]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
ext4: Remove old legacy block allocator
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
48 {
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56 * Test whether an inode is a fast symlink.
57 */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 (inode->i_sb->s_blocksize >> 9) : 0;
62
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67 * The ext4 forget function must perform a revoke if we are freeing data
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
70 *
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
74 */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78 int err;
79
80 might_sleep();
81
82 BUFFER_TRACE(bh, "enter");
83
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
88
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
93
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
96 if (bh) {
97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 return ext4_journal_forget(handle, bh);
99 }
100 return 0;
101 }
102
103 /*
104 * data!=journal && (is_metadata || should_journal_data(inode))
105 */
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
108 if (err)
109 ext4_abort(inode->i_sb, __func__,
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
113 }
114
115 /*
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
118 */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121 ext4_lblk_t needed;
122
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
128 * like a regular file for ext4 to try to delete it. Things
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
133
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
138
139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
146 *
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
151 */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154 handle_t *result;
155
156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 if (!IS_ERR(result))
158 return result;
159
160 ext4_std_error(inode->i_sb, PTR_ERR(result));
161 return result;
162 }
163
164 /*
165 * Try to extend this transaction for the purposes of truncation.
166 *
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
169 */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 return 0;
174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 return 0;
176 return 1;
177 }
178
179 /*
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
183 */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186 jbd_debug(2, "restarting handle %p\n", handle);
187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191 * Called at the last iput() if i_nlink is zero.
192 */
193 void ext4_delete_inode(struct inode *inode)
194 {
195 handle_t *handle;
196 int err;
197
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
200 truncate_inode_pages(&inode->i_data, 0);
201
202 if (is_bad_inode(inode))
203 goto no_delete;
204
205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 if (IS_ERR(handle)) {
207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208 /*
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
212 */
213 ext4_orphan_del(NULL, inode);
214 goto no_delete;
215 }
216
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
225 }
226 if (inode->i_blocks)
227 ext4_truncate(inode);
228
229 /*
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
234 */
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
245 }
246 }
247
248 /*
249 * Kill off the orphan record which ext4_truncate created.
250 * AKPM: I think this can be inside the above `if'.
251 * Note that ext4_orphan_del() has to be able to cope with the
252 * deletion of a non-existent orphan - this is because we don't
253 * know if ext4_truncate() actually created an orphan record.
254 * (Well, we could do this if we need to, but heck - it works)
255 */
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
258
259 /*
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
265 */
266 if (ext4_mark_inode_dirty(handle, inode))
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
272 return;
273 no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285 p->key = *(p->p = v);
286 p->bh = bh;
287 }
288
289 /**
290 * ext4_block_to_path - parse the block number into array of offsets
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
296 *
297 * To store the locations of file's data ext4 uses a data structure common
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
304 *
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
308 */
309
310 /*
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
318 */
319
320 static int ext4_block_to_path(struct inode *inode,
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
323 {
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
331
332 if (i_block < 0) {
333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
338 offsets[n++] = EXT4_IND_BLOCK;
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
342 offsets[n++] = EXT4_DIND_BLOCK;
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 offsets[n++] = EXT4_TIND_BLOCK;
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
353 ext4_warning(inode->i_sb, "ext4_block_to_path",
354 "block %lu > max",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361 }
362
363 /**
364 * ext4_get_branch - read the chain of indirect blocks leading to data
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
389 *
390 * Need to be called with
391 * down_read(&EXT4_I(inode)->i_data_sem)
392 */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
395 Indirect chain[4], int *err)
396 {
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
414 }
415 return NULL;
416
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
421 }
422
423 /**
424 * ext4_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
427 *
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
435 *
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
440 *
441 * Caller must make sure that @ind is valid and will stay that way.
442 */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445 struct ext4_inode_info *ei = EXT4_I(inode);
446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext4_fsblk_t bg_start;
449 ext4_fsblk_t last_block;
450 ext4_grpblk_t colour;
451
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
456 }
457
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
461
462 /*
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
465 */
466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 return bg_start + colour;
475 }
476
477 /**
478 * ext4_find_goal - find a preferred place for allocation.
479 * @inode: owner
480 * @block: block we want
481 * @partial: pointer to the last triple within a chain
482 *
483 * Normally this function find the preferred place for block allocation,
484 * returns it.
485 */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 Indirect *partial)
488 {
489 /*
490 * XXX need to get goal block from mballoc's data structures
491 */
492
493 return ext4_find_near(inode, partial);
494 }
495
496 /**
497 * ext4_blks_to_allocate: Look up the block map and count the number
498 * of direct blocks need to be allocated for the given branch.
499 *
500 * @branch: chain of indirect blocks
501 * @k: number of blocks need for indirect blocks
502 * @blks: number of data blocks to be mapped.
503 * @blocks_to_boundary: the offset in the indirect block
504 *
505 * return the total number of blocks to be allocate, including the
506 * direct and indirect blocks.
507 */
508 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
509 int blocks_to_boundary)
510 {
511 unsigned long count = 0;
512
513 /*
514 * Simple case, [t,d]Indirect block(s) has not allocated yet
515 * then it's clear blocks on that path have not allocated
516 */
517 if (k > 0) {
518 /* right now we don't handle cross boundary allocation */
519 if (blks < blocks_to_boundary + 1)
520 count += blks;
521 else
522 count += blocks_to_boundary + 1;
523 return count;
524 }
525
526 count++;
527 while (count < blks && count <= blocks_to_boundary &&
528 le32_to_cpu(*(branch[0].p + count)) == 0) {
529 count++;
530 }
531 return count;
532 }
533
534 /**
535 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
536 * @indirect_blks: the number of blocks need to allocate for indirect
537 * blocks
538 *
539 * @new_blocks: on return it will store the new block numbers for
540 * the indirect blocks(if needed) and the first direct block,
541 * @blks: on return it will store the total number of allocated
542 * direct blocks
543 */
544 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
545 ext4_lblk_t iblock, ext4_fsblk_t goal,
546 int indirect_blks, int blks,
547 ext4_fsblk_t new_blocks[4], int *err)
548 {
549 int target, i;
550 unsigned long count = 0, blk_allocated = 0;
551 int index = 0;
552 ext4_fsblk_t current_block = 0;
553 int ret = 0;
554
555 /*
556 * Here we try to allocate the requested multiple blocks at once,
557 * on a best-effort basis.
558 * To build a branch, we should allocate blocks for
559 * the indirect blocks(if not allocated yet), and at least
560 * the first direct block of this branch. That's the
561 * minimum number of blocks need to allocate(required)
562 */
563 /* first we try to allocate the indirect blocks */
564 target = indirect_blks;
565 while (target > 0) {
566 count = target;
567 /* allocating blocks for indirect blocks and direct blocks */
568 current_block = ext4_new_meta_blocks(handle, inode,
569 goal, &count, err);
570 if (*err)
571 goto failed_out;
572
573 target -= count;
574 /* allocate blocks for indirect blocks */
575 while (index < indirect_blks && count) {
576 new_blocks[index++] = current_block++;
577 count--;
578 }
579 if (count > 0) {
580 /*
581 * save the new block number
582 * for the first direct block
583 */
584 new_blocks[index] = current_block;
585 printk(KERN_INFO "%s returned more blocks than "
586 "requested\n", __func__);
587 WARN_ON(1);
588 break;
589 }
590 }
591
592 target = blks - count ;
593 blk_allocated = count;
594 if (!target)
595 goto allocated;
596 /* Now allocate data blocks */
597 count = target;
598 /* allocating blocks for data blocks */
599 current_block = ext4_new_blocks(handle, inode, iblock,
600 goal, &count, err);
601 if (*err && (target == blks)) {
602 /*
603 * if the allocation failed and we didn't allocate
604 * any blocks before
605 */
606 goto failed_out;
607 }
608 if (!*err) {
609 if (target == blks) {
610 /*
611 * save the new block number
612 * for the first direct block
613 */
614 new_blocks[index] = current_block;
615 }
616 blk_allocated += count;
617 }
618 allocated:
619 /* total number of blocks allocated for direct blocks */
620 ret = blk_allocated;
621 *err = 0;
622 return ret;
623 failed_out:
624 for (i = 0; i < index; i++)
625 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
626 return ret;
627 }
628
629 /**
630 * ext4_alloc_branch - allocate and set up a chain of blocks.
631 * @inode: owner
632 * @indirect_blks: number of allocated indirect blocks
633 * @blks: number of allocated direct blocks
634 * @offsets: offsets (in the blocks) to store the pointers to next.
635 * @branch: place to store the chain in.
636 *
637 * This function allocates blocks, zeroes out all but the last one,
638 * links them into chain and (if we are synchronous) writes them to disk.
639 * In other words, it prepares a branch that can be spliced onto the
640 * inode. It stores the information about that chain in the branch[], in
641 * the same format as ext4_get_branch() would do. We are calling it after
642 * we had read the existing part of chain and partial points to the last
643 * triple of that (one with zero ->key). Upon the exit we have the same
644 * picture as after the successful ext4_get_block(), except that in one
645 * place chain is disconnected - *branch->p is still zero (we did not
646 * set the last link), but branch->key contains the number that should
647 * be placed into *branch->p to fill that gap.
648 *
649 * If allocation fails we free all blocks we've allocated (and forget
650 * their buffer_heads) and return the error value the from failed
651 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
652 * as described above and return 0.
653 */
654 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
655 ext4_lblk_t iblock, int indirect_blks,
656 int *blks, ext4_fsblk_t goal,
657 ext4_lblk_t *offsets, Indirect *branch)
658 {
659 int blocksize = inode->i_sb->s_blocksize;
660 int i, n = 0;
661 int err = 0;
662 struct buffer_head *bh;
663 int num;
664 ext4_fsblk_t new_blocks[4];
665 ext4_fsblk_t current_block;
666
667 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
668 *blks, new_blocks, &err);
669 if (err)
670 return err;
671
672 branch[0].key = cpu_to_le32(new_blocks[0]);
673 /*
674 * metadata blocks and data blocks are allocated.
675 */
676 for (n = 1; n <= indirect_blks; n++) {
677 /*
678 * Get buffer_head for parent block, zero it out
679 * and set the pointer to new one, then send
680 * parent to disk.
681 */
682 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
683 branch[n].bh = bh;
684 lock_buffer(bh);
685 BUFFER_TRACE(bh, "call get_create_access");
686 err = ext4_journal_get_create_access(handle, bh);
687 if (err) {
688 unlock_buffer(bh);
689 brelse(bh);
690 goto failed;
691 }
692
693 memset(bh->b_data, 0, blocksize);
694 branch[n].p = (__le32 *) bh->b_data + offsets[n];
695 branch[n].key = cpu_to_le32(new_blocks[n]);
696 *branch[n].p = branch[n].key;
697 if (n == indirect_blks) {
698 current_block = new_blocks[n];
699 /*
700 * End of chain, update the last new metablock of
701 * the chain to point to the new allocated
702 * data blocks numbers
703 */
704 for (i=1; i < num; i++)
705 *(branch[n].p + i) = cpu_to_le32(++current_block);
706 }
707 BUFFER_TRACE(bh, "marking uptodate");
708 set_buffer_uptodate(bh);
709 unlock_buffer(bh);
710
711 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
712 err = ext4_journal_dirty_metadata(handle, bh);
713 if (err)
714 goto failed;
715 }
716 *blks = num;
717 return err;
718 failed:
719 /* Allocation failed, free what we already allocated */
720 for (i = 1; i <= n ; i++) {
721 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
722 ext4_journal_forget(handle, branch[i].bh);
723 }
724 for (i = 0; i < indirect_blks; i++)
725 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
726
727 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
728
729 return err;
730 }
731
732 /**
733 * ext4_splice_branch - splice the allocated branch onto inode.
734 * @inode: owner
735 * @block: (logical) number of block we are adding
736 * @chain: chain of indirect blocks (with a missing link - see
737 * ext4_alloc_branch)
738 * @where: location of missing link
739 * @num: number of indirect blocks we are adding
740 * @blks: number of direct blocks we are adding
741 *
742 * This function fills the missing link and does all housekeeping needed in
743 * inode (->i_blocks, etc.). In case of success we end up with the full
744 * chain to new block and return 0.
745 */
746 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
747 ext4_lblk_t block, Indirect *where, int num, int blks)
748 {
749 int i;
750 int err = 0;
751 ext4_fsblk_t current_block;
752
753 /*
754 * If we're splicing into a [td]indirect block (as opposed to the
755 * inode) then we need to get write access to the [td]indirect block
756 * before the splice.
757 */
758 if (where->bh) {
759 BUFFER_TRACE(where->bh, "get_write_access");
760 err = ext4_journal_get_write_access(handle, where->bh);
761 if (err)
762 goto err_out;
763 }
764 /* That's it */
765
766 *where->p = where->key;
767
768 /*
769 * Update the host buffer_head or inode to point to more just allocated
770 * direct blocks blocks
771 */
772 if (num == 0 && blks > 1) {
773 current_block = le32_to_cpu(where->key) + 1;
774 for (i = 1; i < blks; i++)
775 *(where->p + i) = cpu_to_le32(current_block++);
776 }
777
778 /* We are done with atomic stuff, now do the rest of housekeeping */
779
780 inode->i_ctime = ext4_current_time(inode);
781 ext4_mark_inode_dirty(handle, inode);
782
783 /* had we spliced it onto indirect block? */
784 if (where->bh) {
785 /*
786 * If we spliced it onto an indirect block, we haven't
787 * altered the inode. Note however that if it is being spliced
788 * onto an indirect block at the very end of the file (the
789 * file is growing) then we *will* alter the inode to reflect
790 * the new i_size. But that is not done here - it is done in
791 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
792 */
793 jbd_debug(5, "splicing indirect only\n");
794 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
795 err = ext4_journal_dirty_metadata(handle, where->bh);
796 if (err)
797 goto err_out;
798 } else {
799 /*
800 * OK, we spliced it into the inode itself on a direct block.
801 * Inode was dirtied above.
802 */
803 jbd_debug(5, "splicing direct\n");
804 }
805 return err;
806
807 err_out:
808 for (i = 1; i <= num; i++) {
809 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
810 ext4_journal_forget(handle, where[i].bh);
811 ext4_free_blocks(handle, inode,
812 le32_to_cpu(where[i-1].key), 1, 0);
813 }
814 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
815
816 return err;
817 }
818
819 /*
820 * Allocation strategy is simple: if we have to allocate something, we will
821 * have to go the whole way to leaf. So let's do it before attaching anything
822 * to tree, set linkage between the newborn blocks, write them if sync is
823 * required, recheck the path, free and repeat if check fails, otherwise
824 * set the last missing link (that will protect us from any truncate-generated
825 * removals - all blocks on the path are immune now) and possibly force the
826 * write on the parent block.
827 * That has a nice additional property: no special recovery from the failed
828 * allocations is needed - we simply release blocks and do not touch anything
829 * reachable from inode.
830 *
831 * `handle' can be NULL if create == 0.
832 *
833 * return > 0, # of blocks mapped or allocated.
834 * return = 0, if plain lookup failed.
835 * return < 0, error case.
836 *
837 *
838 * Need to be called with
839 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
840 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
841 */
842 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
843 ext4_lblk_t iblock, unsigned long maxblocks,
844 struct buffer_head *bh_result,
845 int create, int extend_disksize)
846 {
847 int err = -EIO;
848 ext4_lblk_t offsets[4];
849 Indirect chain[4];
850 Indirect *partial;
851 ext4_fsblk_t goal;
852 int indirect_blks;
853 int blocks_to_boundary = 0;
854 int depth;
855 struct ext4_inode_info *ei = EXT4_I(inode);
856 int count = 0;
857 ext4_fsblk_t first_block = 0;
858 loff_t disksize;
859
860
861 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
862 J_ASSERT(handle != NULL || create == 0);
863 depth = ext4_block_to_path(inode, iblock, offsets,
864 &blocks_to_boundary);
865
866 if (depth == 0)
867 goto out;
868
869 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
870
871 /* Simplest case - block found, no allocation needed */
872 if (!partial) {
873 first_block = le32_to_cpu(chain[depth - 1].key);
874 clear_buffer_new(bh_result);
875 count++;
876 /*map more blocks*/
877 while (count < maxblocks && count <= blocks_to_boundary) {
878 ext4_fsblk_t blk;
879
880 blk = le32_to_cpu(*(chain[depth-1].p + count));
881
882 if (blk == first_block + count)
883 count++;
884 else
885 break;
886 }
887 goto got_it;
888 }
889
890 /* Next simple case - plain lookup or failed read of indirect block */
891 if (!create || err == -EIO)
892 goto cleanup;
893
894 /*
895 * Okay, we need to do block allocation.
896 */
897 goal = ext4_find_goal(inode, iblock, partial);
898
899 /* the number of blocks need to allocate for [d,t]indirect blocks */
900 indirect_blks = (chain + depth) - partial - 1;
901
902 /*
903 * Next look up the indirect map to count the totoal number of
904 * direct blocks to allocate for this branch.
905 */
906 count = ext4_blks_to_allocate(partial, indirect_blks,
907 maxblocks, blocks_to_boundary);
908 /*
909 * Block out ext4_truncate while we alter the tree
910 */
911 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
912 &count, goal,
913 offsets + (partial - chain), partial);
914
915 /*
916 * The ext4_splice_branch call will free and forget any buffers
917 * on the new chain if there is a failure, but that risks using
918 * up transaction credits, especially for bitmaps where the
919 * credits cannot be returned. Can we handle this somehow? We
920 * may need to return -EAGAIN upwards in the worst case. --sct
921 */
922 if (!err)
923 err = ext4_splice_branch(handle, inode, iblock,
924 partial, indirect_blks, count);
925 /*
926 * i_disksize growing is protected by i_data_sem. Don't forget to
927 * protect it if you're about to implement concurrent
928 * ext4_get_block() -bzzz
929 */
930 if (!err && extend_disksize) {
931 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
932 if (disksize > i_size_read(inode))
933 disksize = i_size_read(inode);
934 if (disksize > ei->i_disksize)
935 ei->i_disksize = disksize;
936 }
937 if (err)
938 goto cleanup;
939
940 set_buffer_new(bh_result);
941 got_it:
942 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
943 if (count > blocks_to_boundary)
944 set_buffer_boundary(bh_result);
945 err = count;
946 /* Clean up and exit */
947 partial = chain + depth - 1; /* the whole chain */
948 cleanup:
949 while (partial > chain) {
950 BUFFER_TRACE(partial->bh, "call brelse");
951 brelse(partial->bh);
952 partial--;
953 }
954 BUFFER_TRACE(bh_result, "returned");
955 out:
956 return err;
957 }
958
959 /*
960 * Calculate the number of metadata blocks need to reserve
961 * to allocate @blocks for non extent file based file
962 */
963 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
964 {
965 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
966 int ind_blks, dind_blks, tind_blks;
967
968 /* number of new indirect blocks needed */
969 ind_blks = (blocks + icap - 1) / icap;
970
971 dind_blks = (ind_blks + icap - 1) / icap;
972
973 tind_blks = 1;
974
975 return ind_blks + dind_blks + tind_blks;
976 }
977
978 /*
979 * Calculate the number of metadata blocks need to reserve
980 * to allocate given number of blocks
981 */
982 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
983 {
984 if (!blocks)
985 return 0;
986
987 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
988 return ext4_ext_calc_metadata_amount(inode, blocks);
989
990 return ext4_indirect_calc_metadata_amount(inode, blocks);
991 }
992
993 static void ext4_da_update_reserve_space(struct inode *inode, int used)
994 {
995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
996 int total, mdb, mdb_free;
997
998 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
999 /* recalculate the number of metablocks still need to be reserved */
1000 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1001 mdb = ext4_calc_metadata_amount(inode, total);
1002
1003 /* figure out how many metablocks to release */
1004 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1005 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1006
1007 if (mdb_free) {
1008 /* Account for allocated meta_blocks */
1009 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1010
1011 /* update fs dirty blocks counter */
1012 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1013 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1014 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1015 }
1016
1017 /* update per-inode reservations */
1018 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1019 EXT4_I(inode)->i_reserved_data_blocks -= used;
1020
1021 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1022 }
1023
1024 /*
1025 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1026 * and returns if the blocks are already mapped.
1027 *
1028 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1029 * and store the allocated blocks in the result buffer head and mark it
1030 * mapped.
1031 *
1032 * If file type is extents based, it will call ext4_ext_get_blocks(),
1033 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1034 * based files
1035 *
1036 * On success, it returns the number of blocks being mapped or allocate.
1037 * if create==0 and the blocks are pre-allocated and uninitialized block,
1038 * the result buffer head is unmapped. If the create ==1, it will make sure
1039 * the buffer head is mapped.
1040 *
1041 * It returns 0 if plain look up failed (blocks have not been allocated), in
1042 * that casem, buffer head is unmapped
1043 *
1044 * It returns the error in case of allocation failure.
1045 */
1046 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1047 unsigned long max_blocks, struct buffer_head *bh,
1048 int create, int extend_disksize, int flag)
1049 {
1050 int retval;
1051
1052 clear_buffer_mapped(bh);
1053
1054 /*
1055 * Try to see if we can get the block without requesting
1056 * for new file system block.
1057 */
1058 down_read((&EXT4_I(inode)->i_data_sem));
1059 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1060 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1061 bh, 0, 0);
1062 } else {
1063 retval = ext4_get_blocks_handle(handle,
1064 inode, block, max_blocks, bh, 0, 0);
1065 }
1066 up_read((&EXT4_I(inode)->i_data_sem));
1067
1068 /* If it is only a block(s) look up */
1069 if (!create)
1070 return retval;
1071
1072 /*
1073 * Returns if the blocks have already allocated
1074 *
1075 * Note that if blocks have been preallocated
1076 * ext4_ext_get_block() returns th create = 0
1077 * with buffer head unmapped.
1078 */
1079 if (retval > 0 && buffer_mapped(bh))
1080 return retval;
1081
1082 /*
1083 * New blocks allocate and/or writing to uninitialized extent
1084 * will possibly result in updating i_data, so we take
1085 * the write lock of i_data_sem, and call get_blocks()
1086 * with create == 1 flag.
1087 */
1088 down_write((&EXT4_I(inode)->i_data_sem));
1089
1090 /*
1091 * if the caller is from delayed allocation writeout path
1092 * we have already reserved fs blocks for allocation
1093 * let the underlying get_block() function know to
1094 * avoid double accounting
1095 */
1096 if (flag)
1097 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1098 /*
1099 * We need to check for EXT4 here because migrate
1100 * could have changed the inode type in between
1101 */
1102 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1103 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1104 bh, create, extend_disksize);
1105 } else {
1106 retval = ext4_get_blocks_handle(handle, inode, block,
1107 max_blocks, bh, create, extend_disksize);
1108
1109 if (retval > 0 && buffer_new(bh)) {
1110 /*
1111 * We allocated new blocks which will result in
1112 * i_data's format changing. Force the migrate
1113 * to fail by clearing migrate flags
1114 */
1115 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1116 ~EXT4_EXT_MIGRATE;
1117 }
1118 }
1119
1120 if (flag) {
1121 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1122 /*
1123 * Update reserved blocks/metadata blocks
1124 * after successful block allocation
1125 * which were deferred till now
1126 */
1127 if ((retval > 0) && buffer_delay(bh))
1128 ext4_da_update_reserve_space(inode, retval);
1129 }
1130
1131 up_write((&EXT4_I(inode)->i_data_sem));
1132 return retval;
1133 }
1134
1135 /* Maximum number of blocks we map for direct IO at once. */
1136 #define DIO_MAX_BLOCKS 4096
1137
1138 static int ext4_get_block(struct inode *inode, sector_t iblock,
1139 struct buffer_head *bh_result, int create)
1140 {
1141 handle_t *handle = ext4_journal_current_handle();
1142 int ret = 0, started = 0;
1143 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1144 int dio_credits;
1145
1146 if (create && !handle) {
1147 /* Direct IO write... */
1148 if (max_blocks > DIO_MAX_BLOCKS)
1149 max_blocks = DIO_MAX_BLOCKS;
1150 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1151 handle = ext4_journal_start(inode, dio_credits);
1152 if (IS_ERR(handle)) {
1153 ret = PTR_ERR(handle);
1154 goto out;
1155 }
1156 started = 1;
1157 }
1158
1159 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1160 max_blocks, bh_result, create, 0, 0);
1161 if (ret > 0) {
1162 bh_result->b_size = (ret << inode->i_blkbits);
1163 ret = 0;
1164 }
1165 if (started)
1166 ext4_journal_stop(handle);
1167 out:
1168 return ret;
1169 }
1170
1171 /*
1172 * `handle' can be NULL if create is zero
1173 */
1174 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1175 ext4_lblk_t block, int create, int *errp)
1176 {
1177 struct buffer_head dummy;
1178 int fatal = 0, err;
1179
1180 J_ASSERT(handle != NULL || create == 0);
1181
1182 dummy.b_state = 0;
1183 dummy.b_blocknr = -1000;
1184 buffer_trace_init(&dummy.b_history);
1185 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1186 &dummy, create, 1, 0);
1187 /*
1188 * ext4_get_blocks_handle() returns number of blocks
1189 * mapped. 0 in case of a HOLE.
1190 */
1191 if (err > 0) {
1192 if (err > 1)
1193 WARN_ON(1);
1194 err = 0;
1195 }
1196 *errp = err;
1197 if (!err && buffer_mapped(&dummy)) {
1198 struct buffer_head *bh;
1199 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1200 if (!bh) {
1201 *errp = -EIO;
1202 goto err;
1203 }
1204 if (buffer_new(&dummy)) {
1205 J_ASSERT(create != 0);
1206 J_ASSERT(handle != NULL);
1207
1208 /*
1209 * Now that we do not always journal data, we should
1210 * keep in mind whether this should always journal the
1211 * new buffer as metadata. For now, regular file
1212 * writes use ext4_get_block instead, so it's not a
1213 * problem.
1214 */
1215 lock_buffer(bh);
1216 BUFFER_TRACE(bh, "call get_create_access");
1217 fatal = ext4_journal_get_create_access(handle, bh);
1218 if (!fatal && !buffer_uptodate(bh)) {
1219 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1220 set_buffer_uptodate(bh);
1221 }
1222 unlock_buffer(bh);
1223 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1224 err = ext4_journal_dirty_metadata(handle, bh);
1225 if (!fatal)
1226 fatal = err;
1227 } else {
1228 BUFFER_TRACE(bh, "not a new buffer");
1229 }
1230 if (fatal) {
1231 *errp = fatal;
1232 brelse(bh);
1233 bh = NULL;
1234 }
1235 return bh;
1236 }
1237 err:
1238 return NULL;
1239 }
1240
1241 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1242 ext4_lblk_t block, int create, int *err)
1243 {
1244 struct buffer_head *bh;
1245
1246 bh = ext4_getblk(handle, inode, block, create, err);
1247 if (!bh)
1248 return bh;
1249 if (buffer_uptodate(bh))
1250 return bh;
1251 ll_rw_block(READ_META, 1, &bh);
1252 wait_on_buffer(bh);
1253 if (buffer_uptodate(bh))
1254 return bh;
1255 put_bh(bh);
1256 *err = -EIO;
1257 return NULL;
1258 }
1259
1260 static int walk_page_buffers(handle_t *handle,
1261 struct buffer_head *head,
1262 unsigned from,
1263 unsigned to,
1264 int *partial,
1265 int (*fn)(handle_t *handle,
1266 struct buffer_head *bh))
1267 {
1268 struct buffer_head *bh;
1269 unsigned block_start, block_end;
1270 unsigned blocksize = head->b_size;
1271 int err, ret = 0;
1272 struct buffer_head *next;
1273
1274 for (bh = head, block_start = 0;
1275 ret == 0 && (bh != head || !block_start);
1276 block_start = block_end, bh = next)
1277 {
1278 next = bh->b_this_page;
1279 block_end = block_start + blocksize;
1280 if (block_end <= from || block_start >= to) {
1281 if (partial && !buffer_uptodate(bh))
1282 *partial = 1;
1283 continue;
1284 }
1285 err = (*fn)(handle, bh);
1286 if (!ret)
1287 ret = err;
1288 }
1289 return ret;
1290 }
1291
1292 /*
1293 * To preserve ordering, it is essential that the hole instantiation and
1294 * the data write be encapsulated in a single transaction. We cannot
1295 * close off a transaction and start a new one between the ext4_get_block()
1296 * and the commit_write(). So doing the jbd2_journal_start at the start of
1297 * prepare_write() is the right place.
1298 *
1299 * Also, this function can nest inside ext4_writepage() ->
1300 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1301 * has generated enough buffer credits to do the whole page. So we won't
1302 * block on the journal in that case, which is good, because the caller may
1303 * be PF_MEMALLOC.
1304 *
1305 * By accident, ext4 can be reentered when a transaction is open via
1306 * quota file writes. If we were to commit the transaction while thus
1307 * reentered, there can be a deadlock - we would be holding a quota
1308 * lock, and the commit would never complete if another thread had a
1309 * transaction open and was blocking on the quota lock - a ranking
1310 * violation.
1311 *
1312 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1313 * will _not_ run commit under these circumstances because handle->h_ref
1314 * is elevated. We'll still have enough credits for the tiny quotafile
1315 * write.
1316 */
1317 static int do_journal_get_write_access(handle_t *handle,
1318 struct buffer_head *bh)
1319 {
1320 if (!buffer_mapped(bh) || buffer_freed(bh))
1321 return 0;
1322 return ext4_journal_get_write_access(handle, bh);
1323 }
1324
1325 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1326 loff_t pos, unsigned len, unsigned flags,
1327 struct page **pagep, void **fsdata)
1328 {
1329 struct inode *inode = mapping->host;
1330 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1331 handle_t *handle;
1332 int retries = 0;
1333 struct page *page;
1334 pgoff_t index;
1335 unsigned from, to;
1336
1337 index = pos >> PAGE_CACHE_SHIFT;
1338 from = pos & (PAGE_CACHE_SIZE - 1);
1339 to = from + len;
1340
1341 retry:
1342 handle = ext4_journal_start(inode, needed_blocks);
1343 if (IS_ERR(handle)) {
1344 ret = PTR_ERR(handle);
1345 goto out;
1346 }
1347
1348 page = __grab_cache_page(mapping, index);
1349 if (!page) {
1350 ext4_journal_stop(handle);
1351 ret = -ENOMEM;
1352 goto out;
1353 }
1354 *pagep = page;
1355
1356 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1357 ext4_get_block);
1358
1359 if (!ret && ext4_should_journal_data(inode)) {
1360 ret = walk_page_buffers(handle, page_buffers(page),
1361 from, to, NULL, do_journal_get_write_access);
1362 }
1363
1364 if (ret) {
1365 unlock_page(page);
1366 ext4_journal_stop(handle);
1367 page_cache_release(page);
1368 /*
1369 * block_write_begin may have instantiated a few blocks
1370 * outside i_size. Trim these off again. Don't need
1371 * i_size_read because we hold i_mutex.
1372 */
1373 if (pos + len > inode->i_size)
1374 vmtruncate(inode, inode->i_size);
1375 }
1376
1377 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1378 goto retry;
1379 out:
1380 return ret;
1381 }
1382
1383 /* For write_end() in data=journal mode */
1384 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1385 {
1386 if (!buffer_mapped(bh) || buffer_freed(bh))
1387 return 0;
1388 set_buffer_uptodate(bh);
1389 return ext4_journal_dirty_metadata(handle, bh);
1390 }
1391
1392 /*
1393 * We need to pick up the new inode size which generic_commit_write gave us
1394 * `file' can be NULL - eg, when called from page_symlink().
1395 *
1396 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1397 * buffers are managed internally.
1398 */
1399 static int ext4_ordered_write_end(struct file *file,
1400 struct address_space *mapping,
1401 loff_t pos, unsigned len, unsigned copied,
1402 struct page *page, void *fsdata)
1403 {
1404 handle_t *handle = ext4_journal_current_handle();
1405 struct inode *inode = mapping->host;
1406 int ret = 0, ret2;
1407
1408 ret = ext4_jbd2_file_inode(handle, inode);
1409
1410 if (ret == 0) {
1411 loff_t new_i_size;
1412
1413 new_i_size = pos + copied;
1414 if (new_i_size > EXT4_I(inode)->i_disksize) {
1415 ext4_update_i_disksize(inode, new_i_size);
1416 /* We need to mark inode dirty even if
1417 * new_i_size is less that inode->i_size
1418 * bu greater than i_disksize.(hint delalloc)
1419 */
1420 ext4_mark_inode_dirty(handle, inode);
1421 }
1422
1423 ret2 = generic_write_end(file, mapping, pos, len, copied,
1424 page, fsdata);
1425 copied = ret2;
1426 if (ret2 < 0)
1427 ret = ret2;
1428 }
1429 ret2 = ext4_journal_stop(handle);
1430 if (!ret)
1431 ret = ret2;
1432
1433 return ret ? ret : copied;
1434 }
1435
1436 static int ext4_writeback_write_end(struct file *file,
1437 struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned copied,
1439 struct page *page, void *fsdata)
1440 {
1441 handle_t *handle = ext4_journal_current_handle();
1442 struct inode *inode = mapping->host;
1443 int ret = 0, ret2;
1444 loff_t new_i_size;
1445
1446 new_i_size = pos + copied;
1447 if (new_i_size > EXT4_I(inode)->i_disksize) {
1448 ext4_update_i_disksize(inode, new_i_size);
1449 /* We need to mark inode dirty even if
1450 * new_i_size is less that inode->i_size
1451 * bu greater than i_disksize.(hint delalloc)
1452 */
1453 ext4_mark_inode_dirty(handle, inode);
1454 }
1455
1456 ret2 = generic_write_end(file, mapping, pos, len, copied,
1457 page, fsdata);
1458 copied = ret2;
1459 if (ret2 < 0)
1460 ret = ret2;
1461
1462 ret2 = ext4_journal_stop(handle);
1463 if (!ret)
1464 ret = ret2;
1465
1466 return ret ? ret : copied;
1467 }
1468
1469 static int ext4_journalled_write_end(struct file *file,
1470 struct address_space *mapping,
1471 loff_t pos, unsigned len, unsigned copied,
1472 struct page *page, void *fsdata)
1473 {
1474 handle_t *handle = ext4_journal_current_handle();
1475 struct inode *inode = mapping->host;
1476 int ret = 0, ret2;
1477 int partial = 0;
1478 unsigned from, to;
1479 loff_t new_i_size;
1480
1481 from = pos & (PAGE_CACHE_SIZE - 1);
1482 to = from + len;
1483
1484 if (copied < len) {
1485 if (!PageUptodate(page))
1486 copied = 0;
1487 page_zero_new_buffers(page, from+copied, to);
1488 }
1489
1490 ret = walk_page_buffers(handle, page_buffers(page), from,
1491 to, &partial, write_end_fn);
1492 if (!partial)
1493 SetPageUptodate(page);
1494 new_i_size = pos + copied;
1495 if (new_i_size > inode->i_size)
1496 i_size_write(inode, pos+copied);
1497 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1498 if (new_i_size > EXT4_I(inode)->i_disksize) {
1499 ext4_update_i_disksize(inode, new_i_size);
1500 ret2 = ext4_mark_inode_dirty(handle, inode);
1501 if (!ret)
1502 ret = ret2;
1503 }
1504
1505 unlock_page(page);
1506 ret2 = ext4_journal_stop(handle);
1507 if (!ret)
1508 ret = ret2;
1509 page_cache_release(page);
1510
1511 return ret ? ret : copied;
1512 }
1513
1514 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1515 {
1516 int retries = 0;
1517 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1518 unsigned long md_needed, mdblocks, total = 0;
1519
1520 /*
1521 * recalculate the amount of metadata blocks to reserve
1522 * in order to allocate nrblocks
1523 * worse case is one extent per block
1524 */
1525 repeat:
1526 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1527 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1528 mdblocks = ext4_calc_metadata_amount(inode, total);
1529 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1530
1531 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1532 total = md_needed + nrblocks;
1533
1534 if (ext4_claim_free_blocks(sbi, total)) {
1535 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1536 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1537 yield();
1538 goto repeat;
1539 }
1540 return -ENOSPC;
1541 }
1542 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1543 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1544
1545 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1546 return 0; /* success */
1547 }
1548
1549 static void ext4_da_release_space(struct inode *inode, int to_free)
1550 {
1551 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1552 int total, mdb, mdb_free, release;
1553
1554 if (!to_free)
1555 return; /* Nothing to release, exit */
1556
1557 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1558
1559 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1560 /*
1561 * if there is no reserved blocks, but we try to free some
1562 * then the counter is messed up somewhere.
1563 * but since this function is called from invalidate
1564 * page, it's harmless to return without any action
1565 */
1566 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1567 "blocks for inode %lu, but there is no reserved "
1568 "data blocks\n", to_free, inode->i_ino);
1569 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1570 return;
1571 }
1572
1573 /* recalculate the number of metablocks still need to be reserved */
1574 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1575 mdb = ext4_calc_metadata_amount(inode, total);
1576
1577 /* figure out how many metablocks to release */
1578 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1579 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1580
1581 release = to_free + mdb_free;
1582
1583 /* update fs dirty blocks counter for truncate case */
1584 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1585
1586 /* update per-inode reservations */
1587 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1588 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1589
1590 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1591 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1592 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1593 }
1594
1595 static void ext4_da_page_release_reservation(struct page *page,
1596 unsigned long offset)
1597 {
1598 int to_release = 0;
1599 struct buffer_head *head, *bh;
1600 unsigned int curr_off = 0;
1601
1602 head = page_buffers(page);
1603 bh = head;
1604 do {
1605 unsigned int next_off = curr_off + bh->b_size;
1606
1607 if ((offset <= curr_off) && (buffer_delay(bh))) {
1608 to_release++;
1609 clear_buffer_delay(bh);
1610 }
1611 curr_off = next_off;
1612 } while ((bh = bh->b_this_page) != head);
1613 ext4_da_release_space(page->mapping->host, to_release);
1614 }
1615
1616 /*
1617 * Delayed allocation stuff
1618 */
1619
1620 struct mpage_da_data {
1621 struct inode *inode;
1622 struct buffer_head lbh; /* extent of blocks */
1623 unsigned long first_page, next_page; /* extent of pages */
1624 get_block_t *get_block;
1625 struct writeback_control *wbc;
1626 int io_done;
1627 long pages_written;
1628 int retval;
1629 };
1630
1631 /*
1632 * mpage_da_submit_io - walks through extent of pages and try to write
1633 * them with writepage() call back
1634 *
1635 * @mpd->inode: inode
1636 * @mpd->first_page: first page of the extent
1637 * @mpd->next_page: page after the last page of the extent
1638 * @mpd->get_block: the filesystem's block mapper function
1639 *
1640 * By the time mpage_da_submit_io() is called we expect all blocks
1641 * to be allocated. this may be wrong if allocation failed.
1642 *
1643 * As pages are already locked by write_cache_pages(), we can't use it
1644 */
1645 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646 {
1647 struct address_space *mapping = mpd->inode->i_mapping;
1648 int ret = 0, err, nr_pages, i;
1649 unsigned long index, end;
1650 struct pagevec pvec;
1651
1652 BUG_ON(mpd->next_page <= mpd->first_page);
1653 pagevec_init(&pvec, 0);
1654 index = mpd->first_page;
1655 end = mpd->next_page - 1;
1656
1657 while (index <= end) {
1658 /* XXX: optimize tail */
1659 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1660 if (nr_pages == 0)
1661 break;
1662 for (i = 0; i < nr_pages; i++) {
1663 struct page *page = pvec.pages[i];
1664
1665 index = page->index;
1666 if (index > end)
1667 break;
1668 index++;
1669
1670 err = mapping->a_ops->writepage(page, mpd->wbc);
1671 if (!err)
1672 mpd->pages_written++;
1673 /*
1674 * In error case, we have to continue because
1675 * remaining pages are still locked
1676 * XXX: unlock and re-dirty them?
1677 */
1678 if (ret == 0)
1679 ret = err;
1680 }
1681 pagevec_release(&pvec);
1682 }
1683 return ret;
1684 }
1685
1686 /*
1687 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1688 *
1689 * @mpd->inode - inode to walk through
1690 * @exbh->b_blocknr - first block on a disk
1691 * @exbh->b_size - amount of space in bytes
1692 * @logical - first logical block to start assignment with
1693 *
1694 * the function goes through all passed space and put actual disk
1695 * block numbers into buffer heads, dropping BH_Delay
1696 */
1697 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1698 struct buffer_head *exbh)
1699 {
1700 struct inode *inode = mpd->inode;
1701 struct address_space *mapping = inode->i_mapping;
1702 int blocks = exbh->b_size >> inode->i_blkbits;
1703 sector_t pblock = exbh->b_blocknr, cur_logical;
1704 struct buffer_head *head, *bh;
1705 pgoff_t index, end;
1706 struct pagevec pvec;
1707 int nr_pages, i;
1708
1709 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1710 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1711 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1712
1713 pagevec_init(&pvec, 0);
1714
1715 while (index <= end) {
1716 /* XXX: optimize tail */
1717 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1718 if (nr_pages == 0)
1719 break;
1720 for (i = 0; i < nr_pages; i++) {
1721 struct page *page = pvec.pages[i];
1722
1723 index = page->index;
1724 if (index > end)
1725 break;
1726 index++;
1727
1728 BUG_ON(!PageLocked(page));
1729 BUG_ON(PageWriteback(page));
1730 BUG_ON(!page_has_buffers(page));
1731
1732 bh = page_buffers(page);
1733 head = bh;
1734
1735 /* skip blocks out of the range */
1736 do {
1737 if (cur_logical >= logical)
1738 break;
1739 cur_logical++;
1740 } while ((bh = bh->b_this_page) != head);
1741
1742 do {
1743 if (cur_logical >= logical + blocks)
1744 break;
1745 if (buffer_delay(bh)) {
1746 bh->b_blocknr = pblock;
1747 clear_buffer_delay(bh);
1748 bh->b_bdev = inode->i_sb->s_bdev;
1749 } else if (buffer_unwritten(bh)) {
1750 bh->b_blocknr = pblock;
1751 clear_buffer_unwritten(bh);
1752 set_buffer_mapped(bh);
1753 set_buffer_new(bh);
1754 bh->b_bdev = inode->i_sb->s_bdev;
1755 } else if (buffer_mapped(bh))
1756 BUG_ON(bh->b_blocknr != pblock);
1757
1758 cur_logical++;
1759 pblock++;
1760 } while ((bh = bh->b_this_page) != head);
1761 }
1762 pagevec_release(&pvec);
1763 }
1764 }
1765
1766
1767 /*
1768 * __unmap_underlying_blocks - just a helper function to unmap
1769 * set of blocks described by @bh
1770 */
1771 static inline void __unmap_underlying_blocks(struct inode *inode,
1772 struct buffer_head *bh)
1773 {
1774 struct block_device *bdev = inode->i_sb->s_bdev;
1775 int blocks, i;
1776
1777 blocks = bh->b_size >> inode->i_blkbits;
1778 for (i = 0; i < blocks; i++)
1779 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1780 }
1781
1782 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1783 sector_t logical, long blk_cnt)
1784 {
1785 int nr_pages, i;
1786 pgoff_t index, end;
1787 struct pagevec pvec;
1788 struct inode *inode = mpd->inode;
1789 struct address_space *mapping = inode->i_mapping;
1790
1791 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1792 end = (logical + blk_cnt - 1) >>
1793 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1794 while (index <= end) {
1795 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1796 if (nr_pages == 0)
1797 break;
1798 for (i = 0; i < nr_pages; i++) {
1799 struct page *page = pvec.pages[i];
1800 index = page->index;
1801 if (index > end)
1802 break;
1803 index++;
1804
1805 BUG_ON(!PageLocked(page));
1806 BUG_ON(PageWriteback(page));
1807 block_invalidatepage(page, 0);
1808 ClearPageUptodate(page);
1809 unlock_page(page);
1810 }
1811 }
1812 return;
1813 }
1814
1815 static void ext4_print_free_blocks(struct inode *inode)
1816 {
1817 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1818 printk(KERN_EMERG "Total free blocks count %lld\n",
1819 ext4_count_free_blocks(inode->i_sb));
1820 printk(KERN_EMERG "Free/Dirty block details\n");
1821 printk(KERN_EMERG "free_blocks=%lld\n",
1822 percpu_counter_sum(&sbi->s_freeblocks_counter));
1823 printk(KERN_EMERG "dirty_blocks=%lld\n",
1824 percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1825 printk(KERN_EMERG "Block reservation details\n");
1826 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1827 EXT4_I(inode)->i_reserved_data_blocks);
1828 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1829 EXT4_I(inode)->i_reserved_meta_blocks);
1830 return;
1831 }
1832
1833 /*
1834 * mpage_da_map_blocks - go through given space
1835 *
1836 * @mpd->lbh - bh describing space
1837 * @mpd->get_block - the filesystem's block mapper function
1838 *
1839 * The function skips space we know is already mapped to disk blocks.
1840 *
1841 */
1842 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1843 {
1844 int err = 0;
1845 struct buffer_head new;
1846 struct buffer_head *lbh = &mpd->lbh;
1847 sector_t next;
1848
1849 /*
1850 * We consider only non-mapped and non-allocated blocks
1851 */
1852 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1853 return 0;
1854 new.b_state = lbh->b_state;
1855 new.b_blocknr = 0;
1856 new.b_size = lbh->b_size;
1857 next = lbh->b_blocknr;
1858 /*
1859 * If we didn't accumulate anything
1860 * to write simply return
1861 */
1862 if (!new.b_size)
1863 return 0;
1864 err = mpd->get_block(mpd->inode, next, &new, 1);
1865 if (err) {
1866
1867 /* If get block returns with error
1868 * we simply return. Later writepage
1869 * will redirty the page and writepages
1870 * will find the dirty page again
1871 */
1872 if (err == -EAGAIN)
1873 return 0;
1874
1875 if (err == -ENOSPC &&
1876 ext4_count_free_blocks(mpd->inode->i_sb)) {
1877 mpd->retval = err;
1878 return 0;
1879 }
1880
1881 /*
1882 * get block failure will cause us
1883 * to loop in writepages. Because
1884 * a_ops->writepage won't be able to
1885 * make progress. The page will be redirtied
1886 * by writepage and writepages will again
1887 * try to write the same.
1888 */
1889 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1890 "at logical offset %llu with max blocks "
1891 "%zd with error %d\n",
1892 __func__, mpd->inode->i_ino,
1893 (unsigned long long)next,
1894 lbh->b_size >> mpd->inode->i_blkbits, err);
1895 printk(KERN_EMERG "This should not happen.!! "
1896 "Data will be lost\n");
1897 if (err == -ENOSPC) {
1898 ext4_print_free_blocks(mpd->inode);
1899 }
1900 /* invlaidate all the pages */
1901 ext4_da_block_invalidatepages(mpd, next,
1902 lbh->b_size >> mpd->inode->i_blkbits);
1903 return err;
1904 }
1905 BUG_ON(new.b_size == 0);
1906
1907 if (buffer_new(&new))
1908 __unmap_underlying_blocks(mpd->inode, &new);
1909
1910 /*
1911 * If blocks are delayed marked, we need to
1912 * put actual blocknr and drop delayed bit
1913 */
1914 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1915 mpage_put_bnr_to_bhs(mpd, next, &new);
1916
1917 return 0;
1918 }
1919
1920 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1921 (1 << BH_Delay) | (1 << BH_Unwritten))
1922
1923 /*
1924 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1925 *
1926 * @mpd->lbh - extent of blocks
1927 * @logical - logical number of the block in the file
1928 * @bh - bh of the block (used to access block's state)
1929 *
1930 * the function is used to collect contig. blocks in same state
1931 */
1932 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1933 sector_t logical, struct buffer_head *bh)
1934 {
1935 sector_t next;
1936 size_t b_size = bh->b_size;
1937 struct buffer_head *lbh = &mpd->lbh;
1938 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1939
1940 /* check if thereserved journal credits might overflow */
1941 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1942 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1943 /*
1944 * With non-extent format we are limited by the journal
1945 * credit available. Total credit needed to insert
1946 * nrblocks contiguous blocks is dependent on the
1947 * nrblocks. So limit nrblocks.
1948 */
1949 goto flush_it;
1950 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1951 EXT4_MAX_TRANS_DATA) {
1952 /*
1953 * Adding the new buffer_head would make it cross the
1954 * allowed limit for which we have journal credit
1955 * reserved. So limit the new bh->b_size
1956 */
1957 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1958 mpd->inode->i_blkbits;
1959 /* we will do mpage_da_submit_io in the next loop */
1960 }
1961 }
1962 /*
1963 * First block in the extent
1964 */
1965 if (lbh->b_size == 0) {
1966 lbh->b_blocknr = logical;
1967 lbh->b_size = b_size;
1968 lbh->b_state = bh->b_state & BH_FLAGS;
1969 return;
1970 }
1971
1972 next = lbh->b_blocknr + nrblocks;
1973 /*
1974 * Can we merge the block to our big extent?
1975 */
1976 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1977 lbh->b_size += b_size;
1978 return;
1979 }
1980
1981 flush_it:
1982 /*
1983 * We couldn't merge the block to our extent, so we
1984 * need to flush current extent and start new one
1985 */
1986 if (mpage_da_map_blocks(mpd) == 0)
1987 mpage_da_submit_io(mpd);
1988 mpd->io_done = 1;
1989 return;
1990 }
1991
1992 /*
1993 * __mpage_da_writepage - finds extent of pages and blocks
1994 *
1995 * @page: page to consider
1996 * @wbc: not used, we just follow rules
1997 * @data: context
1998 *
1999 * The function finds extents of pages and scan them for all blocks.
2000 */
2001 static int __mpage_da_writepage(struct page *page,
2002 struct writeback_control *wbc, void *data)
2003 {
2004 struct mpage_da_data *mpd = data;
2005 struct inode *inode = mpd->inode;
2006 struct buffer_head *bh, *head, fake;
2007 sector_t logical;
2008
2009 if (mpd->io_done) {
2010 /*
2011 * Rest of the page in the page_vec
2012 * redirty then and skip then. We will
2013 * try to to write them again after
2014 * starting a new transaction
2015 */
2016 redirty_page_for_writepage(wbc, page);
2017 unlock_page(page);
2018 return MPAGE_DA_EXTENT_TAIL;
2019 }
2020 /*
2021 * Can we merge this page to current extent?
2022 */
2023 if (mpd->next_page != page->index) {
2024 /*
2025 * Nope, we can't. So, we map non-allocated blocks
2026 * and start IO on them using writepage()
2027 */
2028 if (mpd->next_page != mpd->first_page) {
2029 if (mpage_da_map_blocks(mpd) == 0)
2030 mpage_da_submit_io(mpd);
2031 /*
2032 * skip rest of the page in the page_vec
2033 */
2034 mpd->io_done = 1;
2035 redirty_page_for_writepage(wbc, page);
2036 unlock_page(page);
2037 return MPAGE_DA_EXTENT_TAIL;
2038 }
2039
2040 /*
2041 * Start next extent of pages ...
2042 */
2043 mpd->first_page = page->index;
2044
2045 /*
2046 * ... and blocks
2047 */
2048 mpd->lbh.b_size = 0;
2049 mpd->lbh.b_state = 0;
2050 mpd->lbh.b_blocknr = 0;
2051 }
2052
2053 mpd->next_page = page->index + 1;
2054 logical = (sector_t) page->index <<
2055 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2056
2057 if (!page_has_buffers(page)) {
2058 /*
2059 * There is no attached buffer heads yet (mmap?)
2060 * we treat the page asfull of dirty blocks
2061 */
2062 bh = &fake;
2063 bh->b_size = PAGE_CACHE_SIZE;
2064 bh->b_state = 0;
2065 set_buffer_dirty(bh);
2066 set_buffer_uptodate(bh);
2067 mpage_add_bh_to_extent(mpd, logical, bh);
2068 if (mpd->io_done)
2069 return MPAGE_DA_EXTENT_TAIL;
2070 } else {
2071 /*
2072 * Page with regular buffer heads, just add all dirty ones
2073 */
2074 head = page_buffers(page);
2075 bh = head;
2076 do {
2077 BUG_ON(buffer_locked(bh));
2078 if (buffer_dirty(bh) &&
2079 (!buffer_mapped(bh) || buffer_delay(bh))) {
2080 mpage_add_bh_to_extent(mpd, logical, bh);
2081 if (mpd->io_done)
2082 return MPAGE_DA_EXTENT_TAIL;
2083 }
2084 logical++;
2085 } while ((bh = bh->b_this_page) != head);
2086 }
2087
2088 return 0;
2089 }
2090
2091 /*
2092 * mpage_da_writepages - walk the list of dirty pages of the given
2093 * address space, allocates non-allocated blocks, maps newly-allocated
2094 * blocks to existing bhs and issue IO them
2095 *
2096 * @mapping: address space structure to write
2097 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2098 * @get_block: the filesystem's block mapper function.
2099 *
2100 * This is a library function, which implements the writepages()
2101 * address_space_operation.
2102 */
2103 static int mpage_da_writepages(struct address_space *mapping,
2104 struct writeback_control *wbc,
2105 struct mpage_da_data *mpd)
2106 {
2107 long to_write;
2108 int ret;
2109
2110 if (!mpd->get_block)
2111 return generic_writepages(mapping, wbc);
2112
2113 mpd->lbh.b_size = 0;
2114 mpd->lbh.b_state = 0;
2115 mpd->lbh.b_blocknr = 0;
2116 mpd->first_page = 0;
2117 mpd->next_page = 0;
2118 mpd->io_done = 0;
2119 mpd->pages_written = 0;
2120 mpd->retval = 0;
2121
2122 to_write = wbc->nr_to_write;
2123
2124 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2125
2126 /*
2127 * Handle last extent of pages
2128 */
2129 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2130 if (mpage_da_map_blocks(mpd) == 0)
2131 mpage_da_submit_io(mpd);
2132 }
2133
2134 wbc->nr_to_write = to_write - mpd->pages_written;
2135 return ret;
2136 }
2137
2138 /*
2139 * this is a special callback for ->write_begin() only
2140 * it's intention is to return mapped block or reserve space
2141 */
2142 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2143 struct buffer_head *bh_result, int create)
2144 {
2145 int ret = 0;
2146
2147 BUG_ON(create == 0);
2148 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2149
2150 /*
2151 * first, we need to know whether the block is allocated already
2152 * preallocated blocks are unmapped but should treated
2153 * the same as allocated blocks.
2154 */
2155 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2156 if ((ret == 0) && !buffer_delay(bh_result)) {
2157 /* the block isn't (pre)allocated yet, let's reserve space */
2158 /*
2159 * XXX: __block_prepare_write() unmaps passed block,
2160 * is it OK?
2161 */
2162 ret = ext4_da_reserve_space(inode, 1);
2163 if (ret)
2164 /* not enough space to reserve */
2165 return ret;
2166
2167 map_bh(bh_result, inode->i_sb, 0);
2168 set_buffer_new(bh_result);
2169 set_buffer_delay(bh_result);
2170 } else if (ret > 0) {
2171 bh_result->b_size = (ret << inode->i_blkbits);
2172 ret = 0;
2173 }
2174
2175 return ret;
2176 }
2177 #define EXT4_DELALLOC_RSVED 1
2178 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2179 struct buffer_head *bh_result, int create)
2180 {
2181 int ret;
2182 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2183 loff_t disksize = EXT4_I(inode)->i_disksize;
2184 handle_t *handle = NULL;
2185
2186 handle = ext4_journal_current_handle();
2187 BUG_ON(!handle);
2188 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2189 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2190 if (ret > 0) {
2191
2192 bh_result->b_size = (ret << inode->i_blkbits);
2193
2194 if (ext4_should_order_data(inode)) {
2195 int retval;
2196 retval = ext4_jbd2_file_inode(handle, inode);
2197 if (retval)
2198 /*
2199 * Failed to add inode for ordered
2200 * mode. Don't update file size
2201 */
2202 return retval;
2203 }
2204
2205 /*
2206 * Update on-disk size along with block allocation
2207 * we don't use 'extend_disksize' as size may change
2208 * within already allocated block -bzzz
2209 */
2210 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2211 if (disksize > i_size_read(inode))
2212 disksize = i_size_read(inode);
2213 if (disksize > EXT4_I(inode)->i_disksize) {
2214 ext4_update_i_disksize(inode, disksize);
2215 ret = ext4_mark_inode_dirty(handle, inode);
2216 return ret;
2217 }
2218 ret = 0;
2219 }
2220 return ret;
2221 }
2222
2223 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2224 {
2225 /*
2226 * unmapped buffer is possible for holes.
2227 * delay buffer is possible with delayed allocation
2228 */
2229 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2230 }
2231
2232 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2233 struct buffer_head *bh_result, int create)
2234 {
2235 int ret = 0;
2236 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2237
2238 /*
2239 * we don't want to do block allocation in writepage
2240 * so call get_block_wrap with create = 0
2241 */
2242 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2243 bh_result, 0, 0, 0);
2244 if (ret > 0) {
2245 bh_result->b_size = (ret << inode->i_blkbits);
2246 ret = 0;
2247 }
2248 return ret;
2249 }
2250
2251 /*
2252 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2253 * get called via journal_submit_inode_data_buffers (no journal handle)
2254 * get called via shrink_page_list via pdflush (no journal handle)
2255 * or grab_page_cache when doing write_begin (have journal handle)
2256 */
2257 static int ext4_da_writepage(struct page *page,
2258 struct writeback_control *wbc)
2259 {
2260 int ret = 0;
2261 loff_t size;
2262 unsigned long len;
2263 struct buffer_head *page_bufs;
2264 struct inode *inode = page->mapping->host;
2265
2266 size = i_size_read(inode);
2267 if (page->index == size >> PAGE_CACHE_SHIFT)
2268 len = size & ~PAGE_CACHE_MASK;
2269 else
2270 len = PAGE_CACHE_SIZE;
2271
2272 if (page_has_buffers(page)) {
2273 page_bufs = page_buffers(page);
2274 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2275 ext4_bh_unmapped_or_delay)) {
2276 /*
2277 * We don't want to do block allocation
2278 * So redirty the page and return
2279 * We may reach here when we do a journal commit
2280 * via journal_submit_inode_data_buffers.
2281 * If we don't have mapping block we just ignore
2282 * them. We can also reach here via shrink_page_list
2283 */
2284 redirty_page_for_writepage(wbc, page);
2285 unlock_page(page);
2286 return 0;
2287 }
2288 } else {
2289 /*
2290 * The test for page_has_buffers() is subtle:
2291 * We know the page is dirty but it lost buffers. That means
2292 * that at some moment in time after write_begin()/write_end()
2293 * has been called all buffers have been clean and thus they
2294 * must have been written at least once. So they are all
2295 * mapped and we can happily proceed with mapping them
2296 * and writing the page.
2297 *
2298 * Try to initialize the buffer_heads and check whether
2299 * all are mapped and non delay. We don't want to
2300 * do block allocation here.
2301 */
2302 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2303 ext4_normal_get_block_write);
2304 if (!ret) {
2305 page_bufs = page_buffers(page);
2306 /* check whether all are mapped and non delay */
2307 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2308 ext4_bh_unmapped_or_delay)) {
2309 redirty_page_for_writepage(wbc, page);
2310 unlock_page(page);
2311 return 0;
2312 }
2313 } else {
2314 /*
2315 * We can't do block allocation here
2316 * so just redity the page and unlock
2317 * and return
2318 */
2319 redirty_page_for_writepage(wbc, page);
2320 unlock_page(page);
2321 return 0;
2322 }
2323 }
2324
2325 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2326 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2327 else
2328 ret = block_write_full_page(page,
2329 ext4_normal_get_block_write,
2330 wbc);
2331
2332 return ret;
2333 }
2334
2335 /*
2336 * This is called via ext4_da_writepages() to
2337 * calulate the total number of credits to reserve to fit
2338 * a single extent allocation into a single transaction,
2339 * ext4_da_writpeages() will loop calling this before
2340 * the block allocation.
2341 */
2342
2343 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2344 {
2345 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2346
2347 /*
2348 * With non-extent format the journal credit needed to
2349 * insert nrblocks contiguous block is dependent on
2350 * number of contiguous block. So we will limit
2351 * number of contiguous block to a sane value
2352 */
2353 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2354 (max_blocks > EXT4_MAX_TRANS_DATA))
2355 max_blocks = EXT4_MAX_TRANS_DATA;
2356
2357 return ext4_chunk_trans_blocks(inode, max_blocks);
2358 }
2359
2360 static int ext4_da_writepages(struct address_space *mapping,
2361 struct writeback_control *wbc)
2362 {
2363 handle_t *handle = NULL;
2364 loff_t range_start = 0;
2365 struct mpage_da_data mpd;
2366 struct inode *inode = mapping->host;
2367 int needed_blocks, ret = 0, nr_to_writebump = 0;
2368 long to_write, pages_skipped = 0;
2369 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2370
2371 /*
2372 * No pages to write? This is mainly a kludge to avoid starting
2373 * a transaction for special inodes like journal inode on last iput()
2374 * because that could violate lock ordering on umount
2375 */
2376 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2377 return 0;
2378 /*
2379 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2380 * This make sure small files blocks are allocated in
2381 * single attempt. This ensure that small files
2382 * get less fragmented.
2383 */
2384 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2385 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2386 wbc->nr_to_write = sbi->s_mb_stream_request;
2387 }
2388
2389 if (!wbc->range_cyclic)
2390 /*
2391 * If range_cyclic is not set force range_cont
2392 * and save the old writeback_index
2393 */
2394 wbc->range_cont = 1;
2395
2396 range_start = wbc->range_start;
2397 pages_skipped = wbc->pages_skipped;
2398
2399 mpd.wbc = wbc;
2400 mpd.inode = mapping->host;
2401
2402 restart_loop:
2403 to_write = wbc->nr_to_write;
2404 while (!ret && to_write > 0) {
2405
2406 /*
2407 * we insert one extent at a time. So we need
2408 * credit needed for single extent allocation.
2409 * journalled mode is currently not supported
2410 * by delalloc
2411 */
2412 BUG_ON(ext4_should_journal_data(inode));
2413 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2414
2415 /* start a new transaction*/
2416 handle = ext4_journal_start(inode, needed_blocks);
2417 if (IS_ERR(handle)) {
2418 ret = PTR_ERR(handle);
2419 printk(KERN_EMERG "%s: jbd2_start: "
2420 "%ld pages, ino %lu; err %d\n", __func__,
2421 wbc->nr_to_write, inode->i_ino, ret);
2422 dump_stack();
2423 goto out_writepages;
2424 }
2425 to_write -= wbc->nr_to_write;
2426
2427 mpd.get_block = ext4_da_get_block_write;
2428 ret = mpage_da_writepages(mapping, wbc, &mpd);
2429
2430 ext4_journal_stop(handle);
2431
2432 if (mpd.retval == -ENOSPC)
2433 jbd2_journal_force_commit_nested(sbi->s_journal);
2434
2435 /* reset the retry count */
2436 if (ret == MPAGE_DA_EXTENT_TAIL) {
2437 /*
2438 * got one extent now try with
2439 * rest of the pages
2440 */
2441 to_write += wbc->nr_to_write;
2442 ret = 0;
2443 } else if (wbc->nr_to_write) {
2444 /*
2445 * There is no more writeout needed
2446 * or we requested for a noblocking writeout
2447 * and we found the device congested
2448 */
2449 to_write += wbc->nr_to_write;
2450 break;
2451 }
2452 wbc->nr_to_write = to_write;
2453 }
2454
2455 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2456 /* We skipped pages in this loop */
2457 wbc->range_start = range_start;
2458 wbc->nr_to_write = to_write +
2459 wbc->pages_skipped - pages_skipped;
2460 wbc->pages_skipped = pages_skipped;
2461 goto restart_loop;
2462 }
2463
2464 out_writepages:
2465 wbc->nr_to_write = to_write - nr_to_writebump;
2466 wbc->range_start = range_start;
2467 return ret;
2468 }
2469
2470 #define FALL_BACK_TO_NONDELALLOC 1
2471 static int ext4_nonda_switch(struct super_block *sb)
2472 {
2473 s64 free_blocks, dirty_blocks;
2474 struct ext4_sb_info *sbi = EXT4_SB(sb);
2475
2476 /*
2477 * switch to non delalloc mode if we are running low
2478 * on free block. The free block accounting via percpu
2479 * counters can get slightly wrong with FBC_BATCH getting
2480 * accumulated on each CPU without updating global counters
2481 * Delalloc need an accurate free block accounting. So switch
2482 * to non delalloc when we are near to error range.
2483 */
2484 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2485 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2486 if (2 * free_blocks < 3 * dirty_blocks ||
2487 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2488 /*
2489 * free block count is less that 150% of dirty blocks
2490 * or free blocks is less that watermark
2491 */
2492 return 1;
2493 }
2494 return 0;
2495 }
2496
2497 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2498 loff_t pos, unsigned len, unsigned flags,
2499 struct page **pagep, void **fsdata)
2500 {
2501 int ret, retries = 0;
2502 struct page *page;
2503 pgoff_t index;
2504 unsigned from, to;
2505 struct inode *inode = mapping->host;
2506 handle_t *handle;
2507
2508 index = pos >> PAGE_CACHE_SHIFT;
2509 from = pos & (PAGE_CACHE_SIZE - 1);
2510 to = from + len;
2511
2512 if (ext4_nonda_switch(inode->i_sb)) {
2513 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2514 return ext4_write_begin(file, mapping, pos,
2515 len, flags, pagep, fsdata);
2516 }
2517 *fsdata = (void *)0;
2518 retry:
2519 /*
2520 * With delayed allocation, we don't log the i_disksize update
2521 * if there is delayed block allocation. But we still need
2522 * to journalling the i_disksize update if writes to the end
2523 * of file which has an already mapped buffer.
2524 */
2525 handle = ext4_journal_start(inode, 1);
2526 if (IS_ERR(handle)) {
2527 ret = PTR_ERR(handle);
2528 goto out;
2529 }
2530
2531 page = __grab_cache_page(mapping, index);
2532 if (!page) {
2533 ext4_journal_stop(handle);
2534 ret = -ENOMEM;
2535 goto out;
2536 }
2537 *pagep = page;
2538
2539 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2540 ext4_da_get_block_prep);
2541 if (ret < 0) {
2542 unlock_page(page);
2543 ext4_journal_stop(handle);
2544 page_cache_release(page);
2545 /*
2546 * block_write_begin may have instantiated a few blocks
2547 * outside i_size. Trim these off again. Don't need
2548 * i_size_read because we hold i_mutex.
2549 */
2550 if (pos + len > inode->i_size)
2551 vmtruncate(inode, inode->i_size);
2552 }
2553
2554 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2555 goto retry;
2556 out:
2557 return ret;
2558 }
2559
2560 /*
2561 * Check if we should update i_disksize
2562 * when write to the end of file but not require block allocation
2563 */
2564 static int ext4_da_should_update_i_disksize(struct page *page,
2565 unsigned long offset)
2566 {
2567 struct buffer_head *bh;
2568 struct inode *inode = page->mapping->host;
2569 unsigned int idx;
2570 int i;
2571
2572 bh = page_buffers(page);
2573 idx = offset >> inode->i_blkbits;
2574
2575 for (i = 0; i < idx; i++)
2576 bh = bh->b_this_page;
2577
2578 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2579 return 0;
2580 return 1;
2581 }
2582
2583 static int ext4_da_write_end(struct file *file,
2584 struct address_space *mapping,
2585 loff_t pos, unsigned len, unsigned copied,
2586 struct page *page, void *fsdata)
2587 {
2588 struct inode *inode = mapping->host;
2589 int ret = 0, ret2;
2590 handle_t *handle = ext4_journal_current_handle();
2591 loff_t new_i_size;
2592 unsigned long start, end;
2593 int write_mode = (int)(unsigned long)fsdata;
2594
2595 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2596 if (ext4_should_order_data(inode)) {
2597 return ext4_ordered_write_end(file, mapping, pos,
2598 len, copied, page, fsdata);
2599 } else if (ext4_should_writeback_data(inode)) {
2600 return ext4_writeback_write_end(file, mapping, pos,
2601 len, copied, page, fsdata);
2602 } else {
2603 BUG();
2604 }
2605 }
2606
2607 start = pos & (PAGE_CACHE_SIZE - 1);
2608 end = start + copied - 1;
2609
2610 /*
2611 * generic_write_end() will run mark_inode_dirty() if i_size
2612 * changes. So let's piggyback the i_disksize mark_inode_dirty
2613 * into that.
2614 */
2615
2616 new_i_size = pos + copied;
2617 if (new_i_size > EXT4_I(inode)->i_disksize) {
2618 if (ext4_da_should_update_i_disksize(page, end)) {
2619 down_write(&EXT4_I(inode)->i_data_sem);
2620 if (new_i_size > EXT4_I(inode)->i_disksize) {
2621 /*
2622 * Updating i_disksize when extending file
2623 * without needing block allocation
2624 */
2625 if (ext4_should_order_data(inode))
2626 ret = ext4_jbd2_file_inode(handle,
2627 inode);
2628
2629 EXT4_I(inode)->i_disksize = new_i_size;
2630 }
2631 up_write(&EXT4_I(inode)->i_data_sem);
2632 /* We need to mark inode dirty even if
2633 * new_i_size is less that inode->i_size
2634 * bu greater than i_disksize.(hint delalloc)
2635 */
2636 ext4_mark_inode_dirty(handle, inode);
2637 }
2638 }
2639 ret2 = generic_write_end(file, mapping, pos, len, copied,
2640 page, fsdata);
2641 copied = ret2;
2642 if (ret2 < 0)
2643 ret = ret2;
2644 ret2 = ext4_journal_stop(handle);
2645 if (!ret)
2646 ret = ret2;
2647
2648 return ret ? ret : copied;
2649 }
2650
2651 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2652 {
2653 /*
2654 * Drop reserved blocks
2655 */
2656 BUG_ON(!PageLocked(page));
2657 if (!page_has_buffers(page))
2658 goto out;
2659
2660 ext4_da_page_release_reservation(page, offset);
2661
2662 out:
2663 ext4_invalidatepage(page, offset);
2664
2665 return;
2666 }
2667
2668
2669 /*
2670 * bmap() is special. It gets used by applications such as lilo and by
2671 * the swapper to find the on-disk block of a specific piece of data.
2672 *
2673 * Naturally, this is dangerous if the block concerned is still in the
2674 * journal. If somebody makes a swapfile on an ext4 data-journaling
2675 * filesystem and enables swap, then they may get a nasty shock when the
2676 * data getting swapped to that swapfile suddenly gets overwritten by
2677 * the original zero's written out previously to the journal and
2678 * awaiting writeback in the kernel's buffer cache.
2679 *
2680 * So, if we see any bmap calls here on a modified, data-journaled file,
2681 * take extra steps to flush any blocks which might be in the cache.
2682 */
2683 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2684 {
2685 struct inode *inode = mapping->host;
2686 journal_t *journal;
2687 int err;
2688
2689 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2690 test_opt(inode->i_sb, DELALLOC)) {
2691 /*
2692 * With delalloc we want to sync the file
2693 * so that we can make sure we allocate
2694 * blocks for file
2695 */
2696 filemap_write_and_wait(mapping);
2697 }
2698
2699 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2700 /*
2701 * This is a REALLY heavyweight approach, but the use of
2702 * bmap on dirty files is expected to be extremely rare:
2703 * only if we run lilo or swapon on a freshly made file
2704 * do we expect this to happen.
2705 *
2706 * (bmap requires CAP_SYS_RAWIO so this does not
2707 * represent an unprivileged user DOS attack --- we'd be
2708 * in trouble if mortal users could trigger this path at
2709 * will.)
2710 *
2711 * NB. EXT4_STATE_JDATA is not set on files other than
2712 * regular files. If somebody wants to bmap a directory
2713 * or symlink and gets confused because the buffer
2714 * hasn't yet been flushed to disk, they deserve
2715 * everything they get.
2716 */
2717
2718 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2719 journal = EXT4_JOURNAL(inode);
2720 jbd2_journal_lock_updates(journal);
2721 err = jbd2_journal_flush(journal);
2722 jbd2_journal_unlock_updates(journal);
2723
2724 if (err)
2725 return 0;
2726 }
2727
2728 return generic_block_bmap(mapping, block, ext4_get_block);
2729 }
2730
2731 static int bget_one(handle_t *handle, struct buffer_head *bh)
2732 {
2733 get_bh(bh);
2734 return 0;
2735 }
2736
2737 static int bput_one(handle_t *handle, struct buffer_head *bh)
2738 {
2739 put_bh(bh);
2740 return 0;
2741 }
2742
2743 /*
2744 * Note that we don't need to start a transaction unless we're journaling data
2745 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2746 * need to file the inode to the transaction's list in ordered mode because if
2747 * we are writing back data added by write(), the inode is already there and if
2748 * we are writing back data modified via mmap(), noone guarantees in which
2749 * transaction the data will hit the disk. In case we are journaling data, we
2750 * cannot start transaction directly because transaction start ranks above page
2751 * lock so we have to do some magic.
2752 *
2753 * In all journaling modes block_write_full_page() will start the I/O.
2754 *
2755 * Problem:
2756 *
2757 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2758 * ext4_writepage()
2759 *
2760 * Similar for:
2761 *
2762 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2763 *
2764 * Same applies to ext4_get_block(). We will deadlock on various things like
2765 * lock_journal and i_data_sem
2766 *
2767 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2768 * allocations fail.
2769 *
2770 * 16May01: If we're reentered then journal_current_handle() will be
2771 * non-zero. We simply *return*.
2772 *
2773 * 1 July 2001: @@@ FIXME:
2774 * In journalled data mode, a data buffer may be metadata against the
2775 * current transaction. But the same file is part of a shared mapping
2776 * and someone does a writepage() on it.
2777 *
2778 * We will move the buffer onto the async_data list, but *after* it has
2779 * been dirtied. So there's a small window where we have dirty data on
2780 * BJ_Metadata.
2781 *
2782 * Note that this only applies to the last partial page in the file. The
2783 * bit which block_write_full_page() uses prepare/commit for. (That's
2784 * broken code anyway: it's wrong for msync()).
2785 *
2786 * It's a rare case: affects the final partial page, for journalled data
2787 * where the file is subject to bith write() and writepage() in the same
2788 * transction. To fix it we'll need a custom block_write_full_page().
2789 * We'll probably need that anyway for journalling writepage() output.
2790 *
2791 * We don't honour synchronous mounts for writepage(). That would be
2792 * disastrous. Any write() or metadata operation will sync the fs for
2793 * us.
2794 *
2795 */
2796 static int __ext4_normal_writepage(struct page *page,
2797 struct writeback_control *wbc)
2798 {
2799 struct inode *inode = page->mapping->host;
2800
2801 if (test_opt(inode->i_sb, NOBH))
2802 return nobh_writepage(page,
2803 ext4_normal_get_block_write, wbc);
2804 else
2805 return block_write_full_page(page,
2806 ext4_normal_get_block_write,
2807 wbc);
2808 }
2809
2810 static int ext4_normal_writepage(struct page *page,
2811 struct writeback_control *wbc)
2812 {
2813 struct inode *inode = page->mapping->host;
2814 loff_t size = i_size_read(inode);
2815 loff_t len;
2816
2817 J_ASSERT(PageLocked(page));
2818 if (page->index == size >> PAGE_CACHE_SHIFT)
2819 len = size & ~PAGE_CACHE_MASK;
2820 else
2821 len = PAGE_CACHE_SIZE;
2822
2823 if (page_has_buffers(page)) {
2824 /* if page has buffers it should all be mapped
2825 * and allocated. If there are not buffers attached
2826 * to the page we know the page is dirty but it lost
2827 * buffers. That means that at some moment in time
2828 * after write_begin() / write_end() has been called
2829 * all buffers have been clean and thus they must have been
2830 * written at least once. So they are all mapped and we can
2831 * happily proceed with mapping them and writing the page.
2832 */
2833 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2834 ext4_bh_unmapped_or_delay));
2835 }
2836
2837 if (!ext4_journal_current_handle())
2838 return __ext4_normal_writepage(page, wbc);
2839
2840 redirty_page_for_writepage(wbc, page);
2841 unlock_page(page);
2842 return 0;
2843 }
2844
2845 static int __ext4_journalled_writepage(struct page *page,
2846 struct writeback_control *wbc)
2847 {
2848 struct address_space *mapping = page->mapping;
2849 struct inode *inode = mapping->host;
2850 struct buffer_head *page_bufs;
2851 handle_t *handle = NULL;
2852 int ret = 0;
2853 int err;
2854
2855 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2856 ext4_normal_get_block_write);
2857 if (ret != 0)
2858 goto out_unlock;
2859
2860 page_bufs = page_buffers(page);
2861 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2862 bget_one);
2863 /* As soon as we unlock the page, it can go away, but we have
2864 * references to buffers so we are safe */
2865 unlock_page(page);
2866
2867 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2868 if (IS_ERR(handle)) {
2869 ret = PTR_ERR(handle);
2870 goto out;
2871 }
2872
2873 ret = walk_page_buffers(handle, page_bufs, 0,
2874 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2875
2876 err = walk_page_buffers(handle, page_bufs, 0,
2877 PAGE_CACHE_SIZE, NULL, write_end_fn);
2878 if (ret == 0)
2879 ret = err;
2880 err = ext4_journal_stop(handle);
2881 if (!ret)
2882 ret = err;
2883
2884 walk_page_buffers(handle, page_bufs, 0,
2885 PAGE_CACHE_SIZE, NULL, bput_one);
2886 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2887 goto out;
2888
2889 out_unlock:
2890 unlock_page(page);
2891 out:
2892 return ret;
2893 }
2894
2895 static int ext4_journalled_writepage(struct page *page,
2896 struct writeback_control *wbc)
2897 {
2898 struct inode *inode = page->mapping->host;
2899 loff_t size = i_size_read(inode);
2900 loff_t len;
2901
2902 J_ASSERT(PageLocked(page));
2903 if (page->index == size >> PAGE_CACHE_SHIFT)
2904 len = size & ~PAGE_CACHE_MASK;
2905 else
2906 len = PAGE_CACHE_SIZE;
2907
2908 if (page_has_buffers(page)) {
2909 /* if page has buffers it should all be mapped
2910 * and allocated. If there are not buffers attached
2911 * to the page we know the page is dirty but it lost
2912 * buffers. That means that at some moment in time
2913 * after write_begin() / write_end() has been called
2914 * all buffers have been clean and thus they must have been
2915 * written at least once. So they are all mapped and we can
2916 * happily proceed with mapping them and writing the page.
2917 */
2918 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2919 ext4_bh_unmapped_or_delay));
2920 }
2921
2922 if (ext4_journal_current_handle())
2923 goto no_write;
2924
2925 if (PageChecked(page)) {
2926 /*
2927 * It's mmapped pagecache. Add buffers and journal it. There
2928 * doesn't seem much point in redirtying the page here.
2929 */
2930 ClearPageChecked(page);
2931 return __ext4_journalled_writepage(page, wbc);
2932 } else {
2933 /*
2934 * It may be a page full of checkpoint-mode buffers. We don't
2935 * really know unless we go poke around in the buffer_heads.
2936 * But block_write_full_page will do the right thing.
2937 */
2938 return block_write_full_page(page,
2939 ext4_normal_get_block_write,
2940 wbc);
2941 }
2942 no_write:
2943 redirty_page_for_writepage(wbc, page);
2944 unlock_page(page);
2945 return 0;
2946 }
2947
2948 static int ext4_readpage(struct file *file, struct page *page)
2949 {
2950 return mpage_readpage(page, ext4_get_block);
2951 }
2952
2953 static int
2954 ext4_readpages(struct file *file, struct address_space *mapping,
2955 struct list_head *pages, unsigned nr_pages)
2956 {
2957 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2958 }
2959
2960 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2961 {
2962 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2963
2964 /*
2965 * If it's a full truncate we just forget about the pending dirtying
2966 */
2967 if (offset == 0)
2968 ClearPageChecked(page);
2969
2970 jbd2_journal_invalidatepage(journal, page, offset);
2971 }
2972
2973 static int ext4_releasepage(struct page *page, gfp_t wait)
2974 {
2975 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2976
2977 WARN_ON(PageChecked(page));
2978 if (!page_has_buffers(page))
2979 return 0;
2980 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2981 }
2982
2983 /*
2984 * If the O_DIRECT write will extend the file then add this inode to the
2985 * orphan list. So recovery will truncate it back to the original size
2986 * if the machine crashes during the write.
2987 *
2988 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2989 * crashes then stale disk data _may_ be exposed inside the file. But current
2990 * VFS code falls back into buffered path in that case so we are safe.
2991 */
2992 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2993 const struct iovec *iov, loff_t offset,
2994 unsigned long nr_segs)
2995 {
2996 struct file *file = iocb->ki_filp;
2997 struct inode *inode = file->f_mapping->host;
2998 struct ext4_inode_info *ei = EXT4_I(inode);
2999 handle_t *handle;
3000 ssize_t ret;
3001 int orphan = 0;
3002 size_t count = iov_length(iov, nr_segs);
3003
3004 if (rw == WRITE) {
3005 loff_t final_size = offset + count;
3006
3007 if (final_size > inode->i_size) {
3008 /* Credits for sb + inode write */
3009 handle = ext4_journal_start(inode, 2);
3010 if (IS_ERR(handle)) {
3011 ret = PTR_ERR(handle);
3012 goto out;
3013 }
3014 ret = ext4_orphan_add(handle, inode);
3015 if (ret) {
3016 ext4_journal_stop(handle);
3017 goto out;
3018 }
3019 orphan = 1;
3020 ei->i_disksize = inode->i_size;
3021 ext4_journal_stop(handle);
3022 }
3023 }
3024
3025 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3026 offset, nr_segs,
3027 ext4_get_block, NULL);
3028
3029 if (orphan) {
3030 int err;
3031
3032 /* Credits for sb + inode write */
3033 handle = ext4_journal_start(inode, 2);
3034 if (IS_ERR(handle)) {
3035 /* This is really bad luck. We've written the data
3036 * but cannot extend i_size. Bail out and pretend
3037 * the write failed... */
3038 ret = PTR_ERR(handle);
3039 goto out;
3040 }
3041 if (inode->i_nlink)
3042 ext4_orphan_del(handle, inode);
3043 if (ret > 0) {
3044 loff_t end = offset + ret;
3045 if (end > inode->i_size) {
3046 ei->i_disksize = end;
3047 i_size_write(inode, end);
3048 /*
3049 * We're going to return a positive `ret'
3050 * here due to non-zero-length I/O, so there's
3051 * no way of reporting error returns from
3052 * ext4_mark_inode_dirty() to userspace. So
3053 * ignore it.
3054 */
3055 ext4_mark_inode_dirty(handle, inode);
3056 }
3057 }
3058 err = ext4_journal_stop(handle);
3059 if (ret == 0)
3060 ret = err;
3061 }
3062 out:
3063 return ret;
3064 }
3065
3066 /*
3067 * Pages can be marked dirty completely asynchronously from ext4's journalling
3068 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3069 * much here because ->set_page_dirty is called under VFS locks. The page is
3070 * not necessarily locked.
3071 *
3072 * We cannot just dirty the page and leave attached buffers clean, because the
3073 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3074 * or jbddirty because all the journalling code will explode.
3075 *
3076 * So what we do is to mark the page "pending dirty" and next time writepage
3077 * is called, propagate that into the buffers appropriately.
3078 */
3079 static int ext4_journalled_set_page_dirty(struct page *page)
3080 {
3081 SetPageChecked(page);
3082 return __set_page_dirty_nobuffers(page);
3083 }
3084
3085 static const struct address_space_operations ext4_ordered_aops = {
3086 .readpage = ext4_readpage,
3087 .readpages = ext4_readpages,
3088 .writepage = ext4_normal_writepage,
3089 .sync_page = block_sync_page,
3090 .write_begin = ext4_write_begin,
3091 .write_end = ext4_ordered_write_end,
3092 .bmap = ext4_bmap,
3093 .invalidatepage = ext4_invalidatepage,
3094 .releasepage = ext4_releasepage,
3095 .direct_IO = ext4_direct_IO,
3096 .migratepage = buffer_migrate_page,
3097 .is_partially_uptodate = block_is_partially_uptodate,
3098 };
3099
3100 static const struct address_space_operations ext4_writeback_aops = {
3101 .readpage = ext4_readpage,
3102 .readpages = ext4_readpages,
3103 .writepage = ext4_normal_writepage,
3104 .sync_page = block_sync_page,
3105 .write_begin = ext4_write_begin,
3106 .write_end = ext4_writeback_write_end,
3107 .bmap = ext4_bmap,
3108 .invalidatepage = ext4_invalidatepage,
3109 .releasepage = ext4_releasepage,
3110 .direct_IO = ext4_direct_IO,
3111 .migratepage = buffer_migrate_page,
3112 .is_partially_uptodate = block_is_partially_uptodate,
3113 };
3114
3115 static const struct address_space_operations ext4_journalled_aops = {
3116 .readpage = ext4_readpage,
3117 .readpages = ext4_readpages,
3118 .writepage = ext4_journalled_writepage,
3119 .sync_page = block_sync_page,
3120 .write_begin = ext4_write_begin,
3121 .write_end = ext4_journalled_write_end,
3122 .set_page_dirty = ext4_journalled_set_page_dirty,
3123 .bmap = ext4_bmap,
3124 .invalidatepage = ext4_invalidatepage,
3125 .releasepage = ext4_releasepage,
3126 .is_partially_uptodate = block_is_partially_uptodate,
3127 };
3128
3129 static const struct address_space_operations ext4_da_aops = {
3130 .readpage = ext4_readpage,
3131 .readpages = ext4_readpages,
3132 .writepage = ext4_da_writepage,
3133 .writepages = ext4_da_writepages,
3134 .sync_page = block_sync_page,
3135 .write_begin = ext4_da_write_begin,
3136 .write_end = ext4_da_write_end,
3137 .bmap = ext4_bmap,
3138 .invalidatepage = ext4_da_invalidatepage,
3139 .releasepage = ext4_releasepage,
3140 .direct_IO = ext4_direct_IO,
3141 .migratepage = buffer_migrate_page,
3142 .is_partially_uptodate = block_is_partially_uptodate,
3143 };
3144
3145 void ext4_set_aops(struct inode *inode)
3146 {
3147 if (ext4_should_order_data(inode) &&
3148 test_opt(inode->i_sb, DELALLOC))
3149 inode->i_mapping->a_ops = &ext4_da_aops;
3150 else if (ext4_should_order_data(inode))
3151 inode->i_mapping->a_ops = &ext4_ordered_aops;
3152 else if (ext4_should_writeback_data(inode) &&
3153 test_opt(inode->i_sb, DELALLOC))
3154 inode->i_mapping->a_ops = &ext4_da_aops;
3155 else if (ext4_should_writeback_data(inode))
3156 inode->i_mapping->a_ops = &ext4_writeback_aops;
3157 else
3158 inode->i_mapping->a_ops = &ext4_journalled_aops;
3159 }
3160
3161 /*
3162 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3163 * up to the end of the block which corresponds to `from'.
3164 * This required during truncate. We need to physically zero the tail end
3165 * of that block so it doesn't yield old data if the file is later grown.
3166 */
3167 int ext4_block_truncate_page(handle_t *handle,
3168 struct address_space *mapping, loff_t from)
3169 {
3170 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3171 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3172 unsigned blocksize, length, pos;
3173 ext4_lblk_t iblock;
3174 struct inode *inode = mapping->host;
3175 struct buffer_head *bh;
3176 struct page *page;
3177 int err = 0;
3178
3179 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3180 if (!page)
3181 return -EINVAL;
3182
3183 blocksize = inode->i_sb->s_blocksize;
3184 length = blocksize - (offset & (blocksize - 1));
3185 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3186
3187 /*
3188 * For "nobh" option, we can only work if we don't need to
3189 * read-in the page - otherwise we create buffers to do the IO.
3190 */
3191 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3192 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3193 zero_user(page, offset, length);
3194 set_page_dirty(page);
3195 goto unlock;
3196 }
3197
3198 if (!page_has_buffers(page))
3199 create_empty_buffers(page, blocksize, 0);
3200
3201 /* Find the buffer that contains "offset" */
3202 bh = page_buffers(page);
3203 pos = blocksize;
3204 while (offset >= pos) {
3205 bh = bh->b_this_page;
3206 iblock++;
3207 pos += blocksize;
3208 }
3209
3210 err = 0;
3211 if (buffer_freed(bh)) {
3212 BUFFER_TRACE(bh, "freed: skip");
3213 goto unlock;
3214 }
3215
3216 if (!buffer_mapped(bh)) {
3217 BUFFER_TRACE(bh, "unmapped");
3218 ext4_get_block(inode, iblock, bh, 0);
3219 /* unmapped? It's a hole - nothing to do */
3220 if (!buffer_mapped(bh)) {
3221 BUFFER_TRACE(bh, "still unmapped");
3222 goto unlock;
3223 }
3224 }
3225
3226 /* Ok, it's mapped. Make sure it's up-to-date */
3227 if (PageUptodate(page))
3228 set_buffer_uptodate(bh);
3229
3230 if (!buffer_uptodate(bh)) {
3231 err = -EIO;
3232 ll_rw_block(READ, 1, &bh);
3233 wait_on_buffer(bh);
3234 /* Uhhuh. Read error. Complain and punt. */
3235 if (!buffer_uptodate(bh))
3236 goto unlock;
3237 }
3238
3239 if (ext4_should_journal_data(inode)) {
3240 BUFFER_TRACE(bh, "get write access");
3241 err = ext4_journal_get_write_access(handle, bh);
3242 if (err)
3243 goto unlock;
3244 }
3245
3246 zero_user(page, offset, length);
3247
3248 BUFFER_TRACE(bh, "zeroed end of block");
3249
3250 err = 0;
3251 if (ext4_should_journal_data(inode)) {
3252 err = ext4_journal_dirty_metadata(handle, bh);
3253 } else {
3254 if (ext4_should_order_data(inode))
3255 err = ext4_jbd2_file_inode(handle, inode);
3256 mark_buffer_dirty(bh);
3257 }
3258
3259 unlock:
3260 unlock_page(page);
3261 page_cache_release(page);
3262 return err;
3263 }
3264
3265 /*
3266 * Probably it should be a library function... search for first non-zero word
3267 * or memcmp with zero_page, whatever is better for particular architecture.
3268 * Linus?
3269 */
3270 static inline int all_zeroes(__le32 *p, __le32 *q)
3271 {
3272 while (p < q)
3273 if (*p++)
3274 return 0;
3275 return 1;
3276 }
3277
3278 /**
3279 * ext4_find_shared - find the indirect blocks for partial truncation.
3280 * @inode: inode in question
3281 * @depth: depth of the affected branch
3282 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3283 * @chain: place to store the pointers to partial indirect blocks
3284 * @top: place to the (detached) top of branch
3285 *
3286 * This is a helper function used by ext4_truncate().
3287 *
3288 * When we do truncate() we may have to clean the ends of several
3289 * indirect blocks but leave the blocks themselves alive. Block is
3290 * partially truncated if some data below the new i_size is refered
3291 * from it (and it is on the path to the first completely truncated
3292 * data block, indeed). We have to free the top of that path along
3293 * with everything to the right of the path. Since no allocation
3294 * past the truncation point is possible until ext4_truncate()
3295 * finishes, we may safely do the latter, but top of branch may
3296 * require special attention - pageout below the truncation point
3297 * might try to populate it.
3298 *
3299 * We atomically detach the top of branch from the tree, store the
3300 * block number of its root in *@top, pointers to buffer_heads of
3301 * partially truncated blocks - in @chain[].bh and pointers to
3302 * their last elements that should not be removed - in
3303 * @chain[].p. Return value is the pointer to last filled element
3304 * of @chain.
3305 *
3306 * The work left to caller to do the actual freeing of subtrees:
3307 * a) free the subtree starting from *@top
3308 * b) free the subtrees whose roots are stored in
3309 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3310 * c) free the subtrees growing from the inode past the @chain[0].
3311 * (no partially truncated stuff there). */
3312
3313 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3314 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3315 {
3316 Indirect *partial, *p;
3317 int k, err;
3318
3319 *top = 0;
3320 /* Make k index the deepest non-null offest + 1 */
3321 for (k = depth; k > 1 && !offsets[k-1]; k--)
3322 ;
3323 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3324 /* Writer: pointers */
3325 if (!partial)
3326 partial = chain + k-1;
3327 /*
3328 * If the branch acquired continuation since we've looked at it -
3329 * fine, it should all survive and (new) top doesn't belong to us.
3330 */
3331 if (!partial->key && *partial->p)
3332 /* Writer: end */
3333 goto no_top;
3334 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3335 ;
3336 /*
3337 * OK, we've found the last block that must survive. The rest of our
3338 * branch should be detached before unlocking. However, if that rest
3339 * of branch is all ours and does not grow immediately from the inode
3340 * it's easier to cheat and just decrement partial->p.
3341 */
3342 if (p == chain + k - 1 && p > chain) {
3343 p->p--;
3344 } else {
3345 *top = *p->p;
3346 /* Nope, don't do this in ext4. Must leave the tree intact */
3347 #if 0
3348 *p->p = 0;
3349 #endif
3350 }
3351 /* Writer: end */
3352
3353 while (partial > p) {
3354 brelse(partial->bh);
3355 partial--;
3356 }
3357 no_top:
3358 return partial;
3359 }
3360
3361 /*
3362 * Zero a number of block pointers in either an inode or an indirect block.
3363 * If we restart the transaction we must again get write access to the
3364 * indirect block for further modification.
3365 *
3366 * We release `count' blocks on disk, but (last - first) may be greater
3367 * than `count' because there can be holes in there.
3368 */
3369 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3370 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3371 unsigned long count, __le32 *first, __le32 *last)
3372 {
3373 __le32 *p;
3374 if (try_to_extend_transaction(handle, inode)) {
3375 if (bh) {
3376 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3377 ext4_journal_dirty_metadata(handle, bh);
3378 }
3379 ext4_mark_inode_dirty(handle, inode);
3380 ext4_journal_test_restart(handle, inode);
3381 if (bh) {
3382 BUFFER_TRACE(bh, "retaking write access");
3383 ext4_journal_get_write_access(handle, bh);
3384 }
3385 }
3386
3387 /*
3388 * Any buffers which are on the journal will be in memory. We find
3389 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3390 * on them. We've already detached each block from the file, so
3391 * bforget() in jbd2_journal_forget() should be safe.
3392 *
3393 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3394 */
3395 for (p = first; p < last; p++) {
3396 u32 nr = le32_to_cpu(*p);
3397 if (nr) {
3398 struct buffer_head *tbh;
3399
3400 *p = 0;
3401 tbh = sb_find_get_block(inode->i_sb, nr);
3402 ext4_forget(handle, 0, inode, tbh, nr);
3403 }
3404 }
3405
3406 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3407 }
3408
3409 /**
3410 * ext4_free_data - free a list of data blocks
3411 * @handle: handle for this transaction
3412 * @inode: inode we are dealing with
3413 * @this_bh: indirect buffer_head which contains *@first and *@last
3414 * @first: array of block numbers
3415 * @last: points immediately past the end of array
3416 *
3417 * We are freeing all blocks refered from that array (numbers are stored as
3418 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3419 *
3420 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3421 * blocks are contiguous then releasing them at one time will only affect one
3422 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3423 * actually use a lot of journal space.
3424 *
3425 * @this_bh will be %NULL if @first and @last point into the inode's direct
3426 * block pointers.
3427 */
3428 static void ext4_free_data(handle_t *handle, struct inode *inode,
3429 struct buffer_head *this_bh,
3430 __le32 *first, __le32 *last)
3431 {
3432 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3433 unsigned long count = 0; /* Number of blocks in the run */
3434 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3435 corresponding to
3436 block_to_free */
3437 ext4_fsblk_t nr; /* Current block # */
3438 __le32 *p; /* Pointer into inode/ind
3439 for current block */
3440 int err;
3441
3442 if (this_bh) { /* For indirect block */
3443 BUFFER_TRACE(this_bh, "get_write_access");
3444 err = ext4_journal_get_write_access(handle, this_bh);
3445 /* Important: if we can't update the indirect pointers
3446 * to the blocks, we can't free them. */
3447 if (err)
3448 return;
3449 }
3450
3451 for (p = first; p < last; p++) {
3452 nr = le32_to_cpu(*p);
3453 if (nr) {
3454 /* accumulate blocks to free if they're contiguous */
3455 if (count == 0) {
3456 block_to_free = nr;
3457 block_to_free_p = p;
3458 count = 1;
3459 } else if (nr == block_to_free + count) {
3460 count++;
3461 } else {
3462 ext4_clear_blocks(handle, inode, this_bh,
3463 block_to_free,
3464 count, block_to_free_p, p);
3465 block_to_free = nr;
3466 block_to_free_p = p;
3467 count = 1;
3468 }
3469 }
3470 }
3471
3472 if (count > 0)
3473 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3474 count, block_to_free_p, p);
3475
3476 if (this_bh) {
3477 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3478
3479 /*
3480 * The buffer head should have an attached journal head at this
3481 * point. However, if the data is corrupted and an indirect
3482 * block pointed to itself, it would have been detached when
3483 * the block was cleared. Check for this instead of OOPSing.
3484 */
3485 if (bh2jh(this_bh))
3486 ext4_journal_dirty_metadata(handle, this_bh);
3487 else
3488 ext4_error(inode->i_sb, __func__,
3489 "circular indirect block detected, "
3490 "inode=%lu, block=%llu",
3491 inode->i_ino,
3492 (unsigned long long) this_bh->b_blocknr);
3493 }
3494 }
3495
3496 /**
3497 * ext4_free_branches - free an array of branches
3498 * @handle: JBD handle for this transaction
3499 * @inode: inode we are dealing with
3500 * @parent_bh: the buffer_head which contains *@first and *@last
3501 * @first: array of block numbers
3502 * @last: pointer immediately past the end of array
3503 * @depth: depth of the branches to free
3504 *
3505 * We are freeing all blocks refered from these branches (numbers are
3506 * stored as little-endian 32-bit) and updating @inode->i_blocks
3507 * appropriately.
3508 */
3509 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3510 struct buffer_head *parent_bh,
3511 __le32 *first, __le32 *last, int depth)
3512 {
3513 ext4_fsblk_t nr;
3514 __le32 *p;
3515
3516 if (is_handle_aborted(handle))
3517 return;
3518
3519 if (depth--) {
3520 struct buffer_head *bh;
3521 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3522 p = last;
3523 while (--p >= first) {
3524 nr = le32_to_cpu(*p);
3525 if (!nr)
3526 continue; /* A hole */
3527
3528 /* Go read the buffer for the next level down */
3529 bh = sb_bread(inode->i_sb, nr);
3530
3531 /*
3532 * A read failure? Report error and clear slot
3533 * (should be rare).
3534 */
3535 if (!bh) {
3536 ext4_error(inode->i_sb, "ext4_free_branches",
3537 "Read failure, inode=%lu, block=%llu",
3538 inode->i_ino, nr);
3539 continue;
3540 }
3541
3542 /* This zaps the entire block. Bottom up. */
3543 BUFFER_TRACE(bh, "free child branches");
3544 ext4_free_branches(handle, inode, bh,
3545 (__le32 *) bh->b_data,
3546 (__le32 *) bh->b_data + addr_per_block,
3547 depth);
3548
3549 /*
3550 * We've probably journalled the indirect block several
3551 * times during the truncate. But it's no longer
3552 * needed and we now drop it from the transaction via
3553 * jbd2_journal_revoke().
3554 *
3555 * That's easy if it's exclusively part of this
3556 * transaction. But if it's part of the committing
3557 * transaction then jbd2_journal_forget() will simply
3558 * brelse() it. That means that if the underlying
3559 * block is reallocated in ext4_get_block(),
3560 * unmap_underlying_metadata() will find this block
3561 * and will try to get rid of it. damn, damn.
3562 *
3563 * If this block has already been committed to the
3564 * journal, a revoke record will be written. And
3565 * revoke records must be emitted *before* clearing
3566 * this block's bit in the bitmaps.
3567 */
3568 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3569
3570 /*
3571 * Everything below this this pointer has been
3572 * released. Now let this top-of-subtree go.
3573 *
3574 * We want the freeing of this indirect block to be
3575 * atomic in the journal with the updating of the
3576 * bitmap block which owns it. So make some room in
3577 * the journal.
3578 *
3579 * We zero the parent pointer *after* freeing its
3580 * pointee in the bitmaps, so if extend_transaction()
3581 * for some reason fails to put the bitmap changes and
3582 * the release into the same transaction, recovery
3583 * will merely complain about releasing a free block,
3584 * rather than leaking blocks.
3585 */
3586 if (is_handle_aborted(handle))
3587 return;
3588 if (try_to_extend_transaction(handle, inode)) {
3589 ext4_mark_inode_dirty(handle, inode);
3590 ext4_journal_test_restart(handle, inode);
3591 }
3592
3593 ext4_free_blocks(handle, inode, nr, 1, 1);
3594
3595 if (parent_bh) {
3596 /*
3597 * The block which we have just freed is
3598 * pointed to by an indirect block: journal it
3599 */
3600 BUFFER_TRACE(parent_bh, "get_write_access");
3601 if (!ext4_journal_get_write_access(handle,
3602 parent_bh)){
3603 *p = 0;
3604 BUFFER_TRACE(parent_bh,
3605 "call ext4_journal_dirty_metadata");
3606 ext4_journal_dirty_metadata(handle,
3607 parent_bh);
3608 }
3609 }
3610 }
3611 } else {
3612 /* We have reached the bottom of the tree. */
3613 BUFFER_TRACE(parent_bh, "free data blocks");
3614 ext4_free_data(handle, inode, parent_bh, first, last);
3615 }
3616 }
3617
3618 int ext4_can_truncate(struct inode *inode)
3619 {
3620 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3621 return 0;
3622 if (S_ISREG(inode->i_mode))
3623 return 1;
3624 if (S_ISDIR(inode->i_mode))
3625 return 1;
3626 if (S_ISLNK(inode->i_mode))
3627 return !ext4_inode_is_fast_symlink(inode);
3628 return 0;
3629 }
3630
3631 /*
3632 * ext4_truncate()
3633 *
3634 * We block out ext4_get_block() block instantiations across the entire
3635 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3636 * simultaneously on behalf of the same inode.
3637 *
3638 * As we work through the truncate and commmit bits of it to the journal there
3639 * is one core, guiding principle: the file's tree must always be consistent on
3640 * disk. We must be able to restart the truncate after a crash.
3641 *
3642 * The file's tree may be transiently inconsistent in memory (although it
3643 * probably isn't), but whenever we close off and commit a journal transaction,
3644 * the contents of (the filesystem + the journal) must be consistent and
3645 * restartable. It's pretty simple, really: bottom up, right to left (although
3646 * left-to-right works OK too).
3647 *
3648 * Note that at recovery time, journal replay occurs *before* the restart of
3649 * truncate against the orphan inode list.
3650 *
3651 * The committed inode has the new, desired i_size (which is the same as
3652 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3653 * that this inode's truncate did not complete and it will again call
3654 * ext4_truncate() to have another go. So there will be instantiated blocks
3655 * to the right of the truncation point in a crashed ext4 filesystem. But
3656 * that's fine - as long as they are linked from the inode, the post-crash
3657 * ext4_truncate() run will find them and release them.
3658 */
3659 void ext4_truncate(struct inode *inode)
3660 {
3661 handle_t *handle;
3662 struct ext4_inode_info *ei = EXT4_I(inode);
3663 __le32 *i_data = ei->i_data;
3664 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3665 struct address_space *mapping = inode->i_mapping;
3666 ext4_lblk_t offsets[4];
3667 Indirect chain[4];
3668 Indirect *partial;
3669 __le32 nr = 0;
3670 int n;
3671 ext4_lblk_t last_block;
3672 unsigned blocksize = inode->i_sb->s_blocksize;
3673
3674 if (!ext4_can_truncate(inode))
3675 return;
3676
3677 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3678 ext4_ext_truncate(inode);
3679 return;
3680 }
3681
3682 handle = start_transaction(inode);
3683 if (IS_ERR(handle))
3684 return; /* AKPM: return what? */
3685
3686 last_block = (inode->i_size + blocksize-1)
3687 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3688
3689 if (inode->i_size & (blocksize - 1))
3690 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3691 goto out_stop;
3692
3693 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3694 if (n == 0)
3695 goto out_stop; /* error */
3696
3697 /*
3698 * OK. This truncate is going to happen. We add the inode to the
3699 * orphan list, so that if this truncate spans multiple transactions,
3700 * and we crash, we will resume the truncate when the filesystem
3701 * recovers. It also marks the inode dirty, to catch the new size.
3702 *
3703 * Implication: the file must always be in a sane, consistent
3704 * truncatable state while each transaction commits.
3705 */
3706 if (ext4_orphan_add(handle, inode))
3707 goto out_stop;
3708
3709 /*
3710 * From here we block out all ext4_get_block() callers who want to
3711 * modify the block allocation tree.
3712 */
3713 down_write(&ei->i_data_sem);
3714
3715 ext4_discard_preallocations(inode);
3716
3717 /*
3718 * The orphan list entry will now protect us from any crash which
3719 * occurs before the truncate completes, so it is now safe to propagate
3720 * the new, shorter inode size (held for now in i_size) into the
3721 * on-disk inode. We do this via i_disksize, which is the value which
3722 * ext4 *really* writes onto the disk inode.
3723 */
3724 ei->i_disksize = inode->i_size;
3725
3726 if (n == 1) { /* direct blocks */
3727 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3728 i_data + EXT4_NDIR_BLOCKS);
3729 goto do_indirects;
3730 }
3731
3732 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3733 /* Kill the top of shared branch (not detached) */
3734 if (nr) {
3735 if (partial == chain) {
3736 /* Shared branch grows from the inode */
3737 ext4_free_branches(handle, inode, NULL,
3738 &nr, &nr+1, (chain+n-1) - partial);
3739 *partial->p = 0;
3740 /*
3741 * We mark the inode dirty prior to restart,
3742 * and prior to stop. No need for it here.
3743 */
3744 } else {
3745 /* Shared branch grows from an indirect block */
3746 BUFFER_TRACE(partial->bh, "get_write_access");
3747 ext4_free_branches(handle, inode, partial->bh,
3748 partial->p,
3749 partial->p+1, (chain+n-1) - partial);
3750 }
3751 }
3752 /* Clear the ends of indirect blocks on the shared branch */
3753 while (partial > chain) {
3754 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3755 (__le32*)partial->bh->b_data+addr_per_block,
3756 (chain+n-1) - partial);
3757 BUFFER_TRACE(partial->bh, "call brelse");
3758 brelse (partial->bh);
3759 partial--;
3760 }
3761 do_indirects:
3762 /* Kill the remaining (whole) subtrees */
3763 switch (offsets[0]) {
3764 default:
3765 nr = i_data[EXT4_IND_BLOCK];
3766 if (nr) {
3767 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3768 i_data[EXT4_IND_BLOCK] = 0;
3769 }
3770 case EXT4_IND_BLOCK:
3771 nr = i_data[EXT4_DIND_BLOCK];
3772 if (nr) {
3773 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3774 i_data[EXT4_DIND_BLOCK] = 0;
3775 }
3776 case EXT4_DIND_BLOCK:
3777 nr = i_data[EXT4_TIND_BLOCK];
3778 if (nr) {
3779 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3780 i_data[EXT4_TIND_BLOCK] = 0;
3781 }
3782 case EXT4_TIND_BLOCK:
3783 ;
3784 }
3785
3786 up_write(&ei->i_data_sem);
3787 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3788 ext4_mark_inode_dirty(handle, inode);
3789
3790 /*
3791 * In a multi-transaction truncate, we only make the final transaction
3792 * synchronous
3793 */
3794 if (IS_SYNC(inode))
3795 handle->h_sync = 1;
3796 out_stop:
3797 /*
3798 * If this was a simple ftruncate(), and the file will remain alive
3799 * then we need to clear up the orphan record which we created above.
3800 * However, if this was a real unlink then we were called by
3801 * ext4_delete_inode(), and we allow that function to clean up the
3802 * orphan info for us.
3803 */
3804 if (inode->i_nlink)
3805 ext4_orphan_del(handle, inode);
3806
3807 ext4_journal_stop(handle);
3808 }
3809
3810 /*
3811 * ext4_get_inode_loc returns with an extra refcount against the inode's
3812 * underlying buffer_head on success. If 'in_mem' is true, we have all
3813 * data in memory that is needed to recreate the on-disk version of this
3814 * inode.
3815 */
3816 static int __ext4_get_inode_loc(struct inode *inode,
3817 struct ext4_iloc *iloc, int in_mem)
3818 {
3819 struct ext4_group_desc *gdp;
3820 struct buffer_head *bh;
3821 struct super_block *sb = inode->i_sb;
3822 ext4_fsblk_t block;
3823 int inodes_per_block, inode_offset;
3824
3825 iloc->bh = 0;
3826 if (!ext4_valid_inum(sb, inode->i_ino))
3827 return -EIO;
3828
3829 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3830 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3831 if (!gdp)
3832 return -EIO;
3833
3834 /*
3835 * Figure out the offset within the block group inode table
3836 */
3837 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3838 inode_offset = ((inode->i_ino - 1) %
3839 EXT4_INODES_PER_GROUP(sb));
3840 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3841 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3842
3843 bh = sb_getblk(sb, block);
3844 if (!bh) {
3845 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3846 "inode block - inode=%lu, block=%llu",
3847 inode->i_ino, block);
3848 return -EIO;
3849 }
3850 if (!buffer_uptodate(bh)) {
3851 lock_buffer(bh);
3852
3853 /*
3854 * If the buffer has the write error flag, we have failed
3855 * to write out another inode in the same block. In this
3856 * case, we don't have to read the block because we may
3857 * read the old inode data successfully.
3858 */
3859 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3860 set_buffer_uptodate(bh);
3861
3862 if (buffer_uptodate(bh)) {
3863 /* someone brought it uptodate while we waited */
3864 unlock_buffer(bh);
3865 goto has_buffer;
3866 }
3867
3868 /*
3869 * If we have all information of the inode in memory and this
3870 * is the only valid inode in the block, we need not read the
3871 * block.
3872 */
3873 if (in_mem) {
3874 struct buffer_head *bitmap_bh;
3875 int i, start;
3876
3877 start = inode_offset & ~(inodes_per_block - 1);
3878
3879 /* Is the inode bitmap in cache? */
3880 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3881 if (!bitmap_bh)
3882 goto make_io;
3883
3884 /*
3885 * If the inode bitmap isn't in cache then the
3886 * optimisation may end up performing two reads instead
3887 * of one, so skip it.
3888 */
3889 if (!buffer_uptodate(bitmap_bh)) {
3890 brelse(bitmap_bh);
3891 goto make_io;
3892 }
3893 for (i = start; i < start + inodes_per_block; i++) {
3894 if (i == inode_offset)
3895 continue;
3896 if (ext4_test_bit(i, bitmap_bh->b_data))
3897 break;
3898 }
3899 brelse(bitmap_bh);
3900 if (i == start + inodes_per_block) {
3901 /* all other inodes are free, so skip I/O */
3902 memset(bh->b_data, 0, bh->b_size);
3903 set_buffer_uptodate(bh);
3904 unlock_buffer(bh);
3905 goto has_buffer;
3906 }
3907 }
3908
3909 make_io:
3910 /*
3911 * If we need to do any I/O, try to pre-readahead extra
3912 * blocks from the inode table.
3913 */
3914 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3915 ext4_fsblk_t b, end, table;
3916 unsigned num;
3917
3918 table = ext4_inode_table(sb, gdp);
3919 /* Make sure s_inode_readahead_blks is a power of 2 */
3920 while (EXT4_SB(sb)->s_inode_readahead_blks &
3921 (EXT4_SB(sb)->s_inode_readahead_blks-1))
3922 EXT4_SB(sb)->s_inode_readahead_blks =
3923 (EXT4_SB(sb)->s_inode_readahead_blks &
3924 (EXT4_SB(sb)->s_inode_readahead_blks-1));
3925 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3926 if (table > b)
3927 b = table;
3928 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3929 num = EXT4_INODES_PER_GROUP(sb);
3930 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3931 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3932 num -= le16_to_cpu(gdp->bg_itable_unused);
3933 table += num / inodes_per_block;
3934 if (end > table)
3935 end = table;
3936 while (b <= end)
3937 sb_breadahead(sb, b++);
3938 }
3939
3940 /*
3941 * There are other valid inodes in the buffer, this inode
3942 * has in-inode xattrs, or we don't have this inode in memory.
3943 * Read the block from disk.
3944 */
3945 get_bh(bh);
3946 bh->b_end_io = end_buffer_read_sync;
3947 submit_bh(READ_META, bh);
3948 wait_on_buffer(bh);
3949 if (!buffer_uptodate(bh)) {
3950 ext4_error(sb, __func__,
3951 "unable to read inode block - inode=%lu, "
3952 "block=%llu", inode->i_ino, block);
3953 brelse(bh);
3954 return -EIO;
3955 }
3956 }
3957 has_buffer:
3958 iloc->bh = bh;
3959 return 0;
3960 }
3961
3962 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3963 {
3964 /* We have all inode data except xattrs in memory here. */
3965 return __ext4_get_inode_loc(inode, iloc,
3966 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3967 }
3968
3969 void ext4_set_inode_flags(struct inode *inode)
3970 {
3971 unsigned int flags = EXT4_I(inode)->i_flags;
3972
3973 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3974 if (flags & EXT4_SYNC_FL)
3975 inode->i_flags |= S_SYNC;
3976 if (flags & EXT4_APPEND_FL)
3977 inode->i_flags |= S_APPEND;
3978 if (flags & EXT4_IMMUTABLE_FL)
3979 inode->i_flags |= S_IMMUTABLE;
3980 if (flags & EXT4_NOATIME_FL)
3981 inode->i_flags |= S_NOATIME;
3982 if (flags & EXT4_DIRSYNC_FL)
3983 inode->i_flags |= S_DIRSYNC;
3984 }
3985
3986 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3987 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3988 {
3989 unsigned int flags = ei->vfs_inode.i_flags;
3990
3991 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3992 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3993 if (flags & S_SYNC)
3994 ei->i_flags |= EXT4_SYNC_FL;
3995 if (flags & S_APPEND)
3996 ei->i_flags |= EXT4_APPEND_FL;
3997 if (flags & S_IMMUTABLE)
3998 ei->i_flags |= EXT4_IMMUTABLE_FL;
3999 if (flags & S_NOATIME)
4000 ei->i_flags |= EXT4_NOATIME_FL;
4001 if (flags & S_DIRSYNC)
4002 ei->i_flags |= EXT4_DIRSYNC_FL;
4003 }
4004 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4005 struct ext4_inode_info *ei)
4006 {
4007 blkcnt_t i_blocks ;
4008 struct inode *inode = &(ei->vfs_inode);
4009 struct super_block *sb = inode->i_sb;
4010
4011 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4012 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4013 /* we are using combined 48 bit field */
4014 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4015 le32_to_cpu(raw_inode->i_blocks_lo);
4016 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4017 /* i_blocks represent file system block size */
4018 return i_blocks << (inode->i_blkbits - 9);
4019 } else {
4020 return i_blocks;
4021 }
4022 } else {
4023 return le32_to_cpu(raw_inode->i_blocks_lo);
4024 }
4025 }
4026
4027 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4028 {
4029 struct ext4_iloc iloc;
4030 struct ext4_inode *raw_inode;
4031 struct ext4_inode_info *ei;
4032 struct buffer_head *bh;
4033 struct inode *inode;
4034 long ret;
4035 int block;
4036
4037 inode = iget_locked(sb, ino);
4038 if (!inode)
4039 return ERR_PTR(-ENOMEM);
4040 if (!(inode->i_state & I_NEW))
4041 return inode;
4042
4043 ei = EXT4_I(inode);
4044 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4045 ei->i_acl = EXT4_ACL_NOT_CACHED;
4046 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4047 #endif
4048
4049 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4050 if (ret < 0)
4051 goto bad_inode;
4052 bh = iloc.bh;
4053 raw_inode = ext4_raw_inode(&iloc);
4054 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4055 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4056 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4057 if (!(test_opt(inode->i_sb, NO_UID32))) {
4058 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4059 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4060 }
4061 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4062
4063 ei->i_state = 0;
4064 ei->i_dir_start_lookup = 0;
4065 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4066 /* We now have enough fields to check if the inode was active or not.
4067 * This is needed because nfsd might try to access dead inodes
4068 * the test is that same one that e2fsck uses
4069 * NeilBrown 1999oct15
4070 */
4071 if (inode->i_nlink == 0) {
4072 if (inode->i_mode == 0 ||
4073 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4074 /* this inode is deleted */
4075 brelse(bh);
4076 ret = -ESTALE;
4077 goto bad_inode;
4078 }
4079 /* The only unlinked inodes we let through here have
4080 * valid i_mode and are being read by the orphan
4081 * recovery code: that's fine, we're about to complete
4082 * the process of deleting those. */
4083 }
4084 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4085 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4086 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4087 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4088 cpu_to_le32(EXT4_OS_HURD)) {
4089 ei->i_file_acl |=
4090 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4091 }
4092 inode->i_size = ext4_isize(raw_inode);
4093 ei->i_disksize = inode->i_size;
4094 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4095 ei->i_block_group = iloc.block_group;
4096 /*
4097 * NOTE! The in-memory inode i_data array is in little-endian order
4098 * even on big-endian machines: we do NOT byteswap the block numbers!
4099 */
4100 for (block = 0; block < EXT4_N_BLOCKS; block++)
4101 ei->i_data[block] = raw_inode->i_block[block];
4102 INIT_LIST_HEAD(&ei->i_orphan);
4103
4104 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4105 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4106 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4107 EXT4_INODE_SIZE(inode->i_sb)) {
4108 brelse(bh);
4109 ret = -EIO;
4110 goto bad_inode;
4111 }
4112 if (ei->i_extra_isize == 0) {
4113 /* The extra space is currently unused. Use it. */
4114 ei->i_extra_isize = sizeof(struct ext4_inode) -
4115 EXT4_GOOD_OLD_INODE_SIZE;
4116 } else {
4117 __le32 *magic = (void *)raw_inode +
4118 EXT4_GOOD_OLD_INODE_SIZE +
4119 ei->i_extra_isize;
4120 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4121 ei->i_state |= EXT4_STATE_XATTR;
4122 }
4123 } else
4124 ei->i_extra_isize = 0;
4125
4126 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4127 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4128 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4129 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4130
4131 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4132 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4133 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4134 inode->i_version |=
4135 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4136 }
4137
4138 if (S_ISREG(inode->i_mode)) {
4139 inode->i_op = &ext4_file_inode_operations;
4140 inode->i_fop = &ext4_file_operations;
4141 ext4_set_aops(inode);
4142 } else if (S_ISDIR(inode->i_mode)) {
4143 inode->i_op = &ext4_dir_inode_operations;
4144 inode->i_fop = &ext4_dir_operations;
4145 } else if (S_ISLNK(inode->i_mode)) {
4146 if (ext4_inode_is_fast_symlink(inode))
4147 inode->i_op = &ext4_fast_symlink_inode_operations;
4148 else {
4149 inode->i_op = &ext4_symlink_inode_operations;
4150 ext4_set_aops(inode);
4151 }
4152 } else {
4153 inode->i_op = &ext4_special_inode_operations;
4154 if (raw_inode->i_block[0])
4155 init_special_inode(inode, inode->i_mode,
4156 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4157 else
4158 init_special_inode(inode, inode->i_mode,
4159 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4160 }
4161 brelse(iloc.bh);
4162 ext4_set_inode_flags(inode);
4163 unlock_new_inode(inode);
4164 return inode;
4165
4166 bad_inode:
4167 iget_failed(inode);
4168 return ERR_PTR(ret);
4169 }
4170
4171 static int ext4_inode_blocks_set(handle_t *handle,
4172 struct ext4_inode *raw_inode,
4173 struct ext4_inode_info *ei)
4174 {
4175 struct inode *inode = &(ei->vfs_inode);
4176 u64 i_blocks = inode->i_blocks;
4177 struct super_block *sb = inode->i_sb;
4178 int err = 0;
4179
4180 if (i_blocks <= ~0U) {
4181 /*
4182 * i_blocks can be represnted in a 32 bit variable
4183 * as multiple of 512 bytes
4184 */
4185 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4186 raw_inode->i_blocks_high = 0;
4187 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4188 } else if (i_blocks <= 0xffffffffffffULL) {
4189 /*
4190 * i_blocks can be represented in a 48 bit variable
4191 * as multiple of 512 bytes
4192 */
4193 err = ext4_update_rocompat_feature(handle, sb,
4194 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4195 if (err)
4196 goto err_out;
4197 /* i_block is stored in the split 48 bit fields */
4198 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4199 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4200 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4201 } else {
4202 /*
4203 * i_blocks should be represented in a 48 bit variable
4204 * as multiple of file system block size
4205 */
4206 err = ext4_update_rocompat_feature(handle, sb,
4207 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4208 if (err)
4209 goto err_out;
4210 ei->i_flags |= EXT4_HUGE_FILE_FL;
4211 /* i_block is stored in file system block size */
4212 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4213 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4214 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4215 }
4216 err_out:
4217 return err;
4218 }
4219
4220 /*
4221 * Post the struct inode info into an on-disk inode location in the
4222 * buffer-cache. This gobbles the caller's reference to the
4223 * buffer_head in the inode location struct.
4224 *
4225 * The caller must have write access to iloc->bh.
4226 */
4227 static int ext4_do_update_inode(handle_t *handle,
4228 struct inode *inode,
4229 struct ext4_iloc *iloc)
4230 {
4231 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4232 struct ext4_inode_info *ei = EXT4_I(inode);
4233 struct buffer_head *bh = iloc->bh;
4234 int err = 0, rc, block;
4235
4236 /* For fields not not tracking in the in-memory inode,
4237 * initialise them to zero for new inodes. */
4238 if (ei->i_state & EXT4_STATE_NEW)
4239 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4240
4241 ext4_get_inode_flags(ei);
4242 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4243 if (!(test_opt(inode->i_sb, NO_UID32))) {
4244 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4245 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4246 /*
4247 * Fix up interoperability with old kernels. Otherwise, old inodes get
4248 * re-used with the upper 16 bits of the uid/gid intact
4249 */
4250 if (!ei->i_dtime) {
4251 raw_inode->i_uid_high =
4252 cpu_to_le16(high_16_bits(inode->i_uid));
4253 raw_inode->i_gid_high =
4254 cpu_to_le16(high_16_bits(inode->i_gid));
4255 } else {
4256 raw_inode->i_uid_high = 0;
4257 raw_inode->i_gid_high = 0;
4258 }
4259 } else {
4260 raw_inode->i_uid_low =
4261 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4262 raw_inode->i_gid_low =
4263 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4264 raw_inode->i_uid_high = 0;
4265 raw_inode->i_gid_high = 0;
4266 }
4267 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4268
4269 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4270 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4271 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4272 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4273
4274 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4275 goto out_brelse;
4276 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4277 /* clear the migrate flag in the raw_inode */
4278 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4279 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4280 cpu_to_le32(EXT4_OS_HURD))
4281 raw_inode->i_file_acl_high =
4282 cpu_to_le16(ei->i_file_acl >> 32);
4283 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4284 ext4_isize_set(raw_inode, ei->i_disksize);
4285 if (ei->i_disksize > 0x7fffffffULL) {
4286 struct super_block *sb = inode->i_sb;
4287 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4288 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4289 EXT4_SB(sb)->s_es->s_rev_level ==
4290 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4291 /* If this is the first large file
4292 * created, add a flag to the superblock.
4293 */
4294 err = ext4_journal_get_write_access(handle,
4295 EXT4_SB(sb)->s_sbh);
4296 if (err)
4297 goto out_brelse;
4298 ext4_update_dynamic_rev(sb);
4299 EXT4_SET_RO_COMPAT_FEATURE(sb,
4300 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4301 sb->s_dirt = 1;
4302 handle->h_sync = 1;
4303 err = ext4_journal_dirty_metadata(handle,
4304 EXT4_SB(sb)->s_sbh);
4305 }
4306 }
4307 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4308 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4309 if (old_valid_dev(inode->i_rdev)) {
4310 raw_inode->i_block[0] =
4311 cpu_to_le32(old_encode_dev(inode->i_rdev));
4312 raw_inode->i_block[1] = 0;
4313 } else {
4314 raw_inode->i_block[0] = 0;
4315 raw_inode->i_block[1] =
4316 cpu_to_le32(new_encode_dev(inode->i_rdev));
4317 raw_inode->i_block[2] = 0;
4318 }
4319 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4320 raw_inode->i_block[block] = ei->i_data[block];
4321
4322 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4323 if (ei->i_extra_isize) {
4324 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4325 raw_inode->i_version_hi =
4326 cpu_to_le32(inode->i_version >> 32);
4327 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4328 }
4329
4330
4331 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4332 rc = ext4_journal_dirty_metadata(handle, bh);
4333 if (!err)
4334 err = rc;
4335 ei->i_state &= ~EXT4_STATE_NEW;
4336
4337 out_brelse:
4338 brelse(bh);
4339 ext4_std_error(inode->i_sb, err);
4340 return err;
4341 }
4342
4343 /*
4344 * ext4_write_inode()
4345 *
4346 * We are called from a few places:
4347 *
4348 * - Within generic_file_write() for O_SYNC files.
4349 * Here, there will be no transaction running. We wait for any running
4350 * trasnaction to commit.
4351 *
4352 * - Within sys_sync(), kupdate and such.
4353 * We wait on commit, if tol to.
4354 *
4355 * - Within prune_icache() (PF_MEMALLOC == true)
4356 * Here we simply return. We can't afford to block kswapd on the
4357 * journal commit.
4358 *
4359 * In all cases it is actually safe for us to return without doing anything,
4360 * because the inode has been copied into a raw inode buffer in
4361 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4362 * knfsd.
4363 *
4364 * Note that we are absolutely dependent upon all inode dirtiers doing the
4365 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4366 * which we are interested.
4367 *
4368 * It would be a bug for them to not do this. The code:
4369 *
4370 * mark_inode_dirty(inode)
4371 * stuff();
4372 * inode->i_size = expr;
4373 *
4374 * is in error because a kswapd-driven write_inode() could occur while
4375 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4376 * will no longer be on the superblock's dirty inode list.
4377 */
4378 int ext4_write_inode(struct inode *inode, int wait)
4379 {
4380 if (current->flags & PF_MEMALLOC)
4381 return 0;
4382
4383 if (ext4_journal_current_handle()) {
4384 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4385 dump_stack();
4386 return -EIO;
4387 }
4388
4389 if (!wait)
4390 return 0;
4391
4392 return ext4_force_commit(inode->i_sb);
4393 }
4394
4395 /*
4396 * ext4_setattr()
4397 *
4398 * Called from notify_change.
4399 *
4400 * We want to trap VFS attempts to truncate the file as soon as
4401 * possible. In particular, we want to make sure that when the VFS
4402 * shrinks i_size, we put the inode on the orphan list and modify
4403 * i_disksize immediately, so that during the subsequent flushing of
4404 * dirty pages and freeing of disk blocks, we can guarantee that any
4405 * commit will leave the blocks being flushed in an unused state on
4406 * disk. (On recovery, the inode will get truncated and the blocks will
4407 * be freed, so we have a strong guarantee that no future commit will
4408 * leave these blocks visible to the user.)
4409 *
4410 * Another thing we have to assure is that if we are in ordered mode
4411 * and inode is still attached to the committing transaction, we must
4412 * we start writeout of all the dirty pages which are being truncated.
4413 * This way we are sure that all the data written in the previous
4414 * transaction are already on disk (truncate waits for pages under
4415 * writeback).
4416 *
4417 * Called with inode->i_mutex down.
4418 */
4419 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4420 {
4421 struct inode *inode = dentry->d_inode;
4422 int error, rc = 0;
4423 const unsigned int ia_valid = attr->ia_valid;
4424
4425 error = inode_change_ok(inode, attr);
4426 if (error)
4427 return error;
4428
4429 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4430 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4431 handle_t *handle;
4432
4433 /* (user+group)*(old+new) structure, inode write (sb,
4434 * inode block, ? - but truncate inode update has it) */
4435 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4436 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4437 if (IS_ERR(handle)) {
4438 error = PTR_ERR(handle);
4439 goto err_out;
4440 }
4441 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4442 if (error) {
4443 ext4_journal_stop(handle);
4444 return error;
4445 }
4446 /* Update corresponding info in inode so that everything is in
4447 * one transaction */
4448 if (attr->ia_valid & ATTR_UID)
4449 inode->i_uid = attr->ia_uid;
4450 if (attr->ia_valid & ATTR_GID)
4451 inode->i_gid = attr->ia_gid;
4452 error = ext4_mark_inode_dirty(handle, inode);
4453 ext4_journal_stop(handle);
4454 }
4455
4456 if (attr->ia_valid & ATTR_SIZE) {
4457 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4458 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4459
4460 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4461 error = -EFBIG;
4462 goto err_out;
4463 }
4464 }
4465 }
4466
4467 if (S_ISREG(inode->i_mode) &&
4468 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4469 handle_t *handle;
4470
4471 handle = ext4_journal_start(inode, 3);
4472 if (IS_ERR(handle)) {
4473 error = PTR_ERR(handle);
4474 goto err_out;
4475 }
4476
4477 error = ext4_orphan_add(handle, inode);
4478 EXT4_I(inode)->i_disksize = attr->ia_size;
4479 rc = ext4_mark_inode_dirty(handle, inode);
4480 if (!error)
4481 error = rc;
4482 ext4_journal_stop(handle);
4483
4484 if (ext4_should_order_data(inode)) {
4485 error = ext4_begin_ordered_truncate(inode,
4486 attr->ia_size);
4487 if (error) {
4488 /* Do as much error cleanup as possible */
4489 handle = ext4_journal_start(inode, 3);
4490 if (IS_ERR(handle)) {
4491 ext4_orphan_del(NULL, inode);
4492 goto err_out;
4493 }
4494 ext4_orphan_del(handle, inode);
4495 ext4_journal_stop(handle);
4496 goto err_out;
4497 }
4498 }
4499 }
4500
4501 rc = inode_setattr(inode, attr);
4502
4503 /* If inode_setattr's call to ext4_truncate failed to get a
4504 * transaction handle at all, we need to clean up the in-core
4505 * orphan list manually. */
4506 if (inode->i_nlink)
4507 ext4_orphan_del(NULL, inode);
4508
4509 if (!rc && (ia_valid & ATTR_MODE))
4510 rc = ext4_acl_chmod(inode);
4511
4512 err_out:
4513 ext4_std_error(inode->i_sb, error);
4514 if (!error)
4515 error = rc;
4516 return error;
4517 }
4518
4519 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4520 struct kstat *stat)
4521 {
4522 struct inode *inode;
4523 unsigned long delalloc_blocks;
4524
4525 inode = dentry->d_inode;
4526 generic_fillattr(inode, stat);
4527
4528 /*
4529 * We can't update i_blocks if the block allocation is delayed
4530 * otherwise in the case of system crash before the real block
4531 * allocation is done, we will have i_blocks inconsistent with
4532 * on-disk file blocks.
4533 * We always keep i_blocks updated together with real
4534 * allocation. But to not confuse with user, stat
4535 * will return the blocks that include the delayed allocation
4536 * blocks for this file.
4537 */
4538 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4539 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4540 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4541
4542 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4543 return 0;
4544 }
4545
4546 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4547 int chunk)
4548 {
4549 int indirects;
4550
4551 /* if nrblocks are contiguous */
4552 if (chunk) {
4553 /*
4554 * With N contiguous data blocks, it need at most
4555 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4556 * 2 dindirect blocks
4557 * 1 tindirect block
4558 */
4559 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4560 return indirects + 3;
4561 }
4562 /*
4563 * if nrblocks are not contiguous, worse case, each block touch
4564 * a indirect block, and each indirect block touch a double indirect
4565 * block, plus a triple indirect block
4566 */
4567 indirects = nrblocks * 2 + 1;
4568 return indirects;
4569 }
4570
4571 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4572 {
4573 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4574 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4575 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4576 }
4577 /*
4578 * Account for index blocks, block groups bitmaps and block group
4579 * descriptor blocks if modify datablocks and index blocks
4580 * worse case, the indexs blocks spread over different block groups
4581 *
4582 * If datablocks are discontiguous, they are possible to spread over
4583 * different block groups too. If they are contiugous, with flexbg,
4584 * they could still across block group boundary.
4585 *
4586 * Also account for superblock, inode, quota and xattr blocks
4587 */
4588 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4589 {
4590 int groups, gdpblocks;
4591 int idxblocks;
4592 int ret = 0;
4593
4594 /*
4595 * How many index blocks need to touch to modify nrblocks?
4596 * The "Chunk" flag indicating whether the nrblocks is
4597 * physically contiguous on disk
4598 *
4599 * For Direct IO and fallocate, they calls get_block to allocate
4600 * one single extent at a time, so they could set the "Chunk" flag
4601 */
4602 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4603
4604 ret = idxblocks;
4605
4606 /*
4607 * Now let's see how many group bitmaps and group descriptors need
4608 * to account
4609 */
4610 groups = idxblocks;
4611 if (chunk)
4612 groups += 1;
4613 else
4614 groups += nrblocks;
4615
4616 gdpblocks = groups;
4617 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4618 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4619 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4620 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4621
4622 /* bitmaps and block group descriptor blocks */
4623 ret += groups + gdpblocks;
4624
4625 /* Blocks for super block, inode, quota and xattr blocks */
4626 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4627
4628 return ret;
4629 }
4630
4631 /*
4632 * Calulate the total number of credits to reserve to fit
4633 * the modification of a single pages into a single transaction,
4634 * which may include multiple chunks of block allocations.
4635 *
4636 * This could be called via ext4_write_begin()
4637 *
4638 * We need to consider the worse case, when
4639 * one new block per extent.
4640 */
4641 int ext4_writepage_trans_blocks(struct inode *inode)
4642 {
4643 int bpp = ext4_journal_blocks_per_page(inode);
4644 int ret;
4645
4646 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4647
4648 /* Account for data blocks for journalled mode */
4649 if (ext4_should_journal_data(inode))
4650 ret += bpp;
4651 return ret;
4652 }
4653
4654 /*
4655 * Calculate the journal credits for a chunk of data modification.
4656 *
4657 * This is called from DIO, fallocate or whoever calling
4658 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4659 *
4660 * journal buffers for data blocks are not included here, as DIO
4661 * and fallocate do no need to journal data buffers.
4662 */
4663 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4664 {
4665 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4666 }
4667
4668 /*
4669 * The caller must have previously called ext4_reserve_inode_write().
4670 * Give this, we know that the caller already has write access to iloc->bh.
4671 */
4672 int ext4_mark_iloc_dirty(handle_t *handle,
4673 struct inode *inode, struct ext4_iloc *iloc)
4674 {
4675 int err = 0;
4676
4677 if (test_opt(inode->i_sb, I_VERSION))
4678 inode_inc_iversion(inode);
4679
4680 /* the do_update_inode consumes one bh->b_count */
4681 get_bh(iloc->bh);
4682
4683 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4684 err = ext4_do_update_inode(handle, inode, iloc);
4685 put_bh(iloc->bh);
4686 return err;
4687 }
4688
4689 /*
4690 * On success, We end up with an outstanding reference count against
4691 * iloc->bh. This _must_ be cleaned up later.
4692 */
4693
4694 int
4695 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4696 struct ext4_iloc *iloc)
4697 {
4698 int err = 0;
4699 if (handle) {
4700 err = ext4_get_inode_loc(inode, iloc);
4701 if (!err) {
4702 BUFFER_TRACE(iloc->bh, "get_write_access");
4703 err = ext4_journal_get_write_access(handle, iloc->bh);
4704 if (err) {
4705 brelse(iloc->bh);
4706 iloc->bh = NULL;
4707 }
4708 }
4709 }
4710 ext4_std_error(inode->i_sb, err);
4711 return err;
4712 }
4713
4714 /*
4715 * Expand an inode by new_extra_isize bytes.
4716 * Returns 0 on success or negative error number on failure.
4717 */
4718 static int ext4_expand_extra_isize(struct inode *inode,
4719 unsigned int new_extra_isize,
4720 struct ext4_iloc iloc,
4721 handle_t *handle)
4722 {
4723 struct ext4_inode *raw_inode;
4724 struct ext4_xattr_ibody_header *header;
4725 struct ext4_xattr_entry *entry;
4726
4727 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4728 return 0;
4729
4730 raw_inode = ext4_raw_inode(&iloc);
4731
4732 header = IHDR(inode, raw_inode);
4733 entry = IFIRST(header);
4734
4735 /* No extended attributes present */
4736 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4737 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4738 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4739 new_extra_isize);
4740 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4741 return 0;
4742 }
4743
4744 /* try to expand with EAs present */
4745 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4746 raw_inode, handle);
4747 }
4748
4749 /*
4750 * What we do here is to mark the in-core inode as clean with respect to inode
4751 * dirtiness (it may still be data-dirty).
4752 * This means that the in-core inode may be reaped by prune_icache
4753 * without having to perform any I/O. This is a very good thing,
4754 * because *any* task may call prune_icache - even ones which
4755 * have a transaction open against a different journal.
4756 *
4757 * Is this cheating? Not really. Sure, we haven't written the
4758 * inode out, but prune_icache isn't a user-visible syncing function.
4759 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4760 * we start and wait on commits.
4761 *
4762 * Is this efficient/effective? Well, we're being nice to the system
4763 * by cleaning up our inodes proactively so they can be reaped
4764 * without I/O. But we are potentially leaving up to five seconds'
4765 * worth of inodes floating about which prune_icache wants us to
4766 * write out. One way to fix that would be to get prune_icache()
4767 * to do a write_super() to free up some memory. It has the desired
4768 * effect.
4769 */
4770 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4771 {
4772 struct ext4_iloc iloc;
4773 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4774 static unsigned int mnt_count;
4775 int err, ret;
4776
4777 might_sleep();
4778 err = ext4_reserve_inode_write(handle, inode, &iloc);
4779 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4780 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4781 /*
4782 * We need extra buffer credits since we may write into EA block
4783 * with this same handle. If journal_extend fails, then it will
4784 * only result in a minor loss of functionality for that inode.
4785 * If this is felt to be critical, then e2fsck should be run to
4786 * force a large enough s_min_extra_isize.
4787 */
4788 if ((jbd2_journal_extend(handle,
4789 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4790 ret = ext4_expand_extra_isize(inode,
4791 sbi->s_want_extra_isize,
4792 iloc, handle);
4793 if (ret) {
4794 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4795 if (mnt_count !=
4796 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4797 ext4_warning(inode->i_sb, __func__,
4798 "Unable to expand inode %lu. Delete"
4799 " some EAs or run e2fsck.",
4800 inode->i_ino);
4801 mnt_count =
4802 le16_to_cpu(sbi->s_es->s_mnt_count);
4803 }
4804 }
4805 }
4806 }
4807 if (!err)
4808 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4809 return err;
4810 }
4811
4812 /*
4813 * ext4_dirty_inode() is called from __mark_inode_dirty()
4814 *
4815 * We're really interested in the case where a file is being extended.
4816 * i_size has been changed by generic_commit_write() and we thus need
4817 * to include the updated inode in the current transaction.
4818 *
4819 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4820 * are allocated to the file.
4821 *
4822 * If the inode is marked synchronous, we don't honour that here - doing
4823 * so would cause a commit on atime updates, which we don't bother doing.
4824 * We handle synchronous inodes at the highest possible level.
4825 */
4826 void ext4_dirty_inode(struct inode *inode)
4827 {
4828 handle_t *current_handle = ext4_journal_current_handle();
4829 handle_t *handle;
4830
4831 handle = ext4_journal_start(inode, 2);
4832 if (IS_ERR(handle))
4833 goto out;
4834 if (current_handle &&
4835 current_handle->h_transaction != handle->h_transaction) {
4836 /* This task has a transaction open against a different fs */
4837 printk(KERN_EMERG "%s: transactions do not match!\n",
4838 __func__);
4839 } else {
4840 jbd_debug(5, "marking dirty. outer handle=%p\n",
4841 current_handle);
4842 ext4_mark_inode_dirty(handle, inode);
4843 }
4844 ext4_journal_stop(handle);
4845 out:
4846 return;
4847 }
4848
4849 #if 0
4850 /*
4851 * Bind an inode's backing buffer_head into this transaction, to prevent
4852 * it from being flushed to disk early. Unlike
4853 * ext4_reserve_inode_write, this leaves behind no bh reference and
4854 * returns no iloc structure, so the caller needs to repeat the iloc
4855 * lookup to mark the inode dirty later.
4856 */
4857 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4858 {
4859 struct ext4_iloc iloc;
4860
4861 int err = 0;
4862 if (handle) {
4863 err = ext4_get_inode_loc(inode, &iloc);
4864 if (!err) {
4865 BUFFER_TRACE(iloc.bh, "get_write_access");
4866 err = jbd2_journal_get_write_access(handle, iloc.bh);
4867 if (!err)
4868 err = ext4_journal_dirty_metadata(handle,
4869 iloc.bh);
4870 brelse(iloc.bh);
4871 }
4872 }
4873 ext4_std_error(inode->i_sb, err);
4874 return err;
4875 }
4876 #endif
4877
4878 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4879 {
4880 journal_t *journal;
4881 handle_t *handle;
4882 int err;
4883
4884 /*
4885 * We have to be very careful here: changing a data block's
4886 * journaling status dynamically is dangerous. If we write a
4887 * data block to the journal, change the status and then delete
4888 * that block, we risk forgetting to revoke the old log record
4889 * from the journal and so a subsequent replay can corrupt data.
4890 * So, first we make sure that the journal is empty and that
4891 * nobody is changing anything.
4892 */
4893
4894 journal = EXT4_JOURNAL(inode);
4895 if (is_journal_aborted(journal))
4896 return -EROFS;
4897
4898 jbd2_journal_lock_updates(journal);
4899 jbd2_journal_flush(journal);
4900
4901 /*
4902 * OK, there are no updates running now, and all cached data is
4903 * synced to disk. We are now in a completely consistent state
4904 * which doesn't have anything in the journal, and we know that
4905 * no filesystem updates are running, so it is safe to modify
4906 * the inode's in-core data-journaling state flag now.
4907 */
4908
4909 if (val)
4910 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4911 else
4912 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4913 ext4_set_aops(inode);
4914
4915 jbd2_journal_unlock_updates(journal);
4916
4917 /* Finally we can mark the inode as dirty. */
4918
4919 handle = ext4_journal_start(inode, 1);
4920 if (IS_ERR(handle))
4921 return PTR_ERR(handle);
4922
4923 err = ext4_mark_inode_dirty(handle, inode);
4924 handle->h_sync = 1;
4925 ext4_journal_stop(handle);
4926 ext4_std_error(inode->i_sb, err);
4927
4928 return err;
4929 }
4930
4931 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4932 {
4933 return !buffer_mapped(bh);
4934 }
4935
4936 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4937 {
4938 loff_t size;
4939 unsigned long len;
4940 int ret = -EINVAL;
4941 void *fsdata;
4942 struct file *file = vma->vm_file;
4943 struct inode *inode = file->f_path.dentry->d_inode;
4944 struct address_space *mapping = inode->i_mapping;
4945
4946 /*
4947 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4948 * get i_mutex because we are already holding mmap_sem.
4949 */
4950 down_read(&inode->i_alloc_sem);
4951 size = i_size_read(inode);
4952 if (page->mapping != mapping || size <= page_offset(page)
4953 || !PageUptodate(page)) {
4954 /* page got truncated from under us? */
4955 goto out_unlock;
4956 }
4957 ret = 0;
4958 if (PageMappedToDisk(page))
4959 goto out_unlock;
4960
4961 if (page->index == size >> PAGE_CACHE_SHIFT)
4962 len = size & ~PAGE_CACHE_MASK;
4963 else
4964 len = PAGE_CACHE_SIZE;
4965
4966 if (page_has_buffers(page)) {
4967 /* return if we have all the buffers mapped */
4968 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4969 ext4_bh_unmapped))
4970 goto out_unlock;
4971 }
4972 /*
4973 * OK, we need to fill the hole... Do write_begin write_end
4974 * to do block allocation/reservation.We are not holding
4975 * inode.i__mutex here. That allow * parallel write_begin,
4976 * write_end call. lock_page prevent this from happening
4977 * on the same page though
4978 */
4979 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4980 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4981 if (ret < 0)
4982 goto out_unlock;
4983 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4984 len, len, page, fsdata);
4985 if (ret < 0)
4986 goto out_unlock;
4987 ret = 0;
4988 out_unlock:
4989 up_read(&inode->i_alloc_sem);
4990 return ret;
4991 }