]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ext4/inode.c
Merge ext4 changes in ext4_file_write() into for-next
[mirror_ubuntu-jammy-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99 }
100
101 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103 {
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 }
118
119 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121 {
122 trace_ext4_begin_ordered_truncate(inode, new_size);
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
134 }
135
136 static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
138 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
142
143 /*
144 * Test whether an inode is a fast symlink.
145 */
146 static int ext4_inode_is_fast_symlink(struct inode *inode)
147 {
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
150
151 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
152 }
153
154 /*
155 * Restart the transaction associated with *handle. This does a commit,
156 * so before we call here everything must be consistently dirtied against
157 * this transaction.
158 */
159 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
160 int nblocks)
161 {
162 int ret;
163
164 /*
165 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
166 * moment, get_block can be called only for blocks inside i_size since
167 * page cache has been already dropped and writes are blocked by
168 * i_mutex. So we can safely drop the i_data_sem here.
169 */
170 BUG_ON(EXT4_JOURNAL(inode) == NULL);
171 jbd_debug(2, "restarting handle %p\n", handle);
172 up_write(&EXT4_I(inode)->i_data_sem);
173 ret = ext4_journal_restart(handle, nblocks);
174 down_write(&EXT4_I(inode)->i_data_sem);
175 ext4_discard_preallocations(inode);
176
177 return ret;
178 }
179
180 /*
181 * Called at the last iput() if i_nlink is zero.
182 */
183 void ext4_evict_inode(struct inode *inode)
184 {
185 handle_t *handle;
186 int err;
187
188 trace_ext4_evict_inode(inode);
189
190 if (inode->i_nlink) {
191 /*
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
205 *
206 * Note that directories do not have this problem because they
207 * don't use page cache.
208 */
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
211 inode->i_ino != EXT4_JOURNAL_INO) {
212 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
213 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214
215 jbd2_complete_transaction(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
217 }
218 truncate_inode_pages_final(&inode->i_data);
219
220 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
221 goto no_delete;
222 }
223
224 if (!is_bad_inode(inode))
225 dquot_initialize(inode);
226
227 if (ext4_should_order_data(inode))
228 ext4_begin_ordered_truncate(inode, 0);
229 truncate_inode_pages_final(&inode->i_data);
230
231 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
232 if (is_bad_inode(inode))
233 goto no_delete;
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
327 */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333 return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
342 {
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 struct ext4_inode_info *ei = EXT4_I(inode);
345
346 spin_lock(&ei->i_block_reservation_lock);
347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
356
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
359 "with only %d reserved metadata blocks "
360 "(releasing %d blocks with reserved %d data blocks)",
361 inode->i_ino, ei->i_allocated_meta_blocks,
362 ei->i_reserved_meta_blocks, used,
363 ei->i_reserved_data_blocks);
364 WARN_ON(1);
365 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
366 }
367
368 /* Update per-inode reservations */
369 ei->i_reserved_data_blocks -= used;
370 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
371 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
372 used + ei->i_allocated_meta_blocks);
373 ei->i_allocated_meta_blocks = 0;
374
375 if (ei->i_reserved_data_blocks == 0) {
376 /*
377 * We can release all of the reserved metadata blocks
378 * only when we have written all of the delayed
379 * allocation blocks.
380 */
381 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
382 ei->i_reserved_meta_blocks);
383 ei->i_reserved_meta_blocks = 0;
384 ei->i_da_metadata_calc_len = 0;
385 }
386 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
387
388 /* Update quota subsystem for data blocks */
389 if (quota_claim)
390 dquot_claim_block(inode, EXT4_C2B(sbi, used));
391 else {
392 /*
393 * We did fallocate with an offset that is already delayed
394 * allocated. So on delayed allocated writeback we should
395 * not re-claim the quota for fallocated blocks.
396 */
397 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 }
399
400 /*
401 * If we have done all the pending block allocations and if
402 * there aren't any writers on the inode, we can discard the
403 * inode's preallocations.
404 */
405 if ((ei->i_reserved_data_blocks == 0) &&
406 (atomic_read(&inode->i_writecount) == 0))
407 ext4_discard_preallocations(inode);
408 }
409
410 static int __check_block_validity(struct inode *inode, const char *func,
411 unsigned int line,
412 struct ext4_map_blocks *map)
413 {
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_len);
420 return -EIO;
421 }
422 return 0;
423 }
424
425 #define check_block_validity(inode, map) \
426 __check_block_validity((inode), __func__, __LINE__, (map))
427
428 #ifdef ES_AGGRESSIVE_TEST
429 static void ext4_map_blocks_es_recheck(handle_t *handle,
430 struct inode *inode,
431 struct ext4_map_blocks *es_map,
432 struct ext4_map_blocks *map,
433 int flags)
434 {
435 int retval;
436
437 map->m_flags = 0;
438 /*
439 * There is a race window that the result is not the same.
440 * e.g. xfstests #223 when dioread_nolock enables. The reason
441 * is that we lookup a block mapping in extent status tree with
442 * out taking i_data_sem. So at the time the unwritten extent
443 * could be converted.
444 */
445 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
446 down_read((&EXT4_I(inode)->i_data_sem));
447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
448 retval = ext4_ext_map_blocks(handle, inode, map, flags &
449 EXT4_GET_BLOCKS_KEEP_SIZE);
450 } else {
451 retval = ext4_ind_map_blocks(handle, inode, map, flags &
452 EXT4_GET_BLOCKS_KEEP_SIZE);
453 }
454 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
455 up_read((&EXT4_I(inode)->i_data_sem));
456 /*
457 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
458 * because it shouldn't be marked in es_map->m_flags.
459 */
460 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocated.
493 * if create==0 and the blocks are pre-allocated and unwritten block,
494 * the result buffer head is unmapped. If the create ==1, it will make sure
495 * the buffer head is mapped.
496 *
497 * It returns 0 if plain look up failed (blocks have not been allocated), in
498 * that case, buffer head is unmapped
499 *
500 * It returns the error in case of allocation failure.
501 */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504 {
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
518
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EIO;
528
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531 ext4_es_lru_add(inode);
532 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
533 map->m_pblk = ext4_es_pblock(&es) +
534 map->m_lblk - es.es_lblk;
535 map->m_flags |= ext4_es_is_written(&es) ?
536 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
537 retval = es.es_len - (map->m_lblk - es.es_lblk);
538 if (retval > map->m_len)
539 retval = map->m_len;
540 map->m_len = retval;
541 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
542 retval = 0;
543 } else {
544 BUG_ON(1);
545 }
546 #ifdef ES_AGGRESSIVE_TEST
547 ext4_map_blocks_es_recheck(handle, inode, map,
548 &orig_map, flags);
549 #endif
550 goto found;
551 }
552
553 /*
554 * Try to see if we can get the block without requesting a new
555 * file system block.
556 */
557 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
558 down_read((&EXT4_I(inode)->i_data_sem));
559 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
560 retval = ext4_ext_map_blocks(handle, inode, map, flags &
561 EXT4_GET_BLOCKS_KEEP_SIZE);
562 } else {
563 retval = ext4_ind_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
565 }
566 if (retval > 0) {
567 unsigned int status;
568
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
575 }
576
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
580 ext4_find_delalloc_range(inode, map->m_lblk,
581 map->m_lblk + map->m_len - 1))
582 status |= EXTENT_STATUS_DELAYED;
583 ret = ext4_es_insert_extent(inode, map->m_lblk,
584 map->m_len, map->m_pblk, status);
585 if (ret < 0)
586 retval = ret;
587 }
588 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
589 up_read((&EXT4_I(inode)->i_data_sem));
590
591 found:
592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
593 ret = check_block_validity(inode, map);
594 if (ret != 0)
595 return ret;
596 }
597
598 /* If it is only a block(s) look up */
599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
600 return retval;
601
602 /*
603 * Returns if the blocks have already allocated
604 *
605 * Note that if blocks have been preallocated
606 * ext4_ext_get_block() returns the create = 0
607 * with buffer head unmapped.
608 */
609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
610 /*
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
614 */
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
617
618 /*
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
621 */
622 map->m_flags &= ~EXT4_MAP_FLAGS;
623
624 /*
625 * New blocks allocate and/or writing to unwritten extent
626 * will possibly result in updating i_data, so we take
627 * the write lock of i_data_sem, and call get_blocks()
628 * with create == 1 flag.
629 */
630 down_write((&EXT4_I(inode)->i_data_sem));
631
632 /*
633 * if the caller is from delayed allocation writeout path
634 * we have already reserved fs blocks for allocation
635 * let the underlying get_block() function know to
636 * avoid double accounting
637 */
638 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
639 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
640 /*
641 * We need to check for EXT4 here because migrate
642 * could have changed the inode type in between
643 */
644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
645 retval = ext4_ext_map_blocks(handle, inode, map, flags);
646 } else {
647 retval = ext4_ind_map_blocks(handle, inode, map, flags);
648
649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
650 /*
651 * We allocated new blocks which will result in
652 * i_data's format changing. Force the migrate
653 * to fail by clearing migrate flags
654 */
655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
656 }
657
658 /*
659 * Update reserved blocks/metadata blocks after successful
660 * block allocation which had been deferred till now. We don't
661 * support fallocate for non extent files. So we can update
662 * reserve space here.
663 */
664 if ((retval > 0) &&
665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
666 ext4_da_update_reserve_space(inode, retval, 1);
667 }
668 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
669 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
670
671 if (retval > 0) {
672 unsigned int status;
673
674 if (unlikely(retval != map->m_len)) {
675 ext4_warning(inode->i_sb,
676 "ES len assertion failed for inode "
677 "%lu: retval %d != map->m_len %d",
678 inode->i_ino, retval, map->m_len);
679 WARN_ON(1);
680 }
681
682 /*
683 * If the extent has been zeroed out, we don't need to update
684 * extent status tree.
685 */
686 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
687 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
688 if (ext4_es_is_written(&es))
689 goto has_zeroout;
690 }
691 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
692 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
693 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
694 ext4_find_delalloc_range(inode, map->m_lblk,
695 map->m_lblk + map->m_len - 1))
696 status |= EXTENT_STATUS_DELAYED;
697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 map->m_pblk, status);
699 if (ret < 0)
700 retval = ret;
701 }
702
703 has_zeroout:
704 up_write((&EXT4_I(inode)->i_data_sem));
705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
706 ret = check_block_validity(inode, map);
707 if (ret != 0)
708 return ret;
709 }
710 return retval;
711 }
712
713 /* Maximum number of blocks we map for direct IO at once. */
714 #define DIO_MAX_BLOCKS 4096
715
716 static int _ext4_get_block(struct inode *inode, sector_t iblock,
717 struct buffer_head *bh, int flags)
718 {
719 handle_t *handle = ext4_journal_current_handle();
720 struct ext4_map_blocks map;
721 int ret = 0, started = 0;
722 int dio_credits;
723
724 if (ext4_has_inline_data(inode))
725 return -ERANGE;
726
727 map.m_lblk = iblock;
728 map.m_len = bh->b_size >> inode->i_blkbits;
729
730 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
731 /* Direct IO write... */
732 if (map.m_len > DIO_MAX_BLOCKS)
733 map.m_len = DIO_MAX_BLOCKS;
734 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
735 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
736 dio_credits);
737 if (IS_ERR(handle)) {
738 ret = PTR_ERR(handle);
739 return ret;
740 }
741 started = 1;
742 }
743
744 ret = ext4_map_blocks(handle, inode, &map, flags);
745 if (ret > 0) {
746 ext4_io_end_t *io_end = ext4_inode_aio(inode);
747
748 map_bh(bh, inode->i_sb, map.m_pblk);
749 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
750 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
751 set_buffer_defer_completion(bh);
752 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
753 ret = 0;
754 }
755 if (started)
756 ext4_journal_stop(handle);
757 return ret;
758 }
759
760 int ext4_get_block(struct inode *inode, sector_t iblock,
761 struct buffer_head *bh, int create)
762 {
763 return _ext4_get_block(inode, iblock, bh,
764 create ? EXT4_GET_BLOCKS_CREATE : 0);
765 }
766
767 /*
768 * `handle' can be NULL if create is zero
769 */
770 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
771 ext4_lblk_t block, int create, int *errp)
772 {
773 struct ext4_map_blocks map;
774 struct buffer_head *bh;
775 int fatal = 0, err;
776
777 J_ASSERT(handle != NULL || create == 0);
778
779 map.m_lblk = block;
780 map.m_len = 1;
781 err = ext4_map_blocks(handle, inode, &map,
782 create ? EXT4_GET_BLOCKS_CREATE : 0);
783
784 /* ensure we send some value back into *errp */
785 *errp = 0;
786
787 if (create && err == 0)
788 err = -ENOSPC; /* should never happen */
789 if (err < 0)
790 *errp = err;
791 if (err <= 0)
792 return NULL;
793
794 bh = sb_getblk(inode->i_sb, map.m_pblk);
795 if (unlikely(!bh)) {
796 *errp = -ENOMEM;
797 return NULL;
798 }
799 if (map.m_flags & EXT4_MAP_NEW) {
800 J_ASSERT(create != 0);
801 J_ASSERT(handle != NULL);
802
803 /*
804 * Now that we do not always journal data, we should
805 * keep in mind whether this should always journal the
806 * new buffer as metadata. For now, regular file
807 * writes use ext4_get_block instead, so it's not a
808 * problem.
809 */
810 lock_buffer(bh);
811 BUFFER_TRACE(bh, "call get_create_access");
812 fatal = ext4_journal_get_create_access(handle, bh);
813 if (!fatal && !buffer_uptodate(bh)) {
814 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
815 set_buffer_uptodate(bh);
816 }
817 unlock_buffer(bh);
818 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
819 err = ext4_handle_dirty_metadata(handle, inode, bh);
820 if (!fatal)
821 fatal = err;
822 } else {
823 BUFFER_TRACE(bh, "not a new buffer");
824 }
825 if (fatal) {
826 *errp = fatal;
827 brelse(bh);
828 bh = NULL;
829 }
830 return bh;
831 }
832
833 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
834 ext4_lblk_t block, int create, int *err)
835 {
836 struct buffer_head *bh;
837
838 bh = ext4_getblk(handle, inode, block, create, err);
839 if (!bh)
840 return bh;
841 if (buffer_uptodate(bh))
842 return bh;
843 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
844 wait_on_buffer(bh);
845 if (buffer_uptodate(bh))
846 return bh;
847 put_bh(bh);
848 *err = -EIO;
849 return NULL;
850 }
851
852 int ext4_walk_page_buffers(handle_t *handle,
853 struct buffer_head *head,
854 unsigned from,
855 unsigned to,
856 int *partial,
857 int (*fn)(handle_t *handle,
858 struct buffer_head *bh))
859 {
860 struct buffer_head *bh;
861 unsigned block_start, block_end;
862 unsigned blocksize = head->b_size;
863 int err, ret = 0;
864 struct buffer_head *next;
865
866 for (bh = head, block_start = 0;
867 ret == 0 && (bh != head || !block_start);
868 block_start = block_end, bh = next) {
869 next = bh->b_this_page;
870 block_end = block_start + blocksize;
871 if (block_end <= from || block_start >= to) {
872 if (partial && !buffer_uptodate(bh))
873 *partial = 1;
874 continue;
875 }
876 err = (*fn)(handle, bh);
877 if (!ret)
878 ret = err;
879 }
880 return ret;
881 }
882
883 /*
884 * To preserve ordering, it is essential that the hole instantiation and
885 * the data write be encapsulated in a single transaction. We cannot
886 * close off a transaction and start a new one between the ext4_get_block()
887 * and the commit_write(). So doing the jbd2_journal_start at the start of
888 * prepare_write() is the right place.
889 *
890 * Also, this function can nest inside ext4_writepage(). In that case, we
891 * *know* that ext4_writepage() has generated enough buffer credits to do the
892 * whole page. So we won't block on the journal in that case, which is good,
893 * because the caller may be PF_MEMALLOC.
894 *
895 * By accident, ext4 can be reentered when a transaction is open via
896 * quota file writes. If we were to commit the transaction while thus
897 * reentered, there can be a deadlock - we would be holding a quota
898 * lock, and the commit would never complete if another thread had a
899 * transaction open and was blocking on the quota lock - a ranking
900 * violation.
901 *
902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
903 * will _not_ run commit under these circumstances because handle->h_ref
904 * is elevated. We'll still have enough credits for the tiny quotafile
905 * write.
906 */
907 int do_journal_get_write_access(handle_t *handle,
908 struct buffer_head *bh)
909 {
910 int dirty = buffer_dirty(bh);
911 int ret;
912
913 if (!buffer_mapped(bh) || buffer_freed(bh))
914 return 0;
915 /*
916 * __block_write_begin() could have dirtied some buffers. Clean
917 * the dirty bit as jbd2_journal_get_write_access() could complain
918 * otherwise about fs integrity issues. Setting of the dirty bit
919 * by __block_write_begin() isn't a real problem here as we clear
920 * the bit before releasing a page lock and thus writeback cannot
921 * ever write the buffer.
922 */
923 if (dirty)
924 clear_buffer_dirty(bh);
925 ret = ext4_journal_get_write_access(handle, bh);
926 if (!ret && dirty)
927 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
928 return ret;
929 }
930
931 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
932 struct buffer_head *bh_result, int create);
933 static int ext4_write_begin(struct file *file, struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned flags,
935 struct page **pagep, void **fsdata)
936 {
937 struct inode *inode = mapping->host;
938 int ret, needed_blocks;
939 handle_t *handle;
940 int retries = 0;
941 struct page *page;
942 pgoff_t index;
943 unsigned from, to;
944
945 trace_ext4_write_begin(inode, pos, len, flags);
946 /*
947 * Reserve one block more for addition to orphan list in case
948 * we allocate blocks but write fails for some reason
949 */
950 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
951 index = pos >> PAGE_CACHE_SHIFT;
952 from = pos & (PAGE_CACHE_SIZE - 1);
953 to = from + len;
954
955 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
956 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
957 flags, pagep);
958 if (ret < 0)
959 return ret;
960 if (ret == 1)
961 return 0;
962 }
963
964 /*
965 * grab_cache_page_write_begin() can take a long time if the
966 * system is thrashing due to memory pressure, or if the page
967 * is being written back. So grab it first before we start
968 * the transaction handle. This also allows us to allocate
969 * the page (if needed) without using GFP_NOFS.
970 */
971 retry_grab:
972 page = grab_cache_page_write_begin(mapping, index, flags);
973 if (!page)
974 return -ENOMEM;
975 unlock_page(page);
976
977 retry_journal:
978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
979 if (IS_ERR(handle)) {
980 page_cache_release(page);
981 return PTR_ERR(handle);
982 }
983
984 lock_page(page);
985 if (page->mapping != mapping) {
986 /* The page got truncated from under us */
987 unlock_page(page);
988 page_cache_release(page);
989 ext4_journal_stop(handle);
990 goto retry_grab;
991 }
992 /* In case writeback began while the page was unlocked */
993 wait_for_stable_page(page);
994
995 if (ext4_should_dioread_nolock(inode))
996 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
997 else
998 ret = __block_write_begin(page, pos, len, ext4_get_block);
999
1000 if (!ret && ext4_should_journal_data(inode)) {
1001 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002 from, to, NULL,
1003 do_journal_get_write_access);
1004 }
1005
1006 if (ret) {
1007 unlock_page(page);
1008 /*
1009 * __block_write_begin may have instantiated a few blocks
1010 * outside i_size. Trim these off again. Don't need
1011 * i_size_read because we hold i_mutex.
1012 *
1013 * Add inode to orphan list in case we crash before
1014 * truncate finishes
1015 */
1016 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017 ext4_orphan_add(handle, inode);
1018
1019 ext4_journal_stop(handle);
1020 if (pos + len > inode->i_size) {
1021 ext4_truncate_failed_write(inode);
1022 /*
1023 * If truncate failed early the inode might
1024 * still be on the orphan list; we need to
1025 * make sure the inode is removed from the
1026 * orphan list in that case.
1027 */
1028 if (inode->i_nlink)
1029 ext4_orphan_del(NULL, inode);
1030 }
1031
1032 if (ret == -ENOSPC &&
1033 ext4_should_retry_alloc(inode->i_sb, &retries))
1034 goto retry_journal;
1035 page_cache_release(page);
1036 return ret;
1037 }
1038 *pagep = page;
1039 return ret;
1040 }
1041
1042 /* For write_end() in data=journal mode */
1043 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1044 {
1045 int ret;
1046 if (!buffer_mapped(bh) || buffer_freed(bh))
1047 return 0;
1048 set_buffer_uptodate(bh);
1049 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050 clear_buffer_meta(bh);
1051 clear_buffer_prio(bh);
1052 return ret;
1053 }
1054
1055 /*
1056 * We need to pick up the new inode size which generic_commit_write gave us
1057 * `file' can be NULL - eg, when called from page_symlink().
1058 *
1059 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1060 * buffers are managed internally.
1061 */
1062 static int ext4_write_end(struct file *file,
1063 struct address_space *mapping,
1064 loff_t pos, unsigned len, unsigned copied,
1065 struct page *page, void *fsdata)
1066 {
1067 handle_t *handle = ext4_journal_current_handle();
1068 struct inode *inode = mapping->host;
1069 int ret = 0, ret2;
1070 int i_size_changed = 0;
1071
1072 trace_ext4_write_end(inode, pos, len, copied);
1073 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074 ret = ext4_jbd2_file_inode(handle, inode);
1075 if (ret) {
1076 unlock_page(page);
1077 page_cache_release(page);
1078 goto errout;
1079 }
1080 }
1081
1082 if (ext4_has_inline_data(inode)) {
1083 ret = ext4_write_inline_data_end(inode, pos, len,
1084 copied, page);
1085 if (ret < 0)
1086 goto errout;
1087 copied = ret;
1088 } else
1089 copied = block_write_end(file, mapping, pos,
1090 len, copied, page, fsdata);
1091
1092 /*
1093 * No need to use i_size_read() here, the i_size
1094 * cannot change under us because we hole i_mutex.
1095 *
1096 * But it's important to update i_size while still holding page lock:
1097 * page writeout could otherwise come in and zero beyond i_size.
1098 */
1099 if (pos + copied > inode->i_size) {
1100 i_size_write(inode, pos + copied);
1101 i_size_changed = 1;
1102 }
1103
1104 if (pos + copied > EXT4_I(inode)->i_disksize) {
1105 /* We need to mark inode dirty even if
1106 * new_i_size is less that inode->i_size
1107 * but greater than i_disksize. (hint delalloc)
1108 */
1109 ext4_update_i_disksize(inode, (pos + copied));
1110 i_size_changed = 1;
1111 }
1112 unlock_page(page);
1113 page_cache_release(page);
1114
1115 /*
1116 * Don't mark the inode dirty under page lock. First, it unnecessarily
1117 * makes the holding time of page lock longer. Second, it forces lock
1118 * ordering of page lock and transaction start for journaling
1119 * filesystems.
1120 */
1121 if (i_size_changed)
1122 ext4_mark_inode_dirty(handle, inode);
1123
1124 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125 /* if we have allocated more blocks and copied
1126 * less. We will have blocks allocated outside
1127 * inode->i_size. So truncate them
1128 */
1129 ext4_orphan_add(handle, inode);
1130 errout:
1131 ret2 = ext4_journal_stop(handle);
1132 if (!ret)
1133 ret = ret2;
1134
1135 if (pos + len > inode->i_size) {
1136 ext4_truncate_failed_write(inode);
1137 /*
1138 * If truncate failed early the inode might still be
1139 * on the orphan list; we need to make sure the inode
1140 * is removed from the orphan list in that case.
1141 */
1142 if (inode->i_nlink)
1143 ext4_orphan_del(NULL, inode);
1144 }
1145
1146 return ret ? ret : copied;
1147 }
1148
1149 static int ext4_journalled_write_end(struct file *file,
1150 struct address_space *mapping,
1151 loff_t pos, unsigned len, unsigned copied,
1152 struct page *page, void *fsdata)
1153 {
1154 handle_t *handle = ext4_journal_current_handle();
1155 struct inode *inode = mapping->host;
1156 int ret = 0, ret2;
1157 int partial = 0;
1158 unsigned from, to;
1159 loff_t new_i_size;
1160
1161 trace_ext4_journalled_write_end(inode, pos, len, copied);
1162 from = pos & (PAGE_CACHE_SIZE - 1);
1163 to = from + len;
1164
1165 BUG_ON(!ext4_handle_valid(handle));
1166
1167 if (ext4_has_inline_data(inode))
1168 copied = ext4_write_inline_data_end(inode, pos, len,
1169 copied, page);
1170 else {
1171 if (copied < len) {
1172 if (!PageUptodate(page))
1173 copied = 0;
1174 page_zero_new_buffers(page, from+copied, to);
1175 }
1176
1177 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178 to, &partial, write_end_fn);
1179 if (!partial)
1180 SetPageUptodate(page);
1181 }
1182 new_i_size = pos + copied;
1183 if (new_i_size > inode->i_size)
1184 i_size_write(inode, pos+copied);
1185 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187 if (new_i_size > EXT4_I(inode)->i_disksize) {
1188 ext4_update_i_disksize(inode, new_i_size);
1189 ret2 = ext4_mark_inode_dirty(handle, inode);
1190 if (!ret)
1191 ret = ret2;
1192 }
1193
1194 unlock_page(page);
1195 page_cache_release(page);
1196 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197 /* if we have allocated more blocks and copied
1198 * less. We will have blocks allocated outside
1199 * inode->i_size. So truncate them
1200 */
1201 ext4_orphan_add(handle, inode);
1202
1203 ret2 = ext4_journal_stop(handle);
1204 if (!ret)
1205 ret = ret2;
1206 if (pos + len > inode->i_size) {
1207 ext4_truncate_failed_write(inode);
1208 /*
1209 * If truncate failed early the inode might still be
1210 * on the orphan list; we need to make sure the inode
1211 * is removed from the orphan list in that case.
1212 */
1213 if (inode->i_nlink)
1214 ext4_orphan_del(NULL, inode);
1215 }
1216
1217 return ret ? ret : copied;
1218 }
1219
1220 /*
1221 * Reserve a metadata for a single block located at lblock
1222 */
1223 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224 {
1225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226 struct ext4_inode_info *ei = EXT4_I(inode);
1227 unsigned int md_needed;
1228 ext4_lblk_t save_last_lblock;
1229 int save_len;
1230
1231 /*
1232 * recalculate the amount of metadata blocks to reserve
1233 * in order to allocate nrblocks
1234 * worse case is one extent per block
1235 */
1236 spin_lock(&ei->i_block_reservation_lock);
1237 /*
1238 * ext4_calc_metadata_amount() has side effects, which we have
1239 * to be prepared undo if we fail to claim space.
1240 */
1241 save_len = ei->i_da_metadata_calc_len;
1242 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243 md_needed = EXT4_NUM_B2C(sbi,
1244 ext4_calc_metadata_amount(inode, lblock));
1245 trace_ext4_da_reserve_space(inode, md_needed);
1246
1247 /*
1248 * We do still charge estimated metadata to the sb though;
1249 * we cannot afford to run out of free blocks.
1250 */
1251 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252 ei->i_da_metadata_calc_len = save_len;
1253 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254 spin_unlock(&ei->i_block_reservation_lock);
1255 return -ENOSPC;
1256 }
1257 ei->i_reserved_meta_blocks += md_needed;
1258 spin_unlock(&ei->i_block_reservation_lock);
1259
1260 return 0; /* success */
1261 }
1262
1263 /*
1264 * Reserve a single cluster located at lblock
1265 */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269 struct ext4_inode_info *ei = EXT4_I(inode);
1270 unsigned int md_needed;
1271 int ret;
1272 ext4_lblk_t save_last_lblock;
1273 int save_len;
1274
1275 /*
1276 * We will charge metadata quota at writeout time; this saves
1277 * us from metadata over-estimation, though we may go over by
1278 * a small amount in the end. Here we just reserve for data.
1279 */
1280 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281 if (ret)
1282 return ret;
1283
1284 /*
1285 * recalculate the amount of metadata blocks to reserve
1286 * in order to allocate nrblocks
1287 * worse case is one extent per block
1288 */
1289 spin_lock(&ei->i_block_reservation_lock);
1290 /*
1291 * ext4_calc_metadata_amount() has side effects, which we have
1292 * to be prepared undo if we fail to claim space.
1293 */
1294 save_len = ei->i_da_metadata_calc_len;
1295 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296 md_needed = EXT4_NUM_B2C(sbi,
1297 ext4_calc_metadata_amount(inode, lblock));
1298 trace_ext4_da_reserve_space(inode, md_needed);
1299
1300 /*
1301 * We do still charge estimated metadata to the sb though;
1302 * we cannot afford to run out of free blocks.
1303 */
1304 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305 ei->i_da_metadata_calc_len = save_len;
1306 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307 spin_unlock(&ei->i_block_reservation_lock);
1308 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309 return -ENOSPC;
1310 }
1311 ei->i_reserved_data_blocks++;
1312 ei->i_reserved_meta_blocks += md_needed;
1313 spin_unlock(&ei->i_block_reservation_lock);
1314
1315 return 0; /* success */
1316 }
1317
1318 static void ext4_da_release_space(struct inode *inode, int to_free)
1319 {
1320 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321 struct ext4_inode_info *ei = EXT4_I(inode);
1322
1323 if (!to_free)
1324 return; /* Nothing to release, exit */
1325
1326 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327
1328 trace_ext4_da_release_space(inode, to_free);
1329 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330 /*
1331 * if there aren't enough reserved blocks, then the
1332 * counter is messed up somewhere. Since this
1333 * function is called from invalidate page, it's
1334 * harmless to return without any action.
1335 */
1336 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337 "ino %lu, to_free %d with only %d reserved "
1338 "data blocks", inode->i_ino, to_free,
1339 ei->i_reserved_data_blocks);
1340 WARN_ON(1);
1341 to_free = ei->i_reserved_data_blocks;
1342 }
1343 ei->i_reserved_data_blocks -= to_free;
1344
1345 if (ei->i_reserved_data_blocks == 0) {
1346 /*
1347 * We can release all of the reserved metadata blocks
1348 * only when we have written all of the delayed
1349 * allocation blocks.
1350 * Note that in case of bigalloc, i_reserved_meta_blocks,
1351 * i_reserved_data_blocks, etc. refer to number of clusters.
1352 */
1353 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354 ei->i_reserved_meta_blocks);
1355 ei->i_reserved_meta_blocks = 0;
1356 ei->i_da_metadata_calc_len = 0;
1357 }
1358
1359 /* update fs dirty data blocks counter */
1360 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361
1362 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365 }
1366
1367 static void ext4_da_page_release_reservation(struct page *page,
1368 unsigned int offset,
1369 unsigned int length)
1370 {
1371 int to_release = 0;
1372 struct buffer_head *head, *bh;
1373 unsigned int curr_off = 0;
1374 struct inode *inode = page->mapping->host;
1375 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376 unsigned int stop = offset + length;
1377 int num_clusters;
1378 ext4_fsblk_t lblk;
1379
1380 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
1382 head = page_buffers(page);
1383 bh = head;
1384 do {
1385 unsigned int next_off = curr_off + bh->b_size;
1386
1387 if (next_off > stop)
1388 break;
1389
1390 if ((offset <= curr_off) && (buffer_delay(bh))) {
1391 to_release++;
1392 clear_buffer_delay(bh);
1393 }
1394 curr_off = next_off;
1395 } while ((bh = bh->b_this_page) != head);
1396
1397 if (to_release) {
1398 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399 ext4_es_remove_extent(inode, lblk, to_release);
1400 }
1401
1402 /* If we have released all the blocks belonging to a cluster, then we
1403 * need to release the reserved space for that cluster. */
1404 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405 while (num_clusters > 0) {
1406 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407 ((num_clusters - 1) << sbi->s_cluster_bits);
1408 if (sbi->s_cluster_ratio == 1 ||
1409 !ext4_find_delalloc_cluster(inode, lblk))
1410 ext4_da_release_space(inode, 1);
1411
1412 num_clusters--;
1413 }
1414 }
1415
1416 /*
1417 * Delayed allocation stuff
1418 */
1419
1420 struct mpage_da_data {
1421 struct inode *inode;
1422 struct writeback_control *wbc;
1423
1424 pgoff_t first_page; /* The first page to write */
1425 pgoff_t next_page; /* Current page to examine */
1426 pgoff_t last_page; /* Last page to examine */
1427 /*
1428 * Extent to map - this can be after first_page because that can be
1429 * fully mapped. We somewhat abuse m_flags to store whether the extent
1430 * is delalloc or unwritten.
1431 */
1432 struct ext4_map_blocks map;
1433 struct ext4_io_submit io_submit; /* IO submission data */
1434 };
1435
1436 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437 bool invalidate)
1438 {
1439 int nr_pages, i;
1440 pgoff_t index, end;
1441 struct pagevec pvec;
1442 struct inode *inode = mpd->inode;
1443 struct address_space *mapping = inode->i_mapping;
1444
1445 /* This is necessary when next_page == 0. */
1446 if (mpd->first_page >= mpd->next_page)
1447 return;
1448
1449 index = mpd->first_page;
1450 end = mpd->next_page - 1;
1451 if (invalidate) {
1452 ext4_lblk_t start, last;
1453 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1455 ext4_es_remove_extent(inode, start, last - start + 1);
1456 }
1457
1458 pagevec_init(&pvec, 0);
1459 while (index <= end) {
1460 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461 if (nr_pages == 0)
1462 break;
1463 for (i = 0; i < nr_pages; i++) {
1464 struct page *page = pvec.pages[i];
1465 if (page->index > end)
1466 break;
1467 BUG_ON(!PageLocked(page));
1468 BUG_ON(PageWriteback(page));
1469 if (invalidate) {
1470 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471 ClearPageUptodate(page);
1472 }
1473 unlock_page(page);
1474 }
1475 index = pvec.pages[nr_pages - 1]->index + 1;
1476 pagevec_release(&pvec);
1477 }
1478 }
1479
1480 static void ext4_print_free_blocks(struct inode *inode)
1481 {
1482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483 struct super_block *sb = inode->i_sb;
1484 struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487 EXT4_C2B(EXT4_SB(inode->i_sb),
1488 ext4_count_free_clusters(sb)));
1489 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491 (long long) EXT4_C2B(EXT4_SB(sb),
1492 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494 (long long) EXT4_C2B(EXT4_SB(sb),
1495 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498 ei->i_reserved_data_blocks);
1499 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500 ei->i_reserved_meta_blocks);
1501 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502 ei->i_allocated_meta_blocks);
1503 return;
1504 }
1505
1506 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507 {
1508 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509 }
1510
1511 /*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1516 */
1517 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518 struct ext4_map_blocks *map,
1519 struct buffer_head *bh)
1520 {
1521 struct extent_status es;
1522 int retval;
1523 sector_t invalid_block = ~((sector_t) 0xffff);
1524 #ifdef ES_AGGRESSIVE_TEST
1525 struct ext4_map_blocks orig_map;
1526
1527 memcpy(&orig_map, map, sizeof(*map));
1528 #endif
1529
1530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531 invalid_block = ~0;
1532
1533 map->m_flags = 0;
1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535 "logical block %lu\n", inode->i_ino, map->m_len,
1536 (unsigned long) map->m_lblk);
1537
1538 /* Lookup extent status tree firstly */
1539 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540 ext4_es_lru_add(inode);
1541 if (ext4_es_is_hole(&es)) {
1542 retval = 0;
1543 down_read((&EXT4_I(inode)->i_data_sem));
1544 goto add_delayed;
1545 }
1546
1547 /*
1548 * Delayed extent could be allocated by fallocate.
1549 * So we need to check it.
1550 */
1551 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552 map_bh(bh, inode->i_sb, invalid_block);
1553 set_buffer_new(bh);
1554 set_buffer_delay(bh);
1555 return 0;
1556 }
1557
1558 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559 retval = es.es_len - (iblock - es.es_lblk);
1560 if (retval > map->m_len)
1561 retval = map->m_len;
1562 map->m_len = retval;
1563 if (ext4_es_is_written(&es))
1564 map->m_flags |= EXT4_MAP_MAPPED;
1565 else if (ext4_es_is_unwritten(&es))
1566 map->m_flags |= EXT4_MAP_UNWRITTEN;
1567 else
1568 BUG_ON(1);
1569
1570 #ifdef ES_AGGRESSIVE_TEST
1571 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572 #endif
1573 return retval;
1574 }
1575
1576 /*
1577 * Try to see if we can get the block without requesting a new
1578 * file system block.
1579 */
1580 down_read((&EXT4_I(inode)->i_data_sem));
1581 if (ext4_has_inline_data(inode)) {
1582 /*
1583 * We will soon create blocks for this page, and let
1584 * us pretend as if the blocks aren't allocated yet.
1585 * In case of clusters, we have to handle the work
1586 * of mapping from cluster so that the reserved space
1587 * is calculated properly.
1588 */
1589 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590 ext4_find_delalloc_cluster(inode, map->m_lblk))
1591 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592 retval = 0;
1593 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594 retval = ext4_ext_map_blocks(NULL, inode, map,
1595 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596 else
1597 retval = ext4_ind_map_blocks(NULL, inode, map,
1598 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1599
1600 add_delayed:
1601 if (retval == 0) {
1602 int ret;
1603 /*
1604 * XXX: __block_prepare_write() unmaps passed block,
1605 * is it OK?
1606 */
1607 /*
1608 * If the block was allocated from previously allocated cluster,
1609 * then we don't need to reserve it again. However we still need
1610 * to reserve metadata for every block we're going to write.
1611 */
1612 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613 ret = ext4_da_reserve_space(inode, iblock);
1614 if (ret) {
1615 /* not enough space to reserve */
1616 retval = ret;
1617 goto out_unlock;
1618 }
1619 } else {
1620 ret = ext4_da_reserve_metadata(inode, iblock);
1621 if (ret) {
1622 /* not enough space to reserve */
1623 retval = ret;
1624 goto out_unlock;
1625 }
1626 }
1627
1628 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629 ~0, EXTENT_STATUS_DELAYED);
1630 if (ret) {
1631 retval = ret;
1632 goto out_unlock;
1633 }
1634
1635 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636 * and it should not appear on the bh->b_state.
1637 */
1638 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640 map_bh(bh, inode->i_sb, invalid_block);
1641 set_buffer_new(bh);
1642 set_buffer_delay(bh);
1643 } else if (retval > 0) {
1644 int ret;
1645 unsigned int status;
1646
1647 if (unlikely(retval != map->m_len)) {
1648 ext4_warning(inode->i_sb,
1649 "ES len assertion failed for inode "
1650 "%lu: retval %d != map->m_len %d",
1651 inode->i_ino, retval, map->m_len);
1652 WARN_ON(1);
1653 }
1654
1655 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658 map->m_pblk, status);
1659 if (ret != 0)
1660 retval = ret;
1661 }
1662
1663 out_unlock:
1664 up_read((&EXT4_I(inode)->i_data_sem));
1665
1666 return retval;
1667 }
1668
1669 /*
1670 * This is a special get_blocks_t callback which is used by
1671 * ext4_da_write_begin(). It will either return mapped block or
1672 * reserve space for a single block.
1673 *
1674 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675 * We also have b_blocknr = -1 and b_bdev initialized properly
1676 *
1677 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679 * initialized properly.
1680 */
1681 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682 struct buffer_head *bh, int create)
1683 {
1684 struct ext4_map_blocks map;
1685 int ret = 0;
1686
1687 BUG_ON(create == 0);
1688 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
1690 map.m_lblk = iblock;
1691 map.m_len = 1;
1692
1693 /*
1694 * first, we need to know whether the block is allocated already
1695 * preallocated blocks are unmapped but should treated
1696 * the same as allocated blocks.
1697 */
1698 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699 if (ret <= 0)
1700 return ret;
1701
1702 map_bh(bh, inode->i_sb, map.m_pblk);
1703 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705 if (buffer_unwritten(bh)) {
1706 /* A delayed write to unwritten bh should be marked
1707 * new and mapped. Mapped ensures that we don't do
1708 * get_block multiple times when we write to the same
1709 * offset and new ensures that we do proper zero out
1710 * for partial write.
1711 */
1712 set_buffer_new(bh);
1713 set_buffer_mapped(bh);
1714 }
1715 return 0;
1716 }
1717
1718 static int bget_one(handle_t *handle, struct buffer_head *bh)
1719 {
1720 get_bh(bh);
1721 return 0;
1722 }
1723
1724 static int bput_one(handle_t *handle, struct buffer_head *bh)
1725 {
1726 put_bh(bh);
1727 return 0;
1728 }
1729
1730 static int __ext4_journalled_writepage(struct page *page,
1731 unsigned int len)
1732 {
1733 struct address_space *mapping = page->mapping;
1734 struct inode *inode = mapping->host;
1735 struct buffer_head *page_bufs = NULL;
1736 handle_t *handle = NULL;
1737 int ret = 0, err = 0;
1738 int inline_data = ext4_has_inline_data(inode);
1739 struct buffer_head *inode_bh = NULL;
1740
1741 ClearPageChecked(page);
1742
1743 if (inline_data) {
1744 BUG_ON(page->index != 0);
1745 BUG_ON(len > ext4_get_max_inline_size(inode));
1746 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747 if (inode_bh == NULL)
1748 goto out;
1749 } else {
1750 page_bufs = page_buffers(page);
1751 if (!page_bufs) {
1752 BUG();
1753 goto out;
1754 }
1755 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756 NULL, bget_one);
1757 }
1758 /* As soon as we unlock the page, it can go away, but we have
1759 * references to buffers so we are safe */
1760 unlock_page(page);
1761
1762 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763 ext4_writepage_trans_blocks(inode));
1764 if (IS_ERR(handle)) {
1765 ret = PTR_ERR(handle);
1766 goto out;
1767 }
1768
1769 BUG_ON(!ext4_handle_valid(handle));
1770
1771 if (inline_data) {
1772 ret = ext4_journal_get_write_access(handle, inode_bh);
1773
1774 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776 } else {
1777 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778 do_journal_get_write_access);
1779
1780 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781 write_end_fn);
1782 }
1783 if (ret == 0)
1784 ret = err;
1785 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786 err = ext4_journal_stop(handle);
1787 if (!ret)
1788 ret = err;
1789
1790 if (!ext4_has_inline_data(inode))
1791 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792 NULL, bput_one);
1793 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794 out:
1795 brelse(inode_bh);
1796 return ret;
1797 }
1798
1799 /*
1800 * Note that we don't need to start a transaction unless we're journaling data
1801 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802 * need to file the inode to the transaction's list in ordered mode because if
1803 * we are writing back data added by write(), the inode is already there and if
1804 * we are writing back data modified via mmap(), no one guarantees in which
1805 * transaction the data will hit the disk. In case we are journaling data, we
1806 * cannot start transaction directly because transaction start ranks above page
1807 * lock so we have to do some magic.
1808 *
1809 * This function can get called via...
1810 * - ext4_writepages after taking page lock (have journal handle)
1811 * - journal_submit_inode_data_buffers (no journal handle)
1812 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813 * - grab_page_cache when doing write_begin (have journal handle)
1814 *
1815 * We don't do any block allocation in this function. If we have page with
1816 * multiple blocks we need to write those buffer_heads that are mapped. This
1817 * is important for mmaped based write. So if we do with blocksize 1K
1818 * truncate(f, 1024);
1819 * a = mmap(f, 0, 4096);
1820 * a[0] = 'a';
1821 * truncate(f, 4096);
1822 * we have in the page first buffer_head mapped via page_mkwrite call back
1823 * but other buffer_heads would be unmapped but dirty (dirty done via the
1824 * do_wp_page). So writepage should write the first block. If we modify
1825 * the mmap area beyond 1024 we will again get a page_fault and the
1826 * page_mkwrite callback will do the block allocation and mark the
1827 * buffer_heads mapped.
1828 *
1829 * We redirty the page if we have any buffer_heads that is either delay or
1830 * unwritten in the page.
1831 *
1832 * We can get recursively called as show below.
1833 *
1834 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835 * ext4_writepage()
1836 *
1837 * But since we don't do any block allocation we should not deadlock.
1838 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839 */
1840 static int ext4_writepage(struct page *page,
1841 struct writeback_control *wbc)
1842 {
1843 int ret = 0;
1844 loff_t size;
1845 unsigned int len;
1846 struct buffer_head *page_bufs = NULL;
1847 struct inode *inode = page->mapping->host;
1848 struct ext4_io_submit io_submit;
1849
1850 trace_ext4_writepage(page);
1851 size = i_size_read(inode);
1852 if (page->index == size >> PAGE_CACHE_SHIFT)
1853 len = size & ~PAGE_CACHE_MASK;
1854 else
1855 len = PAGE_CACHE_SIZE;
1856
1857 page_bufs = page_buffers(page);
1858 /*
1859 * We cannot do block allocation or other extent handling in this
1860 * function. If there are buffers needing that, we have to redirty
1861 * the page. But we may reach here when we do a journal commit via
1862 * journal_submit_inode_data_buffers() and in that case we must write
1863 * allocated buffers to achieve data=ordered mode guarantees.
1864 */
1865 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866 ext4_bh_delay_or_unwritten)) {
1867 redirty_page_for_writepage(wbc, page);
1868 if (current->flags & PF_MEMALLOC) {
1869 /*
1870 * For memory cleaning there's no point in writing only
1871 * some buffers. So just bail out. Warn if we came here
1872 * from direct reclaim.
1873 */
1874 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875 == PF_MEMALLOC);
1876 unlock_page(page);
1877 return 0;
1878 }
1879 }
1880
1881 if (PageChecked(page) && ext4_should_journal_data(inode))
1882 /*
1883 * It's mmapped pagecache. Add buffers and journal it. There
1884 * doesn't seem much point in redirtying the page here.
1885 */
1886 return __ext4_journalled_writepage(page, len);
1887
1888 ext4_io_submit_init(&io_submit, wbc);
1889 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890 if (!io_submit.io_end) {
1891 redirty_page_for_writepage(wbc, page);
1892 unlock_page(page);
1893 return -ENOMEM;
1894 }
1895 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896 ext4_io_submit(&io_submit);
1897 /* Drop io_end reference we got from init */
1898 ext4_put_io_end_defer(io_submit.io_end);
1899 return ret;
1900 }
1901
1902 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903 {
1904 int len;
1905 loff_t size = i_size_read(mpd->inode);
1906 int err;
1907
1908 BUG_ON(page->index != mpd->first_page);
1909 if (page->index == size >> PAGE_CACHE_SHIFT)
1910 len = size & ~PAGE_CACHE_MASK;
1911 else
1912 len = PAGE_CACHE_SIZE;
1913 clear_page_dirty_for_io(page);
1914 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915 if (!err)
1916 mpd->wbc->nr_to_write--;
1917 mpd->first_page++;
1918
1919 return err;
1920 }
1921
1922 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
1924 /*
1925 * mballoc gives us at most this number of blocks...
1926 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1927 * The rest of mballoc seems to handle chunks up to full group size.
1928 */
1929 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1930
1931 /*
1932 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933 *
1934 * @mpd - extent of blocks
1935 * @lblk - logical number of the block in the file
1936 * @bh - buffer head we want to add to the extent
1937 *
1938 * The function is used to collect contig. blocks in the same state. If the
1939 * buffer doesn't require mapping for writeback and we haven't started the
1940 * extent of buffers to map yet, the function returns 'true' immediately - the
1941 * caller can write the buffer right away. Otherwise the function returns true
1942 * if the block has been added to the extent, false if the block couldn't be
1943 * added.
1944 */
1945 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946 struct buffer_head *bh)
1947 {
1948 struct ext4_map_blocks *map = &mpd->map;
1949
1950 /* Buffer that doesn't need mapping for writeback? */
1951 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953 /* So far no extent to map => we write the buffer right away */
1954 if (map->m_len == 0)
1955 return true;
1956 return false;
1957 }
1958
1959 /* First block in the extent? */
1960 if (map->m_len == 0) {
1961 map->m_lblk = lblk;
1962 map->m_len = 1;
1963 map->m_flags = bh->b_state & BH_FLAGS;
1964 return true;
1965 }
1966
1967 /* Don't go larger than mballoc is willing to allocate */
1968 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969 return false;
1970
1971 /* Can we merge the block to our big extent? */
1972 if (lblk == map->m_lblk + map->m_len &&
1973 (bh->b_state & BH_FLAGS) == map->m_flags) {
1974 map->m_len++;
1975 return true;
1976 }
1977 return false;
1978 }
1979
1980 /*
1981 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982 *
1983 * @mpd - extent of blocks for mapping
1984 * @head - the first buffer in the page
1985 * @bh - buffer we should start processing from
1986 * @lblk - logical number of the block in the file corresponding to @bh
1987 *
1988 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989 * the page for IO if all buffers in this page were mapped and there's no
1990 * accumulated extent of buffers to map or add buffers in the page to the
1991 * extent of buffers to map. The function returns 1 if the caller can continue
1992 * by processing the next page, 0 if it should stop adding buffers to the
1993 * extent to map because we cannot extend it anymore. It can also return value
1994 * < 0 in case of error during IO submission.
1995 */
1996 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997 struct buffer_head *head,
1998 struct buffer_head *bh,
1999 ext4_lblk_t lblk)
2000 {
2001 struct inode *inode = mpd->inode;
2002 int err;
2003 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004 >> inode->i_blkbits;
2005
2006 do {
2007 BUG_ON(buffer_locked(bh));
2008
2009 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2010 /* Found extent to map? */
2011 if (mpd->map.m_len)
2012 return 0;
2013 /* Everything mapped so far and we hit EOF */
2014 break;
2015 }
2016 } while (lblk++, (bh = bh->b_this_page) != head);
2017 /* So far everything mapped? Submit the page for IO. */
2018 if (mpd->map.m_len == 0) {
2019 err = mpage_submit_page(mpd, head->b_page);
2020 if (err < 0)
2021 return err;
2022 }
2023 return lblk < blocks;
2024 }
2025
2026 /*
2027 * mpage_map_buffers - update buffers corresponding to changed extent and
2028 * submit fully mapped pages for IO
2029 *
2030 * @mpd - description of extent to map, on return next extent to map
2031 *
2032 * Scan buffers corresponding to changed extent (we expect corresponding pages
2033 * to be already locked) and update buffer state according to new extent state.
2034 * We map delalloc buffers to their physical location, clear unwritten bits,
2035 * and mark buffers as uninit when we perform writes to unwritten extents
2036 * and do extent conversion after IO is finished. If the last page is not fully
2037 * mapped, we update @map to the next extent in the last page that needs
2038 * mapping. Otherwise we submit the page for IO.
2039 */
2040 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041 {
2042 struct pagevec pvec;
2043 int nr_pages, i;
2044 struct inode *inode = mpd->inode;
2045 struct buffer_head *head, *bh;
2046 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047 pgoff_t start, end;
2048 ext4_lblk_t lblk;
2049 sector_t pblock;
2050 int err;
2051
2052 start = mpd->map.m_lblk >> bpp_bits;
2053 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054 lblk = start << bpp_bits;
2055 pblock = mpd->map.m_pblk;
2056
2057 pagevec_init(&pvec, 0);
2058 while (start <= end) {
2059 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060 PAGEVEC_SIZE);
2061 if (nr_pages == 0)
2062 break;
2063 for (i = 0; i < nr_pages; i++) {
2064 struct page *page = pvec.pages[i];
2065
2066 if (page->index > end)
2067 break;
2068 /* Up to 'end' pages must be contiguous */
2069 BUG_ON(page->index != start);
2070 bh = head = page_buffers(page);
2071 do {
2072 if (lblk < mpd->map.m_lblk)
2073 continue;
2074 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075 /*
2076 * Buffer after end of mapped extent.
2077 * Find next buffer in the page to map.
2078 */
2079 mpd->map.m_len = 0;
2080 mpd->map.m_flags = 0;
2081 /*
2082 * FIXME: If dioread_nolock supports
2083 * blocksize < pagesize, we need to make
2084 * sure we add size mapped so far to
2085 * io_end->size as the following call
2086 * can submit the page for IO.
2087 */
2088 err = mpage_process_page_bufs(mpd, head,
2089 bh, lblk);
2090 pagevec_release(&pvec);
2091 if (err > 0)
2092 err = 0;
2093 return err;
2094 }
2095 if (buffer_delay(bh)) {
2096 clear_buffer_delay(bh);
2097 bh->b_blocknr = pblock++;
2098 }
2099 clear_buffer_unwritten(bh);
2100 } while (lblk++, (bh = bh->b_this_page) != head);
2101
2102 /*
2103 * FIXME: This is going to break if dioread_nolock
2104 * supports blocksize < pagesize as we will try to
2105 * convert potentially unmapped parts of inode.
2106 */
2107 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2108 /* Page fully mapped - let IO run! */
2109 err = mpage_submit_page(mpd, page);
2110 if (err < 0) {
2111 pagevec_release(&pvec);
2112 return err;
2113 }
2114 start++;
2115 }
2116 pagevec_release(&pvec);
2117 }
2118 /* Extent fully mapped and matches with page boundary. We are done. */
2119 mpd->map.m_len = 0;
2120 mpd->map.m_flags = 0;
2121 return 0;
2122 }
2123
2124 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125 {
2126 struct inode *inode = mpd->inode;
2127 struct ext4_map_blocks *map = &mpd->map;
2128 int get_blocks_flags;
2129 int err, dioread_nolock;
2130
2131 trace_ext4_da_write_pages_extent(inode, map);
2132 /*
2133 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134 * to convert an unwritten extent to be initialized (in the case
2135 * where we have written into one or more preallocated blocks). It is
2136 * possible that we're going to need more metadata blocks than
2137 * previously reserved. However we must not fail because we're in
2138 * writeback and there is nothing we can do about it so it might result
2139 * in data loss. So use reserved blocks to allocate metadata if
2140 * possible.
2141 *
2142 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143 * in question are delalloc blocks. This affects functions in many
2144 * different parts of the allocation call path. This flag exists
2145 * primarily because we don't want to change *many* call functions, so
2146 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147 * once the inode's allocation semaphore is taken.
2148 */
2149 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151 dioread_nolock = ext4_should_dioread_nolock(inode);
2152 if (dioread_nolock)
2153 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2154 if (map->m_flags & (1 << BH_Delay))
2155 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2156
2157 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2158 if (err < 0)
2159 return err;
2160 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2161 if (!mpd->io_submit.io_end->handle &&
2162 ext4_handle_valid(handle)) {
2163 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2164 handle->h_rsv_handle = NULL;
2165 }
2166 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2167 }
2168
2169 BUG_ON(map->m_len == 0);
2170 if (map->m_flags & EXT4_MAP_NEW) {
2171 struct block_device *bdev = inode->i_sb->s_bdev;
2172 int i;
2173
2174 for (i = 0; i < map->m_len; i++)
2175 unmap_underlying_metadata(bdev, map->m_pblk + i);
2176 }
2177 return 0;
2178 }
2179
2180 /*
2181 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2182 * mpd->len and submit pages underlying it for IO
2183 *
2184 * @handle - handle for journal operations
2185 * @mpd - extent to map
2186 * @give_up_on_write - we set this to true iff there is a fatal error and there
2187 * is no hope of writing the data. The caller should discard
2188 * dirty pages to avoid infinite loops.
2189 *
2190 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2191 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2192 * them to initialized or split the described range from larger unwritten
2193 * extent. Note that we need not map all the described range since allocation
2194 * can return less blocks or the range is covered by more unwritten extents. We
2195 * cannot map more because we are limited by reserved transaction credits. On
2196 * the other hand we always make sure that the last touched page is fully
2197 * mapped so that it can be written out (and thus forward progress is
2198 * guaranteed). After mapping we submit all mapped pages for IO.
2199 */
2200 static int mpage_map_and_submit_extent(handle_t *handle,
2201 struct mpage_da_data *mpd,
2202 bool *give_up_on_write)
2203 {
2204 struct inode *inode = mpd->inode;
2205 struct ext4_map_blocks *map = &mpd->map;
2206 int err;
2207 loff_t disksize;
2208
2209 mpd->io_submit.io_end->offset =
2210 ((loff_t)map->m_lblk) << inode->i_blkbits;
2211 do {
2212 err = mpage_map_one_extent(handle, mpd);
2213 if (err < 0) {
2214 struct super_block *sb = inode->i_sb;
2215
2216 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2217 goto invalidate_dirty_pages;
2218 /*
2219 * Let the uper layers retry transient errors.
2220 * In the case of ENOSPC, if ext4_count_free_blocks()
2221 * is non-zero, a commit should free up blocks.
2222 */
2223 if ((err == -ENOMEM) ||
2224 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2225 return err;
2226 ext4_msg(sb, KERN_CRIT,
2227 "Delayed block allocation failed for "
2228 "inode %lu at logical offset %llu with"
2229 " max blocks %u with error %d",
2230 inode->i_ino,
2231 (unsigned long long)map->m_lblk,
2232 (unsigned)map->m_len, -err);
2233 ext4_msg(sb, KERN_CRIT,
2234 "This should not happen!! Data will "
2235 "be lost\n");
2236 if (err == -ENOSPC)
2237 ext4_print_free_blocks(inode);
2238 invalidate_dirty_pages:
2239 *give_up_on_write = true;
2240 return err;
2241 }
2242 /*
2243 * Update buffer state, submit mapped pages, and get us new
2244 * extent to map
2245 */
2246 err = mpage_map_and_submit_buffers(mpd);
2247 if (err < 0)
2248 return err;
2249 } while (map->m_len);
2250
2251 /*
2252 * Update on-disk size after IO is submitted. Races with
2253 * truncate are avoided by checking i_size under i_data_sem.
2254 */
2255 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2256 if (disksize > EXT4_I(inode)->i_disksize) {
2257 int err2;
2258 loff_t i_size;
2259
2260 down_write(&EXT4_I(inode)->i_data_sem);
2261 i_size = i_size_read(inode);
2262 if (disksize > i_size)
2263 disksize = i_size;
2264 if (disksize > EXT4_I(inode)->i_disksize)
2265 EXT4_I(inode)->i_disksize = disksize;
2266 err2 = ext4_mark_inode_dirty(handle, inode);
2267 up_write(&EXT4_I(inode)->i_data_sem);
2268 if (err2)
2269 ext4_error(inode->i_sb,
2270 "Failed to mark inode %lu dirty",
2271 inode->i_ino);
2272 if (!err)
2273 err = err2;
2274 }
2275 return err;
2276 }
2277
2278 /*
2279 * Calculate the total number of credits to reserve for one writepages
2280 * iteration. This is called from ext4_writepages(). We map an extent of
2281 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2282 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2283 * bpp - 1 blocks in bpp different extents.
2284 */
2285 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2286 {
2287 int bpp = ext4_journal_blocks_per_page(inode);
2288
2289 return ext4_meta_trans_blocks(inode,
2290 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2291 }
2292
2293 /*
2294 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2295 * and underlying extent to map
2296 *
2297 * @mpd - where to look for pages
2298 *
2299 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2300 * IO immediately. When we find a page which isn't mapped we start accumulating
2301 * extent of buffers underlying these pages that needs mapping (formed by
2302 * either delayed or unwritten buffers). We also lock the pages containing
2303 * these buffers. The extent found is returned in @mpd structure (starting at
2304 * mpd->lblk with length mpd->len blocks).
2305 *
2306 * Note that this function can attach bios to one io_end structure which are
2307 * neither logically nor physically contiguous. Although it may seem as an
2308 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2309 * case as we need to track IO to all buffers underlying a page in one io_end.
2310 */
2311 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2312 {
2313 struct address_space *mapping = mpd->inode->i_mapping;
2314 struct pagevec pvec;
2315 unsigned int nr_pages;
2316 long left = mpd->wbc->nr_to_write;
2317 pgoff_t index = mpd->first_page;
2318 pgoff_t end = mpd->last_page;
2319 int tag;
2320 int i, err = 0;
2321 int blkbits = mpd->inode->i_blkbits;
2322 ext4_lblk_t lblk;
2323 struct buffer_head *head;
2324
2325 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2326 tag = PAGECACHE_TAG_TOWRITE;
2327 else
2328 tag = PAGECACHE_TAG_DIRTY;
2329
2330 pagevec_init(&pvec, 0);
2331 mpd->map.m_len = 0;
2332 mpd->next_page = index;
2333 while (index <= end) {
2334 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2335 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2336 if (nr_pages == 0)
2337 goto out;
2338
2339 for (i = 0; i < nr_pages; i++) {
2340 struct page *page = pvec.pages[i];
2341
2342 /*
2343 * At this point, the page may be truncated or
2344 * invalidated (changing page->mapping to NULL), or
2345 * even swizzled back from swapper_space to tmpfs file
2346 * mapping. However, page->index will not change
2347 * because we have a reference on the page.
2348 */
2349 if (page->index > end)
2350 goto out;
2351
2352 /*
2353 * Accumulated enough dirty pages? This doesn't apply
2354 * to WB_SYNC_ALL mode. For integrity sync we have to
2355 * keep going because someone may be concurrently
2356 * dirtying pages, and we might have synced a lot of
2357 * newly appeared dirty pages, but have not synced all
2358 * of the old dirty pages.
2359 */
2360 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2361 goto out;
2362
2363 /* If we can't merge this page, we are done. */
2364 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2365 goto out;
2366
2367 lock_page(page);
2368 /*
2369 * If the page is no longer dirty, or its mapping no
2370 * longer corresponds to inode we are writing (which
2371 * means it has been truncated or invalidated), or the
2372 * page is already under writeback and we are not doing
2373 * a data integrity writeback, skip the page
2374 */
2375 if (!PageDirty(page) ||
2376 (PageWriteback(page) &&
2377 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2378 unlikely(page->mapping != mapping)) {
2379 unlock_page(page);
2380 continue;
2381 }
2382
2383 wait_on_page_writeback(page);
2384 BUG_ON(PageWriteback(page));
2385
2386 if (mpd->map.m_len == 0)
2387 mpd->first_page = page->index;
2388 mpd->next_page = page->index + 1;
2389 /* Add all dirty buffers to mpd */
2390 lblk = ((ext4_lblk_t)page->index) <<
2391 (PAGE_CACHE_SHIFT - blkbits);
2392 head = page_buffers(page);
2393 err = mpage_process_page_bufs(mpd, head, head, lblk);
2394 if (err <= 0)
2395 goto out;
2396 err = 0;
2397 left--;
2398 }
2399 pagevec_release(&pvec);
2400 cond_resched();
2401 }
2402 return 0;
2403 out:
2404 pagevec_release(&pvec);
2405 return err;
2406 }
2407
2408 static int __writepage(struct page *page, struct writeback_control *wbc,
2409 void *data)
2410 {
2411 struct address_space *mapping = data;
2412 int ret = ext4_writepage(page, wbc);
2413 mapping_set_error(mapping, ret);
2414 return ret;
2415 }
2416
2417 static int ext4_writepages(struct address_space *mapping,
2418 struct writeback_control *wbc)
2419 {
2420 pgoff_t writeback_index = 0;
2421 long nr_to_write = wbc->nr_to_write;
2422 int range_whole = 0;
2423 int cycled = 1;
2424 handle_t *handle = NULL;
2425 struct mpage_da_data mpd;
2426 struct inode *inode = mapping->host;
2427 int needed_blocks, rsv_blocks = 0, ret = 0;
2428 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2429 bool done;
2430 struct blk_plug plug;
2431 bool give_up_on_write = false;
2432
2433 trace_ext4_writepages(inode, wbc);
2434
2435 /*
2436 * No pages to write? This is mainly a kludge to avoid starting
2437 * a transaction for special inodes like journal inode on last iput()
2438 * because that could violate lock ordering on umount
2439 */
2440 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2441 goto out_writepages;
2442
2443 if (ext4_should_journal_data(inode)) {
2444 struct blk_plug plug;
2445
2446 blk_start_plug(&plug);
2447 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2448 blk_finish_plug(&plug);
2449 goto out_writepages;
2450 }
2451
2452 /*
2453 * If the filesystem has aborted, it is read-only, so return
2454 * right away instead of dumping stack traces later on that
2455 * will obscure the real source of the problem. We test
2456 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2457 * the latter could be true if the filesystem is mounted
2458 * read-only, and in that case, ext4_writepages should
2459 * *never* be called, so if that ever happens, we would want
2460 * the stack trace.
2461 */
2462 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2463 ret = -EROFS;
2464 goto out_writepages;
2465 }
2466
2467 if (ext4_should_dioread_nolock(inode)) {
2468 /*
2469 * We may need to convert up to one extent per block in
2470 * the page and we may dirty the inode.
2471 */
2472 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2473 }
2474
2475 /*
2476 * If we have inline data and arrive here, it means that
2477 * we will soon create the block for the 1st page, so
2478 * we'd better clear the inline data here.
2479 */
2480 if (ext4_has_inline_data(inode)) {
2481 /* Just inode will be modified... */
2482 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2483 if (IS_ERR(handle)) {
2484 ret = PTR_ERR(handle);
2485 goto out_writepages;
2486 }
2487 BUG_ON(ext4_test_inode_state(inode,
2488 EXT4_STATE_MAY_INLINE_DATA));
2489 ext4_destroy_inline_data(handle, inode);
2490 ext4_journal_stop(handle);
2491 }
2492
2493 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2494 range_whole = 1;
2495
2496 if (wbc->range_cyclic) {
2497 writeback_index = mapping->writeback_index;
2498 if (writeback_index)
2499 cycled = 0;
2500 mpd.first_page = writeback_index;
2501 mpd.last_page = -1;
2502 } else {
2503 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2504 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2505 }
2506
2507 mpd.inode = inode;
2508 mpd.wbc = wbc;
2509 ext4_io_submit_init(&mpd.io_submit, wbc);
2510 retry:
2511 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2512 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2513 done = false;
2514 blk_start_plug(&plug);
2515 while (!done && mpd.first_page <= mpd.last_page) {
2516 /* For each extent of pages we use new io_end */
2517 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2518 if (!mpd.io_submit.io_end) {
2519 ret = -ENOMEM;
2520 break;
2521 }
2522
2523 /*
2524 * We have two constraints: We find one extent to map and we
2525 * must always write out whole page (makes a difference when
2526 * blocksize < pagesize) so that we don't block on IO when we
2527 * try to write out the rest of the page. Journalled mode is
2528 * not supported by delalloc.
2529 */
2530 BUG_ON(ext4_should_journal_data(inode));
2531 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2532
2533 /* start a new transaction */
2534 handle = ext4_journal_start_with_reserve(inode,
2535 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2536 if (IS_ERR(handle)) {
2537 ret = PTR_ERR(handle);
2538 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2539 "%ld pages, ino %lu; err %d", __func__,
2540 wbc->nr_to_write, inode->i_ino, ret);
2541 /* Release allocated io_end */
2542 ext4_put_io_end(mpd.io_submit.io_end);
2543 break;
2544 }
2545
2546 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2547 ret = mpage_prepare_extent_to_map(&mpd);
2548 if (!ret) {
2549 if (mpd.map.m_len)
2550 ret = mpage_map_and_submit_extent(handle, &mpd,
2551 &give_up_on_write);
2552 else {
2553 /*
2554 * We scanned the whole range (or exhausted
2555 * nr_to_write), submitted what was mapped and
2556 * didn't find anything needing mapping. We are
2557 * done.
2558 */
2559 done = true;
2560 }
2561 }
2562 ext4_journal_stop(handle);
2563 /* Submit prepared bio */
2564 ext4_io_submit(&mpd.io_submit);
2565 /* Unlock pages we didn't use */
2566 mpage_release_unused_pages(&mpd, give_up_on_write);
2567 /* Drop our io_end reference we got from init */
2568 ext4_put_io_end(mpd.io_submit.io_end);
2569
2570 if (ret == -ENOSPC && sbi->s_journal) {
2571 /*
2572 * Commit the transaction which would
2573 * free blocks released in the transaction
2574 * and try again
2575 */
2576 jbd2_journal_force_commit_nested(sbi->s_journal);
2577 ret = 0;
2578 continue;
2579 }
2580 /* Fatal error - ENOMEM, EIO... */
2581 if (ret)
2582 break;
2583 }
2584 blk_finish_plug(&plug);
2585 if (!ret && !cycled && wbc->nr_to_write > 0) {
2586 cycled = 1;
2587 mpd.last_page = writeback_index - 1;
2588 mpd.first_page = 0;
2589 goto retry;
2590 }
2591
2592 /* Update index */
2593 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2594 /*
2595 * Set the writeback_index so that range_cyclic
2596 * mode will write it back later
2597 */
2598 mapping->writeback_index = mpd.first_page;
2599
2600 out_writepages:
2601 trace_ext4_writepages_result(inode, wbc, ret,
2602 nr_to_write - wbc->nr_to_write);
2603 return ret;
2604 }
2605
2606 static int ext4_nonda_switch(struct super_block *sb)
2607 {
2608 s64 free_clusters, dirty_clusters;
2609 struct ext4_sb_info *sbi = EXT4_SB(sb);
2610
2611 /*
2612 * switch to non delalloc mode if we are running low
2613 * on free block. The free block accounting via percpu
2614 * counters can get slightly wrong with percpu_counter_batch getting
2615 * accumulated on each CPU without updating global counters
2616 * Delalloc need an accurate free block accounting. So switch
2617 * to non delalloc when we are near to error range.
2618 */
2619 free_clusters =
2620 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2621 dirty_clusters =
2622 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2623 /*
2624 * Start pushing delalloc when 1/2 of free blocks are dirty.
2625 */
2626 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2627 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2628
2629 if (2 * free_clusters < 3 * dirty_clusters ||
2630 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2631 /*
2632 * free block count is less than 150% of dirty blocks
2633 * or free blocks is less than watermark
2634 */
2635 return 1;
2636 }
2637 return 0;
2638 }
2639
2640 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2641 loff_t pos, unsigned len, unsigned flags,
2642 struct page **pagep, void **fsdata)
2643 {
2644 int ret, retries = 0;
2645 struct page *page;
2646 pgoff_t index;
2647 struct inode *inode = mapping->host;
2648 handle_t *handle;
2649
2650 index = pos >> PAGE_CACHE_SHIFT;
2651
2652 if (ext4_nonda_switch(inode->i_sb)) {
2653 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2654 return ext4_write_begin(file, mapping, pos,
2655 len, flags, pagep, fsdata);
2656 }
2657 *fsdata = (void *)0;
2658 trace_ext4_da_write_begin(inode, pos, len, flags);
2659
2660 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2661 ret = ext4_da_write_inline_data_begin(mapping, inode,
2662 pos, len, flags,
2663 pagep, fsdata);
2664 if (ret < 0)
2665 return ret;
2666 if (ret == 1)
2667 return 0;
2668 }
2669
2670 /*
2671 * grab_cache_page_write_begin() can take a long time if the
2672 * system is thrashing due to memory pressure, or if the page
2673 * is being written back. So grab it first before we start
2674 * the transaction handle. This also allows us to allocate
2675 * the page (if needed) without using GFP_NOFS.
2676 */
2677 retry_grab:
2678 page = grab_cache_page_write_begin(mapping, index, flags);
2679 if (!page)
2680 return -ENOMEM;
2681 unlock_page(page);
2682
2683 /*
2684 * With delayed allocation, we don't log the i_disksize update
2685 * if there is delayed block allocation. But we still need
2686 * to journalling the i_disksize update if writes to the end
2687 * of file which has an already mapped buffer.
2688 */
2689 retry_journal:
2690 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2691 if (IS_ERR(handle)) {
2692 page_cache_release(page);
2693 return PTR_ERR(handle);
2694 }
2695
2696 lock_page(page);
2697 if (page->mapping != mapping) {
2698 /* The page got truncated from under us */
2699 unlock_page(page);
2700 page_cache_release(page);
2701 ext4_journal_stop(handle);
2702 goto retry_grab;
2703 }
2704 /* In case writeback began while the page was unlocked */
2705 wait_for_stable_page(page);
2706
2707 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2708 if (ret < 0) {
2709 unlock_page(page);
2710 ext4_journal_stop(handle);
2711 /*
2712 * block_write_begin may have instantiated a few blocks
2713 * outside i_size. Trim these off again. Don't need
2714 * i_size_read because we hold i_mutex.
2715 */
2716 if (pos + len > inode->i_size)
2717 ext4_truncate_failed_write(inode);
2718
2719 if (ret == -ENOSPC &&
2720 ext4_should_retry_alloc(inode->i_sb, &retries))
2721 goto retry_journal;
2722
2723 page_cache_release(page);
2724 return ret;
2725 }
2726
2727 *pagep = page;
2728 return ret;
2729 }
2730
2731 /*
2732 * Check if we should update i_disksize
2733 * when write to the end of file but not require block allocation
2734 */
2735 static int ext4_da_should_update_i_disksize(struct page *page,
2736 unsigned long offset)
2737 {
2738 struct buffer_head *bh;
2739 struct inode *inode = page->mapping->host;
2740 unsigned int idx;
2741 int i;
2742
2743 bh = page_buffers(page);
2744 idx = offset >> inode->i_blkbits;
2745
2746 for (i = 0; i < idx; i++)
2747 bh = bh->b_this_page;
2748
2749 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2750 return 0;
2751 return 1;
2752 }
2753
2754 static int ext4_da_write_end(struct file *file,
2755 struct address_space *mapping,
2756 loff_t pos, unsigned len, unsigned copied,
2757 struct page *page, void *fsdata)
2758 {
2759 struct inode *inode = mapping->host;
2760 int ret = 0, ret2;
2761 handle_t *handle = ext4_journal_current_handle();
2762 loff_t new_i_size;
2763 unsigned long start, end;
2764 int write_mode = (int)(unsigned long)fsdata;
2765
2766 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2767 return ext4_write_end(file, mapping, pos,
2768 len, copied, page, fsdata);
2769
2770 trace_ext4_da_write_end(inode, pos, len, copied);
2771 start = pos & (PAGE_CACHE_SIZE - 1);
2772 end = start + copied - 1;
2773
2774 /*
2775 * generic_write_end() will run mark_inode_dirty() if i_size
2776 * changes. So let's piggyback the i_disksize mark_inode_dirty
2777 * into that.
2778 */
2779 new_i_size = pos + copied;
2780 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2781 if (ext4_has_inline_data(inode) ||
2782 ext4_da_should_update_i_disksize(page, end)) {
2783 down_write(&EXT4_I(inode)->i_data_sem);
2784 if (new_i_size > EXT4_I(inode)->i_disksize)
2785 EXT4_I(inode)->i_disksize = new_i_size;
2786 up_write(&EXT4_I(inode)->i_data_sem);
2787 /* We need to mark inode dirty even if
2788 * new_i_size is less that inode->i_size
2789 * bu greater than i_disksize.(hint delalloc)
2790 */
2791 ext4_mark_inode_dirty(handle, inode);
2792 }
2793 }
2794
2795 if (write_mode != CONVERT_INLINE_DATA &&
2796 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2797 ext4_has_inline_data(inode))
2798 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2799 page);
2800 else
2801 ret2 = generic_write_end(file, mapping, pos, len, copied,
2802 page, fsdata);
2803
2804 copied = ret2;
2805 if (ret2 < 0)
2806 ret = ret2;
2807 ret2 = ext4_journal_stop(handle);
2808 if (!ret)
2809 ret = ret2;
2810
2811 return ret ? ret : copied;
2812 }
2813
2814 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2815 unsigned int length)
2816 {
2817 /*
2818 * Drop reserved blocks
2819 */
2820 BUG_ON(!PageLocked(page));
2821 if (!page_has_buffers(page))
2822 goto out;
2823
2824 ext4_da_page_release_reservation(page, offset, length);
2825
2826 out:
2827 ext4_invalidatepage(page, offset, length);
2828
2829 return;
2830 }
2831
2832 /*
2833 * Force all delayed allocation blocks to be allocated for a given inode.
2834 */
2835 int ext4_alloc_da_blocks(struct inode *inode)
2836 {
2837 trace_ext4_alloc_da_blocks(inode);
2838
2839 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2840 !EXT4_I(inode)->i_reserved_meta_blocks)
2841 return 0;
2842
2843 /*
2844 * We do something simple for now. The filemap_flush() will
2845 * also start triggering a write of the data blocks, which is
2846 * not strictly speaking necessary (and for users of
2847 * laptop_mode, not even desirable). However, to do otherwise
2848 * would require replicating code paths in:
2849 *
2850 * ext4_writepages() ->
2851 * write_cache_pages() ---> (via passed in callback function)
2852 * __mpage_da_writepage() -->
2853 * mpage_add_bh_to_extent()
2854 * mpage_da_map_blocks()
2855 *
2856 * The problem is that write_cache_pages(), located in
2857 * mm/page-writeback.c, marks pages clean in preparation for
2858 * doing I/O, which is not desirable if we're not planning on
2859 * doing I/O at all.
2860 *
2861 * We could call write_cache_pages(), and then redirty all of
2862 * the pages by calling redirty_page_for_writepage() but that
2863 * would be ugly in the extreme. So instead we would need to
2864 * replicate parts of the code in the above functions,
2865 * simplifying them because we wouldn't actually intend to
2866 * write out the pages, but rather only collect contiguous
2867 * logical block extents, call the multi-block allocator, and
2868 * then update the buffer heads with the block allocations.
2869 *
2870 * For now, though, we'll cheat by calling filemap_flush(),
2871 * which will map the blocks, and start the I/O, but not
2872 * actually wait for the I/O to complete.
2873 */
2874 return filemap_flush(inode->i_mapping);
2875 }
2876
2877 /*
2878 * bmap() is special. It gets used by applications such as lilo and by
2879 * the swapper to find the on-disk block of a specific piece of data.
2880 *
2881 * Naturally, this is dangerous if the block concerned is still in the
2882 * journal. If somebody makes a swapfile on an ext4 data-journaling
2883 * filesystem and enables swap, then they may get a nasty shock when the
2884 * data getting swapped to that swapfile suddenly gets overwritten by
2885 * the original zero's written out previously to the journal and
2886 * awaiting writeback in the kernel's buffer cache.
2887 *
2888 * So, if we see any bmap calls here on a modified, data-journaled file,
2889 * take extra steps to flush any blocks which might be in the cache.
2890 */
2891 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2892 {
2893 struct inode *inode = mapping->host;
2894 journal_t *journal;
2895 int err;
2896
2897 /*
2898 * We can get here for an inline file via the FIBMAP ioctl
2899 */
2900 if (ext4_has_inline_data(inode))
2901 return 0;
2902
2903 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2904 test_opt(inode->i_sb, DELALLOC)) {
2905 /*
2906 * With delalloc we want to sync the file
2907 * so that we can make sure we allocate
2908 * blocks for file
2909 */
2910 filemap_write_and_wait(mapping);
2911 }
2912
2913 if (EXT4_JOURNAL(inode) &&
2914 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2915 /*
2916 * This is a REALLY heavyweight approach, but the use of
2917 * bmap on dirty files is expected to be extremely rare:
2918 * only if we run lilo or swapon on a freshly made file
2919 * do we expect this to happen.
2920 *
2921 * (bmap requires CAP_SYS_RAWIO so this does not
2922 * represent an unprivileged user DOS attack --- we'd be
2923 * in trouble if mortal users could trigger this path at
2924 * will.)
2925 *
2926 * NB. EXT4_STATE_JDATA is not set on files other than
2927 * regular files. If somebody wants to bmap a directory
2928 * or symlink and gets confused because the buffer
2929 * hasn't yet been flushed to disk, they deserve
2930 * everything they get.
2931 */
2932
2933 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2934 journal = EXT4_JOURNAL(inode);
2935 jbd2_journal_lock_updates(journal);
2936 err = jbd2_journal_flush(journal);
2937 jbd2_journal_unlock_updates(journal);
2938
2939 if (err)
2940 return 0;
2941 }
2942
2943 return generic_block_bmap(mapping, block, ext4_get_block);
2944 }
2945
2946 static int ext4_readpage(struct file *file, struct page *page)
2947 {
2948 int ret = -EAGAIN;
2949 struct inode *inode = page->mapping->host;
2950
2951 trace_ext4_readpage(page);
2952
2953 if (ext4_has_inline_data(inode))
2954 ret = ext4_readpage_inline(inode, page);
2955
2956 if (ret == -EAGAIN)
2957 return mpage_readpage(page, ext4_get_block);
2958
2959 return ret;
2960 }
2961
2962 static int
2963 ext4_readpages(struct file *file, struct address_space *mapping,
2964 struct list_head *pages, unsigned nr_pages)
2965 {
2966 struct inode *inode = mapping->host;
2967
2968 /* If the file has inline data, no need to do readpages. */
2969 if (ext4_has_inline_data(inode))
2970 return 0;
2971
2972 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2973 }
2974
2975 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2976 unsigned int length)
2977 {
2978 trace_ext4_invalidatepage(page, offset, length);
2979
2980 /* No journalling happens on data buffers when this function is used */
2981 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2982
2983 block_invalidatepage(page, offset, length);
2984 }
2985
2986 static int __ext4_journalled_invalidatepage(struct page *page,
2987 unsigned int offset,
2988 unsigned int length)
2989 {
2990 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2991
2992 trace_ext4_journalled_invalidatepage(page, offset, length);
2993
2994 /*
2995 * If it's a full truncate we just forget about the pending dirtying
2996 */
2997 if (offset == 0 && length == PAGE_CACHE_SIZE)
2998 ClearPageChecked(page);
2999
3000 return jbd2_journal_invalidatepage(journal, page, offset, length);
3001 }
3002
3003 /* Wrapper for aops... */
3004 static void ext4_journalled_invalidatepage(struct page *page,
3005 unsigned int offset,
3006 unsigned int length)
3007 {
3008 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3009 }
3010
3011 static int ext4_releasepage(struct page *page, gfp_t wait)
3012 {
3013 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3014
3015 trace_ext4_releasepage(page);
3016
3017 /* Page has dirty journalled data -> cannot release */
3018 if (PageChecked(page))
3019 return 0;
3020 if (journal)
3021 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3022 else
3023 return try_to_free_buffers(page);
3024 }
3025
3026 /*
3027 * ext4_get_block used when preparing for a DIO write or buffer write.
3028 * We allocate an uinitialized extent if blocks haven't been allocated.
3029 * The extent will be converted to initialized after the IO is complete.
3030 */
3031 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3032 struct buffer_head *bh_result, int create)
3033 {
3034 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3035 inode->i_ino, create);
3036 return _ext4_get_block(inode, iblock, bh_result,
3037 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3038 }
3039
3040 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3041 struct buffer_head *bh_result, int create)
3042 {
3043 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3044 inode->i_ino, create);
3045 return _ext4_get_block(inode, iblock, bh_result,
3046 EXT4_GET_BLOCKS_NO_LOCK);
3047 }
3048
3049 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3050 ssize_t size, void *private)
3051 {
3052 ext4_io_end_t *io_end = iocb->private;
3053
3054 /* if not async direct IO just return */
3055 if (!io_end)
3056 return;
3057
3058 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3059 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3060 iocb->private, io_end->inode->i_ino, iocb, offset,
3061 size);
3062
3063 iocb->private = NULL;
3064 io_end->offset = offset;
3065 io_end->size = size;
3066 ext4_put_io_end(io_end);
3067 }
3068
3069 /*
3070 * For ext4 extent files, ext4 will do direct-io write to holes,
3071 * preallocated extents, and those write extend the file, no need to
3072 * fall back to buffered IO.
3073 *
3074 * For holes, we fallocate those blocks, mark them as unwritten
3075 * If those blocks were preallocated, we mark sure they are split, but
3076 * still keep the range to write as unwritten.
3077 *
3078 * The unwritten extents will be converted to written when DIO is completed.
3079 * For async direct IO, since the IO may still pending when return, we
3080 * set up an end_io call back function, which will do the conversion
3081 * when async direct IO completed.
3082 *
3083 * If the O_DIRECT write will extend the file then add this inode to the
3084 * orphan list. So recovery will truncate it back to the original size
3085 * if the machine crashes during the write.
3086 *
3087 */
3088 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3089 struct iov_iter *iter, loff_t offset)
3090 {
3091 struct file *file = iocb->ki_filp;
3092 struct inode *inode = file->f_mapping->host;
3093 ssize_t ret;
3094 size_t count = iov_iter_count(iter);
3095 int overwrite = 0;
3096 get_block_t *get_block_func = NULL;
3097 int dio_flags = 0;
3098 loff_t final_size = offset + count;
3099 ext4_io_end_t *io_end = NULL;
3100
3101 /* Use the old path for reads and writes beyond i_size. */
3102 if (rw != WRITE || final_size > inode->i_size)
3103 return ext4_ind_direct_IO(rw, iocb, iter, offset);
3104
3105 BUG_ON(iocb->private == NULL);
3106
3107 /*
3108 * Make all waiters for direct IO properly wait also for extent
3109 * conversion. This also disallows race between truncate() and
3110 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3111 */
3112 if (rw == WRITE)
3113 atomic_inc(&inode->i_dio_count);
3114
3115 /* If we do a overwrite dio, i_mutex locking can be released */
3116 overwrite = *((int *)iocb->private);
3117
3118 if (overwrite) {
3119 down_read(&EXT4_I(inode)->i_data_sem);
3120 mutex_unlock(&inode->i_mutex);
3121 }
3122
3123 /*
3124 * We could direct write to holes and fallocate.
3125 *
3126 * Allocated blocks to fill the hole are marked as
3127 * unwritten to prevent parallel buffered read to expose
3128 * the stale data before DIO complete the data IO.
3129 *
3130 * As to previously fallocated extents, ext4 get_block will
3131 * just simply mark the buffer mapped but still keep the
3132 * extents unwritten.
3133 *
3134 * For non AIO case, we will convert those unwritten extents
3135 * to written after return back from blockdev_direct_IO.
3136 *
3137 * For async DIO, the conversion needs to be deferred when the
3138 * IO is completed. The ext4 end_io callback function will be
3139 * called to take care of the conversion work. Here for async
3140 * case, we allocate an io_end structure to hook to the iocb.
3141 */
3142 iocb->private = NULL;
3143 ext4_inode_aio_set(inode, NULL);
3144 if (!is_sync_kiocb(iocb)) {
3145 io_end = ext4_init_io_end(inode, GFP_NOFS);
3146 if (!io_end) {
3147 ret = -ENOMEM;
3148 goto retake_lock;
3149 }
3150 /*
3151 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3152 */
3153 iocb->private = ext4_get_io_end(io_end);
3154 /*
3155 * we save the io structure for current async direct
3156 * IO, so that later ext4_map_blocks() could flag the
3157 * io structure whether there is a unwritten extents
3158 * needs to be converted when IO is completed.
3159 */
3160 ext4_inode_aio_set(inode, io_end);
3161 }
3162
3163 if (overwrite) {
3164 get_block_func = ext4_get_block_write_nolock;
3165 } else {
3166 get_block_func = ext4_get_block_write;
3167 dio_flags = DIO_LOCKING;
3168 }
3169 ret = __blockdev_direct_IO(rw, iocb, inode,
3170 inode->i_sb->s_bdev, iter,
3171 offset,
3172 get_block_func,
3173 ext4_end_io_dio,
3174 NULL,
3175 dio_flags);
3176
3177 /*
3178 * Put our reference to io_end. This can free the io_end structure e.g.
3179 * in sync IO case or in case of error. It can even perform extent
3180 * conversion if all bios we submitted finished before we got here.
3181 * Note that in that case iocb->private can be already set to NULL
3182 * here.
3183 */
3184 if (io_end) {
3185 ext4_inode_aio_set(inode, NULL);
3186 ext4_put_io_end(io_end);
3187 /*
3188 * When no IO was submitted ext4_end_io_dio() was not
3189 * called so we have to put iocb's reference.
3190 */
3191 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3192 WARN_ON(iocb->private != io_end);
3193 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3194 ext4_put_io_end(io_end);
3195 iocb->private = NULL;
3196 }
3197 }
3198 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3199 EXT4_STATE_DIO_UNWRITTEN)) {
3200 int err;
3201 /*
3202 * for non AIO case, since the IO is already
3203 * completed, we could do the conversion right here
3204 */
3205 err = ext4_convert_unwritten_extents(NULL, inode,
3206 offset, ret);
3207 if (err < 0)
3208 ret = err;
3209 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3210 }
3211
3212 retake_lock:
3213 if (rw == WRITE)
3214 inode_dio_done(inode);
3215 /* take i_mutex locking again if we do a ovewrite dio */
3216 if (overwrite) {
3217 up_read(&EXT4_I(inode)->i_data_sem);
3218 mutex_lock(&inode->i_mutex);
3219 }
3220
3221 return ret;
3222 }
3223
3224 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225 struct iov_iter *iter, loff_t offset)
3226 {
3227 struct file *file = iocb->ki_filp;
3228 struct inode *inode = file->f_mapping->host;
3229 size_t count = iov_iter_count(iter);
3230 ssize_t ret;
3231
3232 /*
3233 * If we are doing data journalling we don't support O_DIRECT
3234 */
3235 if (ext4_should_journal_data(inode))
3236 return 0;
3237
3238 /* Let buffer I/O handle the inline data case. */
3239 if (ext4_has_inline_data(inode))
3240 return 0;
3241
3242 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3243 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3245 else
3246 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3247 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3248 return ret;
3249 }
3250
3251 /*
3252 * Pages can be marked dirty completely asynchronously from ext4's journalling
3253 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3254 * much here because ->set_page_dirty is called under VFS locks. The page is
3255 * not necessarily locked.
3256 *
3257 * We cannot just dirty the page and leave attached buffers clean, because the
3258 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3259 * or jbddirty because all the journalling code will explode.
3260 *
3261 * So what we do is to mark the page "pending dirty" and next time writepage
3262 * is called, propagate that into the buffers appropriately.
3263 */
3264 static int ext4_journalled_set_page_dirty(struct page *page)
3265 {
3266 SetPageChecked(page);
3267 return __set_page_dirty_nobuffers(page);
3268 }
3269
3270 static const struct address_space_operations ext4_aops = {
3271 .readpage = ext4_readpage,
3272 .readpages = ext4_readpages,
3273 .writepage = ext4_writepage,
3274 .writepages = ext4_writepages,
3275 .write_begin = ext4_write_begin,
3276 .write_end = ext4_write_end,
3277 .bmap = ext4_bmap,
3278 .invalidatepage = ext4_invalidatepage,
3279 .releasepage = ext4_releasepage,
3280 .direct_IO = ext4_direct_IO,
3281 .migratepage = buffer_migrate_page,
3282 .is_partially_uptodate = block_is_partially_uptodate,
3283 .error_remove_page = generic_error_remove_page,
3284 };
3285
3286 static const struct address_space_operations ext4_journalled_aops = {
3287 .readpage = ext4_readpage,
3288 .readpages = ext4_readpages,
3289 .writepage = ext4_writepage,
3290 .writepages = ext4_writepages,
3291 .write_begin = ext4_write_begin,
3292 .write_end = ext4_journalled_write_end,
3293 .set_page_dirty = ext4_journalled_set_page_dirty,
3294 .bmap = ext4_bmap,
3295 .invalidatepage = ext4_journalled_invalidatepage,
3296 .releasepage = ext4_releasepage,
3297 .direct_IO = ext4_direct_IO,
3298 .is_partially_uptodate = block_is_partially_uptodate,
3299 .error_remove_page = generic_error_remove_page,
3300 };
3301
3302 static const struct address_space_operations ext4_da_aops = {
3303 .readpage = ext4_readpage,
3304 .readpages = ext4_readpages,
3305 .writepage = ext4_writepage,
3306 .writepages = ext4_writepages,
3307 .write_begin = ext4_da_write_begin,
3308 .write_end = ext4_da_write_end,
3309 .bmap = ext4_bmap,
3310 .invalidatepage = ext4_da_invalidatepage,
3311 .releasepage = ext4_releasepage,
3312 .direct_IO = ext4_direct_IO,
3313 .migratepage = buffer_migrate_page,
3314 .is_partially_uptodate = block_is_partially_uptodate,
3315 .error_remove_page = generic_error_remove_page,
3316 };
3317
3318 void ext4_set_aops(struct inode *inode)
3319 {
3320 switch (ext4_inode_journal_mode(inode)) {
3321 case EXT4_INODE_ORDERED_DATA_MODE:
3322 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3323 break;
3324 case EXT4_INODE_WRITEBACK_DATA_MODE:
3325 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3326 break;
3327 case EXT4_INODE_JOURNAL_DATA_MODE:
3328 inode->i_mapping->a_ops = &ext4_journalled_aops;
3329 return;
3330 default:
3331 BUG();
3332 }
3333 if (test_opt(inode->i_sb, DELALLOC))
3334 inode->i_mapping->a_ops = &ext4_da_aops;
3335 else
3336 inode->i_mapping->a_ops = &ext4_aops;
3337 }
3338
3339 /*
3340 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3341 * starting from file offset 'from'. The range to be zero'd must
3342 * be contained with in one block. If the specified range exceeds
3343 * the end of the block it will be shortened to end of the block
3344 * that cooresponds to 'from'
3345 */
3346 static int ext4_block_zero_page_range(handle_t *handle,
3347 struct address_space *mapping, loff_t from, loff_t length)
3348 {
3349 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3350 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3351 unsigned blocksize, max, pos;
3352 ext4_lblk_t iblock;
3353 struct inode *inode = mapping->host;
3354 struct buffer_head *bh;
3355 struct page *page;
3356 int err = 0;
3357
3358 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3359 mapping_gfp_mask(mapping) & ~__GFP_FS);
3360 if (!page)
3361 return -ENOMEM;
3362
3363 blocksize = inode->i_sb->s_blocksize;
3364 max = blocksize - (offset & (blocksize - 1));
3365
3366 /*
3367 * correct length if it does not fall between
3368 * 'from' and the end of the block
3369 */
3370 if (length > max || length < 0)
3371 length = max;
3372
3373 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3374
3375 if (!page_has_buffers(page))
3376 create_empty_buffers(page, blocksize, 0);
3377
3378 /* Find the buffer that contains "offset" */
3379 bh = page_buffers(page);
3380 pos = blocksize;
3381 while (offset >= pos) {
3382 bh = bh->b_this_page;
3383 iblock++;
3384 pos += blocksize;
3385 }
3386 if (buffer_freed(bh)) {
3387 BUFFER_TRACE(bh, "freed: skip");
3388 goto unlock;
3389 }
3390 if (!buffer_mapped(bh)) {
3391 BUFFER_TRACE(bh, "unmapped");
3392 ext4_get_block(inode, iblock, bh, 0);
3393 /* unmapped? It's a hole - nothing to do */
3394 if (!buffer_mapped(bh)) {
3395 BUFFER_TRACE(bh, "still unmapped");
3396 goto unlock;
3397 }
3398 }
3399
3400 /* Ok, it's mapped. Make sure it's up-to-date */
3401 if (PageUptodate(page))
3402 set_buffer_uptodate(bh);
3403
3404 if (!buffer_uptodate(bh)) {
3405 err = -EIO;
3406 ll_rw_block(READ, 1, &bh);
3407 wait_on_buffer(bh);
3408 /* Uhhuh. Read error. Complain and punt. */
3409 if (!buffer_uptodate(bh))
3410 goto unlock;
3411 }
3412 if (ext4_should_journal_data(inode)) {
3413 BUFFER_TRACE(bh, "get write access");
3414 err = ext4_journal_get_write_access(handle, bh);
3415 if (err)
3416 goto unlock;
3417 }
3418 zero_user(page, offset, length);
3419 BUFFER_TRACE(bh, "zeroed end of block");
3420
3421 if (ext4_should_journal_data(inode)) {
3422 err = ext4_handle_dirty_metadata(handle, inode, bh);
3423 } else {
3424 err = 0;
3425 mark_buffer_dirty(bh);
3426 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3427 err = ext4_jbd2_file_inode(handle, inode);
3428 }
3429
3430 unlock:
3431 unlock_page(page);
3432 page_cache_release(page);
3433 return err;
3434 }
3435
3436 /*
3437 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3438 * up to the end of the block which corresponds to `from'.
3439 * This required during truncate. We need to physically zero the tail end
3440 * of that block so it doesn't yield old data if the file is later grown.
3441 */
3442 int ext4_block_truncate_page(handle_t *handle,
3443 struct address_space *mapping, loff_t from)
3444 {
3445 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3446 unsigned length;
3447 unsigned blocksize;
3448 struct inode *inode = mapping->host;
3449
3450 blocksize = inode->i_sb->s_blocksize;
3451 length = blocksize - (offset & (blocksize - 1));
3452
3453 return ext4_block_zero_page_range(handle, mapping, from, length);
3454 }
3455
3456 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3457 loff_t lstart, loff_t length)
3458 {
3459 struct super_block *sb = inode->i_sb;
3460 struct address_space *mapping = inode->i_mapping;
3461 unsigned partial_start, partial_end;
3462 ext4_fsblk_t start, end;
3463 loff_t byte_end = (lstart + length - 1);
3464 int err = 0;
3465
3466 partial_start = lstart & (sb->s_blocksize - 1);
3467 partial_end = byte_end & (sb->s_blocksize - 1);
3468
3469 start = lstart >> sb->s_blocksize_bits;
3470 end = byte_end >> sb->s_blocksize_bits;
3471
3472 /* Handle partial zero within the single block */
3473 if (start == end &&
3474 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3475 err = ext4_block_zero_page_range(handle, mapping,
3476 lstart, length);
3477 return err;
3478 }
3479 /* Handle partial zero out on the start of the range */
3480 if (partial_start) {
3481 err = ext4_block_zero_page_range(handle, mapping,
3482 lstart, sb->s_blocksize);
3483 if (err)
3484 return err;
3485 }
3486 /* Handle partial zero out on the end of the range */
3487 if (partial_end != sb->s_blocksize - 1)
3488 err = ext4_block_zero_page_range(handle, mapping,
3489 byte_end - partial_end,
3490 partial_end + 1);
3491 return err;
3492 }
3493
3494 int ext4_can_truncate(struct inode *inode)
3495 {
3496 if (S_ISREG(inode->i_mode))
3497 return 1;
3498 if (S_ISDIR(inode->i_mode))
3499 return 1;
3500 if (S_ISLNK(inode->i_mode))
3501 return !ext4_inode_is_fast_symlink(inode);
3502 return 0;
3503 }
3504
3505 /*
3506 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3507 * associated with the given offset and length
3508 *
3509 * @inode: File inode
3510 * @offset: The offset where the hole will begin
3511 * @len: The length of the hole
3512 *
3513 * Returns: 0 on success or negative on failure
3514 */
3515
3516 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3517 {
3518 struct super_block *sb = inode->i_sb;
3519 ext4_lblk_t first_block, stop_block;
3520 struct address_space *mapping = inode->i_mapping;
3521 loff_t first_block_offset, last_block_offset;
3522 handle_t *handle;
3523 unsigned int credits;
3524 int ret = 0;
3525
3526 if (!S_ISREG(inode->i_mode))
3527 return -EOPNOTSUPP;
3528
3529 trace_ext4_punch_hole(inode, offset, length, 0);
3530
3531 /*
3532 * Write out all dirty pages to avoid race conditions
3533 * Then release them.
3534 */
3535 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3536 ret = filemap_write_and_wait_range(mapping, offset,
3537 offset + length - 1);
3538 if (ret)
3539 return ret;
3540 }
3541
3542 mutex_lock(&inode->i_mutex);
3543
3544 /* No need to punch hole beyond i_size */
3545 if (offset >= inode->i_size)
3546 goto out_mutex;
3547
3548 /*
3549 * If the hole extends beyond i_size, set the hole
3550 * to end after the page that contains i_size
3551 */
3552 if (offset + length > inode->i_size) {
3553 length = inode->i_size +
3554 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3555 offset;
3556 }
3557
3558 if (offset & (sb->s_blocksize - 1) ||
3559 (offset + length) & (sb->s_blocksize - 1)) {
3560 /*
3561 * Attach jinode to inode for jbd2 if we do any zeroing of
3562 * partial block
3563 */
3564 ret = ext4_inode_attach_jinode(inode);
3565 if (ret < 0)
3566 goto out_mutex;
3567
3568 }
3569
3570 first_block_offset = round_up(offset, sb->s_blocksize);
3571 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3572
3573 /* Now release the pages and zero block aligned part of pages*/
3574 if (last_block_offset > first_block_offset)
3575 truncate_pagecache_range(inode, first_block_offset,
3576 last_block_offset);
3577
3578 /* Wait all existing dio workers, newcomers will block on i_mutex */
3579 ext4_inode_block_unlocked_dio(inode);
3580 inode_dio_wait(inode);
3581
3582 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3583 credits = ext4_writepage_trans_blocks(inode);
3584 else
3585 credits = ext4_blocks_for_truncate(inode);
3586 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3587 if (IS_ERR(handle)) {
3588 ret = PTR_ERR(handle);
3589 ext4_std_error(sb, ret);
3590 goto out_dio;
3591 }
3592
3593 ret = ext4_zero_partial_blocks(handle, inode, offset,
3594 length);
3595 if (ret)
3596 goto out_stop;
3597
3598 first_block = (offset + sb->s_blocksize - 1) >>
3599 EXT4_BLOCK_SIZE_BITS(sb);
3600 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3601
3602 /* If there are no blocks to remove, return now */
3603 if (first_block >= stop_block)
3604 goto out_stop;
3605
3606 down_write(&EXT4_I(inode)->i_data_sem);
3607 ext4_discard_preallocations(inode);
3608
3609 ret = ext4_es_remove_extent(inode, first_block,
3610 stop_block - first_block);
3611 if (ret) {
3612 up_write(&EXT4_I(inode)->i_data_sem);
3613 goto out_stop;
3614 }
3615
3616 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3617 ret = ext4_ext_remove_space(inode, first_block,
3618 stop_block - 1);
3619 else
3620 ret = ext4_free_hole_blocks(handle, inode, first_block,
3621 stop_block);
3622
3623 up_write(&EXT4_I(inode)->i_data_sem);
3624 if (IS_SYNC(inode))
3625 ext4_handle_sync(handle);
3626
3627 /* Now release the pages again to reduce race window */
3628 if (last_block_offset > first_block_offset)
3629 truncate_pagecache_range(inode, first_block_offset,
3630 last_block_offset);
3631
3632 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3633 ext4_mark_inode_dirty(handle, inode);
3634 out_stop:
3635 ext4_journal_stop(handle);
3636 out_dio:
3637 ext4_inode_resume_unlocked_dio(inode);
3638 out_mutex:
3639 mutex_unlock(&inode->i_mutex);
3640 return ret;
3641 }
3642
3643 int ext4_inode_attach_jinode(struct inode *inode)
3644 {
3645 struct ext4_inode_info *ei = EXT4_I(inode);
3646 struct jbd2_inode *jinode;
3647
3648 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3649 return 0;
3650
3651 jinode = jbd2_alloc_inode(GFP_KERNEL);
3652 spin_lock(&inode->i_lock);
3653 if (!ei->jinode) {
3654 if (!jinode) {
3655 spin_unlock(&inode->i_lock);
3656 return -ENOMEM;
3657 }
3658 ei->jinode = jinode;
3659 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3660 jinode = NULL;
3661 }
3662 spin_unlock(&inode->i_lock);
3663 if (unlikely(jinode != NULL))
3664 jbd2_free_inode(jinode);
3665 return 0;
3666 }
3667
3668 /*
3669 * ext4_truncate()
3670 *
3671 * We block out ext4_get_block() block instantiations across the entire
3672 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3673 * simultaneously on behalf of the same inode.
3674 *
3675 * As we work through the truncate and commit bits of it to the journal there
3676 * is one core, guiding principle: the file's tree must always be consistent on
3677 * disk. We must be able to restart the truncate after a crash.
3678 *
3679 * The file's tree may be transiently inconsistent in memory (although it
3680 * probably isn't), but whenever we close off and commit a journal transaction,
3681 * the contents of (the filesystem + the journal) must be consistent and
3682 * restartable. It's pretty simple, really: bottom up, right to left (although
3683 * left-to-right works OK too).
3684 *
3685 * Note that at recovery time, journal replay occurs *before* the restart of
3686 * truncate against the orphan inode list.
3687 *
3688 * The committed inode has the new, desired i_size (which is the same as
3689 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3690 * that this inode's truncate did not complete and it will again call
3691 * ext4_truncate() to have another go. So there will be instantiated blocks
3692 * to the right of the truncation point in a crashed ext4 filesystem. But
3693 * that's fine - as long as they are linked from the inode, the post-crash
3694 * ext4_truncate() run will find them and release them.
3695 */
3696 void ext4_truncate(struct inode *inode)
3697 {
3698 struct ext4_inode_info *ei = EXT4_I(inode);
3699 unsigned int credits;
3700 handle_t *handle;
3701 struct address_space *mapping = inode->i_mapping;
3702
3703 /*
3704 * There is a possibility that we're either freeing the inode
3705 * or it's a completely new inode. In those cases we might not
3706 * have i_mutex locked because it's not necessary.
3707 */
3708 if (!(inode->i_state & (I_NEW|I_FREEING)))
3709 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3710 trace_ext4_truncate_enter(inode);
3711
3712 if (!ext4_can_truncate(inode))
3713 return;
3714
3715 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3716
3717 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3718 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3719
3720 if (ext4_has_inline_data(inode)) {
3721 int has_inline = 1;
3722
3723 ext4_inline_data_truncate(inode, &has_inline);
3724 if (has_inline)
3725 return;
3726 }
3727
3728 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3729 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3730 if (ext4_inode_attach_jinode(inode) < 0)
3731 return;
3732 }
3733
3734 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3735 credits = ext4_writepage_trans_blocks(inode);
3736 else
3737 credits = ext4_blocks_for_truncate(inode);
3738
3739 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3740 if (IS_ERR(handle)) {
3741 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3742 return;
3743 }
3744
3745 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3746 ext4_block_truncate_page(handle, mapping, inode->i_size);
3747
3748 /*
3749 * We add the inode to the orphan list, so that if this
3750 * truncate spans multiple transactions, and we crash, we will
3751 * resume the truncate when the filesystem recovers. It also
3752 * marks the inode dirty, to catch the new size.
3753 *
3754 * Implication: the file must always be in a sane, consistent
3755 * truncatable state while each transaction commits.
3756 */
3757 if (ext4_orphan_add(handle, inode))
3758 goto out_stop;
3759
3760 down_write(&EXT4_I(inode)->i_data_sem);
3761
3762 ext4_discard_preallocations(inode);
3763
3764 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3765 ext4_ext_truncate(handle, inode);
3766 else
3767 ext4_ind_truncate(handle, inode);
3768
3769 up_write(&ei->i_data_sem);
3770
3771 if (IS_SYNC(inode))
3772 ext4_handle_sync(handle);
3773
3774 out_stop:
3775 /*
3776 * If this was a simple ftruncate() and the file will remain alive,
3777 * then we need to clear up the orphan record which we created above.
3778 * However, if this was a real unlink then we were called by
3779 * ext4_delete_inode(), and we allow that function to clean up the
3780 * orphan info for us.
3781 */
3782 if (inode->i_nlink)
3783 ext4_orphan_del(handle, inode);
3784
3785 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3786 ext4_mark_inode_dirty(handle, inode);
3787 ext4_journal_stop(handle);
3788
3789 trace_ext4_truncate_exit(inode);
3790 }
3791
3792 /*
3793 * ext4_get_inode_loc returns with an extra refcount against the inode's
3794 * underlying buffer_head on success. If 'in_mem' is true, we have all
3795 * data in memory that is needed to recreate the on-disk version of this
3796 * inode.
3797 */
3798 static int __ext4_get_inode_loc(struct inode *inode,
3799 struct ext4_iloc *iloc, int in_mem)
3800 {
3801 struct ext4_group_desc *gdp;
3802 struct buffer_head *bh;
3803 struct super_block *sb = inode->i_sb;
3804 ext4_fsblk_t block;
3805 int inodes_per_block, inode_offset;
3806
3807 iloc->bh = NULL;
3808 if (!ext4_valid_inum(sb, inode->i_ino))
3809 return -EIO;
3810
3811 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3812 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3813 if (!gdp)
3814 return -EIO;
3815
3816 /*
3817 * Figure out the offset within the block group inode table
3818 */
3819 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3820 inode_offset = ((inode->i_ino - 1) %
3821 EXT4_INODES_PER_GROUP(sb));
3822 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3823 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3824
3825 bh = sb_getblk(sb, block);
3826 if (unlikely(!bh))
3827 return -ENOMEM;
3828 if (!buffer_uptodate(bh)) {
3829 lock_buffer(bh);
3830
3831 /*
3832 * If the buffer has the write error flag, we have failed
3833 * to write out another inode in the same block. In this
3834 * case, we don't have to read the block because we may
3835 * read the old inode data successfully.
3836 */
3837 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3838 set_buffer_uptodate(bh);
3839
3840 if (buffer_uptodate(bh)) {
3841 /* someone brought it uptodate while we waited */
3842 unlock_buffer(bh);
3843 goto has_buffer;
3844 }
3845
3846 /*
3847 * If we have all information of the inode in memory and this
3848 * is the only valid inode in the block, we need not read the
3849 * block.
3850 */
3851 if (in_mem) {
3852 struct buffer_head *bitmap_bh;
3853 int i, start;
3854
3855 start = inode_offset & ~(inodes_per_block - 1);
3856
3857 /* Is the inode bitmap in cache? */
3858 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3859 if (unlikely(!bitmap_bh))
3860 goto make_io;
3861
3862 /*
3863 * If the inode bitmap isn't in cache then the
3864 * optimisation may end up performing two reads instead
3865 * of one, so skip it.
3866 */
3867 if (!buffer_uptodate(bitmap_bh)) {
3868 brelse(bitmap_bh);
3869 goto make_io;
3870 }
3871 for (i = start; i < start + inodes_per_block; i++) {
3872 if (i == inode_offset)
3873 continue;
3874 if (ext4_test_bit(i, bitmap_bh->b_data))
3875 break;
3876 }
3877 brelse(bitmap_bh);
3878 if (i == start + inodes_per_block) {
3879 /* all other inodes are free, so skip I/O */
3880 memset(bh->b_data, 0, bh->b_size);
3881 set_buffer_uptodate(bh);
3882 unlock_buffer(bh);
3883 goto has_buffer;
3884 }
3885 }
3886
3887 make_io:
3888 /*
3889 * If we need to do any I/O, try to pre-readahead extra
3890 * blocks from the inode table.
3891 */
3892 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3893 ext4_fsblk_t b, end, table;
3894 unsigned num;
3895 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3896
3897 table = ext4_inode_table(sb, gdp);
3898 /* s_inode_readahead_blks is always a power of 2 */
3899 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3900 if (table > b)
3901 b = table;
3902 end = b + ra_blks;
3903 num = EXT4_INODES_PER_GROUP(sb);
3904 if (ext4_has_group_desc_csum(sb))
3905 num -= ext4_itable_unused_count(sb, gdp);
3906 table += num / inodes_per_block;
3907 if (end > table)
3908 end = table;
3909 while (b <= end)
3910 sb_breadahead(sb, b++);
3911 }
3912
3913 /*
3914 * There are other valid inodes in the buffer, this inode
3915 * has in-inode xattrs, or we don't have this inode in memory.
3916 * Read the block from disk.
3917 */
3918 trace_ext4_load_inode(inode);
3919 get_bh(bh);
3920 bh->b_end_io = end_buffer_read_sync;
3921 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3922 wait_on_buffer(bh);
3923 if (!buffer_uptodate(bh)) {
3924 EXT4_ERROR_INODE_BLOCK(inode, block,
3925 "unable to read itable block");
3926 brelse(bh);
3927 return -EIO;
3928 }
3929 }
3930 has_buffer:
3931 iloc->bh = bh;
3932 return 0;
3933 }
3934
3935 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3936 {
3937 /* We have all inode data except xattrs in memory here. */
3938 return __ext4_get_inode_loc(inode, iloc,
3939 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3940 }
3941
3942 void ext4_set_inode_flags(struct inode *inode)
3943 {
3944 unsigned int flags = EXT4_I(inode)->i_flags;
3945 unsigned int new_fl = 0;
3946
3947 if (flags & EXT4_SYNC_FL)
3948 new_fl |= S_SYNC;
3949 if (flags & EXT4_APPEND_FL)
3950 new_fl |= S_APPEND;
3951 if (flags & EXT4_IMMUTABLE_FL)
3952 new_fl |= S_IMMUTABLE;
3953 if (flags & EXT4_NOATIME_FL)
3954 new_fl |= S_NOATIME;
3955 if (flags & EXT4_DIRSYNC_FL)
3956 new_fl |= S_DIRSYNC;
3957 inode_set_flags(inode, new_fl,
3958 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3959 }
3960
3961 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3962 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3963 {
3964 unsigned int vfs_fl;
3965 unsigned long old_fl, new_fl;
3966
3967 do {
3968 vfs_fl = ei->vfs_inode.i_flags;
3969 old_fl = ei->i_flags;
3970 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3971 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3972 EXT4_DIRSYNC_FL);
3973 if (vfs_fl & S_SYNC)
3974 new_fl |= EXT4_SYNC_FL;
3975 if (vfs_fl & S_APPEND)
3976 new_fl |= EXT4_APPEND_FL;
3977 if (vfs_fl & S_IMMUTABLE)
3978 new_fl |= EXT4_IMMUTABLE_FL;
3979 if (vfs_fl & S_NOATIME)
3980 new_fl |= EXT4_NOATIME_FL;
3981 if (vfs_fl & S_DIRSYNC)
3982 new_fl |= EXT4_DIRSYNC_FL;
3983 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3984 }
3985
3986 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3987 struct ext4_inode_info *ei)
3988 {
3989 blkcnt_t i_blocks ;
3990 struct inode *inode = &(ei->vfs_inode);
3991 struct super_block *sb = inode->i_sb;
3992
3993 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3995 /* we are using combined 48 bit field */
3996 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3997 le32_to_cpu(raw_inode->i_blocks_lo);
3998 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3999 /* i_blocks represent file system block size */
4000 return i_blocks << (inode->i_blkbits - 9);
4001 } else {
4002 return i_blocks;
4003 }
4004 } else {
4005 return le32_to_cpu(raw_inode->i_blocks_lo);
4006 }
4007 }
4008
4009 static inline void ext4_iget_extra_inode(struct inode *inode,
4010 struct ext4_inode *raw_inode,
4011 struct ext4_inode_info *ei)
4012 {
4013 __le32 *magic = (void *)raw_inode +
4014 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4015 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4016 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4017 ext4_find_inline_data_nolock(inode);
4018 } else
4019 EXT4_I(inode)->i_inline_off = 0;
4020 }
4021
4022 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4023 {
4024 struct ext4_iloc iloc;
4025 struct ext4_inode *raw_inode;
4026 struct ext4_inode_info *ei;
4027 struct inode *inode;
4028 journal_t *journal = EXT4_SB(sb)->s_journal;
4029 long ret;
4030 int block;
4031 uid_t i_uid;
4032 gid_t i_gid;
4033
4034 inode = iget_locked(sb, ino);
4035 if (!inode)
4036 return ERR_PTR(-ENOMEM);
4037 if (!(inode->i_state & I_NEW))
4038 return inode;
4039
4040 ei = EXT4_I(inode);
4041 iloc.bh = NULL;
4042
4043 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4044 if (ret < 0)
4045 goto bad_inode;
4046 raw_inode = ext4_raw_inode(&iloc);
4047
4048 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4049 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4050 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4051 EXT4_INODE_SIZE(inode->i_sb)) {
4052 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4053 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4054 EXT4_INODE_SIZE(inode->i_sb));
4055 ret = -EIO;
4056 goto bad_inode;
4057 }
4058 } else
4059 ei->i_extra_isize = 0;
4060
4061 /* Precompute checksum seed for inode metadata */
4062 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4063 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4064 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4065 __u32 csum;
4066 __le32 inum = cpu_to_le32(inode->i_ino);
4067 __le32 gen = raw_inode->i_generation;
4068 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4069 sizeof(inum));
4070 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4071 sizeof(gen));
4072 }
4073
4074 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4075 EXT4_ERROR_INODE(inode, "checksum invalid");
4076 ret = -EIO;
4077 goto bad_inode;
4078 }
4079
4080 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4081 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4082 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4083 if (!(test_opt(inode->i_sb, NO_UID32))) {
4084 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4085 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4086 }
4087 i_uid_write(inode, i_uid);
4088 i_gid_write(inode, i_gid);
4089 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4090
4091 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4092 ei->i_inline_off = 0;
4093 ei->i_dir_start_lookup = 0;
4094 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4095 /* We now have enough fields to check if the inode was active or not.
4096 * This is needed because nfsd might try to access dead inodes
4097 * the test is that same one that e2fsck uses
4098 * NeilBrown 1999oct15
4099 */
4100 if (inode->i_nlink == 0) {
4101 if ((inode->i_mode == 0 ||
4102 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4103 ino != EXT4_BOOT_LOADER_INO) {
4104 /* this inode is deleted */
4105 ret = -ESTALE;
4106 goto bad_inode;
4107 }
4108 /* The only unlinked inodes we let through here have
4109 * valid i_mode and are being read by the orphan
4110 * recovery code: that's fine, we're about to complete
4111 * the process of deleting those.
4112 * OR it is the EXT4_BOOT_LOADER_INO which is
4113 * not initialized on a new filesystem. */
4114 }
4115 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4116 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4117 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4118 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4119 ei->i_file_acl |=
4120 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4121 inode->i_size = ext4_isize(raw_inode);
4122 ei->i_disksize = inode->i_size;
4123 #ifdef CONFIG_QUOTA
4124 ei->i_reserved_quota = 0;
4125 #endif
4126 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4127 ei->i_block_group = iloc.block_group;
4128 ei->i_last_alloc_group = ~0;
4129 /*
4130 * NOTE! The in-memory inode i_data array is in little-endian order
4131 * even on big-endian machines: we do NOT byteswap the block numbers!
4132 */
4133 for (block = 0; block < EXT4_N_BLOCKS; block++)
4134 ei->i_data[block] = raw_inode->i_block[block];
4135 INIT_LIST_HEAD(&ei->i_orphan);
4136
4137 /*
4138 * Set transaction id's of transactions that have to be committed
4139 * to finish f[data]sync. We set them to currently running transaction
4140 * as we cannot be sure that the inode or some of its metadata isn't
4141 * part of the transaction - the inode could have been reclaimed and
4142 * now it is reread from disk.
4143 */
4144 if (journal) {
4145 transaction_t *transaction;
4146 tid_t tid;
4147
4148 read_lock(&journal->j_state_lock);
4149 if (journal->j_running_transaction)
4150 transaction = journal->j_running_transaction;
4151 else
4152 transaction = journal->j_committing_transaction;
4153 if (transaction)
4154 tid = transaction->t_tid;
4155 else
4156 tid = journal->j_commit_sequence;
4157 read_unlock(&journal->j_state_lock);
4158 ei->i_sync_tid = tid;
4159 ei->i_datasync_tid = tid;
4160 }
4161
4162 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4163 if (ei->i_extra_isize == 0) {
4164 /* The extra space is currently unused. Use it. */
4165 ei->i_extra_isize = sizeof(struct ext4_inode) -
4166 EXT4_GOOD_OLD_INODE_SIZE;
4167 } else {
4168 ext4_iget_extra_inode(inode, raw_inode, ei);
4169 }
4170 }
4171
4172 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4173 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4174 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4175 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4176
4177 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4178 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4179 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4180 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4181 inode->i_version |=
4182 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4183 }
4184 }
4185
4186 ret = 0;
4187 if (ei->i_file_acl &&
4188 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4189 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4190 ei->i_file_acl);
4191 ret = -EIO;
4192 goto bad_inode;
4193 } else if (!ext4_has_inline_data(inode)) {
4194 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4195 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4196 (S_ISLNK(inode->i_mode) &&
4197 !ext4_inode_is_fast_symlink(inode))))
4198 /* Validate extent which is part of inode */
4199 ret = ext4_ext_check_inode(inode);
4200 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4201 (S_ISLNK(inode->i_mode) &&
4202 !ext4_inode_is_fast_symlink(inode))) {
4203 /* Validate block references which are part of inode */
4204 ret = ext4_ind_check_inode(inode);
4205 }
4206 }
4207 if (ret)
4208 goto bad_inode;
4209
4210 if (S_ISREG(inode->i_mode)) {
4211 inode->i_op = &ext4_file_inode_operations;
4212 inode->i_fop = &ext4_file_operations;
4213 ext4_set_aops(inode);
4214 } else if (S_ISDIR(inode->i_mode)) {
4215 inode->i_op = &ext4_dir_inode_operations;
4216 inode->i_fop = &ext4_dir_operations;
4217 } else if (S_ISLNK(inode->i_mode)) {
4218 if (ext4_inode_is_fast_symlink(inode)) {
4219 inode->i_op = &ext4_fast_symlink_inode_operations;
4220 nd_terminate_link(ei->i_data, inode->i_size,
4221 sizeof(ei->i_data) - 1);
4222 } else {
4223 inode->i_op = &ext4_symlink_inode_operations;
4224 ext4_set_aops(inode);
4225 }
4226 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4227 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4228 inode->i_op = &ext4_special_inode_operations;
4229 if (raw_inode->i_block[0])
4230 init_special_inode(inode, inode->i_mode,
4231 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4232 else
4233 init_special_inode(inode, inode->i_mode,
4234 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4235 } else if (ino == EXT4_BOOT_LOADER_INO) {
4236 make_bad_inode(inode);
4237 } else {
4238 ret = -EIO;
4239 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4240 goto bad_inode;
4241 }
4242 brelse(iloc.bh);
4243 ext4_set_inode_flags(inode);
4244 unlock_new_inode(inode);
4245 return inode;
4246
4247 bad_inode:
4248 brelse(iloc.bh);
4249 iget_failed(inode);
4250 return ERR_PTR(ret);
4251 }
4252
4253 static int ext4_inode_blocks_set(handle_t *handle,
4254 struct ext4_inode *raw_inode,
4255 struct ext4_inode_info *ei)
4256 {
4257 struct inode *inode = &(ei->vfs_inode);
4258 u64 i_blocks = inode->i_blocks;
4259 struct super_block *sb = inode->i_sb;
4260
4261 if (i_blocks <= ~0U) {
4262 /*
4263 * i_blocks can be represented in a 32 bit variable
4264 * as multiple of 512 bytes
4265 */
4266 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4267 raw_inode->i_blocks_high = 0;
4268 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4269 return 0;
4270 }
4271 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4272 return -EFBIG;
4273
4274 if (i_blocks <= 0xffffffffffffULL) {
4275 /*
4276 * i_blocks can be represented in a 48 bit variable
4277 * as multiple of 512 bytes
4278 */
4279 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4280 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4281 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4282 } else {
4283 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4284 /* i_block is stored in file system block size */
4285 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4286 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4287 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4288 }
4289 return 0;
4290 }
4291
4292 /*
4293 * Post the struct inode info into an on-disk inode location in the
4294 * buffer-cache. This gobbles the caller's reference to the
4295 * buffer_head in the inode location struct.
4296 *
4297 * The caller must have write access to iloc->bh.
4298 */
4299 static int ext4_do_update_inode(handle_t *handle,
4300 struct inode *inode,
4301 struct ext4_iloc *iloc)
4302 {
4303 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4304 struct ext4_inode_info *ei = EXT4_I(inode);
4305 struct buffer_head *bh = iloc->bh;
4306 int err = 0, rc, block;
4307 int need_datasync = 0;
4308 uid_t i_uid;
4309 gid_t i_gid;
4310
4311 /* For fields not not tracking in the in-memory inode,
4312 * initialise them to zero for new inodes. */
4313 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4314 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4315
4316 ext4_get_inode_flags(ei);
4317 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4318 i_uid = i_uid_read(inode);
4319 i_gid = i_gid_read(inode);
4320 if (!(test_opt(inode->i_sb, NO_UID32))) {
4321 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4322 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4323 /*
4324 * Fix up interoperability with old kernels. Otherwise, old inodes get
4325 * re-used with the upper 16 bits of the uid/gid intact
4326 */
4327 if (!ei->i_dtime) {
4328 raw_inode->i_uid_high =
4329 cpu_to_le16(high_16_bits(i_uid));
4330 raw_inode->i_gid_high =
4331 cpu_to_le16(high_16_bits(i_gid));
4332 } else {
4333 raw_inode->i_uid_high = 0;
4334 raw_inode->i_gid_high = 0;
4335 }
4336 } else {
4337 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4338 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4339 raw_inode->i_uid_high = 0;
4340 raw_inode->i_gid_high = 0;
4341 }
4342 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4343
4344 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4345 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4346 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4347 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4348
4349 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4350 goto out_brelse;
4351 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4352 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4353 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4354 raw_inode->i_file_acl_high =
4355 cpu_to_le16(ei->i_file_acl >> 32);
4356 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4357 if (ei->i_disksize != ext4_isize(raw_inode)) {
4358 ext4_isize_set(raw_inode, ei->i_disksize);
4359 need_datasync = 1;
4360 }
4361 if (ei->i_disksize > 0x7fffffffULL) {
4362 struct super_block *sb = inode->i_sb;
4363 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4364 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4365 EXT4_SB(sb)->s_es->s_rev_level ==
4366 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4367 /* If this is the first large file
4368 * created, add a flag to the superblock.
4369 */
4370 err = ext4_journal_get_write_access(handle,
4371 EXT4_SB(sb)->s_sbh);
4372 if (err)
4373 goto out_brelse;
4374 ext4_update_dynamic_rev(sb);
4375 EXT4_SET_RO_COMPAT_FEATURE(sb,
4376 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4377 ext4_handle_sync(handle);
4378 err = ext4_handle_dirty_super(handle, sb);
4379 }
4380 }
4381 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4382 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4383 if (old_valid_dev(inode->i_rdev)) {
4384 raw_inode->i_block[0] =
4385 cpu_to_le32(old_encode_dev(inode->i_rdev));
4386 raw_inode->i_block[1] = 0;
4387 } else {
4388 raw_inode->i_block[0] = 0;
4389 raw_inode->i_block[1] =
4390 cpu_to_le32(new_encode_dev(inode->i_rdev));
4391 raw_inode->i_block[2] = 0;
4392 }
4393 } else if (!ext4_has_inline_data(inode)) {
4394 for (block = 0; block < EXT4_N_BLOCKS; block++)
4395 raw_inode->i_block[block] = ei->i_data[block];
4396 }
4397
4398 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4399 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4400 if (ei->i_extra_isize) {
4401 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4402 raw_inode->i_version_hi =
4403 cpu_to_le32(inode->i_version >> 32);
4404 raw_inode->i_extra_isize =
4405 cpu_to_le16(ei->i_extra_isize);
4406 }
4407 }
4408
4409 ext4_inode_csum_set(inode, raw_inode, ei);
4410
4411 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4412 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4413 if (!err)
4414 err = rc;
4415 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4416
4417 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4418 out_brelse:
4419 brelse(bh);
4420 ext4_std_error(inode->i_sb, err);
4421 return err;
4422 }
4423
4424 /*
4425 * ext4_write_inode()
4426 *
4427 * We are called from a few places:
4428 *
4429 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4430 * Here, there will be no transaction running. We wait for any running
4431 * transaction to commit.
4432 *
4433 * - Within flush work (sys_sync(), kupdate and such).
4434 * We wait on commit, if told to.
4435 *
4436 * - Within iput_final() -> write_inode_now()
4437 * We wait on commit, if told to.
4438 *
4439 * In all cases it is actually safe for us to return without doing anything,
4440 * because the inode has been copied into a raw inode buffer in
4441 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4442 * writeback.
4443 *
4444 * Note that we are absolutely dependent upon all inode dirtiers doing the
4445 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4446 * which we are interested.
4447 *
4448 * It would be a bug for them to not do this. The code:
4449 *
4450 * mark_inode_dirty(inode)
4451 * stuff();
4452 * inode->i_size = expr;
4453 *
4454 * is in error because write_inode() could occur while `stuff()' is running,
4455 * and the new i_size will be lost. Plus the inode will no longer be on the
4456 * superblock's dirty inode list.
4457 */
4458 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4459 {
4460 int err;
4461
4462 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4463 return 0;
4464
4465 if (EXT4_SB(inode->i_sb)->s_journal) {
4466 if (ext4_journal_current_handle()) {
4467 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4468 dump_stack();
4469 return -EIO;
4470 }
4471
4472 /*
4473 * No need to force transaction in WB_SYNC_NONE mode. Also
4474 * ext4_sync_fs() will force the commit after everything is
4475 * written.
4476 */
4477 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4478 return 0;
4479
4480 err = ext4_force_commit(inode->i_sb);
4481 } else {
4482 struct ext4_iloc iloc;
4483
4484 err = __ext4_get_inode_loc(inode, &iloc, 0);
4485 if (err)
4486 return err;
4487 /*
4488 * sync(2) will flush the whole buffer cache. No need to do
4489 * it here separately for each inode.
4490 */
4491 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4492 sync_dirty_buffer(iloc.bh);
4493 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4494 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4495 "IO error syncing inode");
4496 err = -EIO;
4497 }
4498 brelse(iloc.bh);
4499 }
4500 return err;
4501 }
4502
4503 /*
4504 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4505 * buffers that are attached to a page stradding i_size and are undergoing
4506 * commit. In that case we have to wait for commit to finish and try again.
4507 */
4508 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4509 {
4510 struct page *page;
4511 unsigned offset;
4512 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4513 tid_t commit_tid = 0;
4514 int ret;
4515
4516 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4517 /*
4518 * All buffers in the last page remain valid? Then there's nothing to
4519 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4520 * blocksize case
4521 */
4522 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4523 return;
4524 while (1) {
4525 page = find_lock_page(inode->i_mapping,
4526 inode->i_size >> PAGE_CACHE_SHIFT);
4527 if (!page)
4528 return;
4529 ret = __ext4_journalled_invalidatepage(page, offset,
4530 PAGE_CACHE_SIZE - offset);
4531 unlock_page(page);
4532 page_cache_release(page);
4533 if (ret != -EBUSY)
4534 return;
4535 commit_tid = 0;
4536 read_lock(&journal->j_state_lock);
4537 if (journal->j_committing_transaction)
4538 commit_tid = journal->j_committing_transaction->t_tid;
4539 read_unlock(&journal->j_state_lock);
4540 if (commit_tid)
4541 jbd2_log_wait_commit(journal, commit_tid);
4542 }
4543 }
4544
4545 /*
4546 * ext4_setattr()
4547 *
4548 * Called from notify_change.
4549 *
4550 * We want to trap VFS attempts to truncate the file as soon as
4551 * possible. In particular, we want to make sure that when the VFS
4552 * shrinks i_size, we put the inode on the orphan list and modify
4553 * i_disksize immediately, so that during the subsequent flushing of
4554 * dirty pages and freeing of disk blocks, we can guarantee that any
4555 * commit will leave the blocks being flushed in an unused state on
4556 * disk. (On recovery, the inode will get truncated and the blocks will
4557 * be freed, so we have a strong guarantee that no future commit will
4558 * leave these blocks visible to the user.)
4559 *
4560 * Another thing we have to assure is that if we are in ordered mode
4561 * and inode is still attached to the committing transaction, we must
4562 * we start writeout of all the dirty pages which are being truncated.
4563 * This way we are sure that all the data written in the previous
4564 * transaction are already on disk (truncate waits for pages under
4565 * writeback).
4566 *
4567 * Called with inode->i_mutex down.
4568 */
4569 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4570 {
4571 struct inode *inode = dentry->d_inode;
4572 int error, rc = 0;
4573 int orphan = 0;
4574 const unsigned int ia_valid = attr->ia_valid;
4575
4576 error = inode_change_ok(inode, attr);
4577 if (error)
4578 return error;
4579
4580 if (is_quota_modification(inode, attr))
4581 dquot_initialize(inode);
4582 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4583 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4584 handle_t *handle;
4585
4586 /* (user+group)*(old+new) structure, inode write (sb,
4587 * inode block, ? - but truncate inode update has it) */
4588 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4589 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4590 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4591 if (IS_ERR(handle)) {
4592 error = PTR_ERR(handle);
4593 goto err_out;
4594 }
4595 error = dquot_transfer(inode, attr);
4596 if (error) {
4597 ext4_journal_stop(handle);
4598 return error;
4599 }
4600 /* Update corresponding info in inode so that everything is in
4601 * one transaction */
4602 if (attr->ia_valid & ATTR_UID)
4603 inode->i_uid = attr->ia_uid;
4604 if (attr->ia_valid & ATTR_GID)
4605 inode->i_gid = attr->ia_gid;
4606 error = ext4_mark_inode_dirty(handle, inode);
4607 ext4_journal_stop(handle);
4608 }
4609
4610 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4611 handle_t *handle;
4612
4613 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4614 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4615
4616 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4617 return -EFBIG;
4618 }
4619
4620 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4621 inode_inc_iversion(inode);
4622
4623 if (S_ISREG(inode->i_mode) &&
4624 (attr->ia_size < inode->i_size)) {
4625 if (ext4_should_order_data(inode)) {
4626 error = ext4_begin_ordered_truncate(inode,
4627 attr->ia_size);
4628 if (error)
4629 goto err_out;
4630 }
4631 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4632 if (IS_ERR(handle)) {
4633 error = PTR_ERR(handle);
4634 goto err_out;
4635 }
4636 if (ext4_handle_valid(handle)) {
4637 error = ext4_orphan_add(handle, inode);
4638 orphan = 1;
4639 }
4640 down_write(&EXT4_I(inode)->i_data_sem);
4641 EXT4_I(inode)->i_disksize = attr->ia_size;
4642 rc = ext4_mark_inode_dirty(handle, inode);
4643 if (!error)
4644 error = rc;
4645 /*
4646 * We have to update i_size under i_data_sem together
4647 * with i_disksize to avoid races with writeback code
4648 * running ext4_wb_update_i_disksize().
4649 */
4650 if (!error)
4651 i_size_write(inode, attr->ia_size);
4652 up_write(&EXT4_I(inode)->i_data_sem);
4653 ext4_journal_stop(handle);
4654 if (error) {
4655 ext4_orphan_del(NULL, inode);
4656 goto err_out;
4657 }
4658 } else
4659 i_size_write(inode, attr->ia_size);
4660
4661 /*
4662 * Blocks are going to be removed from the inode. Wait
4663 * for dio in flight. Temporarily disable
4664 * dioread_nolock to prevent livelock.
4665 */
4666 if (orphan) {
4667 if (!ext4_should_journal_data(inode)) {
4668 ext4_inode_block_unlocked_dio(inode);
4669 inode_dio_wait(inode);
4670 ext4_inode_resume_unlocked_dio(inode);
4671 } else
4672 ext4_wait_for_tail_page_commit(inode);
4673 }
4674 /*
4675 * Truncate pagecache after we've waited for commit
4676 * in data=journal mode to make pages freeable.
4677 */
4678 truncate_pagecache(inode, inode->i_size);
4679 }
4680 /*
4681 * We want to call ext4_truncate() even if attr->ia_size ==
4682 * inode->i_size for cases like truncation of fallocated space
4683 */
4684 if (attr->ia_valid & ATTR_SIZE)
4685 ext4_truncate(inode);
4686
4687 if (!rc) {
4688 setattr_copy(inode, attr);
4689 mark_inode_dirty(inode);
4690 }
4691
4692 /*
4693 * If the call to ext4_truncate failed to get a transaction handle at
4694 * all, we need to clean up the in-core orphan list manually.
4695 */
4696 if (orphan && inode->i_nlink)
4697 ext4_orphan_del(NULL, inode);
4698
4699 if (!rc && (ia_valid & ATTR_MODE))
4700 rc = posix_acl_chmod(inode, inode->i_mode);
4701
4702 err_out:
4703 ext4_std_error(inode->i_sb, error);
4704 if (!error)
4705 error = rc;
4706 return error;
4707 }
4708
4709 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4710 struct kstat *stat)
4711 {
4712 struct inode *inode;
4713 unsigned long long delalloc_blocks;
4714
4715 inode = dentry->d_inode;
4716 generic_fillattr(inode, stat);
4717
4718 /*
4719 * If there is inline data in the inode, the inode will normally not
4720 * have data blocks allocated (it may have an external xattr block).
4721 * Report at least one sector for such files, so tools like tar, rsync,
4722 * others doen't incorrectly think the file is completely sparse.
4723 */
4724 if (unlikely(ext4_has_inline_data(inode)))
4725 stat->blocks += (stat->size + 511) >> 9;
4726
4727 /*
4728 * We can't update i_blocks if the block allocation is delayed
4729 * otherwise in the case of system crash before the real block
4730 * allocation is done, we will have i_blocks inconsistent with
4731 * on-disk file blocks.
4732 * We always keep i_blocks updated together with real
4733 * allocation. But to not confuse with user, stat
4734 * will return the blocks that include the delayed allocation
4735 * blocks for this file.
4736 */
4737 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4738 EXT4_I(inode)->i_reserved_data_blocks);
4739 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4740 return 0;
4741 }
4742
4743 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4744 int pextents)
4745 {
4746 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4747 return ext4_ind_trans_blocks(inode, lblocks);
4748 return ext4_ext_index_trans_blocks(inode, pextents);
4749 }
4750
4751 /*
4752 * Account for index blocks, block groups bitmaps and block group
4753 * descriptor blocks if modify datablocks and index blocks
4754 * worse case, the indexs blocks spread over different block groups
4755 *
4756 * If datablocks are discontiguous, they are possible to spread over
4757 * different block groups too. If they are contiguous, with flexbg,
4758 * they could still across block group boundary.
4759 *
4760 * Also account for superblock, inode, quota and xattr blocks
4761 */
4762 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4763 int pextents)
4764 {
4765 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4766 int gdpblocks;
4767 int idxblocks;
4768 int ret = 0;
4769
4770 /*
4771 * How many index blocks need to touch to map @lblocks logical blocks
4772 * to @pextents physical extents?
4773 */
4774 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4775
4776 ret = idxblocks;
4777
4778 /*
4779 * Now let's see how many group bitmaps and group descriptors need
4780 * to account
4781 */
4782 groups = idxblocks + pextents;
4783 gdpblocks = groups;
4784 if (groups > ngroups)
4785 groups = ngroups;
4786 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4787 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4788
4789 /* bitmaps and block group descriptor blocks */
4790 ret += groups + gdpblocks;
4791
4792 /* Blocks for super block, inode, quota and xattr blocks */
4793 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4794
4795 return ret;
4796 }
4797
4798 /*
4799 * Calculate the total number of credits to reserve to fit
4800 * the modification of a single pages into a single transaction,
4801 * which may include multiple chunks of block allocations.
4802 *
4803 * This could be called via ext4_write_begin()
4804 *
4805 * We need to consider the worse case, when
4806 * one new block per extent.
4807 */
4808 int ext4_writepage_trans_blocks(struct inode *inode)
4809 {
4810 int bpp = ext4_journal_blocks_per_page(inode);
4811 int ret;
4812
4813 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4814
4815 /* Account for data blocks for journalled mode */
4816 if (ext4_should_journal_data(inode))
4817 ret += bpp;
4818 return ret;
4819 }
4820
4821 /*
4822 * Calculate the journal credits for a chunk of data modification.
4823 *
4824 * This is called from DIO, fallocate or whoever calling
4825 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4826 *
4827 * journal buffers for data blocks are not included here, as DIO
4828 * and fallocate do no need to journal data buffers.
4829 */
4830 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4831 {
4832 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4833 }
4834
4835 /*
4836 * The caller must have previously called ext4_reserve_inode_write().
4837 * Give this, we know that the caller already has write access to iloc->bh.
4838 */
4839 int ext4_mark_iloc_dirty(handle_t *handle,
4840 struct inode *inode, struct ext4_iloc *iloc)
4841 {
4842 int err = 0;
4843
4844 if (IS_I_VERSION(inode))
4845 inode_inc_iversion(inode);
4846
4847 /* the do_update_inode consumes one bh->b_count */
4848 get_bh(iloc->bh);
4849
4850 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4851 err = ext4_do_update_inode(handle, inode, iloc);
4852 put_bh(iloc->bh);
4853 return err;
4854 }
4855
4856 /*
4857 * On success, We end up with an outstanding reference count against
4858 * iloc->bh. This _must_ be cleaned up later.
4859 */
4860
4861 int
4862 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4863 struct ext4_iloc *iloc)
4864 {
4865 int err;
4866
4867 err = ext4_get_inode_loc(inode, iloc);
4868 if (!err) {
4869 BUFFER_TRACE(iloc->bh, "get_write_access");
4870 err = ext4_journal_get_write_access(handle, iloc->bh);
4871 if (err) {
4872 brelse(iloc->bh);
4873 iloc->bh = NULL;
4874 }
4875 }
4876 ext4_std_error(inode->i_sb, err);
4877 return err;
4878 }
4879
4880 /*
4881 * Expand an inode by new_extra_isize bytes.
4882 * Returns 0 on success or negative error number on failure.
4883 */
4884 static int ext4_expand_extra_isize(struct inode *inode,
4885 unsigned int new_extra_isize,
4886 struct ext4_iloc iloc,
4887 handle_t *handle)
4888 {
4889 struct ext4_inode *raw_inode;
4890 struct ext4_xattr_ibody_header *header;
4891
4892 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4893 return 0;
4894
4895 raw_inode = ext4_raw_inode(&iloc);
4896
4897 header = IHDR(inode, raw_inode);
4898
4899 /* No extended attributes present */
4900 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4901 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4902 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4903 new_extra_isize);
4904 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4905 return 0;
4906 }
4907
4908 /* try to expand with EAs present */
4909 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4910 raw_inode, handle);
4911 }
4912
4913 /*
4914 * What we do here is to mark the in-core inode as clean with respect to inode
4915 * dirtiness (it may still be data-dirty).
4916 * This means that the in-core inode may be reaped by prune_icache
4917 * without having to perform any I/O. This is a very good thing,
4918 * because *any* task may call prune_icache - even ones which
4919 * have a transaction open against a different journal.
4920 *
4921 * Is this cheating? Not really. Sure, we haven't written the
4922 * inode out, but prune_icache isn't a user-visible syncing function.
4923 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4924 * we start and wait on commits.
4925 */
4926 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4927 {
4928 struct ext4_iloc iloc;
4929 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4930 static unsigned int mnt_count;
4931 int err, ret;
4932
4933 might_sleep();
4934 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4935 err = ext4_reserve_inode_write(handle, inode, &iloc);
4936 if (ext4_handle_valid(handle) &&
4937 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4938 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4939 /*
4940 * We need extra buffer credits since we may write into EA block
4941 * with this same handle. If journal_extend fails, then it will
4942 * only result in a minor loss of functionality for that inode.
4943 * If this is felt to be critical, then e2fsck should be run to
4944 * force a large enough s_min_extra_isize.
4945 */
4946 if ((jbd2_journal_extend(handle,
4947 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4948 ret = ext4_expand_extra_isize(inode,
4949 sbi->s_want_extra_isize,
4950 iloc, handle);
4951 if (ret) {
4952 ext4_set_inode_state(inode,
4953 EXT4_STATE_NO_EXPAND);
4954 if (mnt_count !=
4955 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4956 ext4_warning(inode->i_sb,
4957 "Unable to expand inode %lu. Delete"
4958 " some EAs or run e2fsck.",
4959 inode->i_ino);
4960 mnt_count =
4961 le16_to_cpu(sbi->s_es->s_mnt_count);
4962 }
4963 }
4964 }
4965 }
4966 if (!err)
4967 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4968 return err;
4969 }
4970
4971 /*
4972 * ext4_dirty_inode() is called from __mark_inode_dirty()
4973 *
4974 * We're really interested in the case where a file is being extended.
4975 * i_size has been changed by generic_commit_write() and we thus need
4976 * to include the updated inode in the current transaction.
4977 *
4978 * Also, dquot_alloc_block() will always dirty the inode when blocks
4979 * are allocated to the file.
4980 *
4981 * If the inode is marked synchronous, we don't honour that here - doing
4982 * so would cause a commit on atime updates, which we don't bother doing.
4983 * We handle synchronous inodes at the highest possible level.
4984 */
4985 void ext4_dirty_inode(struct inode *inode, int flags)
4986 {
4987 handle_t *handle;
4988
4989 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4990 if (IS_ERR(handle))
4991 goto out;
4992
4993 ext4_mark_inode_dirty(handle, inode);
4994
4995 ext4_journal_stop(handle);
4996 out:
4997 return;
4998 }
4999
5000 #if 0
5001 /*
5002 * Bind an inode's backing buffer_head into this transaction, to prevent
5003 * it from being flushed to disk early. Unlike
5004 * ext4_reserve_inode_write, this leaves behind no bh reference and
5005 * returns no iloc structure, so the caller needs to repeat the iloc
5006 * lookup to mark the inode dirty later.
5007 */
5008 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5009 {
5010 struct ext4_iloc iloc;
5011
5012 int err = 0;
5013 if (handle) {
5014 err = ext4_get_inode_loc(inode, &iloc);
5015 if (!err) {
5016 BUFFER_TRACE(iloc.bh, "get_write_access");
5017 err = jbd2_journal_get_write_access(handle, iloc.bh);
5018 if (!err)
5019 err = ext4_handle_dirty_metadata(handle,
5020 NULL,
5021 iloc.bh);
5022 brelse(iloc.bh);
5023 }
5024 }
5025 ext4_std_error(inode->i_sb, err);
5026 return err;
5027 }
5028 #endif
5029
5030 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5031 {
5032 journal_t *journal;
5033 handle_t *handle;
5034 int err;
5035
5036 /*
5037 * We have to be very careful here: changing a data block's
5038 * journaling status dynamically is dangerous. If we write a
5039 * data block to the journal, change the status and then delete
5040 * that block, we risk forgetting to revoke the old log record
5041 * from the journal and so a subsequent replay can corrupt data.
5042 * So, first we make sure that the journal is empty and that
5043 * nobody is changing anything.
5044 */
5045
5046 journal = EXT4_JOURNAL(inode);
5047 if (!journal)
5048 return 0;
5049 if (is_journal_aborted(journal))
5050 return -EROFS;
5051 /* We have to allocate physical blocks for delalloc blocks
5052 * before flushing journal. otherwise delalloc blocks can not
5053 * be allocated any more. even more truncate on delalloc blocks
5054 * could trigger BUG by flushing delalloc blocks in journal.
5055 * There is no delalloc block in non-journal data mode.
5056 */
5057 if (val && test_opt(inode->i_sb, DELALLOC)) {
5058 err = ext4_alloc_da_blocks(inode);
5059 if (err < 0)
5060 return err;
5061 }
5062
5063 /* Wait for all existing dio workers */
5064 ext4_inode_block_unlocked_dio(inode);
5065 inode_dio_wait(inode);
5066
5067 jbd2_journal_lock_updates(journal);
5068
5069 /*
5070 * OK, there are no updates running now, and all cached data is
5071 * synced to disk. We are now in a completely consistent state
5072 * which doesn't have anything in the journal, and we know that
5073 * no filesystem updates are running, so it is safe to modify
5074 * the inode's in-core data-journaling state flag now.
5075 */
5076
5077 if (val)
5078 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5079 else {
5080 jbd2_journal_flush(journal);
5081 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5082 }
5083 ext4_set_aops(inode);
5084
5085 jbd2_journal_unlock_updates(journal);
5086 ext4_inode_resume_unlocked_dio(inode);
5087
5088 /* Finally we can mark the inode as dirty. */
5089
5090 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5091 if (IS_ERR(handle))
5092 return PTR_ERR(handle);
5093
5094 err = ext4_mark_inode_dirty(handle, inode);
5095 ext4_handle_sync(handle);
5096 ext4_journal_stop(handle);
5097 ext4_std_error(inode->i_sb, err);
5098
5099 return err;
5100 }
5101
5102 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5103 {
5104 return !buffer_mapped(bh);
5105 }
5106
5107 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5108 {
5109 struct page *page = vmf->page;
5110 loff_t size;
5111 unsigned long len;
5112 int ret;
5113 struct file *file = vma->vm_file;
5114 struct inode *inode = file_inode(file);
5115 struct address_space *mapping = inode->i_mapping;
5116 handle_t *handle;
5117 get_block_t *get_block;
5118 int retries = 0;
5119
5120 sb_start_pagefault(inode->i_sb);
5121 file_update_time(vma->vm_file);
5122 /* Delalloc case is easy... */
5123 if (test_opt(inode->i_sb, DELALLOC) &&
5124 !ext4_should_journal_data(inode) &&
5125 !ext4_nonda_switch(inode->i_sb)) {
5126 do {
5127 ret = __block_page_mkwrite(vma, vmf,
5128 ext4_da_get_block_prep);
5129 } while (ret == -ENOSPC &&
5130 ext4_should_retry_alloc(inode->i_sb, &retries));
5131 goto out_ret;
5132 }
5133
5134 lock_page(page);
5135 size = i_size_read(inode);
5136 /* Page got truncated from under us? */
5137 if (page->mapping != mapping || page_offset(page) > size) {
5138 unlock_page(page);
5139 ret = VM_FAULT_NOPAGE;
5140 goto out;
5141 }
5142
5143 if (page->index == size >> PAGE_CACHE_SHIFT)
5144 len = size & ~PAGE_CACHE_MASK;
5145 else
5146 len = PAGE_CACHE_SIZE;
5147 /*
5148 * Return if we have all the buffers mapped. This avoids the need to do
5149 * journal_start/journal_stop which can block and take a long time
5150 */
5151 if (page_has_buffers(page)) {
5152 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5153 0, len, NULL,
5154 ext4_bh_unmapped)) {
5155 /* Wait so that we don't change page under IO */
5156 wait_for_stable_page(page);
5157 ret = VM_FAULT_LOCKED;
5158 goto out;
5159 }
5160 }
5161 unlock_page(page);
5162 /* OK, we need to fill the hole... */
5163 if (ext4_should_dioread_nolock(inode))
5164 get_block = ext4_get_block_write;
5165 else
5166 get_block = ext4_get_block;
5167 retry_alloc:
5168 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5169 ext4_writepage_trans_blocks(inode));
5170 if (IS_ERR(handle)) {
5171 ret = VM_FAULT_SIGBUS;
5172 goto out;
5173 }
5174 ret = __block_page_mkwrite(vma, vmf, get_block);
5175 if (!ret && ext4_should_journal_data(inode)) {
5176 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5177 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5178 unlock_page(page);
5179 ret = VM_FAULT_SIGBUS;
5180 ext4_journal_stop(handle);
5181 goto out;
5182 }
5183 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5184 }
5185 ext4_journal_stop(handle);
5186 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5187 goto retry_alloc;
5188 out_ret:
5189 ret = block_page_mkwrite_return(ret);
5190 out:
5191 sb_end_pagefault(inode->i_sb);
5192 return ret;
5193 }