]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
ext4: delayed allocation ENOSPC handling
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 loff_t new_size)
46 {
47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 new_size);
49 }
50
51 static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
53 /*
54 * Test whether an inode is a fast symlink.
55 */
56 static int ext4_inode_is_fast_symlink(struct inode *inode)
57 {
58 int ea_blocks = EXT4_I(inode)->i_file_acl ?
59 (inode->i_sb->s_blocksize >> 9) : 0;
60
61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62 }
63
64 /*
65 * The ext4 forget function must perform a revoke if we are freeing data
66 * which has been journaled. Metadata (eg. indirect blocks) must be
67 * revoked in all cases.
68 *
69 * "bh" may be NULL: a metadata block may have been freed from memory
70 * but there may still be a record of it in the journal, and that record
71 * still needs to be revoked.
72 */
73 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 struct buffer_head *bh, ext4_fsblk_t blocknr)
75 {
76 int err;
77
78 might_sleep();
79
80 BUFFER_TRACE(bh, "enter");
81
82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 "data mode %lx\n",
84 bh, is_metadata, inode->i_mode,
85 test_opt(inode->i_sb, DATA_FLAGS));
86
87 /* Never use the revoke function if we are doing full data
88 * journaling: there is no need to, and a V1 superblock won't
89 * support it. Otherwise, only skip the revoke on un-journaled
90 * data blocks. */
91
92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 (!is_metadata && !ext4_should_journal_data(inode))) {
94 if (bh) {
95 BUFFER_TRACE(bh, "call jbd2_journal_forget");
96 return ext4_journal_forget(handle, bh);
97 }
98 return 0;
99 }
100
101 /*
102 * data!=journal && (is_metadata || should_journal_data(inode))
103 */
104 BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 err = ext4_journal_revoke(handle, blocknr, bh);
106 if (err)
107 ext4_abort(inode->i_sb, __func__,
108 "error %d when attempting revoke", err);
109 BUFFER_TRACE(bh, "exit");
110 return err;
111 }
112
113 /*
114 * Work out how many blocks we need to proceed with the next chunk of a
115 * truncate transaction.
116 */
117 static unsigned long blocks_for_truncate(struct inode *inode)
118 {
119 ext4_lblk_t needed;
120
121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123 /* Give ourselves just enough room to cope with inodes in which
124 * i_blocks is corrupt: we've seen disk corruptions in the past
125 * which resulted in random data in an inode which looked enough
126 * like a regular file for ext4 to try to delete it. Things
127 * will go a bit crazy if that happens, but at least we should
128 * try not to panic the whole kernel. */
129 if (needed < 2)
130 needed = 2;
131
132 /* But we need to bound the transaction so we don't overflow the
133 * journal. */
134 if (needed > EXT4_MAX_TRANS_DATA)
135 needed = EXT4_MAX_TRANS_DATA;
136
137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
138 }
139
140 /*
141 * Truncate transactions can be complex and absolutely huge. So we need to
142 * be able to restart the transaction at a conventient checkpoint to make
143 * sure we don't overflow the journal.
144 *
145 * start_transaction gets us a new handle for a truncate transaction,
146 * and extend_transaction tries to extend the existing one a bit. If
147 * extend fails, we need to propagate the failure up and restart the
148 * transaction in the top-level truncate loop. --sct
149 */
150 static handle_t *start_transaction(struct inode *inode)
151 {
152 handle_t *result;
153
154 result = ext4_journal_start(inode, blocks_for_truncate(inode));
155 if (!IS_ERR(result))
156 return result;
157
158 ext4_std_error(inode->i_sb, PTR_ERR(result));
159 return result;
160 }
161
162 /*
163 * Try to extend this transaction for the purposes of truncation.
164 *
165 * Returns 0 if we managed to create more room. If we can't create more
166 * room, and the transaction must be restarted we return 1.
167 */
168 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169 {
170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
171 return 0;
172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
173 return 0;
174 return 1;
175 }
176
177 /*
178 * Restart the transaction associated with *handle. This does a commit,
179 * so before we call here everything must be consistently dirtied against
180 * this transaction.
181 */
182 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
183 {
184 jbd_debug(2, "restarting handle %p\n", handle);
185 return ext4_journal_restart(handle, blocks_for_truncate(inode));
186 }
187
188 /*
189 * Called at the last iput() if i_nlink is zero.
190 */
191 void ext4_delete_inode (struct inode * inode)
192 {
193 handle_t *handle;
194
195 if (ext4_should_order_data(inode))
196 ext4_begin_ordered_truncate(inode, 0);
197 truncate_inode_pages(&inode->i_data, 0);
198
199 if (is_bad_inode(inode))
200 goto no_delete;
201
202 handle = start_transaction(inode);
203 if (IS_ERR(handle)) {
204 /*
205 * If we're going to skip the normal cleanup, we still need to
206 * make sure that the in-core orphan linked list is properly
207 * cleaned up.
208 */
209 ext4_orphan_del(NULL, inode);
210 goto no_delete;
211 }
212
213 if (IS_SYNC(inode))
214 handle->h_sync = 1;
215 inode->i_size = 0;
216 if (inode->i_blocks)
217 ext4_truncate(inode);
218 /*
219 * Kill off the orphan record which ext4_truncate created.
220 * AKPM: I think this can be inside the above `if'.
221 * Note that ext4_orphan_del() has to be able to cope with the
222 * deletion of a non-existent orphan - this is because we don't
223 * know if ext4_truncate() actually created an orphan record.
224 * (Well, we could do this if we need to, but heck - it works)
225 */
226 ext4_orphan_del(handle, inode);
227 EXT4_I(inode)->i_dtime = get_seconds();
228
229 /*
230 * One subtle ordering requirement: if anything has gone wrong
231 * (transaction abort, IO errors, whatever), then we can still
232 * do these next steps (the fs will already have been marked as
233 * having errors), but we can't free the inode if the mark_dirty
234 * fails.
235 */
236 if (ext4_mark_inode_dirty(handle, inode))
237 /* If that failed, just do the required in-core inode clear. */
238 clear_inode(inode);
239 else
240 ext4_free_inode(handle, inode);
241 ext4_journal_stop(handle);
242 return;
243 no_delete:
244 clear_inode(inode); /* We must guarantee clearing of inode... */
245 }
246
247 typedef struct {
248 __le32 *p;
249 __le32 key;
250 struct buffer_head *bh;
251 } Indirect;
252
253 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
254 {
255 p->key = *(p->p = v);
256 p->bh = bh;
257 }
258
259 /**
260 * ext4_block_to_path - parse the block number into array of offsets
261 * @inode: inode in question (we are only interested in its superblock)
262 * @i_block: block number to be parsed
263 * @offsets: array to store the offsets in
264 * @boundary: set this non-zero if the referred-to block is likely to be
265 * followed (on disk) by an indirect block.
266 *
267 * To store the locations of file's data ext4 uses a data structure common
268 * for UNIX filesystems - tree of pointers anchored in the inode, with
269 * data blocks at leaves and indirect blocks in intermediate nodes.
270 * This function translates the block number into path in that tree -
271 * return value is the path length and @offsets[n] is the offset of
272 * pointer to (n+1)th node in the nth one. If @block is out of range
273 * (negative or too large) warning is printed and zero returned.
274 *
275 * Note: function doesn't find node addresses, so no IO is needed. All
276 * we need to know is the capacity of indirect blocks (taken from the
277 * inode->i_sb).
278 */
279
280 /*
281 * Portability note: the last comparison (check that we fit into triple
282 * indirect block) is spelled differently, because otherwise on an
283 * architecture with 32-bit longs and 8Kb pages we might get into trouble
284 * if our filesystem had 8Kb blocks. We might use long long, but that would
285 * kill us on x86. Oh, well, at least the sign propagation does not matter -
286 * i_block would have to be negative in the very beginning, so we would not
287 * get there at all.
288 */
289
290 static int ext4_block_to_path(struct inode *inode,
291 ext4_lblk_t i_block,
292 ext4_lblk_t offsets[4], int *boundary)
293 {
294 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
295 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
296 const long direct_blocks = EXT4_NDIR_BLOCKS,
297 indirect_blocks = ptrs,
298 double_blocks = (1 << (ptrs_bits * 2));
299 int n = 0;
300 int final = 0;
301
302 if (i_block < 0) {
303 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
304 } else if (i_block < direct_blocks) {
305 offsets[n++] = i_block;
306 final = direct_blocks;
307 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
308 offsets[n++] = EXT4_IND_BLOCK;
309 offsets[n++] = i_block;
310 final = ptrs;
311 } else if ((i_block -= indirect_blocks) < double_blocks) {
312 offsets[n++] = EXT4_DIND_BLOCK;
313 offsets[n++] = i_block >> ptrs_bits;
314 offsets[n++] = i_block & (ptrs - 1);
315 final = ptrs;
316 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
317 offsets[n++] = EXT4_TIND_BLOCK;
318 offsets[n++] = i_block >> (ptrs_bits * 2);
319 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
320 offsets[n++] = i_block & (ptrs - 1);
321 final = ptrs;
322 } else {
323 ext4_warning(inode->i_sb, "ext4_block_to_path",
324 "block %lu > max",
325 i_block + direct_blocks +
326 indirect_blocks + double_blocks);
327 }
328 if (boundary)
329 *boundary = final - 1 - (i_block & (ptrs - 1));
330 return n;
331 }
332
333 /**
334 * ext4_get_branch - read the chain of indirect blocks leading to data
335 * @inode: inode in question
336 * @depth: depth of the chain (1 - direct pointer, etc.)
337 * @offsets: offsets of pointers in inode/indirect blocks
338 * @chain: place to store the result
339 * @err: here we store the error value
340 *
341 * Function fills the array of triples <key, p, bh> and returns %NULL
342 * if everything went OK or the pointer to the last filled triple
343 * (incomplete one) otherwise. Upon the return chain[i].key contains
344 * the number of (i+1)-th block in the chain (as it is stored in memory,
345 * i.e. little-endian 32-bit), chain[i].p contains the address of that
346 * number (it points into struct inode for i==0 and into the bh->b_data
347 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
348 * block for i>0 and NULL for i==0. In other words, it holds the block
349 * numbers of the chain, addresses they were taken from (and where we can
350 * verify that chain did not change) and buffer_heads hosting these
351 * numbers.
352 *
353 * Function stops when it stumbles upon zero pointer (absent block)
354 * (pointer to last triple returned, *@err == 0)
355 * or when it gets an IO error reading an indirect block
356 * (ditto, *@err == -EIO)
357 * or when it reads all @depth-1 indirect blocks successfully and finds
358 * the whole chain, all way to the data (returns %NULL, *err == 0).
359 *
360 * Need to be called with
361 * down_read(&EXT4_I(inode)->i_data_sem)
362 */
363 static Indirect *ext4_get_branch(struct inode *inode, int depth,
364 ext4_lblk_t *offsets,
365 Indirect chain[4], int *err)
366 {
367 struct super_block *sb = inode->i_sb;
368 Indirect *p = chain;
369 struct buffer_head *bh;
370
371 *err = 0;
372 /* i_data is not going away, no lock needed */
373 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
374 if (!p->key)
375 goto no_block;
376 while (--depth) {
377 bh = sb_bread(sb, le32_to_cpu(p->key));
378 if (!bh)
379 goto failure;
380 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
381 /* Reader: end */
382 if (!p->key)
383 goto no_block;
384 }
385 return NULL;
386
387 failure:
388 *err = -EIO;
389 no_block:
390 return p;
391 }
392
393 /**
394 * ext4_find_near - find a place for allocation with sufficient locality
395 * @inode: owner
396 * @ind: descriptor of indirect block.
397 *
398 * This function returns the preferred place for block allocation.
399 * It is used when heuristic for sequential allocation fails.
400 * Rules are:
401 * + if there is a block to the left of our position - allocate near it.
402 * + if pointer will live in indirect block - allocate near that block.
403 * + if pointer will live in inode - allocate in the same
404 * cylinder group.
405 *
406 * In the latter case we colour the starting block by the callers PID to
407 * prevent it from clashing with concurrent allocations for a different inode
408 * in the same block group. The PID is used here so that functionally related
409 * files will be close-by on-disk.
410 *
411 * Caller must make sure that @ind is valid and will stay that way.
412 */
413 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
414 {
415 struct ext4_inode_info *ei = EXT4_I(inode);
416 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
417 __le32 *p;
418 ext4_fsblk_t bg_start;
419 ext4_fsblk_t last_block;
420 ext4_grpblk_t colour;
421
422 /* Try to find previous block */
423 for (p = ind->p - 1; p >= start; p--) {
424 if (*p)
425 return le32_to_cpu(*p);
426 }
427
428 /* No such thing, so let's try location of indirect block */
429 if (ind->bh)
430 return ind->bh->b_blocknr;
431
432 /*
433 * It is going to be referred to from the inode itself? OK, just put it
434 * into the same cylinder group then.
435 */
436 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
437 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
438
439 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
440 colour = (current->pid % 16) *
441 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
442 else
443 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
444 return bg_start + colour;
445 }
446
447 /**
448 * ext4_find_goal - find a preferred place for allocation.
449 * @inode: owner
450 * @block: block we want
451 * @partial: pointer to the last triple within a chain
452 *
453 * Normally this function find the preferred place for block allocation,
454 * returns it.
455 */
456 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
457 Indirect *partial)
458 {
459 struct ext4_block_alloc_info *block_i;
460
461 block_i = EXT4_I(inode)->i_block_alloc_info;
462
463 /*
464 * try the heuristic for sequential allocation,
465 * failing that at least try to get decent locality.
466 */
467 if (block_i && (block == block_i->last_alloc_logical_block + 1)
468 && (block_i->last_alloc_physical_block != 0)) {
469 return block_i->last_alloc_physical_block + 1;
470 }
471
472 return ext4_find_near(inode, partial);
473 }
474
475 /**
476 * ext4_blks_to_allocate: Look up the block map and count the number
477 * of direct blocks need to be allocated for the given branch.
478 *
479 * @branch: chain of indirect blocks
480 * @k: number of blocks need for indirect blocks
481 * @blks: number of data blocks to be mapped.
482 * @blocks_to_boundary: the offset in the indirect block
483 *
484 * return the total number of blocks to be allocate, including the
485 * direct and indirect blocks.
486 */
487 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
488 int blocks_to_boundary)
489 {
490 unsigned long count = 0;
491
492 /*
493 * Simple case, [t,d]Indirect block(s) has not allocated yet
494 * then it's clear blocks on that path have not allocated
495 */
496 if (k > 0) {
497 /* right now we don't handle cross boundary allocation */
498 if (blks < blocks_to_boundary + 1)
499 count += blks;
500 else
501 count += blocks_to_boundary + 1;
502 return count;
503 }
504
505 count++;
506 while (count < blks && count <= blocks_to_boundary &&
507 le32_to_cpu(*(branch[0].p + count)) == 0) {
508 count++;
509 }
510 return count;
511 }
512
513 /**
514 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
515 * @indirect_blks: the number of blocks need to allocate for indirect
516 * blocks
517 *
518 * @new_blocks: on return it will store the new block numbers for
519 * the indirect blocks(if needed) and the first direct block,
520 * @blks: on return it will store the total number of allocated
521 * direct blocks
522 */
523 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
524 ext4_lblk_t iblock, ext4_fsblk_t goal,
525 int indirect_blks, int blks,
526 ext4_fsblk_t new_blocks[4], int *err)
527 {
528 int target, i;
529 unsigned long count = 0, blk_allocated = 0;
530 int index = 0;
531 ext4_fsblk_t current_block = 0;
532 int ret = 0;
533
534 /*
535 * Here we try to allocate the requested multiple blocks at once,
536 * on a best-effort basis.
537 * To build a branch, we should allocate blocks for
538 * the indirect blocks(if not allocated yet), and at least
539 * the first direct block of this branch. That's the
540 * minimum number of blocks need to allocate(required)
541 */
542 /* first we try to allocate the indirect blocks */
543 target = indirect_blks;
544 while (target > 0) {
545 count = target;
546 /* allocating blocks for indirect blocks and direct blocks */
547 current_block = ext4_new_meta_blocks(handle, inode,
548 goal, &count, err);
549 if (*err)
550 goto failed_out;
551
552 target -= count;
553 /* allocate blocks for indirect blocks */
554 while (index < indirect_blks && count) {
555 new_blocks[index++] = current_block++;
556 count--;
557 }
558 if (count > 0) {
559 /*
560 * save the new block number
561 * for the first direct block
562 */
563 new_blocks[index] = current_block;
564 printk(KERN_INFO "%s returned more blocks than "
565 "requested\n", __func__);
566 WARN_ON(1);
567 break;
568 }
569 }
570
571 target = blks - count ;
572 blk_allocated = count;
573 if (!target)
574 goto allocated;
575 /* Now allocate data blocks */
576 count = target;
577 /* allocating blocks for data blocks */
578 current_block = ext4_new_blocks(handle, inode, iblock,
579 goal, &count, err);
580 if (*err && (target == blks)) {
581 /*
582 * if the allocation failed and we didn't allocate
583 * any blocks before
584 */
585 goto failed_out;
586 }
587 if (!*err) {
588 if (target == blks) {
589 /*
590 * save the new block number
591 * for the first direct block
592 */
593 new_blocks[index] = current_block;
594 }
595 blk_allocated += count;
596 }
597 allocated:
598 /* total number of blocks allocated for direct blocks */
599 ret = blk_allocated;
600 *err = 0;
601 return ret;
602 failed_out:
603 for (i = 0; i <index; i++)
604 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
605 return ret;
606 }
607
608 /**
609 * ext4_alloc_branch - allocate and set up a chain of blocks.
610 * @inode: owner
611 * @indirect_blks: number of allocated indirect blocks
612 * @blks: number of allocated direct blocks
613 * @offsets: offsets (in the blocks) to store the pointers to next.
614 * @branch: place to store the chain in.
615 *
616 * This function allocates blocks, zeroes out all but the last one,
617 * links them into chain and (if we are synchronous) writes them to disk.
618 * In other words, it prepares a branch that can be spliced onto the
619 * inode. It stores the information about that chain in the branch[], in
620 * the same format as ext4_get_branch() would do. We are calling it after
621 * we had read the existing part of chain and partial points to the last
622 * triple of that (one with zero ->key). Upon the exit we have the same
623 * picture as after the successful ext4_get_block(), except that in one
624 * place chain is disconnected - *branch->p is still zero (we did not
625 * set the last link), but branch->key contains the number that should
626 * be placed into *branch->p to fill that gap.
627 *
628 * If allocation fails we free all blocks we've allocated (and forget
629 * their buffer_heads) and return the error value the from failed
630 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
631 * as described above and return 0.
632 */
633 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
634 ext4_lblk_t iblock, int indirect_blks,
635 int *blks, ext4_fsblk_t goal,
636 ext4_lblk_t *offsets, Indirect *branch)
637 {
638 int blocksize = inode->i_sb->s_blocksize;
639 int i, n = 0;
640 int err = 0;
641 struct buffer_head *bh;
642 int num;
643 ext4_fsblk_t new_blocks[4];
644 ext4_fsblk_t current_block;
645
646 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
647 *blks, new_blocks, &err);
648 if (err)
649 return err;
650
651 branch[0].key = cpu_to_le32(new_blocks[0]);
652 /*
653 * metadata blocks and data blocks are allocated.
654 */
655 for (n = 1; n <= indirect_blks; n++) {
656 /*
657 * Get buffer_head for parent block, zero it out
658 * and set the pointer to new one, then send
659 * parent to disk.
660 */
661 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
662 branch[n].bh = bh;
663 lock_buffer(bh);
664 BUFFER_TRACE(bh, "call get_create_access");
665 err = ext4_journal_get_create_access(handle, bh);
666 if (err) {
667 unlock_buffer(bh);
668 brelse(bh);
669 goto failed;
670 }
671
672 memset(bh->b_data, 0, blocksize);
673 branch[n].p = (__le32 *) bh->b_data + offsets[n];
674 branch[n].key = cpu_to_le32(new_blocks[n]);
675 *branch[n].p = branch[n].key;
676 if ( n == indirect_blks) {
677 current_block = new_blocks[n];
678 /*
679 * End of chain, update the last new metablock of
680 * the chain to point to the new allocated
681 * data blocks numbers
682 */
683 for (i=1; i < num; i++)
684 *(branch[n].p + i) = cpu_to_le32(++current_block);
685 }
686 BUFFER_TRACE(bh, "marking uptodate");
687 set_buffer_uptodate(bh);
688 unlock_buffer(bh);
689
690 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
691 err = ext4_journal_dirty_metadata(handle, bh);
692 if (err)
693 goto failed;
694 }
695 *blks = num;
696 return err;
697 failed:
698 /* Allocation failed, free what we already allocated */
699 for (i = 1; i <= n ; i++) {
700 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
701 ext4_journal_forget(handle, branch[i].bh);
702 }
703 for (i = 0; i <indirect_blks; i++)
704 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
705
706 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
707
708 return err;
709 }
710
711 /**
712 * ext4_splice_branch - splice the allocated branch onto inode.
713 * @inode: owner
714 * @block: (logical) number of block we are adding
715 * @chain: chain of indirect blocks (with a missing link - see
716 * ext4_alloc_branch)
717 * @where: location of missing link
718 * @num: number of indirect blocks we are adding
719 * @blks: number of direct blocks we are adding
720 *
721 * This function fills the missing link and does all housekeeping needed in
722 * inode (->i_blocks, etc.). In case of success we end up with the full
723 * chain to new block and return 0.
724 */
725 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
726 ext4_lblk_t block, Indirect *where, int num, int blks)
727 {
728 int i;
729 int err = 0;
730 struct ext4_block_alloc_info *block_i;
731 ext4_fsblk_t current_block;
732
733 block_i = EXT4_I(inode)->i_block_alloc_info;
734 /*
735 * If we're splicing into a [td]indirect block (as opposed to the
736 * inode) then we need to get write access to the [td]indirect block
737 * before the splice.
738 */
739 if (where->bh) {
740 BUFFER_TRACE(where->bh, "get_write_access");
741 err = ext4_journal_get_write_access(handle, where->bh);
742 if (err)
743 goto err_out;
744 }
745 /* That's it */
746
747 *where->p = where->key;
748
749 /*
750 * Update the host buffer_head or inode to point to more just allocated
751 * direct blocks blocks
752 */
753 if (num == 0 && blks > 1) {
754 current_block = le32_to_cpu(where->key) + 1;
755 for (i = 1; i < blks; i++)
756 *(where->p + i ) = cpu_to_le32(current_block++);
757 }
758
759 /*
760 * update the most recently allocated logical & physical block
761 * in i_block_alloc_info, to assist find the proper goal block for next
762 * allocation
763 */
764 if (block_i) {
765 block_i->last_alloc_logical_block = block + blks - 1;
766 block_i->last_alloc_physical_block =
767 le32_to_cpu(where[num].key) + blks - 1;
768 }
769
770 /* We are done with atomic stuff, now do the rest of housekeeping */
771
772 inode->i_ctime = ext4_current_time(inode);
773 ext4_mark_inode_dirty(handle, inode);
774
775 /* had we spliced it onto indirect block? */
776 if (where->bh) {
777 /*
778 * If we spliced it onto an indirect block, we haven't
779 * altered the inode. Note however that if it is being spliced
780 * onto an indirect block at the very end of the file (the
781 * file is growing) then we *will* alter the inode to reflect
782 * the new i_size. But that is not done here - it is done in
783 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
784 */
785 jbd_debug(5, "splicing indirect only\n");
786 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
787 err = ext4_journal_dirty_metadata(handle, where->bh);
788 if (err)
789 goto err_out;
790 } else {
791 /*
792 * OK, we spliced it into the inode itself on a direct block.
793 * Inode was dirtied above.
794 */
795 jbd_debug(5, "splicing direct\n");
796 }
797 return err;
798
799 err_out:
800 for (i = 1; i <= num; i++) {
801 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
802 ext4_journal_forget(handle, where[i].bh);
803 ext4_free_blocks(handle, inode,
804 le32_to_cpu(where[i-1].key), 1, 0);
805 }
806 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
807
808 return err;
809 }
810
811 /*
812 * Allocation strategy is simple: if we have to allocate something, we will
813 * have to go the whole way to leaf. So let's do it before attaching anything
814 * to tree, set linkage between the newborn blocks, write them if sync is
815 * required, recheck the path, free and repeat if check fails, otherwise
816 * set the last missing link (that will protect us from any truncate-generated
817 * removals - all blocks on the path are immune now) and possibly force the
818 * write on the parent block.
819 * That has a nice additional property: no special recovery from the failed
820 * allocations is needed - we simply release blocks and do not touch anything
821 * reachable from inode.
822 *
823 * `handle' can be NULL if create == 0.
824 *
825 * return > 0, # of blocks mapped or allocated.
826 * return = 0, if plain lookup failed.
827 * return < 0, error case.
828 *
829 *
830 * Need to be called with
831 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
832 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
833 */
834 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
835 ext4_lblk_t iblock, unsigned long maxblocks,
836 struct buffer_head *bh_result,
837 int create, int extend_disksize)
838 {
839 int err = -EIO;
840 ext4_lblk_t offsets[4];
841 Indirect chain[4];
842 Indirect *partial;
843 ext4_fsblk_t goal;
844 int indirect_blks;
845 int blocks_to_boundary = 0;
846 int depth;
847 struct ext4_inode_info *ei = EXT4_I(inode);
848 int count = 0;
849 ext4_fsblk_t first_block = 0;
850
851
852 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
853 J_ASSERT(handle != NULL || create == 0);
854 depth = ext4_block_to_path(inode, iblock, offsets,
855 &blocks_to_boundary);
856
857 if (depth == 0)
858 goto out;
859
860 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
861
862 /* Simplest case - block found, no allocation needed */
863 if (!partial) {
864 first_block = le32_to_cpu(chain[depth - 1].key);
865 clear_buffer_new(bh_result);
866 count++;
867 /*map more blocks*/
868 while (count < maxblocks && count <= blocks_to_boundary) {
869 ext4_fsblk_t blk;
870
871 blk = le32_to_cpu(*(chain[depth-1].p + count));
872
873 if (blk == first_block + count)
874 count++;
875 else
876 break;
877 }
878 goto got_it;
879 }
880
881 /* Next simple case - plain lookup or failed read of indirect block */
882 if (!create || err == -EIO)
883 goto cleanup;
884
885 /*
886 * Okay, we need to do block allocation. Lazily initialize the block
887 * allocation info here if necessary
888 */
889 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
890 ext4_init_block_alloc_info(inode);
891
892 goal = ext4_find_goal(inode, iblock, partial);
893
894 /* the number of blocks need to allocate for [d,t]indirect blocks */
895 indirect_blks = (chain + depth) - partial - 1;
896
897 /*
898 * Next look up the indirect map to count the totoal number of
899 * direct blocks to allocate for this branch.
900 */
901 count = ext4_blks_to_allocate(partial, indirect_blks,
902 maxblocks, blocks_to_boundary);
903 /*
904 * Block out ext4_truncate while we alter the tree
905 */
906 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
907 &count, goal,
908 offsets + (partial - chain), partial);
909
910 /*
911 * The ext4_splice_branch call will free and forget any buffers
912 * on the new chain if there is a failure, but that risks using
913 * up transaction credits, especially for bitmaps where the
914 * credits cannot be returned. Can we handle this somehow? We
915 * may need to return -EAGAIN upwards in the worst case. --sct
916 */
917 if (!err)
918 err = ext4_splice_branch(handle, inode, iblock,
919 partial, indirect_blks, count);
920 /*
921 * i_disksize growing is protected by i_data_sem. Don't forget to
922 * protect it if you're about to implement concurrent
923 * ext4_get_block() -bzzz
924 */
925 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
926 ei->i_disksize = inode->i_size;
927 if (err)
928 goto cleanup;
929
930 set_buffer_new(bh_result);
931 got_it:
932 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
933 if (count > blocks_to_boundary)
934 set_buffer_boundary(bh_result);
935 err = count;
936 /* Clean up and exit */
937 partial = chain + depth - 1; /* the whole chain */
938 cleanup:
939 while (partial > chain) {
940 BUFFER_TRACE(partial->bh, "call brelse");
941 brelse(partial->bh);
942 partial--;
943 }
944 BUFFER_TRACE(bh_result, "returned");
945 out:
946 return err;
947 }
948
949 /* Maximum number of blocks we map for direct IO at once. */
950 #define DIO_MAX_BLOCKS 4096
951 /*
952 * Number of credits we need for writing DIO_MAX_BLOCKS:
953 * We need sb + group descriptor + bitmap + inode -> 4
954 * For B blocks with A block pointers per block we need:
955 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
956 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
957 */
958 #define DIO_CREDITS 25
959
960
961 /*
962 *
963 *
964 * ext4_ext4 get_block() wrapper function
965 * It will do a look up first, and returns if the blocks already mapped.
966 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
967 * and store the allocated blocks in the result buffer head and mark it
968 * mapped.
969 *
970 * If file type is extents based, it will call ext4_ext_get_blocks(),
971 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
972 * based files
973 *
974 * On success, it returns the number of blocks being mapped or allocate.
975 * if create==0 and the blocks are pre-allocated and uninitialized block,
976 * the result buffer head is unmapped. If the create ==1, it will make sure
977 * the buffer head is mapped.
978 *
979 * It returns 0 if plain look up failed (blocks have not been allocated), in
980 * that casem, buffer head is unmapped
981 *
982 * It returns the error in case of allocation failure.
983 */
984 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
985 unsigned long max_blocks, struct buffer_head *bh,
986 int create, int extend_disksize, int flag)
987 {
988 int retval;
989
990 clear_buffer_mapped(bh);
991
992 /*
993 * Try to see if we can get the block without requesting
994 * for new file system block.
995 */
996 down_read((&EXT4_I(inode)->i_data_sem));
997 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
998 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
999 bh, 0, 0);
1000 } else {
1001 retval = ext4_get_blocks_handle(handle,
1002 inode, block, max_blocks, bh, 0, 0);
1003 }
1004 up_read((&EXT4_I(inode)->i_data_sem));
1005
1006 /* If it is only a block(s) look up */
1007 if (!create)
1008 return retval;
1009
1010 /*
1011 * Returns if the blocks have already allocated
1012 *
1013 * Note that if blocks have been preallocated
1014 * ext4_ext_get_block() returns th create = 0
1015 * with buffer head unmapped.
1016 */
1017 if (retval > 0 && buffer_mapped(bh))
1018 return retval;
1019
1020 /*
1021 * New blocks allocate and/or writing to uninitialized extent
1022 * will possibly result in updating i_data, so we take
1023 * the write lock of i_data_sem, and call get_blocks()
1024 * with create == 1 flag.
1025 */
1026 down_write((&EXT4_I(inode)->i_data_sem));
1027
1028 /*
1029 * if the caller is from delayed allocation writeout path
1030 * we have already reserved fs blocks for allocation
1031 * let the underlying get_block() function know to
1032 * avoid double accounting
1033 */
1034 if (flag)
1035 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1036 /*
1037 * We need to check for EXT4 here because migrate
1038 * could have changed the inode type in between
1039 */
1040 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1041 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1042 bh, create, extend_disksize);
1043 } else {
1044 retval = ext4_get_blocks_handle(handle, inode, block,
1045 max_blocks, bh, create, extend_disksize);
1046
1047 if (retval > 0 && buffer_new(bh)) {
1048 /*
1049 * We allocated new blocks which will result in
1050 * i_data's format changing. Force the migrate
1051 * to fail by clearing migrate flags
1052 */
1053 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1054 ~EXT4_EXT_MIGRATE;
1055 }
1056 }
1057
1058 if (flag) {
1059 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1060 /*
1061 * Update reserved blocks/metadata blocks
1062 * after successful block allocation
1063 * which were deferred till now
1064 */
1065 if ((retval > 0) && buffer_delay(bh))
1066 ext4_da_release_space(inode, retval, 0);
1067 }
1068
1069 up_write((&EXT4_I(inode)->i_data_sem));
1070 return retval;
1071 }
1072
1073 static int ext4_get_block(struct inode *inode, sector_t iblock,
1074 struct buffer_head *bh_result, int create)
1075 {
1076 handle_t *handle = ext4_journal_current_handle();
1077 int ret = 0, started = 0;
1078 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1079
1080 if (create && !handle) {
1081 /* Direct IO write... */
1082 if (max_blocks > DIO_MAX_BLOCKS)
1083 max_blocks = DIO_MAX_BLOCKS;
1084 handle = ext4_journal_start(inode, DIO_CREDITS +
1085 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1086 if (IS_ERR(handle)) {
1087 ret = PTR_ERR(handle);
1088 goto out;
1089 }
1090 started = 1;
1091 }
1092
1093 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1094 max_blocks, bh_result, create, 0, 0);
1095 if (ret > 0) {
1096 bh_result->b_size = (ret << inode->i_blkbits);
1097 ret = 0;
1098 }
1099 if (started)
1100 ext4_journal_stop(handle);
1101 out:
1102 return ret;
1103 }
1104
1105 /*
1106 * `handle' can be NULL if create is zero
1107 */
1108 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1109 ext4_lblk_t block, int create, int *errp)
1110 {
1111 struct buffer_head dummy;
1112 int fatal = 0, err;
1113
1114 J_ASSERT(handle != NULL || create == 0);
1115
1116 dummy.b_state = 0;
1117 dummy.b_blocknr = -1000;
1118 buffer_trace_init(&dummy.b_history);
1119 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1120 &dummy, create, 1, 0);
1121 /*
1122 * ext4_get_blocks_handle() returns number of blocks
1123 * mapped. 0 in case of a HOLE.
1124 */
1125 if (err > 0) {
1126 if (err > 1)
1127 WARN_ON(1);
1128 err = 0;
1129 }
1130 *errp = err;
1131 if (!err && buffer_mapped(&dummy)) {
1132 struct buffer_head *bh;
1133 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1134 if (!bh) {
1135 *errp = -EIO;
1136 goto err;
1137 }
1138 if (buffer_new(&dummy)) {
1139 J_ASSERT(create != 0);
1140 J_ASSERT(handle != NULL);
1141
1142 /*
1143 * Now that we do not always journal data, we should
1144 * keep in mind whether this should always journal the
1145 * new buffer as metadata. For now, regular file
1146 * writes use ext4_get_block instead, so it's not a
1147 * problem.
1148 */
1149 lock_buffer(bh);
1150 BUFFER_TRACE(bh, "call get_create_access");
1151 fatal = ext4_journal_get_create_access(handle, bh);
1152 if (!fatal && !buffer_uptodate(bh)) {
1153 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1154 set_buffer_uptodate(bh);
1155 }
1156 unlock_buffer(bh);
1157 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1158 err = ext4_journal_dirty_metadata(handle, bh);
1159 if (!fatal)
1160 fatal = err;
1161 } else {
1162 BUFFER_TRACE(bh, "not a new buffer");
1163 }
1164 if (fatal) {
1165 *errp = fatal;
1166 brelse(bh);
1167 bh = NULL;
1168 }
1169 return bh;
1170 }
1171 err:
1172 return NULL;
1173 }
1174
1175 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1176 ext4_lblk_t block, int create, int *err)
1177 {
1178 struct buffer_head * bh;
1179
1180 bh = ext4_getblk(handle, inode, block, create, err);
1181 if (!bh)
1182 return bh;
1183 if (buffer_uptodate(bh))
1184 return bh;
1185 ll_rw_block(READ_META, 1, &bh);
1186 wait_on_buffer(bh);
1187 if (buffer_uptodate(bh))
1188 return bh;
1189 put_bh(bh);
1190 *err = -EIO;
1191 return NULL;
1192 }
1193
1194 static int walk_page_buffers( handle_t *handle,
1195 struct buffer_head *head,
1196 unsigned from,
1197 unsigned to,
1198 int *partial,
1199 int (*fn)( handle_t *handle,
1200 struct buffer_head *bh))
1201 {
1202 struct buffer_head *bh;
1203 unsigned block_start, block_end;
1204 unsigned blocksize = head->b_size;
1205 int err, ret = 0;
1206 struct buffer_head *next;
1207
1208 for ( bh = head, block_start = 0;
1209 ret == 0 && (bh != head || !block_start);
1210 block_start = block_end, bh = next)
1211 {
1212 next = bh->b_this_page;
1213 block_end = block_start + blocksize;
1214 if (block_end <= from || block_start >= to) {
1215 if (partial && !buffer_uptodate(bh))
1216 *partial = 1;
1217 continue;
1218 }
1219 err = (*fn)(handle, bh);
1220 if (!ret)
1221 ret = err;
1222 }
1223 return ret;
1224 }
1225
1226 /*
1227 * To preserve ordering, it is essential that the hole instantiation and
1228 * the data write be encapsulated in a single transaction. We cannot
1229 * close off a transaction and start a new one between the ext4_get_block()
1230 * and the commit_write(). So doing the jbd2_journal_start at the start of
1231 * prepare_write() is the right place.
1232 *
1233 * Also, this function can nest inside ext4_writepage() ->
1234 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1235 * has generated enough buffer credits to do the whole page. So we won't
1236 * block on the journal in that case, which is good, because the caller may
1237 * be PF_MEMALLOC.
1238 *
1239 * By accident, ext4 can be reentered when a transaction is open via
1240 * quota file writes. If we were to commit the transaction while thus
1241 * reentered, there can be a deadlock - we would be holding a quota
1242 * lock, and the commit would never complete if another thread had a
1243 * transaction open and was blocking on the quota lock - a ranking
1244 * violation.
1245 *
1246 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1247 * will _not_ run commit under these circumstances because handle->h_ref
1248 * is elevated. We'll still have enough credits for the tiny quotafile
1249 * write.
1250 */
1251 static int do_journal_get_write_access(handle_t *handle,
1252 struct buffer_head *bh)
1253 {
1254 if (!buffer_mapped(bh) || buffer_freed(bh))
1255 return 0;
1256 return ext4_journal_get_write_access(handle, bh);
1257 }
1258
1259 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1260 loff_t pos, unsigned len, unsigned flags,
1261 struct page **pagep, void **fsdata)
1262 {
1263 struct inode *inode = mapping->host;
1264 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1265 handle_t *handle;
1266 int retries = 0;
1267 struct page *page;
1268 pgoff_t index;
1269 unsigned from, to;
1270
1271 index = pos >> PAGE_CACHE_SHIFT;
1272 from = pos & (PAGE_CACHE_SIZE - 1);
1273 to = from + len;
1274
1275 retry:
1276 handle = ext4_journal_start(inode, needed_blocks);
1277 if (IS_ERR(handle)) {
1278 ret = PTR_ERR(handle);
1279 goto out;
1280 }
1281
1282 page = __grab_cache_page(mapping, index);
1283 if (!page) {
1284 ext4_journal_stop(handle);
1285 ret = -ENOMEM;
1286 goto out;
1287 }
1288 *pagep = page;
1289
1290 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1291 ext4_get_block);
1292
1293 if (!ret && ext4_should_journal_data(inode)) {
1294 ret = walk_page_buffers(handle, page_buffers(page),
1295 from, to, NULL, do_journal_get_write_access);
1296 }
1297
1298 if (ret) {
1299 unlock_page(page);
1300 ext4_journal_stop(handle);
1301 page_cache_release(page);
1302 }
1303
1304 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1305 goto retry;
1306 out:
1307 return ret;
1308 }
1309
1310 /* For write_end() in data=journal mode */
1311 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1312 {
1313 if (!buffer_mapped(bh) || buffer_freed(bh))
1314 return 0;
1315 set_buffer_uptodate(bh);
1316 return ext4_journal_dirty_metadata(handle, bh);
1317 }
1318
1319 /*
1320 * We need to pick up the new inode size which generic_commit_write gave us
1321 * `file' can be NULL - eg, when called from page_symlink().
1322 *
1323 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1324 * buffers are managed internally.
1325 */
1326 static int ext4_ordered_write_end(struct file *file,
1327 struct address_space *mapping,
1328 loff_t pos, unsigned len, unsigned copied,
1329 struct page *page, void *fsdata)
1330 {
1331 handle_t *handle = ext4_journal_current_handle();
1332 struct inode *inode = mapping->host;
1333 unsigned from, to;
1334 int ret = 0, ret2;
1335
1336 from = pos & (PAGE_CACHE_SIZE - 1);
1337 to = from + len;
1338
1339 ret = ext4_jbd2_file_inode(handle, inode);
1340
1341 if (ret == 0) {
1342 /*
1343 * generic_write_end() will run mark_inode_dirty() if i_size
1344 * changes. So let's piggyback the i_disksize mark_inode_dirty
1345 * into that.
1346 */
1347 loff_t new_i_size;
1348
1349 new_i_size = pos + copied;
1350 if (new_i_size > EXT4_I(inode)->i_disksize)
1351 EXT4_I(inode)->i_disksize = new_i_size;
1352 ret2 = generic_write_end(file, mapping, pos, len, copied,
1353 page, fsdata);
1354 copied = ret2;
1355 if (ret2 < 0)
1356 ret = ret2;
1357 }
1358 ret2 = ext4_journal_stop(handle);
1359 if (!ret)
1360 ret = ret2;
1361
1362 return ret ? ret : copied;
1363 }
1364
1365 static int ext4_writeback_write_end(struct file *file,
1366 struct address_space *mapping,
1367 loff_t pos, unsigned len, unsigned copied,
1368 struct page *page, void *fsdata)
1369 {
1370 handle_t *handle = ext4_journal_current_handle();
1371 struct inode *inode = mapping->host;
1372 int ret = 0, ret2;
1373 loff_t new_i_size;
1374
1375 new_i_size = pos + copied;
1376 if (new_i_size > EXT4_I(inode)->i_disksize)
1377 EXT4_I(inode)->i_disksize = new_i_size;
1378
1379 ret2 = generic_write_end(file, mapping, pos, len, copied,
1380 page, fsdata);
1381 copied = ret2;
1382 if (ret2 < 0)
1383 ret = ret2;
1384
1385 ret2 = ext4_journal_stop(handle);
1386 if (!ret)
1387 ret = ret2;
1388
1389 return ret ? ret : copied;
1390 }
1391
1392 static int ext4_journalled_write_end(struct file *file,
1393 struct address_space *mapping,
1394 loff_t pos, unsigned len, unsigned copied,
1395 struct page *page, void *fsdata)
1396 {
1397 handle_t *handle = ext4_journal_current_handle();
1398 struct inode *inode = mapping->host;
1399 int ret = 0, ret2;
1400 int partial = 0;
1401 unsigned from, to;
1402
1403 from = pos & (PAGE_CACHE_SIZE - 1);
1404 to = from + len;
1405
1406 if (copied < len) {
1407 if (!PageUptodate(page))
1408 copied = 0;
1409 page_zero_new_buffers(page, from+copied, to);
1410 }
1411
1412 ret = walk_page_buffers(handle, page_buffers(page), from,
1413 to, &partial, write_end_fn);
1414 if (!partial)
1415 SetPageUptodate(page);
1416 if (pos+copied > inode->i_size)
1417 i_size_write(inode, pos+copied);
1418 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1419 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1420 EXT4_I(inode)->i_disksize = inode->i_size;
1421 ret2 = ext4_mark_inode_dirty(handle, inode);
1422 if (!ret)
1423 ret = ret2;
1424 }
1425
1426 unlock_page(page);
1427 ret2 = ext4_journal_stop(handle);
1428 if (!ret)
1429 ret = ret2;
1430 page_cache_release(page);
1431
1432 return ret ? ret : copied;
1433 }
1434 /*
1435 * Calculate the number of metadata blocks need to reserve
1436 * to allocate @blocks for non extent file based file
1437 */
1438 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1439 {
1440 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1441 int ind_blks, dind_blks, tind_blks;
1442
1443 /* number of new indirect blocks needed */
1444 ind_blks = (blocks + icap - 1) / icap;
1445
1446 dind_blks = (ind_blks + icap - 1) / icap;
1447
1448 tind_blks = 1;
1449
1450 return ind_blks + dind_blks + tind_blks;
1451 }
1452
1453 /*
1454 * Calculate the number of metadata blocks need to reserve
1455 * to allocate given number of blocks
1456 */
1457 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1458 {
1459 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1460 return ext4_ext_calc_metadata_amount(inode, blocks);
1461
1462 return ext4_indirect_calc_metadata_amount(inode, blocks);
1463 }
1464
1465 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1466 {
1467 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1468 unsigned long md_needed, mdblocks, total = 0;
1469
1470 /*
1471 * recalculate the amount of metadata blocks to reserve
1472 * in order to allocate nrblocks
1473 * worse case is one extent per block
1474 */
1475 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1476 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1477 mdblocks = ext4_calc_metadata_amount(inode, total);
1478 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1479
1480 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1481 total = md_needed + nrblocks;
1482
1483 if (ext4_has_free_blocks(sbi, total) < total) {
1484 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1485 return -ENOSPC;
1486 }
1487
1488 /* reduce fs free blocks counter */
1489 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1490
1491 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1492 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1493
1494 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1495 return 0; /* success */
1496 }
1497
1498 void ext4_da_release_space(struct inode *inode, int used, int to_free)
1499 {
1500 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1501 int total, mdb, mdb_free, release;
1502
1503 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1504 /* recalculate the number of metablocks still need to be reserved */
1505 total = EXT4_I(inode)->i_reserved_data_blocks - used - to_free;
1506 mdb = ext4_calc_metadata_amount(inode, total);
1507
1508 /* figure out how many metablocks to release */
1509 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1510 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1511
1512 /* Account for allocated meta_blocks */
1513 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1514
1515 release = to_free + mdb_free;
1516
1517 /* update fs free blocks counter for truncate case */
1518 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1519
1520 /* update per-inode reservations */
1521 BUG_ON(used + to_free > EXT4_I(inode)->i_reserved_data_blocks);
1522 EXT4_I(inode)->i_reserved_data_blocks -= (used + to_free);
1523
1524 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1525 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1526 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1527 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1528 }
1529
1530 static void ext4_da_page_release_reservation(struct page *page,
1531 unsigned long offset)
1532 {
1533 int to_release = 0;
1534 struct buffer_head *head, *bh;
1535 unsigned int curr_off = 0;
1536
1537 head = page_buffers(page);
1538 bh = head;
1539 do {
1540 unsigned int next_off = curr_off + bh->b_size;
1541
1542 if ((offset <= curr_off) && (buffer_delay(bh))) {
1543 to_release++;
1544 clear_buffer_delay(bh);
1545 }
1546 curr_off = next_off;
1547 } while ((bh = bh->b_this_page) != head);
1548 ext4_da_release_space(page->mapping->host, 0, to_release);
1549 }
1550
1551 /*
1552 * Delayed allocation stuff
1553 */
1554
1555 struct mpage_da_data {
1556 struct inode *inode;
1557 struct buffer_head lbh; /* extent of blocks */
1558 unsigned long first_page, next_page; /* extent of pages */
1559 get_block_t *get_block;
1560 struct writeback_control *wbc;
1561 };
1562
1563 /*
1564 * mpage_da_submit_io - walks through extent of pages and try to write
1565 * them with __mpage_writepage()
1566 *
1567 * @mpd->inode: inode
1568 * @mpd->first_page: first page of the extent
1569 * @mpd->next_page: page after the last page of the extent
1570 * @mpd->get_block: the filesystem's block mapper function
1571 *
1572 * By the time mpage_da_submit_io() is called we expect all blocks
1573 * to be allocated. this may be wrong if allocation failed.
1574 *
1575 * As pages are already locked by write_cache_pages(), we can't use it
1576 */
1577 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1578 {
1579 struct address_space *mapping = mpd->inode->i_mapping;
1580 struct mpage_data mpd_pp = {
1581 .bio = NULL,
1582 .last_block_in_bio = 0,
1583 .get_block = mpd->get_block,
1584 .use_writepage = 1,
1585 };
1586 int ret = 0, err, nr_pages, i;
1587 unsigned long index, end;
1588 struct pagevec pvec;
1589
1590 BUG_ON(mpd->next_page <= mpd->first_page);
1591
1592 pagevec_init(&pvec, 0);
1593 index = mpd->first_page;
1594 end = mpd->next_page - 1;
1595
1596 while (index <= end) {
1597 /* XXX: optimize tail */
1598 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1599 if (nr_pages == 0)
1600 break;
1601 for (i = 0; i < nr_pages; i++) {
1602 struct page *page = pvec.pages[i];
1603
1604 index = page->index;
1605 if (index > end)
1606 break;
1607 index++;
1608
1609 err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1610
1611 /*
1612 * In error case, we have to continue because
1613 * remaining pages are still locked
1614 * XXX: unlock and re-dirty them?
1615 */
1616 if (ret == 0)
1617 ret = err;
1618 }
1619 pagevec_release(&pvec);
1620 }
1621 if (mpd_pp.bio)
1622 mpage_bio_submit(WRITE, mpd_pp.bio);
1623
1624 return ret;
1625 }
1626
1627 /*
1628 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1629 *
1630 * @mpd->inode - inode to walk through
1631 * @exbh->b_blocknr - first block on a disk
1632 * @exbh->b_size - amount of space in bytes
1633 * @logical - first logical block to start assignment with
1634 *
1635 * the function goes through all passed space and put actual disk
1636 * block numbers into buffer heads, dropping BH_Delay
1637 */
1638 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1639 struct buffer_head *exbh)
1640 {
1641 struct inode *inode = mpd->inode;
1642 struct address_space *mapping = inode->i_mapping;
1643 int blocks = exbh->b_size >> inode->i_blkbits;
1644 sector_t pblock = exbh->b_blocknr, cur_logical;
1645 struct buffer_head *head, *bh;
1646 unsigned long index, end;
1647 struct pagevec pvec;
1648 int nr_pages, i;
1649
1650 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1651 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1652 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1653
1654 pagevec_init(&pvec, 0);
1655
1656 while (index <= end) {
1657 /* XXX: optimize tail */
1658 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1659 if (nr_pages == 0)
1660 break;
1661 for (i = 0; i < nr_pages; i++) {
1662 struct page *page = pvec.pages[i];
1663
1664 index = page->index;
1665 if (index > end)
1666 break;
1667 index++;
1668
1669 BUG_ON(!PageLocked(page));
1670 BUG_ON(PageWriteback(page));
1671 BUG_ON(!page_has_buffers(page));
1672
1673 bh = page_buffers(page);
1674 head = bh;
1675
1676 /* skip blocks out of the range */
1677 do {
1678 if (cur_logical >= logical)
1679 break;
1680 cur_logical++;
1681 } while ((bh = bh->b_this_page) != head);
1682
1683 do {
1684 if (cur_logical >= logical + blocks)
1685 break;
1686
1687 if (buffer_delay(bh)) {
1688 bh->b_blocknr = pblock;
1689 clear_buffer_delay(bh);
1690 } else if (buffer_mapped(bh)) {
1691 BUG_ON(bh->b_blocknr != pblock);
1692 }
1693
1694 cur_logical++;
1695 pblock++;
1696 } while ((bh = bh->b_this_page) != head);
1697 }
1698 pagevec_release(&pvec);
1699 }
1700 }
1701
1702
1703 /*
1704 * __unmap_underlying_blocks - just a helper function to unmap
1705 * set of blocks described by @bh
1706 */
1707 static inline void __unmap_underlying_blocks(struct inode *inode,
1708 struct buffer_head *bh)
1709 {
1710 struct block_device *bdev = inode->i_sb->s_bdev;
1711 int blocks, i;
1712
1713 blocks = bh->b_size >> inode->i_blkbits;
1714 for (i = 0; i < blocks; i++)
1715 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1716 }
1717
1718 /*
1719 * mpage_da_map_blocks - go through given space
1720 *
1721 * @mpd->lbh - bh describing space
1722 * @mpd->get_block - the filesystem's block mapper function
1723 *
1724 * The function skips space we know is already mapped to disk blocks.
1725 *
1726 * The function ignores errors ->get_block() returns, thus real
1727 * error handling is postponed to __mpage_writepage()
1728 */
1729 static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1730 {
1731 struct buffer_head *lbh = &mpd->lbh;
1732 int err = 0, remain = lbh->b_size;
1733 sector_t next = lbh->b_blocknr;
1734 struct buffer_head new;
1735
1736 /*
1737 * We consider only non-mapped and non-allocated blocks
1738 */
1739 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1740 return;
1741
1742 while (remain) {
1743 new.b_state = lbh->b_state;
1744 new.b_blocknr = 0;
1745 new.b_size = remain;
1746 err = mpd->get_block(mpd->inode, next, &new, 1);
1747 if (err) {
1748 /*
1749 * Rather than implement own error handling
1750 * here, we just leave remaining blocks
1751 * unallocated and try again with ->writepage()
1752 */
1753 break;
1754 }
1755 BUG_ON(new.b_size == 0);
1756
1757 if (buffer_new(&new))
1758 __unmap_underlying_blocks(mpd->inode, &new);
1759
1760 /*
1761 * If blocks are delayed marked, we need to
1762 * put actual blocknr and drop delayed bit
1763 */
1764 if (buffer_delay(lbh))
1765 mpage_put_bnr_to_bhs(mpd, next, &new);
1766
1767 /* go for the remaining blocks */
1768 next += new.b_size >> mpd->inode->i_blkbits;
1769 remain -= new.b_size;
1770 }
1771 }
1772
1773 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | (1 << BH_Delay))
1774
1775 /*
1776 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1777 *
1778 * @mpd->lbh - extent of blocks
1779 * @logical - logical number of the block in the file
1780 * @bh - bh of the block (used to access block's state)
1781 *
1782 * the function is used to collect contig. blocks in same state
1783 */
1784 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1785 sector_t logical, struct buffer_head *bh)
1786 {
1787 struct buffer_head *lbh = &mpd->lbh;
1788 sector_t next;
1789
1790 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1791
1792 /*
1793 * First block in the extent
1794 */
1795 if (lbh->b_size == 0) {
1796 lbh->b_blocknr = logical;
1797 lbh->b_size = bh->b_size;
1798 lbh->b_state = bh->b_state & BH_FLAGS;
1799 return;
1800 }
1801
1802 /*
1803 * Can we merge the block to our big extent?
1804 */
1805 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1806 lbh->b_size += bh->b_size;
1807 return;
1808 }
1809
1810 /*
1811 * We couldn't merge the block to our extent, so we
1812 * need to flush current extent and start new one
1813 */
1814 mpage_da_map_blocks(mpd);
1815
1816 /*
1817 * Now start a new extent
1818 */
1819 lbh->b_size = bh->b_size;
1820 lbh->b_state = bh->b_state & BH_FLAGS;
1821 lbh->b_blocknr = logical;
1822 }
1823
1824 /*
1825 * __mpage_da_writepage - finds extent of pages and blocks
1826 *
1827 * @page: page to consider
1828 * @wbc: not used, we just follow rules
1829 * @data: context
1830 *
1831 * The function finds extents of pages and scan them for all blocks.
1832 */
1833 static int __mpage_da_writepage(struct page *page,
1834 struct writeback_control *wbc, void *data)
1835 {
1836 struct mpage_da_data *mpd = data;
1837 struct inode *inode = mpd->inode;
1838 struct buffer_head *bh, *head, fake;
1839 sector_t logical;
1840
1841 /*
1842 * Can we merge this page to current extent?
1843 */
1844 if (mpd->next_page != page->index) {
1845 /*
1846 * Nope, we can't. So, we map non-allocated blocks
1847 * and start IO on them using __mpage_writepage()
1848 */
1849 if (mpd->next_page != mpd->first_page) {
1850 mpage_da_map_blocks(mpd);
1851 mpage_da_submit_io(mpd);
1852 }
1853
1854 /*
1855 * Start next extent of pages ...
1856 */
1857 mpd->first_page = page->index;
1858
1859 /*
1860 * ... and blocks
1861 */
1862 mpd->lbh.b_size = 0;
1863 mpd->lbh.b_state = 0;
1864 mpd->lbh.b_blocknr = 0;
1865 }
1866
1867 mpd->next_page = page->index + 1;
1868 logical = (sector_t) page->index <<
1869 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870
1871 if (!page_has_buffers(page)) {
1872 /*
1873 * There is no attached buffer heads yet (mmap?)
1874 * we treat the page asfull of dirty blocks
1875 */
1876 bh = &fake;
1877 bh->b_size = PAGE_CACHE_SIZE;
1878 bh->b_state = 0;
1879 set_buffer_dirty(bh);
1880 set_buffer_uptodate(bh);
1881 mpage_add_bh_to_extent(mpd, logical, bh);
1882 } else {
1883 /*
1884 * Page with regular buffer heads, just add all dirty ones
1885 */
1886 head = page_buffers(page);
1887 bh = head;
1888 do {
1889 BUG_ON(buffer_locked(bh));
1890 if (buffer_dirty(bh))
1891 mpage_add_bh_to_extent(mpd, logical, bh);
1892 logical++;
1893 } while ((bh = bh->b_this_page) != head);
1894 }
1895
1896 return 0;
1897 }
1898
1899 /*
1900 * mpage_da_writepages - walk the list of dirty pages of the given
1901 * address space, allocates non-allocated blocks, maps newly-allocated
1902 * blocks to existing bhs and issue IO them
1903 *
1904 * @mapping: address space structure to write
1905 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1906 * @get_block: the filesystem's block mapper function.
1907 *
1908 * This is a library function, which implements the writepages()
1909 * address_space_operation.
1910 *
1911 * In order to avoid duplication of logic that deals with partial pages,
1912 * multiple bio per page, etc, we find non-allocated blocks, allocate
1913 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1914 *
1915 * It's important that we call __mpage_writepage() only once for each
1916 * involved page, otherwise we'd have to implement more complicated logic
1917 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1918 *
1919 * See comments to mpage_writepages()
1920 */
1921 static int mpage_da_writepages(struct address_space *mapping,
1922 struct writeback_control *wbc,
1923 get_block_t get_block)
1924 {
1925 struct mpage_da_data mpd;
1926 int ret;
1927
1928 if (!get_block)
1929 return generic_writepages(mapping, wbc);
1930
1931 mpd.wbc = wbc;
1932 mpd.inode = mapping->host;
1933 mpd.lbh.b_size = 0;
1934 mpd.lbh.b_state = 0;
1935 mpd.lbh.b_blocknr = 0;
1936 mpd.first_page = 0;
1937 mpd.next_page = 0;
1938 mpd.get_block = get_block;
1939
1940 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
1941
1942 /*
1943 * Handle last extent of pages
1944 */
1945 if (mpd.next_page != mpd.first_page) {
1946 mpage_da_map_blocks(&mpd);
1947 mpage_da_submit_io(&mpd);
1948 }
1949
1950 return ret;
1951 }
1952
1953 /*
1954 * this is a special callback for ->write_begin() only
1955 * it's intention is to return mapped block or reserve space
1956 */
1957 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1958 struct buffer_head *bh_result, int create)
1959 {
1960 int ret = 0;
1961
1962 BUG_ON(create == 0);
1963 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1964
1965 /*
1966 * first, we need to know whether the block is allocated already
1967 * preallocated blocks are unmapped but should treated
1968 * the same as allocated blocks.
1969 */
1970 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
1971 if ((ret == 0) && !buffer_delay(bh_result)) {
1972 /* the block isn't (pre)allocated yet, let's reserve space */
1973 /*
1974 * XXX: __block_prepare_write() unmaps passed block,
1975 * is it OK?
1976 */
1977 ret = ext4_da_reserve_space(inode, 1);
1978 if (ret)
1979 /* not enough space to reserve */
1980 return ret;
1981
1982 map_bh(bh_result, inode->i_sb, 0);
1983 set_buffer_new(bh_result);
1984 set_buffer_delay(bh_result);
1985 } else if (ret > 0) {
1986 bh_result->b_size = (ret << inode->i_blkbits);
1987 ret = 0;
1988 }
1989
1990 return ret;
1991 }
1992 #define EXT4_DELALLOC_RSVED 1
1993 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1994 struct buffer_head *bh_result, int create)
1995 {
1996 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1997 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1998 loff_t disksize = EXT4_I(inode)->i_disksize;
1999 handle_t *handle = NULL;
2000
2001 if (create) {
2002 handle = ext4_journal_start(inode, needed_blocks);
2003 if (IS_ERR(handle)) {
2004 ret = PTR_ERR(handle);
2005 goto out;
2006 }
2007 }
2008
2009 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2010 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2011 if (ret > 0) {
2012 bh_result->b_size = (ret << inode->i_blkbits);
2013
2014 /*
2015 * Update on-disk size along with block allocation
2016 * we don't use 'extend_disksize' as size may change
2017 * within already allocated block -bzzz
2018 */
2019 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2020 if (disksize > i_size_read(inode))
2021 disksize = i_size_read(inode);
2022 if (disksize > EXT4_I(inode)->i_disksize) {
2023 /*
2024 * XXX: replace with spinlock if seen contended -bzzz
2025 */
2026 down_write(&EXT4_I(inode)->i_data_sem);
2027 if (disksize > EXT4_I(inode)->i_disksize)
2028 EXT4_I(inode)->i_disksize = disksize;
2029 up_write(&EXT4_I(inode)->i_data_sem);
2030
2031 if (EXT4_I(inode)->i_disksize == disksize) {
2032 if (handle == NULL)
2033 handle = ext4_journal_start(inode, 1);
2034 if (!IS_ERR(handle))
2035 ext4_mark_inode_dirty(handle, inode);
2036 }
2037 }
2038
2039 ret = 0;
2040 }
2041
2042 out:
2043 if (handle && !IS_ERR(handle))
2044 ext4_journal_stop(handle);
2045
2046 return ret;
2047 }
2048 /* FIXME!! only support data=writeback mode */
2049 static int ext4_da_writepage(struct page *page,
2050 struct writeback_control *wbc)
2051 {
2052 struct inode *inode = page->mapping->host;
2053 handle_t *handle = NULL;
2054 int ret = 0;
2055 int err;
2056
2057 if (ext4_journal_current_handle())
2058 goto out_fail;
2059
2060 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2061 if (IS_ERR(handle)) {
2062 ret = PTR_ERR(handle);
2063 goto out_fail;
2064 }
2065
2066 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2067 ret = nobh_writepage(page, ext4_get_block, wbc);
2068 else
2069 ret = block_write_full_page(page, ext4_get_block, wbc);
2070
2071 if (!ret && inode->i_size > EXT4_I(inode)->i_disksize) {
2072 EXT4_I(inode)->i_disksize = inode->i_size;
2073 ext4_mark_inode_dirty(handle, inode);
2074 }
2075
2076 err = ext4_journal_stop(handle);
2077 if (!ret)
2078 ret = err;
2079 return ret;
2080
2081 out_fail:
2082 redirty_page_for_writepage(wbc, page);
2083 unlock_page(page);
2084 return ret;
2085 }
2086
2087 static int ext4_da_writepages(struct address_space *mapping,
2088 struct writeback_control *wbc)
2089 {
2090 return mpage_da_writepages(mapping, wbc, ext4_da_get_block_write);
2091 }
2092
2093 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2094 loff_t pos, unsigned len, unsigned flags,
2095 struct page **pagep, void **fsdata)
2096 {
2097 int ret, retries = 0;
2098 struct page *page;
2099 pgoff_t index;
2100 unsigned from, to;
2101 struct inode *inode = mapping->host;
2102 handle_t *handle;
2103
2104 index = pos >> PAGE_CACHE_SHIFT;
2105 from = pos & (PAGE_CACHE_SIZE - 1);
2106 to = from + len;
2107
2108 retry:
2109 /*
2110 * With delayed allocation, we don't log the i_disksize update
2111 * if there is delayed block allocation. But we still need
2112 * to journalling the i_disksize update if writes to the end
2113 * of file which has an already mapped buffer.
2114 */
2115 handle = ext4_journal_start(inode, 1);
2116 if (IS_ERR(handle)) {
2117 ret = PTR_ERR(handle);
2118 goto out;
2119 }
2120
2121 page = __grab_cache_page(mapping, index);
2122 if (!page)
2123 return -ENOMEM;
2124 *pagep = page;
2125
2126 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2127 ext4_da_get_block_prep);
2128 if (ret < 0) {
2129 unlock_page(page);
2130 ext4_journal_stop(handle);
2131 page_cache_release(page);
2132 }
2133
2134 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2135 goto retry;
2136 out:
2137 return ret;
2138 }
2139
2140 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2141 {
2142 return !buffer_mapped(bh) || buffer_delay(bh);
2143 }
2144
2145 static int ext4_da_write_end(struct file *file,
2146 struct address_space *mapping,
2147 loff_t pos, unsigned len, unsigned copied,
2148 struct page *page, void *fsdata)
2149 {
2150 struct inode *inode = mapping->host;
2151 int ret = 0, ret2;
2152 handle_t *handle = ext4_journal_current_handle();
2153 loff_t new_i_size;
2154
2155 /*
2156 * generic_write_end() will run mark_inode_dirty() if i_size
2157 * changes. So let's piggyback the i_disksize mark_inode_dirty
2158 * into that.
2159 */
2160
2161 new_i_size = pos + copied;
2162 if (new_i_size > EXT4_I(inode)->i_disksize)
2163 if (!walk_page_buffers(NULL, page_buffers(page),
2164 0, len, NULL, ext4_bh_unmapped_or_delay)){
2165 /*
2166 * Updating i_disksize when extending file without
2167 * needing block allocation
2168 */
2169 if (ext4_should_order_data(inode))
2170 ret = ext4_jbd2_file_inode(handle, inode);
2171
2172 EXT4_I(inode)->i_disksize = new_i_size;
2173 }
2174 ret2 = generic_write_end(file, mapping, pos, len, copied,
2175 page, fsdata);
2176 copied = ret2;
2177 if (ret2 < 0)
2178 ret = ret2;
2179 ret2 = ext4_journal_stop(handle);
2180 if (!ret)
2181 ret = ret2;
2182
2183 return ret ? ret : copied;
2184 }
2185
2186 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2187 {
2188 /*
2189 * Drop reserved blocks
2190 */
2191 BUG_ON(!PageLocked(page));
2192 if (!page_has_buffers(page))
2193 goto out;
2194
2195 ext4_da_page_release_reservation(page, offset);
2196
2197 out:
2198 ext4_invalidatepage(page, offset);
2199
2200 return;
2201 }
2202
2203
2204 /*
2205 * bmap() is special. It gets used by applications such as lilo and by
2206 * the swapper to find the on-disk block of a specific piece of data.
2207 *
2208 * Naturally, this is dangerous if the block concerned is still in the
2209 * journal. If somebody makes a swapfile on an ext4 data-journaling
2210 * filesystem and enables swap, then they may get a nasty shock when the
2211 * data getting swapped to that swapfile suddenly gets overwritten by
2212 * the original zero's written out previously to the journal and
2213 * awaiting writeback in the kernel's buffer cache.
2214 *
2215 * So, if we see any bmap calls here on a modified, data-journaled file,
2216 * take extra steps to flush any blocks which might be in the cache.
2217 */
2218 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2219 {
2220 struct inode *inode = mapping->host;
2221 journal_t *journal;
2222 int err;
2223
2224 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2225 test_opt(inode->i_sb, DELALLOC)) {
2226 /*
2227 * With delalloc we want to sync the file
2228 * so that we can make sure we allocate
2229 * blocks for file
2230 */
2231 filemap_write_and_wait(mapping);
2232 }
2233
2234 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2235 /*
2236 * This is a REALLY heavyweight approach, but the use of
2237 * bmap on dirty files is expected to be extremely rare:
2238 * only if we run lilo or swapon on a freshly made file
2239 * do we expect this to happen.
2240 *
2241 * (bmap requires CAP_SYS_RAWIO so this does not
2242 * represent an unprivileged user DOS attack --- we'd be
2243 * in trouble if mortal users could trigger this path at
2244 * will.)
2245 *
2246 * NB. EXT4_STATE_JDATA is not set on files other than
2247 * regular files. If somebody wants to bmap a directory
2248 * or symlink and gets confused because the buffer
2249 * hasn't yet been flushed to disk, they deserve
2250 * everything they get.
2251 */
2252
2253 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2254 journal = EXT4_JOURNAL(inode);
2255 jbd2_journal_lock_updates(journal);
2256 err = jbd2_journal_flush(journal);
2257 jbd2_journal_unlock_updates(journal);
2258
2259 if (err)
2260 return 0;
2261 }
2262
2263 return generic_block_bmap(mapping,block,ext4_get_block);
2264 }
2265
2266 static int bget_one(handle_t *handle, struct buffer_head *bh)
2267 {
2268 get_bh(bh);
2269 return 0;
2270 }
2271
2272 static int bput_one(handle_t *handle, struct buffer_head *bh)
2273 {
2274 put_bh(bh);
2275 return 0;
2276 }
2277
2278 /*
2279 * Note that we don't need to start a transaction unless we're journaling data
2280 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2281 * need to file the inode to the transaction's list in ordered mode because if
2282 * we are writing back data added by write(), the inode is already there and if
2283 * we are writing back data modified via mmap(), noone guarantees in which
2284 * transaction the data will hit the disk. In case we are journaling data, we
2285 * cannot start transaction directly because transaction start ranks above page
2286 * lock so we have to do some magic.
2287 *
2288 * In all journaling modes block_write_full_page() will start the I/O.
2289 *
2290 * Problem:
2291 *
2292 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2293 * ext4_writepage()
2294 *
2295 * Similar for:
2296 *
2297 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2298 *
2299 * Same applies to ext4_get_block(). We will deadlock on various things like
2300 * lock_journal and i_data_sem
2301 *
2302 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2303 * allocations fail.
2304 *
2305 * 16May01: If we're reentered then journal_current_handle() will be
2306 * non-zero. We simply *return*.
2307 *
2308 * 1 July 2001: @@@ FIXME:
2309 * In journalled data mode, a data buffer may be metadata against the
2310 * current transaction. But the same file is part of a shared mapping
2311 * and someone does a writepage() on it.
2312 *
2313 * We will move the buffer onto the async_data list, but *after* it has
2314 * been dirtied. So there's a small window where we have dirty data on
2315 * BJ_Metadata.
2316 *
2317 * Note that this only applies to the last partial page in the file. The
2318 * bit which block_write_full_page() uses prepare/commit for. (That's
2319 * broken code anyway: it's wrong for msync()).
2320 *
2321 * It's a rare case: affects the final partial page, for journalled data
2322 * where the file is subject to bith write() and writepage() in the same
2323 * transction. To fix it we'll need a custom block_write_full_page().
2324 * We'll probably need that anyway for journalling writepage() output.
2325 *
2326 * We don't honour synchronous mounts for writepage(). That would be
2327 * disastrous. Any write() or metadata operation will sync the fs for
2328 * us.
2329 *
2330 */
2331 static int __ext4_normal_writepage(struct page *page,
2332 struct writeback_control *wbc)
2333 {
2334 struct inode *inode = page->mapping->host;
2335
2336 if (test_opt(inode->i_sb, NOBH))
2337 return nobh_writepage(page, ext4_get_block, wbc);
2338 else
2339 return block_write_full_page(page, ext4_get_block, wbc);
2340 }
2341
2342
2343 static int ext4_normal_writepage(struct page *page,
2344 struct writeback_control *wbc)
2345 {
2346 struct inode *inode = page->mapping->host;
2347 loff_t size = i_size_read(inode);
2348 loff_t len;
2349
2350 J_ASSERT(PageLocked(page));
2351 J_ASSERT(page_has_buffers(page));
2352 if (page->index == size >> PAGE_CACHE_SHIFT)
2353 len = size & ~PAGE_CACHE_MASK;
2354 else
2355 len = PAGE_CACHE_SIZE;
2356 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2357 ext4_bh_unmapped_or_delay));
2358
2359 if (!ext4_journal_current_handle())
2360 return __ext4_normal_writepage(page, wbc);
2361
2362 redirty_page_for_writepage(wbc, page);
2363 unlock_page(page);
2364 return 0;
2365 }
2366
2367 static int __ext4_journalled_writepage(struct page *page,
2368 struct writeback_control *wbc)
2369 {
2370 struct address_space *mapping = page->mapping;
2371 struct inode *inode = mapping->host;
2372 struct buffer_head *page_bufs;
2373 handle_t *handle = NULL;
2374 int ret = 0;
2375 int err;
2376
2377 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE, ext4_get_block);
2378 if (ret != 0)
2379 goto out_unlock;
2380
2381 page_bufs = page_buffers(page);
2382 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2383 bget_one);
2384 /* As soon as we unlock the page, it can go away, but we have
2385 * references to buffers so we are safe */
2386 unlock_page(page);
2387
2388 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2389 if (IS_ERR(handle)) {
2390 ret = PTR_ERR(handle);
2391 goto out;
2392 }
2393
2394 ret = walk_page_buffers(handle, page_bufs, 0,
2395 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2396
2397 err = walk_page_buffers(handle, page_bufs, 0,
2398 PAGE_CACHE_SIZE, NULL, write_end_fn);
2399 if (ret == 0)
2400 ret = err;
2401 err = ext4_journal_stop(handle);
2402 if (!ret)
2403 ret = err;
2404
2405 walk_page_buffers(handle, page_bufs, 0,
2406 PAGE_CACHE_SIZE, NULL, bput_one);
2407 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2408 goto out;
2409
2410 out_unlock:
2411 unlock_page(page);
2412 out:
2413 return ret;
2414 }
2415
2416 static int ext4_journalled_writepage(struct page *page,
2417 struct writeback_control *wbc)
2418 {
2419 struct inode *inode = page->mapping->host;
2420 loff_t size = i_size_read(inode);
2421 loff_t len;
2422
2423 J_ASSERT(PageLocked(page));
2424 J_ASSERT(page_has_buffers(page));
2425 if (page->index == size >> PAGE_CACHE_SHIFT)
2426 len = size & ~PAGE_CACHE_MASK;
2427 else
2428 len = PAGE_CACHE_SIZE;
2429 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2430 ext4_bh_unmapped_or_delay));
2431
2432 if (ext4_journal_current_handle())
2433 goto no_write;
2434
2435 if (PageChecked(page)) {
2436 /*
2437 * It's mmapped pagecache. Add buffers and journal it. There
2438 * doesn't seem much point in redirtying the page here.
2439 */
2440 ClearPageChecked(page);
2441 return __ext4_journalled_writepage(page, wbc);
2442 } else {
2443 /*
2444 * It may be a page full of checkpoint-mode buffers. We don't
2445 * really know unless we go poke around in the buffer_heads.
2446 * But block_write_full_page will do the right thing.
2447 */
2448 return block_write_full_page(page, ext4_get_block, wbc);
2449 }
2450 no_write:
2451 redirty_page_for_writepage(wbc, page);
2452 unlock_page(page);
2453 return 0;
2454 }
2455
2456 static int ext4_readpage(struct file *file, struct page *page)
2457 {
2458 return mpage_readpage(page, ext4_get_block);
2459 }
2460
2461 static int
2462 ext4_readpages(struct file *file, struct address_space *mapping,
2463 struct list_head *pages, unsigned nr_pages)
2464 {
2465 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2466 }
2467
2468 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2469 {
2470 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2471
2472 /*
2473 * If it's a full truncate we just forget about the pending dirtying
2474 */
2475 if (offset == 0)
2476 ClearPageChecked(page);
2477
2478 jbd2_journal_invalidatepage(journal, page, offset);
2479 }
2480
2481 static int ext4_releasepage(struct page *page, gfp_t wait)
2482 {
2483 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2484
2485 WARN_ON(PageChecked(page));
2486 if (!page_has_buffers(page))
2487 return 0;
2488 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2489 }
2490
2491 /*
2492 * If the O_DIRECT write will extend the file then add this inode to the
2493 * orphan list. So recovery will truncate it back to the original size
2494 * if the machine crashes during the write.
2495 *
2496 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2497 * crashes then stale disk data _may_ be exposed inside the file. But current
2498 * VFS code falls back into buffered path in that case so we are safe.
2499 */
2500 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2501 const struct iovec *iov, loff_t offset,
2502 unsigned long nr_segs)
2503 {
2504 struct file *file = iocb->ki_filp;
2505 struct inode *inode = file->f_mapping->host;
2506 struct ext4_inode_info *ei = EXT4_I(inode);
2507 handle_t *handle;
2508 ssize_t ret;
2509 int orphan = 0;
2510 size_t count = iov_length(iov, nr_segs);
2511
2512 if (rw == WRITE) {
2513 loff_t final_size = offset + count;
2514
2515 if (final_size > inode->i_size) {
2516 /* Credits for sb + inode write */
2517 handle = ext4_journal_start(inode, 2);
2518 if (IS_ERR(handle)) {
2519 ret = PTR_ERR(handle);
2520 goto out;
2521 }
2522 ret = ext4_orphan_add(handle, inode);
2523 if (ret) {
2524 ext4_journal_stop(handle);
2525 goto out;
2526 }
2527 orphan = 1;
2528 ei->i_disksize = inode->i_size;
2529 ext4_journal_stop(handle);
2530 }
2531 }
2532
2533 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2534 offset, nr_segs,
2535 ext4_get_block, NULL);
2536
2537 if (orphan) {
2538 int err;
2539
2540 /* Credits for sb + inode write */
2541 handle = ext4_journal_start(inode, 2);
2542 if (IS_ERR(handle)) {
2543 /* This is really bad luck. We've written the data
2544 * but cannot extend i_size. Bail out and pretend
2545 * the write failed... */
2546 ret = PTR_ERR(handle);
2547 goto out;
2548 }
2549 if (inode->i_nlink)
2550 ext4_orphan_del(handle, inode);
2551 if (ret > 0) {
2552 loff_t end = offset + ret;
2553 if (end > inode->i_size) {
2554 ei->i_disksize = end;
2555 i_size_write(inode, end);
2556 /*
2557 * We're going to return a positive `ret'
2558 * here due to non-zero-length I/O, so there's
2559 * no way of reporting error returns from
2560 * ext4_mark_inode_dirty() to userspace. So
2561 * ignore it.
2562 */
2563 ext4_mark_inode_dirty(handle, inode);
2564 }
2565 }
2566 err = ext4_journal_stop(handle);
2567 if (ret == 0)
2568 ret = err;
2569 }
2570 out:
2571 return ret;
2572 }
2573
2574 /*
2575 * Pages can be marked dirty completely asynchronously from ext4's journalling
2576 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2577 * much here because ->set_page_dirty is called under VFS locks. The page is
2578 * not necessarily locked.
2579 *
2580 * We cannot just dirty the page and leave attached buffers clean, because the
2581 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2582 * or jbddirty because all the journalling code will explode.
2583 *
2584 * So what we do is to mark the page "pending dirty" and next time writepage
2585 * is called, propagate that into the buffers appropriately.
2586 */
2587 static int ext4_journalled_set_page_dirty(struct page *page)
2588 {
2589 SetPageChecked(page);
2590 return __set_page_dirty_nobuffers(page);
2591 }
2592
2593 static const struct address_space_operations ext4_ordered_aops = {
2594 .readpage = ext4_readpage,
2595 .readpages = ext4_readpages,
2596 .writepage = ext4_normal_writepage,
2597 .sync_page = block_sync_page,
2598 .write_begin = ext4_write_begin,
2599 .write_end = ext4_ordered_write_end,
2600 .bmap = ext4_bmap,
2601 .invalidatepage = ext4_invalidatepage,
2602 .releasepage = ext4_releasepage,
2603 .direct_IO = ext4_direct_IO,
2604 .migratepage = buffer_migrate_page,
2605 };
2606
2607 static const struct address_space_operations ext4_writeback_aops = {
2608 .readpage = ext4_readpage,
2609 .readpages = ext4_readpages,
2610 .writepage = ext4_normal_writepage,
2611 .sync_page = block_sync_page,
2612 .write_begin = ext4_write_begin,
2613 .write_end = ext4_writeback_write_end,
2614 .bmap = ext4_bmap,
2615 .invalidatepage = ext4_invalidatepage,
2616 .releasepage = ext4_releasepage,
2617 .direct_IO = ext4_direct_IO,
2618 .migratepage = buffer_migrate_page,
2619 };
2620
2621 static const struct address_space_operations ext4_journalled_aops = {
2622 .readpage = ext4_readpage,
2623 .readpages = ext4_readpages,
2624 .writepage = ext4_journalled_writepage,
2625 .sync_page = block_sync_page,
2626 .write_begin = ext4_write_begin,
2627 .write_end = ext4_journalled_write_end,
2628 .set_page_dirty = ext4_journalled_set_page_dirty,
2629 .bmap = ext4_bmap,
2630 .invalidatepage = ext4_invalidatepage,
2631 .releasepage = ext4_releasepage,
2632 };
2633
2634 static const struct address_space_operations ext4_da_aops = {
2635 .readpage = ext4_readpage,
2636 .readpages = ext4_readpages,
2637 .writepage = ext4_da_writepage,
2638 .writepages = ext4_da_writepages,
2639 .sync_page = block_sync_page,
2640 .write_begin = ext4_da_write_begin,
2641 .write_end = ext4_da_write_end,
2642 .bmap = ext4_bmap,
2643 .invalidatepage = ext4_da_invalidatepage,
2644 .releasepage = ext4_releasepage,
2645 .direct_IO = ext4_direct_IO,
2646 .migratepage = buffer_migrate_page,
2647 };
2648
2649 void ext4_set_aops(struct inode *inode)
2650 {
2651 if (ext4_should_order_data(inode))
2652 inode->i_mapping->a_ops = &ext4_ordered_aops;
2653 else if (ext4_should_writeback_data(inode) &&
2654 test_opt(inode->i_sb, DELALLOC))
2655 inode->i_mapping->a_ops = &ext4_da_aops;
2656 else if (ext4_should_writeback_data(inode))
2657 inode->i_mapping->a_ops = &ext4_writeback_aops;
2658 else
2659 inode->i_mapping->a_ops = &ext4_journalled_aops;
2660 }
2661
2662 /*
2663 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
2664 * up to the end of the block which corresponds to `from'.
2665 * This required during truncate. We need to physically zero the tail end
2666 * of that block so it doesn't yield old data if the file is later grown.
2667 */
2668 int ext4_block_truncate_page(handle_t *handle,
2669 struct address_space *mapping, loff_t from)
2670 {
2671 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2672 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2673 unsigned blocksize, length, pos;
2674 ext4_lblk_t iblock;
2675 struct inode *inode = mapping->host;
2676 struct buffer_head *bh;
2677 struct page *page;
2678 int err = 0;
2679
2680 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2681 if (!page)
2682 return -EINVAL;
2683
2684 blocksize = inode->i_sb->s_blocksize;
2685 length = blocksize - (offset & (blocksize - 1));
2686 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2687
2688 /*
2689 * For "nobh" option, we can only work if we don't need to
2690 * read-in the page - otherwise we create buffers to do the IO.
2691 */
2692 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
2693 ext4_should_writeback_data(inode) && PageUptodate(page)) {
2694 zero_user(page, offset, length);
2695 set_page_dirty(page);
2696 goto unlock;
2697 }
2698
2699 if (!page_has_buffers(page))
2700 create_empty_buffers(page, blocksize, 0);
2701
2702 /* Find the buffer that contains "offset" */
2703 bh = page_buffers(page);
2704 pos = blocksize;
2705 while (offset >= pos) {
2706 bh = bh->b_this_page;
2707 iblock++;
2708 pos += blocksize;
2709 }
2710
2711 err = 0;
2712 if (buffer_freed(bh)) {
2713 BUFFER_TRACE(bh, "freed: skip");
2714 goto unlock;
2715 }
2716
2717 if (!buffer_mapped(bh)) {
2718 BUFFER_TRACE(bh, "unmapped");
2719 ext4_get_block(inode, iblock, bh, 0);
2720 /* unmapped? It's a hole - nothing to do */
2721 if (!buffer_mapped(bh)) {
2722 BUFFER_TRACE(bh, "still unmapped");
2723 goto unlock;
2724 }
2725 }
2726
2727 /* Ok, it's mapped. Make sure it's up-to-date */
2728 if (PageUptodate(page))
2729 set_buffer_uptodate(bh);
2730
2731 if (!buffer_uptodate(bh)) {
2732 err = -EIO;
2733 ll_rw_block(READ, 1, &bh);
2734 wait_on_buffer(bh);
2735 /* Uhhuh. Read error. Complain and punt. */
2736 if (!buffer_uptodate(bh))
2737 goto unlock;
2738 }
2739
2740 if (ext4_should_journal_data(inode)) {
2741 BUFFER_TRACE(bh, "get write access");
2742 err = ext4_journal_get_write_access(handle, bh);
2743 if (err)
2744 goto unlock;
2745 }
2746
2747 zero_user(page, offset, length);
2748
2749 BUFFER_TRACE(bh, "zeroed end of block");
2750
2751 err = 0;
2752 if (ext4_should_journal_data(inode)) {
2753 err = ext4_journal_dirty_metadata(handle, bh);
2754 } else {
2755 if (ext4_should_order_data(inode))
2756 err = ext4_jbd2_file_inode(handle, inode);
2757 mark_buffer_dirty(bh);
2758 }
2759
2760 unlock:
2761 unlock_page(page);
2762 page_cache_release(page);
2763 return err;
2764 }
2765
2766 /*
2767 * Probably it should be a library function... search for first non-zero word
2768 * or memcmp with zero_page, whatever is better for particular architecture.
2769 * Linus?
2770 */
2771 static inline int all_zeroes(__le32 *p, __le32 *q)
2772 {
2773 while (p < q)
2774 if (*p++)
2775 return 0;
2776 return 1;
2777 }
2778
2779 /**
2780 * ext4_find_shared - find the indirect blocks for partial truncation.
2781 * @inode: inode in question
2782 * @depth: depth of the affected branch
2783 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
2784 * @chain: place to store the pointers to partial indirect blocks
2785 * @top: place to the (detached) top of branch
2786 *
2787 * This is a helper function used by ext4_truncate().
2788 *
2789 * When we do truncate() we may have to clean the ends of several
2790 * indirect blocks but leave the blocks themselves alive. Block is
2791 * partially truncated if some data below the new i_size is refered
2792 * from it (and it is on the path to the first completely truncated
2793 * data block, indeed). We have to free the top of that path along
2794 * with everything to the right of the path. Since no allocation
2795 * past the truncation point is possible until ext4_truncate()
2796 * finishes, we may safely do the latter, but top of branch may
2797 * require special attention - pageout below the truncation point
2798 * might try to populate it.
2799 *
2800 * We atomically detach the top of branch from the tree, store the
2801 * block number of its root in *@top, pointers to buffer_heads of
2802 * partially truncated blocks - in @chain[].bh and pointers to
2803 * their last elements that should not be removed - in
2804 * @chain[].p. Return value is the pointer to last filled element
2805 * of @chain.
2806 *
2807 * The work left to caller to do the actual freeing of subtrees:
2808 * a) free the subtree starting from *@top
2809 * b) free the subtrees whose roots are stored in
2810 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2811 * c) free the subtrees growing from the inode past the @chain[0].
2812 * (no partially truncated stuff there). */
2813
2814 static Indirect *ext4_find_shared(struct inode *inode, int depth,
2815 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
2816 {
2817 Indirect *partial, *p;
2818 int k, err;
2819
2820 *top = 0;
2821 /* Make k index the deepest non-null offest + 1 */
2822 for (k = depth; k > 1 && !offsets[k-1]; k--)
2823 ;
2824 partial = ext4_get_branch(inode, k, offsets, chain, &err);
2825 /* Writer: pointers */
2826 if (!partial)
2827 partial = chain + k-1;
2828 /*
2829 * If the branch acquired continuation since we've looked at it -
2830 * fine, it should all survive and (new) top doesn't belong to us.
2831 */
2832 if (!partial->key && *partial->p)
2833 /* Writer: end */
2834 goto no_top;
2835 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2836 ;
2837 /*
2838 * OK, we've found the last block that must survive. The rest of our
2839 * branch should be detached before unlocking. However, if that rest
2840 * of branch is all ours and does not grow immediately from the inode
2841 * it's easier to cheat and just decrement partial->p.
2842 */
2843 if (p == chain + k - 1 && p > chain) {
2844 p->p--;
2845 } else {
2846 *top = *p->p;
2847 /* Nope, don't do this in ext4. Must leave the tree intact */
2848 #if 0
2849 *p->p = 0;
2850 #endif
2851 }
2852 /* Writer: end */
2853
2854 while(partial > p) {
2855 brelse(partial->bh);
2856 partial--;
2857 }
2858 no_top:
2859 return partial;
2860 }
2861
2862 /*
2863 * Zero a number of block pointers in either an inode or an indirect block.
2864 * If we restart the transaction we must again get write access to the
2865 * indirect block for further modification.
2866 *
2867 * We release `count' blocks on disk, but (last - first) may be greater
2868 * than `count' because there can be holes in there.
2869 */
2870 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2871 struct buffer_head *bh, ext4_fsblk_t block_to_free,
2872 unsigned long count, __le32 *first, __le32 *last)
2873 {
2874 __le32 *p;
2875 if (try_to_extend_transaction(handle, inode)) {
2876 if (bh) {
2877 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2878 ext4_journal_dirty_metadata(handle, bh);
2879 }
2880 ext4_mark_inode_dirty(handle, inode);
2881 ext4_journal_test_restart(handle, inode);
2882 if (bh) {
2883 BUFFER_TRACE(bh, "retaking write access");
2884 ext4_journal_get_write_access(handle, bh);
2885 }
2886 }
2887
2888 /*
2889 * Any buffers which are on the journal will be in memory. We find
2890 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2891 * on them. We've already detached each block from the file, so
2892 * bforget() in jbd2_journal_forget() should be safe.
2893 *
2894 * AKPM: turn on bforget in jbd2_journal_forget()!!!
2895 */
2896 for (p = first; p < last; p++) {
2897 u32 nr = le32_to_cpu(*p);
2898 if (nr) {
2899 struct buffer_head *tbh;
2900
2901 *p = 0;
2902 tbh = sb_find_get_block(inode->i_sb, nr);
2903 ext4_forget(handle, 0, inode, tbh, nr);
2904 }
2905 }
2906
2907 ext4_free_blocks(handle, inode, block_to_free, count, 0);
2908 }
2909
2910 /**
2911 * ext4_free_data - free a list of data blocks
2912 * @handle: handle for this transaction
2913 * @inode: inode we are dealing with
2914 * @this_bh: indirect buffer_head which contains *@first and *@last
2915 * @first: array of block numbers
2916 * @last: points immediately past the end of array
2917 *
2918 * We are freeing all blocks refered from that array (numbers are stored as
2919 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2920 *
2921 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2922 * blocks are contiguous then releasing them at one time will only affect one
2923 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2924 * actually use a lot of journal space.
2925 *
2926 * @this_bh will be %NULL if @first and @last point into the inode's direct
2927 * block pointers.
2928 */
2929 static void ext4_free_data(handle_t *handle, struct inode *inode,
2930 struct buffer_head *this_bh,
2931 __le32 *first, __le32 *last)
2932 {
2933 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
2934 unsigned long count = 0; /* Number of blocks in the run */
2935 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2936 corresponding to
2937 block_to_free */
2938 ext4_fsblk_t nr; /* Current block # */
2939 __le32 *p; /* Pointer into inode/ind
2940 for current block */
2941 int err;
2942
2943 if (this_bh) { /* For indirect block */
2944 BUFFER_TRACE(this_bh, "get_write_access");
2945 err = ext4_journal_get_write_access(handle, this_bh);
2946 /* Important: if we can't update the indirect pointers
2947 * to the blocks, we can't free them. */
2948 if (err)
2949 return;
2950 }
2951
2952 for (p = first; p < last; p++) {
2953 nr = le32_to_cpu(*p);
2954 if (nr) {
2955 /* accumulate blocks to free if they're contiguous */
2956 if (count == 0) {
2957 block_to_free = nr;
2958 block_to_free_p = p;
2959 count = 1;
2960 } else if (nr == block_to_free + count) {
2961 count++;
2962 } else {
2963 ext4_clear_blocks(handle, inode, this_bh,
2964 block_to_free,
2965 count, block_to_free_p, p);
2966 block_to_free = nr;
2967 block_to_free_p = p;
2968 count = 1;
2969 }
2970 }
2971 }
2972
2973 if (count > 0)
2974 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2975 count, block_to_free_p, p);
2976
2977 if (this_bh) {
2978 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2979
2980 /*
2981 * The buffer head should have an attached journal head at this
2982 * point. However, if the data is corrupted and an indirect
2983 * block pointed to itself, it would have been detached when
2984 * the block was cleared. Check for this instead of OOPSing.
2985 */
2986 if (bh2jh(this_bh))
2987 ext4_journal_dirty_metadata(handle, this_bh);
2988 else
2989 ext4_error(inode->i_sb, __func__,
2990 "circular indirect block detected, "
2991 "inode=%lu, block=%llu",
2992 inode->i_ino,
2993 (unsigned long long) this_bh->b_blocknr);
2994 }
2995 }
2996
2997 /**
2998 * ext4_free_branches - free an array of branches
2999 * @handle: JBD handle for this transaction
3000 * @inode: inode we are dealing with
3001 * @parent_bh: the buffer_head which contains *@first and *@last
3002 * @first: array of block numbers
3003 * @last: pointer immediately past the end of array
3004 * @depth: depth of the branches to free
3005 *
3006 * We are freeing all blocks refered from these branches (numbers are
3007 * stored as little-endian 32-bit) and updating @inode->i_blocks
3008 * appropriately.
3009 */
3010 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3011 struct buffer_head *parent_bh,
3012 __le32 *first, __le32 *last, int depth)
3013 {
3014 ext4_fsblk_t nr;
3015 __le32 *p;
3016
3017 if (is_handle_aborted(handle))
3018 return;
3019
3020 if (depth--) {
3021 struct buffer_head *bh;
3022 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3023 p = last;
3024 while (--p >= first) {
3025 nr = le32_to_cpu(*p);
3026 if (!nr)
3027 continue; /* A hole */
3028
3029 /* Go read the buffer for the next level down */
3030 bh = sb_bread(inode->i_sb, nr);
3031
3032 /*
3033 * A read failure? Report error and clear slot
3034 * (should be rare).
3035 */
3036 if (!bh) {
3037 ext4_error(inode->i_sb, "ext4_free_branches",
3038 "Read failure, inode=%lu, block=%llu",
3039 inode->i_ino, nr);
3040 continue;
3041 }
3042
3043 /* This zaps the entire block. Bottom up. */
3044 BUFFER_TRACE(bh, "free child branches");
3045 ext4_free_branches(handle, inode, bh,
3046 (__le32*)bh->b_data,
3047 (__le32*)bh->b_data + addr_per_block,
3048 depth);
3049
3050 /*
3051 * We've probably journalled the indirect block several
3052 * times during the truncate. But it's no longer
3053 * needed and we now drop it from the transaction via
3054 * jbd2_journal_revoke().
3055 *
3056 * That's easy if it's exclusively part of this
3057 * transaction. But if it's part of the committing
3058 * transaction then jbd2_journal_forget() will simply
3059 * brelse() it. That means that if the underlying
3060 * block is reallocated in ext4_get_block(),
3061 * unmap_underlying_metadata() will find this block
3062 * and will try to get rid of it. damn, damn.
3063 *
3064 * If this block has already been committed to the
3065 * journal, a revoke record will be written. And
3066 * revoke records must be emitted *before* clearing
3067 * this block's bit in the bitmaps.
3068 */
3069 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3070
3071 /*
3072 * Everything below this this pointer has been
3073 * released. Now let this top-of-subtree go.
3074 *
3075 * We want the freeing of this indirect block to be
3076 * atomic in the journal with the updating of the
3077 * bitmap block which owns it. So make some room in
3078 * the journal.
3079 *
3080 * We zero the parent pointer *after* freeing its
3081 * pointee in the bitmaps, so if extend_transaction()
3082 * for some reason fails to put the bitmap changes and
3083 * the release into the same transaction, recovery
3084 * will merely complain about releasing a free block,
3085 * rather than leaking blocks.
3086 */
3087 if (is_handle_aborted(handle))
3088 return;
3089 if (try_to_extend_transaction(handle, inode)) {
3090 ext4_mark_inode_dirty(handle, inode);
3091 ext4_journal_test_restart(handle, inode);
3092 }
3093
3094 ext4_free_blocks(handle, inode, nr, 1, 1);
3095
3096 if (parent_bh) {
3097 /*
3098 * The block which we have just freed is
3099 * pointed to by an indirect block: journal it
3100 */
3101 BUFFER_TRACE(parent_bh, "get_write_access");
3102 if (!ext4_journal_get_write_access(handle,
3103 parent_bh)){
3104 *p = 0;
3105 BUFFER_TRACE(parent_bh,
3106 "call ext4_journal_dirty_metadata");
3107 ext4_journal_dirty_metadata(handle,
3108 parent_bh);
3109 }
3110 }
3111 }
3112 } else {
3113 /* We have reached the bottom of the tree. */
3114 BUFFER_TRACE(parent_bh, "free data blocks");
3115 ext4_free_data(handle, inode, parent_bh, first, last);
3116 }
3117 }
3118
3119 int ext4_can_truncate(struct inode *inode)
3120 {
3121 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3122 return 0;
3123 if (S_ISREG(inode->i_mode))
3124 return 1;
3125 if (S_ISDIR(inode->i_mode))
3126 return 1;
3127 if (S_ISLNK(inode->i_mode))
3128 return !ext4_inode_is_fast_symlink(inode);
3129 return 0;
3130 }
3131
3132 /*
3133 * ext4_truncate()
3134 *
3135 * We block out ext4_get_block() block instantiations across the entire
3136 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3137 * simultaneously on behalf of the same inode.
3138 *
3139 * As we work through the truncate and commmit bits of it to the journal there
3140 * is one core, guiding principle: the file's tree must always be consistent on
3141 * disk. We must be able to restart the truncate after a crash.
3142 *
3143 * The file's tree may be transiently inconsistent in memory (although it
3144 * probably isn't), but whenever we close off and commit a journal transaction,
3145 * the contents of (the filesystem + the journal) must be consistent and
3146 * restartable. It's pretty simple, really: bottom up, right to left (although
3147 * left-to-right works OK too).
3148 *
3149 * Note that at recovery time, journal replay occurs *before* the restart of
3150 * truncate against the orphan inode list.
3151 *
3152 * The committed inode has the new, desired i_size (which is the same as
3153 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3154 * that this inode's truncate did not complete and it will again call
3155 * ext4_truncate() to have another go. So there will be instantiated blocks
3156 * to the right of the truncation point in a crashed ext4 filesystem. But
3157 * that's fine - as long as they are linked from the inode, the post-crash
3158 * ext4_truncate() run will find them and release them.
3159 */
3160 void ext4_truncate(struct inode *inode)
3161 {
3162 handle_t *handle;
3163 struct ext4_inode_info *ei = EXT4_I(inode);
3164 __le32 *i_data = ei->i_data;
3165 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3166 struct address_space *mapping = inode->i_mapping;
3167 ext4_lblk_t offsets[4];
3168 Indirect chain[4];
3169 Indirect *partial;
3170 __le32 nr = 0;
3171 int n;
3172 ext4_lblk_t last_block;
3173 unsigned blocksize = inode->i_sb->s_blocksize;
3174
3175 if (!ext4_can_truncate(inode))
3176 return;
3177
3178 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3179 ext4_ext_truncate(inode);
3180 return;
3181 }
3182
3183 handle = start_transaction(inode);
3184 if (IS_ERR(handle))
3185 return; /* AKPM: return what? */
3186
3187 last_block = (inode->i_size + blocksize-1)
3188 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3189
3190 if (inode->i_size & (blocksize - 1))
3191 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3192 goto out_stop;
3193
3194 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3195 if (n == 0)
3196 goto out_stop; /* error */
3197
3198 /*
3199 * OK. This truncate is going to happen. We add the inode to the
3200 * orphan list, so that if this truncate spans multiple transactions,
3201 * and we crash, we will resume the truncate when the filesystem
3202 * recovers. It also marks the inode dirty, to catch the new size.
3203 *
3204 * Implication: the file must always be in a sane, consistent
3205 * truncatable state while each transaction commits.
3206 */
3207 if (ext4_orphan_add(handle, inode))
3208 goto out_stop;
3209
3210 /*
3211 * The orphan list entry will now protect us from any crash which
3212 * occurs before the truncate completes, so it is now safe to propagate
3213 * the new, shorter inode size (held for now in i_size) into the
3214 * on-disk inode. We do this via i_disksize, which is the value which
3215 * ext4 *really* writes onto the disk inode.
3216 */
3217 ei->i_disksize = inode->i_size;
3218
3219 /*
3220 * From here we block out all ext4_get_block() callers who want to
3221 * modify the block allocation tree.
3222 */
3223 down_write(&ei->i_data_sem);
3224
3225 if (n == 1) { /* direct blocks */
3226 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3227 i_data + EXT4_NDIR_BLOCKS);
3228 goto do_indirects;
3229 }
3230
3231 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3232 /* Kill the top of shared branch (not detached) */
3233 if (nr) {
3234 if (partial == chain) {
3235 /* Shared branch grows from the inode */
3236 ext4_free_branches(handle, inode, NULL,
3237 &nr, &nr+1, (chain+n-1) - partial);
3238 *partial->p = 0;
3239 /*
3240 * We mark the inode dirty prior to restart,
3241 * and prior to stop. No need for it here.
3242 */
3243 } else {
3244 /* Shared branch grows from an indirect block */
3245 BUFFER_TRACE(partial->bh, "get_write_access");
3246 ext4_free_branches(handle, inode, partial->bh,
3247 partial->p,
3248 partial->p+1, (chain+n-1) - partial);
3249 }
3250 }
3251 /* Clear the ends of indirect blocks on the shared branch */
3252 while (partial > chain) {
3253 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3254 (__le32*)partial->bh->b_data+addr_per_block,
3255 (chain+n-1) - partial);
3256 BUFFER_TRACE(partial->bh, "call brelse");
3257 brelse (partial->bh);
3258 partial--;
3259 }
3260 do_indirects:
3261 /* Kill the remaining (whole) subtrees */
3262 switch (offsets[0]) {
3263 default:
3264 nr = i_data[EXT4_IND_BLOCK];
3265 if (nr) {
3266 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3267 i_data[EXT4_IND_BLOCK] = 0;
3268 }
3269 case EXT4_IND_BLOCK:
3270 nr = i_data[EXT4_DIND_BLOCK];
3271 if (nr) {
3272 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3273 i_data[EXT4_DIND_BLOCK] = 0;
3274 }
3275 case EXT4_DIND_BLOCK:
3276 nr = i_data[EXT4_TIND_BLOCK];
3277 if (nr) {
3278 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3279 i_data[EXT4_TIND_BLOCK] = 0;
3280 }
3281 case EXT4_TIND_BLOCK:
3282 ;
3283 }
3284
3285 ext4_discard_reservation(inode);
3286
3287 up_write(&ei->i_data_sem);
3288 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3289 ext4_mark_inode_dirty(handle, inode);
3290
3291 /*
3292 * In a multi-transaction truncate, we only make the final transaction
3293 * synchronous
3294 */
3295 if (IS_SYNC(inode))
3296 handle->h_sync = 1;
3297 out_stop:
3298 /*
3299 * If this was a simple ftruncate(), and the file will remain alive
3300 * then we need to clear up the orphan record which we created above.
3301 * However, if this was a real unlink then we were called by
3302 * ext4_delete_inode(), and we allow that function to clean up the
3303 * orphan info for us.
3304 */
3305 if (inode->i_nlink)
3306 ext4_orphan_del(handle, inode);
3307
3308 ext4_journal_stop(handle);
3309 }
3310
3311 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3312 unsigned long ino, struct ext4_iloc *iloc)
3313 {
3314 ext4_group_t block_group;
3315 unsigned long offset;
3316 ext4_fsblk_t block;
3317 struct ext4_group_desc *gdp;
3318
3319 if (!ext4_valid_inum(sb, ino)) {
3320 /*
3321 * This error is already checked for in namei.c unless we are
3322 * looking at an NFS filehandle, in which case no error
3323 * report is needed
3324 */
3325 return 0;
3326 }
3327
3328 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3329 gdp = ext4_get_group_desc(sb, block_group, NULL);
3330 if (!gdp)
3331 return 0;
3332
3333 /*
3334 * Figure out the offset within the block group inode table
3335 */
3336 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3337 EXT4_INODE_SIZE(sb);
3338 block = ext4_inode_table(sb, gdp) +
3339 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3340
3341 iloc->block_group = block_group;
3342 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3343 return block;
3344 }
3345
3346 /*
3347 * ext4_get_inode_loc returns with an extra refcount against the inode's
3348 * underlying buffer_head on success. If 'in_mem' is true, we have all
3349 * data in memory that is needed to recreate the on-disk version of this
3350 * inode.
3351 */
3352 static int __ext4_get_inode_loc(struct inode *inode,
3353 struct ext4_iloc *iloc, int in_mem)
3354 {
3355 ext4_fsblk_t block;
3356 struct buffer_head *bh;
3357
3358 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3359 if (!block)
3360 return -EIO;
3361
3362 bh = sb_getblk(inode->i_sb, block);
3363 if (!bh) {
3364 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3365 "unable to read inode block - "
3366 "inode=%lu, block=%llu",
3367 inode->i_ino, block);
3368 return -EIO;
3369 }
3370 if (!buffer_uptodate(bh)) {
3371 lock_buffer(bh);
3372 if (buffer_uptodate(bh)) {
3373 /* someone brought it uptodate while we waited */
3374 unlock_buffer(bh);
3375 goto has_buffer;
3376 }
3377
3378 /*
3379 * If we have all information of the inode in memory and this
3380 * is the only valid inode in the block, we need not read the
3381 * block.
3382 */
3383 if (in_mem) {
3384 struct buffer_head *bitmap_bh;
3385 struct ext4_group_desc *desc;
3386 int inodes_per_buffer;
3387 int inode_offset, i;
3388 ext4_group_t block_group;
3389 int start;
3390
3391 block_group = (inode->i_ino - 1) /
3392 EXT4_INODES_PER_GROUP(inode->i_sb);
3393 inodes_per_buffer = bh->b_size /
3394 EXT4_INODE_SIZE(inode->i_sb);
3395 inode_offset = ((inode->i_ino - 1) %
3396 EXT4_INODES_PER_GROUP(inode->i_sb));
3397 start = inode_offset & ~(inodes_per_buffer - 1);
3398
3399 /* Is the inode bitmap in cache? */
3400 desc = ext4_get_group_desc(inode->i_sb,
3401 block_group, NULL);
3402 if (!desc)
3403 goto make_io;
3404
3405 bitmap_bh = sb_getblk(inode->i_sb,
3406 ext4_inode_bitmap(inode->i_sb, desc));
3407 if (!bitmap_bh)
3408 goto make_io;
3409
3410 /*
3411 * If the inode bitmap isn't in cache then the
3412 * optimisation may end up performing two reads instead
3413 * of one, so skip it.
3414 */
3415 if (!buffer_uptodate(bitmap_bh)) {
3416 brelse(bitmap_bh);
3417 goto make_io;
3418 }
3419 for (i = start; i < start + inodes_per_buffer; i++) {
3420 if (i == inode_offset)
3421 continue;
3422 if (ext4_test_bit(i, bitmap_bh->b_data))
3423 break;
3424 }
3425 brelse(bitmap_bh);
3426 if (i == start + inodes_per_buffer) {
3427 /* all other inodes are free, so skip I/O */
3428 memset(bh->b_data, 0, bh->b_size);
3429 set_buffer_uptodate(bh);
3430 unlock_buffer(bh);
3431 goto has_buffer;
3432 }
3433 }
3434
3435 make_io:
3436 /*
3437 * There are other valid inodes in the buffer, this inode
3438 * has in-inode xattrs, or we don't have this inode in memory.
3439 * Read the block from disk.
3440 */
3441 get_bh(bh);
3442 bh->b_end_io = end_buffer_read_sync;
3443 submit_bh(READ_META, bh);
3444 wait_on_buffer(bh);
3445 if (!buffer_uptodate(bh)) {
3446 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3447 "unable to read inode block - "
3448 "inode=%lu, block=%llu",
3449 inode->i_ino, block);
3450 brelse(bh);
3451 return -EIO;
3452 }
3453 }
3454 has_buffer:
3455 iloc->bh = bh;
3456 return 0;
3457 }
3458
3459 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3460 {
3461 /* We have all inode data except xattrs in memory here. */
3462 return __ext4_get_inode_loc(inode, iloc,
3463 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3464 }
3465
3466 void ext4_set_inode_flags(struct inode *inode)
3467 {
3468 unsigned int flags = EXT4_I(inode)->i_flags;
3469
3470 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3471 if (flags & EXT4_SYNC_FL)
3472 inode->i_flags |= S_SYNC;
3473 if (flags & EXT4_APPEND_FL)
3474 inode->i_flags |= S_APPEND;
3475 if (flags & EXT4_IMMUTABLE_FL)
3476 inode->i_flags |= S_IMMUTABLE;
3477 if (flags & EXT4_NOATIME_FL)
3478 inode->i_flags |= S_NOATIME;
3479 if (flags & EXT4_DIRSYNC_FL)
3480 inode->i_flags |= S_DIRSYNC;
3481 }
3482
3483 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3484 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3485 {
3486 unsigned int flags = ei->vfs_inode.i_flags;
3487
3488 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3489 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3490 if (flags & S_SYNC)
3491 ei->i_flags |= EXT4_SYNC_FL;
3492 if (flags & S_APPEND)
3493 ei->i_flags |= EXT4_APPEND_FL;
3494 if (flags & S_IMMUTABLE)
3495 ei->i_flags |= EXT4_IMMUTABLE_FL;
3496 if (flags & S_NOATIME)
3497 ei->i_flags |= EXT4_NOATIME_FL;
3498 if (flags & S_DIRSYNC)
3499 ei->i_flags |= EXT4_DIRSYNC_FL;
3500 }
3501 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3502 struct ext4_inode_info *ei)
3503 {
3504 blkcnt_t i_blocks ;
3505 struct inode *inode = &(ei->vfs_inode);
3506 struct super_block *sb = inode->i_sb;
3507
3508 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3509 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3510 /* we are using combined 48 bit field */
3511 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3512 le32_to_cpu(raw_inode->i_blocks_lo);
3513 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3514 /* i_blocks represent file system block size */
3515 return i_blocks << (inode->i_blkbits - 9);
3516 } else {
3517 return i_blocks;
3518 }
3519 } else {
3520 return le32_to_cpu(raw_inode->i_blocks_lo);
3521 }
3522 }
3523
3524 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3525 {
3526 struct ext4_iloc iloc;
3527 struct ext4_inode *raw_inode;
3528 struct ext4_inode_info *ei;
3529 struct buffer_head *bh;
3530 struct inode *inode;
3531 long ret;
3532 int block;
3533
3534 inode = iget_locked(sb, ino);
3535 if (!inode)
3536 return ERR_PTR(-ENOMEM);
3537 if (!(inode->i_state & I_NEW))
3538 return inode;
3539
3540 ei = EXT4_I(inode);
3541 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3542 ei->i_acl = EXT4_ACL_NOT_CACHED;
3543 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
3544 #endif
3545 ei->i_block_alloc_info = NULL;
3546
3547 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3548 if (ret < 0)
3549 goto bad_inode;
3550 bh = iloc.bh;
3551 raw_inode = ext4_raw_inode(&iloc);
3552 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3553 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3554 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3555 if(!(test_opt (inode->i_sb, NO_UID32))) {
3556 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3557 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3558 }
3559 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3560
3561 ei->i_state = 0;
3562 ei->i_dir_start_lookup = 0;
3563 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3564 /* We now have enough fields to check if the inode was active or not.
3565 * This is needed because nfsd might try to access dead inodes
3566 * the test is that same one that e2fsck uses
3567 * NeilBrown 1999oct15
3568 */
3569 if (inode->i_nlink == 0) {
3570 if (inode->i_mode == 0 ||
3571 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3572 /* this inode is deleted */
3573 brelse (bh);
3574 ret = -ESTALE;
3575 goto bad_inode;
3576 }
3577 /* The only unlinked inodes we let through here have
3578 * valid i_mode and are being read by the orphan
3579 * recovery code: that's fine, we're about to complete
3580 * the process of deleting those. */
3581 }
3582 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3583 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3584 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3585 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3586 cpu_to_le32(EXT4_OS_HURD)) {
3587 ei->i_file_acl |=
3588 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3589 }
3590 inode->i_size = ext4_isize(raw_inode);
3591 ei->i_disksize = inode->i_size;
3592 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3593 ei->i_block_group = iloc.block_group;
3594 /*
3595 * NOTE! The in-memory inode i_data array is in little-endian order
3596 * even on big-endian machines: we do NOT byteswap the block numbers!
3597 */
3598 for (block = 0; block < EXT4_N_BLOCKS; block++)
3599 ei->i_data[block] = raw_inode->i_block[block];
3600 INIT_LIST_HEAD(&ei->i_orphan);
3601
3602 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3603 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3604 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3605 EXT4_INODE_SIZE(inode->i_sb)) {
3606 brelse (bh);
3607 ret = -EIO;
3608 goto bad_inode;
3609 }
3610 if (ei->i_extra_isize == 0) {
3611 /* The extra space is currently unused. Use it. */
3612 ei->i_extra_isize = sizeof(struct ext4_inode) -
3613 EXT4_GOOD_OLD_INODE_SIZE;
3614 } else {
3615 __le32 *magic = (void *)raw_inode +
3616 EXT4_GOOD_OLD_INODE_SIZE +
3617 ei->i_extra_isize;
3618 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3619 ei->i_state |= EXT4_STATE_XATTR;
3620 }
3621 } else
3622 ei->i_extra_isize = 0;
3623
3624 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3625 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3626 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3627 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3628
3629 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3630 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3631 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3632 inode->i_version |=
3633 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3634 }
3635
3636 if (S_ISREG(inode->i_mode)) {
3637 inode->i_op = &ext4_file_inode_operations;
3638 inode->i_fop = &ext4_file_operations;
3639 ext4_set_aops(inode);
3640 } else if (S_ISDIR(inode->i_mode)) {
3641 inode->i_op = &ext4_dir_inode_operations;
3642 inode->i_fop = &ext4_dir_operations;
3643 } else if (S_ISLNK(inode->i_mode)) {
3644 if (ext4_inode_is_fast_symlink(inode))
3645 inode->i_op = &ext4_fast_symlink_inode_operations;
3646 else {
3647 inode->i_op = &ext4_symlink_inode_operations;
3648 ext4_set_aops(inode);
3649 }
3650 } else {
3651 inode->i_op = &ext4_special_inode_operations;
3652 if (raw_inode->i_block[0])
3653 init_special_inode(inode, inode->i_mode,
3654 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3655 else
3656 init_special_inode(inode, inode->i_mode,
3657 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3658 }
3659 brelse (iloc.bh);
3660 ext4_set_inode_flags(inode);
3661 unlock_new_inode(inode);
3662 return inode;
3663
3664 bad_inode:
3665 iget_failed(inode);
3666 return ERR_PTR(ret);
3667 }
3668
3669 static int ext4_inode_blocks_set(handle_t *handle,
3670 struct ext4_inode *raw_inode,
3671 struct ext4_inode_info *ei)
3672 {
3673 struct inode *inode = &(ei->vfs_inode);
3674 u64 i_blocks = inode->i_blocks;
3675 struct super_block *sb = inode->i_sb;
3676 int err = 0;
3677
3678 if (i_blocks <= ~0U) {
3679 /*
3680 * i_blocks can be represnted in a 32 bit variable
3681 * as multiple of 512 bytes
3682 */
3683 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3684 raw_inode->i_blocks_high = 0;
3685 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3686 } else if (i_blocks <= 0xffffffffffffULL) {
3687 /*
3688 * i_blocks can be represented in a 48 bit variable
3689 * as multiple of 512 bytes
3690 */
3691 err = ext4_update_rocompat_feature(handle, sb,
3692 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3693 if (err)
3694 goto err_out;
3695 /* i_block is stored in the split 48 bit fields */
3696 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3697 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3698 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
3699 } else {
3700 /*
3701 * i_blocks should be represented in a 48 bit variable
3702 * as multiple of file system block size
3703 */
3704 err = ext4_update_rocompat_feature(handle, sb,
3705 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3706 if (err)
3707 goto err_out;
3708 ei->i_flags |= EXT4_HUGE_FILE_FL;
3709 /* i_block is stored in file system block size */
3710 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3711 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3712 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3713 }
3714 err_out:
3715 return err;
3716 }
3717
3718 /*
3719 * Post the struct inode info into an on-disk inode location in the
3720 * buffer-cache. This gobbles the caller's reference to the
3721 * buffer_head in the inode location struct.
3722 *
3723 * The caller must have write access to iloc->bh.
3724 */
3725 static int ext4_do_update_inode(handle_t *handle,
3726 struct inode *inode,
3727 struct ext4_iloc *iloc)
3728 {
3729 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3730 struct ext4_inode_info *ei = EXT4_I(inode);
3731 struct buffer_head *bh = iloc->bh;
3732 int err = 0, rc, block;
3733
3734 /* For fields not not tracking in the in-memory inode,
3735 * initialise them to zero for new inodes. */
3736 if (ei->i_state & EXT4_STATE_NEW)
3737 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3738
3739 ext4_get_inode_flags(ei);
3740 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3741 if(!(test_opt(inode->i_sb, NO_UID32))) {
3742 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3743 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3744 /*
3745 * Fix up interoperability with old kernels. Otherwise, old inodes get
3746 * re-used with the upper 16 bits of the uid/gid intact
3747 */
3748 if(!ei->i_dtime) {
3749 raw_inode->i_uid_high =
3750 cpu_to_le16(high_16_bits(inode->i_uid));
3751 raw_inode->i_gid_high =
3752 cpu_to_le16(high_16_bits(inode->i_gid));
3753 } else {
3754 raw_inode->i_uid_high = 0;
3755 raw_inode->i_gid_high = 0;
3756 }
3757 } else {
3758 raw_inode->i_uid_low =
3759 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3760 raw_inode->i_gid_low =
3761 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3762 raw_inode->i_uid_high = 0;
3763 raw_inode->i_gid_high = 0;
3764 }
3765 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3766
3767 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3768 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3769 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3770 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3771
3772 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3773 goto out_brelse;
3774 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3775 /* clear the migrate flag in the raw_inode */
3776 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
3777 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3778 cpu_to_le32(EXT4_OS_HURD))
3779 raw_inode->i_file_acl_high =
3780 cpu_to_le16(ei->i_file_acl >> 32);
3781 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3782 ext4_isize_set(raw_inode, ei->i_disksize);
3783 if (ei->i_disksize > 0x7fffffffULL) {
3784 struct super_block *sb = inode->i_sb;
3785 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3786 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3787 EXT4_SB(sb)->s_es->s_rev_level ==
3788 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3789 /* If this is the first large file
3790 * created, add a flag to the superblock.
3791 */
3792 err = ext4_journal_get_write_access(handle,
3793 EXT4_SB(sb)->s_sbh);
3794 if (err)
3795 goto out_brelse;
3796 ext4_update_dynamic_rev(sb);
3797 EXT4_SET_RO_COMPAT_FEATURE(sb,
3798 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3799 sb->s_dirt = 1;
3800 handle->h_sync = 1;
3801 err = ext4_journal_dirty_metadata(handle,
3802 EXT4_SB(sb)->s_sbh);
3803 }
3804 }
3805 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3806 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3807 if (old_valid_dev(inode->i_rdev)) {
3808 raw_inode->i_block[0] =
3809 cpu_to_le32(old_encode_dev(inode->i_rdev));
3810 raw_inode->i_block[1] = 0;
3811 } else {
3812 raw_inode->i_block[0] = 0;
3813 raw_inode->i_block[1] =
3814 cpu_to_le32(new_encode_dev(inode->i_rdev));
3815 raw_inode->i_block[2] = 0;
3816 }
3817 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
3818 raw_inode->i_block[block] = ei->i_data[block];
3819
3820 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3821 if (ei->i_extra_isize) {
3822 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3823 raw_inode->i_version_hi =
3824 cpu_to_le32(inode->i_version >> 32);
3825 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3826 }
3827
3828
3829 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3830 rc = ext4_journal_dirty_metadata(handle, bh);
3831 if (!err)
3832 err = rc;
3833 ei->i_state &= ~EXT4_STATE_NEW;
3834
3835 out_brelse:
3836 brelse (bh);
3837 ext4_std_error(inode->i_sb, err);
3838 return err;
3839 }
3840
3841 /*
3842 * ext4_write_inode()
3843 *
3844 * We are called from a few places:
3845 *
3846 * - Within generic_file_write() for O_SYNC files.
3847 * Here, there will be no transaction running. We wait for any running
3848 * trasnaction to commit.
3849 *
3850 * - Within sys_sync(), kupdate and such.
3851 * We wait on commit, if tol to.
3852 *
3853 * - Within prune_icache() (PF_MEMALLOC == true)
3854 * Here we simply return. We can't afford to block kswapd on the
3855 * journal commit.
3856 *
3857 * In all cases it is actually safe for us to return without doing anything,
3858 * because the inode has been copied into a raw inode buffer in
3859 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3860 * knfsd.
3861 *
3862 * Note that we are absolutely dependent upon all inode dirtiers doing the
3863 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3864 * which we are interested.
3865 *
3866 * It would be a bug for them to not do this. The code:
3867 *
3868 * mark_inode_dirty(inode)
3869 * stuff();
3870 * inode->i_size = expr;
3871 *
3872 * is in error because a kswapd-driven write_inode() could occur while
3873 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3874 * will no longer be on the superblock's dirty inode list.
3875 */
3876 int ext4_write_inode(struct inode *inode, int wait)
3877 {
3878 if (current->flags & PF_MEMALLOC)
3879 return 0;
3880
3881 if (ext4_journal_current_handle()) {
3882 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3883 dump_stack();
3884 return -EIO;
3885 }
3886
3887 if (!wait)
3888 return 0;
3889
3890 return ext4_force_commit(inode->i_sb);
3891 }
3892
3893 /*
3894 * ext4_setattr()
3895 *
3896 * Called from notify_change.
3897 *
3898 * We want to trap VFS attempts to truncate the file as soon as
3899 * possible. In particular, we want to make sure that when the VFS
3900 * shrinks i_size, we put the inode on the orphan list and modify
3901 * i_disksize immediately, so that during the subsequent flushing of
3902 * dirty pages and freeing of disk blocks, we can guarantee that any
3903 * commit will leave the blocks being flushed in an unused state on
3904 * disk. (On recovery, the inode will get truncated and the blocks will
3905 * be freed, so we have a strong guarantee that no future commit will
3906 * leave these blocks visible to the user.)
3907 *
3908 * Another thing we have to assure is that if we are in ordered mode
3909 * and inode is still attached to the committing transaction, we must
3910 * we start writeout of all the dirty pages which are being truncated.
3911 * This way we are sure that all the data written in the previous
3912 * transaction are already on disk (truncate waits for pages under
3913 * writeback).
3914 *
3915 * Called with inode->i_mutex down.
3916 */
3917 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
3918 {
3919 struct inode *inode = dentry->d_inode;
3920 int error, rc = 0;
3921 const unsigned int ia_valid = attr->ia_valid;
3922
3923 error = inode_change_ok(inode, attr);
3924 if (error)
3925 return error;
3926
3927 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3928 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3929 handle_t *handle;
3930
3931 /* (user+group)*(old+new) structure, inode write (sb,
3932 * inode block, ? - but truncate inode update has it) */
3933 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3934 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3935 if (IS_ERR(handle)) {
3936 error = PTR_ERR(handle);
3937 goto err_out;
3938 }
3939 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3940 if (error) {
3941 ext4_journal_stop(handle);
3942 return error;
3943 }
3944 /* Update corresponding info in inode so that everything is in
3945 * one transaction */
3946 if (attr->ia_valid & ATTR_UID)
3947 inode->i_uid = attr->ia_uid;
3948 if (attr->ia_valid & ATTR_GID)
3949 inode->i_gid = attr->ia_gid;
3950 error = ext4_mark_inode_dirty(handle, inode);
3951 ext4_journal_stop(handle);
3952 }
3953
3954 if (attr->ia_valid & ATTR_SIZE) {
3955 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3956 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3957
3958 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3959 error = -EFBIG;
3960 goto err_out;
3961 }
3962 }
3963 }
3964
3965 if (S_ISREG(inode->i_mode) &&
3966 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3967 handle_t *handle;
3968
3969 handle = ext4_journal_start(inode, 3);
3970 if (IS_ERR(handle)) {
3971 error = PTR_ERR(handle);
3972 goto err_out;
3973 }
3974
3975 error = ext4_orphan_add(handle, inode);
3976 EXT4_I(inode)->i_disksize = attr->ia_size;
3977 rc = ext4_mark_inode_dirty(handle, inode);
3978 if (!error)
3979 error = rc;
3980 ext4_journal_stop(handle);
3981
3982 if (ext4_should_order_data(inode)) {
3983 error = ext4_begin_ordered_truncate(inode,
3984 attr->ia_size);
3985 if (error) {
3986 /* Do as much error cleanup as possible */
3987 handle = ext4_journal_start(inode, 3);
3988 if (IS_ERR(handle)) {
3989 ext4_orphan_del(NULL, inode);
3990 goto err_out;
3991 }
3992 ext4_orphan_del(handle, inode);
3993 ext4_journal_stop(handle);
3994 goto err_out;
3995 }
3996 }
3997 }
3998
3999 rc = inode_setattr(inode, attr);
4000
4001 /* If inode_setattr's call to ext4_truncate failed to get a
4002 * transaction handle at all, we need to clean up the in-core
4003 * orphan list manually. */
4004 if (inode->i_nlink)
4005 ext4_orphan_del(NULL, inode);
4006
4007 if (!rc && (ia_valid & ATTR_MODE))
4008 rc = ext4_acl_chmod(inode);
4009
4010 err_out:
4011 ext4_std_error(inode->i_sb, error);
4012 if (!error)
4013 error = rc;
4014 return error;
4015 }
4016
4017
4018 /*
4019 * How many blocks doth make a writepage()?
4020 *
4021 * With N blocks per page, it may be:
4022 * N data blocks
4023 * 2 indirect block
4024 * 2 dindirect
4025 * 1 tindirect
4026 * N+5 bitmap blocks (from the above)
4027 * N+5 group descriptor summary blocks
4028 * 1 inode block
4029 * 1 superblock.
4030 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
4031 *
4032 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
4033 *
4034 * With ordered or writeback data it's the same, less the N data blocks.
4035 *
4036 * If the inode's direct blocks can hold an integral number of pages then a
4037 * page cannot straddle two indirect blocks, and we can only touch one indirect
4038 * and dindirect block, and the "5" above becomes "3".
4039 *
4040 * This still overestimates under most circumstances. If we were to pass the
4041 * start and end offsets in here as well we could do block_to_path() on each
4042 * block and work out the exact number of indirects which are touched. Pah.
4043 */
4044
4045 int ext4_writepage_trans_blocks(struct inode *inode)
4046 {
4047 int bpp = ext4_journal_blocks_per_page(inode);
4048 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
4049 int ret;
4050
4051 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4052 return ext4_ext_writepage_trans_blocks(inode, bpp);
4053
4054 if (ext4_should_journal_data(inode))
4055 ret = 3 * (bpp + indirects) + 2;
4056 else
4057 ret = 2 * (bpp + indirects) + 2;
4058
4059 #ifdef CONFIG_QUOTA
4060 /* We know that structure was already allocated during DQUOT_INIT so
4061 * we will be updating only the data blocks + inodes */
4062 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
4063 #endif
4064
4065 return ret;
4066 }
4067
4068 /*
4069 * The caller must have previously called ext4_reserve_inode_write().
4070 * Give this, we know that the caller already has write access to iloc->bh.
4071 */
4072 int ext4_mark_iloc_dirty(handle_t *handle,
4073 struct inode *inode, struct ext4_iloc *iloc)
4074 {
4075 int err = 0;
4076
4077 if (test_opt(inode->i_sb, I_VERSION))
4078 inode_inc_iversion(inode);
4079
4080 /* the do_update_inode consumes one bh->b_count */
4081 get_bh(iloc->bh);
4082
4083 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4084 err = ext4_do_update_inode(handle, inode, iloc);
4085 put_bh(iloc->bh);
4086 return err;
4087 }
4088
4089 /*
4090 * On success, We end up with an outstanding reference count against
4091 * iloc->bh. This _must_ be cleaned up later.
4092 */
4093
4094 int
4095 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4096 struct ext4_iloc *iloc)
4097 {
4098 int err = 0;
4099 if (handle) {
4100 err = ext4_get_inode_loc(inode, iloc);
4101 if (!err) {
4102 BUFFER_TRACE(iloc->bh, "get_write_access");
4103 err = ext4_journal_get_write_access(handle, iloc->bh);
4104 if (err) {
4105 brelse(iloc->bh);
4106 iloc->bh = NULL;
4107 }
4108 }
4109 }
4110 ext4_std_error(inode->i_sb, err);
4111 return err;
4112 }
4113
4114 /*
4115 * Expand an inode by new_extra_isize bytes.
4116 * Returns 0 on success or negative error number on failure.
4117 */
4118 static int ext4_expand_extra_isize(struct inode *inode,
4119 unsigned int new_extra_isize,
4120 struct ext4_iloc iloc,
4121 handle_t *handle)
4122 {
4123 struct ext4_inode *raw_inode;
4124 struct ext4_xattr_ibody_header *header;
4125 struct ext4_xattr_entry *entry;
4126
4127 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4128 return 0;
4129
4130 raw_inode = ext4_raw_inode(&iloc);
4131
4132 header = IHDR(inode, raw_inode);
4133 entry = IFIRST(header);
4134
4135 /* No extended attributes present */
4136 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4137 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4138 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4139 new_extra_isize);
4140 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4141 return 0;
4142 }
4143
4144 /* try to expand with EAs present */
4145 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4146 raw_inode, handle);
4147 }
4148
4149 /*
4150 * What we do here is to mark the in-core inode as clean with respect to inode
4151 * dirtiness (it may still be data-dirty).
4152 * This means that the in-core inode may be reaped by prune_icache
4153 * without having to perform any I/O. This is a very good thing,
4154 * because *any* task may call prune_icache - even ones which
4155 * have a transaction open against a different journal.
4156 *
4157 * Is this cheating? Not really. Sure, we haven't written the
4158 * inode out, but prune_icache isn't a user-visible syncing function.
4159 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4160 * we start and wait on commits.
4161 *
4162 * Is this efficient/effective? Well, we're being nice to the system
4163 * by cleaning up our inodes proactively so they can be reaped
4164 * without I/O. But we are potentially leaving up to five seconds'
4165 * worth of inodes floating about which prune_icache wants us to
4166 * write out. One way to fix that would be to get prune_icache()
4167 * to do a write_super() to free up some memory. It has the desired
4168 * effect.
4169 */
4170 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4171 {
4172 struct ext4_iloc iloc;
4173 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4174 static unsigned int mnt_count;
4175 int err, ret;
4176
4177 might_sleep();
4178 err = ext4_reserve_inode_write(handle, inode, &iloc);
4179 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4180 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4181 /*
4182 * We need extra buffer credits since we may write into EA block
4183 * with this same handle. If journal_extend fails, then it will
4184 * only result in a minor loss of functionality for that inode.
4185 * If this is felt to be critical, then e2fsck should be run to
4186 * force a large enough s_min_extra_isize.
4187 */
4188 if ((jbd2_journal_extend(handle,
4189 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4190 ret = ext4_expand_extra_isize(inode,
4191 sbi->s_want_extra_isize,
4192 iloc, handle);
4193 if (ret) {
4194 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4195 if (mnt_count !=
4196 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4197 ext4_warning(inode->i_sb, __func__,
4198 "Unable to expand inode %lu. Delete"
4199 " some EAs or run e2fsck.",
4200 inode->i_ino);
4201 mnt_count =
4202 le16_to_cpu(sbi->s_es->s_mnt_count);
4203 }
4204 }
4205 }
4206 }
4207 if (!err)
4208 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4209 return err;
4210 }
4211
4212 /*
4213 * ext4_dirty_inode() is called from __mark_inode_dirty()
4214 *
4215 * We're really interested in the case where a file is being extended.
4216 * i_size has been changed by generic_commit_write() and we thus need
4217 * to include the updated inode in the current transaction.
4218 *
4219 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4220 * are allocated to the file.
4221 *
4222 * If the inode is marked synchronous, we don't honour that here - doing
4223 * so would cause a commit on atime updates, which we don't bother doing.
4224 * We handle synchronous inodes at the highest possible level.
4225 */
4226 void ext4_dirty_inode(struct inode *inode)
4227 {
4228 handle_t *current_handle = ext4_journal_current_handle();
4229 handle_t *handle;
4230
4231 handle = ext4_journal_start(inode, 2);
4232 if (IS_ERR(handle))
4233 goto out;
4234 if (current_handle &&
4235 current_handle->h_transaction != handle->h_transaction) {
4236 /* This task has a transaction open against a different fs */
4237 printk(KERN_EMERG "%s: transactions do not match!\n",
4238 __func__);
4239 } else {
4240 jbd_debug(5, "marking dirty. outer handle=%p\n",
4241 current_handle);
4242 ext4_mark_inode_dirty(handle, inode);
4243 }
4244 ext4_journal_stop(handle);
4245 out:
4246 return;
4247 }
4248
4249 #if 0
4250 /*
4251 * Bind an inode's backing buffer_head into this transaction, to prevent
4252 * it from being flushed to disk early. Unlike
4253 * ext4_reserve_inode_write, this leaves behind no bh reference and
4254 * returns no iloc structure, so the caller needs to repeat the iloc
4255 * lookup to mark the inode dirty later.
4256 */
4257 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4258 {
4259 struct ext4_iloc iloc;
4260
4261 int err = 0;
4262 if (handle) {
4263 err = ext4_get_inode_loc(inode, &iloc);
4264 if (!err) {
4265 BUFFER_TRACE(iloc.bh, "get_write_access");
4266 err = jbd2_journal_get_write_access(handle, iloc.bh);
4267 if (!err)
4268 err = ext4_journal_dirty_metadata(handle,
4269 iloc.bh);
4270 brelse(iloc.bh);
4271 }
4272 }
4273 ext4_std_error(inode->i_sb, err);
4274 return err;
4275 }
4276 #endif
4277
4278 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4279 {
4280 journal_t *journal;
4281 handle_t *handle;
4282 int err;
4283
4284 /*
4285 * We have to be very careful here: changing a data block's
4286 * journaling status dynamically is dangerous. If we write a
4287 * data block to the journal, change the status and then delete
4288 * that block, we risk forgetting to revoke the old log record
4289 * from the journal and so a subsequent replay can corrupt data.
4290 * So, first we make sure that the journal is empty and that
4291 * nobody is changing anything.
4292 */
4293
4294 journal = EXT4_JOURNAL(inode);
4295 if (is_journal_aborted(journal))
4296 return -EROFS;
4297
4298 jbd2_journal_lock_updates(journal);
4299 jbd2_journal_flush(journal);
4300
4301 /*
4302 * OK, there are no updates running now, and all cached data is
4303 * synced to disk. We are now in a completely consistent state
4304 * which doesn't have anything in the journal, and we know that
4305 * no filesystem updates are running, so it is safe to modify
4306 * the inode's in-core data-journaling state flag now.
4307 */
4308
4309 if (val)
4310 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4311 else
4312 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4313 ext4_set_aops(inode);
4314
4315 jbd2_journal_unlock_updates(journal);
4316
4317 /* Finally we can mark the inode as dirty. */
4318
4319 handle = ext4_journal_start(inode, 1);
4320 if (IS_ERR(handle))
4321 return PTR_ERR(handle);
4322
4323 err = ext4_mark_inode_dirty(handle, inode);
4324 handle->h_sync = 1;
4325 ext4_journal_stop(handle);
4326 ext4_std_error(inode->i_sb, err);
4327
4328 return err;
4329 }
4330
4331 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4332 {
4333 return !buffer_mapped(bh);
4334 }
4335
4336 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4337 {
4338 loff_t size;
4339 unsigned long len;
4340 int ret = -EINVAL;
4341 struct file *file = vma->vm_file;
4342 struct inode *inode = file->f_path.dentry->d_inode;
4343 struct address_space *mapping = inode->i_mapping;
4344
4345 /*
4346 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4347 * get i_mutex because we are already holding mmap_sem.
4348 */
4349 down_read(&inode->i_alloc_sem);
4350 size = i_size_read(inode);
4351 if (page->mapping != mapping || size <= page_offset(page)
4352 || !PageUptodate(page)) {
4353 /* page got truncated from under us? */
4354 goto out_unlock;
4355 }
4356 ret = 0;
4357 if (PageMappedToDisk(page))
4358 goto out_unlock;
4359
4360 if (page->index == size >> PAGE_CACHE_SHIFT)
4361 len = size & ~PAGE_CACHE_MASK;
4362 else
4363 len = PAGE_CACHE_SIZE;
4364
4365 if (page_has_buffers(page)) {
4366 /* return if we have all the buffers mapped */
4367 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4368 ext4_bh_unmapped))
4369 goto out_unlock;
4370 }
4371 /*
4372 * OK, we need to fill the hole... Do write_begin write_end
4373 * to do block allocation/reservation.We are not holding
4374 * inode.i__mutex here. That allow * parallel write_begin,
4375 * write_end call. lock_page prevent this from happening
4376 * on the same page though
4377 */
4378 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4379 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4380 if (ret < 0)
4381 goto out_unlock;
4382 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4383 len, len, page, NULL);
4384 if (ret < 0)
4385 goto out_unlock;
4386 ret = 0;
4387 out_unlock:
4388 up_read(&inode->i_alloc_sem);
4389 return ret;
4390 }