2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
51 struct ext4_inode_info
*ei
)
53 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
58 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
59 raw
->i_checksum_lo
= 0;
60 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
61 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
62 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
63 raw
->i_checksum_hi
= 0;
66 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
67 EXT4_INODE_SIZE(inode
->i_sb
));
69 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
70 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
71 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
72 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
77 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
78 struct ext4_inode_info
*ei
)
80 __u32 provided
, calculated
;
82 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
83 cpu_to_le32(EXT4_OS_LINUX
) ||
84 !ext4_has_metadata_csum(inode
->i_sb
))
87 provided
= le16_to_cpu(raw
->i_checksum_lo
);
88 calculated
= ext4_inode_csum(inode
, raw
, ei
);
89 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
90 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
91 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
95 return provided
== calculated
;
98 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
99 struct ext4_inode_info
*ei
)
103 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
104 cpu_to_le32(EXT4_OS_LINUX
) ||
105 !ext4_has_metadata_csum(inode
->i_sb
))
108 csum
= ext4_inode_csum(inode
, raw
, ei
);
109 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
110 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
111 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
112 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
115 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
118 trace_ext4_begin_ordered_truncate(inode
, new_size
);
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
125 if (!EXT4_I(inode
)->jinode
)
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
128 EXT4_I(inode
)->jinode
,
132 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
133 unsigned int length
);
134 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
135 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
136 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
140 * Test whether an inode is a fast symlink.
142 int ext4_inode_is_fast_symlink(struct inode
*inode
)
144 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
145 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
147 if (ext4_has_inline_data(inode
))
150 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
158 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
169 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
170 jbd_debug(2, "restarting handle %p\n", handle
);
171 up_write(&EXT4_I(inode
)->i_data_sem
);
172 ret
= ext4_journal_restart(handle
, nblocks
);
173 down_write(&EXT4_I(inode
)->i_data_sem
);
174 ext4_discard_preallocations(inode
);
180 * Called at the last iput() if i_nlink is zero.
182 void ext4_evict_inode(struct inode
*inode
)
187 trace_ext4_evict_inode(inode
);
189 if (inode
->i_nlink
) {
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
205 * Note that directories do not have this problem because they
206 * don't use page cache.
208 if (ext4_should_journal_data(inode
) &&
209 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
210 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
211 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
212 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
214 jbd2_complete_transaction(journal
, commit_tid
);
215 filemap_write_and_wait(&inode
->i_data
);
217 truncate_inode_pages_final(&inode
->i_data
);
219 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
223 if (is_bad_inode(inode
))
225 dquot_initialize(inode
);
227 if (ext4_should_order_data(inode
))
228 ext4_begin_ordered_truncate(inode
, 0);
229 truncate_inode_pages_final(&inode
->i_data
);
231 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
237 sb_start_intwrite(inode
->i_sb
);
238 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
239 ext4_blocks_for_truncate(inode
)+3);
240 if (IS_ERR(handle
)) {
241 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
247 ext4_orphan_del(NULL
, inode
);
248 sb_end_intwrite(inode
->i_sb
);
253 ext4_handle_sync(handle
);
255 err
= ext4_mark_inode_dirty(handle
, inode
);
257 ext4_warning(inode
->i_sb
,
258 "couldn't mark inode dirty (err %d)", err
);
262 ext4_truncate(inode
);
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
270 if (!ext4_handle_has_enough_credits(handle
, 3)) {
271 err
= ext4_journal_extend(handle
, 3);
273 err
= ext4_journal_restart(handle
, 3);
275 ext4_warning(inode
->i_sb
,
276 "couldn't extend journal (err %d)", err
);
278 ext4_journal_stop(handle
);
279 ext4_orphan_del(NULL
, inode
);
280 sb_end_intwrite(inode
->i_sb
);
286 * Kill off the orphan record which ext4_truncate created.
287 * AKPM: I think this can be inside the above `if'.
288 * Note that ext4_orphan_del() has to be able to cope with the
289 * deletion of a non-existent orphan - this is because we don't
290 * know if ext4_truncate() actually created an orphan record.
291 * (Well, we could do this if we need to, but heck - it works)
293 ext4_orphan_del(handle
, inode
);
294 EXT4_I(inode
)->i_dtime
= get_seconds();
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
303 if (ext4_mark_inode_dirty(handle
, inode
))
304 /* If that failed, just do the required in-core inode clear. */
305 ext4_clear_inode(inode
);
307 ext4_free_inode(handle
, inode
);
308 ext4_journal_stop(handle
);
309 sb_end_intwrite(inode
->i_sb
);
312 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
316 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
318 return &EXT4_I(inode
)->i_reserved_quota
;
323 * Called with i_data_sem down, which is important since we can call
324 * ext4_discard_preallocations() from here.
326 void ext4_da_update_reserve_space(struct inode
*inode
,
327 int used
, int quota_claim
)
329 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
330 struct ext4_inode_info
*ei
= EXT4_I(inode
);
332 spin_lock(&ei
->i_block_reservation_lock
);
333 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
334 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
335 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
336 "with only %d reserved data blocks",
337 __func__
, inode
->i_ino
, used
,
338 ei
->i_reserved_data_blocks
);
340 used
= ei
->i_reserved_data_blocks
;
343 /* Update per-inode reservations */
344 ei
->i_reserved_data_blocks
-= used
;
345 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
347 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
349 /* Update quota subsystem for data blocks */
351 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
354 * We did fallocate with an offset that is already delayed
355 * allocated. So on delayed allocated writeback we should
356 * not re-claim the quota for fallocated blocks.
358 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
362 * If we have done all the pending block allocations and if
363 * there aren't any writers on the inode, we can discard the
364 * inode's preallocations.
366 if ((ei
->i_reserved_data_blocks
== 0) &&
367 (atomic_read(&inode
->i_writecount
) == 0))
368 ext4_discard_preallocations(inode
);
371 static int __check_block_validity(struct inode
*inode
, const char *func
,
373 struct ext4_map_blocks
*map
)
375 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
377 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
378 "lblock %lu mapped to illegal pblock "
379 "(length %d)", (unsigned long) map
->m_lblk
,
381 return -EFSCORRUPTED
;
386 int ext4_issue_zeroout(struct inode
*inode
, ext4_lblk_t lblk
, ext4_fsblk_t pblk
,
391 if (ext4_encrypted_inode(inode
))
392 return ext4_encrypted_zeroout(inode
, lblk
, pblk
, len
);
394 ret
= sb_issue_zeroout(inode
->i_sb
, pblk
, len
, GFP_NOFS
);
401 #define check_block_validity(inode, map) \
402 __check_block_validity((inode), __func__, __LINE__, (map))
404 #ifdef ES_AGGRESSIVE_TEST
405 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
407 struct ext4_map_blocks
*es_map
,
408 struct ext4_map_blocks
*map
,
415 * There is a race window that the result is not the same.
416 * e.g. xfstests #223 when dioread_nolock enables. The reason
417 * is that we lookup a block mapping in extent status tree with
418 * out taking i_data_sem. So at the time the unwritten extent
419 * could be converted.
421 down_read(&EXT4_I(inode
)->i_data_sem
);
422 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
423 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
424 EXT4_GET_BLOCKS_KEEP_SIZE
);
426 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
427 EXT4_GET_BLOCKS_KEEP_SIZE
);
429 up_read((&EXT4_I(inode
)->i_data_sem
));
432 * We don't check m_len because extent will be collpased in status
433 * tree. So the m_len might not equal.
435 if (es_map
->m_lblk
!= map
->m_lblk
||
436 es_map
->m_flags
!= map
->m_flags
||
437 es_map
->m_pblk
!= map
->m_pblk
) {
438 printk("ES cache assertion failed for inode: %lu "
439 "es_cached ex [%d/%d/%llu/%x] != "
440 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
441 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
442 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
443 map
->m_len
, map
->m_pblk
, map
->m_flags
,
447 #endif /* ES_AGGRESSIVE_TEST */
450 * The ext4_map_blocks() function tries to look up the requested blocks,
451 * and returns if the blocks are already mapped.
453 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
454 * and store the allocated blocks in the result buffer head and mark it
457 * If file type is extents based, it will call ext4_ext_map_blocks(),
458 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
461 * On success, it returns the number of blocks being mapped or allocated.
462 * if create==0 and the blocks are pre-allocated and unwritten block,
463 * the result buffer head is unmapped. If the create ==1, it will make sure
464 * the buffer head is mapped.
466 * It returns 0 if plain look up failed (blocks have not been allocated), in
467 * that case, buffer head is unmapped
469 * It returns the error in case of allocation failure.
471 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
472 struct ext4_map_blocks
*map
, int flags
)
474 struct extent_status es
;
477 #ifdef ES_AGGRESSIVE_TEST
478 struct ext4_map_blocks orig_map
;
480 memcpy(&orig_map
, map
, sizeof(*map
));
484 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
485 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
486 (unsigned long) map
->m_lblk
);
489 * ext4_map_blocks returns an int, and m_len is an unsigned int
491 if (unlikely(map
->m_len
> INT_MAX
))
492 map
->m_len
= INT_MAX
;
494 /* We can handle the block number less than EXT_MAX_BLOCKS */
495 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
496 return -EFSCORRUPTED
;
498 /* Lookup extent status tree firstly */
499 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
500 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
501 map
->m_pblk
= ext4_es_pblock(&es
) +
502 map
->m_lblk
- es
.es_lblk
;
503 map
->m_flags
|= ext4_es_is_written(&es
) ?
504 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
505 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
506 if (retval
> map
->m_len
)
509 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
514 #ifdef ES_AGGRESSIVE_TEST
515 ext4_map_blocks_es_recheck(handle
, inode
, map
,
522 * Try to see if we can get the block without requesting a new
525 down_read(&EXT4_I(inode
)->i_data_sem
);
526 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
527 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
528 EXT4_GET_BLOCKS_KEEP_SIZE
);
530 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
531 EXT4_GET_BLOCKS_KEEP_SIZE
);
536 if (unlikely(retval
!= map
->m_len
)) {
537 ext4_warning(inode
->i_sb
,
538 "ES len assertion failed for inode "
539 "%lu: retval %d != map->m_len %d",
540 inode
->i_ino
, retval
, map
->m_len
);
544 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
545 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
546 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
547 !(status
& EXTENT_STATUS_WRITTEN
) &&
548 ext4_find_delalloc_range(inode
, map
->m_lblk
,
549 map
->m_lblk
+ map
->m_len
- 1))
550 status
|= EXTENT_STATUS_DELAYED
;
551 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
552 map
->m_len
, map
->m_pblk
, status
);
556 up_read((&EXT4_I(inode
)->i_data_sem
));
559 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
560 ret
= check_block_validity(inode
, map
);
565 /* If it is only a block(s) look up */
566 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
570 * Returns if the blocks have already allocated
572 * Note that if blocks have been preallocated
573 * ext4_ext_get_block() returns the create = 0
574 * with buffer head unmapped.
576 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
578 * If we need to convert extent to unwritten
579 * we continue and do the actual work in
580 * ext4_ext_map_blocks()
582 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
586 * Here we clear m_flags because after allocating an new extent,
587 * it will be set again.
589 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
592 * New blocks allocate and/or writing to unwritten extent
593 * will possibly result in updating i_data, so we take
594 * the write lock of i_data_sem, and call get_block()
595 * with create == 1 flag.
597 down_write(&EXT4_I(inode
)->i_data_sem
);
600 * We need to check for EXT4 here because migrate
601 * could have changed the inode type in between
603 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
604 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
606 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
608 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
610 * We allocated new blocks which will result in
611 * i_data's format changing. Force the migrate
612 * to fail by clearing migrate flags
614 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
618 * Update reserved blocks/metadata blocks after successful
619 * block allocation which had been deferred till now. We don't
620 * support fallocate for non extent files. So we can update
621 * reserve space here.
624 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
625 ext4_da_update_reserve_space(inode
, retval
, 1);
631 if (unlikely(retval
!= map
->m_len
)) {
632 ext4_warning(inode
->i_sb
,
633 "ES len assertion failed for inode "
634 "%lu: retval %d != map->m_len %d",
635 inode
->i_ino
, retval
, map
->m_len
);
640 * We have to zeroout blocks before inserting them into extent
641 * status tree. Otherwise someone could look them up there and
642 * use them before they are really zeroed.
644 if (flags
& EXT4_GET_BLOCKS_ZERO
&&
645 map
->m_flags
& EXT4_MAP_MAPPED
&&
646 map
->m_flags
& EXT4_MAP_NEW
) {
647 ret
= ext4_issue_zeroout(inode
, map
->m_lblk
,
648 map
->m_pblk
, map
->m_len
);
656 * If the extent has been zeroed out, we don't need to update
657 * extent status tree.
659 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
660 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
661 if (ext4_es_is_written(&es
))
664 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
665 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
666 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
667 !(status
& EXTENT_STATUS_WRITTEN
) &&
668 ext4_find_delalloc_range(inode
, map
->m_lblk
,
669 map
->m_lblk
+ map
->m_len
- 1))
670 status
|= EXTENT_STATUS_DELAYED
;
671 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
672 map
->m_pblk
, status
);
680 up_write((&EXT4_I(inode
)->i_data_sem
));
681 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
682 ret
= check_block_validity(inode
, map
);
690 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
691 * we have to be careful as someone else may be manipulating b_state as well.
693 static void ext4_update_bh_state(struct buffer_head
*bh
, unsigned long flags
)
695 unsigned long old_state
;
696 unsigned long new_state
;
698 flags
&= EXT4_MAP_FLAGS
;
700 /* Dummy buffer_head? Set non-atomically. */
702 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | flags
;
706 * Someone else may be modifying b_state. Be careful! This is ugly but
707 * once we get rid of using bh as a container for mapping information
708 * to pass to / from get_block functions, this can go away.
711 old_state
= READ_ONCE(bh
->b_state
);
712 new_state
= (old_state
& ~EXT4_MAP_FLAGS
) | flags
;
714 cmpxchg(&bh
->b_state
, old_state
, new_state
) != old_state
));
717 /* Maximum number of blocks we map for direct IO at once. */
718 #define DIO_MAX_BLOCKS 4096
720 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
721 struct buffer_head
*bh
, int flags
)
723 handle_t
*handle
= ext4_journal_current_handle();
724 struct ext4_map_blocks map
;
725 int ret
= 0, started
= 0;
728 if (ext4_has_inline_data(inode
))
732 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
734 if (flags
&& !handle
) {
735 /* Direct IO write... */
736 if (map
.m_len
> DIO_MAX_BLOCKS
)
737 map
.m_len
= DIO_MAX_BLOCKS
;
738 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
739 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
741 if (IS_ERR(handle
)) {
742 ret
= PTR_ERR(handle
);
748 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
750 ext4_io_end_t
*io_end
= ext4_inode_aio(inode
);
752 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
753 ext4_update_bh_state(bh
, map
.m_flags
);
754 if (io_end
&& io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
755 set_buffer_defer_completion(bh
);
756 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
760 ext4_journal_stop(handle
);
764 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
765 struct buffer_head
*bh
, int create
)
767 return _ext4_get_block(inode
, iblock
, bh
,
768 create
? EXT4_GET_BLOCKS_CREATE
: 0);
772 * `handle' can be NULL if create is zero
774 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
775 ext4_lblk_t block
, int map_flags
)
777 struct ext4_map_blocks map
;
778 struct buffer_head
*bh
;
779 int create
= map_flags
& EXT4_GET_BLOCKS_CREATE
;
782 J_ASSERT(handle
!= NULL
|| create
== 0);
786 err
= ext4_map_blocks(handle
, inode
, &map
, map_flags
);
789 return create
? ERR_PTR(-ENOSPC
) : NULL
;
793 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
795 return ERR_PTR(-ENOMEM
);
796 if (map
.m_flags
& EXT4_MAP_NEW
) {
797 J_ASSERT(create
!= 0);
798 J_ASSERT(handle
!= NULL
);
801 * Now that we do not always journal data, we should
802 * keep in mind whether this should always journal the
803 * new buffer as metadata. For now, regular file
804 * writes use ext4_get_block instead, so it's not a
808 BUFFER_TRACE(bh
, "call get_create_access");
809 err
= ext4_journal_get_create_access(handle
, bh
);
814 if (!buffer_uptodate(bh
)) {
815 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
816 set_buffer_uptodate(bh
);
819 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
820 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
824 BUFFER_TRACE(bh
, "not a new buffer");
831 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
832 ext4_lblk_t block
, int map_flags
)
834 struct buffer_head
*bh
;
836 bh
= ext4_getblk(handle
, inode
, block
, map_flags
);
839 if (!bh
|| buffer_uptodate(bh
))
841 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
843 if (buffer_uptodate(bh
))
846 return ERR_PTR(-EIO
);
849 int ext4_walk_page_buffers(handle_t
*handle
,
850 struct buffer_head
*head
,
854 int (*fn
)(handle_t
*handle
,
855 struct buffer_head
*bh
))
857 struct buffer_head
*bh
;
858 unsigned block_start
, block_end
;
859 unsigned blocksize
= head
->b_size
;
861 struct buffer_head
*next
;
863 for (bh
= head
, block_start
= 0;
864 ret
== 0 && (bh
!= head
|| !block_start
);
865 block_start
= block_end
, bh
= next
) {
866 next
= bh
->b_this_page
;
867 block_end
= block_start
+ blocksize
;
868 if (block_end
<= from
|| block_start
>= to
) {
869 if (partial
&& !buffer_uptodate(bh
))
873 err
= (*fn
)(handle
, bh
);
881 * To preserve ordering, it is essential that the hole instantiation and
882 * the data write be encapsulated in a single transaction. We cannot
883 * close off a transaction and start a new one between the ext4_get_block()
884 * and the commit_write(). So doing the jbd2_journal_start at the start of
885 * prepare_write() is the right place.
887 * Also, this function can nest inside ext4_writepage(). In that case, we
888 * *know* that ext4_writepage() has generated enough buffer credits to do the
889 * whole page. So we won't block on the journal in that case, which is good,
890 * because the caller may be PF_MEMALLOC.
892 * By accident, ext4 can be reentered when a transaction is open via
893 * quota file writes. If we were to commit the transaction while thus
894 * reentered, there can be a deadlock - we would be holding a quota
895 * lock, and the commit would never complete if another thread had a
896 * transaction open and was blocking on the quota lock - a ranking
899 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
900 * will _not_ run commit under these circumstances because handle->h_ref
901 * is elevated. We'll still have enough credits for the tiny quotafile
904 int do_journal_get_write_access(handle_t
*handle
,
905 struct buffer_head
*bh
)
907 int dirty
= buffer_dirty(bh
);
910 if (!buffer_mapped(bh
) || buffer_freed(bh
))
913 * __block_write_begin() could have dirtied some buffers. Clean
914 * the dirty bit as jbd2_journal_get_write_access() could complain
915 * otherwise about fs integrity issues. Setting of the dirty bit
916 * by __block_write_begin() isn't a real problem here as we clear
917 * the bit before releasing a page lock and thus writeback cannot
918 * ever write the buffer.
921 clear_buffer_dirty(bh
);
922 BUFFER_TRACE(bh
, "get write access");
923 ret
= ext4_journal_get_write_access(handle
, bh
);
925 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
929 #ifdef CONFIG_EXT4_FS_ENCRYPTION
930 static int ext4_block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
931 get_block_t
*get_block
)
933 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
934 unsigned to
= from
+ len
;
935 struct inode
*inode
= page
->mapping
->host
;
936 unsigned block_start
, block_end
;
939 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
941 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
942 bool decrypt
= false;
944 BUG_ON(!PageLocked(page
));
945 BUG_ON(from
> PAGE_CACHE_SIZE
);
946 BUG_ON(to
> PAGE_CACHE_SIZE
);
949 if (!page_has_buffers(page
))
950 create_empty_buffers(page
, blocksize
, 0);
951 head
= page_buffers(page
);
952 bbits
= ilog2(blocksize
);
953 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
955 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
956 block
++, block_start
= block_end
, bh
= bh
->b_this_page
) {
957 block_end
= block_start
+ blocksize
;
958 if (block_end
<= from
|| block_start
>= to
) {
959 if (PageUptodate(page
)) {
960 if (!buffer_uptodate(bh
))
961 set_buffer_uptodate(bh
);
966 clear_buffer_new(bh
);
967 if (!buffer_mapped(bh
)) {
968 WARN_ON(bh
->b_size
!= blocksize
);
969 err
= get_block(inode
, block
, bh
, 1);
972 if (buffer_new(bh
)) {
973 unmap_underlying_metadata(bh
->b_bdev
,
975 if (PageUptodate(page
)) {
976 clear_buffer_new(bh
);
977 set_buffer_uptodate(bh
);
978 mark_buffer_dirty(bh
);
981 if (block_end
> to
|| block_start
< from
)
982 zero_user_segments(page
, to
, block_end
,
987 if (PageUptodate(page
)) {
988 if (!buffer_uptodate(bh
))
989 set_buffer_uptodate(bh
);
992 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
993 !buffer_unwritten(bh
) &&
994 (block_start
< from
|| block_end
> to
)) {
995 ll_rw_block(READ
, 1, &bh
);
997 decrypt
= ext4_encrypted_inode(inode
) &&
998 S_ISREG(inode
->i_mode
);
1002 * If we issued read requests, let them complete.
1004 while (wait_bh
> wait
) {
1005 wait_on_buffer(*--wait_bh
);
1006 if (!buffer_uptodate(*wait_bh
))
1010 page_zero_new_buffers(page
, from
, to
);
1012 err
= ext4_decrypt(page
);
1017 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1018 loff_t pos
, unsigned len
, unsigned flags
,
1019 struct page
**pagep
, void **fsdata
)
1021 struct inode
*inode
= mapping
->host
;
1022 int ret
, needed_blocks
;
1029 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1031 * Reserve one block more for addition to orphan list in case
1032 * we allocate blocks but write fails for some reason
1034 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1035 index
= pos
>> PAGE_CACHE_SHIFT
;
1036 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1039 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
1040 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1049 * grab_cache_page_write_begin() can take a long time if the
1050 * system is thrashing due to memory pressure, or if the page
1051 * is being written back. So grab it first before we start
1052 * the transaction handle. This also allows us to allocate
1053 * the page (if needed) without using GFP_NOFS.
1056 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1062 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1063 if (IS_ERR(handle
)) {
1064 page_cache_release(page
);
1065 return PTR_ERR(handle
);
1069 if (page
->mapping
!= mapping
) {
1070 /* The page got truncated from under us */
1072 page_cache_release(page
);
1073 ext4_journal_stop(handle
);
1076 /* In case writeback began while the page was unlocked */
1077 wait_for_stable_page(page
);
1079 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1080 if (ext4_should_dioread_nolock(inode
))
1081 ret
= ext4_block_write_begin(page
, pos
, len
,
1082 ext4_get_block_write
);
1084 ret
= ext4_block_write_begin(page
, pos
, len
,
1087 if (ext4_should_dioread_nolock(inode
))
1088 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1090 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1092 if (!ret
&& ext4_should_journal_data(inode
)) {
1093 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1095 do_journal_get_write_access
);
1101 * __block_write_begin may have instantiated a few blocks
1102 * outside i_size. Trim these off again. Don't need
1103 * i_size_read because we hold i_mutex.
1105 * Add inode to orphan list in case we crash before
1108 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1109 ext4_orphan_add(handle
, inode
);
1111 ext4_journal_stop(handle
);
1112 if (pos
+ len
> inode
->i_size
) {
1113 ext4_truncate_failed_write(inode
);
1115 * If truncate failed early the inode might
1116 * still be on the orphan list; we need to
1117 * make sure the inode is removed from the
1118 * orphan list in that case.
1121 ext4_orphan_del(NULL
, inode
);
1124 if (ret
== -ENOSPC
&&
1125 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1127 page_cache_release(page
);
1134 /* For write_end() in data=journal mode */
1135 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1138 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1140 set_buffer_uptodate(bh
);
1141 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1142 clear_buffer_meta(bh
);
1143 clear_buffer_prio(bh
);
1148 * We need to pick up the new inode size which generic_commit_write gave us
1149 * `file' can be NULL - eg, when called from page_symlink().
1151 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1152 * buffers are managed internally.
1154 static int ext4_write_end(struct file
*file
,
1155 struct address_space
*mapping
,
1156 loff_t pos
, unsigned len
, unsigned copied
,
1157 struct page
*page
, void *fsdata
)
1159 handle_t
*handle
= ext4_journal_current_handle();
1160 struct inode
*inode
= mapping
->host
;
1161 loff_t old_size
= inode
->i_size
;
1163 int i_size_changed
= 0;
1165 trace_ext4_write_end(inode
, pos
, len
, copied
);
1166 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1167 ret
= ext4_jbd2_file_inode(handle
, inode
);
1170 page_cache_release(page
);
1175 if (ext4_has_inline_data(inode
)) {
1176 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1182 copied
= block_write_end(file
, mapping
, pos
,
1183 len
, copied
, page
, fsdata
);
1185 * it's important to update i_size while still holding page lock:
1186 * page writeout could otherwise come in and zero beyond i_size.
1188 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1190 page_cache_release(page
);
1193 pagecache_isize_extended(inode
, old_size
, pos
);
1195 * Don't mark the inode dirty under page lock. First, it unnecessarily
1196 * makes the holding time of page lock longer. Second, it forces lock
1197 * ordering of page lock and transaction start for journaling
1201 ext4_mark_inode_dirty(handle
, inode
);
1203 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1204 /* if we have allocated more blocks and copied
1205 * less. We will have blocks allocated outside
1206 * inode->i_size. So truncate them
1208 ext4_orphan_add(handle
, inode
);
1210 ret2
= ext4_journal_stop(handle
);
1214 if (pos
+ len
> inode
->i_size
) {
1215 ext4_truncate_failed_write(inode
);
1217 * If truncate failed early the inode might still be
1218 * on the orphan list; we need to make sure the inode
1219 * is removed from the orphan list in that case.
1222 ext4_orphan_del(NULL
, inode
);
1225 return ret
? ret
: copied
;
1229 * This is a private version of page_zero_new_buffers() which doesn't
1230 * set the buffer to be dirty, since in data=journalled mode we need
1231 * to call ext4_handle_dirty_metadata() instead.
1233 static void zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1235 unsigned int block_start
= 0, block_end
;
1236 struct buffer_head
*head
, *bh
;
1238 bh
= head
= page_buffers(page
);
1240 block_end
= block_start
+ bh
->b_size
;
1241 if (buffer_new(bh
)) {
1242 if (block_end
> from
&& block_start
< to
) {
1243 if (!PageUptodate(page
)) {
1244 unsigned start
, size
;
1246 start
= max(from
, block_start
);
1247 size
= min(to
, block_end
) - start
;
1249 zero_user(page
, start
, size
);
1250 set_buffer_uptodate(bh
);
1252 clear_buffer_new(bh
);
1255 block_start
= block_end
;
1256 bh
= bh
->b_this_page
;
1257 } while (bh
!= head
);
1260 static int ext4_journalled_write_end(struct file
*file
,
1261 struct address_space
*mapping
,
1262 loff_t pos
, unsigned len
, unsigned copied
,
1263 struct page
*page
, void *fsdata
)
1265 handle_t
*handle
= ext4_journal_current_handle();
1266 struct inode
*inode
= mapping
->host
;
1267 loff_t old_size
= inode
->i_size
;
1271 int size_changed
= 0;
1273 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1274 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1277 BUG_ON(!ext4_handle_valid(handle
));
1279 if (ext4_has_inline_data(inode
))
1280 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1284 if (!PageUptodate(page
))
1286 zero_new_buffers(page
, from
+copied
, to
);
1289 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1290 to
, &partial
, write_end_fn
);
1292 SetPageUptodate(page
);
1294 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1295 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1296 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1298 page_cache_release(page
);
1301 pagecache_isize_extended(inode
, old_size
, pos
);
1304 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1309 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1310 /* if we have allocated more blocks and copied
1311 * less. We will have blocks allocated outside
1312 * inode->i_size. So truncate them
1314 ext4_orphan_add(handle
, inode
);
1316 ret2
= ext4_journal_stop(handle
);
1319 if (pos
+ len
> inode
->i_size
) {
1320 ext4_truncate_failed_write(inode
);
1322 * If truncate failed early the inode might still be
1323 * on the orphan list; we need to make sure the inode
1324 * is removed from the orphan list in that case.
1327 ext4_orphan_del(NULL
, inode
);
1330 return ret
? ret
: copied
;
1334 * Reserve space for a single cluster
1336 static int ext4_da_reserve_space(struct inode
*inode
)
1338 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1339 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1343 * We will charge metadata quota at writeout time; this saves
1344 * us from metadata over-estimation, though we may go over by
1345 * a small amount in the end. Here we just reserve for data.
1347 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1351 spin_lock(&ei
->i_block_reservation_lock
);
1352 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1353 spin_unlock(&ei
->i_block_reservation_lock
);
1354 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1357 ei
->i_reserved_data_blocks
++;
1358 trace_ext4_da_reserve_space(inode
);
1359 spin_unlock(&ei
->i_block_reservation_lock
);
1361 return 0; /* success */
1364 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1366 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1367 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1370 return; /* Nothing to release, exit */
1372 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1374 trace_ext4_da_release_space(inode
, to_free
);
1375 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1377 * if there aren't enough reserved blocks, then the
1378 * counter is messed up somewhere. Since this
1379 * function is called from invalidate page, it's
1380 * harmless to return without any action.
1382 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1383 "ino %lu, to_free %d with only %d reserved "
1384 "data blocks", inode
->i_ino
, to_free
,
1385 ei
->i_reserved_data_blocks
);
1387 to_free
= ei
->i_reserved_data_blocks
;
1389 ei
->i_reserved_data_blocks
-= to_free
;
1391 /* update fs dirty data blocks counter */
1392 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1394 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1396 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1399 static void ext4_da_page_release_reservation(struct page
*page
,
1400 unsigned int offset
,
1401 unsigned int length
)
1403 int to_release
= 0, contiguous_blks
= 0;
1404 struct buffer_head
*head
, *bh
;
1405 unsigned int curr_off
= 0;
1406 struct inode
*inode
= page
->mapping
->host
;
1407 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1408 unsigned int stop
= offset
+ length
;
1412 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1414 head
= page_buffers(page
);
1417 unsigned int next_off
= curr_off
+ bh
->b_size
;
1419 if (next_off
> stop
)
1422 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1425 clear_buffer_delay(bh
);
1426 } else if (contiguous_blks
) {
1427 lblk
= page
->index
<<
1428 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1429 lblk
+= (curr_off
>> inode
->i_blkbits
) -
1431 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1432 contiguous_blks
= 0;
1434 curr_off
= next_off
;
1435 } while ((bh
= bh
->b_this_page
) != head
);
1437 if (contiguous_blks
) {
1438 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1439 lblk
+= (curr_off
>> inode
->i_blkbits
) - contiguous_blks
;
1440 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1443 /* If we have released all the blocks belonging to a cluster, then we
1444 * need to release the reserved space for that cluster. */
1445 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1446 while (num_clusters
> 0) {
1447 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1448 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1449 if (sbi
->s_cluster_ratio
== 1 ||
1450 !ext4_find_delalloc_cluster(inode
, lblk
))
1451 ext4_da_release_space(inode
, 1);
1458 * Delayed allocation stuff
1461 struct mpage_da_data
{
1462 struct inode
*inode
;
1463 struct writeback_control
*wbc
;
1465 pgoff_t first_page
; /* The first page to write */
1466 pgoff_t next_page
; /* Current page to examine */
1467 pgoff_t last_page
; /* Last page to examine */
1469 * Extent to map - this can be after first_page because that can be
1470 * fully mapped. We somewhat abuse m_flags to store whether the extent
1471 * is delalloc or unwritten.
1473 struct ext4_map_blocks map
;
1474 struct ext4_io_submit io_submit
; /* IO submission data */
1477 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1482 struct pagevec pvec
;
1483 struct inode
*inode
= mpd
->inode
;
1484 struct address_space
*mapping
= inode
->i_mapping
;
1486 /* This is necessary when next_page == 0. */
1487 if (mpd
->first_page
>= mpd
->next_page
)
1490 index
= mpd
->first_page
;
1491 end
= mpd
->next_page
- 1;
1493 ext4_lblk_t start
, last
;
1494 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1495 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1496 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1499 pagevec_init(&pvec
, 0);
1500 while (index
<= end
) {
1501 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1504 for (i
= 0; i
< nr_pages
; i
++) {
1505 struct page
*page
= pvec
.pages
[i
];
1506 if (page
->index
> end
)
1508 BUG_ON(!PageLocked(page
));
1509 BUG_ON(PageWriteback(page
));
1511 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1512 ClearPageUptodate(page
);
1516 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1517 pagevec_release(&pvec
);
1521 static void ext4_print_free_blocks(struct inode
*inode
)
1523 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1524 struct super_block
*sb
= inode
->i_sb
;
1525 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1527 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1528 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1529 ext4_count_free_clusters(sb
)));
1530 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1531 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1532 (long long) EXT4_C2B(EXT4_SB(sb
),
1533 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1534 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1535 (long long) EXT4_C2B(EXT4_SB(sb
),
1536 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1537 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1538 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1539 ei
->i_reserved_data_blocks
);
1543 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1545 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1549 * This function is grabs code from the very beginning of
1550 * ext4_map_blocks, but assumes that the caller is from delayed write
1551 * time. This function looks up the requested blocks and sets the
1552 * buffer delay bit under the protection of i_data_sem.
1554 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1555 struct ext4_map_blocks
*map
,
1556 struct buffer_head
*bh
)
1558 struct extent_status es
;
1560 sector_t invalid_block
= ~((sector_t
) 0xffff);
1561 #ifdef ES_AGGRESSIVE_TEST
1562 struct ext4_map_blocks orig_map
;
1564 memcpy(&orig_map
, map
, sizeof(*map
));
1567 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1571 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1572 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1573 (unsigned long) map
->m_lblk
);
1575 /* Lookup extent status tree firstly */
1576 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1577 if (ext4_es_is_hole(&es
)) {
1579 down_read(&EXT4_I(inode
)->i_data_sem
);
1584 * Delayed extent could be allocated by fallocate.
1585 * So we need to check it.
1587 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1588 map_bh(bh
, inode
->i_sb
, invalid_block
);
1590 set_buffer_delay(bh
);
1594 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1595 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1596 if (retval
> map
->m_len
)
1597 retval
= map
->m_len
;
1598 map
->m_len
= retval
;
1599 if (ext4_es_is_written(&es
))
1600 map
->m_flags
|= EXT4_MAP_MAPPED
;
1601 else if (ext4_es_is_unwritten(&es
))
1602 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1606 #ifdef ES_AGGRESSIVE_TEST
1607 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1613 * Try to see if we can get the block without requesting a new
1614 * file system block.
1616 down_read(&EXT4_I(inode
)->i_data_sem
);
1617 if (ext4_has_inline_data(inode
))
1619 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1620 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1622 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1628 * XXX: __block_prepare_write() unmaps passed block,
1632 * If the block was allocated from previously allocated cluster,
1633 * then we don't need to reserve it again. However we still need
1634 * to reserve metadata for every block we're going to write.
1636 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
== 1 ||
1637 !ext4_find_delalloc_cluster(inode
, map
->m_lblk
)) {
1638 ret
= ext4_da_reserve_space(inode
);
1640 /* not enough space to reserve */
1646 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1647 ~0, EXTENT_STATUS_DELAYED
);
1653 map_bh(bh
, inode
->i_sb
, invalid_block
);
1655 set_buffer_delay(bh
);
1656 } else if (retval
> 0) {
1658 unsigned int status
;
1660 if (unlikely(retval
!= map
->m_len
)) {
1661 ext4_warning(inode
->i_sb
,
1662 "ES len assertion failed for inode "
1663 "%lu: retval %d != map->m_len %d",
1664 inode
->i_ino
, retval
, map
->m_len
);
1668 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1669 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1670 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1671 map
->m_pblk
, status
);
1677 up_read((&EXT4_I(inode
)->i_data_sem
));
1683 * This is a special get_block_t callback which is used by
1684 * ext4_da_write_begin(). It will either return mapped block or
1685 * reserve space for a single block.
1687 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1688 * We also have b_blocknr = -1 and b_bdev initialized properly
1690 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1691 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1692 * initialized properly.
1694 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1695 struct buffer_head
*bh
, int create
)
1697 struct ext4_map_blocks map
;
1700 BUG_ON(create
== 0);
1701 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1703 map
.m_lblk
= iblock
;
1707 * first, we need to know whether the block is allocated already
1708 * preallocated blocks are unmapped but should treated
1709 * the same as allocated blocks.
1711 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1715 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1716 ext4_update_bh_state(bh
, map
.m_flags
);
1718 if (buffer_unwritten(bh
)) {
1719 /* A delayed write to unwritten bh should be marked
1720 * new and mapped. Mapped ensures that we don't do
1721 * get_block multiple times when we write to the same
1722 * offset and new ensures that we do proper zero out
1723 * for partial write.
1726 set_buffer_mapped(bh
);
1731 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1737 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1743 static int __ext4_journalled_writepage(struct page
*page
,
1746 struct address_space
*mapping
= page
->mapping
;
1747 struct inode
*inode
= mapping
->host
;
1748 struct buffer_head
*page_bufs
= NULL
;
1749 handle_t
*handle
= NULL
;
1750 int ret
= 0, err
= 0;
1751 int inline_data
= ext4_has_inline_data(inode
);
1752 struct buffer_head
*inode_bh
= NULL
;
1754 ClearPageChecked(page
);
1757 BUG_ON(page
->index
!= 0);
1758 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1759 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1760 if (inode_bh
== NULL
)
1763 page_bufs
= page_buffers(page
);
1768 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1772 * We need to release the page lock before we start the
1773 * journal, so grab a reference so the page won't disappear
1774 * out from under us.
1779 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1780 ext4_writepage_trans_blocks(inode
));
1781 if (IS_ERR(handle
)) {
1782 ret
= PTR_ERR(handle
);
1784 goto out_no_pagelock
;
1786 BUG_ON(!ext4_handle_valid(handle
));
1790 if (page
->mapping
!= mapping
) {
1791 /* The page got truncated from under us */
1792 ext4_journal_stop(handle
);
1798 BUFFER_TRACE(inode_bh
, "get write access");
1799 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1801 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1804 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1805 do_journal_get_write_access
);
1807 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1812 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1813 err
= ext4_journal_stop(handle
);
1817 if (!ext4_has_inline_data(inode
))
1818 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1820 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1829 * Note that we don't need to start a transaction unless we're journaling data
1830 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1831 * need to file the inode to the transaction's list in ordered mode because if
1832 * we are writing back data added by write(), the inode is already there and if
1833 * we are writing back data modified via mmap(), no one guarantees in which
1834 * transaction the data will hit the disk. In case we are journaling data, we
1835 * cannot start transaction directly because transaction start ranks above page
1836 * lock so we have to do some magic.
1838 * This function can get called via...
1839 * - ext4_writepages after taking page lock (have journal handle)
1840 * - journal_submit_inode_data_buffers (no journal handle)
1841 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1842 * - grab_page_cache when doing write_begin (have journal handle)
1844 * We don't do any block allocation in this function. If we have page with
1845 * multiple blocks we need to write those buffer_heads that are mapped. This
1846 * is important for mmaped based write. So if we do with blocksize 1K
1847 * truncate(f, 1024);
1848 * a = mmap(f, 0, 4096);
1850 * truncate(f, 4096);
1851 * we have in the page first buffer_head mapped via page_mkwrite call back
1852 * but other buffer_heads would be unmapped but dirty (dirty done via the
1853 * do_wp_page). So writepage should write the first block. If we modify
1854 * the mmap area beyond 1024 we will again get a page_fault and the
1855 * page_mkwrite callback will do the block allocation and mark the
1856 * buffer_heads mapped.
1858 * We redirty the page if we have any buffer_heads that is either delay or
1859 * unwritten in the page.
1861 * We can get recursively called as show below.
1863 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1866 * But since we don't do any block allocation we should not deadlock.
1867 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1869 static int ext4_writepage(struct page
*page
,
1870 struct writeback_control
*wbc
)
1875 struct buffer_head
*page_bufs
= NULL
;
1876 struct inode
*inode
= page
->mapping
->host
;
1877 struct ext4_io_submit io_submit
;
1878 bool keep_towrite
= false;
1880 trace_ext4_writepage(page
);
1881 size
= i_size_read(inode
);
1882 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1883 len
= size
& ~PAGE_CACHE_MASK
;
1885 len
= PAGE_CACHE_SIZE
;
1887 page_bufs
= page_buffers(page
);
1889 * We cannot do block allocation or other extent handling in this
1890 * function. If there are buffers needing that, we have to redirty
1891 * the page. But we may reach here when we do a journal commit via
1892 * journal_submit_inode_data_buffers() and in that case we must write
1893 * allocated buffers to achieve data=ordered mode guarantees.
1895 * Also, if there is only one buffer per page (the fs block
1896 * size == the page size), if one buffer needs block
1897 * allocation or needs to modify the extent tree to clear the
1898 * unwritten flag, we know that the page can't be written at
1899 * all, so we might as well refuse the write immediately.
1900 * Unfortunately if the block size != page size, we can't as
1901 * easily detect this case using ext4_walk_page_buffers(), but
1902 * for the extremely common case, this is an optimization that
1903 * skips a useless round trip through ext4_bio_write_page().
1905 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1906 ext4_bh_delay_or_unwritten
)) {
1907 redirty_page_for_writepage(wbc
, page
);
1908 if ((current
->flags
& PF_MEMALLOC
) ||
1909 (inode
->i_sb
->s_blocksize
== PAGE_CACHE_SIZE
)) {
1911 * For memory cleaning there's no point in writing only
1912 * some buffers. So just bail out. Warn if we came here
1913 * from direct reclaim.
1915 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
1920 keep_towrite
= true;
1923 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1925 * It's mmapped pagecache. Add buffers and journal it. There
1926 * doesn't seem much point in redirtying the page here.
1928 return __ext4_journalled_writepage(page
, len
);
1930 ext4_io_submit_init(&io_submit
, wbc
);
1931 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
1932 if (!io_submit
.io_end
) {
1933 redirty_page_for_writepage(wbc
, page
);
1937 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
1938 ext4_io_submit(&io_submit
);
1939 /* Drop io_end reference we got from init */
1940 ext4_put_io_end_defer(io_submit
.io_end
);
1944 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
1947 loff_t size
= i_size_read(mpd
->inode
);
1950 BUG_ON(page
->index
!= mpd
->first_page
);
1951 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1952 len
= size
& ~PAGE_CACHE_MASK
;
1954 len
= PAGE_CACHE_SIZE
;
1955 clear_page_dirty_for_io(page
);
1956 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
1958 mpd
->wbc
->nr_to_write
--;
1964 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1967 * mballoc gives us at most this number of blocks...
1968 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1969 * The rest of mballoc seems to handle chunks up to full group size.
1971 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1974 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1976 * @mpd - extent of blocks
1977 * @lblk - logical number of the block in the file
1978 * @bh - buffer head we want to add to the extent
1980 * The function is used to collect contig. blocks in the same state. If the
1981 * buffer doesn't require mapping for writeback and we haven't started the
1982 * extent of buffers to map yet, the function returns 'true' immediately - the
1983 * caller can write the buffer right away. Otherwise the function returns true
1984 * if the block has been added to the extent, false if the block couldn't be
1987 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
1988 struct buffer_head
*bh
)
1990 struct ext4_map_blocks
*map
= &mpd
->map
;
1992 /* Buffer that doesn't need mapping for writeback? */
1993 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
1994 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
1995 /* So far no extent to map => we write the buffer right away */
1996 if (map
->m_len
== 0)
2001 /* First block in the extent? */
2002 if (map
->m_len
== 0) {
2005 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
2009 /* Don't go larger than mballoc is willing to allocate */
2010 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
2013 /* Can we merge the block to our big extent? */
2014 if (lblk
== map
->m_lblk
+ map
->m_len
&&
2015 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
2023 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2025 * @mpd - extent of blocks for mapping
2026 * @head - the first buffer in the page
2027 * @bh - buffer we should start processing from
2028 * @lblk - logical number of the block in the file corresponding to @bh
2030 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2031 * the page for IO if all buffers in this page were mapped and there's no
2032 * accumulated extent of buffers to map or add buffers in the page to the
2033 * extent of buffers to map. The function returns 1 if the caller can continue
2034 * by processing the next page, 0 if it should stop adding buffers to the
2035 * extent to map because we cannot extend it anymore. It can also return value
2036 * < 0 in case of error during IO submission.
2038 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
2039 struct buffer_head
*head
,
2040 struct buffer_head
*bh
,
2043 struct inode
*inode
= mpd
->inode
;
2045 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
2046 >> inode
->i_blkbits
;
2049 BUG_ON(buffer_locked(bh
));
2051 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2052 /* Found extent to map? */
2055 /* Everything mapped so far and we hit EOF */
2058 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2059 /* So far everything mapped? Submit the page for IO. */
2060 if (mpd
->map
.m_len
== 0) {
2061 err
= mpage_submit_page(mpd
, head
->b_page
);
2065 return lblk
< blocks
;
2069 * mpage_map_buffers - update buffers corresponding to changed extent and
2070 * submit fully mapped pages for IO
2072 * @mpd - description of extent to map, on return next extent to map
2074 * Scan buffers corresponding to changed extent (we expect corresponding pages
2075 * to be already locked) and update buffer state according to new extent state.
2076 * We map delalloc buffers to their physical location, clear unwritten bits,
2077 * and mark buffers as uninit when we perform writes to unwritten extents
2078 * and do extent conversion after IO is finished. If the last page is not fully
2079 * mapped, we update @map to the next extent in the last page that needs
2080 * mapping. Otherwise we submit the page for IO.
2082 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2084 struct pagevec pvec
;
2086 struct inode
*inode
= mpd
->inode
;
2087 struct buffer_head
*head
, *bh
;
2088 int bpp_bits
= PAGE_CACHE_SHIFT
- inode
->i_blkbits
;
2094 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2095 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2096 lblk
= start
<< bpp_bits
;
2097 pblock
= mpd
->map
.m_pblk
;
2099 pagevec_init(&pvec
, 0);
2100 while (start
<= end
) {
2101 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2105 for (i
= 0; i
< nr_pages
; i
++) {
2106 struct page
*page
= pvec
.pages
[i
];
2108 if (page
->index
> end
)
2110 /* Up to 'end' pages must be contiguous */
2111 BUG_ON(page
->index
!= start
);
2112 bh
= head
= page_buffers(page
);
2114 if (lblk
< mpd
->map
.m_lblk
)
2116 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2118 * Buffer after end of mapped extent.
2119 * Find next buffer in the page to map.
2122 mpd
->map
.m_flags
= 0;
2124 * FIXME: If dioread_nolock supports
2125 * blocksize < pagesize, we need to make
2126 * sure we add size mapped so far to
2127 * io_end->size as the following call
2128 * can submit the page for IO.
2130 err
= mpage_process_page_bufs(mpd
, head
,
2132 pagevec_release(&pvec
);
2137 if (buffer_delay(bh
)) {
2138 clear_buffer_delay(bh
);
2139 bh
->b_blocknr
= pblock
++;
2141 clear_buffer_unwritten(bh
);
2142 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2145 * FIXME: This is going to break if dioread_nolock
2146 * supports blocksize < pagesize as we will try to
2147 * convert potentially unmapped parts of inode.
2149 mpd
->io_submit
.io_end
->size
+= PAGE_CACHE_SIZE
;
2150 /* Page fully mapped - let IO run! */
2151 err
= mpage_submit_page(mpd
, page
);
2153 pagevec_release(&pvec
);
2158 pagevec_release(&pvec
);
2160 /* Extent fully mapped and matches with page boundary. We are done. */
2162 mpd
->map
.m_flags
= 0;
2166 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2168 struct inode
*inode
= mpd
->inode
;
2169 struct ext4_map_blocks
*map
= &mpd
->map
;
2170 int get_blocks_flags
;
2171 int err
, dioread_nolock
;
2173 trace_ext4_da_write_pages_extent(inode
, map
);
2175 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2176 * to convert an unwritten extent to be initialized (in the case
2177 * where we have written into one or more preallocated blocks). It is
2178 * possible that we're going to need more metadata blocks than
2179 * previously reserved. However we must not fail because we're in
2180 * writeback and there is nothing we can do about it so it might result
2181 * in data loss. So use reserved blocks to allocate metadata if
2184 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2185 * the blocks in question are delalloc blocks. This indicates
2186 * that the blocks and quotas has already been checked when
2187 * the data was copied into the page cache.
2189 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2190 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2191 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2193 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2194 if (map
->m_flags
& (1 << BH_Delay
))
2195 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2197 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2200 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2201 if (!mpd
->io_submit
.io_end
->handle
&&
2202 ext4_handle_valid(handle
)) {
2203 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2204 handle
->h_rsv_handle
= NULL
;
2206 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2209 BUG_ON(map
->m_len
== 0);
2210 if (map
->m_flags
& EXT4_MAP_NEW
) {
2211 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2214 for (i
= 0; i
< map
->m_len
; i
++)
2215 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2221 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2222 * mpd->len and submit pages underlying it for IO
2224 * @handle - handle for journal operations
2225 * @mpd - extent to map
2226 * @give_up_on_write - we set this to true iff there is a fatal error and there
2227 * is no hope of writing the data. The caller should discard
2228 * dirty pages to avoid infinite loops.
2230 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2231 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2232 * them to initialized or split the described range from larger unwritten
2233 * extent. Note that we need not map all the described range since allocation
2234 * can return less blocks or the range is covered by more unwritten extents. We
2235 * cannot map more because we are limited by reserved transaction credits. On
2236 * the other hand we always make sure that the last touched page is fully
2237 * mapped so that it can be written out (and thus forward progress is
2238 * guaranteed). After mapping we submit all mapped pages for IO.
2240 static int mpage_map_and_submit_extent(handle_t
*handle
,
2241 struct mpage_da_data
*mpd
,
2242 bool *give_up_on_write
)
2244 struct inode
*inode
= mpd
->inode
;
2245 struct ext4_map_blocks
*map
= &mpd
->map
;
2250 mpd
->io_submit
.io_end
->offset
=
2251 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2253 err
= mpage_map_one_extent(handle
, mpd
);
2255 struct super_block
*sb
= inode
->i_sb
;
2257 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2258 goto invalidate_dirty_pages
;
2260 * Let the uper layers retry transient errors.
2261 * In the case of ENOSPC, if ext4_count_free_blocks()
2262 * is non-zero, a commit should free up blocks.
2264 if ((err
== -ENOMEM
) ||
2265 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2267 goto update_disksize
;
2270 ext4_msg(sb
, KERN_CRIT
,
2271 "Delayed block allocation failed for "
2272 "inode %lu at logical offset %llu with"
2273 " max blocks %u with error %d",
2275 (unsigned long long)map
->m_lblk
,
2276 (unsigned)map
->m_len
, -err
);
2277 ext4_msg(sb
, KERN_CRIT
,
2278 "This should not happen!! Data will "
2281 ext4_print_free_blocks(inode
);
2282 invalidate_dirty_pages
:
2283 *give_up_on_write
= true;
2288 * Update buffer state, submit mapped pages, and get us new
2291 err
= mpage_map_and_submit_buffers(mpd
);
2293 goto update_disksize
;
2294 } while (map
->m_len
);
2298 * Update on-disk size after IO is submitted. Races with
2299 * truncate are avoided by checking i_size under i_data_sem.
2301 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_CACHE_SHIFT
;
2302 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2306 down_write(&EXT4_I(inode
)->i_data_sem
);
2307 i_size
= i_size_read(inode
);
2308 if (disksize
> i_size
)
2310 if (disksize
> EXT4_I(inode
)->i_disksize
)
2311 EXT4_I(inode
)->i_disksize
= disksize
;
2312 err2
= ext4_mark_inode_dirty(handle
, inode
);
2313 up_write(&EXT4_I(inode
)->i_data_sem
);
2315 ext4_error(inode
->i_sb
,
2316 "Failed to mark inode %lu dirty",
2325 * Calculate the total number of credits to reserve for one writepages
2326 * iteration. This is called from ext4_writepages(). We map an extent of
2327 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2328 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2329 * bpp - 1 blocks in bpp different extents.
2331 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2333 int bpp
= ext4_journal_blocks_per_page(inode
);
2335 return ext4_meta_trans_blocks(inode
,
2336 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2340 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2341 * and underlying extent to map
2343 * @mpd - where to look for pages
2345 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2346 * IO immediately. When we find a page which isn't mapped we start accumulating
2347 * extent of buffers underlying these pages that needs mapping (formed by
2348 * either delayed or unwritten buffers). We also lock the pages containing
2349 * these buffers. The extent found is returned in @mpd structure (starting at
2350 * mpd->lblk with length mpd->len blocks).
2352 * Note that this function can attach bios to one io_end structure which are
2353 * neither logically nor physically contiguous. Although it may seem as an
2354 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2355 * case as we need to track IO to all buffers underlying a page in one io_end.
2357 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2359 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2360 struct pagevec pvec
;
2361 unsigned int nr_pages
;
2362 long left
= mpd
->wbc
->nr_to_write
;
2363 pgoff_t index
= mpd
->first_page
;
2364 pgoff_t end
= mpd
->last_page
;
2367 int blkbits
= mpd
->inode
->i_blkbits
;
2369 struct buffer_head
*head
;
2371 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2372 tag
= PAGECACHE_TAG_TOWRITE
;
2374 tag
= PAGECACHE_TAG_DIRTY
;
2376 pagevec_init(&pvec
, 0);
2378 mpd
->next_page
= index
;
2379 while (index
<= end
) {
2380 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2381 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2385 for (i
= 0; i
< nr_pages
; i
++) {
2386 struct page
*page
= pvec
.pages
[i
];
2389 * At this point, the page may be truncated or
2390 * invalidated (changing page->mapping to NULL), or
2391 * even swizzled back from swapper_space to tmpfs file
2392 * mapping. However, page->index will not change
2393 * because we have a reference on the page.
2395 if (page
->index
> end
)
2399 * Accumulated enough dirty pages? This doesn't apply
2400 * to WB_SYNC_ALL mode. For integrity sync we have to
2401 * keep going because someone may be concurrently
2402 * dirtying pages, and we might have synced a lot of
2403 * newly appeared dirty pages, but have not synced all
2404 * of the old dirty pages.
2406 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2409 /* If we can't merge this page, we are done. */
2410 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2415 * If the page is no longer dirty, or its mapping no
2416 * longer corresponds to inode we are writing (which
2417 * means it has been truncated or invalidated), or the
2418 * page is already under writeback and we are not doing
2419 * a data integrity writeback, skip the page
2421 if (!PageDirty(page
) ||
2422 (PageWriteback(page
) &&
2423 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2424 unlikely(page
->mapping
!= mapping
)) {
2429 wait_on_page_writeback(page
);
2430 BUG_ON(PageWriteback(page
));
2432 if (mpd
->map
.m_len
== 0)
2433 mpd
->first_page
= page
->index
;
2434 mpd
->next_page
= page
->index
+ 1;
2435 /* Add all dirty buffers to mpd */
2436 lblk
= ((ext4_lblk_t
)page
->index
) <<
2437 (PAGE_CACHE_SHIFT
- blkbits
);
2438 head
= page_buffers(page
);
2439 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2445 pagevec_release(&pvec
);
2450 pagevec_release(&pvec
);
2454 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2457 struct address_space
*mapping
= data
;
2458 int ret
= ext4_writepage(page
, wbc
);
2459 mapping_set_error(mapping
, ret
);
2463 static int ext4_writepages(struct address_space
*mapping
,
2464 struct writeback_control
*wbc
)
2466 pgoff_t writeback_index
= 0;
2467 long nr_to_write
= wbc
->nr_to_write
;
2468 int range_whole
= 0;
2470 handle_t
*handle
= NULL
;
2471 struct mpage_da_data mpd
;
2472 struct inode
*inode
= mapping
->host
;
2473 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2474 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2476 struct blk_plug plug
;
2477 bool give_up_on_write
= false;
2479 trace_ext4_writepages(inode
, wbc
);
2481 if (dax_mapping(mapping
))
2482 return dax_writeback_mapping_range(mapping
, inode
->i_sb
->s_bdev
,
2486 * No pages to write? This is mainly a kludge to avoid starting
2487 * a transaction for special inodes like journal inode on last iput()
2488 * because that could violate lock ordering on umount
2490 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2491 goto out_writepages
;
2493 if (ext4_should_journal_data(inode
)) {
2494 struct blk_plug plug
;
2496 blk_start_plug(&plug
);
2497 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2498 blk_finish_plug(&plug
);
2499 goto out_writepages
;
2503 * If the filesystem has aborted, it is read-only, so return
2504 * right away instead of dumping stack traces later on that
2505 * will obscure the real source of the problem. We test
2506 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2507 * the latter could be true if the filesystem is mounted
2508 * read-only, and in that case, ext4_writepages should
2509 * *never* be called, so if that ever happens, we would want
2512 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2514 goto out_writepages
;
2517 if (ext4_should_dioread_nolock(inode
)) {
2519 * We may need to convert up to one extent per block in
2520 * the page and we may dirty the inode.
2522 rsv_blocks
= 1 + (PAGE_CACHE_SIZE
>> inode
->i_blkbits
);
2526 * If we have inline data and arrive here, it means that
2527 * we will soon create the block for the 1st page, so
2528 * we'd better clear the inline data here.
2530 if (ext4_has_inline_data(inode
)) {
2531 /* Just inode will be modified... */
2532 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2533 if (IS_ERR(handle
)) {
2534 ret
= PTR_ERR(handle
);
2535 goto out_writepages
;
2537 BUG_ON(ext4_test_inode_state(inode
,
2538 EXT4_STATE_MAY_INLINE_DATA
));
2539 ext4_destroy_inline_data(handle
, inode
);
2540 ext4_journal_stop(handle
);
2543 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2546 if (wbc
->range_cyclic
) {
2547 writeback_index
= mapping
->writeback_index
;
2548 if (writeback_index
)
2550 mpd
.first_page
= writeback_index
;
2553 mpd
.first_page
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2554 mpd
.last_page
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2559 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2561 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2562 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2564 blk_start_plug(&plug
);
2565 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2566 /* For each extent of pages we use new io_end */
2567 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2568 if (!mpd
.io_submit
.io_end
) {
2574 * We have two constraints: We find one extent to map and we
2575 * must always write out whole page (makes a difference when
2576 * blocksize < pagesize) so that we don't block on IO when we
2577 * try to write out the rest of the page. Journalled mode is
2578 * not supported by delalloc.
2580 BUG_ON(ext4_should_journal_data(inode
));
2581 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2583 /* start a new transaction */
2584 handle
= ext4_journal_start_with_reserve(inode
,
2585 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2586 if (IS_ERR(handle
)) {
2587 ret
= PTR_ERR(handle
);
2588 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2589 "%ld pages, ino %lu; err %d", __func__
,
2590 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2591 /* Release allocated io_end */
2592 ext4_put_io_end(mpd
.io_submit
.io_end
);
2596 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2597 ret
= mpage_prepare_extent_to_map(&mpd
);
2600 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2604 * We scanned the whole range (or exhausted
2605 * nr_to_write), submitted what was mapped and
2606 * didn't find anything needing mapping. We are
2612 ext4_journal_stop(handle
);
2613 /* Submit prepared bio */
2614 ext4_io_submit(&mpd
.io_submit
);
2615 /* Unlock pages we didn't use */
2616 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2617 /* Drop our io_end reference we got from init */
2618 ext4_put_io_end(mpd
.io_submit
.io_end
);
2620 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2622 * Commit the transaction which would
2623 * free blocks released in the transaction
2626 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2630 /* Fatal error - ENOMEM, EIO... */
2634 blk_finish_plug(&plug
);
2635 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2637 mpd
.last_page
= writeback_index
- 1;
2643 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2645 * Set the writeback_index so that range_cyclic
2646 * mode will write it back later
2648 mapping
->writeback_index
= mpd
.first_page
;
2651 trace_ext4_writepages_result(inode
, wbc
, ret
,
2652 nr_to_write
- wbc
->nr_to_write
);
2656 static int ext4_nonda_switch(struct super_block
*sb
)
2658 s64 free_clusters
, dirty_clusters
;
2659 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2662 * switch to non delalloc mode if we are running low
2663 * on free block. The free block accounting via percpu
2664 * counters can get slightly wrong with percpu_counter_batch getting
2665 * accumulated on each CPU without updating global counters
2666 * Delalloc need an accurate free block accounting. So switch
2667 * to non delalloc when we are near to error range.
2670 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2672 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2674 * Start pushing delalloc when 1/2 of free blocks are dirty.
2676 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2677 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2679 if (2 * free_clusters
< 3 * dirty_clusters
||
2680 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2682 * free block count is less than 150% of dirty blocks
2683 * or free blocks is less than watermark
2690 /* We always reserve for an inode update; the superblock could be there too */
2691 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2693 if (likely(ext4_has_feature_large_file(inode
->i_sb
)))
2696 if (pos
+ len
<= 0x7fffffffULL
)
2699 /* We might need to update the superblock to set LARGE_FILE */
2703 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2704 loff_t pos
, unsigned len
, unsigned flags
,
2705 struct page
**pagep
, void **fsdata
)
2707 int ret
, retries
= 0;
2710 struct inode
*inode
= mapping
->host
;
2713 index
= pos
>> PAGE_CACHE_SHIFT
;
2715 if (ext4_nonda_switch(inode
->i_sb
)) {
2716 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2717 return ext4_write_begin(file
, mapping
, pos
,
2718 len
, flags
, pagep
, fsdata
);
2720 *fsdata
= (void *)0;
2721 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2723 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2724 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2734 * grab_cache_page_write_begin() can take a long time if the
2735 * system is thrashing due to memory pressure, or if the page
2736 * is being written back. So grab it first before we start
2737 * the transaction handle. This also allows us to allocate
2738 * the page (if needed) without using GFP_NOFS.
2741 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2747 * With delayed allocation, we don't log the i_disksize update
2748 * if there is delayed block allocation. But we still need
2749 * to journalling the i_disksize update if writes to the end
2750 * of file which has an already mapped buffer.
2753 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2754 ext4_da_write_credits(inode
, pos
, len
));
2755 if (IS_ERR(handle
)) {
2756 page_cache_release(page
);
2757 return PTR_ERR(handle
);
2761 if (page
->mapping
!= mapping
) {
2762 /* The page got truncated from under us */
2764 page_cache_release(page
);
2765 ext4_journal_stop(handle
);
2768 /* In case writeback began while the page was unlocked */
2769 wait_for_stable_page(page
);
2771 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2772 ret
= ext4_block_write_begin(page
, pos
, len
,
2773 ext4_da_get_block_prep
);
2775 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2779 ext4_journal_stop(handle
);
2781 * block_write_begin may have instantiated a few blocks
2782 * outside i_size. Trim these off again. Don't need
2783 * i_size_read because we hold i_mutex.
2785 if (pos
+ len
> inode
->i_size
)
2786 ext4_truncate_failed_write(inode
);
2788 if (ret
== -ENOSPC
&&
2789 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2792 page_cache_release(page
);
2801 * Check if we should update i_disksize
2802 * when write to the end of file but not require block allocation
2804 static int ext4_da_should_update_i_disksize(struct page
*page
,
2805 unsigned long offset
)
2807 struct buffer_head
*bh
;
2808 struct inode
*inode
= page
->mapping
->host
;
2812 bh
= page_buffers(page
);
2813 idx
= offset
>> inode
->i_blkbits
;
2815 for (i
= 0; i
< idx
; i
++)
2816 bh
= bh
->b_this_page
;
2818 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2823 static int ext4_da_write_end(struct file
*file
,
2824 struct address_space
*mapping
,
2825 loff_t pos
, unsigned len
, unsigned copied
,
2826 struct page
*page
, void *fsdata
)
2828 struct inode
*inode
= mapping
->host
;
2830 handle_t
*handle
= ext4_journal_current_handle();
2832 unsigned long start
, end
;
2833 int write_mode
= (int)(unsigned long)fsdata
;
2835 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2836 return ext4_write_end(file
, mapping
, pos
,
2837 len
, copied
, page
, fsdata
);
2839 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2840 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2841 end
= start
+ copied
- 1;
2844 * generic_write_end() will run mark_inode_dirty() if i_size
2845 * changes. So let's piggyback the i_disksize mark_inode_dirty
2848 new_i_size
= pos
+ copied
;
2849 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2850 if (ext4_has_inline_data(inode
) ||
2851 ext4_da_should_update_i_disksize(page
, end
)) {
2852 ext4_update_i_disksize(inode
, new_i_size
);
2853 /* We need to mark inode dirty even if
2854 * new_i_size is less that inode->i_size
2855 * bu greater than i_disksize.(hint delalloc)
2857 ext4_mark_inode_dirty(handle
, inode
);
2861 if (write_mode
!= CONVERT_INLINE_DATA
&&
2862 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2863 ext4_has_inline_data(inode
))
2864 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2867 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2873 ret2
= ext4_journal_stop(handle
);
2877 return ret
? ret
: copied
;
2880 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2881 unsigned int length
)
2884 * Drop reserved blocks
2886 BUG_ON(!PageLocked(page
));
2887 if (!page_has_buffers(page
))
2890 ext4_da_page_release_reservation(page
, offset
, length
);
2893 ext4_invalidatepage(page
, offset
, length
);
2899 * Force all delayed allocation blocks to be allocated for a given inode.
2901 int ext4_alloc_da_blocks(struct inode
*inode
)
2903 trace_ext4_alloc_da_blocks(inode
);
2905 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
2909 * We do something simple for now. The filemap_flush() will
2910 * also start triggering a write of the data blocks, which is
2911 * not strictly speaking necessary (and for users of
2912 * laptop_mode, not even desirable). However, to do otherwise
2913 * would require replicating code paths in:
2915 * ext4_writepages() ->
2916 * write_cache_pages() ---> (via passed in callback function)
2917 * __mpage_da_writepage() -->
2918 * mpage_add_bh_to_extent()
2919 * mpage_da_map_blocks()
2921 * The problem is that write_cache_pages(), located in
2922 * mm/page-writeback.c, marks pages clean in preparation for
2923 * doing I/O, which is not desirable if we're not planning on
2926 * We could call write_cache_pages(), and then redirty all of
2927 * the pages by calling redirty_page_for_writepage() but that
2928 * would be ugly in the extreme. So instead we would need to
2929 * replicate parts of the code in the above functions,
2930 * simplifying them because we wouldn't actually intend to
2931 * write out the pages, but rather only collect contiguous
2932 * logical block extents, call the multi-block allocator, and
2933 * then update the buffer heads with the block allocations.
2935 * For now, though, we'll cheat by calling filemap_flush(),
2936 * which will map the blocks, and start the I/O, but not
2937 * actually wait for the I/O to complete.
2939 return filemap_flush(inode
->i_mapping
);
2943 * bmap() is special. It gets used by applications such as lilo and by
2944 * the swapper to find the on-disk block of a specific piece of data.
2946 * Naturally, this is dangerous if the block concerned is still in the
2947 * journal. If somebody makes a swapfile on an ext4 data-journaling
2948 * filesystem and enables swap, then they may get a nasty shock when the
2949 * data getting swapped to that swapfile suddenly gets overwritten by
2950 * the original zero's written out previously to the journal and
2951 * awaiting writeback in the kernel's buffer cache.
2953 * So, if we see any bmap calls here on a modified, data-journaled file,
2954 * take extra steps to flush any blocks which might be in the cache.
2956 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2958 struct inode
*inode
= mapping
->host
;
2963 * We can get here for an inline file via the FIBMAP ioctl
2965 if (ext4_has_inline_data(inode
))
2968 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2969 test_opt(inode
->i_sb
, DELALLOC
)) {
2971 * With delalloc we want to sync the file
2972 * so that we can make sure we allocate
2975 filemap_write_and_wait(mapping
);
2978 if (EXT4_JOURNAL(inode
) &&
2979 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2981 * This is a REALLY heavyweight approach, but the use of
2982 * bmap on dirty files is expected to be extremely rare:
2983 * only if we run lilo or swapon on a freshly made file
2984 * do we expect this to happen.
2986 * (bmap requires CAP_SYS_RAWIO so this does not
2987 * represent an unprivileged user DOS attack --- we'd be
2988 * in trouble if mortal users could trigger this path at
2991 * NB. EXT4_STATE_JDATA is not set on files other than
2992 * regular files. If somebody wants to bmap a directory
2993 * or symlink and gets confused because the buffer
2994 * hasn't yet been flushed to disk, they deserve
2995 * everything they get.
2998 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2999 journal
= EXT4_JOURNAL(inode
);
3000 jbd2_journal_lock_updates(journal
);
3001 err
= jbd2_journal_flush(journal
);
3002 jbd2_journal_unlock_updates(journal
);
3008 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3011 static int ext4_readpage(struct file
*file
, struct page
*page
)
3014 struct inode
*inode
= page
->mapping
->host
;
3016 trace_ext4_readpage(page
);
3018 if (ext4_has_inline_data(inode
))
3019 ret
= ext4_readpage_inline(inode
, page
);
3022 return ext4_mpage_readpages(page
->mapping
, NULL
, page
, 1);
3028 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3029 struct list_head
*pages
, unsigned nr_pages
)
3031 struct inode
*inode
= mapping
->host
;
3033 /* If the file has inline data, no need to do readpages. */
3034 if (ext4_has_inline_data(inode
))
3037 return ext4_mpage_readpages(mapping
, pages
, NULL
, nr_pages
);
3040 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3041 unsigned int length
)
3043 trace_ext4_invalidatepage(page
, offset
, length
);
3045 /* No journalling happens on data buffers when this function is used */
3046 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3048 block_invalidatepage(page
, offset
, length
);
3051 static int __ext4_journalled_invalidatepage(struct page
*page
,
3052 unsigned int offset
,
3053 unsigned int length
)
3055 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3057 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3060 * If it's a full truncate we just forget about the pending dirtying
3062 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
3063 ClearPageChecked(page
);
3065 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3068 /* Wrapper for aops... */
3069 static void ext4_journalled_invalidatepage(struct page
*page
,
3070 unsigned int offset
,
3071 unsigned int length
)
3073 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3076 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3078 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3080 trace_ext4_releasepage(page
);
3082 /* Page has dirty journalled data -> cannot release */
3083 if (PageChecked(page
))
3086 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3088 return try_to_free_buffers(page
);
3092 * ext4_get_block used when preparing for a DIO write or buffer write.
3093 * We allocate an uinitialized extent if blocks haven't been allocated.
3094 * The extent will be converted to initialized after the IO is complete.
3096 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3097 struct buffer_head
*bh_result
, int create
)
3099 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3100 inode
->i_ino
, create
);
3101 return _ext4_get_block(inode
, iblock
, bh_result
,
3102 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3105 static int ext4_get_block_overwrite(struct inode
*inode
, sector_t iblock
,
3106 struct buffer_head
*bh_result
, int create
)
3110 ext4_debug("ext4_get_block_overwrite: inode %lu, create flag %d\n",
3111 inode
->i_ino
, create
);
3112 ret
= _ext4_get_block(inode
, iblock
, bh_result
, 0);
3114 * Blocks should have been preallocated! ext4_file_write_iter() checks
3117 WARN_ON_ONCE(!buffer_mapped(bh_result
));
3122 #ifdef CONFIG_FS_DAX
3123 int ext4_dax_mmap_get_block(struct inode
*inode
, sector_t iblock
,
3124 struct buffer_head
*bh_result
, int create
)
3128 struct ext4_map_blocks map
;
3129 handle_t
*handle
= NULL
;
3132 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3133 inode
->i_ino
, create
);
3134 map
.m_lblk
= iblock
;
3135 map
.m_len
= bh_result
->b_size
>> inode
->i_blkbits
;
3136 credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
3138 flags
|= EXT4_GET_BLOCKS_PRE_IO
| EXT4_GET_BLOCKS_CREATE_ZERO
;
3139 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, credits
);
3140 if (IS_ERR(handle
)) {
3141 ret
= PTR_ERR(handle
);
3146 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
3148 err
= ext4_journal_stop(handle
);
3149 if (ret
>= 0 && err
< 0)
3154 if (map
.m_flags
& EXT4_MAP_UNWRITTEN
) {
3158 * We are protected by i_mmap_sem so we know block cannot go
3159 * away from under us even though we dropped i_data_sem.
3160 * Convert extent to written and write zeros there.
3162 * Note: We may get here even when create == 0.
3164 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, credits
);
3165 if (IS_ERR(handle
)) {
3166 ret
= PTR_ERR(handle
);
3170 err
= ext4_map_blocks(handle
, inode
, &map
,
3171 EXT4_GET_BLOCKS_CONVERT
| EXT4_GET_BLOCKS_CREATE_ZERO
);
3174 err2
= ext4_journal_stop(handle
);
3175 if (err2
< 0 && ret
> 0)
3179 WARN_ON_ONCE(ret
== 0 && create
);
3181 map_bh(bh_result
, inode
->i_sb
, map
.m_pblk
);
3182 bh_result
->b_state
= (bh_result
->b_state
& ~EXT4_MAP_FLAGS
) |
3185 * At least for now we have to clear BH_New so that DAX code
3186 * doesn't attempt to zero blocks again in a racy way.
3188 bh_result
->b_state
&= ~(1 << BH_New
);
3189 bh_result
->b_size
= map
.m_len
<< inode
->i_blkbits
;
3196 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3197 ssize_t size
, void *private)
3199 ext4_io_end_t
*io_end
= iocb
->private;
3201 /* if not async direct IO just return */
3205 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3206 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3207 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3210 iocb
->private = NULL
;
3211 io_end
->offset
= offset
;
3212 io_end
->size
= size
;
3213 ext4_put_io_end(io_end
);
3217 * For ext4 extent files, ext4 will do direct-io write to holes,
3218 * preallocated extents, and those write extend the file, no need to
3219 * fall back to buffered IO.
3221 * For holes, we fallocate those blocks, mark them as unwritten
3222 * If those blocks were preallocated, we mark sure they are split, but
3223 * still keep the range to write as unwritten.
3225 * The unwritten extents will be converted to written when DIO is completed.
3226 * For async direct IO, since the IO may still pending when return, we
3227 * set up an end_io call back function, which will do the conversion
3228 * when async direct IO completed.
3230 * If the O_DIRECT write will extend the file then add this inode to the
3231 * orphan list. So recovery will truncate it back to the original size
3232 * if the machine crashes during the write.
3235 static ssize_t
ext4_ext_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3238 struct file
*file
= iocb
->ki_filp
;
3239 struct inode
*inode
= file
->f_mapping
->host
;
3241 size_t count
= iov_iter_count(iter
);
3243 get_block_t
*get_block_func
= NULL
;
3245 loff_t final_size
= offset
+ count
;
3246 ext4_io_end_t
*io_end
= NULL
;
3248 /* Use the old path for reads and writes beyond i_size. */
3249 if (iov_iter_rw(iter
) != WRITE
|| final_size
> inode
->i_size
)
3250 return ext4_ind_direct_IO(iocb
, iter
, offset
);
3252 BUG_ON(iocb
->private == NULL
);
3255 * Make all waiters for direct IO properly wait also for extent
3256 * conversion. This also disallows race between truncate() and
3257 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3259 if (iov_iter_rw(iter
) == WRITE
)
3260 inode_dio_begin(inode
);
3262 /* If we do a overwrite dio, i_mutex locking can be released */
3263 overwrite
= *((int *)iocb
->private);
3266 inode_unlock(inode
);
3269 * We could direct write to holes and fallocate.
3271 * Allocated blocks to fill the hole are marked as
3272 * unwritten to prevent parallel buffered read to expose
3273 * the stale data before DIO complete the data IO.
3275 * As to previously fallocated extents, ext4 get_block will
3276 * just simply mark the buffer mapped but still keep the
3277 * extents unwritten.
3279 * For non AIO case, we will convert those unwritten extents
3280 * to written after return back from blockdev_direct_IO.
3282 * For async DIO, the conversion needs to be deferred when the
3283 * IO is completed. The ext4 end_io callback function will be
3284 * called to take care of the conversion work. Here for async
3285 * case, we allocate an io_end structure to hook to the iocb.
3287 iocb
->private = NULL
;
3289 get_block_func
= ext4_get_block_overwrite
;
3291 ext4_inode_aio_set(inode
, NULL
);
3292 if (!is_sync_kiocb(iocb
)) {
3293 io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3299 * Grab reference for DIO. Will be dropped in
3302 iocb
->private = ext4_get_io_end(io_end
);
3304 * we save the io structure for current async direct
3305 * IO, so that later ext4_map_blocks() could flag the
3306 * io structure whether there is a unwritten extents
3307 * needs to be converted when IO is completed.
3309 ext4_inode_aio_set(inode
, io_end
);
3311 get_block_func
= ext4_get_block_write
;
3312 dio_flags
= DIO_LOCKING
;
3314 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3315 BUG_ON(ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
));
3318 ret
= dax_do_io(iocb
, inode
, iter
, offset
, get_block_func
,
3319 ext4_end_io_dio
, dio_flags
);
3321 ret
= __blockdev_direct_IO(iocb
, inode
,
3322 inode
->i_sb
->s_bdev
, iter
, offset
,
3324 ext4_end_io_dio
, NULL
, dio_flags
);
3327 * Put our reference to io_end. This can free the io_end structure e.g.
3328 * in sync IO case or in case of error. It can even perform extent
3329 * conversion if all bios we submitted finished before we got here.
3330 * Note that in that case iocb->private can be already set to NULL
3334 ext4_inode_aio_set(inode
, NULL
);
3335 ext4_put_io_end(io_end
);
3337 * When no IO was submitted ext4_end_io_dio() was not
3338 * called so we have to put iocb's reference.
3340 if (ret
<= 0 && ret
!= -EIOCBQUEUED
&& iocb
->private) {
3341 WARN_ON(iocb
->private != io_end
);
3342 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
3343 ext4_put_io_end(io_end
);
3344 iocb
->private = NULL
;
3347 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3348 EXT4_STATE_DIO_UNWRITTEN
)) {
3351 * for non AIO case, since the IO is already
3352 * completed, we could do the conversion right here
3354 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3358 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3362 if (iov_iter_rw(iter
) == WRITE
)
3363 inode_dio_end(inode
);
3364 /* take i_mutex locking again if we do a ovewrite dio */
3371 static ssize_t
ext4_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3374 struct file
*file
= iocb
->ki_filp
;
3375 struct inode
*inode
= file
->f_mapping
->host
;
3376 size_t count
= iov_iter_count(iter
);
3379 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3380 if (ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
3385 * If we are doing data journalling we don't support O_DIRECT
3387 if (ext4_should_journal_data(inode
))
3390 /* Let buffer I/O handle the inline data case. */
3391 if (ext4_has_inline_data(inode
))
3394 trace_ext4_direct_IO_enter(inode
, offset
, count
, iov_iter_rw(iter
));
3395 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3396 ret
= ext4_ext_direct_IO(iocb
, iter
, offset
);
3398 ret
= ext4_ind_direct_IO(iocb
, iter
, offset
);
3399 trace_ext4_direct_IO_exit(inode
, offset
, count
, iov_iter_rw(iter
), ret
);
3404 * Pages can be marked dirty completely asynchronously from ext4's journalling
3405 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3406 * much here because ->set_page_dirty is called under VFS locks. The page is
3407 * not necessarily locked.
3409 * We cannot just dirty the page and leave attached buffers clean, because the
3410 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3411 * or jbddirty because all the journalling code will explode.
3413 * So what we do is to mark the page "pending dirty" and next time writepage
3414 * is called, propagate that into the buffers appropriately.
3416 static int ext4_journalled_set_page_dirty(struct page
*page
)
3418 SetPageChecked(page
);
3419 return __set_page_dirty_nobuffers(page
);
3422 static const struct address_space_operations ext4_aops
= {
3423 .readpage
= ext4_readpage
,
3424 .readpages
= ext4_readpages
,
3425 .writepage
= ext4_writepage
,
3426 .writepages
= ext4_writepages
,
3427 .write_begin
= ext4_write_begin
,
3428 .write_end
= ext4_write_end
,
3430 .invalidatepage
= ext4_invalidatepage
,
3431 .releasepage
= ext4_releasepage
,
3432 .direct_IO
= ext4_direct_IO
,
3433 .migratepage
= buffer_migrate_page
,
3434 .is_partially_uptodate
= block_is_partially_uptodate
,
3435 .error_remove_page
= generic_error_remove_page
,
3438 static const struct address_space_operations ext4_journalled_aops
= {
3439 .readpage
= ext4_readpage
,
3440 .readpages
= ext4_readpages
,
3441 .writepage
= ext4_writepage
,
3442 .writepages
= ext4_writepages
,
3443 .write_begin
= ext4_write_begin
,
3444 .write_end
= ext4_journalled_write_end
,
3445 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3447 .invalidatepage
= ext4_journalled_invalidatepage
,
3448 .releasepage
= ext4_releasepage
,
3449 .direct_IO
= ext4_direct_IO
,
3450 .is_partially_uptodate
= block_is_partially_uptodate
,
3451 .error_remove_page
= generic_error_remove_page
,
3454 static const struct address_space_operations ext4_da_aops
= {
3455 .readpage
= ext4_readpage
,
3456 .readpages
= ext4_readpages
,
3457 .writepage
= ext4_writepage
,
3458 .writepages
= ext4_writepages
,
3459 .write_begin
= ext4_da_write_begin
,
3460 .write_end
= ext4_da_write_end
,
3462 .invalidatepage
= ext4_da_invalidatepage
,
3463 .releasepage
= ext4_releasepage
,
3464 .direct_IO
= ext4_direct_IO
,
3465 .migratepage
= buffer_migrate_page
,
3466 .is_partially_uptodate
= block_is_partially_uptodate
,
3467 .error_remove_page
= generic_error_remove_page
,
3470 void ext4_set_aops(struct inode
*inode
)
3472 switch (ext4_inode_journal_mode(inode
)) {
3473 case EXT4_INODE_ORDERED_DATA_MODE
:
3474 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3476 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3477 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3479 case EXT4_INODE_JOURNAL_DATA_MODE
:
3480 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3485 if (test_opt(inode
->i_sb
, DELALLOC
))
3486 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3488 inode
->i_mapping
->a_ops
= &ext4_aops
;
3491 static int __ext4_block_zero_page_range(handle_t
*handle
,
3492 struct address_space
*mapping
, loff_t from
, loff_t length
)
3494 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3495 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3496 unsigned blocksize
, pos
;
3498 struct inode
*inode
= mapping
->host
;
3499 struct buffer_head
*bh
;
3503 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3504 mapping_gfp_constraint(mapping
, ~__GFP_FS
));
3508 blocksize
= inode
->i_sb
->s_blocksize
;
3510 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3512 if (!page_has_buffers(page
))
3513 create_empty_buffers(page
, blocksize
, 0);
3515 /* Find the buffer that contains "offset" */
3516 bh
= page_buffers(page
);
3518 while (offset
>= pos
) {
3519 bh
= bh
->b_this_page
;
3523 if (buffer_freed(bh
)) {
3524 BUFFER_TRACE(bh
, "freed: skip");
3527 if (!buffer_mapped(bh
)) {
3528 BUFFER_TRACE(bh
, "unmapped");
3529 ext4_get_block(inode
, iblock
, bh
, 0);
3530 /* unmapped? It's a hole - nothing to do */
3531 if (!buffer_mapped(bh
)) {
3532 BUFFER_TRACE(bh
, "still unmapped");
3537 /* Ok, it's mapped. Make sure it's up-to-date */
3538 if (PageUptodate(page
))
3539 set_buffer_uptodate(bh
);
3541 if (!buffer_uptodate(bh
)) {
3543 ll_rw_block(READ
, 1, &bh
);
3545 /* Uhhuh. Read error. Complain and punt. */
3546 if (!buffer_uptodate(bh
))
3548 if (S_ISREG(inode
->i_mode
) &&
3549 ext4_encrypted_inode(inode
)) {
3550 /* We expect the key to be set. */
3551 BUG_ON(!ext4_has_encryption_key(inode
));
3552 BUG_ON(blocksize
!= PAGE_CACHE_SIZE
);
3553 WARN_ON_ONCE(ext4_decrypt(page
));
3556 if (ext4_should_journal_data(inode
)) {
3557 BUFFER_TRACE(bh
, "get write access");
3558 err
= ext4_journal_get_write_access(handle
, bh
);
3562 zero_user(page
, offset
, length
);
3563 BUFFER_TRACE(bh
, "zeroed end of block");
3565 if (ext4_should_journal_data(inode
)) {
3566 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3569 mark_buffer_dirty(bh
);
3570 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3571 err
= ext4_jbd2_file_inode(handle
, inode
);
3576 page_cache_release(page
);
3581 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3582 * starting from file offset 'from'. The range to be zero'd must
3583 * be contained with in one block. If the specified range exceeds
3584 * the end of the block it will be shortened to end of the block
3585 * that cooresponds to 'from'
3587 static int ext4_block_zero_page_range(handle_t
*handle
,
3588 struct address_space
*mapping
, loff_t from
, loff_t length
)
3590 struct inode
*inode
= mapping
->host
;
3591 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3592 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3593 unsigned max
= blocksize
- (offset
& (blocksize
- 1));
3596 * correct length if it does not fall between
3597 * 'from' and the end of the block
3599 if (length
> max
|| length
< 0)
3603 return dax_zero_page_range(inode
, from
, length
, ext4_get_block
);
3604 return __ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3608 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3609 * up to the end of the block which corresponds to `from'.
3610 * This required during truncate. We need to physically zero the tail end
3611 * of that block so it doesn't yield old data if the file is later grown.
3613 static int ext4_block_truncate_page(handle_t
*handle
,
3614 struct address_space
*mapping
, loff_t from
)
3616 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3619 struct inode
*inode
= mapping
->host
;
3621 blocksize
= inode
->i_sb
->s_blocksize
;
3622 length
= blocksize
- (offset
& (blocksize
- 1));
3624 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3627 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3628 loff_t lstart
, loff_t length
)
3630 struct super_block
*sb
= inode
->i_sb
;
3631 struct address_space
*mapping
= inode
->i_mapping
;
3632 unsigned partial_start
, partial_end
;
3633 ext4_fsblk_t start
, end
;
3634 loff_t byte_end
= (lstart
+ length
- 1);
3637 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3638 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3640 start
= lstart
>> sb
->s_blocksize_bits
;
3641 end
= byte_end
>> sb
->s_blocksize_bits
;
3643 /* Handle partial zero within the single block */
3645 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3646 err
= ext4_block_zero_page_range(handle
, mapping
,
3650 /* Handle partial zero out on the start of the range */
3651 if (partial_start
) {
3652 err
= ext4_block_zero_page_range(handle
, mapping
,
3653 lstart
, sb
->s_blocksize
);
3657 /* Handle partial zero out on the end of the range */
3658 if (partial_end
!= sb
->s_blocksize
- 1)
3659 err
= ext4_block_zero_page_range(handle
, mapping
,
3660 byte_end
- partial_end
,
3665 int ext4_can_truncate(struct inode
*inode
)
3667 if (S_ISREG(inode
->i_mode
))
3669 if (S_ISDIR(inode
->i_mode
))
3671 if (S_ISLNK(inode
->i_mode
))
3672 return !ext4_inode_is_fast_symlink(inode
);
3677 * We have to make sure i_disksize gets properly updated before we truncate
3678 * page cache due to hole punching or zero range. Otherwise i_disksize update
3679 * can get lost as it may have been postponed to submission of writeback but
3680 * that will never happen after we truncate page cache.
3682 int ext4_update_disksize_before_punch(struct inode
*inode
, loff_t offset
,
3686 loff_t size
= i_size_read(inode
);
3688 WARN_ON(!inode_is_locked(inode
));
3689 if (offset
> size
|| offset
+ len
< size
)
3692 if (EXT4_I(inode
)->i_disksize
>= size
)
3695 handle
= ext4_journal_start(inode
, EXT4_HT_MISC
, 1);
3697 return PTR_ERR(handle
);
3698 ext4_update_i_disksize(inode
, size
);
3699 ext4_mark_inode_dirty(handle
, inode
);
3700 ext4_journal_stop(handle
);
3706 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3707 * associated with the given offset and length
3709 * @inode: File inode
3710 * @offset: The offset where the hole will begin
3711 * @len: The length of the hole
3713 * Returns: 0 on success or negative on failure
3716 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3718 struct super_block
*sb
= inode
->i_sb
;
3719 ext4_lblk_t first_block
, stop_block
;
3720 struct address_space
*mapping
= inode
->i_mapping
;
3721 loff_t first_block_offset
, last_block_offset
;
3723 unsigned int credits
;
3726 if (!S_ISREG(inode
->i_mode
))
3729 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3732 * Write out all dirty pages to avoid race conditions
3733 * Then release them.
3735 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3736 ret
= filemap_write_and_wait_range(mapping
, offset
,
3737 offset
+ length
- 1);
3744 /* No need to punch hole beyond i_size */
3745 if (offset
>= inode
->i_size
)
3749 * If the hole extends beyond i_size, set the hole
3750 * to end after the page that contains i_size
3752 if (offset
+ length
> inode
->i_size
) {
3753 length
= inode
->i_size
+
3754 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3758 if (offset
& (sb
->s_blocksize
- 1) ||
3759 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3761 * Attach jinode to inode for jbd2 if we do any zeroing of
3764 ret
= ext4_inode_attach_jinode(inode
);
3770 /* Wait all existing dio workers, newcomers will block on i_mutex */
3771 ext4_inode_block_unlocked_dio(inode
);
3772 inode_dio_wait(inode
);
3775 * Prevent page faults from reinstantiating pages we have released from
3778 down_write(&EXT4_I(inode
)->i_mmap_sem
);
3779 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3780 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3782 /* Now release the pages and zero block aligned part of pages*/
3783 if (last_block_offset
> first_block_offset
) {
3784 ret
= ext4_update_disksize_before_punch(inode
, offset
, length
);
3787 truncate_pagecache_range(inode
, first_block_offset
,
3791 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3792 credits
= ext4_writepage_trans_blocks(inode
);
3794 credits
= ext4_blocks_for_truncate(inode
);
3795 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3796 if (IS_ERR(handle
)) {
3797 ret
= PTR_ERR(handle
);
3798 ext4_std_error(sb
, ret
);
3802 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3807 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3808 EXT4_BLOCK_SIZE_BITS(sb
);
3809 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3811 /* If there are no blocks to remove, return now */
3812 if (first_block
>= stop_block
)
3815 down_write(&EXT4_I(inode
)->i_data_sem
);
3816 ext4_discard_preallocations(inode
);
3818 ret
= ext4_es_remove_extent(inode
, first_block
,
3819 stop_block
- first_block
);
3821 up_write(&EXT4_I(inode
)->i_data_sem
);
3825 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3826 ret
= ext4_ext_remove_space(inode
, first_block
,
3829 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
3832 up_write(&EXT4_I(inode
)->i_data_sem
);
3834 ext4_handle_sync(handle
);
3836 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3837 ext4_mark_inode_dirty(handle
, inode
);
3839 ext4_journal_stop(handle
);
3841 up_write(&EXT4_I(inode
)->i_mmap_sem
);
3842 ext4_inode_resume_unlocked_dio(inode
);
3844 inode_unlock(inode
);
3848 int ext4_inode_attach_jinode(struct inode
*inode
)
3850 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3851 struct jbd2_inode
*jinode
;
3853 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3856 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3857 spin_lock(&inode
->i_lock
);
3860 spin_unlock(&inode
->i_lock
);
3863 ei
->jinode
= jinode
;
3864 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3867 spin_unlock(&inode
->i_lock
);
3868 if (unlikely(jinode
!= NULL
))
3869 jbd2_free_inode(jinode
);
3876 * We block out ext4_get_block() block instantiations across the entire
3877 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3878 * simultaneously on behalf of the same inode.
3880 * As we work through the truncate and commit bits of it to the journal there
3881 * is one core, guiding principle: the file's tree must always be consistent on
3882 * disk. We must be able to restart the truncate after a crash.
3884 * The file's tree may be transiently inconsistent in memory (although it
3885 * probably isn't), but whenever we close off and commit a journal transaction,
3886 * the contents of (the filesystem + the journal) must be consistent and
3887 * restartable. It's pretty simple, really: bottom up, right to left (although
3888 * left-to-right works OK too).
3890 * Note that at recovery time, journal replay occurs *before* the restart of
3891 * truncate against the orphan inode list.
3893 * The committed inode has the new, desired i_size (which is the same as
3894 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3895 * that this inode's truncate did not complete and it will again call
3896 * ext4_truncate() to have another go. So there will be instantiated blocks
3897 * to the right of the truncation point in a crashed ext4 filesystem. But
3898 * that's fine - as long as they are linked from the inode, the post-crash
3899 * ext4_truncate() run will find them and release them.
3901 void ext4_truncate(struct inode
*inode
)
3903 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3904 unsigned int credits
;
3906 struct address_space
*mapping
= inode
->i_mapping
;
3909 * There is a possibility that we're either freeing the inode
3910 * or it's a completely new inode. In those cases we might not
3911 * have i_mutex locked because it's not necessary.
3913 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3914 WARN_ON(!inode_is_locked(inode
));
3915 trace_ext4_truncate_enter(inode
);
3917 if (!ext4_can_truncate(inode
))
3920 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3922 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3923 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3925 if (ext4_has_inline_data(inode
)) {
3928 ext4_inline_data_truncate(inode
, &has_inline
);
3933 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3934 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3935 if (ext4_inode_attach_jinode(inode
) < 0)
3939 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3940 credits
= ext4_writepage_trans_blocks(inode
);
3942 credits
= ext4_blocks_for_truncate(inode
);
3944 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3945 if (IS_ERR(handle
)) {
3946 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3950 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3951 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3954 * We add the inode to the orphan list, so that if this
3955 * truncate spans multiple transactions, and we crash, we will
3956 * resume the truncate when the filesystem recovers. It also
3957 * marks the inode dirty, to catch the new size.
3959 * Implication: the file must always be in a sane, consistent
3960 * truncatable state while each transaction commits.
3962 if (ext4_orphan_add(handle
, inode
))
3965 down_write(&EXT4_I(inode
)->i_data_sem
);
3967 ext4_discard_preallocations(inode
);
3969 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3970 ext4_ext_truncate(handle
, inode
);
3972 ext4_ind_truncate(handle
, inode
);
3974 up_write(&ei
->i_data_sem
);
3977 ext4_handle_sync(handle
);
3981 * If this was a simple ftruncate() and the file will remain alive,
3982 * then we need to clear up the orphan record which we created above.
3983 * However, if this was a real unlink then we were called by
3984 * ext4_evict_inode(), and we allow that function to clean up the
3985 * orphan info for us.
3988 ext4_orphan_del(handle
, inode
);
3990 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3991 ext4_mark_inode_dirty(handle
, inode
);
3992 ext4_journal_stop(handle
);
3994 trace_ext4_truncate_exit(inode
);
3998 * ext4_get_inode_loc returns with an extra refcount against the inode's
3999 * underlying buffer_head on success. If 'in_mem' is true, we have all
4000 * data in memory that is needed to recreate the on-disk version of this
4003 static int __ext4_get_inode_loc(struct inode
*inode
,
4004 struct ext4_iloc
*iloc
, int in_mem
)
4006 struct ext4_group_desc
*gdp
;
4007 struct buffer_head
*bh
;
4008 struct super_block
*sb
= inode
->i_sb
;
4010 int inodes_per_block
, inode_offset
;
4013 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4014 return -EFSCORRUPTED
;
4016 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4017 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4022 * Figure out the offset within the block group inode table
4024 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4025 inode_offset
= ((inode
->i_ino
- 1) %
4026 EXT4_INODES_PER_GROUP(sb
));
4027 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4028 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4030 bh
= sb_getblk(sb
, block
);
4033 if (!buffer_uptodate(bh
)) {
4037 * If the buffer has the write error flag, we have failed
4038 * to write out another inode in the same block. In this
4039 * case, we don't have to read the block because we may
4040 * read the old inode data successfully.
4042 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4043 set_buffer_uptodate(bh
);
4045 if (buffer_uptodate(bh
)) {
4046 /* someone brought it uptodate while we waited */
4052 * If we have all information of the inode in memory and this
4053 * is the only valid inode in the block, we need not read the
4057 struct buffer_head
*bitmap_bh
;
4060 start
= inode_offset
& ~(inodes_per_block
- 1);
4062 /* Is the inode bitmap in cache? */
4063 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4064 if (unlikely(!bitmap_bh
))
4068 * If the inode bitmap isn't in cache then the
4069 * optimisation may end up performing two reads instead
4070 * of one, so skip it.
4072 if (!buffer_uptodate(bitmap_bh
)) {
4076 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4077 if (i
== inode_offset
)
4079 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4083 if (i
== start
+ inodes_per_block
) {
4084 /* all other inodes are free, so skip I/O */
4085 memset(bh
->b_data
, 0, bh
->b_size
);
4086 set_buffer_uptodate(bh
);
4094 * If we need to do any I/O, try to pre-readahead extra
4095 * blocks from the inode table.
4097 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4098 ext4_fsblk_t b
, end
, table
;
4100 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
4102 table
= ext4_inode_table(sb
, gdp
);
4103 /* s_inode_readahead_blks is always a power of 2 */
4104 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4108 num
= EXT4_INODES_PER_GROUP(sb
);
4109 if (ext4_has_group_desc_csum(sb
))
4110 num
-= ext4_itable_unused_count(sb
, gdp
);
4111 table
+= num
/ inodes_per_block
;
4115 sb_breadahead(sb
, b
++);
4119 * There are other valid inodes in the buffer, this inode
4120 * has in-inode xattrs, or we don't have this inode in memory.
4121 * Read the block from disk.
4123 trace_ext4_load_inode(inode
);
4125 bh
->b_end_io
= end_buffer_read_sync
;
4126 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
4128 if (!buffer_uptodate(bh
)) {
4129 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4130 "unable to read itable block");
4140 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4142 /* We have all inode data except xattrs in memory here. */
4143 return __ext4_get_inode_loc(inode
, iloc
,
4144 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4147 void ext4_set_inode_flags(struct inode
*inode
)
4149 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4150 unsigned int new_fl
= 0;
4152 if (flags
& EXT4_SYNC_FL
)
4154 if (flags
& EXT4_APPEND_FL
)
4156 if (flags
& EXT4_IMMUTABLE_FL
)
4157 new_fl
|= S_IMMUTABLE
;
4158 if (flags
& EXT4_NOATIME_FL
)
4159 new_fl
|= S_NOATIME
;
4160 if (flags
& EXT4_DIRSYNC_FL
)
4161 new_fl
|= S_DIRSYNC
;
4162 if (test_opt(inode
->i_sb
, DAX
) && S_ISREG(inode
->i_mode
))
4164 inode_set_flags(inode
, new_fl
,
4165 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_DAX
);
4168 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4169 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4171 unsigned int vfs_fl
;
4172 unsigned long old_fl
, new_fl
;
4175 vfs_fl
= ei
->vfs_inode
.i_flags
;
4176 old_fl
= ei
->i_flags
;
4177 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4178 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4180 if (vfs_fl
& S_SYNC
)
4181 new_fl
|= EXT4_SYNC_FL
;
4182 if (vfs_fl
& S_APPEND
)
4183 new_fl
|= EXT4_APPEND_FL
;
4184 if (vfs_fl
& S_IMMUTABLE
)
4185 new_fl
|= EXT4_IMMUTABLE_FL
;
4186 if (vfs_fl
& S_NOATIME
)
4187 new_fl
|= EXT4_NOATIME_FL
;
4188 if (vfs_fl
& S_DIRSYNC
)
4189 new_fl
|= EXT4_DIRSYNC_FL
;
4190 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4193 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4194 struct ext4_inode_info
*ei
)
4197 struct inode
*inode
= &(ei
->vfs_inode
);
4198 struct super_block
*sb
= inode
->i_sb
;
4200 if (ext4_has_feature_huge_file(sb
)) {
4201 /* we are using combined 48 bit field */
4202 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4203 le32_to_cpu(raw_inode
->i_blocks_lo
);
4204 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4205 /* i_blocks represent file system block size */
4206 return i_blocks
<< (inode
->i_blkbits
- 9);
4211 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4215 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4216 struct ext4_inode
*raw_inode
,
4217 struct ext4_inode_info
*ei
)
4219 __le32
*magic
= (void *)raw_inode
+
4220 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4221 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4222 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4223 ext4_find_inline_data_nolock(inode
);
4225 EXT4_I(inode
)->i_inline_off
= 0;
4228 int ext4_get_projid(struct inode
*inode
, kprojid_t
*projid
)
4230 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
, EXT4_FEATURE_RO_COMPAT_PROJECT
))
4232 *projid
= EXT4_I(inode
)->i_projid
;
4236 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4238 struct ext4_iloc iloc
;
4239 struct ext4_inode
*raw_inode
;
4240 struct ext4_inode_info
*ei
;
4241 struct inode
*inode
;
4242 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4249 inode
= iget_locked(sb
, ino
);
4251 return ERR_PTR(-ENOMEM
);
4252 if (!(inode
->i_state
& I_NEW
))
4258 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4261 raw_inode
= ext4_raw_inode(&iloc
);
4263 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4264 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4265 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4266 EXT4_INODE_SIZE(inode
->i_sb
)) {
4267 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4268 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4269 EXT4_INODE_SIZE(inode
->i_sb
));
4270 ret
= -EFSCORRUPTED
;
4274 ei
->i_extra_isize
= 0;
4276 /* Precompute checksum seed for inode metadata */
4277 if (ext4_has_metadata_csum(sb
)) {
4278 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4280 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4281 __le32 gen
= raw_inode
->i_generation
;
4282 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4284 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4288 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4289 EXT4_ERROR_INODE(inode
, "checksum invalid");
4294 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4295 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4296 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4297 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_PROJECT
) &&
4298 EXT4_INODE_SIZE(sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
4299 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
4300 i_projid
= (projid_t
)le32_to_cpu(raw_inode
->i_projid
);
4302 i_projid
= EXT4_DEF_PROJID
;
4304 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4305 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4306 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4308 i_uid_write(inode
, i_uid
);
4309 i_gid_write(inode
, i_gid
);
4310 ei
->i_projid
= make_kprojid(&init_user_ns
, i_projid
);
4311 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4313 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4314 ei
->i_inline_off
= 0;
4315 ei
->i_dir_start_lookup
= 0;
4316 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4317 /* We now have enough fields to check if the inode was active or not.
4318 * This is needed because nfsd might try to access dead inodes
4319 * the test is that same one that e2fsck uses
4320 * NeilBrown 1999oct15
4322 if (inode
->i_nlink
== 0) {
4323 if ((inode
->i_mode
== 0 ||
4324 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4325 ino
!= EXT4_BOOT_LOADER_INO
) {
4326 /* this inode is deleted */
4330 /* The only unlinked inodes we let through here have
4331 * valid i_mode and are being read by the orphan
4332 * recovery code: that's fine, we're about to complete
4333 * the process of deleting those.
4334 * OR it is the EXT4_BOOT_LOADER_INO which is
4335 * not initialized on a new filesystem. */
4337 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4338 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4339 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4340 if (ext4_has_feature_64bit(sb
))
4342 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4343 inode
->i_size
= ext4_isize(raw_inode
);
4344 ei
->i_disksize
= inode
->i_size
;
4346 ei
->i_reserved_quota
= 0;
4348 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4349 ei
->i_block_group
= iloc
.block_group
;
4350 ei
->i_last_alloc_group
= ~0;
4352 * NOTE! The in-memory inode i_data array is in little-endian order
4353 * even on big-endian machines: we do NOT byteswap the block numbers!
4355 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4356 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4357 INIT_LIST_HEAD(&ei
->i_orphan
);
4360 * Set transaction id's of transactions that have to be committed
4361 * to finish f[data]sync. We set them to currently running transaction
4362 * as we cannot be sure that the inode or some of its metadata isn't
4363 * part of the transaction - the inode could have been reclaimed and
4364 * now it is reread from disk.
4367 transaction_t
*transaction
;
4370 read_lock(&journal
->j_state_lock
);
4371 if (journal
->j_running_transaction
)
4372 transaction
= journal
->j_running_transaction
;
4374 transaction
= journal
->j_committing_transaction
;
4376 tid
= transaction
->t_tid
;
4378 tid
= journal
->j_commit_sequence
;
4379 read_unlock(&journal
->j_state_lock
);
4380 ei
->i_sync_tid
= tid
;
4381 ei
->i_datasync_tid
= tid
;
4384 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4385 if (ei
->i_extra_isize
== 0) {
4386 /* The extra space is currently unused. Use it. */
4387 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4388 EXT4_GOOD_OLD_INODE_SIZE
;
4390 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4394 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4395 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4396 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4397 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4399 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4400 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4401 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4402 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4404 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4409 if (ei
->i_file_acl
&&
4410 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4411 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4413 ret
= -EFSCORRUPTED
;
4415 } else if (!ext4_has_inline_data(inode
)) {
4416 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4417 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4418 (S_ISLNK(inode
->i_mode
) &&
4419 !ext4_inode_is_fast_symlink(inode
))))
4420 /* Validate extent which is part of inode */
4421 ret
= ext4_ext_check_inode(inode
);
4422 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4423 (S_ISLNK(inode
->i_mode
) &&
4424 !ext4_inode_is_fast_symlink(inode
))) {
4425 /* Validate block references which are part of inode */
4426 ret
= ext4_ind_check_inode(inode
);
4432 if (S_ISREG(inode
->i_mode
)) {
4433 inode
->i_op
= &ext4_file_inode_operations
;
4434 inode
->i_fop
= &ext4_file_operations
;
4435 ext4_set_aops(inode
);
4436 } else if (S_ISDIR(inode
->i_mode
)) {
4437 inode
->i_op
= &ext4_dir_inode_operations
;
4438 inode
->i_fop
= &ext4_dir_operations
;
4439 } else if (S_ISLNK(inode
->i_mode
)) {
4440 if (ext4_encrypted_inode(inode
)) {
4441 inode
->i_op
= &ext4_encrypted_symlink_inode_operations
;
4442 ext4_set_aops(inode
);
4443 } else if (ext4_inode_is_fast_symlink(inode
)) {
4444 inode
->i_link
= (char *)ei
->i_data
;
4445 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4446 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4447 sizeof(ei
->i_data
) - 1);
4449 inode
->i_op
= &ext4_symlink_inode_operations
;
4450 ext4_set_aops(inode
);
4452 inode_nohighmem(inode
);
4453 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4454 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4455 inode
->i_op
= &ext4_special_inode_operations
;
4456 if (raw_inode
->i_block
[0])
4457 init_special_inode(inode
, inode
->i_mode
,
4458 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4460 init_special_inode(inode
, inode
->i_mode
,
4461 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4462 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4463 make_bad_inode(inode
);
4465 ret
= -EFSCORRUPTED
;
4466 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4470 ext4_set_inode_flags(inode
);
4471 unlock_new_inode(inode
);
4477 return ERR_PTR(ret
);
4480 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4482 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4483 return ERR_PTR(-EFSCORRUPTED
);
4484 return ext4_iget(sb
, ino
);
4487 static int ext4_inode_blocks_set(handle_t
*handle
,
4488 struct ext4_inode
*raw_inode
,
4489 struct ext4_inode_info
*ei
)
4491 struct inode
*inode
= &(ei
->vfs_inode
);
4492 u64 i_blocks
= inode
->i_blocks
;
4493 struct super_block
*sb
= inode
->i_sb
;
4495 if (i_blocks
<= ~0U) {
4497 * i_blocks can be represented in a 32 bit variable
4498 * as multiple of 512 bytes
4500 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4501 raw_inode
->i_blocks_high
= 0;
4502 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4505 if (!ext4_has_feature_huge_file(sb
))
4508 if (i_blocks
<= 0xffffffffffffULL
) {
4510 * i_blocks can be represented in a 48 bit variable
4511 * as multiple of 512 bytes
4513 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4514 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4515 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4517 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4518 /* i_block is stored in file system block size */
4519 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4520 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4521 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4526 struct other_inode
{
4527 unsigned long orig_ino
;
4528 struct ext4_inode
*raw_inode
;
4531 static int other_inode_match(struct inode
* inode
, unsigned long ino
,
4534 struct other_inode
*oi
= (struct other_inode
*) data
;
4536 if ((inode
->i_ino
!= ino
) ||
4537 (inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4538 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
4539 ((inode
->i_state
& I_DIRTY_TIME
) == 0))
4541 spin_lock(&inode
->i_lock
);
4542 if (((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4543 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) == 0) &&
4544 (inode
->i_state
& I_DIRTY_TIME
)) {
4545 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4547 inode
->i_state
&= ~(I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
);
4548 spin_unlock(&inode
->i_lock
);
4550 spin_lock(&ei
->i_raw_lock
);
4551 EXT4_INODE_SET_XTIME(i_ctime
, inode
, oi
->raw_inode
);
4552 EXT4_INODE_SET_XTIME(i_mtime
, inode
, oi
->raw_inode
);
4553 EXT4_INODE_SET_XTIME(i_atime
, inode
, oi
->raw_inode
);
4554 ext4_inode_csum_set(inode
, oi
->raw_inode
, ei
);
4555 spin_unlock(&ei
->i_raw_lock
);
4556 trace_ext4_other_inode_update_time(inode
, oi
->orig_ino
);
4559 spin_unlock(&inode
->i_lock
);
4564 * Opportunistically update the other time fields for other inodes in
4565 * the same inode table block.
4567 static void ext4_update_other_inodes_time(struct super_block
*sb
,
4568 unsigned long orig_ino
, char *buf
)
4570 struct other_inode oi
;
4572 int i
, inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4573 int inode_size
= EXT4_INODE_SIZE(sb
);
4575 oi
.orig_ino
= orig_ino
;
4577 * Calculate the first inode in the inode table block. Inode
4578 * numbers are one-based. That is, the first inode in a block
4579 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4581 ino
= ((orig_ino
- 1) & ~(inodes_per_block
- 1)) + 1;
4582 for (i
= 0; i
< inodes_per_block
; i
++, ino
++, buf
+= inode_size
) {
4583 if (ino
== orig_ino
)
4585 oi
.raw_inode
= (struct ext4_inode
*) buf
;
4586 (void) find_inode_nowait(sb
, ino
, other_inode_match
, &oi
);
4591 * Post the struct inode info into an on-disk inode location in the
4592 * buffer-cache. This gobbles the caller's reference to the
4593 * buffer_head in the inode location struct.
4595 * The caller must have write access to iloc->bh.
4597 static int ext4_do_update_inode(handle_t
*handle
,
4598 struct inode
*inode
,
4599 struct ext4_iloc
*iloc
)
4601 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4602 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4603 struct buffer_head
*bh
= iloc
->bh
;
4604 struct super_block
*sb
= inode
->i_sb
;
4605 int err
= 0, rc
, block
;
4606 int need_datasync
= 0, set_large_file
= 0;
4611 spin_lock(&ei
->i_raw_lock
);
4613 /* For fields not tracked in the in-memory inode,
4614 * initialise them to zero for new inodes. */
4615 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4616 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4618 ext4_get_inode_flags(ei
);
4619 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4620 i_uid
= i_uid_read(inode
);
4621 i_gid
= i_gid_read(inode
);
4622 i_projid
= from_kprojid(&init_user_ns
, ei
->i_projid
);
4623 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4624 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4625 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4627 * Fix up interoperability with old kernels. Otherwise, old inodes get
4628 * re-used with the upper 16 bits of the uid/gid intact
4631 raw_inode
->i_uid_high
=
4632 cpu_to_le16(high_16_bits(i_uid
));
4633 raw_inode
->i_gid_high
=
4634 cpu_to_le16(high_16_bits(i_gid
));
4636 raw_inode
->i_uid_high
= 0;
4637 raw_inode
->i_gid_high
= 0;
4640 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4641 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4642 raw_inode
->i_uid_high
= 0;
4643 raw_inode
->i_gid_high
= 0;
4645 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4647 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4648 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4649 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4650 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4652 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
4654 spin_unlock(&ei
->i_raw_lock
);
4657 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4658 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4659 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4660 raw_inode
->i_file_acl_high
=
4661 cpu_to_le16(ei
->i_file_acl
>> 32);
4662 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4663 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4664 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4667 if (ei
->i_disksize
> 0x7fffffffULL
) {
4668 if (!ext4_has_feature_large_file(sb
) ||
4669 EXT4_SB(sb
)->s_es
->s_rev_level
==
4670 cpu_to_le32(EXT4_GOOD_OLD_REV
))
4673 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4674 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4675 if (old_valid_dev(inode
->i_rdev
)) {
4676 raw_inode
->i_block
[0] =
4677 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4678 raw_inode
->i_block
[1] = 0;
4680 raw_inode
->i_block
[0] = 0;
4681 raw_inode
->i_block
[1] =
4682 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4683 raw_inode
->i_block
[2] = 0;
4685 } else if (!ext4_has_inline_data(inode
)) {
4686 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4687 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4690 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4691 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4692 if (ei
->i_extra_isize
) {
4693 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4694 raw_inode
->i_version_hi
=
4695 cpu_to_le32(inode
->i_version
>> 32);
4696 raw_inode
->i_extra_isize
=
4697 cpu_to_le16(ei
->i_extra_isize
);
4701 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
4702 EXT4_FEATURE_RO_COMPAT_PROJECT
) &&
4703 i_projid
!= EXT4_DEF_PROJID
);
4705 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
4706 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
4707 raw_inode
->i_projid
= cpu_to_le32(i_projid
);
4709 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4710 spin_unlock(&ei
->i_raw_lock
);
4711 if (inode
->i_sb
->s_flags
& MS_LAZYTIME
)
4712 ext4_update_other_inodes_time(inode
->i_sb
, inode
->i_ino
,
4715 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4716 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4719 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4720 if (set_large_file
) {
4721 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
4722 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
4725 ext4_update_dynamic_rev(sb
);
4726 ext4_set_feature_large_file(sb
);
4727 ext4_handle_sync(handle
);
4728 err
= ext4_handle_dirty_super(handle
, sb
);
4730 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4733 ext4_std_error(inode
->i_sb
, err
);
4738 * ext4_write_inode()
4740 * We are called from a few places:
4742 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4743 * Here, there will be no transaction running. We wait for any running
4744 * transaction to commit.
4746 * - Within flush work (sys_sync(), kupdate and such).
4747 * We wait on commit, if told to.
4749 * - Within iput_final() -> write_inode_now()
4750 * We wait on commit, if told to.
4752 * In all cases it is actually safe for us to return without doing anything,
4753 * because the inode has been copied into a raw inode buffer in
4754 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4757 * Note that we are absolutely dependent upon all inode dirtiers doing the
4758 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4759 * which we are interested.
4761 * It would be a bug for them to not do this. The code:
4763 * mark_inode_dirty(inode)
4765 * inode->i_size = expr;
4767 * is in error because write_inode() could occur while `stuff()' is running,
4768 * and the new i_size will be lost. Plus the inode will no longer be on the
4769 * superblock's dirty inode list.
4771 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4775 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
))
4778 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4779 if (ext4_journal_current_handle()) {
4780 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4786 * No need to force transaction in WB_SYNC_NONE mode. Also
4787 * ext4_sync_fs() will force the commit after everything is
4790 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
4793 err
= ext4_force_commit(inode
->i_sb
);
4795 struct ext4_iloc iloc
;
4797 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4801 * sync(2) will flush the whole buffer cache. No need to do
4802 * it here separately for each inode.
4804 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
4805 sync_dirty_buffer(iloc
.bh
);
4806 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4807 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4808 "IO error syncing inode");
4817 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4818 * buffers that are attached to a page stradding i_size and are undergoing
4819 * commit. In that case we have to wait for commit to finish and try again.
4821 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4825 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4826 tid_t commit_tid
= 0;
4829 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4831 * All buffers in the last page remain valid? Then there's nothing to
4832 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4835 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4838 page
= find_lock_page(inode
->i_mapping
,
4839 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4842 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4843 PAGE_CACHE_SIZE
- offset
);
4845 page_cache_release(page
);
4849 read_lock(&journal
->j_state_lock
);
4850 if (journal
->j_committing_transaction
)
4851 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4852 read_unlock(&journal
->j_state_lock
);
4854 jbd2_log_wait_commit(journal
, commit_tid
);
4861 * Called from notify_change.
4863 * We want to trap VFS attempts to truncate the file as soon as
4864 * possible. In particular, we want to make sure that when the VFS
4865 * shrinks i_size, we put the inode on the orphan list and modify
4866 * i_disksize immediately, so that during the subsequent flushing of
4867 * dirty pages and freeing of disk blocks, we can guarantee that any
4868 * commit will leave the blocks being flushed in an unused state on
4869 * disk. (On recovery, the inode will get truncated and the blocks will
4870 * be freed, so we have a strong guarantee that no future commit will
4871 * leave these blocks visible to the user.)
4873 * Another thing we have to assure is that if we are in ordered mode
4874 * and inode is still attached to the committing transaction, we must
4875 * we start writeout of all the dirty pages which are being truncated.
4876 * This way we are sure that all the data written in the previous
4877 * transaction are already on disk (truncate waits for pages under
4880 * Called with inode->i_mutex down.
4882 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4884 struct inode
*inode
= d_inode(dentry
);
4887 const unsigned int ia_valid
= attr
->ia_valid
;
4889 error
= inode_change_ok(inode
, attr
);
4893 if (is_quota_modification(inode
, attr
)) {
4894 error
= dquot_initialize(inode
);
4898 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4899 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4902 /* (user+group)*(old+new) structure, inode write (sb,
4903 * inode block, ? - but truncate inode update has it) */
4904 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4905 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4906 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4907 if (IS_ERR(handle
)) {
4908 error
= PTR_ERR(handle
);
4911 error
= dquot_transfer(inode
, attr
);
4913 ext4_journal_stop(handle
);
4916 /* Update corresponding info in inode so that everything is in
4917 * one transaction */
4918 if (attr
->ia_valid
& ATTR_UID
)
4919 inode
->i_uid
= attr
->ia_uid
;
4920 if (attr
->ia_valid
& ATTR_GID
)
4921 inode
->i_gid
= attr
->ia_gid
;
4922 error
= ext4_mark_inode_dirty(handle
, inode
);
4923 ext4_journal_stop(handle
);
4926 if (attr
->ia_valid
& ATTR_SIZE
) {
4928 loff_t oldsize
= inode
->i_size
;
4929 int shrink
= (attr
->ia_size
<= inode
->i_size
);
4931 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4932 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4934 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4937 if (!S_ISREG(inode
->i_mode
))
4940 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
4941 inode_inc_iversion(inode
);
4943 if (ext4_should_order_data(inode
) &&
4944 (attr
->ia_size
< inode
->i_size
)) {
4945 error
= ext4_begin_ordered_truncate(inode
,
4950 if (attr
->ia_size
!= inode
->i_size
) {
4951 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4952 if (IS_ERR(handle
)) {
4953 error
= PTR_ERR(handle
);
4956 if (ext4_handle_valid(handle
) && shrink
) {
4957 error
= ext4_orphan_add(handle
, inode
);
4961 * Update c/mtime on truncate up, ext4_truncate() will
4962 * update c/mtime in shrink case below
4965 inode
->i_mtime
= ext4_current_time(inode
);
4966 inode
->i_ctime
= inode
->i_mtime
;
4968 down_write(&EXT4_I(inode
)->i_data_sem
);
4969 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4970 rc
= ext4_mark_inode_dirty(handle
, inode
);
4974 * We have to update i_size under i_data_sem together
4975 * with i_disksize to avoid races with writeback code
4976 * running ext4_wb_update_i_disksize().
4979 i_size_write(inode
, attr
->ia_size
);
4980 up_write(&EXT4_I(inode
)->i_data_sem
);
4981 ext4_journal_stop(handle
);
4984 ext4_orphan_del(NULL
, inode
);
4989 pagecache_isize_extended(inode
, oldsize
, inode
->i_size
);
4992 * Blocks are going to be removed from the inode. Wait
4993 * for dio in flight. Temporarily disable
4994 * dioread_nolock to prevent livelock.
4997 if (!ext4_should_journal_data(inode
)) {
4998 ext4_inode_block_unlocked_dio(inode
);
4999 inode_dio_wait(inode
);
5000 ext4_inode_resume_unlocked_dio(inode
);
5002 ext4_wait_for_tail_page_commit(inode
);
5004 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5006 * Truncate pagecache after we've waited for commit
5007 * in data=journal mode to make pages freeable.
5009 truncate_pagecache(inode
, inode
->i_size
);
5011 ext4_truncate(inode
);
5012 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5016 setattr_copy(inode
, attr
);
5017 mark_inode_dirty(inode
);
5021 * If the call to ext4_truncate failed to get a transaction handle at
5022 * all, we need to clean up the in-core orphan list manually.
5024 if (orphan
&& inode
->i_nlink
)
5025 ext4_orphan_del(NULL
, inode
);
5027 if (!rc
&& (ia_valid
& ATTR_MODE
))
5028 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
5031 ext4_std_error(inode
->i_sb
, error
);
5037 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5040 struct inode
*inode
;
5041 unsigned long long delalloc_blocks
;
5043 inode
= d_inode(dentry
);
5044 generic_fillattr(inode
, stat
);
5047 * If there is inline data in the inode, the inode will normally not
5048 * have data blocks allocated (it may have an external xattr block).
5049 * Report at least one sector for such files, so tools like tar, rsync,
5050 * others doen't incorrectly think the file is completely sparse.
5052 if (unlikely(ext4_has_inline_data(inode
)))
5053 stat
->blocks
+= (stat
->size
+ 511) >> 9;
5056 * We can't update i_blocks if the block allocation is delayed
5057 * otherwise in the case of system crash before the real block
5058 * allocation is done, we will have i_blocks inconsistent with
5059 * on-disk file blocks.
5060 * We always keep i_blocks updated together with real
5061 * allocation. But to not confuse with user, stat
5062 * will return the blocks that include the delayed allocation
5063 * blocks for this file.
5065 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
5066 EXT4_I(inode
)->i_reserved_data_blocks
);
5067 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
5071 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
5074 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5075 return ext4_ind_trans_blocks(inode
, lblocks
);
5076 return ext4_ext_index_trans_blocks(inode
, pextents
);
5080 * Account for index blocks, block groups bitmaps and block group
5081 * descriptor blocks if modify datablocks and index blocks
5082 * worse case, the indexs blocks spread over different block groups
5084 * If datablocks are discontiguous, they are possible to spread over
5085 * different block groups too. If they are contiguous, with flexbg,
5086 * they could still across block group boundary.
5088 * Also account for superblock, inode, quota and xattr blocks
5090 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
5093 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5099 * How many index blocks need to touch to map @lblocks logical blocks
5100 * to @pextents physical extents?
5102 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
5107 * Now let's see how many group bitmaps and group descriptors need
5110 groups
= idxblocks
+ pextents
;
5112 if (groups
> ngroups
)
5114 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5115 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5117 /* bitmaps and block group descriptor blocks */
5118 ret
+= groups
+ gdpblocks
;
5120 /* Blocks for super block, inode, quota and xattr blocks */
5121 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5127 * Calculate the total number of credits to reserve to fit
5128 * the modification of a single pages into a single transaction,
5129 * which may include multiple chunks of block allocations.
5131 * This could be called via ext4_write_begin()
5133 * We need to consider the worse case, when
5134 * one new block per extent.
5136 int ext4_writepage_trans_blocks(struct inode
*inode
)
5138 int bpp
= ext4_journal_blocks_per_page(inode
);
5141 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
5143 /* Account for data blocks for journalled mode */
5144 if (ext4_should_journal_data(inode
))
5150 * Calculate the journal credits for a chunk of data modification.
5152 * This is called from DIO, fallocate or whoever calling
5153 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5155 * journal buffers for data blocks are not included here, as DIO
5156 * and fallocate do no need to journal data buffers.
5158 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5160 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5164 * The caller must have previously called ext4_reserve_inode_write().
5165 * Give this, we know that the caller already has write access to iloc->bh.
5167 int ext4_mark_iloc_dirty(handle_t
*handle
,
5168 struct inode
*inode
, struct ext4_iloc
*iloc
)
5172 if (IS_I_VERSION(inode
))
5173 inode_inc_iversion(inode
);
5175 /* the do_update_inode consumes one bh->b_count */
5178 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5179 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5185 * On success, We end up with an outstanding reference count against
5186 * iloc->bh. This _must_ be cleaned up later.
5190 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5191 struct ext4_iloc
*iloc
)
5195 err
= ext4_get_inode_loc(inode
, iloc
);
5197 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5198 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5204 ext4_std_error(inode
->i_sb
, err
);
5209 * Expand an inode by new_extra_isize bytes.
5210 * Returns 0 on success or negative error number on failure.
5212 static int ext4_expand_extra_isize(struct inode
*inode
,
5213 unsigned int new_extra_isize
,
5214 struct ext4_iloc iloc
,
5217 struct ext4_inode
*raw_inode
;
5218 struct ext4_xattr_ibody_header
*header
;
5220 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5223 raw_inode
= ext4_raw_inode(&iloc
);
5225 header
= IHDR(inode
, raw_inode
);
5227 /* No extended attributes present */
5228 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5229 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5230 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5232 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5236 /* try to expand with EAs present */
5237 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5242 * What we do here is to mark the in-core inode as clean with respect to inode
5243 * dirtiness (it may still be data-dirty).
5244 * This means that the in-core inode may be reaped by prune_icache
5245 * without having to perform any I/O. This is a very good thing,
5246 * because *any* task may call prune_icache - even ones which
5247 * have a transaction open against a different journal.
5249 * Is this cheating? Not really. Sure, we haven't written the
5250 * inode out, but prune_icache isn't a user-visible syncing function.
5251 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5252 * we start and wait on commits.
5254 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5256 struct ext4_iloc iloc
;
5257 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5258 static unsigned int mnt_count
;
5262 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5263 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5264 if (ext4_handle_valid(handle
) &&
5265 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5266 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5268 * We need extra buffer credits since we may write into EA block
5269 * with this same handle. If journal_extend fails, then it will
5270 * only result in a minor loss of functionality for that inode.
5271 * If this is felt to be critical, then e2fsck should be run to
5272 * force a large enough s_min_extra_isize.
5274 if ((jbd2_journal_extend(handle
,
5275 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5276 ret
= ext4_expand_extra_isize(inode
,
5277 sbi
->s_want_extra_isize
,
5280 ext4_set_inode_state(inode
,
5281 EXT4_STATE_NO_EXPAND
);
5283 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5284 ext4_warning(inode
->i_sb
,
5285 "Unable to expand inode %lu. Delete"
5286 " some EAs or run e2fsck.",
5289 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5295 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5300 * ext4_dirty_inode() is called from __mark_inode_dirty()
5302 * We're really interested in the case where a file is being extended.
5303 * i_size has been changed by generic_commit_write() and we thus need
5304 * to include the updated inode in the current transaction.
5306 * Also, dquot_alloc_block() will always dirty the inode when blocks
5307 * are allocated to the file.
5309 * If the inode is marked synchronous, we don't honour that here - doing
5310 * so would cause a commit on atime updates, which we don't bother doing.
5311 * We handle synchronous inodes at the highest possible level.
5313 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5314 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5315 * to copy into the on-disk inode structure are the timestamp files.
5317 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5321 if (flags
== I_DIRTY_TIME
)
5323 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5327 ext4_mark_inode_dirty(handle
, inode
);
5329 ext4_journal_stop(handle
);
5336 * Bind an inode's backing buffer_head into this transaction, to prevent
5337 * it from being flushed to disk early. Unlike
5338 * ext4_reserve_inode_write, this leaves behind no bh reference and
5339 * returns no iloc structure, so the caller needs to repeat the iloc
5340 * lookup to mark the inode dirty later.
5342 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5344 struct ext4_iloc iloc
;
5348 err
= ext4_get_inode_loc(inode
, &iloc
);
5350 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5351 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5353 err
= ext4_handle_dirty_metadata(handle
,
5359 ext4_std_error(inode
->i_sb
, err
);
5364 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5371 * We have to be very careful here: changing a data block's
5372 * journaling status dynamically is dangerous. If we write a
5373 * data block to the journal, change the status and then delete
5374 * that block, we risk forgetting to revoke the old log record
5375 * from the journal and so a subsequent replay can corrupt data.
5376 * So, first we make sure that the journal is empty and that
5377 * nobody is changing anything.
5380 journal
= EXT4_JOURNAL(inode
);
5383 if (is_journal_aborted(journal
))
5385 /* We have to allocate physical blocks for delalloc blocks
5386 * before flushing journal. otherwise delalloc blocks can not
5387 * be allocated any more. even more truncate on delalloc blocks
5388 * could trigger BUG by flushing delalloc blocks in journal.
5389 * There is no delalloc block in non-journal data mode.
5391 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5392 err
= ext4_alloc_da_blocks(inode
);
5397 /* Wait for all existing dio workers */
5398 ext4_inode_block_unlocked_dio(inode
);
5399 inode_dio_wait(inode
);
5401 jbd2_journal_lock_updates(journal
);
5404 * OK, there are no updates running now, and all cached data is
5405 * synced to disk. We are now in a completely consistent state
5406 * which doesn't have anything in the journal, and we know that
5407 * no filesystem updates are running, so it is safe to modify
5408 * the inode's in-core data-journaling state flag now.
5412 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5414 err
= jbd2_journal_flush(journal
);
5416 jbd2_journal_unlock_updates(journal
);
5417 ext4_inode_resume_unlocked_dio(inode
);
5420 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5422 ext4_set_aops(inode
);
5424 jbd2_journal_unlock_updates(journal
);
5425 ext4_inode_resume_unlocked_dio(inode
);
5427 /* Finally we can mark the inode as dirty. */
5429 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5431 return PTR_ERR(handle
);
5433 err
= ext4_mark_inode_dirty(handle
, inode
);
5434 ext4_handle_sync(handle
);
5435 ext4_journal_stop(handle
);
5436 ext4_std_error(inode
->i_sb
, err
);
5441 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5443 return !buffer_mapped(bh
);
5446 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5448 struct page
*page
= vmf
->page
;
5452 struct file
*file
= vma
->vm_file
;
5453 struct inode
*inode
= file_inode(file
);
5454 struct address_space
*mapping
= inode
->i_mapping
;
5456 get_block_t
*get_block
;
5459 sb_start_pagefault(inode
->i_sb
);
5460 file_update_time(vma
->vm_file
);
5462 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5463 /* Delalloc case is easy... */
5464 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5465 !ext4_should_journal_data(inode
) &&
5466 !ext4_nonda_switch(inode
->i_sb
)) {
5468 ret
= block_page_mkwrite(vma
, vmf
,
5469 ext4_da_get_block_prep
);
5470 } while (ret
== -ENOSPC
&&
5471 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5476 size
= i_size_read(inode
);
5477 /* Page got truncated from under us? */
5478 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5480 ret
= VM_FAULT_NOPAGE
;
5484 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5485 len
= size
& ~PAGE_CACHE_MASK
;
5487 len
= PAGE_CACHE_SIZE
;
5489 * Return if we have all the buffers mapped. This avoids the need to do
5490 * journal_start/journal_stop which can block and take a long time
5492 if (page_has_buffers(page
)) {
5493 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5495 ext4_bh_unmapped
)) {
5496 /* Wait so that we don't change page under IO */
5497 wait_for_stable_page(page
);
5498 ret
= VM_FAULT_LOCKED
;
5503 /* OK, we need to fill the hole... */
5504 if (ext4_should_dioread_nolock(inode
))
5505 get_block
= ext4_get_block_write
;
5507 get_block
= ext4_get_block
;
5509 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5510 ext4_writepage_trans_blocks(inode
));
5511 if (IS_ERR(handle
)) {
5512 ret
= VM_FAULT_SIGBUS
;
5515 ret
= block_page_mkwrite(vma
, vmf
, get_block
);
5516 if (!ret
&& ext4_should_journal_data(inode
)) {
5517 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5518 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5520 ret
= VM_FAULT_SIGBUS
;
5521 ext4_journal_stop(handle
);
5524 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5526 ext4_journal_stop(handle
);
5527 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5530 ret
= block_page_mkwrite_return(ret
);
5532 up_read(&EXT4_I(inode
)->i_mmap_sem
);
5533 sb_end_pagefault(inode
->i_sb
);
5537 int ext4_filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5539 struct inode
*inode
= file_inode(vma
->vm_file
);
5542 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5543 err
= filemap_fault(vma
, vmf
);
5544 up_read(&EXT4_I(inode
)->i_mmap_sem
);