(handle);
5514 goto err_out;
5515 }
5516 }
5517 /* ext4_truncate will clear the flag */
5518 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5519 ext4_truncate(inode);
5520 }
5521
5522 rc = inode_setattr(inode, attr);
5523
5524 /* If inode_setattr's call to ext4_truncate failed to get a
5525 * transaction handle at all, we need to clean up the in-core
5526 * orphan list manually. */
5527 if (inode->i_nlink)
5528 ext4_orphan_del(NULL, inode);
5529
5530 if (!rc && (ia_valid & ATTR_MODE))
5531 rc = ext4_acl_chmod(inode);
5532
5533 err_out:
5534 ext4_std_error(inode->i_sb, error);
5535 if (!error)
5536 error = rc;
5537 return error;
5538 }
5539
5540 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5541 struct kstat *stat)
5542 {
5543 struct inode *inode;
5544 unsigned long delalloc_blocks;
5545
5546 inode = dentry->d_inode;
5547 generic_fillattr(inode, stat);
5548
5549 /*
5550 * We can't update i_blocks if the block allocation is delayed
5551 * otherwise in the case of system crash before the real block
5552 * allocation is done, we will have i_blocks inconsistent with
5553 * on-disk file blocks.
5554 * We always keep i_blocks updated together with real
5555 * allocation. But to not confuse with user, stat
5556 * will return the blocks that include the delayed allocation
5557 * blocks for this file.
5558 */
5559 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5560 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5561 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5562
5563 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5564 return 0;
5565 }
5566
5567 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5568 int chunk)
5569 {
5570 int indirects;
5571
5572 /* if nrblocks are contiguous */
5573 if (chunk) {
5574 /*
5575 * With N contiguous data blocks, it need at most
5576 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5577 * 2 dindirect blocks
5578 * 1 tindirect block
5579 */
5580 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5581 return indirects + 3;
5582 }
5583 /*
5584 * if nrblocks are not contiguous, worse case, each block touch
5585 * a indirect block, and each indirect block touch a double indirect
5586 * block, plus a triple indirect block
5587 */
5588 indirects = nrblocks * 2 + 1;
5589 return indirects;
5590 }
5591
5592 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5593 {
5594 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5595 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5596 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5597 }
5598
5599 /*
5600 * Account for index blocks, block groups bitmaps and block group
5601 * descriptor blocks if modify datablocks and index blocks
5602 * worse case, the indexs blocks spread over different block groups
5603 *
5604 * If datablocks are discontiguous, they are possible to spread over
5605 * different block groups too. If they are contiuguous, with flexbg,
5606 * they could still across block group boundary.
5607 *
5608 * Also account for superblock, inode, quota and xattr blocks
5609 */
5610 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5611 {
5612 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5613 int gdpblocks;
5614 int idxblocks;
5615 int ret = 0;
5616
5617 /*
5618 * How many index blocks need to touch to modify nrblocks?
5619 * The "Chunk" flag indicating whether the nrblocks is
5620 * physically contiguous on disk
5621 *
5622 * For Direct IO and fallocate, they calls get_block to allocate
5623 * one single extent at a time, so they could set the "Chunk" flag
5624 */
5625 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5626
5627 ret = idxblocks;
5628
5629 /*
5630 * Now let's see how many group bitmaps and group descriptors need
5631 * to account
5632 */
5633 groups = idxblocks;
5634 if (chunk)
5635 groups += 1;
5636 else
5637 groups += nrblocks;
5638
5639 gdpblocks = groups;
5640 if (groups > ngroups)
5641 groups = ngroups;
5642 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5643 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5644
5645 /* bitmaps and block group descriptor blocks */
5646 ret += groups + gdpblocks;
5647
5648 /* Blocks for super block, inode, quota and xattr blocks */
5649 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5650
5651 return ret;
5652 }
5653
5654 /*
5655 * Calulate the total number of credits to reserve to fit
5656 * the modification of a single pages into a single transaction,
5657 * which may include multiple chunks of block allocations.
5658 *
5659 * This could be called via ext4_write_begin()
5660 *
5661 * We need to consider the worse case, when
5662 * one new block per extent.
5663 */
5664 int ext4_writepage_trans_blocks(struct inode *inode)
5665 {
5666 int bpp = ext4_journal_blocks_per_page(inode);
5667 int ret;
5668
5669 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5670
5671 /* Account for data blocks for journalled mode */
5672 if (ext4_should_journal_data(inode))
5673 ret += bpp;
5674 return ret;
5675 }
5676
5677 /*
5678 * Calculate the journal credits for a chunk of data modification.
5679 *
5680 * This is called from DIO, fallocate or whoever calling
5681 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5682 *
5683 * journal buffers for data blocks are not included here, as DIO
5684 * and fallocate do no need to journal data buffers.
5685 */
5686 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5687 {
5688 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5689 }
5690
5691 /*
5692 * The caller must have previously called ext4_reserve_inode_write().
5693 * Give this, we know that the caller already has write access to iloc->bh.
5694 */
5695 int ext4_mark_iloc_dirty(handle_t *handle,
5696 struct inode *inode, struct ext4_iloc *iloc)
5697 {
5698 int err = 0;
5699
5700 if (test_opt(inode->i_sb, I_VERSION))
5701 inode_inc_iversion(inode);
5702
5703 /* the do_update_inode consumes one bh->b_count */
5704 get_bh(iloc->bh);
5705
5706 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5707 err = ext4_do_update_inode(handle, inode, iloc);
5708 put_bh(iloc->bh);
5709 return err;
5710 }
5711
5712 /*
5713 * On success, We end up with an outstanding reference count against
5714 * iloc->bh. This _must_ be cleaned up later.
5715 */
5716
5717 int
5718 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5719 struct ext4_iloc *iloc)
5720 {
5721 int err;
5722
5723 err = ext4_get_inode_loc(inode, iloc);
5724 if (!err) {
5725 BUFFER_TRACE(iloc->bh, "get_write_access");
5726 err = ext4_journal_get_write_access(handle, iloc->bh);
5727 if (err) {
5728 brelse(iloc->bh);
5729 iloc->bh = NULL;
5730 }
5731 }
5732 ext4_std_error(inode->i_sb, err);
5733 return err;
5734 }
5735
5736 /*
5737 * Expand an inode by new_extra_isize bytes.
5738 * Returns 0 on success or negative error number on failure.
5739 */
5740 static int ext4_expand_extra_isize(struct inode *inode,
5741 unsigned int new_extra_isize,
5742 struct ext4_iloc iloc,
5743 handle_t *handle)
5744 {
5745 struct ext4_inode *raw_inode;
5746 struct ext4_xattr_ibody_header *header;
5747
5748 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5749 return 0;
5750
5751 raw_inode = ext4_raw_inode(&iloc);
5752
5753 header = IHDR(inode, raw_inode);
5754
5755 /* No extended attributes present */
5756 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5757 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5758 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5759 new_extra_isize);
5760 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5761 return 0;
5762 }
5763
5764 /* try to expand with EAs present */
5765 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5766 raw_inode, handle);
5767 }
5768
5769 /*
5770 * What we do here is to mark the in-core inode as clean with respect to inode
5771 * dirtiness (it may still be data-dirty).
5772 * This means that the in-core inode may be reaped by prune_icache
5773 * without having to perform any I/O. This is a very good thing,
5774 * because *any* task may call prune_icache - even ones which
5775 * have a transaction open against a different journal.
5776 *
5777 * Is this cheating? Not really. Sure, we haven't written the
5778 * inode out, but prune_icache isn't a user-visible syncing function.
5779 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5780 * we start and wait on commits.
5781 *
5782 * Is this efficient/effective? Well, we're being nice to the system
5783 * by cleaning up our inodes proactively so they can be reaped
5784 * without I/O. But we are potentially leaving up to five seconds'
5785 * worth of inodes floating about which prune_icache wants us to
5786 * write out. One way to fix that would be to get prune_icache()
5787 * to do a write_super() to free up some memory. It has the desired
5788 * effect.
5789 */
5790 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5791 {
5792 struct ext4_iloc iloc;
5793 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5794 static unsigned int mnt_count;
5795 int err, ret;
5796
5797 might_sleep();
5798 err = ext4_reserve_inode_write(handle, inode, &iloc);
5799 if (ext4_handle_valid(handle) &&
5800 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5801 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5802 /*
5803 * We need extra buffer credits since we may write into EA block
5804 * with this same handle. If journal_extend fails, then it will
5805 * only result in a minor loss of functionality for that inode.
5806 * If this is felt to be critical, then e2fsck should be run to
5807 * force a large enough s_min_extra_isize.
5808 */
5809 if ((jbd2_journal_extend(handle,
5810 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5811 ret = ext4_expand_extra_isize(inode,
5812 sbi->s_want_extra_isize,
5813 iloc, handle);
5814 if (ret) {
5815 ext4_set_inode_state(inode,
5816 EXT4_STATE_NO_EXPAND);
5817 if (mnt_count !=
5818 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5819 ext4_warning(inode->i_sb,
5820 "Unable to expand inode %lu. Delete"
5821 " some EAs or run e2fsck.",
5822 inode->i_ino);
5823 mnt_count =
5824 le16_to_cpu(sbi->s_es->s_mnt_count);
5825 }
5826 }
5827 }
5828 }
5829 if (!err)
5830 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5831 return err;
5832 }
5833
5834 /*
5835 * ext4_dirty_inode() is called from __mark_inode_dirty()
5836 *
5837 * We're really interested in the case where a file is being extended.
5838 * i_size has been changed by generic_commit_write() and we thus need
5839 * to include the updated inode in the current transaction.
5840 *
5841 * Also, dquot_alloc_block() will always dirty the inode when blocks
5842 * are allocated to the file.
5843 *
5844 * If the inode is marked synchronous, we don't honour that here - doing
5845 * so would cause a commit on atime updates, which we don't bother doing.
5846 * We handle synchronous inodes at the highest possible level.
5847 */
5848 void ext4_dirty_inode(struct inode *inode)
5849 {
5850 handle_t *handle;
5851
5852 handle = ext4_journal_start(inode, 2);
5853 if (IS_ERR(handle))
5854 goto out;
5855
5856 ext4_mark_inode_dirty(handle, inode);
5857
5858 ext4_journal_stop(handle);
5859 out:
5860 return;
5861 }
5862
5863 #if 0
5864 /*
5865 * Bind an inode's backing buffer_head into this transaction, to prevent
5866 * it from being flushed to disk early. Unlike
5867 * ext4_reserve_inode_write, this leaves behind no bh reference and
5868 * returns no iloc structure, so the caller needs to repeat the iloc
5869 * lookup to mark the inode dirty later.
5870 */
5871 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5872 {
5873 struct ext4_iloc iloc;
5874
5875 int err = 0;
5876 if (handle) {
5877 err = ext4_get_inode_loc(inode, &iloc);
5878 if (!err) {
5879 BUFFER_TRACE(iloc.bh, "get_write_access");
5880 err = jbd2_journal_get_write_access(handle, iloc.bh);
5881 if (!err)
5882 err = ext4_handle_dirty_metadata(handle,
5883 NULL,
5884 iloc.bh);
5885 brelse(iloc.bh);
5886 }
5887 }
5888 ext4_std_error(inode->i_sb, err);
5889 return err;
5890 }
5891 #endif
5892
5893 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5894 {
5895 journal_t *journal;
5896 handle_t *handle;
5897 int err;
5898
5899 /*
5900 * We have to be very careful here: changing a data block's
5901 * journaling status dynamically is dangerous. If we write a
5902 * data block to the journal, change the status and then delete
5903 * that block, we risk forgetting to revoke the old log record
5904 * from the journal and so a subsequent replay can corrupt data.
5905 * So, first we make sure that the journal is empty and that
5906 * nobody is changing anything.
5907 */
5908
5909 journal = EXT4_JOURNAL(inode);
5910 if (!journal)
5911 return 0;
5912 if (is_journal_aborted(journal))
5913 return -EROFS;
5914
5915 jbd2_journal_lock_updates(journal);
5916 jbd2_journal_flush(journal);
5917
5918 /*
5919 * OK, there are no updates running now, and all cached data is
5920 * synced to disk. We are now in a completely consistent state
5921 * which doesn't have anything in the journal, and we know that
5922 * no filesystem updates are running, so it is safe to modify
5923 * the inode's in-core data-journaling state flag now.
5924 */
5925
5926 if (val)
5927 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5928 else
5929 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5930 ext4_set_aops(inode);
5931
5932 jbd2_journal_unlock_updates(journal);
5933
5934 /* Finally we can mark the inode as dirty. */
5935
5936 handle = ext4_journal_start(inode, 1);
5937 if (IS_ERR(handle))
5938 return PTR_ERR(handle);
5939
5940 err = ext4_mark_inode_dirty(handle, inode);
5941 ext4_handle_sync(handle);
5942 ext4_journal_stop(handle);
5943 ext4_std_error(inode->i_sb, err);
5944
5945 return err;
5946 }
5947
5948 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5949 {
5950 return !buffer_mapped(bh);
5951 }
5952
5953 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5954 {
5955 struct page *page = vmf->page;
5956 loff_t size;
5957 unsigned long len;
5958 int ret = -EINVAL;
5959 void *fsdata;
5960 struct file *file = vma->vm_file;
5961 struct inode *inode = file->f_path.dentry->d_inode;
5962 struct address_space *mapping = inode->i_mapping;
5963
5964 /*
5965 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5966 * get i_mutex because we are already holding mmap_sem.
5967 */
5968 down_read(&inode->i_alloc_sem);
5969 size = i_size_read(inode);
5970 if (page->mapping != mapping || size <= page_offset(page)
5971 || !PageUptodate(page)) {
5972 /* page got truncated from under us? */
5973 goto out_unlock;
5974 }
5975 ret = 0;
5976 if (PageMappedToDisk(page))
5977 goto out_unlock;
5978
5979 if (page->index == size >> PAGE_CACHE_SHIFT)
5980 len = size & ~PAGE_CACHE_MASK;
5981 else
5982 len = PAGE_CACHE_SIZE;
5983
5984 lock_page(page);
5985 /*
5986 * return if we have all the buffers mapped. This avoid
5987 * the need to call write_begin/write_end which does a
5988 * journal_start/journal_stop which can block and take
5989 * long time
5990 */
5991 if (page_has_buffers(page)) {
5992 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5993 ext4_bh_unmapped)) {
5994 unlock_page(page);
5995 goto out_unlock;
5996 }
5997 }
5998 unlock_page(page);
5999 /*
6000 * OK, we need to fill the hole... Do write_begin write_end
6001 * to do block allocation/reservation.We are not holding
6002 * inode.i__mutex here. That allow * parallel write_begin,
6003 * write_end call. lock_page prevent this from happening
6004 * on the same page though
6005 */
6006 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6007 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6008 if (ret < 0)
6009 goto out_unlock;
6010 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6011 len, len, page, fsdata);
6012 if (ret < 0)
6013 goto out_unlock;
6014 ret = 0;
6015 out_unlock:
6016 if (ret)
6017 ret = VM_FAULT_SIGBUS;
6018 up_read(&inode->i_alloc_sem);
6019 return ret;
6020 }