]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
ext4: Clean up ext4_get_blocks() so it does not depend on bh_result->b_state
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49 {
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59 * Test whether an inode is a fast symlink.
60 */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70 * The ext4 forget function must perform a revoke if we are freeing data
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
79 */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 int err;
84
85 if (!ext4_handle_valid(handle))
86 return 0;
87
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
104 if (bh) {
105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 return ext4_journal_forget(handle, bh);
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
116 if (err)
117 ext4_abort(inode->i_sb, __func__,
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121 }
122
123 /*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 ext4_lblk_t needed;
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
136 * like a regular file for ext4 to try to delete it. Things
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
146
147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 handle_t *result;
163
164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 if (!IS_ERR(result))
166 return result;
167
168 ext4_std_error(inode->i_sb, PTR_ERR(result));
169 return result;
170 }
171
172 /*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 return 0;
184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 return 0;
186 return 1;
187 }
188
189 /*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 jbd_debug(2, "restarting handle %p\n", handle);
198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202 * Called at the last iput() if i_nlink is zero.
203 */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 handle_t *handle;
207 int err;
208
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 if (IS_ERR(handle)) {
218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
224 ext4_orphan_del(NULL, inode);
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
229 ext4_handle_sync(handle);
230 inode->i_size = 0;
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
237 if (inode->i_blocks)
238 ext4_truncate(inode);
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
246 if (!ext4_handle_has_enough_credits(handle, 3)) {
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
259 /*
260 * Kill off the orphan record which ext4_truncate created.
261 * AKPM: I think this can be inside the above `if'.
262 * Note that ext4_orphan_del() has to be able to cope with the
263 * deletion of a non-existent orphan - this is because we don't
264 * know if ext4_truncate() actually created an orphan record.
265 * (Well, we could do this if we need to, but heck - it works)
266 */
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
277 if (ext4_mark_inode_dirty(handle, inode))
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
283 return;
284 no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 p->key = *(p->p = v);
297 p->bh = bh;
298 }
299
300 /**
301 * ext4_block_to_path - parse the block number into array of offsets
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
307 *
308 * To store the locations of file's data ext4 uses a data structure common
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321 /*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
331 static int ext4_block_to_path(struct inode *inode,
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
334 {
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
349 offsets[n++] = EXT4_IND_BLOCK;
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
353 offsets[n++] = EXT4_DIND_BLOCK;
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 offsets[n++] = EXT4_TIND_BLOCK;
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
364 ext4_warning(inode->i_sb, "ext4_block_to_path",
365 "block %lu > max in inode %lu",
366 i_block + direct_blocks +
367 indirect_blocks + double_blocks, inode->i_ino);
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 __le32 *p, unsigned int max) {
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378 __le32 *bref = p;
379 while (bref < p+max) {
380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
384 le32_to_cpu(*bref), maxblocks,
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
402 /**
403 * ext4_get_branch - read the chain of indirect blocks leading to data
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
428 *
429 * Need to be called with
430 * down_read(&EXT4_I(inode)->i_data_sem)
431 */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
434 Indirect chain[4], int *err)
435 {
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
448 goto failure;
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
469 failure:
470 *err = -EIO;
471 no_block:
472 return p;
473 }
474
475 /**
476 * ext4_find_near - find a place for allocation with sufficient locality
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
480 * This function returns the preferred place for block allocation.
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497 struct ext4_inode_info *ei = EXT4_I(inode);
498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499 __le32 *p;
500 ext4_fsblk_t bg_start;
501 ext4_fsblk_t last_block;
502 ext4_grpblk_t colour;
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 return bg_start + colour;
542 }
543
544 /**
545 * ext4_find_goal - find a preferred place for allocation.
546 * @inode: owner
547 * @block: block we want
548 * @partial: pointer to the last triple within a chain
549 *
550 * Normally this function find the preferred place for block allocation,
551 * returns it.
552 */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554 Indirect *partial)
555 {
556 /*
557 * XXX need to get goal block from mballoc's data structures
558 */
559
560 return ext4_find_near(inode, partial);
561 }
562
563 /**
564 * ext4_blks_to_allocate: Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
577 {
578 unsigned int count = 0;
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599 }
600
601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
615 {
616 struct ext4_allocation_request ar;
617 int target, i;
618 unsigned long count = 0, blk_allocated = 0;
619 int index = 0;
620 ext4_fsblk_t current_block = 0;
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
656 break;
657 }
658 }
659
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
691 blk_allocated += ar.len;
692 }
693 allocated:
694 /* total number of blocks allocated for direct blocks */
695 ret = blk_allocated;
696 *err = 0;
697 return ret;
698 failed_out:
699 for (i = 0; i < index; i++)
700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 return ret;
702 }
703
704 /**
705 * ext4_alloc_branch - allocate and set up a chain of blocks.
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
716 * the same format as ext4_get_branch() would do. We are calling it after
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
719 * picture as after the successful ext4_get_block(), except that in one
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 * as described above and return 0.
728 */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
733 {
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
741
742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
772 if (n == indirect_blks) {
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793 failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797 ext4_journal_forget(handle, branch[i].bh);
798 }
799 for (i = 0; i < indirect_blks; i++)
800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804 return err;
805 }
806
807 /**
808 * ext4_splice_branch - splice the allocated branch onto inode.
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
812 * ext4_alloc_branch)
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822 ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824 int i;
825 int err = 0;
826 ext4_fsblk_t current_block;
827
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
835 err = ext4_journal_get_write_access(handle, where->bh);
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
850 *(where->p + i) = cpu_to_le32(current_block++);
851 }
852
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
855 inode->i_ctime = ext4_current_time(inode);
856 ext4_mark_inode_dirty(handle, inode);
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 */
868 jbd_debug(5, "splicing indirect only\n");
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882 err_out:
883 for (i = 1; i <= num; i++) {
884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885 ext4_journal_forget(handle, where[i].bh);
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
888 }
889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891 return err;
892 }
893
894 /*
895 * The ext4_ind_get_blocks() function handles non-extents inodes
896 * (i.e., using the traditional indirect/double-indirect i_blocks
897 * scheme) for ext4_get_blocks().
898 *
899 * Allocation strategy is simple: if we have to allocate something, we will
900 * have to go the whole way to leaf. So let's do it before attaching anything
901 * to tree, set linkage between the newborn blocks, write them if sync is
902 * required, recheck the path, free and repeat if check fails, otherwise
903 * set the last missing link (that will protect us from any truncate-generated
904 * removals - all blocks on the path are immune now) and possibly force the
905 * write on the parent block.
906 * That has a nice additional property: no special recovery from the failed
907 * allocations is needed - we simply release blocks and do not touch anything
908 * reachable from inode.
909 *
910 * `handle' can be NULL if create == 0.
911 *
912 * return > 0, # of blocks mapped or allocated.
913 * return = 0, if plain lookup failed.
914 * return < 0, error case.
915 *
916 * The ext4_ind_get_blocks() function should be called with
917 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920 * blocks.
921 */
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923 ext4_lblk_t iblock, unsigned int maxblocks,
924 struct buffer_head *bh_result,
925 int flags)
926 {
927 int err = -EIO;
928 ext4_lblk_t offsets[4];
929 Indirect chain[4];
930 Indirect *partial;
931 ext4_fsblk_t goal;
932 int indirect_blks;
933 int blocks_to_boundary = 0;
934 int depth;
935 struct ext4_inode_info *ei = EXT4_I(inode);
936 int count = 0;
937 ext4_fsblk_t first_block = 0;
938 loff_t disksize;
939
940
941 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
942 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
943 depth = ext4_block_to_path(inode, iblock, offsets,
944 &blocks_to_boundary);
945
946 if (depth == 0)
947 goto out;
948
949 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
950
951 /* Simplest case - block found, no allocation needed */
952 if (!partial) {
953 first_block = le32_to_cpu(chain[depth - 1].key);
954 clear_buffer_new(bh_result);
955 count++;
956 /*map more blocks*/
957 while (count < maxblocks && count <= blocks_to_boundary) {
958 ext4_fsblk_t blk;
959
960 blk = le32_to_cpu(*(chain[depth-1].p + count));
961
962 if (blk == first_block + count)
963 count++;
964 else
965 break;
966 }
967 goto got_it;
968 }
969
970 /* Next simple case - plain lookup or failed read of indirect block */
971 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
972 goto cleanup;
973
974 /*
975 * Okay, we need to do block allocation.
976 */
977 goal = ext4_find_goal(inode, iblock, partial);
978
979 /* the number of blocks need to allocate for [d,t]indirect blocks */
980 indirect_blks = (chain + depth) - partial - 1;
981
982 /*
983 * Next look up the indirect map to count the totoal number of
984 * direct blocks to allocate for this branch.
985 */
986 count = ext4_blks_to_allocate(partial, indirect_blks,
987 maxblocks, blocks_to_boundary);
988 /*
989 * Block out ext4_truncate while we alter the tree
990 */
991 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992 &count, goal,
993 offsets + (partial - chain), partial);
994
995 /*
996 * The ext4_splice_branch call will free and forget any buffers
997 * on the new chain if there is a failure, but that risks using
998 * up transaction credits, especially for bitmaps where the
999 * credits cannot be returned. Can we handle this somehow? We
1000 * may need to return -EAGAIN upwards in the worst case. --sct
1001 */
1002 if (!err)
1003 err = ext4_splice_branch(handle, inode, iblock,
1004 partial, indirect_blks, count);
1005 /*
1006 * i_disksize growing is protected by i_data_sem. Don't forget to
1007 * protect it if you're about to implement concurrent
1008 * ext4_get_block() -bzzz
1009 */
1010 if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1011 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012 if (disksize > i_size_read(inode))
1013 disksize = i_size_read(inode);
1014 if (disksize > ei->i_disksize)
1015 ei->i_disksize = disksize;
1016 }
1017 if (err)
1018 goto cleanup;
1019
1020 set_buffer_new(bh_result);
1021 got_it:
1022 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023 if (count > blocks_to_boundary)
1024 set_buffer_boundary(bh_result);
1025 err = count;
1026 /* Clean up and exit */
1027 partial = chain + depth - 1; /* the whole chain */
1028 cleanup:
1029 while (partial > chain) {
1030 BUFFER_TRACE(partial->bh, "call brelse");
1031 brelse(partial->bh);
1032 partial--;
1033 }
1034 BUFFER_TRACE(bh_result, "returned");
1035 out:
1036 return err;
1037 }
1038
1039 qsize_t ext4_get_reserved_space(struct inode *inode)
1040 {
1041 unsigned long long total;
1042
1043 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044 total = EXT4_I(inode)->i_reserved_data_blocks +
1045 EXT4_I(inode)->i_reserved_meta_blocks;
1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047
1048 return total;
1049 }
1050 /*
1051 * Calculate the number of metadata blocks need to reserve
1052 * to allocate @blocks for non extent file based file
1053 */
1054 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055 {
1056 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057 int ind_blks, dind_blks, tind_blks;
1058
1059 /* number of new indirect blocks needed */
1060 ind_blks = (blocks + icap - 1) / icap;
1061
1062 dind_blks = (ind_blks + icap - 1) / icap;
1063
1064 tind_blks = 1;
1065
1066 return ind_blks + dind_blks + tind_blks;
1067 }
1068
1069 /*
1070 * Calculate the number of metadata blocks need to reserve
1071 * to allocate given number of blocks
1072 */
1073 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074 {
1075 if (!blocks)
1076 return 0;
1077
1078 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079 return ext4_ext_calc_metadata_amount(inode, blocks);
1080
1081 return ext4_indirect_calc_metadata_amount(inode, blocks);
1082 }
1083
1084 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085 {
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 int total, mdb, mdb_free;
1088
1089 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090 /* recalculate the number of metablocks still need to be reserved */
1091 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092 mdb = ext4_calc_metadata_amount(inode, total);
1093
1094 /* figure out how many metablocks to release */
1095 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097
1098 if (mdb_free) {
1099 /* Account for allocated meta_blocks */
1100 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101
1102 /* update fs dirty blocks counter */
1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106 }
1107
1108 /* update per-inode reservations */
1109 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1110 EXT4_I(inode)->i_reserved_data_blocks -= used;
1111 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112
1113 /*
1114 * free those over-booking quota for metadata blocks
1115 */
1116 if (mdb_free)
1117 vfs_dq_release_reservation_block(inode, mdb_free);
1118
1119 /*
1120 * If we have done all the pending block allocations and if
1121 * there aren't any writers on the inode, we can discard the
1122 * inode's preallocations.
1123 */
1124 if (!total && (atomic_read(&inode->i_writecount) == 0))
1125 ext4_discard_preallocations(inode);
1126 }
1127
1128 /*
1129 * The ext4_get_blocks() function tries to look up the requested blocks,
1130 * and returns if the blocks are already mapped.
1131 *
1132 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133 * and store the allocated blocks in the result buffer head and mark it
1134 * mapped.
1135 *
1136 * If file type is extents based, it will call ext4_ext_get_blocks(),
1137 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138 * based files
1139 *
1140 * On success, it returns the number of blocks being mapped or allocate.
1141 * if create==0 and the blocks are pre-allocated and uninitialized block,
1142 * the result buffer head is unmapped. If the create ==1, it will make sure
1143 * the buffer head is mapped.
1144 *
1145 * It returns 0 if plain look up failed (blocks have not been allocated), in
1146 * that casem, buffer head is unmapped
1147 *
1148 * It returns the error in case of allocation failure.
1149 */
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151 unsigned int max_blocks, struct buffer_head *bh,
1152 int flags)
1153 {
1154 int retval;
1155
1156 clear_buffer_mapped(bh);
1157 clear_buffer_unwritten(bh);
1158
1159 /*
1160 * Try to see if we can get the block without requesting a new
1161 * file system block.
1162 */
1163 down_read((&EXT4_I(inode)->i_data_sem));
1164 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166 bh, 0);
1167 } else {
1168 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169 bh, 0);
1170 }
1171 up_read((&EXT4_I(inode)->i_data_sem));
1172
1173 /* If it is only a block(s) look up */
1174 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1175 return retval;
1176
1177 /*
1178 * Returns if the blocks have already allocated
1179 *
1180 * Note that if blocks have been preallocated
1181 * ext4_ext_get_block() returns th create = 0
1182 * with buffer head unmapped.
1183 */
1184 if (retval > 0 && buffer_mapped(bh))
1185 return retval;
1186
1187 /*
1188 * When we call get_blocks without the create flag, the
1189 * BH_Unwritten flag could have gotten set if the blocks
1190 * requested were part of a uninitialized extent. We need to
1191 * clear this flag now that we are committed to convert all or
1192 * part of the uninitialized extent to be an initialized
1193 * extent. This is because we need to avoid the combination
1194 * of BH_Unwritten and BH_Mapped flags being simultaneously
1195 * set on the buffer_head.
1196 */
1197 clear_buffer_unwritten(bh);
1198
1199 /*
1200 * New blocks allocate and/or writing to uninitialized extent
1201 * will possibly result in updating i_data, so we take
1202 * the write lock of i_data_sem, and call get_blocks()
1203 * with create == 1 flag.
1204 */
1205 down_write((&EXT4_I(inode)->i_data_sem));
1206
1207 /*
1208 * if the caller is from delayed allocation writeout path
1209 * we have already reserved fs blocks for allocation
1210 * let the underlying get_block() function know to
1211 * avoid double accounting
1212 */
1213 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1214 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1215 /*
1216 * We need to check for EXT4 here because migrate
1217 * could have changed the inode type in between
1218 */
1219 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1221 bh, flags);
1222 } else {
1223 retval = ext4_ind_get_blocks(handle, inode, block,
1224 max_blocks, bh, flags);
1225
1226 if (retval > 0 && buffer_new(bh)) {
1227 /*
1228 * We allocated new blocks which will result in
1229 * i_data's format changing. Force the migrate
1230 * to fail by clearing migrate flags
1231 */
1232 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233 ~EXT4_EXT_MIGRATE;
1234 }
1235 }
1236
1237 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1238 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239
1240 /*
1241 * Update reserved blocks/metadata blocks after successful
1242 * block allocation which had been deferred till now.
1243 */
1244 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1245 ext4_da_update_reserve_space(inode, retval);
1246
1247 up_write((&EXT4_I(inode)->i_data_sem));
1248 return retval;
1249 }
1250
1251 /* Maximum number of blocks we map for direct IO at once. */
1252 #define DIO_MAX_BLOCKS 4096
1253
1254 int ext4_get_block(struct inode *inode, sector_t iblock,
1255 struct buffer_head *bh_result, int create)
1256 {
1257 handle_t *handle = ext4_journal_current_handle();
1258 int ret = 0, started = 0;
1259 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1260 int dio_credits;
1261
1262 if (create && !handle) {
1263 /* Direct IO write... */
1264 if (max_blocks > DIO_MAX_BLOCKS)
1265 max_blocks = DIO_MAX_BLOCKS;
1266 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1267 handle = ext4_journal_start(inode, dio_credits);
1268 if (IS_ERR(handle)) {
1269 ret = PTR_ERR(handle);
1270 goto out;
1271 }
1272 started = 1;
1273 }
1274
1275 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1276 create ? EXT4_GET_BLOCKS_CREATE : 0);
1277 if (ret > 0) {
1278 bh_result->b_size = (ret << inode->i_blkbits);
1279 ret = 0;
1280 }
1281 if (started)
1282 ext4_journal_stop(handle);
1283 out:
1284 return ret;
1285 }
1286
1287 /*
1288 * `handle' can be NULL if create is zero
1289 */
1290 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1291 ext4_lblk_t block, int create, int *errp)
1292 {
1293 struct buffer_head dummy;
1294 int fatal = 0, err;
1295 int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1296
1297 J_ASSERT(handle != NULL || create == 0);
1298
1299 dummy.b_state = 0;
1300 dummy.b_blocknr = -1000;
1301 buffer_trace_init(&dummy.b_history);
1302 if (create)
1303 flags |= EXT4_GET_BLOCKS_CREATE;
1304 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1305 /*
1306 * ext4_get_blocks() returns number of blocks mapped. 0 in
1307 * case of a HOLE.
1308 */
1309 if (err > 0) {
1310 if (err > 1)
1311 WARN_ON(1);
1312 err = 0;
1313 }
1314 *errp = err;
1315 if (!err && buffer_mapped(&dummy)) {
1316 struct buffer_head *bh;
1317 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1318 if (!bh) {
1319 *errp = -EIO;
1320 goto err;
1321 }
1322 if (buffer_new(&dummy)) {
1323 J_ASSERT(create != 0);
1324 J_ASSERT(handle != NULL);
1325
1326 /*
1327 * Now that we do not always journal data, we should
1328 * keep in mind whether this should always journal the
1329 * new buffer as metadata. For now, regular file
1330 * writes use ext4_get_block instead, so it's not a
1331 * problem.
1332 */
1333 lock_buffer(bh);
1334 BUFFER_TRACE(bh, "call get_create_access");
1335 fatal = ext4_journal_get_create_access(handle, bh);
1336 if (!fatal && !buffer_uptodate(bh)) {
1337 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1338 set_buffer_uptodate(bh);
1339 }
1340 unlock_buffer(bh);
1341 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1342 err = ext4_handle_dirty_metadata(handle, inode, bh);
1343 if (!fatal)
1344 fatal = err;
1345 } else {
1346 BUFFER_TRACE(bh, "not a new buffer");
1347 }
1348 if (fatal) {
1349 *errp = fatal;
1350 brelse(bh);
1351 bh = NULL;
1352 }
1353 return bh;
1354 }
1355 err:
1356 return NULL;
1357 }
1358
1359 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1360 ext4_lblk_t block, int create, int *err)
1361 {
1362 struct buffer_head *bh;
1363
1364 bh = ext4_getblk(handle, inode, block, create, err);
1365 if (!bh)
1366 return bh;
1367 if (buffer_uptodate(bh))
1368 return bh;
1369 ll_rw_block(READ_META, 1, &bh);
1370 wait_on_buffer(bh);
1371 if (buffer_uptodate(bh))
1372 return bh;
1373 put_bh(bh);
1374 *err = -EIO;
1375 return NULL;
1376 }
1377
1378 static int walk_page_buffers(handle_t *handle,
1379 struct buffer_head *head,
1380 unsigned from,
1381 unsigned to,
1382 int *partial,
1383 int (*fn)(handle_t *handle,
1384 struct buffer_head *bh))
1385 {
1386 struct buffer_head *bh;
1387 unsigned block_start, block_end;
1388 unsigned blocksize = head->b_size;
1389 int err, ret = 0;
1390 struct buffer_head *next;
1391
1392 for (bh = head, block_start = 0;
1393 ret == 0 && (bh != head || !block_start);
1394 block_start = block_end, bh = next)
1395 {
1396 next = bh->b_this_page;
1397 block_end = block_start + blocksize;
1398 if (block_end <= from || block_start >= to) {
1399 if (partial && !buffer_uptodate(bh))
1400 *partial = 1;
1401 continue;
1402 }
1403 err = (*fn)(handle, bh);
1404 if (!ret)
1405 ret = err;
1406 }
1407 return ret;
1408 }
1409
1410 /*
1411 * To preserve ordering, it is essential that the hole instantiation and
1412 * the data write be encapsulated in a single transaction. We cannot
1413 * close off a transaction and start a new one between the ext4_get_block()
1414 * and the commit_write(). So doing the jbd2_journal_start at the start of
1415 * prepare_write() is the right place.
1416 *
1417 * Also, this function can nest inside ext4_writepage() ->
1418 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1419 * has generated enough buffer credits to do the whole page. So we won't
1420 * block on the journal in that case, which is good, because the caller may
1421 * be PF_MEMALLOC.
1422 *
1423 * By accident, ext4 can be reentered when a transaction is open via
1424 * quota file writes. If we were to commit the transaction while thus
1425 * reentered, there can be a deadlock - we would be holding a quota
1426 * lock, and the commit would never complete if another thread had a
1427 * transaction open and was blocking on the quota lock - a ranking
1428 * violation.
1429 *
1430 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1431 * will _not_ run commit under these circumstances because handle->h_ref
1432 * is elevated. We'll still have enough credits for the tiny quotafile
1433 * write.
1434 */
1435 static int do_journal_get_write_access(handle_t *handle,
1436 struct buffer_head *bh)
1437 {
1438 if (!buffer_mapped(bh) || buffer_freed(bh))
1439 return 0;
1440 return ext4_journal_get_write_access(handle, bh);
1441 }
1442
1443 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1444 loff_t pos, unsigned len, unsigned flags,
1445 struct page **pagep, void **fsdata)
1446 {
1447 struct inode *inode = mapping->host;
1448 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1449 handle_t *handle;
1450 int retries = 0;
1451 struct page *page;
1452 pgoff_t index;
1453 unsigned from, to;
1454
1455 trace_mark(ext4_write_begin,
1456 "dev %s ino %lu pos %llu len %u flags %u",
1457 inode->i_sb->s_id, inode->i_ino,
1458 (unsigned long long) pos, len, flags);
1459 index = pos >> PAGE_CACHE_SHIFT;
1460 from = pos & (PAGE_CACHE_SIZE - 1);
1461 to = from + len;
1462
1463 retry:
1464 handle = ext4_journal_start(inode, needed_blocks);
1465 if (IS_ERR(handle)) {
1466 ret = PTR_ERR(handle);
1467 goto out;
1468 }
1469
1470 /* We cannot recurse into the filesystem as the transaction is already
1471 * started */
1472 flags |= AOP_FLAG_NOFS;
1473
1474 page = grab_cache_page_write_begin(mapping, index, flags);
1475 if (!page) {
1476 ext4_journal_stop(handle);
1477 ret = -ENOMEM;
1478 goto out;
1479 }
1480 *pagep = page;
1481
1482 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1483 ext4_get_block);
1484
1485 if (!ret && ext4_should_journal_data(inode)) {
1486 ret = walk_page_buffers(handle, page_buffers(page),
1487 from, to, NULL, do_journal_get_write_access);
1488 }
1489
1490 if (ret) {
1491 unlock_page(page);
1492 ext4_journal_stop(handle);
1493 page_cache_release(page);
1494 /*
1495 * block_write_begin may have instantiated a few blocks
1496 * outside i_size. Trim these off again. Don't need
1497 * i_size_read because we hold i_mutex.
1498 */
1499 if (pos + len > inode->i_size)
1500 vmtruncate(inode, inode->i_size);
1501 }
1502
1503 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1504 goto retry;
1505 out:
1506 return ret;
1507 }
1508
1509 /* For write_end() in data=journal mode */
1510 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1511 {
1512 if (!buffer_mapped(bh) || buffer_freed(bh))
1513 return 0;
1514 set_buffer_uptodate(bh);
1515 return ext4_handle_dirty_metadata(handle, NULL, bh);
1516 }
1517
1518 /*
1519 * We need to pick up the new inode size which generic_commit_write gave us
1520 * `file' can be NULL - eg, when called from page_symlink().
1521 *
1522 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1523 * buffers are managed internally.
1524 */
1525 static int ext4_ordered_write_end(struct file *file,
1526 struct address_space *mapping,
1527 loff_t pos, unsigned len, unsigned copied,
1528 struct page *page, void *fsdata)
1529 {
1530 handle_t *handle = ext4_journal_current_handle();
1531 struct inode *inode = mapping->host;
1532 int ret = 0, ret2;
1533
1534 trace_mark(ext4_ordered_write_end,
1535 "dev %s ino %lu pos %llu len %u copied %u",
1536 inode->i_sb->s_id, inode->i_ino,
1537 (unsigned long long) pos, len, copied);
1538 ret = ext4_jbd2_file_inode(handle, inode);
1539
1540 if (ret == 0) {
1541 loff_t new_i_size;
1542
1543 new_i_size = pos + copied;
1544 if (new_i_size > EXT4_I(inode)->i_disksize) {
1545 ext4_update_i_disksize(inode, new_i_size);
1546 /* We need to mark inode dirty even if
1547 * new_i_size is less that inode->i_size
1548 * bu greater than i_disksize.(hint delalloc)
1549 */
1550 ext4_mark_inode_dirty(handle, inode);
1551 }
1552
1553 ret2 = generic_write_end(file, mapping, pos, len, copied,
1554 page, fsdata);
1555 copied = ret2;
1556 if (ret2 < 0)
1557 ret = ret2;
1558 }
1559 ret2 = ext4_journal_stop(handle);
1560 if (!ret)
1561 ret = ret2;
1562
1563 return ret ? ret : copied;
1564 }
1565
1566 static int ext4_writeback_write_end(struct file *file,
1567 struct address_space *mapping,
1568 loff_t pos, unsigned len, unsigned copied,
1569 struct page *page, void *fsdata)
1570 {
1571 handle_t *handle = ext4_journal_current_handle();
1572 struct inode *inode = mapping->host;
1573 int ret = 0, ret2;
1574 loff_t new_i_size;
1575
1576 trace_mark(ext4_writeback_write_end,
1577 "dev %s ino %lu pos %llu len %u copied %u",
1578 inode->i_sb->s_id, inode->i_ino,
1579 (unsigned long long) pos, len, copied);
1580 new_i_size = pos + copied;
1581 if (new_i_size > EXT4_I(inode)->i_disksize) {
1582 ext4_update_i_disksize(inode, new_i_size);
1583 /* We need to mark inode dirty even if
1584 * new_i_size is less that inode->i_size
1585 * bu greater than i_disksize.(hint delalloc)
1586 */
1587 ext4_mark_inode_dirty(handle, inode);
1588 }
1589
1590 ret2 = generic_write_end(file, mapping, pos, len, copied,
1591 page, fsdata);
1592 copied = ret2;
1593 if (ret2 < 0)
1594 ret = ret2;
1595
1596 ret2 = ext4_journal_stop(handle);
1597 if (!ret)
1598 ret = ret2;
1599
1600 return ret ? ret : copied;
1601 }
1602
1603 static int ext4_journalled_write_end(struct file *file,
1604 struct address_space *mapping,
1605 loff_t pos, unsigned len, unsigned copied,
1606 struct page *page, void *fsdata)
1607 {
1608 handle_t *handle = ext4_journal_current_handle();
1609 struct inode *inode = mapping->host;
1610 int ret = 0, ret2;
1611 int partial = 0;
1612 unsigned from, to;
1613 loff_t new_i_size;
1614
1615 trace_mark(ext4_journalled_write_end,
1616 "dev %s ino %lu pos %llu len %u copied %u",
1617 inode->i_sb->s_id, inode->i_ino,
1618 (unsigned long long) pos, len, copied);
1619 from = pos & (PAGE_CACHE_SIZE - 1);
1620 to = from + len;
1621
1622 if (copied < len) {
1623 if (!PageUptodate(page))
1624 copied = 0;
1625 page_zero_new_buffers(page, from+copied, to);
1626 }
1627
1628 ret = walk_page_buffers(handle, page_buffers(page), from,
1629 to, &partial, write_end_fn);
1630 if (!partial)
1631 SetPageUptodate(page);
1632 new_i_size = pos + copied;
1633 if (new_i_size > inode->i_size)
1634 i_size_write(inode, pos+copied);
1635 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1636 if (new_i_size > EXT4_I(inode)->i_disksize) {
1637 ext4_update_i_disksize(inode, new_i_size);
1638 ret2 = ext4_mark_inode_dirty(handle, inode);
1639 if (!ret)
1640 ret = ret2;
1641 }
1642
1643 unlock_page(page);
1644 ret2 = ext4_journal_stop(handle);
1645 if (!ret)
1646 ret = ret2;
1647 page_cache_release(page);
1648
1649 return ret ? ret : copied;
1650 }
1651
1652 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1653 {
1654 int retries = 0;
1655 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1656 unsigned long md_needed, mdblocks, total = 0;
1657
1658 /*
1659 * recalculate the amount of metadata blocks to reserve
1660 * in order to allocate nrblocks
1661 * worse case is one extent per block
1662 */
1663 repeat:
1664 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1665 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1666 mdblocks = ext4_calc_metadata_amount(inode, total);
1667 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1668
1669 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1670 total = md_needed + nrblocks;
1671
1672 /*
1673 * Make quota reservation here to prevent quota overflow
1674 * later. Real quota accounting is done at pages writeout
1675 * time.
1676 */
1677 if (vfs_dq_reserve_block(inode, total)) {
1678 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1679 return -EDQUOT;
1680 }
1681
1682 if (ext4_claim_free_blocks(sbi, total)) {
1683 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1684 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1685 yield();
1686 goto repeat;
1687 }
1688 vfs_dq_release_reservation_block(inode, total);
1689 return -ENOSPC;
1690 }
1691 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1692 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1693
1694 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1695 return 0; /* success */
1696 }
1697
1698 static void ext4_da_release_space(struct inode *inode, int to_free)
1699 {
1700 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1701 int total, mdb, mdb_free, release;
1702
1703 if (!to_free)
1704 return; /* Nothing to release, exit */
1705
1706 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1707
1708 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1709 /*
1710 * if there is no reserved blocks, but we try to free some
1711 * then the counter is messed up somewhere.
1712 * but since this function is called from invalidate
1713 * page, it's harmless to return without any action
1714 */
1715 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1716 "blocks for inode %lu, but there is no reserved "
1717 "data blocks\n", to_free, inode->i_ino);
1718 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1719 return;
1720 }
1721
1722 /* recalculate the number of metablocks still need to be reserved */
1723 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1724 mdb = ext4_calc_metadata_amount(inode, total);
1725
1726 /* figure out how many metablocks to release */
1727 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1728 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1729
1730 release = to_free + mdb_free;
1731
1732 /* update fs dirty blocks counter for truncate case */
1733 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1734
1735 /* update per-inode reservations */
1736 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1737 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1738
1739 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1740 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1741 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1742
1743 vfs_dq_release_reservation_block(inode, release);
1744 }
1745
1746 static void ext4_da_page_release_reservation(struct page *page,
1747 unsigned long offset)
1748 {
1749 int to_release = 0;
1750 struct buffer_head *head, *bh;
1751 unsigned int curr_off = 0;
1752
1753 head = page_buffers(page);
1754 bh = head;
1755 do {
1756 unsigned int next_off = curr_off + bh->b_size;
1757
1758 if ((offset <= curr_off) && (buffer_delay(bh))) {
1759 to_release++;
1760 clear_buffer_delay(bh);
1761 }
1762 curr_off = next_off;
1763 } while ((bh = bh->b_this_page) != head);
1764 ext4_da_release_space(page->mapping->host, to_release);
1765 }
1766
1767 /*
1768 * Delayed allocation stuff
1769 */
1770
1771 struct mpage_da_data {
1772 struct inode *inode;
1773 sector_t b_blocknr; /* start block number of extent */
1774 size_t b_size; /* size of extent */
1775 unsigned long b_state; /* state of the extent */
1776 unsigned long first_page, next_page; /* extent of pages */
1777 struct writeback_control *wbc;
1778 int io_done;
1779 int pages_written;
1780 int retval;
1781 };
1782
1783 /*
1784 * mpage_da_submit_io - walks through extent of pages and try to write
1785 * them with writepage() call back
1786 *
1787 * @mpd->inode: inode
1788 * @mpd->first_page: first page of the extent
1789 * @mpd->next_page: page after the last page of the extent
1790 *
1791 * By the time mpage_da_submit_io() is called we expect all blocks
1792 * to be allocated. this may be wrong if allocation failed.
1793 *
1794 * As pages are already locked by write_cache_pages(), we can't use it
1795 */
1796 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1797 {
1798 long pages_skipped;
1799 struct pagevec pvec;
1800 unsigned long index, end;
1801 int ret = 0, err, nr_pages, i;
1802 struct inode *inode = mpd->inode;
1803 struct address_space *mapping = inode->i_mapping;
1804
1805 BUG_ON(mpd->next_page <= mpd->first_page);
1806 /*
1807 * We need to start from the first_page to the next_page - 1
1808 * to make sure we also write the mapped dirty buffer_heads.
1809 * If we look at mpd->b_blocknr we would only be looking
1810 * at the currently mapped buffer_heads.
1811 */
1812 index = mpd->first_page;
1813 end = mpd->next_page - 1;
1814
1815 pagevec_init(&pvec, 0);
1816 while (index <= end) {
1817 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1818 if (nr_pages == 0)
1819 break;
1820 for (i = 0; i < nr_pages; i++) {
1821 struct page *page = pvec.pages[i];
1822
1823 index = page->index;
1824 if (index > end)
1825 break;
1826 index++;
1827
1828 BUG_ON(!PageLocked(page));
1829 BUG_ON(PageWriteback(page));
1830
1831 pages_skipped = mpd->wbc->pages_skipped;
1832 err = mapping->a_ops->writepage(page, mpd->wbc);
1833 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1834 /*
1835 * have successfully written the page
1836 * without skipping the same
1837 */
1838 mpd->pages_written++;
1839 /*
1840 * In error case, we have to continue because
1841 * remaining pages are still locked
1842 * XXX: unlock and re-dirty them?
1843 */
1844 if (ret == 0)
1845 ret = err;
1846 }
1847 pagevec_release(&pvec);
1848 }
1849 return ret;
1850 }
1851
1852 /*
1853 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1854 *
1855 * @mpd->inode - inode to walk through
1856 * @exbh->b_blocknr - first block on a disk
1857 * @exbh->b_size - amount of space in bytes
1858 * @logical - first logical block to start assignment with
1859 *
1860 * the function goes through all passed space and put actual disk
1861 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1862 */
1863 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1864 struct buffer_head *exbh)
1865 {
1866 struct inode *inode = mpd->inode;
1867 struct address_space *mapping = inode->i_mapping;
1868 int blocks = exbh->b_size >> inode->i_blkbits;
1869 sector_t pblock = exbh->b_blocknr, cur_logical;
1870 struct buffer_head *head, *bh;
1871 pgoff_t index, end;
1872 struct pagevec pvec;
1873 int nr_pages, i;
1874
1875 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1876 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878
1879 pagevec_init(&pvec, 0);
1880
1881 while (index <= end) {
1882 /* XXX: optimize tail */
1883 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1884 if (nr_pages == 0)
1885 break;
1886 for (i = 0; i < nr_pages; i++) {
1887 struct page *page = pvec.pages[i];
1888
1889 index = page->index;
1890 if (index > end)
1891 break;
1892 index++;
1893
1894 BUG_ON(!PageLocked(page));
1895 BUG_ON(PageWriteback(page));
1896 BUG_ON(!page_has_buffers(page));
1897
1898 bh = page_buffers(page);
1899 head = bh;
1900
1901 /* skip blocks out of the range */
1902 do {
1903 if (cur_logical >= logical)
1904 break;
1905 cur_logical++;
1906 } while ((bh = bh->b_this_page) != head);
1907
1908 do {
1909 if (cur_logical >= logical + blocks)
1910 break;
1911
1912 if (buffer_delay(bh) ||
1913 buffer_unwritten(bh)) {
1914
1915 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1916
1917 if (buffer_delay(bh)) {
1918 clear_buffer_delay(bh);
1919 bh->b_blocknr = pblock;
1920 } else {
1921 /*
1922 * unwritten already should have
1923 * blocknr assigned. Verify that
1924 */
1925 clear_buffer_unwritten(bh);
1926 BUG_ON(bh->b_blocknr != pblock);
1927 }
1928
1929 } else if (buffer_mapped(bh))
1930 BUG_ON(bh->b_blocknr != pblock);
1931
1932 cur_logical++;
1933 pblock++;
1934 } while ((bh = bh->b_this_page) != head);
1935 }
1936 pagevec_release(&pvec);
1937 }
1938 }
1939
1940
1941 /*
1942 * __unmap_underlying_blocks - just a helper function to unmap
1943 * set of blocks described by @bh
1944 */
1945 static inline void __unmap_underlying_blocks(struct inode *inode,
1946 struct buffer_head *bh)
1947 {
1948 struct block_device *bdev = inode->i_sb->s_bdev;
1949 int blocks, i;
1950
1951 blocks = bh->b_size >> inode->i_blkbits;
1952 for (i = 0; i < blocks; i++)
1953 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1954 }
1955
1956 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1957 sector_t logical, long blk_cnt)
1958 {
1959 int nr_pages, i;
1960 pgoff_t index, end;
1961 struct pagevec pvec;
1962 struct inode *inode = mpd->inode;
1963 struct address_space *mapping = inode->i_mapping;
1964
1965 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1966 end = (logical + blk_cnt - 1) >>
1967 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1968 while (index <= end) {
1969 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1970 if (nr_pages == 0)
1971 break;
1972 for (i = 0; i < nr_pages; i++) {
1973 struct page *page = pvec.pages[i];
1974 index = page->index;
1975 if (index > end)
1976 break;
1977 index++;
1978
1979 BUG_ON(!PageLocked(page));
1980 BUG_ON(PageWriteback(page));
1981 block_invalidatepage(page, 0);
1982 ClearPageUptodate(page);
1983 unlock_page(page);
1984 }
1985 }
1986 return;
1987 }
1988
1989 static void ext4_print_free_blocks(struct inode *inode)
1990 {
1991 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1992 printk(KERN_EMERG "Total free blocks count %lld\n",
1993 ext4_count_free_blocks(inode->i_sb));
1994 printk(KERN_EMERG "Free/Dirty block details\n");
1995 printk(KERN_EMERG "free_blocks=%lld\n",
1996 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1997 printk(KERN_EMERG "dirty_blocks=%lld\n",
1998 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1999 printk(KERN_EMERG "Block reservation details\n");
2000 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2001 EXT4_I(inode)->i_reserved_data_blocks);
2002 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2003 EXT4_I(inode)->i_reserved_meta_blocks);
2004 return;
2005 }
2006
2007 /*
2008 * mpage_da_map_blocks - go through given space
2009 *
2010 * @mpd - bh describing space
2011 *
2012 * The function skips space we know is already mapped to disk blocks.
2013 *
2014 */
2015 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2016 {
2017 int err, blks, get_blocks_flags;
2018 struct buffer_head new;
2019 sector_t next = mpd->b_blocknr;
2020 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2021 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2022 handle_t *handle = NULL;
2023
2024 /*
2025 * We consider only non-mapped and non-allocated blocks
2026 */
2027 if ((mpd->b_state & (1 << BH_Mapped)) &&
2028 !(mpd->b_state & (1 << BH_Delay)) &&
2029 !(mpd->b_state & (1 << BH_Unwritten)))
2030 return 0;
2031
2032 /*
2033 * If we didn't accumulate anything to write simply return
2034 */
2035 if (!mpd->b_size)
2036 return 0;
2037
2038 handle = ext4_journal_current_handle();
2039 BUG_ON(!handle);
2040
2041 /*
2042 * Call ext4_get_blocks() to allocate any delayed allocation
2043 * blocks, or to convert an uninitialized extent to be
2044 * initialized (in the case where we have written into
2045 * one or more preallocated blocks).
2046 *
2047 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2048 * indicate that we are on the delayed allocation path. This
2049 * affects functions in many different parts of the allocation
2050 * call path. This flag exists primarily because we don't
2051 * want to change *many* call functions, so ext4_get_blocks()
2052 * will set the magic i_delalloc_reserved_flag once the
2053 * inode's allocation semaphore is taken.
2054 *
2055 * If the blocks in questions were delalloc blocks, set
2056 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2057 * variables are updated after the blocks have been allocated.
2058 */
2059 new.b_state = 0;
2060 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2061 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2062 if (mpd->b_state & (1 << BH_Delay))
2063 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2064 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2065 &new, get_blocks_flags);
2066 if (blks < 0) {
2067 err = blks;
2068 /*
2069 * If get block returns with error we simply
2070 * return. Later writepage will redirty the page and
2071 * writepages will find the dirty page again
2072 */
2073 if (err == -EAGAIN)
2074 return 0;
2075
2076 if (err == -ENOSPC &&
2077 ext4_count_free_blocks(mpd->inode->i_sb)) {
2078 mpd->retval = err;
2079 return 0;
2080 }
2081
2082 /*
2083 * get block failure will cause us to loop in
2084 * writepages, because a_ops->writepage won't be able
2085 * to make progress. The page will be redirtied by
2086 * writepage and writepages will again try to write
2087 * the same.
2088 */
2089 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2090 "at logical offset %llu with max blocks "
2091 "%zd with error %d\n",
2092 __func__, mpd->inode->i_ino,
2093 (unsigned long long)next,
2094 mpd->b_size >> mpd->inode->i_blkbits, err);
2095 printk(KERN_EMERG "This should not happen.!! "
2096 "Data will be lost\n");
2097 if (err == -ENOSPC) {
2098 ext4_print_free_blocks(mpd->inode);
2099 }
2100 /* invalidate all the pages */
2101 ext4_da_block_invalidatepages(mpd, next,
2102 mpd->b_size >> mpd->inode->i_blkbits);
2103 return err;
2104 }
2105 BUG_ON(blks == 0);
2106
2107 new.b_size = (blks << mpd->inode->i_blkbits);
2108
2109 if (buffer_new(&new))
2110 __unmap_underlying_blocks(mpd->inode, &new);
2111
2112 /*
2113 * If blocks are delayed marked, we need to
2114 * put actual blocknr and drop delayed bit
2115 */
2116 if ((mpd->b_state & (1 << BH_Delay)) ||
2117 (mpd->b_state & (1 << BH_Unwritten)))
2118 mpage_put_bnr_to_bhs(mpd, next, &new);
2119
2120 if (ext4_should_order_data(mpd->inode)) {
2121 err = ext4_jbd2_file_inode(handle, mpd->inode);
2122 if (err)
2123 return err;
2124 }
2125
2126 /*
2127 * Update on-disk size along with block allocation we don't
2128 * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2129 * within already allocated block -bzzz
2130 */
2131 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2132 if (disksize > i_size_read(mpd->inode))
2133 disksize = i_size_read(mpd->inode);
2134 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2135 ext4_update_i_disksize(mpd->inode, disksize);
2136 return ext4_mark_inode_dirty(handle, mpd->inode);
2137 }
2138
2139 return 0;
2140 }
2141
2142 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2143 (1 << BH_Delay) | (1 << BH_Unwritten))
2144
2145 /*
2146 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2147 *
2148 * @mpd->lbh - extent of blocks
2149 * @logical - logical number of the block in the file
2150 * @bh - bh of the block (used to access block's state)
2151 *
2152 * the function is used to collect contig. blocks in same state
2153 */
2154 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2155 sector_t logical, size_t b_size,
2156 unsigned long b_state)
2157 {
2158 sector_t next;
2159 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2160
2161 /* check if thereserved journal credits might overflow */
2162 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2163 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2164 /*
2165 * With non-extent format we are limited by the journal
2166 * credit available. Total credit needed to insert
2167 * nrblocks contiguous blocks is dependent on the
2168 * nrblocks. So limit nrblocks.
2169 */
2170 goto flush_it;
2171 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2172 EXT4_MAX_TRANS_DATA) {
2173 /*
2174 * Adding the new buffer_head would make it cross the
2175 * allowed limit for which we have journal credit
2176 * reserved. So limit the new bh->b_size
2177 */
2178 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2179 mpd->inode->i_blkbits;
2180 /* we will do mpage_da_submit_io in the next loop */
2181 }
2182 }
2183 /*
2184 * First block in the extent
2185 */
2186 if (mpd->b_size == 0) {
2187 mpd->b_blocknr = logical;
2188 mpd->b_size = b_size;
2189 mpd->b_state = b_state & BH_FLAGS;
2190 return;
2191 }
2192
2193 next = mpd->b_blocknr + nrblocks;
2194 /*
2195 * Can we merge the block to our big extent?
2196 */
2197 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2198 mpd->b_size += b_size;
2199 return;
2200 }
2201
2202 flush_it:
2203 /*
2204 * We couldn't merge the block to our extent, so we
2205 * need to flush current extent and start new one
2206 */
2207 if (mpage_da_map_blocks(mpd) == 0)
2208 mpage_da_submit_io(mpd);
2209 mpd->io_done = 1;
2210 return;
2211 }
2212
2213 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2214 {
2215 /*
2216 * unmapped buffer is possible for holes.
2217 * delay buffer is possible with delayed allocation.
2218 * We also need to consider unwritten buffer as unmapped.
2219 */
2220 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2221 buffer_unwritten(bh)) && buffer_dirty(bh);
2222 }
2223
2224 /*
2225 * __mpage_da_writepage - finds extent of pages and blocks
2226 *
2227 * @page: page to consider
2228 * @wbc: not used, we just follow rules
2229 * @data: context
2230 *
2231 * The function finds extents of pages and scan them for all blocks.
2232 */
2233 static int __mpage_da_writepage(struct page *page,
2234 struct writeback_control *wbc, void *data)
2235 {
2236 struct mpage_da_data *mpd = data;
2237 struct inode *inode = mpd->inode;
2238 struct buffer_head *bh, *head;
2239 sector_t logical;
2240
2241 if (mpd->io_done) {
2242 /*
2243 * Rest of the page in the page_vec
2244 * redirty then and skip then. We will
2245 * try to to write them again after
2246 * starting a new transaction
2247 */
2248 redirty_page_for_writepage(wbc, page);
2249 unlock_page(page);
2250 return MPAGE_DA_EXTENT_TAIL;
2251 }
2252 /*
2253 * Can we merge this page to current extent?
2254 */
2255 if (mpd->next_page != page->index) {
2256 /*
2257 * Nope, we can't. So, we map non-allocated blocks
2258 * and start IO on them using writepage()
2259 */
2260 if (mpd->next_page != mpd->first_page) {
2261 if (mpage_da_map_blocks(mpd) == 0)
2262 mpage_da_submit_io(mpd);
2263 /*
2264 * skip rest of the page in the page_vec
2265 */
2266 mpd->io_done = 1;
2267 redirty_page_for_writepage(wbc, page);
2268 unlock_page(page);
2269 return MPAGE_DA_EXTENT_TAIL;
2270 }
2271
2272 /*
2273 * Start next extent of pages ...
2274 */
2275 mpd->first_page = page->index;
2276
2277 /*
2278 * ... and blocks
2279 */
2280 mpd->b_size = 0;
2281 mpd->b_state = 0;
2282 mpd->b_blocknr = 0;
2283 }
2284
2285 mpd->next_page = page->index + 1;
2286 logical = (sector_t) page->index <<
2287 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2288
2289 if (!page_has_buffers(page)) {
2290 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2291 (1 << BH_Dirty) | (1 << BH_Uptodate));
2292 if (mpd->io_done)
2293 return MPAGE_DA_EXTENT_TAIL;
2294 } else {
2295 /*
2296 * Page with regular buffer heads, just add all dirty ones
2297 */
2298 head = page_buffers(page);
2299 bh = head;
2300 do {
2301 BUG_ON(buffer_locked(bh));
2302 /*
2303 * We need to try to allocate
2304 * unmapped blocks in the same page.
2305 * Otherwise we won't make progress
2306 * with the page in ext4_da_writepage
2307 */
2308 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2309 mpage_add_bh_to_extent(mpd, logical,
2310 bh->b_size,
2311 bh->b_state);
2312 if (mpd->io_done)
2313 return MPAGE_DA_EXTENT_TAIL;
2314 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2315 /*
2316 * mapped dirty buffer. We need to update
2317 * the b_state because we look at
2318 * b_state in mpage_da_map_blocks. We don't
2319 * update b_size because if we find an
2320 * unmapped buffer_head later we need to
2321 * use the b_state flag of that buffer_head.
2322 */
2323 if (mpd->b_size == 0)
2324 mpd->b_state = bh->b_state & BH_FLAGS;
2325 }
2326 logical++;
2327 } while ((bh = bh->b_this_page) != head);
2328 }
2329
2330 return 0;
2331 }
2332
2333 /*
2334 * This is a special get_blocks_t callback which is used by
2335 * ext4_da_write_begin(). It will either return mapped block or
2336 * reserve space for a single block.
2337 *
2338 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2339 * We also have b_blocknr = -1 and b_bdev initialized properly
2340 *
2341 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2342 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2343 * initialized properly.
2344 */
2345 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2346 struct buffer_head *bh_result, int create)
2347 {
2348 int ret = 0;
2349 sector_t invalid_block = ~((sector_t) 0xffff);
2350
2351 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2352 invalid_block = ~0;
2353
2354 BUG_ON(create == 0);
2355 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2356
2357 /*
2358 * first, we need to know whether the block is allocated already
2359 * preallocated blocks are unmapped but should treated
2360 * the same as allocated blocks.
2361 */
2362 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2363 if ((ret == 0) && !buffer_delay(bh_result)) {
2364 /* the block isn't (pre)allocated yet, let's reserve space */
2365 /*
2366 * XXX: __block_prepare_write() unmaps passed block,
2367 * is it OK?
2368 */
2369 ret = ext4_da_reserve_space(inode, 1);
2370 if (ret)
2371 /* not enough space to reserve */
2372 return ret;
2373
2374 map_bh(bh_result, inode->i_sb, invalid_block);
2375 set_buffer_new(bh_result);
2376 set_buffer_delay(bh_result);
2377 } else if (ret > 0) {
2378 bh_result->b_size = (ret << inode->i_blkbits);
2379 if (buffer_unwritten(bh_result)) {
2380 /* A delayed write to unwritten bh should
2381 * be marked new and mapped. Mapped ensures
2382 * that we don't do get_block multiple times
2383 * when we write to the same offset and new
2384 * ensures that we do proper zero out for
2385 * partial write.
2386 */
2387 set_buffer_new(bh_result);
2388 set_buffer_mapped(bh_result);
2389 }
2390 ret = 0;
2391 }
2392
2393 return ret;
2394 }
2395
2396 /*
2397 * This function is used as a standard get_block_t calback function
2398 * when there is no desire to allocate any blocks. It is used as a
2399 * callback function for block_prepare_write(), nobh_writepage(), and
2400 * block_write_full_page(). These functions should only try to map a
2401 * single block at a time.
2402 *
2403 * Since this function doesn't do block allocations even if the caller
2404 * requests it by passing in create=1, it is critically important that
2405 * any caller checks to make sure that any buffer heads are returned
2406 * by this function are either all already mapped or marked for
2407 * delayed allocation before calling nobh_writepage() or
2408 * block_write_full_page(). Otherwise, b_blocknr could be left
2409 * unitialized, and the page write functions will be taken by
2410 * surprise.
2411 */
2412 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2413 struct buffer_head *bh_result, int create)
2414 {
2415 int ret = 0;
2416 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2417
2418 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2419
2420 /*
2421 * we don't want to do block allocation in writepage
2422 * so call get_block_wrap with create = 0
2423 */
2424 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2425 BUG_ON(create && ret == 0);
2426 if (ret > 0) {
2427 bh_result->b_size = (ret << inode->i_blkbits);
2428 ret = 0;
2429 }
2430 return ret;
2431 }
2432
2433 /*
2434 * This function can get called via...
2435 * - ext4_da_writepages after taking page lock (have journal handle)
2436 * - journal_submit_inode_data_buffers (no journal handle)
2437 * - shrink_page_list via pdflush (no journal handle)
2438 * - grab_page_cache when doing write_begin (have journal handle)
2439 */
2440 static int ext4_da_writepage(struct page *page,
2441 struct writeback_control *wbc)
2442 {
2443 int ret = 0;
2444 loff_t size;
2445 unsigned int len;
2446 struct buffer_head *page_bufs;
2447 struct inode *inode = page->mapping->host;
2448
2449 trace_mark(ext4_da_writepage,
2450 "dev %s ino %lu page_index %lu",
2451 inode->i_sb->s_id, inode->i_ino, page->index);
2452 size = i_size_read(inode);
2453 if (page->index == size >> PAGE_CACHE_SHIFT)
2454 len = size & ~PAGE_CACHE_MASK;
2455 else
2456 len = PAGE_CACHE_SIZE;
2457
2458 if (page_has_buffers(page)) {
2459 page_bufs = page_buffers(page);
2460 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2461 ext4_bh_unmapped_or_delay)) {
2462 /*
2463 * We don't want to do block allocation
2464 * So redirty the page and return
2465 * We may reach here when we do a journal commit
2466 * via journal_submit_inode_data_buffers.
2467 * If we don't have mapping block we just ignore
2468 * them. We can also reach here via shrink_page_list
2469 */
2470 redirty_page_for_writepage(wbc, page);
2471 unlock_page(page);
2472 return 0;
2473 }
2474 } else {
2475 /*
2476 * The test for page_has_buffers() is subtle:
2477 * We know the page is dirty but it lost buffers. That means
2478 * that at some moment in time after write_begin()/write_end()
2479 * has been called all buffers have been clean and thus they
2480 * must have been written at least once. So they are all
2481 * mapped and we can happily proceed with mapping them
2482 * and writing the page.
2483 *
2484 * Try to initialize the buffer_heads and check whether
2485 * all are mapped and non delay. We don't want to
2486 * do block allocation here.
2487 */
2488 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2489 noalloc_get_block_write);
2490 if (!ret) {
2491 page_bufs = page_buffers(page);
2492 /* check whether all are mapped and non delay */
2493 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2494 ext4_bh_unmapped_or_delay)) {
2495 redirty_page_for_writepage(wbc, page);
2496 unlock_page(page);
2497 return 0;
2498 }
2499 } else {
2500 /*
2501 * We can't do block allocation here
2502 * so just redity the page and unlock
2503 * and return
2504 */
2505 redirty_page_for_writepage(wbc, page);
2506 unlock_page(page);
2507 return 0;
2508 }
2509 /* now mark the buffer_heads as dirty and uptodate */
2510 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2511 }
2512
2513 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2514 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2515 else
2516 ret = block_write_full_page(page, noalloc_get_block_write,
2517 wbc);
2518
2519 return ret;
2520 }
2521
2522 /*
2523 * This is called via ext4_da_writepages() to
2524 * calulate the total number of credits to reserve to fit
2525 * a single extent allocation into a single transaction,
2526 * ext4_da_writpeages() will loop calling this before
2527 * the block allocation.
2528 */
2529
2530 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2531 {
2532 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2533
2534 /*
2535 * With non-extent format the journal credit needed to
2536 * insert nrblocks contiguous block is dependent on
2537 * number of contiguous block. So we will limit
2538 * number of contiguous block to a sane value
2539 */
2540 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2541 (max_blocks > EXT4_MAX_TRANS_DATA))
2542 max_blocks = EXT4_MAX_TRANS_DATA;
2543
2544 return ext4_chunk_trans_blocks(inode, max_blocks);
2545 }
2546
2547 static int ext4_da_writepages(struct address_space *mapping,
2548 struct writeback_control *wbc)
2549 {
2550 pgoff_t index;
2551 int range_whole = 0;
2552 handle_t *handle = NULL;
2553 struct mpage_da_data mpd;
2554 struct inode *inode = mapping->host;
2555 int no_nrwrite_index_update;
2556 int pages_written = 0;
2557 long pages_skipped;
2558 int range_cyclic, cycled = 1, io_done = 0;
2559 int needed_blocks, ret = 0, nr_to_writebump = 0;
2560 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2561
2562 trace_mark(ext4_da_writepages,
2563 "dev %s ino %lu nr_t_write %ld "
2564 "pages_skipped %ld range_start %llu "
2565 "range_end %llu nonblocking %d "
2566 "for_kupdate %d for_reclaim %d "
2567 "for_writepages %d range_cyclic %d",
2568 inode->i_sb->s_id, inode->i_ino,
2569 wbc->nr_to_write, wbc->pages_skipped,
2570 (unsigned long long) wbc->range_start,
2571 (unsigned long long) wbc->range_end,
2572 wbc->nonblocking, wbc->for_kupdate,
2573 wbc->for_reclaim, wbc->for_writepages,
2574 wbc->range_cyclic);
2575
2576 /*
2577 * No pages to write? This is mainly a kludge to avoid starting
2578 * a transaction for special inodes like journal inode on last iput()
2579 * because that could violate lock ordering on umount
2580 */
2581 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2582 return 0;
2583
2584 /*
2585 * If the filesystem has aborted, it is read-only, so return
2586 * right away instead of dumping stack traces later on that
2587 * will obscure the real source of the problem. We test
2588 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2589 * the latter could be true if the filesystem is mounted
2590 * read-only, and in that case, ext4_da_writepages should
2591 * *never* be called, so if that ever happens, we would want
2592 * the stack trace.
2593 */
2594 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2595 return -EROFS;
2596
2597 /*
2598 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2599 * This make sure small files blocks are allocated in
2600 * single attempt. This ensure that small files
2601 * get less fragmented.
2602 */
2603 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2604 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2605 wbc->nr_to_write = sbi->s_mb_stream_request;
2606 }
2607 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2608 range_whole = 1;
2609
2610 range_cyclic = wbc->range_cyclic;
2611 if (wbc->range_cyclic) {
2612 index = mapping->writeback_index;
2613 if (index)
2614 cycled = 0;
2615 wbc->range_start = index << PAGE_CACHE_SHIFT;
2616 wbc->range_end = LLONG_MAX;
2617 wbc->range_cyclic = 0;
2618 } else
2619 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2620
2621 mpd.wbc = wbc;
2622 mpd.inode = mapping->host;
2623
2624 /*
2625 * we don't want write_cache_pages to update
2626 * nr_to_write and writeback_index
2627 */
2628 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2629 wbc->no_nrwrite_index_update = 1;
2630 pages_skipped = wbc->pages_skipped;
2631
2632 retry:
2633 while (!ret && wbc->nr_to_write > 0) {
2634
2635 /*
2636 * we insert one extent at a time. So we need
2637 * credit needed for single extent allocation.
2638 * journalled mode is currently not supported
2639 * by delalloc
2640 */
2641 BUG_ON(ext4_should_journal_data(inode));
2642 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2643
2644 /* start a new transaction*/
2645 handle = ext4_journal_start(inode, needed_blocks);
2646 if (IS_ERR(handle)) {
2647 ret = PTR_ERR(handle);
2648 printk(KERN_CRIT "%s: jbd2_start: "
2649 "%ld pages, ino %lu; err %d\n", __func__,
2650 wbc->nr_to_write, inode->i_ino, ret);
2651 dump_stack();
2652 goto out_writepages;
2653 }
2654
2655 /*
2656 * Now call __mpage_da_writepage to find the next
2657 * contiguous region of logical blocks that need
2658 * blocks to be allocated by ext4. We don't actually
2659 * submit the blocks for I/O here, even though
2660 * write_cache_pages thinks it will, and will set the
2661 * pages as clean for write before calling
2662 * __mpage_da_writepage().
2663 */
2664 mpd.b_size = 0;
2665 mpd.b_state = 0;
2666 mpd.b_blocknr = 0;
2667 mpd.first_page = 0;
2668 mpd.next_page = 0;
2669 mpd.io_done = 0;
2670 mpd.pages_written = 0;
2671 mpd.retval = 0;
2672 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2673 &mpd);
2674 /*
2675 * If we have a contigous extent of pages and we
2676 * haven't done the I/O yet, map the blocks and submit
2677 * them for I/O.
2678 */
2679 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2680 if (mpage_da_map_blocks(&mpd) == 0)
2681 mpage_da_submit_io(&mpd);
2682 mpd.io_done = 1;
2683 ret = MPAGE_DA_EXTENT_TAIL;
2684 }
2685 wbc->nr_to_write -= mpd.pages_written;
2686
2687 ext4_journal_stop(handle);
2688
2689 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2690 /* commit the transaction which would
2691 * free blocks released in the transaction
2692 * and try again
2693 */
2694 jbd2_journal_force_commit_nested(sbi->s_journal);
2695 wbc->pages_skipped = pages_skipped;
2696 ret = 0;
2697 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2698 /*
2699 * got one extent now try with
2700 * rest of the pages
2701 */
2702 pages_written += mpd.pages_written;
2703 wbc->pages_skipped = pages_skipped;
2704 ret = 0;
2705 io_done = 1;
2706 } else if (wbc->nr_to_write)
2707 /*
2708 * There is no more writeout needed
2709 * or we requested for a noblocking writeout
2710 * and we found the device congested
2711 */
2712 break;
2713 }
2714 if (!io_done && !cycled) {
2715 cycled = 1;
2716 index = 0;
2717 wbc->range_start = index << PAGE_CACHE_SHIFT;
2718 wbc->range_end = mapping->writeback_index - 1;
2719 goto retry;
2720 }
2721 if (pages_skipped != wbc->pages_skipped)
2722 printk(KERN_EMERG "This should not happen leaving %s "
2723 "with nr_to_write = %ld ret = %d\n",
2724 __func__, wbc->nr_to_write, ret);
2725
2726 /* Update index */
2727 index += pages_written;
2728 wbc->range_cyclic = range_cyclic;
2729 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2730 /*
2731 * set the writeback_index so that range_cyclic
2732 * mode will write it back later
2733 */
2734 mapping->writeback_index = index;
2735
2736 out_writepages:
2737 if (!no_nrwrite_index_update)
2738 wbc->no_nrwrite_index_update = 0;
2739 wbc->nr_to_write -= nr_to_writebump;
2740 trace_mark(ext4_da_writepage_result,
2741 "dev %s ino %lu ret %d pages_written %d "
2742 "pages_skipped %ld congestion %d "
2743 "more_io %d no_nrwrite_index_update %d",
2744 inode->i_sb->s_id, inode->i_ino, ret,
2745 pages_written, wbc->pages_skipped,
2746 wbc->encountered_congestion, wbc->more_io,
2747 wbc->no_nrwrite_index_update);
2748 return ret;
2749 }
2750
2751 #define FALL_BACK_TO_NONDELALLOC 1
2752 static int ext4_nonda_switch(struct super_block *sb)
2753 {
2754 s64 free_blocks, dirty_blocks;
2755 struct ext4_sb_info *sbi = EXT4_SB(sb);
2756
2757 /*
2758 * switch to non delalloc mode if we are running low
2759 * on free block. The free block accounting via percpu
2760 * counters can get slightly wrong with percpu_counter_batch getting
2761 * accumulated on each CPU without updating global counters
2762 * Delalloc need an accurate free block accounting. So switch
2763 * to non delalloc when we are near to error range.
2764 */
2765 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2766 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2767 if (2 * free_blocks < 3 * dirty_blocks ||
2768 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2769 /*
2770 * free block count is less that 150% of dirty blocks
2771 * or free blocks is less that watermark
2772 */
2773 return 1;
2774 }
2775 return 0;
2776 }
2777
2778 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2779 loff_t pos, unsigned len, unsigned flags,
2780 struct page **pagep, void **fsdata)
2781 {
2782 int ret, retries = 0;
2783 struct page *page;
2784 pgoff_t index;
2785 unsigned from, to;
2786 struct inode *inode = mapping->host;
2787 handle_t *handle;
2788
2789 index = pos >> PAGE_CACHE_SHIFT;
2790 from = pos & (PAGE_CACHE_SIZE - 1);
2791 to = from + len;
2792
2793 if (ext4_nonda_switch(inode->i_sb)) {
2794 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2795 return ext4_write_begin(file, mapping, pos,
2796 len, flags, pagep, fsdata);
2797 }
2798 *fsdata = (void *)0;
2799
2800 trace_mark(ext4_da_write_begin,
2801 "dev %s ino %lu pos %llu len %u flags %u",
2802 inode->i_sb->s_id, inode->i_ino,
2803 (unsigned long long) pos, len, flags);
2804 retry:
2805 /*
2806 * With delayed allocation, we don't log the i_disksize update
2807 * if there is delayed block allocation. But we still need
2808 * to journalling the i_disksize update if writes to the end
2809 * of file which has an already mapped buffer.
2810 */
2811 handle = ext4_journal_start(inode, 1);
2812 if (IS_ERR(handle)) {
2813 ret = PTR_ERR(handle);
2814 goto out;
2815 }
2816 /* We cannot recurse into the filesystem as the transaction is already
2817 * started */
2818 flags |= AOP_FLAG_NOFS;
2819
2820 page = grab_cache_page_write_begin(mapping, index, flags);
2821 if (!page) {
2822 ext4_journal_stop(handle);
2823 ret = -ENOMEM;
2824 goto out;
2825 }
2826 *pagep = page;
2827
2828 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2829 ext4_da_get_block_prep);
2830 if (ret < 0) {
2831 unlock_page(page);
2832 ext4_journal_stop(handle);
2833 page_cache_release(page);
2834 /*
2835 * block_write_begin may have instantiated a few blocks
2836 * outside i_size. Trim these off again. Don't need
2837 * i_size_read because we hold i_mutex.
2838 */
2839 if (pos + len > inode->i_size)
2840 vmtruncate(inode, inode->i_size);
2841 }
2842
2843 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2844 goto retry;
2845 out:
2846 return ret;
2847 }
2848
2849 /*
2850 * Check if we should update i_disksize
2851 * when write to the end of file but not require block allocation
2852 */
2853 static int ext4_da_should_update_i_disksize(struct page *page,
2854 unsigned long offset)
2855 {
2856 struct buffer_head *bh;
2857 struct inode *inode = page->mapping->host;
2858 unsigned int idx;
2859 int i;
2860
2861 bh = page_buffers(page);
2862 idx = offset >> inode->i_blkbits;
2863
2864 for (i = 0; i < idx; i++)
2865 bh = bh->b_this_page;
2866
2867 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2868 return 0;
2869 return 1;
2870 }
2871
2872 static int ext4_da_write_end(struct file *file,
2873 struct address_space *mapping,
2874 loff_t pos, unsigned len, unsigned copied,
2875 struct page *page, void *fsdata)
2876 {
2877 struct inode *inode = mapping->host;
2878 int ret = 0, ret2;
2879 handle_t *handle = ext4_journal_current_handle();
2880 loff_t new_i_size;
2881 unsigned long start, end;
2882 int write_mode = (int)(unsigned long)fsdata;
2883
2884 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2885 if (ext4_should_order_data(inode)) {
2886 return ext4_ordered_write_end(file, mapping, pos,
2887 len, copied, page, fsdata);
2888 } else if (ext4_should_writeback_data(inode)) {
2889 return ext4_writeback_write_end(file, mapping, pos,
2890 len, copied, page, fsdata);
2891 } else {
2892 BUG();
2893 }
2894 }
2895
2896 trace_mark(ext4_da_write_end,
2897 "dev %s ino %lu pos %llu len %u copied %u",
2898 inode->i_sb->s_id, inode->i_ino,
2899 (unsigned long long) pos, len, copied);
2900 start = pos & (PAGE_CACHE_SIZE - 1);
2901 end = start + copied - 1;
2902
2903 /*
2904 * generic_write_end() will run mark_inode_dirty() if i_size
2905 * changes. So let's piggyback the i_disksize mark_inode_dirty
2906 * into that.
2907 */
2908
2909 new_i_size = pos + copied;
2910 if (new_i_size > EXT4_I(inode)->i_disksize) {
2911 if (ext4_da_should_update_i_disksize(page, end)) {
2912 down_write(&EXT4_I(inode)->i_data_sem);
2913 if (new_i_size > EXT4_I(inode)->i_disksize) {
2914 /*
2915 * Updating i_disksize when extending file
2916 * without needing block allocation
2917 */
2918 if (ext4_should_order_data(inode))
2919 ret = ext4_jbd2_file_inode(handle,
2920 inode);
2921
2922 EXT4_I(inode)->i_disksize = new_i_size;
2923 }
2924 up_write(&EXT4_I(inode)->i_data_sem);
2925 /* We need to mark inode dirty even if
2926 * new_i_size is less that inode->i_size
2927 * bu greater than i_disksize.(hint delalloc)
2928 */
2929 ext4_mark_inode_dirty(handle, inode);
2930 }
2931 }
2932 ret2 = generic_write_end(file, mapping, pos, len, copied,
2933 page, fsdata);
2934 copied = ret2;
2935 if (ret2 < 0)
2936 ret = ret2;
2937 ret2 = ext4_journal_stop(handle);
2938 if (!ret)
2939 ret = ret2;
2940
2941 return ret ? ret : copied;
2942 }
2943
2944 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2945 {
2946 /*
2947 * Drop reserved blocks
2948 */
2949 BUG_ON(!PageLocked(page));
2950 if (!page_has_buffers(page))
2951 goto out;
2952
2953 ext4_da_page_release_reservation(page, offset);
2954
2955 out:
2956 ext4_invalidatepage(page, offset);
2957
2958 return;
2959 }
2960
2961 /*
2962 * Force all delayed allocation blocks to be allocated for a given inode.
2963 */
2964 int ext4_alloc_da_blocks(struct inode *inode)
2965 {
2966 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2967 !EXT4_I(inode)->i_reserved_meta_blocks)
2968 return 0;
2969
2970 /*
2971 * We do something simple for now. The filemap_flush() will
2972 * also start triggering a write of the data blocks, which is
2973 * not strictly speaking necessary (and for users of
2974 * laptop_mode, not even desirable). However, to do otherwise
2975 * would require replicating code paths in:
2976 *
2977 * ext4_da_writepages() ->
2978 * write_cache_pages() ---> (via passed in callback function)
2979 * __mpage_da_writepage() -->
2980 * mpage_add_bh_to_extent()
2981 * mpage_da_map_blocks()
2982 *
2983 * The problem is that write_cache_pages(), located in
2984 * mm/page-writeback.c, marks pages clean in preparation for
2985 * doing I/O, which is not desirable if we're not planning on
2986 * doing I/O at all.
2987 *
2988 * We could call write_cache_pages(), and then redirty all of
2989 * the pages by calling redirty_page_for_writeback() but that
2990 * would be ugly in the extreme. So instead we would need to
2991 * replicate parts of the code in the above functions,
2992 * simplifying them becuase we wouldn't actually intend to
2993 * write out the pages, but rather only collect contiguous
2994 * logical block extents, call the multi-block allocator, and
2995 * then update the buffer heads with the block allocations.
2996 *
2997 * For now, though, we'll cheat by calling filemap_flush(),
2998 * which will map the blocks, and start the I/O, but not
2999 * actually wait for the I/O to complete.
3000 */
3001 return filemap_flush(inode->i_mapping);
3002 }
3003
3004 /*
3005 * bmap() is special. It gets used by applications such as lilo and by
3006 * the swapper to find the on-disk block of a specific piece of data.
3007 *
3008 * Naturally, this is dangerous if the block concerned is still in the
3009 * journal. If somebody makes a swapfile on an ext4 data-journaling
3010 * filesystem and enables swap, then they may get a nasty shock when the
3011 * data getting swapped to that swapfile suddenly gets overwritten by
3012 * the original zero's written out previously to the journal and
3013 * awaiting writeback in the kernel's buffer cache.
3014 *
3015 * So, if we see any bmap calls here on a modified, data-journaled file,
3016 * take extra steps to flush any blocks which might be in the cache.
3017 */
3018 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3019 {
3020 struct inode *inode = mapping->host;
3021 journal_t *journal;
3022 int err;
3023
3024 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3025 test_opt(inode->i_sb, DELALLOC)) {
3026 /*
3027 * With delalloc we want to sync the file
3028 * so that we can make sure we allocate
3029 * blocks for file
3030 */
3031 filemap_write_and_wait(mapping);
3032 }
3033
3034 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3035 /*
3036 * This is a REALLY heavyweight approach, but the use of
3037 * bmap on dirty files is expected to be extremely rare:
3038 * only if we run lilo or swapon on a freshly made file
3039 * do we expect this to happen.
3040 *
3041 * (bmap requires CAP_SYS_RAWIO so this does not
3042 * represent an unprivileged user DOS attack --- we'd be
3043 * in trouble if mortal users could trigger this path at
3044 * will.)
3045 *
3046 * NB. EXT4_STATE_JDATA is not set on files other than
3047 * regular files. If somebody wants to bmap a directory
3048 * or symlink and gets confused because the buffer
3049 * hasn't yet been flushed to disk, they deserve
3050 * everything they get.
3051 */
3052
3053 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3054 journal = EXT4_JOURNAL(inode);
3055 jbd2_journal_lock_updates(journal);
3056 err = jbd2_journal_flush(journal);
3057 jbd2_journal_unlock_updates(journal);
3058
3059 if (err)
3060 return 0;
3061 }
3062
3063 return generic_block_bmap(mapping, block, ext4_get_block);
3064 }
3065
3066 static int bget_one(handle_t *handle, struct buffer_head *bh)
3067 {
3068 get_bh(bh);
3069 return 0;
3070 }
3071
3072 static int bput_one(handle_t *handle, struct buffer_head *bh)
3073 {
3074 put_bh(bh);
3075 return 0;
3076 }
3077
3078 /*
3079 * Note that we don't need to start a transaction unless we're journaling data
3080 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3081 * need to file the inode to the transaction's list in ordered mode because if
3082 * we are writing back data added by write(), the inode is already there and if
3083 * we are writing back data modified via mmap(), noone guarantees in which
3084 * transaction the data will hit the disk. In case we are journaling data, we
3085 * cannot start transaction directly because transaction start ranks above page
3086 * lock so we have to do some magic.
3087 *
3088 * In all journaling modes block_write_full_page() will start the I/O.
3089 *
3090 * Problem:
3091 *
3092 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3093 * ext4_writepage()
3094 *
3095 * Similar for:
3096 *
3097 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3098 *
3099 * Same applies to ext4_get_block(). We will deadlock on various things like
3100 * lock_journal and i_data_sem
3101 *
3102 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3103 * allocations fail.
3104 *
3105 * 16May01: If we're reentered then journal_current_handle() will be
3106 * non-zero. We simply *return*.
3107 *
3108 * 1 July 2001: @@@ FIXME:
3109 * In journalled data mode, a data buffer may be metadata against the
3110 * current transaction. But the same file is part of a shared mapping
3111 * and someone does a writepage() on it.
3112 *
3113 * We will move the buffer onto the async_data list, but *after* it has
3114 * been dirtied. So there's a small window where we have dirty data on
3115 * BJ_Metadata.
3116 *
3117 * Note that this only applies to the last partial page in the file. The
3118 * bit which block_write_full_page() uses prepare/commit for. (That's
3119 * broken code anyway: it's wrong for msync()).
3120 *
3121 * It's a rare case: affects the final partial page, for journalled data
3122 * where the file is subject to bith write() and writepage() in the same
3123 * transction. To fix it we'll need a custom block_write_full_page().
3124 * We'll probably need that anyway for journalling writepage() output.
3125 *
3126 * We don't honour synchronous mounts for writepage(). That would be
3127 * disastrous. Any write() or metadata operation will sync the fs for
3128 * us.
3129 *
3130 */
3131 static int __ext4_normal_writepage(struct page *page,
3132 struct writeback_control *wbc)
3133 {
3134 struct inode *inode = page->mapping->host;
3135
3136 if (test_opt(inode->i_sb, NOBH))
3137 return nobh_writepage(page, noalloc_get_block_write, wbc);
3138 else
3139 return block_write_full_page(page, noalloc_get_block_write,
3140 wbc);
3141 }
3142
3143 static int ext4_normal_writepage(struct page *page,
3144 struct writeback_control *wbc)
3145 {
3146 struct inode *inode = page->mapping->host;
3147 loff_t size = i_size_read(inode);
3148 loff_t len;
3149
3150 trace_mark(ext4_normal_writepage,
3151 "dev %s ino %lu page_index %lu",
3152 inode->i_sb->s_id, inode->i_ino, page->index);
3153 J_ASSERT(PageLocked(page));
3154 if (page->index == size >> PAGE_CACHE_SHIFT)
3155 len = size & ~PAGE_CACHE_MASK;
3156 else
3157 len = PAGE_CACHE_SIZE;
3158
3159 if (page_has_buffers(page)) {
3160 /* if page has buffers it should all be mapped
3161 * and allocated. If there are not buffers attached
3162 * to the page we know the page is dirty but it lost
3163 * buffers. That means that at some moment in time
3164 * after write_begin() / write_end() has been called
3165 * all buffers have been clean and thus they must have been
3166 * written at least once. So they are all mapped and we can
3167 * happily proceed with mapping them and writing the page.
3168 */
3169 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3170 ext4_bh_unmapped_or_delay));
3171 }
3172
3173 if (!ext4_journal_current_handle())
3174 return __ext4_normal_writepage(page, wbc);
3175
3176 redirty_page_for_writepage(wbc, page);
3177 unlock_page(page);
3178 return 0;
3179 }
3180
3181 static int __ext4_journalled_writepage(struct page *page,
3182 struct writeback_control *wbc)
3183 {
3184 struct address_space *mapping = page->mapping;
3185 struct inode *inode = mapping->host;
3186 struct buffer_head *page_bufs;
3187 handle_t *handle = NULL;
3188 int ret = 0;
3189 int err;
3190
3191 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3192 noalloc_get_block_write);
3193 if (ret != 0)
3194 goto out_unlock;
3195
3196 page_bufs = page_buffers(page);
3197 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3198 bget_one);
3199 /* As soon as we unlock the page, it can go away, but we have
3200 * references to buffers so we are safe */
3201 unlock_page(page);
3202
3203 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3204 if (IS_ERR(handle)) {
3205 ret = PTR_ERR(handle);
3206 goto out;
3207 }
3208
3209 ret = walk_page_buffers(handle, page_bufs, 0,
3210 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3211
3212 err = walk_page_buffers(handle, page_bufs, 0,
3213 PAGE_CACHE_SIZE, NULL, write_end_fn);
3214 if (ret == 0)
3215 ret = err;
3216 err = ext4_journal_stop(handle);
3217 if (!ret)
3218 ret = err;
3219
3220 walk_page_buffers(handle, page_bufs, 0,
3221 PAGE_CACHE_SIZE, NULL, bput_one);
3222 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3223 goto out;
3224
3225 out_unlock:
3226 unlock_page(page);
3227 out:
3228 return ret;
3229 }
3230
3231 static int ext4_journalled_writepage(struct page *page,
3232 struct writeback_control *wbc)
3233 {
3234 struct inode *inode = page->mapping->host;
3235 loff_t size = i_size_read(inode);
3236 loff_t len;
3237
3238 trace_mark(ext4_journalled_writepage,
3239 "dev %s ino %lu page_index %lu",
3240 inode->i_sb->s_id, inode->i_ino, page->index);
3241 J_ASSERT(PageLocked(page));
3242 if (page->index == size >> PAGE_CACHE_SHIFT)
3243 len = size & ~PAGE_CACHE_MASK;
3244 else
3245 len = PAGE_CACHE_SIZE;
3246
3247 if (page_has_buffers(page)) {
3248 /* if page has buffers it should all be mapped
3249 * and allocated. If there are not buffers attached
3250 * to the page we know the page is dirty but it lost
3251 * buffers. That means that at some moment in time
3252 * after write_begin() / write_end() has been called
3253 * all buffers have been clean and thus they must have been
3254 * written at least once. So they are all mapped and we can
3255 * happily proceed with mapping them and writing the page.
3256 */
3257 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3258 ext4_bh_unmapped_or_delay));
3259 }
3260
3261 if (ext4_journal_current_handle())
3262 goto no_write;
3263
3264 if (PageChecked(page)) {
3265 /*
3266 * It's mmapped pagecache. Add buffers and journal it. There
3267 * doesn't seem much point in redirtying the page here.
3268 */
3269 ClearPageChecked(page);
3270 return __ext4_journalled_writepage(page, wbc);
3271 } else {
3272 /*
3273 * It may be a page full of checkpoint-mode buffers. We don't
3274 * really know unless we go poke around in the buffer_heads.
3275 * But block_write_full_page will do the right thing.
3276 */
3277 return block_write_full_page(page, noalloc_get_block_write,
3278 wbc);
3279 }
3280 no_write:
3281 redirty_page_for_writepage(wbc, page);
3282 unlock_page(page);
3283 return 0;
3284 }
3285
3286 static int ext4_readpage(struct file *file, struct page *page)
3287 {
3288 return mpage_readpage(page, ext4_get_block);
3289 }
3290
3291 static int
3292 ext4_readpages(struct file *file, struct address_space *mapping,
3293 struct list_head *pages, unsigned nr_pages)
3294 {
3295 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3296 }
3297
3298 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3299 {
3300 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3301
3302 /*
3303 * If it's a full truncate we just forget about the pending dirtying
3304 */
3305 if (offset == 0)
3306 ClearPageChecked(page);
3307
3308 if (journal)
3309 jbd2_journal_invalidatepage(journal, page, offset);
3310 else
3311 block_invalidatepage(page, offset);
3312 }
3313
3314 static int ext4_releasepage(struct page *page, gfp_t wait)
3315 {
3316 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3317
3318 WARN_ON(PageChecked(page));
3319 if (!page_has_buffers(page))
3320 return 0;
3321 if (journal)
3322 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3323 else
3324 return try_to_free_buffers(page);
3325 }
3326
3327 /*
3328 * If the O_DIRECT write will extend the file then add this inode to the
3329 * orphan list. So recovery will truncate it back to the original size
3330 * if the machine crashes during the write.
3331 *
3332 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3333 * crashes then stale disk data _may_ be exposed inside the file. But current
3334 * VFS code falls back into buffered path in that case so we are safe.
3335 */
3336 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3337 const struct iovec *iov, loff_t offset,
3338 unsigned long nr_segs)
3339 {
3340 struct file *file = iocb->ki_filp;
3341 struct inode *inode = file->f_mapping->host;
3342 struct ext4_inode_info *ei = EXT4_I(inode);
3343 handle_t *handle;
3344 ssize_t ret;
3345 int orphan = 0;
3346 size_t count = iov_length(iov, nr_segs);
3347
3348 if (rw == WRITE) {
3349 loff_t final_size = offset + count;
3350
3351 if (final_size > inode->i_size) {
3352 /* Credits for sb + inode write */
3353 handle = ext4_journal_start(inode, 2);
3354 if (IS_ERR(handle)) {
3355 ret = PTR_ERR(handle);
3356 goto out;
3357 }
3358 ret = ext4_orphan_add(handle, inode);
3359 if (ret) {
3360 ext4_journal_stop(handle);
3361 goto out;
3362 }
3363 orphan = 1;
3364 ei->i_disksize = inode->i_size;
3365 ext4_journal_stop(handle);
3366 }
3367 }
3368
3369 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3370 offset, nr_segs,
3371 ext4_get_block, NULL);
3372
3373 if (orphan) {
3374 int err;
3375
3376 /* Credits for sb + inode write */
3377 handle = ext4_journal_start(inode, 2);
3378 if (IS_ERR(handle)) {
3379 /* This is really bad luck. We've written the data
3380 * but cannot extend i_size. Bail out and pretend
3381 * the write failed... */
3382 ret = PTR_ERR(handle);
3383 goto out;
3384 }
3385 if (inode->i_nlink)
3386 ext4_orphan_del(handle, inode);
3387 if (ret > 0) {
3388 loff_t end = offset + ret;
3389 if (end > inode->i_size) {
3390 ei->i_disksize = end;
3391 i_size_write(inode, end);
3392 /*
3393 * We're going to return a positive `ret'
3394 * here due to non-zero-length I/O, so there's
3395 * no way of reporting error returns from
3396 * ext4_mark_inode_dirty() to userspace. So
3397 * ignore it.
3398 */
3399 ext4_mark_inode_dirty(handle, inode);
3400 }
3401 }
3402 err = ext4_journal_stop(handle);
3403 if (ret == 0)
3404 ret = err;
3405 }
3406 out:
3407 return ret;
3408 }
3409
3410 /*
3411 * Pages can be marked dirty completely asynchronously from ext4's journalling
3412 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3413 * much here because ->set_page_dirty is called under VFS locks. The page is
3414 * not necessarily locked.
3415 *
3416 * We cannot just dirty the page and leave attached buffers clean, because the
3417 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3418 * or jbddirty because all the journalling code will explode.
3419 *
3420 * So what we do is to mark the page "pending dirty" and next time writepage
3421 * is called, propagate that into the buffers appropriately.
3422 */
3423 static int ext4_journalled_set_page_dirty(struct page *page)
3424 {
3425 SetPageChecked(page);
3426 return __set_page_dirty_nobuffers(page);
3427 }
3428
3429 static const struct address_space_operations ext4_ordered_aops = {
3430 .readpage = ext4_readpage,
3431 .readpages = ext4_readpages,
3432 .writepage = ext4_normal_writepage,
3433 .sync_page = block_sync_page,
3434 .write_begin = ext4_write_begin,
3435 .write_end = ext4_ordered_write_end,
3436 .bmap = ext4_bmap,
3437 .invalidatepage = ext4_invalidatepage,
3438 .releasepage = ext4_releasepage,
3439 .direct_IO = ext4_direct_IO,
3440 .migratepage = buffer_migrate_page,
3441 .is_partially_uptodate = block_is_partially_uptodate,
3442 };
3443
3444 static const struct address_space_operations ext4_writeback_aops = {
3445 .readpage = ext4_readpage,
3446 .readpages = ext4_readpages,
3447 .writepage = ext4_normal_writepage,
3448 .sync_page = block_sync_page,
3449 .write_begin = ext4_write_begin,
3450 .write_end = ext4_writeback_write_end,
3451 .bmap = ext4_bmap,
3452 .invalidatepage = ext4_invalidatepage,
3453 .releasepage = ext4_releasepage,
3454 .direct_IO = ext4_direct_IO,
3455 .migratepage = buffer_migrate_page,
3456 .is_partially_uptodate = block_is_partially_uptodate,
3457 };
3458
3459 static const struct address_space_operations ext4_journalled_aops = {
3460 .readpage = ext4_readpage,
3461 .readpages = ext4_readpages,
3462 .writepage = ext4_journalled_writepage,
3463 .sync_page = block_sync_page,
3464 .write_begin = ext4_write_begin,
3465 .write_end = ext4_journalled_write_end,
3466 .set_page_dirty = ext4_journalled_set_page_dirty,
3467 .bmap = ext4_bmap,
3468 .invalidatepage = ext4_invalidatepage,
3469 .releasepage = ext4_releasepage,
3470 .is_partially_uptodate = block_is_partially_uptodate,
3471 };
3472
3473 static const struct address_space_operations ext4_da_aops = {
3474 .readpage = ext4_readpage,
3475 .readpages = ext4_readpages,
3476 .writepage = ext4_da_writepage,
3477 .writepages = ext4_da_writepages,
3478 .sync_page = block_sync_page,
3479 .write_begin = ext4_da_write_begin,
3480 .write_end = ext4_da_write_end,
3481 .bmap = ext4_bmap,
3482 .invalidatepage = ext4_da_invalidatepage,
3483 .releasepage = ext4_releasepage,
3484 .direct_IO = ext4_direct_IO,
3485 .migratepage = buffer_migrate_page,
3486 .is_partially_uptodate = block_is_partially_uptodate,
3487 };
3488
3489 void ext4_set_aops(struct inode *inode)
3490 {
3491 if (ext4_should_order_data(inode) &&
3492 test_opt(inode->i_sb, DELALLOC))
3493 inode->i_mapping->a_ops = &ext4_da_aops;
3494 else if (ext4_should_order_data(inode))
3495 inode->i_mapping->a_ops = &ext4_ordered_aops;
3496 else if (ext4_should_writeback_data(inode) &&
3497 test_opt(inode->i_sb, DELALLOC))
3498 inode->i_mapping->a_ops = &ext4_da_aops;
3499 else if (ext4_should_writeback_data(inode))
3500 inode->i_mapping->a_ops = &ext4_writeback_aops;
3501 else
3502 inode->i_mapping->a_ops = &ext4_journalled_aops;
3503 }
3504
3505 /*
3506 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3507 * up to the end of the block which corresponds to `from'.
3508 * This required during truncate. We need to physically zero the tail end
3509 * of that block so it doesn't yield old data if the file is later grown.
3510 */
3511 int ext4_block_truncate_page(handle_t *handle,
3512 struct address_space *mapping, loff_t from)
3513 {
3514 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3515 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3516 unsigned blocksize, length, pos;
3517 ext4_lblk_t iblock;
3518 struct inode *inode = mapping->host;
3519 struct buffer_head *bh;
3520 struct page *page;
3521 int err = 0;
3522
3523 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3524 if (!page)
3525 return -EINVAL;
3526
3527 blocksize = inode->i_sb->s_blocksize;
3528 length = blocksize - (offset & (blocksize - 1));
3529 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3530
3531 /*
3532 * For "nobh" option, we can only work if we don't need to
3533 * read-in the page - otherwise we create buffers to do the IO.
3534 */
3535 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3536 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3537 zero_user(page, offset, length);
3538 set_page_dirty(page);
3539 goto unlock;
3540 }
3541
3542 if (!page_has_buffers(page))
3543 create_empty_buffers(page, blocksize, 0);
3544
3545 /* Find the buffer that contains "offset" */
3546 bh = page_buffers(page);
3547 pos = blocksize;
3548 while (offset >= pos) {
3549 bh = bh->b_this_page;
3550 iblock++;
3551 pos += blocksize;
3552 }
3553
3554 err = 0;
3555 if (buffer_freed(bh)) {
3556 BUFFER_TRACE(bh, "freed: skip");
3557 goto unlock;
3558 }
3559
3560 if (!buffer_mapped(bh)) {
3561 BUFFER_TRACE(bh, "unmapped");
3562 ext4_get_block(inode, iblock, bh, 0);
3563 /* unmapped? It's a hole - nothing to do */
3564 if (!buffer_mapped(bh)) {
3565 BUFFER_TRACE(bh, "still unmapped");
3566 goto unlock;
3567 }
3568 }
3569
3570 /* Ok, it's mapped. Make sure it's up-to-date */
3571 if (PageUptodate(page))
3572 set_buffer_uptodate(bh);
3573
3574 if (!buffer_uptodate(bh)) {
3575 err = -EIO;
3576 ll_rw_block(READ, 1, &bh);
3577 wait_on_buffer(bh);
3578 /* Uhhuh. Read error. Complain and punt. */
3579 if (!buffer_uptodate(bh))
3580 goto unlock;
3581 }
3582
3583 if (ext4_should_journal_data(inode)) {
3584 BUFFER_TRACE(bh, "get write access");
3585 err = ext4_journal_get_write_access(handle, bh);
3586 if (err)
3587 goto unlock;
3588 }
3589
3590 zero_user(page, offset, length);
3591
3592 BUFFER_TRACE(bh, "zeroed end of block");
3593
3594 err = 0;
3595 if (ext4_should_journal_data(inode)) {
3596 err = ext4_handle_dirty_metadata(handle, inode, bh);
3597 } else {
3598 if (ext4_should_order_data(inode))
3599 err = ext4_jbd2_file_inode(handle, inode);
3600 mark_buffer_dirty(bh);
3601 }
3602
3603 unlock:
3604 unlock_page(page);
3605 page_cache_release(page);
3606 return err;
3607 }
3608
3609 /*
3610 * Probably it should be a library function... search for first non-zero word
3611 * or memcmp with zero_page, whatever is better for particular architecture.
3612 * Linus?
3613 */
3614 static inline int all_zeroes(__le32 *p, __le32 *q)
3615 {
3616 while (p < q)
3617 if (*p++)
3618 return 0;
3619 return 1;
3620 }
3621
3622 /**
3623 * ext4_find_shared - find the indirect blocks for partial truncation.
3624 * @inode: inode in question
3625 * @depth: depth of the affected branch
3626 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3627 * @chain: place to store the pointers to partial indirect blocks
3628 * @top: place to the (detached) top of branch
3629 *
3630 * This is a helper function used by ext4_truncate().
3631 *
3632 * When we do truncate() we may have to clean the ends of several
3633 * indirect blocks but leave the blocks themselves alive. Block is
3634 * partially truncated if some data below the new i_size is refered
3635 * from it (and it is on the path to the first completely truncated
3636 * data block, indeed). We have to free the top of that path along
3637 * with everything to the right of the path. Since no allocation
3638 * past the truncation point is possible until ext4_truncate()
3639 * finishes, we may safely do the latter, but top of branch may
3640 * require special attention - pageout below the truncation point
3641 * might try to populate it.
3642 *
3643 * We atomically detach the top of branch from the tree, store the
3644 * block number of its root in *@top, pointers to buffer_heads of
3645 * partially truncated blocks - in @chain[].bh and pointers to
3646 * their last elements that should not be removed - in
3647 * @chain[].p. Return value is the pointer to last filled element
3648 * of @chain.
3649 *
3650 * The work left to caller to do the actual freeing of subtrees:
3651 * a) free the subtree starting from *@top
3652 * b) free the subtrees whose roots are stored in
3653 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3654 * c) free the subtrees growing from the inode past the @chain[0].
3655 * (no partially truncated stuff there). */
3656
3657 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3658 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3659 {
3660 Indirect *partial, *p;
3661 int k, err;
3662
3663 *top = 0;
3664 /* Make k index the deepest non-null offest + 1 */
3665 for (k = depth; k > 1 && !offsets[k-1]; k--)
3666 ;
3667 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3668 /* Writer: pointers */
3669 if (!partial)
3670 partial = chain + k-1;
3671 /*
3672 * If the branch acquired continuation since we've looked at it -
3673 * fine, it should all survive and (new) top doesn't belong to us.
3674 */
3675 if (!partial->key && *partial->p)
3676 /* Writer: end */
3677 goto no_top;
3678 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3679 ;
3680 /*
3681 * OK, we've found the last block that must survive. The rest of our
3682 * branch should be detached before unlocking. However, if that rest
3683 * of branch is all ours and does not grow immediately from the inode
3684 * it's easier to cheat and just decrement partial->p.
3685 */
3686 if (p == chain + k - 1 && p > chain) {
3687 p->p--;
3688 } else {
3689 *top = *p->p;
3690 /* Nope, don't do this in ext4. Must leave the tree intact */
3691 #if 0
3692 *p->p = 0;
3693 #endif
3694 }
3695 /* Writer: end */
3696
3697 while (partial > p) {
3698 brelse(partial->bh);
3699 partial--;
3700 }
3701 no_top:
3702 return partial;
3703 }
3704
3705 /*
3706 * Zero a number of block pointers in either an inode or an indirect block.
3707 * If we restart the transaction we must again get write access to the
3708 * indirect block for further modification.
3709 *
3710 * We release `count' blocks on disk, but (last - first) may be greater
3711 * than `count' because there can be holes in there.
3712 */
3713 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3714 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3715 unsigned long count, __le32 *first, __le32 *last)
3716 {
3717 __le32 *p;
3718 if (try_to_extend_transaction(handle, inode)) {
3719 if (bh) {
3720 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3721 ext4_handle_dirty_metadata(handle, inode, bh);
3722 }
3723 ext4_mark_inode_dirty(handle, inode);
3724 ext4_journal_test_restart(handle, inode);
3725 if (bh) {
3726 BUFFER_TRACE(bh, "retaking write access");
3727 ext4_journal_get_write_access(handle, bh);
3728 }
3729 }
3730
3731 /*
3732 * Any buffers which are on the journal will be in memory. We find
3733 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3734 * on them. We've already detached each block from the file, so
3735 * bforget() in jbd2_journal_forget() should be safe.
3736 *
3737 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3738 */
3739 for (p = first; p < last; p++) {
3740 u32 nr = le32_to_cpu(*p);
3741 if (nr) {
3742 struct buffer_head *tbh;
3743
3744 *p = 0;
3745 tbh = sb_find_get_block(inode->i_sb, nr);
3746 ext4_forget(handle, 0, inode, tbh, nr);
3747 }
3748 }
3749
3750 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3751 }
3752
3753 /**
3754 * ext4_free_data - free a list of data blocks
3755 * @handle: handle for this transaction
3756 * @inode: inode we are dealing with
3757 * @this_bh: indirect buffer_head which contains *@first and *@last
3758 * @first: array of block numbers
3759 * @last: points immediately past the end of array
3760 *
3761 * We are freeing all blocks refered from that array (numbers are stored as
3762 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3763 *
3764 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3765 * blocks are contiguous then releasing them at one time will only affect one
3766 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3767 * actually use a lot of journal space.
3768 *
3769 * @this_bh will be %NULL if @first and @last point into the inode's direct
3770 * block pointers.
3771 */
3772 static void ext4_free_data(handle_t *handle, struct inode *inode,
3773 struct buffer_head *this_bh,
3774 __le32 *first, __le32 *last)
3775 {
3776 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3777 unsigned long count = 0; /* Number of blocks in the run */
3778 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3779 corresponding to
3780 block_to_free */
3781 ext4_fsblk_t nr; /* Current block # */
3782 __le32 *p; /* Pointer into inode/ind
3783 for current block */
3784 int err;
3785
3786 if (this_bh) { /* For indirect block */
3787 BUFFER_TRACE(this_bh, "get_write_access");
3788 err = ext4_journal_get_write_access(handle, this_bh);
3789 /* Important: if we can't update the indirect pointers
3790 * to the blocks, we can't free them. */
3791 if (err)
3792 return;
3793 }
3794
3795 for (p = first; p < last; p++) {
3796 nr = le32_to_cpu(*p);
3797 if (nr) {
3798 /* accumulate blocks to free if they're contiguous */
3799 if (count == 0) {
3800 block_to_free = nr;
3801 block_to_free_p = p;
3802 count = 1;
3803 } else if (nr == block_to_free + count) {
3804 count++;
3805 } else {
3806 ext4_clear_blocks(handle, inode, this_bh,
3807 block_to_free,
3808 count, block_to_free_p, p);
3809 block_to_free = nr;
3810 block_to_free_p = p;
3811 count = 1;
3812 }
3813 }
3814 }
3815
3816 if (count > 0)
3817 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3818 count, block_to_free_p, p);
3819
3820 if (this_bh) {
3821 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3822
3823 /*
3824 * The buffer head should have an attached journal head at this
3825 * point. However, if the data is corrupted and an indirect
3826 * block pointed to itself, it would have been detached when
3827 * the block was cleared. Check for this instead of OOPSing.
3828 */
3829 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3830 ext4_handle_dirty_metadata(handle, inode, this_bh);
3831 else
3832 ext4_error(inode->i_sb, __func__,
3833 "circular indirect block detected, "
3834 "inode=%lu, block=%llu",
3835 inode->i_ino,
3836 (unsigned long long) this_bh->b_blocknr);
3837 }
3838 }
3839
3840 /**
3841 * ext4_free_branches - free an array of branches
3842 * @handle: JBD handle for this transaction
3843 * @inode: inode we are dealing with
3844 * @parent_bh: the buffer_head which contains *@first and *@last
3845 * @first: array of block numbers
3846 * @last: pointer immediately past the end of array
3847 * @depth: depth of the branches to free
3848 *
3849 * We are freeing all blocks refered from these branches (numbers are
3850 * stored as little-endian 32-bit) and updating @inode->i_blocks
3851 * appropriately.
3852 */
3853 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3854 struct buffer_head *parent_bh,
3855 __le32 *first, __le32 *last, int depth)
3856 {
3857 ext4_fsblk_t nr;
3858 __le32 *p;
3859
3860 if (ext4_handle_is_aborted(handle))
3861 return;
3862
3863 if (depth--) {
3864 struct buffer_head *bh;
3865 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3866 p = last;
3867 while (--p >= first) {
3868 nr = le32_to_cpu(*p);
3869 if (!nr)
3870 continue; /* A hole */
3871
3872 /* Go read the buffer for the next level down */
3873 bh = sb_bread(inode->i_sb, nr);
3874
3875 /*
3876 * A read failure? Report error and clear slot
3877 * (should be rare).
3878 */
3879 if (!bh) {
3880 ext4_error(inode->i_sb, "ext4_free_branches",
3881 "Read failure, inode=%lu, block=%llu",
3882 inode->i_ino, nr);
3883 continue;
3884 }
3885
3886 /* This zaps the entire block. Bottom up. */
3887 BUFFER_TRACE(bh, "free child branches");
3888 ext4_free_branches(handle, inode, bh,
3889 (__le32 *) bh->b_data,
3890 (__le32 *) bh->b_data + addr_per_block,
3891 depth);
3892
3893 /*
3894 * We've probably journalled the indirect block several
3895 * times during the truncate. But it's no longer
3896 * needed and we now drop it from the transaction via
3897 * jbd2_journal_revoke().
3898 *
3899 * That's easy if it's exclusively part of this
3900 * transaction. But if it's part of the committing
3901 * transaction then jbd2_journal_forget() will simply
3902 * brelse() it. That means that if the underlying
3903 * block is reallocated in ext4_get_block(),
3904 * unmap_underlying_metadata() will find this block
3905 * and will try to get rid of it. damn, damn.
3906 *
3907 * If this block has already been committed to the
3908 * journal, a revoke record will be written. And
3909 * revoke records must be emitted *before* clearing
3910 * this block's bit in the bitmaps.
3911 */
3912 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3913
3914 /*
3915 * Everything below this this pointer has been
3916 * released. Now let this top-of-subtree go.
3917 *
3918 * We want the freeing of this indirect block to be
3919 * atomic in the journal with the updating of the
3920 * bitmap block which owns it. So make some room in
3921 * the journal.
3922 *
3923 * We zero the parent pointer *after* freeing its
3924 * pointee in the bitmaps, so if extend_transaction()
3925 * for some reason fails to put the bitmap changes and
3926 * the release into the same transaction, recovery
3927 * will merely complain about releasing a free block,
3928 * rather than leaking blocks.
3929 */
3930 if (ext4_handle_is_aborted(handle))
3931 return;
3932 if (try_to_extend_transaction(handle, inode)) {
3933 ext4_mark_inode_dirty(handle, inode);
3934 ext4_journal_test_restart(handle, inode);
3935 }
3936
3937 ext4_free_blocks(handle, inode, nr, 1, 1);
3938
3939 if (parent_bh) {
3940 /*
3941 * The block which we have just freed is
3942 * pointed to by an indirect block: journal it
3943 */
3944 BUFFER_TRACE(parent_bh, "get_write_access");
3945 if (!ext4_journal_get_write_access(handle,
3946 parent_bh)){
3947 *p = 0;
3948 BUFFER_TRACE(parent_bh,
3949 "call ext4_handle_dirty_metadata");
3950 ext4_handle_dirty_metadata(handle,
3951 inode,
3952 parent_bh);
3953 }
3954 }
3955 }
3956 } else {
3957 /* We have reached the bottom of the tree. */
3958 BUFFER_TRACE(parent_bh, "free data blocks");
3959 ext4_free_data(handle, inode, parent_bh, first, last);
3960 }
3961 }
3962
3963 int ext4_can_truncate(struct inode *inode)
3964 {
3965 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3966 return 0;
3967 if (S_ISREG(inode->i_mode))
3968 return 1;
3969 if (S_ISDIR(inode->i_mode))
3970 return 1;
3971 if (S_ISLNK(inode->i_mode))
3972 return !ext4_inode_is_fast_symlink(inode);
3973 return 0;
3974 }
3975
3976 /*
3977 * ext4_truncate()
3978 *
3979 * We block out ext4_get_block() block instantiations across the entire
3980 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3981 * simultaneously on behalf of the same inode.
3982 *
3983 * As we work through the truncate and commmit bits of it to the journal there
3984 * is one core, guiding principle: the file's tree must always be consistent on
3985 * disk. We must be able to restart the truncate after a crash.
3986 *
3987 * The file's tree may be transiently inconsistent in memory (although it
3988 * probably isn't), but whenever we close off and commit a journal transaction,
3989 * the contents of (the filesystem + the journal) must be consistent and
3990 * restartable. It's pretty simple, really: bottom up, right to left (although
3991 * left-to-right works OK too).
3992 *
3993 * Note that at recovery time, journal replay occurs *before* the restart of
3994 * truncate against the orphan inode list.
3995 *
3996 * The committed inode has the new, desired i_size (which is the same as
3997 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3998 * that this inode's truncate did not complete and it will again call
3999 * ext4_truncate() to have another go. So there will be instantiated blocks
4000 * to the right of the truncation point in a crashed ext4 filesystem. But
4001 * that's fine - as long as they are linked from the inode, the post-crash
4002 * ext4_truncate() run will find them and release them.
4003 */
4004 void ext4_truncate(struct inode *inode)
4005 {
4006 handle_t *handle;
4007 struct ext4_inode_info *ei = EXT4_I(inode);
4008 __le32 *i_data = ei->i_data;
4009 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4010 struct address_space *mapping = inode->i_mapping;
4011 ext4_lblk_t offsets[4];
4012 Indirect chain[4];
4013 Indirect *partial;
4014 __le32 nr = 0;
4015 int n;
4016 ext4_lblk_t last_block;
4017 unsigned blocksize = inode->i_sb->s_blocksize;
4018
4019 if (!ext4_can_truncate(inode))
4020 return;
4021
4022 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4023 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4024
4025 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4026 ext4_ext_truncate(inode);
4027 return;
4028 }
4029
4030 handle = start_transaction(inode);
4031 if (IS_ERR(handle))
4032 return; /* AKPM: return what? */
4033
4034 last_block = (inode->i_size + blocksize-1)
4035 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4036
4037 if (inode->i_size & (blocksize - 1))
4038 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4039 goto out_stop;
4040
4041 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4042 if (n == 0)
4043 goto out_stop; /* error */
4044
4045 /*
4046 * OK. This truncate is going to happen. We add the inode to the
4047 * orphan list, so that if this truncate spans multiple transactions,
4048 * and we crash, we will resume the truncate when the filesystem
4049 * recovers. It also marks the inode dirty, to catch the new size.
4050 *
4051 * Implication: the file must always be in a sane, consistent
4052 * truncatable state while each transaction commits.
4053 */
4054 if (ext4_orphan_add(handle, inode))
4055 goto out_stop;
4056
4057 /*
4058 * From here we block out all ext4_get_block() callers who want to
4059 * modify the block allocation tree.
4060 */
4061 down_write(&ei->i_data_sem);
4062
4063 ext4_discard_preallocations(inode);
4064
4065 /*
4066 * The orphan list entry will now protect us from any crash which
4067 * occurs before the truncate completes, so it is now safe to propagate
4068 * the new, shorter inode size (held for now in i_size) into the
4069 * on-disk inode. We do this via i_disksize, which is the value which
4070 * ext4 *really* writes onto the disk inode.
4071 */
4072 ei->i_disksize = inode->i_size;
4073
4074 if (n == 1) { /* direct blocks */
4075 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4076 i_data + EXT4_NDIR_BLOCKS);
4077 goto do_indirects;
4078 }
4079
4080 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4081 /* Kill the top of shared branch (not detached) */
4082 if (nr) {
4083 if (partial == chain) {
4084 /* Shared branch grows from the inode */
4085 ext4_free_branches(handle, inode, NULL,
4086 &nr, &nr+1, (chain+n-1) - partial);
4087 *partial->p = 0;
4088 /*
4089 * We mark the inode dirty prior to restart,
4090 * and prior to stop. No need for it here.
4091 */
4092 } else {
4093 /* Shared branch grows from an indirect block */
4094 BUFFER_TRACE(partial->bh, "get_write_access");
4095 ext4_free_branches(handle, inode, partial->bh,
4096 partial->p,
4097 partial->p+1, (chain+n-1) - partial);
4098 }
4099 }
4100 /* Clear the ends of indirect blocks on the shared branch */
4101 while (partial > chain) {
4102 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4103 (__le32*)partial->bh->b_data+addr_per_block,
4104 (chain+n-1) - partial);
4105 BUFFER_TRACE(partial->bh, "call brelse");
4106 brelse (partial->bh);
4107 partial--;
4108 }
4109 do_indirects:
4110 /* Kill the remaining (whole) subtrees */
4111 switch (offsets[0]) {
4112 default:
4113 nr = i_data[EXT4_IND_BLOCK];
4114 if (nr) {
4115 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4116 i_data[EXT4_IND_BLOCK] = 0;
4117 }
4118 case EXT4_IND_BLOCK:
4119 nr = i_data[EXT4_DIND_BLOCK];
4120 if (nr) {
4121 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4122 i_data[EXT4_DIND_BLOCK] = 0;
4123 }
4124 case EXT4_DIND_BLOCK:
4125 nr = i_data[EXT4_TIND_BLOCK];
4126 if (nr) {
4127 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4128 i_data[EXT4_TIND_BLOCK] = 0;
4129 }
4130 case EXT4_TIND_BLOCK:
4131 ;
4132 }
4133
4134 up_write(&ei->i_data_sem);
4135 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4136 ext4_mark_inode_dirty(handle, inode);
4137
4138 /*
4139 * In a multi-transaction truncate, we only make the final transaction
4140 * synchronous
4141 */
4142 if (IS_SYNC(inode))
4143 ext4_handle_sync(handle);
4144 out_stop:
4145 /*
4146 * If this was a simple ftruncate(), and the file will remain alive
4147 * then we need to clear up the orphan record which we created above.
4148 * However, if this was a real unlink then we were called by
4149 * ext4_delete_inode(), and we allow that function to clean up the
4150 * orphan info for us.
4151 */
4152 if (inode->i_nlink)
4153 ext4_orphan_del(handle, inode);
4154
4155 ext4_journal_stop(handle);
4156 }
4157
4158 /*
4159 * ext4_get_inode_loc returns with an extra refcount against the inode's
4160 * underlying buffer_head on success. If 'in_mem' is true, we have all
4161 * data in memory that is needed to recreate the on-disk version of this
4162 * inode.
4163 */
4164 static int __ext4_get_inode_loc(struct inode *inode,
4165 struct ext4_iloc *iloc, int in_mem)
4166 {
4167 struct ext4_group_desc *gdp;
4168 struct buffer_head *bh;
4169 struct super_block *sb = inode->i_sb;
4170 ext4_fsblk_t block;
4171 int inodes_per_block, inode_offset;
4172
4173 iloc->bh = NULL;
4174 if (!ext4_valid_inum(sb, inode->i_ino))
4175 return -EIO;
4176
4177 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4178 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4179 if (!gdp)
4180 return -EIO;
4181
4182 /*
4183 * Figure out the offset within the block group inode table
4184 */
4185 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4186 inode_offset = ((inode->i_ino - 1) %
4187 EXT4_INODES_PER_GROUP(sb));
4188 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4189 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4190
4191 bh = sb_getblk(sb, block);
4192 if (!bh) {
4193 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4194 "inode block - inode=%lu, block=%llu",
4195 inode->i_ino, block);
4196 return -EIO;
4197 }
4198 if (!buffer_uptodate(bh)) {
4199 lock_buffer(bh);
4200
4201 /*
4202 * If the buffer has the write error flag, we have failed
4203 * to write out another inode in the same block. In this
4204 * case, we don't have to read the block because we may
4205 * read the old inode data successfully.
4206 */
4207 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4208 set_buffer_uptodate(bh);
4209
4210 if (buffer_uptodate(bh)) {
4211 /* someone brought it uptodate while we waited */
4212 unlock_buffer(bh);
4213 goto has_buffer;
4214 }
4215
4216 /*
4217 * If we have all information of the inode in memory and this
4218 * is the only valid inode in the block, we need not read the
4219 * block.
4220 */
4221 if (in_mem) {
4222 struct buffer_head *bitmap_bh;
4223 int i, start;
4224
4225 start = inode_offset & ~(inodes_per_block - 1);
4226
4227 /* Is the inode bitmap in cache? */
4228 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4229 if (!bitmap_bh)
4230 goto make_io;
4231
4232 /*
4233 * If the inode bitmap isn't in cache then the
4234 * optimisation may end up performing two reads instead
4235 * of one, so skip it.
4236 */
4237 if (!buffer_uptodate(bitmap_bh)) {
4238 brelse(bitmap_bh);
4239 goto make_io;
4240 }
4241 for (i = start; i < start + inodes_per_block; i++) {
4242 if (i == inode_offset)
4243 continue;
4244 if (ext4_test_bit(i, bitmap_bh->b_data))
4245 break;
4246 }
4247 brelse(bitmap_bh);
4248 if (i == start + inodes_per_block) {
4249 /* all other inodes are free, so skip I/O */
4250 memset(bh->b_data, 0, bh->b_size);
4251 set_buffer_uptodate(bh);
4252 unlock_buffer(bh);
4253 goto has_buffer;
4254 }
4255 }
4256
4257 make_io:
4258 /*
4259 * If we need to do any I/O, try to pre-readahead extra
4260 * blocks from the inode table.
4261 */
4262 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4263 ext4_fsblk_t b, end, table;
4264 unsigned num;
4265
4266 table = ext4_inode_table(sb, gdp);
4267 /* s_inode_readahead_blks is always a power of 2 */
4268 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4269 if (table > b)
4270 b = table;
4271 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4272 num = EXT4_INODES_PER_GROUP(sb);
4273 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4274 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4275 num -= ext4_itable_unused_count(sb, gdp);
4276 table += num / inodes_per_block;
4277 if (end > table)
4278 end = table;
4279 while (b <= end)
4280 sb_breadahead(sb, b++);
4281 }
4282
4283 /*
4284 * There are other valid inodes in the buffer, this inode
4285 * has in-inode xattrs, or we don't have this inode in memory.
4286 * Read the block from disk.
4287 */
4288 get_bh(bh);
4289 bh->b_end_io = end_buffer_read_sync;
4290 submit_bh(READ_META, bh);
4291 wait_on_buffer(bh);
4292 if (!buffer_uptodate(bh)) {
4293 ext4_error(sb, __func__,
4294 "unable to read inode block - inode=%lu, "
4295 "block=%llu", inode->i_ino, block);
4296 brelse(bh);
4297 return -EIO;
4298 }
4299 }
4300 has_buffer:
4301 iloc->bh = bh;
4302 return 0;
4303 }
4304
4305 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4306 {
4307 /* We have all inode data except xattrs in memory here. */
4308 return __ext4_get_inode_loc(inode, iloc,
4309 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4310 }
4311
4312 void ext4_set_inode_flags(struct inode *inode)
4313 {
4314 unsigned int flags = EXT4_I(inode)->i_flags;
4315
4316 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4317 if (flags & EXT4_SYNC_FL)
4318 inode->i_flags |= S_SYNC;
4319 if (flags & EXT4_APPEND_FL)
4320 inode->i_flags |= S_APPEND;
4321 if (flags & EXT4_IMMUTABLE_FL)
4322 inode->i_flags |= S_IMMUTABLE;
4323 if (flags & EXT4_NOATIME_FL)
4324 inode->i_flags |= S_NOATIME;
4325 if (flags & EXT4_DIRSYNC_FL)
4326 inode->i_flags |= S_DIRSYNC;
4327 }
4328
4329 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4330 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4331 {
4332 unsigned int flags = ei->vfs_inode.i_flags;
4333
4334 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4335 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4336 if (flags & S_SYNC)
4337 ei->i_flags |= EXT4_SYNC_FL;
4338 if (flags & S_APPEND)
4339 ei->i_flags |= EXT4_APPEND_FL;
4340 if (flags & S_IMMUTABLE)
4341 ei->i_flags |= EXT4_IMMUTABLE_FL;
4342 if (flags & S_NOATIME)
4343 ei->i_flags |= EXT4_NOATIME_FL;
4344 if (flags & S_DIRSYNC)
4345 ei->i_flags |= EXT4_DIRSYNC_FL;
4346 }
4347 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4348 struct ext4_inode_info *ei)
4349 {
4350 blkcnt_t i_blocks ;
4351 struct inode *inode = &(ei->vfs_inode);
4352 struct super_block *sb = inode->i_sb;
4353
4354 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4355 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4356 /* we are using combined 48 bit field */
4357 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4358 le32_to_cpu(raw_inode->i_blocks_lo);
4359 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4360 /* i_blocks represent file system block size */
4361 return i_blocks << (inode->i_blkbits - 9);
4362 } else {
4363 return i_blocks;
4364 }
4365 } else {
4366 return le32_to_cpu(raw_inode->i_blocks_lo);
4367 }
4368 }
4369
4370 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4371 {
4372 struct ext4_iloc iloc;
4373 struct ext4_inode *raw_inode;
4374 struct ext4_inode_info *ei;
4375 struct buffer_head *bh;
4376 struct inode *inode;
4377 long ret;
4378 int block;
4379
4380 inode = iget_locked(sb, ino);
4381 if (!inode)
4382 return ERR_PTR(-ENOMEM);
4383 if (!(inode->i_state & I_NEW))
4384 return inode;
4385
4386 ei = EXT4_I(inode);
4387 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4388 ei->i_acl = EXT4_ACL_NOT_CACHED;
4389 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4390 #endif
4391
4392 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4393 if (ret < 0)
4394 goto bad_inode;
4395 bh = iloc.bh;
4396 raw_inode = ext4_raw_inode(&iloc);
4397 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4398 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4399 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4400 if (!(test_opt(inode->i_sb, NO_UID32))) {
4401 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4402 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4403 }
4404 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4405
4406 ei->i_state = 0;
4407 ei->i_dir_start_lookup = 0;
4408 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4409 /* We now have enough fields to check if the inode was active or not.
4410 * This is needed because nfsd might try to access dead inodes
4411 * the test is that same one that e2fsck uses
4412 * NeilBrown 1999oct15
4413 */
4414 if (inode->i_nlink == 0) {
4415 if (inode->i_mode == 0 ||
4416 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4417 /* this inode is deleted */
4418 brelse(bh);
4419 ret = -ESTALE;
4420 goto bad_inode;
4421 }
4422 /* The only unlinked inodes we let through here have
4423 * valid i_mode and are being read by the orphan
4424 * recovery code: that's fine, we're about to complete
4425 * the process of deleting those. */
4426 }
4427 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4428 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4429 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4430 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4431 ei->i_file_acl |=
4432 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4433 inode->i_size = ext4_isize(raw_inode);
4434 ei->i_disksize = inode->i_size;
4435 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4436 ei->i_block_group = iloc.block_group;
4437 ei->i_last_alloc_group = ~0;
4438 /*
4439 * NOTE! The in-memory inode i_data array is in little-endian order
4440 * even on big-endian machines: we do NOT byteswap the block numbers!
4441 */
4442 for (block = 0; block < EXT4_N_BLOCKS; block++)
4443 ei->i_data[block] = raw_inode->i_block[block];
4444 INIT_LIST_HEAD(&ei->i_orphan);
4445
4446 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4447 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4448 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4449 EXT4_INODE_SIZE(inode->i_sb)) {
4450 brelse(bh);
4451 ret = -EIO;
4452 goto bad_inode;
4453 }
4454 if (ei->i_extra_isize == 0) {
4455 /* The extra space is currently unused. Use it. */
4456 ei->i_extra_isize = sizeof(struct ext4_inode) -
4457 EXT4_GOOD_OLD_INODE_SIZE;
4458 } else {
4459 __le32 *magic = (void *)raw_inode +
4460 EXT4_GOOD_OLD_INODE_SIZE +
4461 ei->i_extra_isize;
4462 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4463 ei->i_state |= EXT4_STATE_XATTR;
4464 }
4465 } else
4466 ei->i_extra_isize = 0;
4467
4468 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4469 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4470 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4471 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4472
4473 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4474 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4475 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4476 inode->i_version |=
4477 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4478 }
4479
4480 ret = 0;
4481 if (ei->i_file_acl &&
4482 ((ei->i_file_acl <
4483 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4484 EXT4_SB(sb)->s_gdb_count)) ||
4485 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4486 ext4_error(sb, __func__,
4487 "bad extended attribute block %llu in inode #%lu",
4488 ei->i_file_acl, inode->i_ino);
4489 ret = -EIO;
4490 goto bad_inode;
4491 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4492 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4493 (S_ISLNK(inode->i_mode) &&
4494 !ext4_inode_is_fast_symlink(inode)))
4495 /* Validate extent which is part of inode */
4496 ret = ext4_ext_check_inode(inode);
4497 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4498 (S_ISLNK(inode->i_mode) &&
4499 !ext4_inode_is_fast_symlink(inode))) {
4500 /* Validate block references which are part of inode */
4501 ret = ext4_check_inode_blockref(inode);
4502 }
4503 if (ret) {
4504 brelse(bh);
4505 goto bad_inode;
4506 }
4507
4508 if (S_ISREG(inode->i_mode)) {
4509 inode->i_op = &ext4_file_inode_operations;
4510 inode->i_fop = &ext4_file_operations;
4511 ext4_set_aops(inode);
4512 } else if (S_ISDIR(inode->i_mode)) {
4513 inode->i_op = &ext4_dir_inode_operations;
4514 inode->i_fop = &ext4_dir_operations;
4515 } else if (S_ISLNK(inode->i_mode)) {
4516 if (ext4_inode_is_fast_symlink(inode)) {
4517 inode->i_op = &ext4_fast_symlink_inode_operations;
4518 nd_terminate_link(ei->i_data, inode->i_size,
4519 sizeof(ei->i_data) - 1);
4520 } else {
4521 inode->i_op = &ext4_symlink_inode_operations;
4522 ext4_set_aops(inode);
4523 }
4524 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4525 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4526 inode->i_op = &ext4_special_inode_operations;
4527 if (raw_inode->i_block[0])
4528 init_special_inode(inode, inode->i_mode,
4529 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4530 else
4531 init_special_inode(inode, inode->i_mode,
4532 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4533 } else {
4534 brelse(bh);
4535 ret = -EIO;
4536 ext4_error(inode->i_sb, __func__,
4537 "bogus i_mode (%o) for inode=%lu",
4538 inode->i_mode, inode->i_ino);
4539 goto bad_inode;
4540 }
4541 brelse(iloc.bh);
4542 ext4_set_inode_flags(inode);
4543 unlock_new_inode(inode);
4544 return inode;
4545
4546 bad_inode:
4547 iget_failed(inode);
4548 return ERR_PTR(ret);
4549 }
4550
4551 static int ext4_inode_blocks_set(handle_t *handle,
4552 struct ext4_inode *raw_inode,
4553 struct ext4_inode_info *ei)
4554 {
4555 struct inode *inode = &(ei->vfs_inode);
4556 u64 i_blocks = inode->i_blocks;
4557 struct super_block *sb = inode->i_sb;
4558
4559 if (i_blocks <= ~0U) {
4560 /*
4561 * i_blocks can be represnted in a 32 bit variable
4562 * as multiple of 512 bytes
4563 */
4564 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4565 raw_inode->i_blocks_high = 0;
4566 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4567 return 0;
4568 }
4569 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4570 return -EFBIG;
4571
4572 if (i_blocks <= 0xffffffffffffULL) {
4573 /*
4574 * i_blocks can be represented in a 48 bit variable
4575 * as multiple of 512 bytes
4576 */
4577 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4578 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4579 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4580 } else {
4581 ei->i_flags |= EXT4_HUGE_FILE_FL;
4582 /* i_block is stored in file system block size */
4583 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4584 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4585 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4586 }
4587 return 0;
4588 }
4589
4590 /*
4591 * Post the struct inode info into an on-disk inode location in the
4592 * buffer-cache. This gobbles the caller's reference to the
4593 * buffer_head in the inode location struct.
4594 *
4595 * The caller must have write access to iloc->bh.
4596 */
4597 static int ext4_do_update_inode(handle_t *handle,
4598 struct inode *inode,
4599 struct ext4_iloc *iloc)
4600 {
4601 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4602 struct ext4_inode_info *ei = EXT4_I(inode);
4603 struct buffer_head *bh = iloc->bh;
4604 int err = 0, rc, block;
4605
4606 /* For fields not not tracking in the in-memory inode,
4607 * initialise them to zero for new inodes. */
4608 if (ei->i_state & EXT4_STATE_NEW)
4609 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4610
4611 ext4_get_inode_flags(ei);
4612 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4613 if (!(test_opt(inode->i_sb, NO_UID32))) {
4614 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4615 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4616 /*
4617 * Fix up interoperability with old kernels. Otherwise, old inodes get
4618 * re-used with the upper 16 bits of the uid/gid intact
4619 */
4620 if (!ei->i_dtime) {
4621 raw_inode->i_uid_high =
4622 cpu_to_le16(high_16_bits(inode->i_uid));
4623 raw_inode->i_gid_high =
4624 cpu_to_le16(high_16_bits(inode->i_gid));
4625 } else {
4626 raw_inode->i_uid_high = 0;
4627 raw_inode->i_gid_high = 0;
4628 }
4629 } else {
4630 raw_inode->i_uid_low =
4631 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4632 raw_inode->i_gid_low =
4633 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4634 raw_inode->i_uid_high = 0;
4635 raw_inode->i_gid_high = 0;
4636 }
4637 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4638
4639 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4640 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4641 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4642 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4643
4644 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4645 goto out_brelse;
4646 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4647 /* clear the migrate flag in the raw_inode */
4648 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4649 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4650 cpu_to_le32(EXT4_OS_HURD))
4651 raw_inode->i_file_acl_high =
4652 cpu_to_le16(ei->i_file_acl >> 32);
4653 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4654 ext4_isize_set(raw_inode, ei->i_disksize);
4655 if (ei->i_disksize > 0x7fffffffULL) {
4656 struct super_block *sb = inode->i_sb;
4657 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4658 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4659 EXT4_SB(sb)->s_es->s_rev_level ==
4660 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4661 /* If this is the first large file
4662 * created, add a flag to the superblock.
4663 */
4664 err = ext4_journal_get_write_access(handle,
4665 EXT4_SB(sb)->s_sbh);
4666 if (err)
4667 goto out_brelse;
4668 ext4_update_dynamic_rev(sb);
4669 EXT4_SET_RO_COMPAT_FEATURE(sb,
4670 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4671 sb->s_dirt = 1;
4672 ext4_handle_sync(handle);
4673 err = ext4_handle_dirty_metadata(handle, inode,
4674 EXT4_SB(sb)->s_sbh);
4675 }
4676 }
4677 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4678 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4679 if (old_valid_dev(inode->i_rdev)) {
4680 raw_inode->i_block[0] =
4681 cpu_to_le32(old_encode_dev(inode->i_rdev));
4682 raw_inode->i_block[1] = 0;
4683 } else {
4684 raw_inode->i_block[0] = 0;
4685 raw_inode->i_block[1] =
4686 cpu_to_le32(new_encode_dev(inode->i_rdev));
4687 raw_inode->i_block[2] = 0;
4688 }
4689 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4690 raw_inode->i_block[block] = ei->i_data[block];
4691
4692 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4693 if (ei->i_extra_isize) {
4694 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4695 raw_inode->i_version_hi =
4696 cpu_to_le32(inode->i_version >> 32);
4697 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4698 }
4699
4700 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4701 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4702 if (!err)
4703 err = rc;
4704 ei->i_state &= ~EXT4_STATE_NEW;
4705
4706 out_brelse:
4707 brelse(bh);
4708 ext4_std_error(inode->i_sb, err);
4709 return err;
4710 }
4711
4712 /*
4713 * ext4_write_inode()
4714 *
4715 * We are called from a few places:
4716 *
4717 * - Within generic_file_write() for O_SYNC files.
4718 * Here, there will be no transaction running. We wait for any running
4719 * trasnaction to commit.
4720 *
4721 * - Within sys_sync(), kupdate and such.
4722 * We wait on commit, if tol to.
4723 *
4724 * - Within prune_icache() (PF_MEMALLOC == true)
4725 * Here we simply return. We can't afford to block kswapd on the
4726 * journal commit.
4727 *
4728 * In all cases it is actually safe for us to return without doing anything,
4729 * because the inode has been copied into a raw inode buffer in
4730 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4731 * knfsd.
4732 *
4733 * Note that we are absolutely dependent upon all inode dirtiers doing the
4734 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4735 * which we are interested.
4736 *
4737 * It would be a bug for them to not do this. The code:
4738 *
4739 * mark_inode_dirty(inode)
4740 * stuff();
4741 * inode->i_size = expr;
4742 *
4743 * is in error because a kswapd-driven write_inode() could occur while
4744 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4745 * will no longer be on the superblock's dirty inode list.
4746 */
4747 int ext4_write_inode(struct inode *inode, int wait)
4748 {
4749 if (current->flags & PF_MEMALLOC)
4750 return 0;
4751
4752 if (ext4_journal_current_handle()) {
4753 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4754 dump_stack();
4755 return -EIO;
4756 }
4757
4758 if (!wait)
4759 return 0;
4760
4761 return ext4_force_commit(inode->i_sb);
4762 }
4763
4764 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4765 {
4766 int err = 0;
4767
4768 mark_buffer_dirty(bh);
4769 if (inode && inode_needs_sync(inode)) {
4770 sync_dirty_buffer(bh);
4771 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4772 ext4_error(inode->i_sb, __func__,
4773 "IO error syncing inode, "
4774 "inode=%lu, block=%llu",
4775 inode->i_ino,
4776 (unsigned long long)bh->b_blocknr);
4777 err = -EIO;
4778 }
4779 }
4780 return err;
4781 }
4782
4783 /*
4784 * ext4_setattr()
4785 *
4786 * Called from notify_change.
4787 *
4788 * We want to trap VFS attempts to truncate the file as soon as
4789 * possible. In particular, we want to make sure that when the VFS
4790 * shrinks i_size, we put the inode on the orphan list and modify
4791 * i_disksize immediately, so that during the subsequent flushing of
4792 * dirty pages and freeing of disk blocks, we can guarantee that any
4793 * commit will leave the blocks being flushed in an unused state on
4794 * disk. (On recovery, the inode will get truncated and the blocks will
4795 * be freed, so we have a strong guarantee that no future commit will
4796 * leave these blocks visible to the user.)
4797 *
4798 * Another thing we have to assure is that if we are in ordered mode
4799 * and inode is still attached to the committing transaction, we must
4800 * we start writeout of all the dirty pages which are being truncated.
4801 * This way we are sure that all the data written in the previous
4802 * transaction are already on disk (truncate waits for pages under
4803 * writeback).
4804 *
4805 * Called with inode->i_mutex down.
4806 */
4807 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4808 {
4809 struct inode *inode = dentry->d_inode;
4810 int error, rc = 0;
4811 const unsigned int ia_valid = attr->ia_valid;
4812
4813 error = inode_change_ok(inode, attr);
4814 if (error)
4815 return error;
4816
4817 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4818 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4819 handle_t *handle;
4820
4821 /* (user+group)*(old+new) structure, inode write (sb,
4822 * inode block, ? - but truncate inode update has it) */
4823 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4824 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4825 if (IS_ERR(handle)) {
4826 error = PTR_ERR(handle);
4827 goto err_out;
4828 }
4829 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4830 if (error) {
4831 ext4_journal_stop(handle);
4832 return error;
4833 }
4834 /* Update corresponding info in inode so that everything is in
4835 * one transaction */
4836 if (attr->ia_valid & ATTR_UID)
4837 inode->i_uid = attr->ia_uid;
4838 if (attr->ia_valid & ATTR_GID)
4839 inode->i_gid = attr->ia_gid;
4840 error = ext4_mark_inode_dirty(handle, inode);
4841 ext4_journal_stop(handle);
4842 }
4843
4844 if (attr->ia_valid & ATTR_SIZE) {
4845 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4846 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4847
4848 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4849 error = -EFBIG;
4850 goto err_out;
4851 }
4852 }
4853 }
4854
4855 if (S_ISREG(inode->i_mode) &&
4856 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4857 handle_t *handle;
4858
4859 handle = ext4_journal_start(inode, 3);
4860 if (IS_ERR(handle)) {
4861 error = PTR_ERR(handle);
4862 goto err_out;
4863 }
4864
4865 error = ext4_orphan_add(handle, inode);
4866 EXT4_I(inode)->i_disksize = attr->ia_size;
4867 rc = ext4_mark_inode_dirty(handle, inode);
4868 if (!error)
4869 error = rc;
4870 ext4_journal_stop(handle);
4871
4872 if (ext4_should_order_data(inode)) {
4873 error = ext4_begin_ordered_truncate(inode,
4874 attr->ia_size);
4875 if (error) {
4876 /* Do as much error cleanup as possible */
4877 handle = ext4_journal_start(inode, 3);
4878 if (IS_ERR(handle)) {
4879 ext4_orphan_del(NULL, inode);
4880 goto err_out;
4881 }
4882 ext4_orphan_del(handle, inode);
4883 ext4_journal_stop(handle);
4884 goto err_out;
4885 }
4886 }
4887 }
4888
4889 rc = inode_setattr(inode, attr);
4890
4891 /* If inode_setattr's call to ext4_truncate failed to get a
4892 * transaction handle at all, we need to clean up the in-core
4893 * orphan list manually. */
4894 if (inode->i_nlink)
4895 ext4_orphan_del(NULL, inode);
4896
4897 if (!rc && (ia_valid & ATTR_MODE))
4898 rc = ext4_acl_chmod(inode);
4899
4900 err_out:
4901 ext4_std_error(inode->i_sb, error);
4902 if (!error)
4903 error = rc;
4904 return error;
4905 }
4906
4907 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4908 struct kstat *stat)
4909 {
4910 struct inode *inode;
4911 unsigned long delalloc_blocks;
4912
4913 inode = dentry->d_inode;
4914 generic_fillattr(inode, stat);
4915
4916 /*
4917 * We can't update i_blocks if the block allocation is delayed
4918 * otherwise in the case of system crash before the real block
4919 * allocation is done, we will have i_blocks inconsistent with
4920 * on-disk file blocks.
4921 * We always keep i_blocks updated together with real
4922 * allocation. But to not confuse with user, stat
4923 * will return the blocks that include the delayed allocation
4924 * blocks for this file.
4925 */
4926 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4927 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4928 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4929
4930 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4931 return 0;
4932 }
4933
4934 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4935 int chunk)
4936 {
4937 int indirects;
4938
4939 /* if nrblocks are contiguous */
4940 if (chunk) {
4941 /*
4942 * With N contiguous data blocks, it need at most
4943 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4944 * 2 dindirect blocks
4945 * 1 tindirect block
4946 */
4947 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4948 return indirects + 3;
4949 }
4950 /*
4951 * if nrblocks are not contiguous, worse case, each block touch
4952 * a indirect block, and each indirect block touch a double indirect
4953 * block, plus a triple indirect block
4954 */
4955 indirects = nrblocks * 2 + 1;
4956 return indirects;
4957 }
4958
4959 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4960 {
4961 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4962 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4963 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4964 }
4965
4966 /*
4967 * Account for index blocks, block groups bitmaps and block group
4968 * descriptor blocks if modify datablocks and index blocks
4969 * worse case, the indexs blocks spread over different block groups
4970 *
4971 * If datablocks are discontiguous, they are possible to spread over
4972 * different block groups too. If they are contiugous, with flexbg,
4973 * they could still across block group boundary.
4974 *
4975 * Also account for superblock, inode, quota and xattr blocks
4976 */
4977 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4978 {
4979 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4980 int gdpblocks;
4981 int idxblocks;
4982 int ret = 0;
4983
4984 /*
4985 * How many index blocks need to touch to modify nrblocks?
4986 * The "Chunk" flag indicating whether the nrblocks is
4987 * physically contiguous on disk
4988 *
4989 * For Direct IO and fallocate, they calls get_block to allocate
4990 * one single extent at a time, so they could set the "Chunk" flag
4991 */
4992 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4993
4994 ret = idxblocks;
4995
4996 /*
4997 * Now let's see how many group bitmaps and group descriptors need
4998 * to account
4999 */
5000 groups = idxblocks;
5001 if (chunk)
5002 groups += 1;
5003 else
5004 groups += nrblocks;
5005
5006 gdpblocks = groups;
5007 if (groups > ngroups)
5008 groups = ngroups;
5009 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5010 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5011
5012 /* bitmaps and block group descriptor blocks */
5013 ret += groups + gdpblocks;
5014
5015 /* Blocks for super block, inode, quota and xattr blocks */
5016 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5017
5018 return ret;
5019 }
5020
5021 /*
5022 * Calulate the total number of credits to reserve to fit
5023 * the modification of a single pages into a single transaction,
5024 * which may include multiple chunks of block allocations.
5025 *
5026 * This could be called via ext4_write_begin()
5027 *
5028 * We need to consider the worse case, when
5029 * one new block per extent.
5030 */
5031 int ext4_writepage_trans_blocks(struct inode *inode)
5032 {
5033 int bpp = ext4_journal_blocks_per_page(inode);
5034 int ret;
5035
5036 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5037
5038 /* Account for data blocks for journalled mode */
5039 if (ext4_should_journal_data(inode))
5040 ret += bpp;
5041 return ret;
5042 }
5043
5044 /*
5045 * Calculate the journal credits for a chunk of data modification.
5046 *
5047 * This is called from DIO, fallocate or whoever calling
5048 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5049 *
5050 * journal buffers for data blocks are not included here, as DIO
5051 * and fallocate do no need to journal data buffers.
5052 */
5053 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5054 {
5055 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5056 }
5057
5058 /*
5059 * The caller must have previously called ext4_reserve_inode_write().
5060 * Give this, we know that the caller already has write access to iloc->bh.
5061 */
5062 int ext4_mark_iloc_dirty(handle_t *handle,
5063 struct inode *inode, struct ext4_iloc *iloc)
5064 {
5065 int err = 0;
5066
5067 if (test_opt(inode->i_sb, I_VERSION))
5068 inode_inc_iversion(inode);
5069
5070 /* the do_update_inode consumes one bh->b_count */
5071 get_bh(iloc->bh);
5072
5073 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5074 err = ext4_do_update_inode(handle, inode, iloc);
5075 put_bh(iloc->bh);
5076 return err;
5077 }
5078
5079 /*
5080 * On success, We end up with an outstanding reference count against
5081 * iloc->bh. This _must_ be cleaned up later.
5082 */
5083
5084 int
5085 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5086 struct ext4_iloc *iloc)
5087 {
5088 int err;
5089
5090 err = ext4_get_inode_loc(inode, iloc);
5091 if (!err) {
5092 BUFFER_TRACE(iloc->bh, "get_write_access");
5093 err = ext4_journal_get_write_access(handle, iloc->bh);
5094 if (err) {
5095 brelse(iloc->bh);
5096 iloc->bh = NULL;
5097 }
5098 }
5099 ext4_std_error(inode->i_sb, err);
5100 return err;
5101 }
5102
5103 /*
5104 * Expand an inode by new_extra_isize bytes.
5105 * Returns 0 on success or negative error number on failure.
5106 */
5107 static int ext4_expand_extra_isize(struct inode *inode,
5108 unsigned int new_extra_isize,
5109 struct ext4_iloc iloc,
5110 handle_t *handle)
5111 {
5112 struct ext4_inode *raw_inode;
5113 struct ext4_xattr_ibody_header *header;
5114 struct ext4_xattr_entry *entry;
5115
5116 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5117 return 0;
5118
5119 raw_inode = ext4_raw_inode(&iloc);
5120
5121 header = IHDR(inode, raw_inode);
5122 entry = IFIRST(header);
5123
5124 /* No extended attributes present */
5125 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5126 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5127 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5128 new_extra_isize);
5129 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5130 return 0;
5131 }
5132
5133 /* try to expand with EAs present */
5134 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5135 raw_inode, handle);
5136 }
5137
5138 /*
5139 * What we do here is to mark the in-core inode as clean with respect to inode
5140 * dirtiness (it may still be data-dirty).
5141 * This means that the in-core inode may be reaped by prune_icache
5142 * without having to perform any I/O. This is a very good thing,
5143 * because *any* task may call prune_icache - even ones which
5144 * have a transaction open against a different journal.
5145 *
5146 * Is this cheating? Not really. Sure, we haven't written the
5147 * inode out, but prune_icache isn't a user-visible syncing function.
5148 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5149 * we start and wait on commits.
5150 *
5151 * Is this efficient/effective? Well, we're being nice to the system
5152 * by cleaning up our inodes proactively so they can be reaped
5153 * without I/O. But we are potentially leaving up to five seconds'
5154 * worth of inodes floating about which prune_icache wants us to
5155 * write out. One way to fix that would be to get prune_icache()
5156 * to do a write_super() to free up some memory. It has the desired
5157 * effect.
5158 */
5159 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5160 {
5161 struct ext4_iloc iloc;
5162 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5163 static unsigned int mnt_count;
5164 int err, ret;
5165
5166 might_sleep();
5167 err = ext4_reserve_inode_write(handle, inode, &iloc);
5168 if (ext4_handle_valid(handle) &&
5169 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5170 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5171 /*
5172 * We need extra buffer credits since we may write into EA block
5173 * with this same handle. If journal_extend fails, then it will
5174 * only result in a minor loss of functionality for that inode.
5175 * If this is felt to be critical, then e2fsck should be run to
5176 * force a large enough s_min_extra_isize.
5177 */
5178 if ((jbd2_journal_extend(handle,
5179 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5180 ret = ext4_expand_extra_isize(inode,
5181 sbi->s_want_extra_isize,
5182 iloc, handle);
5183 if (ret) {
5184 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5185 if (mnt_count !=
5186 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5187 ext4_warning(inode->i_sb, __func__,
5188 "Unable to expand inode %lu. Delete"
5189 " some EAs or run e2fsck.",
5190 inode->i_ino);
5191 mnt_count =
5192 le16_to_cpu(sbi->s_es->s_mnt_count);
5193 }
5194 }
5195 }
5196 }
5197 if (!err)
5198 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5199 return err;
5200 }
5201
5202 /*
5203 * ext4_dirty_inode() is called from __mark_inode_dirty()
5204 *
5205 * We're really interested in the case where a file is being extended.
5206 * i_size has been changed by generic_commit_write() and we thus need
5207 * to include the updated inode in the current transaction.
5208 *
5209 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5210 * are allocated to the file.
5211 *
5212 * If the inode is marked synchronous, we don't honour that here - doing
5213 * so would cause a commit on atime updates, which we don't bother doing.
5214 * We handle synchronous inodes at the highest possible level.
5215 */
5216 void ext4_dirty_inode(struct inode *inode)
5217 {
5218 handle_t *current_handle = ext4_journal_current_handle();
5219 handle_t *handle;
5220
5221 if (!ext4_handle_valid(current_handle)) {
5222 ext4_mark_inode_dirty(current_handle, inode);
5223 return;
5224 }
5225
5226 handle = ext4_journal_start(inode, 2);
5227 if (IS_ERR(handle))
5228 goto out;
5229 if (current_handle &&
5230 current_handle->h_transaction != handle->h_transaction) {
5231 /* This task has a transaction open against a different fs */
5232 printk(KERN_EMERG "%s: transactions do not match!\n",
5233 __func__);
5234 } else {
5235 jbd_debug(5, "marking dirty. outer handle=%p\n",
5236 current_handle);
5237 ext4_mark_inode_dirty(handle, inode);
5238 }
5239 ext4_journal_stop(handle);
5240 out:
5241 return;
5242 }
5243
5244 #if 0
5245 /*
5246 * Bind an inode's backing buffer_head into this transaction, to prevent
5247 * it from being flushed to disk early. Unlike
5248 * ext4_reserve_inode_write, this leaves behind no bh reference and
5249 * returns no iloc structure, so the caller needs to repeat the iloc
5250 * lookup to mark the inode dirty later.
5251 */
5252 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5253 {
5254 struct ext4_iloc iloc;
5255
5256 int err = 0;
5257 if (handle) {
5258 err = ext4_get_inode_loc(inode, &iloc);
5259 if (!err) {
5260 BUFFER_TRACE(iloc.bh, "get_write_access");
5261 err = jbd2_journal_get_write_access(handle, iloc.bh);
5262 if (!err)
5263 err = ext4_handle_dirty_metadata(handle,
5264 inode,
5265 iloc.bh);
5266 brelse(iloc.bh);
5267 }
5268 }
5269 ext4_std_error(inode->i_sb, err);
5270 return err;
5271 }
5272 #endif
5273
5274 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5275 {
5276 journal_t *journal;
5277 handle_t *handle;
5278 int err;
5279
5280 /*
5281 * We have to be very careful here: changing a data block's
5282 * journaling status dynamically is dangerous. If we write a
5283 * data block to the journal, change the status and then delete
5284 * that block, we risk forgetting to revoke the old log record
5285 * from the journal and so a subsequent replay can corrupt data.
5286 * So, first we make sure that the journal is empty and that
5287 * nobody is changing anything.
5288 */
5289
5290 journal = EXT4_JOURNAL(inode);
5291 if (!journal)
5292 return 0;
5293 if (is_journal_aborted(journal))
5294 return -EROFS;
5295
5296 jbd2_journal_lock_updates(journal);
5297 jbd2_journal_flush(journal);
5298
5299 /*
5300 * OK, there are no updates running now, and all cached data is
5301 * synced to disk. We are now in a completely consistent state
5302 * which doesn't have anything in the journal, and we know that
5303 * no filesystem updates are running, so it is safe to modify
5304 * the inode's in-core data-journaling state flag now.
5305 */
5306
5307 if (val)
5308 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5309 else
5310 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5311 ext4_set_aops(inode);
5312
5313 jbd2_journal_unlock_updates(journal);
5314
5315 /* Finally we can mark the inode as dirty. */
5316
5317 handle = ext4_journal_start(inode, 1);
5318 if (IS_ERR(handle))
5319 return PTR_ERR(handle);
5320
5321 err = ext4_mark_inode_dirty(handle, inode);
5322 ext4_handle_sync(handle);
5323 ext4_journal_stop(handle);
5324 ext4_std_error(inode->i_sb, err);
5325
5326 return err;
5327 }
5328
5329 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5330 {
5331 return !buffer_mapped(bh);
5332 }
5333
5334 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5335 {
5336 struct page *page = vmf->page;
5337 loff_t size;
5338 unsigned long len;
5339 int ret = -EINVAL;
5340 void *fsdata;
5341 struct file *file = vma->vm_file;
5342 struct inode *inode = file->f_path.dentry->d_inode;
5343 struct address_space *mapping = inode->i_mapping;
5344
5345 /*
5346 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5347 * get i_mutex because we are already holding mmap_sem.
5348 */
5349 down_read(&inode->i_alloc_sem);
5350 size = i_size_read(inode);
5351 if (page->mapping != mapping || size <= page_offset(page)
5352 || !PageUptodate(page)) {
5353 /* page got truncated from under us? */
5354 goto out_unlock;
5355 }
5356 ret = 0;
5357 if (PageMappedToDisk(page))
5358 goto out_unlock;
5359
5360 if (page->index == size >> PAGE_CACHE_SHIFT)
5361 len = size & ~PAGE_CACHE_MASK;
5362 else
5363 len = PAGE_CACHE_SIZE;
5364
5365 if (page_has_buffers(page)) {
5366 /* return if we have all the buffers mapped */
5367 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5368 ext4_bh_unmapped))
5369 goto out_unlock;
5370 }
5371 /*
5372 * OK, we need to fill the hole... Do write_begin write_end
5373 * to do block allocation/reservation.We are not holding
5374 * inode.i__mutex here. That allow * parallel write_begin,
5375 * write_end call. lock_page prevent this from happening
5376 * on the same page though
5377 */
5378 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5379 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5380 if (ret < 0)
5381 goto out_unlock;
5382 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5383 len, len, page, fsdata);
5384 if (ret < 0)
5385 goto out_unlock;
5386 ret = 0;
5387 out_unlock:
5388 if (ret)
5389 ret = VM_FAULT_SIGBUS;
5390 up_read(&inode->i_alloc_sem);
5391 return ret;
5392 }