]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/ext4/inode.c
d815502cc97cfca92edf7b567c3d414366030604
[mirror_ubuntu-kernels.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 #include <linux/dax.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55 {
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83 }
84
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87 {
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104 }
105
106 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108 {
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125 {
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138 }
139
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146 /*
147 * Test whether an inode is a fast symlink.
148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166 * Called at the last iput() if i_nlink is zero.
167 */
168 void ext4_evict_inode(struct inode *inode)
169 {
170 handle_t *handle;
171 int err;
172 /*
173 * Credits for final inode cleanup and freeing:
174 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
175 * (xattr block freeing), bitmap, group descriptor (inode freeing)
176 */
177 int extra_credits = 6;
178 struct ext4_xattr_inode_array *ea_inode_array = NULL;
179 bool freeze_protected = false;
180
181 trace_ext4_evict_inode(inode);
182
183 if (inode->i_nlink) {
184 /*
185 * When journalling data dirty buffers are tracked only in the
186 * journal. So although mm thinks everything is clean and
187 * ready for reaping the inode might still have some pages to
188 * write in the running transaction or waiting to be
189 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 * (via truncate_inode_pages()) to discard these buffers can
191 * cause data loss. Also even if we did not discard these
192 * buffers, we would have no way to find them after the inode
193 * is reaped and thus user could see stale data if he tries to
194 * read them before the transaction is checkpointed. So be
195 * careful and force everything to disk here... We use
196 * ei->i_datasync_tid to store the newest transaction
197 * containing inode's data.
198 *
199 * Note that directories do not have this problem because they
200 * don't use page cache.
201 */
202 if (inode->i_ino != EXT4_JOURNAL_INO &&
203 ext4_should_journal_data(inode) &&
204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 inode->i_data.nrpages) {
206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
208
209 jbd2_complete_transaction(journal, commit_tid);
210 filemap_write_and_wait(&inode->i_data);
211 }
212 truncate_inode_pages_final(&inode->i_data);
213
214 goto no_delete;
215 }
216
217 if (is_bad_inode(inode))
218 goto no_delete;
219 dquot_initialize(inode);
220
221 if (ext4_should_order_data(inode))
222 ext4_begin_ordered_truncate(inode, 0);
223 truncate_inode_pages_final(&inode->i_data);
224
225 /*
226 * For inodes with journalled data, transaction commit could have
227 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
228 * flag but we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list)) {
231 WARN_ON_ONCE(!ext4_should_journal_data(inode));
232 inode_io_list_del(inode);
233 }
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it. When we are in a running transaction though,
238 * we are already protected against freezing and we cannot grab further
239 * protection due to lock ordering constraints.
240 */
241 if (!ext4_journal_current_handle()) {
242 sb_start_intwrite(inode->i_sb);
243 freeze_protected = true;
244 }
245
246 if (!IS_NOQUOTA(inode))
247 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
248
249 /*
250 * Block bitmap, group descriptor, and inode are accounted in both
251 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
252 */
253 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
254 ext4_blocks_for_truncate(inode) + extra_credits - 3);
255 if (IS_ERR(handle)) {
256 ext4_std_error(inode->i_sb, PTR_ERR(handle));
257 /*
258 * If we're going to skip the normal cleanup, we still need to
259 * make sure that the in-core orphan linked list is properly
260 * cleaned up.
261 */
262 ext4_orphan_del(NULL, inode);
263 if (freeze_protected)
264 sb_end_intwrite(inode->i_sb);
265 goto no_delete;
266 }
267
268 if (IS_SYNC(inode))
269 ext4_handle_sync(handle);
270
271 /*
272 * Set inode->i_size to 0 before calling ext4_truncate(). We need
273 * special handling of symlinks here because i_size is used to
274 * determine whether ext4_inode_info->i_data contains symlink data or
275 * block mappings. Setting i_size to 0 will remove its fast symlink
276 * status. Erase i_data so that it becomes a valid empty block map.
277 */
278 if (ext4_inode_is_fast_symlink(inode))
279 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
280 inode->i_size = 0;
281 err = ext4_mark_inode_dirty(handle, inode);
282 if (err) {
283 ext4_warning(inode->i_sb,
284 "couldn't mark inode dirty (err %d)", err);
285 goto stop_handle;
286 }
287 if (inode->i_blocks) {
288 err = ext4_truncate(inode);
289 if (err) {
290 ext4_error_err(inode->i_sb, -err,
291 "couldn't truncate inode %lu (err %d)",
292 inode->i_ino, err);
293 goto stop_handle;
294 }
295 }
296
297 /* Remove xattr references. */
298 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
299 extra_credits);
300 if (err) {
301 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
302 stop_handle:
303 ext4_journal_stop(handle);
304 ext4_orphan_del(NULL, inode);
305 if (freeze_protected)
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 if (freeze_protected)
336 sb_end_intwrite(inode->i_sb);
337 ext4_xattr_inode_array_free(ea_inode_array);
338 return;
339 no_delete:
340 if (!list_empty(&EXT4_I(inode)->i_fc_list))
341 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
342 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
343 }
344
345 #ifdef CONFIG_QUOTA
346 qsize_t *ext4_get_reserved_space(struct inode *inode)
347 {
348 return &EXT4_I(inode)->i_reserved_quota;
349 }
350 #endif
351
352 /*
353 * Called with i_data_sem down, which is important since we can call
354 * ext4_discard_preallocations() from here.
355 */
356 void ext4_da_update_reserve_space(struct inode *inode,
357 int used, int quota_claim)
358 {
359 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
360 struct ext4_inode_info *ei = EXT4_I(inode);
361
362 spin_lock(&ei->i_block_reservation_lock);
363 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
364 if (unlikely(used > ei->i_reserved_data_blocks)) {
365 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
366 "with only %d reserved data blocks",
367 __func__, inode->i_ino, used,
368 ei->i_reserved_data_blocks);
369 WARN_ON(1);
370 used = ei->i_reserved_data_blocks;
371 }
372
373 /* Update per-inode reservations */
374 ei->i_reserved_data_blocks -= used;
375 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
376
377 spin_unlock(&ei->i_block_reservation_lock);
378
379 /* Update quota subsystem for data blocks */
380 if (quota_claim)
381 dquot_claim_block(inode, EXT4_C2B(sbi, used));
382 else {
383 /*
384 * We did fallocate with an offset that is already delayed
385 * allocated. So on delayed allocated writeback we should
386 * not re-claim the quota for fallocated blocks.
387 */
388 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
389 }
390
391 /*
392 * If we have done all the pending block allocations and if
393 * there aren't any writers on the inode, we can discard the
394 * inode's preallocations.
395 */
396 if ((ei->i_reserved_data_blocks == 0) &&
397 !inode_is_open_for_write(inode))
398 ext4_discard_preallocations(inode, 0);
399 }
400
401 static int __check_block_validity(struct inode *inode, const char *func,
402 unsigned int line,
403 struct ext4_map_blocks *map)
404 {
405 if (ext4_has_feature_journal(inode->i_sb) &&
406 (inode->i_ino ==
407 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
408 return 0;
409 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
410 ext4_error_inode(inode, func, line, map->m_pblk,
411 "lblock %lu mapped to illegal pblock %llu "
412 "(length %d)", (unsigned long) map->m_lblk,
413 map->m_pblk, map->m_len);
414 return -EFSCORRUPTED;
415 }
416 return 0;
417 }
418
419 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
420 ext4_lblk_t len)
421 {
422 int ret;
423
424 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
425 return fscrypt_zeroout_range(inode, lblk, pblk, len);
426
427 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
428 if (ret > 0)
429 ret = 0;
430
431 return ret;
432 }
433
434 #define check_block_validity(inode, map) \
435 __check_block_validity((inode), __func__, __LINE__, (map))
436
437 #ifdef ES_AGGRESSIVE_TEST
438 static void ext4_map_blocks_es_recheck(handle_t *handle,
439 struct inode *inode,
440 struct ext4_map_blocks *es_map,
441 struct ext4_map_blocks *map,
442 int flags)
443 {
444 int retval;
445
446 map->m_flags = 0;
447 /*
448 * There is a race window that the result is not the same.
449 * e.g. xfstests #223 when dioread_nolock enables. The reason
450 * is that we lookup a block mapping in extent status tree with
451 * out taking i_data_sem. So at the time the unwritten extent
452 * could be converted.
453 */
454 down_read(&EXT4_I(inode)->i_data_sem);
455 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
456 retval = ext4_ext_map_blocks(handle, inode, map, 0);
457 } else {
458 retval = ext4_ind_map_blocks(handle, inode, map, 0);
459 }
460 up_read((&EXT4_I(inode)->i_data_sem));
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479
480 /*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
499 *
500 * It returns the error in case of allocation failure.
501 */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504 {
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512 #endif
513
514 map->m_flags = 0;
515 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
516 flags, map->m_len, (unsigned long) map->m_lblk);
517
518 /*
519 * ext4_map_blocks returns an int, and m_len is an unsigned int
520 */
521 if (unlikely(map->m_len > INT_MAX))
522 map->m_len = INT_MAX;
523
524 /* We can handle the block number less than EXT_MAX_BLOCKS */
525 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
526 return -EFSCORRUPTED;
527
528 /* Lookup extent status tree firstly */
529 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
530 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
546 retval = 0;
547 } else {
548 BUG();
549 }
550 #ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553 #endif
554 goto found;
555 }
556
557 /*
558 * Try to see if we can get the block without requesting a new
559 * file system block.
560 */
561 down_read(&EXT4_I(inode)->i_data_sem);
562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 retval = ext4_ext_map_blocks(handle, inode, map, 0);
564 } else {
565 retval = ext4_ind_map_blocks(handle, inode, map, 0);
566 }
567 if (retval > 0) {
568 unsigned int status;
569
570 if (unlikely(retval != map->m_len)) {
571 ext4_warning(inode->i_sb,
572 "ES len assertion failed for inode "
573 "%lu: retval %d != map->m_len %d",
574 inode->i_ino, retval, map->m_len);
575 WARN_ON(1);
576 }
577
578 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
579 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
580 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
581 !(status & EXTENT_STATUS_WRITTEN) &&
582 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
583 map->m_lblk + map->m_len - 1))
584 status |= EXTENT_STATUS_DELAYED;
585 ret = ext4_es_insert_extent(inode, map->m_lblk,
586 map->m_len, map->m_pblk, status);
587 if (ret < 0)
588 retval = ret;
589 }
590 up_read((&EXT4_I(inode)->i_data_sem));
591
592 found:
593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
594 ret = check_block_validity(inode, map);
595 if (ret != 0)
596 return ret;
597 }
598
599 /* If it is only a block(s) look up */
600 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
601 return retval;
602
603 /*
604 * Returns if the blocks have already allocated
605 *
606 * Note that if blocks have been preallocated
607 * ext4_ext_get_block() returns the create = 0
608 * with buffer head unmapped.
609 */
610 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
611 /*
612 * If we need to convert extent to unwritten
613 * we continue and do the actual work in
614 * ext4_ext_map_blocks()
615 */
616 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
617 return retval;
618
619 /*
620 * Here we clear m_flags because after allocating an new extent,
621 * it will be set again.
622 */
623 map->m_flags &= ~EXT4_MAP_FLAGS;
624
625 /*
626 * New blocks allocate and/or writing to unwritten extent
627 * will possibly result in updating i_data, so we take
628 * the write lock of i_data_sem, and call get_block()
629 * with create == 1 flag.
630 */
631 down_write(&EXT4_I(inode)->i_data_sem);
632
633 /*
634 * We need to check for EXT4 here because migrate
635 * could have changed the inode type in between
636 */
637 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
638 retval = ext4_ext_map_blocks(handle, inode, map, flags);
639 } else {
640 retval = ext4_ind_map_blocks(handle, inode, map, flags);
641
642 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
643 /*
644 * We allocated new blocks which will result in
645 * i_data's format changing. Force the migrate
646 * to fail by clearing migrate flags
647 */
648 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
649 }
650
651 /*
652 * Update reserved blocks/metadata blocks after successful
653 * block allocation which had been deferred till now. We don't
654 * support fallocate for non extent files. So we can update
655 * reserve space here.
656 */
657 if ((retval > 0) &&
658 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
659 ext4_da_update_reserve_space(inode, retval, 1);
660 }
661
662 if (retval > 0) {
663 unsigned int status;
664
665 if (unlikely(retval != map->m_len)) {
666 ext4_warning(inode->i_sb,
667 "ES len assertion failed for inode "
668 "%lu: retval %d != map->m_len %d",
669 inode->i_ino, retval, map->m_len);
670 WARN_ON(1);
671 }
672
673 /*
674 * We have to zeroout blocks before inserting them into extent
675 * status tree. Otherwise someone could look them up there and
676 * use them before they are really zeroed. We also have to
677 * unmap metadata before zeroing as otherwise writeback can
678 * overwrite zeros with stale data from block device.
679 */
680 if (flags & EXT4_GET_BLOCKS_ZERO &&
681 map->m_flags & EXT4_MAP_MAPPED &&
682 map->m_flags & EXT4_MAP_NEW) {
683 ret = ext4_issue_zeroout(inode, map->m_lblk,
684 map->m_pblk, map->m_len);
685 if (ret) {
686 retval = ret;
687 goto out_sem;
688 }
689 }
690
691 /*
692 * If the extent has been zeroed out, we don't need to update
693 * extent status tree.
694 */
695 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
696 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
697 if (ext4_es_is_written(&es))
698 goto out_sem;
699 }
700 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
701 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
702 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
703 !(status & EXTENT_STATUS_WRITTEN) &&
704 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
705 map->m_lblk + map->m_len - 1))
706 status |= EXTENT_STATUS_DELAYED;
707 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
708 map->m_pblk, status);
709 if (ret < 0) {
710 retval = ret;
711 goto out_sem;
712 }
713 }
714
715 out_sem:
716 up_write((&EXT4_I(inode)->i_data_sem));
717 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
718 ret = check_block_validity(inode, map);
719 if (ret != 0)
720 return ret;
721
722 /*
723 * Inodes with freshly allocated blocks where contents will be
724 * visible after transaction commit must be on transaction's
725 * ordered data list.
726 */
727 if (map->m_flags & EXT4_MAP_NEW &&
728 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
729 !(flags & EXT4_GET_BLOCKS_ZERO) &&
730 !ext4_is_quota_file(inode) &&
731 ext4_should_order_data(inode)) {
732 loff_t start_byte =
733 (loff_t)map->m_lblk << inode->i_blkbits;
734 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
735
736 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
737 ret = ext4_jbd2_inode_add_wait(handle, inode,
738 start_byte, length);
739 else
740 ret = ext4_jbd2_inode_add_write(handle, inode,
741 start_byte, length);
742 if (ret)
743 return ret;
744 }
745 }
746 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
747 map->m_flags & EXT4_MAP_MAPPED))
748 ext4_fc_track_range(handle, inode, map->m_lblk,
749 map->m_lblk + map->m_len - 1);
750 if (retval < 0)
751 ext_debug(inode, "failed with err %d\n", retval);
752 return retval;
753 }
754
755 /*
756 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
757 * we have to be careful as someone else may be manipulating b_state as well.
758 */
759 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
760 {
761 unsigned long old_state;
762 unsigned long new_state;
763
764 flags &= EXT4_MAP_FLAGS;
765
766 /* Dummy buffer_head? Set non-atomically. */
767 if (!bh->b_page) {
768 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
769 return;
770 }
771 /*
772 * Someone else may be modifying b_state. Be careful! This is ugly but
773 * once we get rid of using bh as a container for mapping information
774 * to pass to / from get_block functions, this can go away.
775 */
776 do {
777 old_state = READ_ONCE(bh->b_state);
778 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
779 } while (unlikely(
780 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
781 }
782
783 static int _ext4_get_block(struct inode *inode, sector_t iblock,
784 struct buffer_head *bh, int flags)
785 {
786 struct ext4_map_blocks map;
787 int ret = 0;
788
789 if (ext4_has_inline_data(inode))
790 return -ERANGE;
791
792 map.m_lblk = iblock;
793 map.m_len = bh->b_size >> inode->i_blkbits;
794
795 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
796 flags);
797 if (ret > 0) {
798 map_bh(bh, inode->i_sb, map.m_pblk);
799 ext4_update_bh_state(bh, map.m_flags);
800 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 ret = 0;
802 } else if (ret == 0) {
803 /* hole case, need to fill in bh->b_size */
804 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
805 }
806 return ret;
807 }
808
809 int ext4_get_block(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh, int create)
811 {
812 return _ext4_get_block(inode, iblock, bh,
813 create ? EXT4_GET_BLOCKS_CREATE : 0);
814 }
815
816 /*
817 * Get block function used when preparing for buffered write if we require
818 * creating an unwritten extent if blocks haven't been allocated. The extent
819 * will be converted to written after the IO is complete.
820 */
821 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
822 struct buffer_head *bh_result, int create)
823 {
824 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
825 inode->i_ino, create);
826 return _ext4_get_block(inode, iblock, bh_result,
827 EXT4_GET_BLOCKS_IO_CREATE_EXT);
828 }
829
830 /* Maximum number of blocks we map for direct IO at once. */
831 #define DIO_MAX_BLOCKS 4096
832
833 /*
834 * `handle' can be NULL if create is zero
835 */
836 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
837 ext4_lblk_t block, int map_flags)
838 {
839 struct ext4_map_blocks map;
840 struct buffer_head *bh;
841 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
842 int err;
843
844 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
845 || handle != NULL || create == 0);
846
847 map.m_lblk = block;
848 map.m_len = 1;
849 err = ext4_map_blocks(handle, inode, &map, map_flags);
850
851 if (err == 0)
852 return create ? ERR_PTR(-ENOSPC) : NULL;
853 if (err < 0)
854 return ERR_PTR(err);
855
856 bh = sb_getblk(inode->i_sb, map.m_pblk);
857 if (unlikely(!bh))
858 return ERR_PTR(-ENOMEM);
859 if (map.m_flags & EXT4_MAP_NEW) {
860 ASSERT(create != 0);
861 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
862 || (handle != NULL));
863
864 /*
865 * Now that we do not always journal data, we should
866 * keep in mind whether this should always journal the
867 * new buffer as metadata. For now, regular file
868 * writes use ext4_get_block instead, so it's not a
869 * problem.
870 */
871 lock_buffer(bh);
872 BUFFER_TRACE(bh, "call get_create_access");
873 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
874 EXT4_JTR_NONE);
875 if (unlikely(err)) {
876 unlock_buffer(bh);
877 goto errout;
878 }
879 if (!buffer_uptodate(bh)) {
880 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
881 set_buffer_uptodate(bh);
882 }
883 unlock_buffer(bh);
884 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
885 err = ext4_handle_dirty_metadata(handle, inode, bh);
886 if (unlikely(err))
887 goto errout;
888 } else
889 BUFFER_TRACE(bh, "not a new buffer");
890 return bh;
891 errout:
892 brelse(bh);
893 return ERR_PTR(err);
894 }
895
896 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
897 ext4_lblk_t block, int map_flags)
898 {
899 struct buffer_head *bh;
900 int ret;
901
902 bh = ext4_getblk(handle, inode, block, map_flags);
903 if (IS_ERR(bh))
904 return bh;
905 if (!bh || ext4_buffer_uptodate(bh))
906 return bh;
907
908 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
909 if (ret) {
910 put_bh(bh);
911 return ERR_PTR(ret);
912 }
913 return bh;
914 }
915
916 /* Read a contiguous batch of blocks. */
917 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
918 bool wait, struct buffer_head **bhs)
919 {
920 int i, err;
921
922 for (i = 0; i < bh_count; i++) {
923 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
924 if (IS_ERR(bhs[i])) {
925 err = PTR_ERR(bhs[i]);
926 bh_count = i;
927 goto out_brelse;
928 }
929 }
930
931 for (i = 0; i < bh_count; i++)
932 /* Note that NULL bhs[i] is valid because of holes. */
933 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
934 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
935
936 if (!wait)
937 return 0;
938
939 for (i = 0; i < bh_count; i++)
940 if (bhs[i])
941 wait_on_buffer(bhs[i]);
942
943 for (i = 0; i < bh_count; i++) {
944 if (bhs[i] && !buffer_uptodate(bhs[i])) {
945 err = -EIO;
946 goto out_brelse;
947 }
948 }
949 return 0;
950
951 out_brelse:
952 for (i = 0; i < bh_count; i++) {
953 brelse(bhs[i]);
954 bhs[i] = NULL;
955 }
956 return err;
957 }
958
959 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
960 struct buffer_head *head,
961 unsigned from,
962 unsigned to,
963 int *partial,
964 int (*fn)(handle_t *handle, struct inode *inode,
965 struct buffer_head *bh))
966 {
967 struct buffer_head *bh;
968 unsigned block_start, block_end;
969 unsigned blocksize = head->b_size;
970 int err, ret = 0;
971 struct buffer_head *next;
972
973 for (bh = head, block_start = 0;
974 ret == 0 && (bh != head || !block_start);
975 block_start = block_end, bh = next) {
976 next = bh->b_this_page;
977 block_end = block_start + blocksize;
978 if (block_end <= from || block_start >= to) {
979 if (partial && !buffer_uptodate(bh))
980 *partial = 1;
981 continue;
982 }
983 err = (*fn)(handle, inode, bh);
984 if (!ret)
985 ret = err;
986 }
987 return ret;
988 }
989
990 /*
991 * To preserve ordering, it is essential that the hole instantiation and
992 * the data write be encapsulated in a single transaction. We cannot
993 * close off a transaction and start a new one between the ext4_get_block()
994 * and the commit_write(). So doing the jbd2_journal_start at the start of
995 * prepare_write() is the right place.
996 *
997 * Also, this function can nest inside ext4_writepage(). In that case, we
998 * *know* that ext4_writepage() has generated enough buffer credits to do the
999 * whole page. So we won't block on the journal in that case, which is good,
1000 * because the caller may be PF_MEMALLOC.
1001 *
1002 * By accident, ext4 can be reentered when a transaction is open via
1003 * quota file writes. If we were to commit the transaction while thus
1004 * reentered, there can be a deadlock - we would be holding a quota
1005 * lock, and the commit would never complete if another thread had a
1006 * transaction open and was blocking on the quota lock - a ranking
1007 * violation.
1008 *
1009 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1010 * will _not_ run commit under these circumstances because handle->h_ref
1011 * is elevated. We'll still have enough credits for the tiny quotafile
1012 * write.
1013 */
1014 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1015 struct buffer_head *bh)
1016 {
1017 int dirty = buffer_dirty(bh);
1018 int ret;
1019
1020 if (!buffer_mapped(bh) || buffer_freed(bh))
1021 return 0;
1022 /*
1023 * __block_write_begin() could have dirtied some buffers. Clean
1024 * the dirty bit as jbd2_journal_get_write_access() could complain
1025 * otherwise about fs integrity issues. Setting of the dirty bit
1026 * by __block_write_begin() isn't a real problem here as we clear
1027 * the bit before releasing a page lock and thus writeback cannot
1028 * ever write the buffer.
1029 */
1030 if (dirty)
1031 clear_buffer_dirty(bh);
1032 BUFFER_TRACE(bh, "get write access");
1033 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1034 EXT4_JTR_NONE);
1035 if (!ret && dirty)
1036 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1037 return ret;
1038 }
1039
1040 #ifdef CONFIG_FS_ENCRYPTION
1041 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1042 get_block_t *get_block)
1043 {
1044 unsigned from = pos & (PAGE_SIZE - 1);
1045 unsigned to = from + len;
1046 struct inode *inode = page->mapping->host;
1047 unsigned block_start, block_end;
1048 sector_t block;
1049 int err = 0;
1050 unsigned blocksize = inode->i_sb->s_blocksize;
1051 unsigned bbits;
1052 struct buffer_head *bh, *head, *wait[2];
1053 int nr_wait = 0;
1054 int i;
1055
1056 BUG_ON(!PageLocked(page));
1057 BUG_ON(from > PAGE_SIZE);
1058 BUG_ON(to > PAGE_SIZE);
1059 BUG_ON(from > to);
1060
1061 if (!page_has_buffers(page))
1062 create_empty_buffers(page, blocksize, 0);
1063 head = page_buffers(page);
1064 bbits = ilog2(blocksize);
1065 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1066
1067 for (bh = head, block_start = 0; bh != head || !block_start;
1068 block++, block_start = block_end, bh = bh->b_this_page) {
1069 block_end = block_start + blocksize;
1070 if (block_end <= from || block_start >= to) {
1071 if (PageUptodate(page)) {
1072 set_buffer_uptodate(bh);
1073 }
1074 continue;
1075 }
1076 if (buffer_new(bh))
1077 clear_buffer_new(bh);
1078 if (!buffer_mapped(bh)) {
1079 WARN_ON(bh->b_size != blocksize);
1080 err = get_block(inode, block, bh, 1);
1081 if (err)
1082 break;
1083 if (buffer_new(bh)) {
1084 if (PageUptodate(page)) {
1085 clear_buffer_new(bh);
1086 set_buffer_uptodate(bh);
1087 mark_buffer_dirty(bh);
1088 continue;
1089 }
1090 if (block_end > to || block_start < from)
1091 zero_user_segments(page, to, block_end,
1092 block_start, from);
1093 continue;
1094 }
1095 }
1096 if (PageUptodate(page)) {
1097 set_buffer_uptodate(bh);
1098 continue;
1099 }
1100 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1101 !buffer_unwritten(bh) &&
1102 (block_start < from || block_end > to)) {
1103 ext4_read_bh_lock(bh, 0, false);
1104 wait[nr_wait++] = bh;
1105 }
1106 }
1107 /*
1108 * If we issued read requests, let them complete.
1109 */
1110 for (i = 0; i < nr_wait; i++) {
1111 wait_on_buffer(wait[i]);
1112 if (!buffer_uptodate(wait[i]))
1113 err = -EIO;
1114 }
1115 if (unlikely(err)) {
1116 page_zero_new_buffers(page, from, to);
1117 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118 for (i = 0; i < nr_wait; i++) {
1119 int err2;
1120
1121 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1122 bh_offset(wait[i]));
1123 if (err2) {
1124 clear_buffer_uptodate(wait[i]);
1125 err = err2;
1126 }
1127 }
1128 }
1129
1130 return err;
1131 }
1132 #endif
1133
1134 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1135 loff_t pos, unsigned len, unsigned flags,
1136 struct page **pagep, void **fsdata)
1137 {
1138 struct inode *inode = mapping->host;
1139 int ret, needed_blocks;
1140 handle_t *handle;
1141 int retries = 0;
1142 struct page *page;
1143 pgoff_t index;
1144 unsigned from, to;
1145
1146 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1147 return -EIO;
1148
1149 trace_ext4_write_begin(inode, pos, len, flags);
1150 /*
1151 * Reserve one block more for addition to orphan list in case
1152 * we allocate blocks but write fails for some reason
1153 */
1154 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1155 index = pos >> PAGE_SHIFT;
1156 from = pos & (PAGE_SIZE - 1);
1157 to = from + len;
1158
1159 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1160 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1161 flags, pagep);
1162 if (ret < 0)
1163 return ret;
1164 if (ret == 1)
1165 return 0;
1166 }
1167
1168 /*
1169 * grab_cache_page_write_begin() can take a long time if the
1170 * system is thrashing due to memory pressure, or if the page
1171 * is being written back. So grab it first before we start
1172 * the transaction handle. This also allows us to allocate
1173 * the page (if needed) without using GFP_NOFS.
1174 */
1175 retry_grab:
1176 page = grab_cache_page_write_begin(mapping, index, flags);
1177 if (!page)
1178 return -ENOMEM;
1179 unlock_page(page);
1180
1181 retry_journal:
1182 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1183 if (IS_ERR(handle)) {
1184 put_page(page);
1185 return PTR_ERR(handle);
1186 }
1187
1188 lock_page(page);
1189 if (page->mapping != mapping) {
1190 /* The page got truncated from under us */
1191 unlock_page(page);
1192 put_page(page);
1193 ext4_journal_stop(handle);
1194 goto retry_grab;
1195 }
1196 /* In case writeback began while the page was unlocked */
1197 wait_for_stable_page(page);
1198
1199 #ifdef CONFIG_FS_ENCRYPTION
1200 if (ext4_should_dioread_nolock(inode))
1201 ret = ext4_block_write_begin(page, pos, len,
1202 ext4_get_block_unwritten);
1203 else
1204 ret = ext4_block_write_begin(page, pos, len,
1205 ext4_get_block);
1206 #else
1207 if (ext4_should_dioread_nolock(inode))
1208 ret = __block_write_begin(page, pos, len,
1209 ext4_get_block_unwritten);
1210 else
1211 ret = __block_write_begin(page, pos, len, ext4_get_block);
1212 #endif
1213 if (!ret && ext4_should_journal_data(inode)) {
1214 ret = ext4_walk_page_buffers(handle, inode,
1215 page_buffers(page), from, to, NULL,
1216 do_journal_get_write_access);
1217 }
1218
1219 if (ret) {
1220 bool extended = (pos + len > inode->i_size) &&
1221 !ext4_verity_in_progress(inode);
1222
1223 unlock_page(page);
1224 /*
1225 * __block_write_begin may have instantiated a few blocks
1226 * outside i_size. Trim these off again. Don't need
1227 * i_size_read because we hold i_rwsem.
1228 *
1229 * Add inode to orphan list in case we crash before
1230 * truncate finishes
1231 */
1232 if (extended && ext4_can_truncate(inode))
1233 ext4_orphan_add(handle, inode);
1234
1235 ext4_journal_stop(handle);
1236 if (extended) {
1237 ext4_truncate_failed_write(inode);
1238 /*
1239 * If truncate failed early the inode might
1240 * still be on the orphan list; we need to
1241 * make sure the inode is removed from the
1242 * orphan list in that case.
1243 */
1244 if (inode->i_nlink)
1245 ext4_orphan_del(NULL, inode);
1246 }
1247
1248 if (ret == -ENOSPC &&
1249 ext4_should_retry_alloc(inode->i_sb, &retries))
1250 goto retry_journal;
1251 put_page(page);
1252 return ret;
1253 }
1254 *pagep = page;
1255 return ret;
1256 }
1257
1258 /* For write_end() in data=journal mode */
1259 static int write_end_fn(handle_t *handle, struct inode *inode,
1260 struct buffer_head *bh)
1261 {
1262 int ret;
1263 if (!buffer_mapped(bh) || buffer_freed(bh))
1264 return 0;
1265 set_buffer_uptodate(bh);
1266 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1267 clear_buffer_meta(bh);
1268 clear_buffer_prio(bh);
1269 return ret;
1270 }
1271
1272 /*
1273 * We need to pick up the new inode size which generic_commit_write gave us
1274 * `file' can be NULL - eg, when called from page_symlink().
1275 *
1276 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1277 * buffers are managed internally.
1278 */
1279 static int ext4_write_end(struct file *file,
1280 struct address_space *mapping,
1281 loff_t pos, unsigned len, unsigned copied,
1282 struct page *page, void *fsdata)
1283 {
1284 handle_t *handle = ext4_journal_current_handle();
1285 struct inode *inode = mapping->host;
1286 loff_t old_size = inode->i_size;
1287 int ret = 0, ret2;
1288 int i_size_changed = 0;
1289 bool verity = ext4_verity_in_progress(inode);
1290
1291 trace_ext4_write_end(inode, pos, len, copied);
1292
1293 if (ext4_has_inline_data(inode))
1294 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1295
1296 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1297 /*
1298 * it's important to update i_size while still holding page lock:
1299 * page writeout could otherwise come in and zero beyond i_size.
1300 *
1301 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1302 * blocks are being written past EOF, so skip the i_size update.
1303 */
1304 if (!verity)
1305 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1306 unlock_page(page);
1307 put_page(page);
1308
1309 if (old_size < pos && !verity)
1310 pagecache_isize_extended(inode, old_size, pos);
1311 /*
1312 * Don't mark the inode dirty under page lock. First, it unnecessarily
1313 * makes the holding time of page lock longer. Second, it forces lock
1314 * ordering of page lock and transaction start for journaling
1315 * filesystems.
1316 */
1317 if (i_size_changed)
1318 ret = ext4_mark_inode_dirty(handle, inode);
1319
1320 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1321 /* if we have allocated more blocks and copied
1322 * less. We will have blocks allocated outside
1323 * inode->i_size. So truncate them
1324 */
1325 ext4_orphan_add(handle, inode);
1326
1327 ret2 = ext4_journal_stop(handle);
1328 if (!ret)
1329 ret = ret2;
1330
1331 if (pos + len > inode->i_size && !verity) {
1332 ext4_truncate_failed_write(inode);
1333 /*
1334 * If truncate failed early the inode might still be
1335 * on the orphan list; we need to make sure the inode
1336 * is removed from the orphan list in that case.
1337 */
1338 if (inode->i_nlink)
1339 ext4_orphan_del(NULL, inode);
1340 }
1341
1342 return ret ? ret : copied;
1343 }
1344
1345 /*
1346 * This is a private version of page_zero_new_buffers() which doesn't
1347 * set the buffer to be dirty, since in data=journalled mode we need
1348 * to call ext4_handle_dirty_metadata() instead.
1349 */
1350 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1351 struct inode *inode,
1352 struct page *page,
1353 unsigned from, unsigned to)
1354 {
1355 unsigned int block_start = 0, block_end;
1356 struct buffer_head *head, *bh;
1357
1358 bh = head = page_buffers(page);
1359 do {
1360 block_end = block_start + bh->b_size;
1361 if (buffer_new(bh)) {
1362 if (block_end > from && block_start < to) {
1363 if (!PageUptodate(page)) {
1364 unsigned start, size;
1365
1366 start = max(from, block_start);
1367 size = min(to, block_end) - start;
1368
1369 zero_user(page, start, size);
1370 write_end_fn(handle, inode, bh);
1371 }
1372 clear_buffer_new(bh);
1373 }
1374 }
1375 block_start = block_end;
1376 bh = bh->b_this_page;
1377 } while (bh != head);
1378 }
1379
1380 static int ext4_journalled_write_end(struct file *file,
1381 struct address_space *mapping,
1382 loff_t pos, unsigned len, unsigned copied,
1383 struct page *page, void *fsdata)
1384 {
1385 handle_t *handle = ext4_journal_current_handle();
1386 struct inode *inode = mapping->host;
1387 loff_t old_size = inode->i_size;
1388 int ret = 0, ret2;
1389 int partial = 0;
1390 unsigned from, to;
1391 int size_changed = 0;
1392 bool verity = ext4_verity_in_progress(inode);
1393
1394 trace_ext4_journalled_write_end(inode, pos, len, copied);
1395 from = pos & (PAGE_SIZE - 1);
1396 to = from + len;
1397
1398 BUG_ON(!ext4_handle_valid(handle));
1399
1400 if (ext4_has_inline_data(inode))
1401 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1402
1403 if (unlikely(copied < len) && !PageUptodate(page)) {
1404 copied = 0;
1405 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1406 } else {
1407 if (unlikely(copied < len))
1408 ext4_journalled_zero_new_buffers(handle, inode, page,
1409 from + copied, to);
1410 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1411 from, from + copied, &partial,
1412 write_end_fn);
1413 if (!partial)
1414 SetPageUptodate(page);
1415 }
1416 if (!verity)
1417 size_changed = ext4_update_inode_size(inode, pos + copied);
1418 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1419 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1420 unlock_page(page);
1421 put_page(page);
1422
1423 if (old_size < pos && !verity)
1424 pagecache_isize_extended(inode, old_size, pos);
1425
1426 if (size_changed) {
1427 ret2 = ext4_mark_inode_dirty(handle, inode);
1428 if (!ret)
1429 ret = ret2;
1430 }
1431
1432 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1433 /* if we have allocated more blocks and copied
1434 * less. We will have blocks allocated outside
1435 * inode->i_size. So truncate them
1436 */
1437 ext4_orphan_add(handle, inode);
1438
1439 ret2 = ext4_journal_stop(handle);
1440 if (!ret)
1441 ret = ret2;
1442 if (pos + len > inode->i_size && !verity) {
1443 ext4_truncate_failed_write(inode);
1444 /*
1445 * If truncate failed early the inode might still be
1446 * on the orphan list; we need to make sure the inode
1447 * is removed from the orphan list in that case.
1448 */
1449 if (inode->i_nlink)
1450 ext4_orphan_del(NULL, inode);
1451 }
1452
1453 return ret ? ret : copied;
1454 }
1455
1456 /*
1457 * Reserve space for a single cluster
1458 */
1459 static int ext4_da_reserve_space(struct inode *inode)
1460 {
1461 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1462 struct ext4_inode_info *ei = EXT4_I(inode);
1463 int ret;
1464
1465 /*
1466 * We will charge metadata quota at writeout time; this saves
1467 * us from metadata over-estimation, though we may go over by
1468 * a small amount in the end. Here we just reserve for data.
1469 */
1470 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1471 if (ret)
1472 return ret;
1473
1474 spin_lock(&ei->i_block_reservation_lock);
1475 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1476 spin_unlock(&ei->i_block_reservation_lock);
1477 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1478 return -ENOSPC;
1479 }
1480 ei->i_reserved_data_blocks++;
1481 trace_ext4_da_reserve_space(inode);
1482 spin_unlock(&ei->i_block_reservation_lock);
1483
1484 return 0; /* success */
1485 }
1486
1487 void ext4_da_release_space(struct inode *inode, int to_free)
1488 {
1489 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490 struct ext4_inode_info *ei = EXT4_I(inode);
1491
1492 if (!to_free)
1493 return; /* Nothing to release, exit */
1494
1495 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1496
1497 trace_ext4_da_release_space(inode, to_free);
1498 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1499 /*
1500 * if there aren't enough reserved blocks, then the
1501 * counter is messed up somewhere. Since this
1502 * function is called from invalidate page, it's
1503 * harmless to return without any action.
1504 */
1505 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1506 "ino %lu, to_free %d with only %d reserved "
1507 "data blocks", inode->i_ino, to_free,
1508 ei->i_reserved_data_blocks);
1509 WARN_ON(1);
1510 to_free = ei->i_reserved_data_blocks;
1511 }
1512 ei->i_reserved_data_blocks -= to_free;
1513
1514 /* update fs dirty data blocks counter */
1515 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1516
1517 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1518
1519 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1520 }
1521
1522 /*
1523 * Delayed allocation stuff
1524 */
1525
1526 struct mpage_da_data {
1527 struct inode *inode;
1528 struct writeback_control *wbc;
1529
1530 pgoff_t first_page; /* The first page to write */
1531 pgoff_t next_page; /* Current page to examine */
1532 pgoff_t last_page; /* Last page to examine */
1533 /*
1534 * Extent to map - this can be after first_page because that can be
1535 * fully mapped. We somewhat abuse m_flags to store whether the extent
1536 * is delalloc or unwritten.
1537 */
1538 struct ext4_map_blocks map;
1539 struct ext4_io_submit io_submit; /* IO submission data */
1540 unsigned int do_map:1;
1541 unsigned int scanned_until_end:1;
1542 };
1543
1544 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1545 bool invalidate)
1546 {
1547 int nr_pages, i;
1548 pgoff_t index, end;
1549 struct pagevec pvec;
1550 struct inode *inode = mpd->inode;
1551 struct address_space *mapping = inode->i_mapping;
1552
1553 /* This is necessary when next_page == 0. */
1554 if (mpd->first_page >= mpd->next_page)
1555 return;
1556
1557 mpd->scanned_until_end = 0;
1558 index = mpd->first_page;
1559 end = mpd->next_page - 1;
1560 if (invalidate) {
1561 ext4_lblk_t start, last;
1562 start = index << (PAGE_SHIFT - inode->i_blkbits);
1563 last = end << (PAGE_SHIFT - inode->i_blkbits);
1564 ext4_es_remove_extent(inode, start, last - start + 1);
1565 }
1566
1567 pagevec_init(&pvec);
1568 while (index <= end) {
1569 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1570 if (nr_pages == 0)
1571 break;
1572 for (i = 0; i < nr_pages; i++) {
1573 struct page *page = pvec.pages[i];
1574
1575 BUG_ON(!PageLocked(page));
1576 BUG_ON(PageWriteback(page));
1577 if (invalidate) {
1578 if (page_mapped(page))
1579 clear_page_dirty_for_io(page);
1580 block_invalidatepage(page, 0, PAGE_SIZE);
1581 ClearPageUptodate(page);
1582 }
1583 unlock_page(page);
1584 }
1585 pagevec_release(&pvec);
1586 }
1587 }
1588
1589 static void ext4_print_free_blocks(struct inode *inode)
1590 {
1591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1592 struct super_block *sb = inode->i_sb;
1593 struct ext4_inode_info *ei = EXT4_I(inode);
1594
1595 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1596 EXT4_C2B(EXT4_SB(inode->i_sb),
1597 ext4_count_free_clusters(sb)));
1598 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1599 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1600 (long long) EXT4_C2B(EXT4_SB(sb),
1601 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1602 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1603 (long long) EXT4_C2B(EXT4_SB(sb),
1604 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1605 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1606 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1607 ei->i_reserved_data_blocks);
1608 return;
1609 }
1610
1611 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1612 struct buffer_head *bh)
1613 {
1614 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1615 }
1616
1617 /*
1618 * ext4_insert_delayed_block - adds a delayed block to the extents status
1619 * tree, incrementing the reserved cluster/block
1620 * count or making a pending reservation
1621 * where needed
1622 *
1623 * @inode - file containing the newly added block
1624 * @lblk - logical block to be added
1625 *
1626 * Returns 0 on success, negative error code on failure.
1627 */
1628 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1629 {
1630 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1631 int ret;
1632 bool allocated = false;
1633 bool reserved = false;
1634
1635 /*
1636 * If the cluster containing lblk is shared with a delayed,
1637 * written, or unwritten extent in a bigalloc file system, it's
1638 * already been accounted for and does not need to be reserved.
1639 * A pending reservation must be made for the cluster if it's
1640 * shared with a written or unwritten extent and doesn't already
1641 * have one. Written and unwritten extents can be purged from the
1642 * extents status tree if the system is under memory pressure, so
1643 * it's necessary to examine the extent tree if a search of the
1644 * extents status tree doesn't get a match.
1645 */
1646 if (sbi->s_cluster_ratio == 1) {
1647 ret = ext4_da_reserve_space(inode);
1648 if (ret != 0) /* ENOSPC */
1649 goto errout;
1650 reserved = true;
1651 } else { /* bigalloc */
1652 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1653 if (!ext4_es_scan_clu(inode,
1654 &ext4_es_is_mapped, lblk)) {
1655 ret = ext4_clu_mapped(inode,
1656 EXT4_B2C(sbi, lblk));
1657 if (ret < 0)
1658 goto errout;
1659 if (ret == 0) {
1660 ret = ext4_da_reserve_space(inode);
1661 if (ret != 0) /* ENOSPC */
1662 goto errout;
1663 reserved = true;
1664 } else {
1665 allocated = true;
1666 }
1667 } else {
1668 allocated = true;
1669 }
1670 }
1671 }
1672
1673 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1674 if (ret && reserved)
1675 ext4_da_release_space(inode, 1);
1676
1677 errout:
1678 return ret;
1679 }
1680
1681 /*
1682 * This function is grabs code from the very beginning of
1683 * ext4_map_blocks, but assumes that the caller is from delayed write
1684 * time. This function looks up the requested blocks and sets the
1685 * buffer delay bit under the protection of i_data_sem.
1686 */
1687 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1688 struct ext4_map_blocks *map,
1689 struct buffer_head *bh)
1690 {
1691 struct extent_status es;
1692 int retval;
1693 sector_t invalid_block = ~((sector_t) 0xffff);
1694 #ifdef ES_AGGRESSIVE_TEST
1695 struct ext4_map_blocks orig_map;
1696
1697 memcpy(&orig_map, map, sizeof(*map));
1698 #endif
1699
1700 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1701 invalid_block = ~0;
1702
1703 map->m_flags = 0;
1704 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1705 (unsigned long) map->m_lblk);
1706
1707 /* Lookup extent status tree firstly */
1708 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1709 if (ext4_es_is_hole(&es)) {
1710 retval = 0;
1711 down_read(&EXT4_I(inode)->i_data_sem);
1712 goto add_delayed;
1713 }
1714
1715 /*
1716 * Delayed extent could be allocated by fallocate.
1717 * So we need to check it.
1718 */
1719 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1720 map_bh(bh, inode->i_sb, invalid_block);
1721 set_buffer_new(bh);
1722 set_buffer_delay(bh);
1723 return 0;
1724 }
1725
1726 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1727 retval = es.es_len - (iblock - es.es_lblk);
1728 if (retval > map->m_len)
1729 retval = map->m_len;
1730 map->m_len = retval;
1731 if (ext4_es_is_written(&es))
1732 map->m_flags |= EXT4_MAP_MAPPED;
1733 else if (ext4_es_is_unwritten(&es))
1734 map->m_flags |= EXT4_MAP_UNWRITTEN;
1735 else
1736 BUG();
1737
1738 #ifdef ES_AGGRESSIVE_TEST
1739 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1740 #endif
1741 return retval;
1742 }
1743
1744 /*
1745 * Try to see if we can get the block without requesting a new
1746 * file system block.
1747 */
1748 down_read(&EXT4_I(inode)->i_data_sem);
1749 if (ext4_has_inline_data(inode))
1750 retval = 0;
1751 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1752 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1753 else
1754 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1755
1756 add_delayed:
1757 if (retval == 0) {
1758 int ret;
1759
1760 /*
1761 * XXX: __block_prepare_write() unmaps passed block,
1762 * is it OK?
1763 */
1764
1765 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1766 if (ret != 0) {
1767 retval = ret;
1768 goto out_unlock;
1769 }
1770
1771 map_bh(bh, inode->i_sb, invalid_block);
1772 set_buffer_new(bh);
1773 set_buffer_delay(bh);
1774 } else if (retval > 0) {
1775 int ret;
1776 unsigned int status;
1777
1778 if (unlikely(retval != map->m_len)) {
1779 ext4_warning(inode->i_sb,
1780 "ES len assertion failed for inode "
1781 "%lu: retval %d != map->m_len %d",
1782 inode->i_ino, retval, map->m_len);
1783 WARN_ON(1);
1784 }
1785
1786 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1787 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1788 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1789 map->m_pblk, status);
1790 if (ret != 0)
1791 retval = ret;
1792 }
1793
1794 out_unlock:
1795 up_read((&EXT4_I(inode)->i_data_sem));
1796
1797 return retval;
1798 }
1799
1800 /*
1801 * This is a special get_block_t callback which is used by
1802 * ext4_da_write_begin(). It will either return mapped block or
1803 * reserve space for a single block.
1804 *
1805 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1806 * We also have b_blocknr = -1 and b_bdev initialized properly
1807 *
1808 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1809 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1810 * initialized properly.
1811 */
1812 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1813 struct buffer_head *bh, int create)
1814 {
1815 struct ext4_map_blocks map;
1816 int ret = 0;
1817
1818 BUG_ON(create == 0);
1819 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1820
1821 map.m_lblk = iblock;
1822 map.m_len = 1;
1823
1824 /*
1825 * first, we need to know whether the block is allocated already
1826 * preallocated blocks are unmapped but should treated
1827 * the same as allocated blocks.
1828 */
1829 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1830 if (ret <= 0)
1831 return ret;
1832
1833 map_bh(bh, inode->i_sb, map.m_pblk);
1834 ext4_update_bh_state(bh, map.m_flags);
1835
1836 if (buffer_unwritten(bh)) {
1837 /* A delayed write to unwritten bh should be marked
1838 * new and mapped. Mapped ensures that we don't do
1839 * get_block multiple times when we write to the same
1840 * offset and new ensures that we do proper zero out
1841 * for partial write.
1842 */
1843 set_buffer_new(bh);
1844 set_buffer_mapped(bh);
1845 }
1846 return 0;
1847 }
1848
1849 static int __ext4_journalled_writepage(struct page *page,
1850 unsigned int len)
1851 {
1852 struct address_space *mapping = page->mapping;
1853 struct inode *inode = mapping->host;
1854 handle_t *handle = NULL;
1855 int ret = 0, err = 0;
1856 int inline_data = ext4_has_inline_data(inode);
1857 struct buffer_head *inode_bh = NULL;
1858 loff_t size;
1859
1860 ClearPageChecked(page);
1861
1862 if (inline_data) {
1863 BUG_ON(page->index != 0);
1864 BUG_ON(len > ext4_get_max_inline_size(inode));
1865 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1866 if (inode_bh == NULL)
1867 goto out;
1868 }
1869 /*
1870 * We need to release the page lock before we start the
1871 * journal, so grab a reference so the page won't disappear
1872 * out from under us.
1873 */
1874 get_page(page);
1875 unlock_page(page);
1876
1877 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1878 ext4_writepage_trans_blocks(inode));
1879 if (IS_ERR(handle)) {
1880 ret = PTR_ERR(handle);
1881 put_page(page);
1882 goto out_no_pagelock;
1883 }
1884 BUG_ON(!ext4_handle_valid(handle));
1885
1886 lock_page(page);
1887 put_page(page);
1888 size = i_size_read(inode);
1889 if (page->mapping != mapping || page_offset(page) > size) {
1890 /* The page got truncated from under us */
1891 ext4_journal_stop(handle);
1892 ret = 0;
1893 goto out;
1894 }
1895
1896 if (inline_data) {
1897 ret = ext4_mark_inode_dirty(handle, inode);
1898 } else {
1899 struct buffer_head *page_bufs = page_buffers(page);
1900
1901 if (page->index == size >> PAGE_SHIFT)
1902 len = size & ~PAGE_MASK;
1903 else
1904 len = PAGE_SIZE;
1905
1906 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1907 NULL, do_journal_get_write_access);
1908
1909 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1910 NULL, write_end_fn);
1911 }
1912 if (ret == 0)
1913 ret = err;
1914 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1915 if (ret == 0)
1916 ret = err;
1917 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1918 err = ext4_journal_stop(handle);
1919 if (!ret)
1920 ret = err;
1921
1922 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1923 out:
1924 unlock_page(page);
1925 out_no_pagelock:
1926 brelse(inode_bh);
1927 return ret;
1928 }
1929
1930 /*
1931 * Note that we don't need to start a transaction unless we're journaling data
1932 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1933 * need to file the inode to the transaction's list in ordered mode because if
1934 * we are writing back data added by write(), the inode is already there and if
1935 * we are writing back data modified via mmap(), no one guarantees in which
1936 * transaction the data will hit the disk. In case we are journaling data, we
1937 * cannot start transaction directly because transaction start ranks above page
1938 * lock so we have to do some magic.
1939 *
1940 * This function can get called via...
1941 * - ext4_writepages after taking page lock (have journal handle)
1942 * - journal_submit_inode_data_buffers (no journal handle)
1943 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1944 * - grab_page_cache when doing write_begin (have journal handle)
1945 *
1946 * We don't do any block allocation in this function. If we have page with
1947 * multiple blocks we need to write those buffer_heads that are mapped. This
1948 * is important for mmaped based write. So if we do with blocksize 1K
1949 * truncate(f, 1024);
1950 * a = mmap(f, 0, 4096);
1951 * a[0] = 'a';
1952 * truncate(f, 4096);
1953 * we have in the page first buffer_head mapped via page_mkwrite call back
1954 * but other buffer_heads would be unmapped but dirty (dirty done via the
1955 * do_wp_page). So writepage should write the first block. If we modify
1956 * the mmap area beyond 1024 we will again get a page_fault and the
1957 * page_mkwrite callback will do the block allocation and mark the
1958 * buffer_heads mapped.
1959 *
1960 * We redirty the page if we have any buffer_heads that is either delay or
1961 * unwritten in the page.
1962 *
1963 * We can get recursively called as show below.
1964 *
1965 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1966 * ext4_writepage()
1967 *
1968 * But since we don't do any block allocation we should not deadlock.
1969 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1970 */
1971 static int ext4_writepage(struct page *page,
1972 struct writeback_control *wbc)
1973 {
1974 int ret = 0;
1975 loff_t size;
1976 unsigned int len;
1977 struct buffer_head *page_bufs = NULL;
1978 struct inode *inode = page->mapping->host;
1979 struct ext4_io_submit io_submit;
1980 bool keep_towrite = false;
1981
1982 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1983 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1984 unlock_page(page);
1985 return -EIO;
1986 }
1987
1988 trace_ext4_writepage(page);
1989 size = i_size_read(inode);
1990 if (page->index == size >> PAGE_SHIFT &&
1991 !ext4_verity_in_progress(inode))
1992 len = size & ~PAGE_MASK;
1993 else
1994 len = PAGE_SIZE;
1995
1996 /* Should never happen but for bugs in other kernel subsystems */
1997 if (!page_has_buffers(page)) {
1998 ext4_warning_inode(inode,
1999 "page %lu does not have buffers attached", page->index);
2000 ClearPageDirty(page);
2001 unlock_page(page);
2002 return 0;
2003 }
2004
2005 page_bufs = page_buffers(page);
2006 /*
2007 * We cannot do block allocation or other extent handling in this
2008 * function. If there are buffers needing that, we have to redirty
2009 * the page. But we may reach here when we do a journal commit via
2010 * journal_submit_inode_data_buffers() and in that case we must write
2011 * allocated buffers to achieve data=ordered mode guarantees.
2012 *
2013 * Also, if there is only one buffer per page (the fs block
2014 * size == the page size), if one buffer needs block
2015 * allocation or needs to modify the extent tree to clear the
2016 * unwritten flag, we know that the page can't be written at
2017 * all, so we might as well refuse the write immediately.
2018 * Unfortunately if the block size != page size, we can't as
2019 * easily detect this case using ext4_walk_page_buffers(), but
2020 * for the extremely common case, this is an optimization that
2021 * skips a useless round trip through ext4_bio_write_page().
2022 */
2023 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2024 ext4_bh_delay_or_unwritten)) {
2025 redirty_page_for_writepage(wbc, page);
2026 if ((current->flags & PF_MEMALLOC) ||
2027 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2028 /*
2029 * For memory cleaning there's no point in writing only
2030 * some buffers. So just bail out. Warn if we came here
2031 * from direct reclaim.
2032 */
2033 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2034 == PF_MEMALLOC);
2035 unlock_page(page);
2036 return 0;
2037 }
2038 keep_towrite = true;
2039 }
2040
2041 if (PageChecked(page) && ext4_should_journal_data(inode))
2042 /*
2043 * It's mmapped pagecache. Add buffers and journal it. There
2044 * doesn't seem much point in redirtying the page here.
2045 */
2046 return __ext4_journalled_writepage(page, len);
2047
2048 ext4_io_submit_init(&io_submit, wbc);
2049 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2050 if (!io_submit.io_end) {
2051 redirty_page_for_writepage(wbc, page);
2052 unlock_page(page);
2053 return -ENOMEM;
2054 }
2055 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2056 ext4_io_submit(&io_submit);
2057 /* Drop io_end reference we got from init */
2058 ext4_put_io_end_defer(io_submit.io_end);
2059 return ret;
2060 }
2061
2062 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2063 {
2064 int len;
2065 loff_t size;
2066 int err;
2067
2068 BUG_ON(page->index != mpd->first_page);
2069 clear_page_dirty_for_io(page);
2070 /*
2071 * We have to be very careful here! Nothing protects writeback path
2072 * against i_size changes and the page can be writeably mapped into
2073 * page tables. So an application can be growing i_size and writing
2074 * data through mmap while writeback runs. clear_page_dirty_for_io()
2075 * write-protects our page in page tables and the page cannot get
2076 * written to again until we release page lock. So only after
2077 * clear_page_dirty_for_io() we are safe to sample i_size for
2078 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2079 * on the barrier provided by TestClearPageDirty in
2080 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2081 * after page tables are updated.
2082 */
2083 size = i_size_read(mpd->inode);
2084 if (page->index == size >> PAGE_SHIFT &&
2085 !ext4_verity_in_progress(mpd->inode))
2086 len = size & ~PAGE_MASK;
2087 else
2088 len = PAGE_SIZE;
2089 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2090 if (!err)
2091 mpd->wbc->nr_to_write--;
2092 mpd->first_page++;
2093
2094 return err;
2095 }
2096
2097 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2098
2099 /*
2100 * mballoc gives us at most this number of blocks...
2101 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2102 * The rest of mballoc seems to handle chunks up to full group size.
2103 */
2104 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2105
2106 /*
2107 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2108 *
2109 * @mpd - extent of blocks
2110 * @lblk - logical number of the block in the file
2111 * @bh - buffer head we want to add to the extent
2112 *
2113 * The function is used to collect contig. blocks in the same state. If the
2114 * buffer doesn't require mapping for writeback and we haven't started the
2115 * extent of buffers to map yet, the function returns 'true' immediately - the
2116 * caller can write the buffer right away. Otherwise the function returns true
2117 * if the block has been added to the extent, false if the block couldn't be
2118 * added.
2119 */
2120 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2121 struct buffer_head *bh)
2122 {
2123 struct ext4_map_blocks *map = &mpd->map;
2124
2125 /* Buffer that doesn't need mapping for writeback? */
2126 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2127 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2128 /* So far no extent to map => we write the buffer right away */
2129 if (map->m_len == 0)
2130 return true;
2131 return false;
2132 }
2133
2134 /* First block in the extent? */
2135 if (map->m_len == 0) {
2136 /* We cannot map unless handle is started... */
2137 if (!mpd->do_map)
2138 return false;
2139 map->m_lblk = lblk;
2140 map->m_len = 1;
2141 map->m_flags = bh->b_state & BH_FLAGS;
2142 return true;
2143 }
2144
2145 /* Don't go larger than mballoc is willing to allocate */
2146 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2147 return false;
2148
2149 /* Can we merge the block to our big extent? */
2150 if (lblk == map->m_lblk + map->m_len &&
2151 (bh->b_state & BH_FLAGS) == map->m_flags) {
2152 map->m_len++;
2153 return true;
2154 }
2155 return false;
2156 }
2157
2158 /*
2159 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2160 *
2161 * @mpd - extent of blocks for mapping
2162 * @head - the first buffer in the page
2163 * @bh - buffer we should start processing from
2164 * @lblk - logical number of the block in the file corresponding to @bh
2165 *
2166 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2167 * the page for IO if all buffers in this page were mapped and there's no
2168 * accumulated extent of buffers to map or add buffers in the page to the
2169 * extent of buffers to map. The function returns 1 if the caller can continue
2170 * by processing the next page, 0 if it should stop adding buffers to the
2171 * extent to map because we cannot extend it anymore. It can also return value
2172 * < 0 in case of error during IO submission.
2173 */
2174 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2175 struct buffer_head *head,
2176 struct buffer_head *bh,
2177 ext4_lblk_t lblk)
2178 {
2179 struct inode *inode = mpd->inode;
2180 int err;
2181 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2182 >> inode->i_blkbits;
2183
2184 if (ext4_verity_in_progress(inode))
2185 blocks = EXT_MAX_BLOCKS;
2186
2187 do {
2188 BUG_ON(buffer_locked(bh));
2189
2190 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2191 /* Found extent to map? */
2192 if (mpd->map.m_len)
2193 return 0;
2194 /* Buffer needs mapping and handle is not started? */
2195 if (!mpd->do_map)
2196 return 0;
2197 /* Everything mapped so far and we hit EOF */
2198 break;
2199 }
2200 } while (lblk++, (bh = bh->b_this_page) != head);
2201 /* So far everything mapped? Submit the page for IO. */
2202 if (mpd->map.m_len == 0) {
2203 err = mpage_submit_page(mpd, head->b_page);
2204 if (err < 0)
2205 return err;
2206 }
2207 if (lblk >= blocks) {
2208 mpd->scanned_until_end = 1;
2209 return 0;
2210 }
2211 return 1;
2212 }
2213
2214 /*
2215 * mpage_process_page - update page buffers corresponding to changed extent and
2216 * may submit fully mapped page for IO
2217 *
2218 * @mpd - description of extent to map, on return next extent to map
2219 * @m_lblk - logical block mapping.
2220 * @m_pblk - corresponding physical mapping.
2221 * @map_bh - determines on return whether this page requires any further
2222 * mapping or not.
2223 * Scan given page buffers corresponding to changed extent and update buffer
2224 * state according to new extent state.
2225 * We map delalloc buffers to their physical location, clear unwritten bits.
2226 * If the given page is not fully mapped, we update @map to the next extent in
2227 * the given page that needs mapping & return @map_bh as true.
2228 */
2229 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2230 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2231 bool *map_bh)
2232 {
2233 struct buffer_head *head, *bh;
2234 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2235 ext4_lblk_t lblk = *m_lblk;
2236 ext4_fsblk_t pblock = *m_pblk;
2237 int err = 0;
2238 int blkbits = mpd->inode->i_blkbits;
2239 ssize_t io_end_size = 0;
2240 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2241
2242 bh = head = page_buffers(page);
2243 do {
2244 if (lblk < mpd->map.m_lblk)
2245 continue;
2246 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2247 /*
2248 * Buffer after end of mapped extent.
2249 * Find next buffer in the page to map.
2250 */
2251 mpd->map.m_len = 0;
2252 mpd->map.m_flags = 0;
2253 io_end_vec->size += io_end_size;
2254
2255 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2256 if (err > 0)
2257 err = 0;
2258 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2259 io_end_vec = ext4_alloc_io_end_vec(io_end);
2260 if (IS_ERR(io_end_vec)) {
2261 err = PTR_ERR(io_end_vec);
2262 goto out;
2263 }
2264 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2265 }
2266 *map_bh = true;
2267 goto out;
2268 }
2269 if (buffer_delay(bh)) {
2270 clear_buffer_delay(bh);
2271 bh->b_blocknr = pblock++;
2272 }
2273 clear_buffer_unwritten(bh);
2274 io_end_size += (1 << blkbits);
2275 } while (lblk++, (bh = bh->b_this_page) != head);
2276
2277 io_end_vec->size += io_end_size;
2278 *map_bh = false;
2279 out:
2280 *m_lblk = lblk;
2281 *m_pblk = pblock;
2282 return err;
2283 }
2284
2285 /*
2286 * mpage_map_buffers - update buffers corresponding to changed extent and
2287 * submit fully mapped pages for IO
2288 *
2289 * @mpd - description of extent to map, on return next extent to map
2290 *
2291 * Scan buffers corresponding to changed extent (we expect corresponding pages
2292 * to be already locked) and update buffer state according to new extent state.
2293 * We map delalloc buffers to their physical location, clear unwritten bits,
2294 * and mark buffers as uninit when we perform writes to unwritten extents
2295 * and do extent conversion after IO is finished. If the last page is not fully
2296 * mapped, we update @map to the next extent in the last page that needs
2297 * mapping. Otherwise we submit the page for IO.
2298 */
2299 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2300 {
2301 struct pagevec pvec;
2302 int nr_pages, i;
2303 struct inode *inode = mpd->inode;
2304 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2305 pgoff_t start, end;
2306 ext4_lblk_t lblk;
2307 ext4_fsblk_t pblock;
2308 int err;
2309 bool map_bh = false;
2310
2311 start = mpd->map.m_lblk >> bpp_bits;
2312 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2313 lblk = start << bpp_bits;
2314 pblock = mpd->map.m_pblk;
2315
2316 pagevec_init(&pvec);
2317 while (start <= end) {
2318 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2319 &start, end);
2320 if (nr_pages == 0)
2321 break;
2322 for (i = 0; i < nr_pages; i++) {
2323 struct page *page = pvec.pages[i];
2324
2325 err = mpage_process_page(mpd, page, &lblk, &pblock,
2326 &map_bh);
2327 /*
2328 * If map_bh is true, means page may require further bh
2329 * mapping, or maybe the page was submitted for IO.
2330 * So we return to call further extent mapping.
2331 */
2332 if (err < 0 || map_bh)
2333 goto out;
2334 /* Page fully mapped - let IO run! */
2335 err = mpage_submit_page(mpd, page);
2336 if (err < 0)
2337 goto out;
2338 }
2339 pagevec_release(&pvec);
2340 }
2341 /* Extent fully mapped and matches with page boundary. We are done. */
2342 mpd->map.m_len = 0;
2343 mpd->map.m_flags = 0;
2344 return 0;
2345 out:
2346 pagevec_release(&pvec);
2347 return err;
2348 }
2349
2350 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2351 {
2352 struct inode *inode = mpd->inode;
2353 struct ext4_map_blocks *map = &mpd->map;
2354 int get_blocks_flags;
2355 int err, dioread_nolock;
2356
2357 trace_ext4_da_write_pages_extent(inode, map);
2358 /*
2359 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2360 * to convert an unwritten extent to be initialized (in the case
2361 * where we have written into one or more preallocated blocks). It is
2362 * possible that we're going to need more metadata blocks than
2363 * previously reserved. However we must not fail because we're in
2364 * writeback and there is nothing we can do about it so it might result
2365 * in data loss. So use reserved blocks to allocate metadata if
2366 * possible.
2367 *
2368 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2369 * the blocks in question are delalloc blocks. This indicates
2370 * that the blocks and quotas has already been checked when
2371 * the data was copied into the page cache.
2372 */
2373 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2374 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2375 EXT4_GET_BLOCKS_IO_SUBMIT;
2376 dioread_nolock = ext4_should_dioread_nolock(inode);
2377 if (dioread_nolock)
2378 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2379 if (map->m_flags & BIT(BH_Delay))
2380 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2381
2382 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2383 if (err < 0)
2384 return err;
2385 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2386 if (!mpd->io_submit.io_end->handle &&
2387 ext4_handle_valid(handle)) {
2388 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2389 handle->h_rsv_handle = NULL;
2390 }
2391 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2392 }
2393
2394 BUG_ON(map->m_len == 0);
2395 return 0;
2396 }
2397
2398 /*
2399 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2400 * mpd->len and submit pages underlying it for IO
2401 *
2402 * @handle - handle for journal operations
2403 * @mpd - extent to map
2404 * @give_up_on_write - we set this to true iff there is a fatal error and there
2405 * is no hope of writing the data. The caller should discard
2406 * dirty pages to avoid infinite loops.
2407 *
2408 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2409 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2410 * them to initialized or split the described range from larger unwritten
2411 * extent. Note that we need not map all the described range since allocation
2412 * can return less blocks or the range is covered by more unwritten extents. We
2413 * cannot map more because we are limited by reserved transaction credits. On
2414 * the other hand we always make sure that the last touched page is fully
2415 * mapped so that it can be written out (and thus forward progress is
2416 * guaranteed). After mapping we submit all mapped pages for IO.
2417 */
2418 static int mpage_map_and_submit_extent(handle_t *handle,
2419 struct mpage_da_data *mpd,
2420 bool *give_up_on_write)
2421 {
2422 struct inode *inode = mpd->inode;
2423 struct ext4_map_blocks *map = &mpd->map;
2424 int err;
2425 loff_t disksize;
2426 int progress = 0;
2427 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2428 struct ext4_io_end_vec *io_end_vec;
2429
2430 io_end_vec = ext4_alloc_io_end_vec(io_end);
2431 if (IS_ERR(io_end_vec))
2432 return PTR_ERR(io_end_vec);
2433 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2434 do {
2435 err = mpage_map_one_extent(handle, mpd);
2436 if (err < 0) {
2437 struct super_block *sb = inode->i_sb;
2438
2439 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2440 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2441 goto invalidate_dirty_pages;
2442 /*
2443 * Let the uper layers retry transient errors.
2444 * In the case of ENOSPC, if ext4_count_free_blocks()
2445 * is non-zero, a commit should free up blocks.
2446 */
2447 if ((err == -ENOMEM) ||
2448 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2449 if (progress)
2450 goto update_disksize;
2451 return err;
2452 }
2453 ext4_msg(sb, KERN_CRIT,
2454 "Delayed block allocation failed for "
2455 "inode %lu at logical offset %llu with"
2456 " max blocks %u with error %d",
2457 inode->i_ino,
2458 (unsigned long long)map->m_lblk,
2459 (unsigned)map->m_len, -err);
2460 ext4_msg(sb, KERN_CRIT,
2461 "This should not happen!! Data will "
2462 "be lost\n");
2463 if (err == -ENOSPC)
2464 ext4_print_free_blocks(inode);
2465 invalidate_dirty_pages:
2466 *give_up_on_write = true;
2467 return err;
2468 }
2469 progress = 1;
2470 /*
2471 * Update buffer state, submit mapped pages, and get us new
2472 * extent to map
2473 */
2474 err = mpage_map_and_submit_buffers(mpd);
2475 if (err < 0)
2476 goto update_disksize;
2477 } while (map->m_len);
2478
2479 update_disksize:
2480 /*
2481 * Update on-disk size after IO is submitted. Races with
2482 * truncate are avoided by checking i_size under i_data_sem.
2483 */
2484 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2485 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2486 int err2;
2487 loff_t i_size;
2488
2489 down_write(&EXT4_I(inode)->i_data_sem);
2490 i_size = i_size_read(inode);
2491 if (disksize > i_size)
2492 disksize = i_size;
2493 if (disksize > EXT4_I(inode)->i_disksize)
2494 EXT4_I(inode)->i_disksize = disksize;
2495 up_write(&EXT4_I(inode)->i_data_sem);
2496 err2 = ext4_mark_inode_dirty(handle, inode);
2497 if (err2) {
2498 ext4_error_err(inode->i_sb, -err2,
2499 "Failed to mark inode %lu dirty",
2500 inode->i_ino);
2501 }
2502 if (!err)
2503 err = err2;
2504 }
2505 return err;
2506 }
2507
2508 /*
2509 * Calculate the total number of credits to reserve for one writepages
2510 * iteration. This is called from ext4_writepages(). We map an extent of
2511 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2512 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2513 * bpp - 1 blocks in bpp different extents.
2514 */
2515 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2516 {
2517 int bpp = ext4_journal_blocks_per_page(inode);
2518
2519 return ext4_meta_trans_blocks(inode,
2520 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2521 }
2522
2523 /*
2524 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2525 * and underlying extent to map
2526 *
2527 * @mpd - where to look for pages
2528 *
2529 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2530 * IO immediately. When we find a page which isn't mapped we start accumulating
2531 * extent of buffers underlying these pages that needs mapping (formed by
2532 * either delayed or unwritten buffers). We also lock the pages containing
2533 * these buffers. The extent found is returned in @mpd structure (starting at
2534 * mpd->lblk with length mpd->len blocks).
2535 *
2536 * Note that this function can attach bios to one io_end structure which are
2537 * neither logically nor physically contiguous. Although it may seem as an
2538 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2539 * case as we need to track IO to all buffers underlying a page in one io_end.
2540 */
2541 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2542 {
2543 struct address_space *mapping = mpd->inode->i_mapping;
2544 struct pagevec pvec;
2545 unsigned int nr_pages;
2546 long left = mpd->wbc->nr_to_write;
2547 pgoff_t index = mpd->first_page;
2548 pgoff_t end = mpd->last_page;
2549 xa_mark_t tag;
2550 int i, err = 0;
2551 int blkbits = mpd->inode->i_blkbits;
2552 ext4_lblk_t lblk;
2553 struct buffer_head *head;
2554
2555 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2556 tag = PAGECACHE_TAG_TOWRITE;
2557 else
2558 tag = PAGECACHE_TAG_DIRTY;
2559
2560 pagevec_init(&pvec);
2561 mpd->map.m_len = 0;
2562 mpd->next_page = index;
2563 while (index <= end) {
2564 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2565 tag);
2566 if (nr_pages == 0)
2567 break;
2568
2569 for (i = 0; i < nr_pages; i++) {
2570 struct page *page = pvec.pages[i];
2571
2572 /*
2573 * Accumulated enough dirty pages? This doesn't apply
2574 * to WB_SYNC_ALL mode. For integrity sync we have to
2575 * keep going because someone may be concurrently
2576 * dirtying pages, and we might have synced a lot of
2577 * newly appeared dirty pages, but have not synced all
2578 * of the old dirty pages.
2579 */
2580 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2581 goto out;
2582
2583 /* If we can't merge this page, we are done. */
2584 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2585 goto out;
2586
2587 lock_page(page);
2588 /*
2589 * If the page is no longer dirty, or its mapping no
2590 * longer corresponds to inode we are writing (which
2591 * means it has been truncated or invalidated), or the
2592 * page is already under writeback and we are not doing
2593 * a data integrity writeback, skip the page
2594 */
2595 if (!PageDirty(page) ||
2596 (PageWriteback(page) &&
2597 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2598 unlikely(page->mapping != mapping)) {
2599 unlock_page(page);
2600 continue;
2601 }
2602
2603 wait_on_page_writeback(page);
2604 BUG_ON(PageWriteback(page));
2605
2606 /*
2607 * Should never happen but for buggy code in
2608 * other subsystems that call
2609 * set_page_dirty() without properly warning
2610 * the file system first. See [1] for more
2611 * information.
2612 *
2613 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2614 */
2615 if (!page_has_buffers(page)) {
2616 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2617 ClearPageDirty(page);
2618 unlock_page(page);
2619 continue;
2620 }
2621
2622 if (mpd->map.m_len == 0)
2623 mpd->first_page = page->index;
2624 mpd->next_page = page->index + 1;
2625 /* Add all dirty buffers to mpd */
2626 lblk = ((ext4_lblk_t)page->index) <<
2627 (PAGE_SHIFT - blkbits);
2628 head = page_buffers(page);
2629 err = mpage_process_page_bufs(mpd, head, head, lblk);
2630 if (err <= 0)
2631 goto out;
2632 err = 0;
2633 left--;
2634 }
2635 pagevec_release(&pvec);
2636 cond_resched();
2637 }
2638 mpd->scanned_until_end = 1;
2639 return 0;
2640 out:
2641 pagevec_release(&pvec);
2642 return err;
2643 }
2644
2645 static int ext4_writepages(struct address_space *mapping,
2646 struct writeback_control *wbc)
2647 {
2648 pgoff_t writeback_index = 0;
2649 long nr_to_write = wbc->nr_to_write;
2650 int range_whole = 0;
2651 int cycled = 1;
2652 handle_t *handle = NULL;
2653 struct mpage_da_data mpd;
2654 struct inode *inode = mapping->host;
2655 int needed_blocks, rsv_blocks = 0, ret = 0;
2656 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2657 struct blk_plug plug;
2658 bool give_up_on_write = false;
2659
2660 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2661 return -EIO;
2662
2663 percpu_down_read(&sbi->s_writepages_rwsem);
2664 trace_ext4_writepages(inode, wbc);
2665
2666 /*
2667 * No pages to write? This is mainly a kludge to avoid starting
2668 * a transaction for special inodes like journal inode on last iput()
2669 * because that could violate lock ordering on umount
2670 */
2671 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2672 goto out_writepages;
2673
2674 if (ext4_should_journal_data(inode)) {
2675 ret = generic_writepages(mapping, wbc);
2676 goto out_writepages;
2677 }
2678
2679 /*
2680 * If the filesystem has aborted, it is read-only, so return
2681 * right away instead of dumping stack traces later on that
2682 * will obscure the real source of the problem. We test
2683 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2684 * the latter could be true if the filesystem is mounted
2685 * read-only, and in that case, ext4_writepages should
2686 * *never* be called, so if that ever happens, we would want
2687 * the stack trace.
2688 */
2689 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2690 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2691 ret = -EROFS;
2692 goto out_writepages;
2693 }
2694
2695 /*
2696 * If we have inline data and arrive here, it means that
2697 * we will soon create the block for the 1st page, so
2698 * we'd better clear the inline data here.
2699 */
2700 if (ext4_has_inline_data(inode)) {
2701 /* Just inode will be modified... */
2702 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2703 if (IS_ERR(handle)) {
2704 ret = PTR_ERR(handle);
2705 goto out_writepages;
2706 }
2707 BUG_ON(ext4_test_inode_state(inode,
2708 EXT4_STATE_MAY_INLINE_DATA));
2709 ext4_destroy_inline_data(handle, inode);
2710 ext4_journal_stop(handle);
2711 }
2712
2713 if (ext4_should_dioread_nolock(inode)) {
2714 /*
2715 * We may need to convert up to one extent per block in
2716 * the page and we may dirty the inode.
2717 */
2718 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2719 PAGE_SIZE >> inode->i_blkbits);
2720 }
2721
2722 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2723 range_whole = 1;
2724
2725 if (wbc->range_cyclic) {
2726 writeback_index = mapping->writeback_index;
2727 if (writeback_index)
2728 cycled = 0;
2729 mpd.first_page = writeback_index;
2730 mpd.last_page = -1;
2731 } else {
2732 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2733 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2734 }
2735
2736 mpd.inode = inode;
2737 mpd.wbc = wbc;
2738 ext4_io_submit_init(&mpd.io_submit, wbc);
2739 retry:
2740 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2741 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2742 blk_start_plug(&plug);
2743
2744 /*
2745 * First writeback pages that don't need mapping - we can avoid
2746 * starting a transaction unnecessarily and also avoid being blocked
2747 * in the block layer on device congestion while having transaction
2748 * started.
2749 */
2750 mpd.do_map = 0;
2751 mpd.scanned_until_end = 0;
2752 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2753 if (!mpd.io_submit.io_end) {
2754 ret = -ENOMEM;
2755 goto unplug;
2756 }
2757 ret = mpage_prepare_extent_to_map(&mpd);
2758 /* Unlock pages we didn't use */
2759 mpage_release_unused_pages(&mpd, false);
2760 /* Submit prepared bio */
2761 ext4_io_submit(&mpd.io_submit);
2762 ext4_put_io_end_defer(mpd.io_submit.io_end);
2763 mpd.io_submit.io_end = NULL;
2764 if (ret < 0)
2765 goto unplug;
2766
2767 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2768 /* For each extent of pages we use new io_end */
2769 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2770 if (!mpd.io_submit.io_end) {
2771 ret = -ENOMEM;
2772 break;
2773 }
2774
2775 /*
2776 * We have two constraints: We find one extent to map and we
2777 * must always write out whole page (makes a difference when
2778 * blocksize < pagesize) so that we don't block on IO when we
2779 * try to write out the rest of the page. Journalled mode is
2780 * not supported by delalloc.
2781 */
2782 BUG_ON(ext4_should_journal_data(inode));
2783 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2784
2785 /* start a new transaction */
2786 handle = ext4_journal_start_with_reserve(inode,
2787 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2788 if (IS_ERR(handle)) {
2789 ret = PTR_ERR(handle);
2790 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2791 "%ld pages, ino %lu; err %d", __func__,
2792 wbc->nr_to_write, inode->i_ino, ret);
2793 /* Release allocated io_end */
2794 ext4_put_io_end(mpd.io_submit.io_end);
2795 mpd.io_submit.io_end = NULL;
2796 break;
2797 }
2798 mpd.do_map = 1;
2799
2800 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2801 ret = mpage_prepare_extent_to_map(&mpd);
2802 if (!ret && mpd.map.m_len)
2803 ret = mpage_map_and_submit_extent(handle, &mpd,
2804 &give_up_on_write);
2805 /*
2806 * Caution: If the handle is synchronous,
2807 * ext4_journal_stop() can wait for transaction commit
2808 * to finish which may depend on writeback of pages to
2809 * complete or on page lock to be released. In that
2810 * case, we have to wait until after we have
2811 * submitted all the IO, released page locks we hold,
2812 * and dropped io_end reference (for extent conversion
2813 * to be able to complete) before stopping the handle.
2814 */
2815 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2816 ext4_journal_stop(handle);
2817 handle = NULL;
2818 mpd.do_map = 0;
2819 }
2820 /* Unlock pages we didn't use */
2821 mpage_release_unused_pages(&mpd, give_up_on_write);
2822 /* Submit prepared bio */
2823 ext4_io_submit(&mpd.io_submit);
2824
2825 /*
2826 * Drop our io_end reference we got from init. We have
2827 * to be careful and use deferred io_end finishing if
2828 * we are still holding the transaction as we can
2829 * release the last reference to io_end which may end
2830 * up doing unwritten extent conversion.
2831 */
2832 if (handle) {
2833 ext4_put_io_end_defer(mpd.io_submit.io_end);
2834 ext4_journal_stop(handle);
2835 } else
2836 ext4_put_io_end(mpd.io_submit.io_end);
2837 mpd.io_submit.io_end = NULL;
2838
2839 if (ret == -ENOSPC && sbi->s_journal) {
2840 /*
2841 * Commit the transaction which would
2842 * free blocks released in the transaction
2843 * and try again
2844 */
2845 jbd2_journal_force_commit_nested(sbi->s_journal);
2846 ret = 0;
2847 continue;
2848 }
2849 /* Fatal error - ENOMEM, EIO... */
2850 if (ret)
2851 break;
2852 }
2853 unplug:
2854 blk_finish_plug(&plug);
2855 if (!ret && !cycled && wbc->nr_to_write > 0) {
2856 cycled = 1;
2857 mpd.last_page = writeback_index - 1;
2858 mpd.first_page = 0;
2859 goto retry;
2860 }
2861
2862 /* Update index */
2863 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2864 /*
2865 * Set the writeback_index so that range_cyclic
2866 * mode will write it back later
2867 */
2868 mapping->writeback_index = mpd.first_page;
2869
2870 out_writepages:
2871 trace_ext4_writepages_result(inode, wbc, ret,
2872 nr_to_write - wbc->nr_to_write);
2873 percpu_up_read(&sbi->s_writepages_rwsem);
2874 return ret;
2875 }
2876
2877 static int ext4_dax_writepages(struct address_space *mapping,
2878 struct writeback_control *wbc)
2879 {
2880 int ret;
2881 long nr_to_write = wbc->nr_to_write;
2882 struct inode *inode = mapping->host;
2883 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2884
2885 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2886 return -EIO;
2887
2888 percpu_down_read(&sbi->s_writepages_rwsem);
2889 trace_ext4_writepages(inode, wbc);
2890
2891 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2892 trace_ext4_writepages_result(inode, wbc, ret,
2893 nr_to_write - wbc->nr_to_write);
2894 percpu_up_read(&sbi->s_writepages_rwsem);
2895 return ret;
2896 }
2897
2898 static int ext4_nonda_switch(struct super_block *sb)
2899 {
2900 s64 free_clusters, dirty_clusters;
2901 struct ext4_sb_info *sbi = EXT4_SB(sb);
2902
2903 /*
2904 * switch to non delalloc mode if we are running low
2905 * on free block. The free block accounting via percpu
2906 * counters can get slightly wrong with percpu_counter_batch getting
2907 * accumulated on each CPU without updating global counters
2908 * Delalloc need an accurate free block accounting. So switch
2909 * to non delalloc when we are near to error range.
2910 */
2911 free_clusters =
2912 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2913 dirty_clusters =
2914 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2915 /*
2916 * Start pushing delalloc when 1/2 of free blocks are dirty.
2917 */
2918 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2919 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2920
2921 if (2 * free_clusters < 3 * dirty_clusters ||
2922 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2923 /*
2924 * free block count is less than 150% of dirty blocks
2925 * or free blocks is less than watermark
2926 */
2927 return 1;
2928 }
2929 return 0;
2930 }
2931
2932 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2933 loff_t pos, unsigned len, unsigned flags,
2934 struct page **pagep, void **fsdata)
2935 {
2936 int ret, retries = 0;
2937 struct page *page;
2938 pgoff_t index;
2939 struct inode *inode = mapping->host;
2940
2941 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2942 return -EIO;
2943
2944 index = pos >> PAGE_SHIFT;
2945
2946 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2947 ext4_verity_in_progress(inode)) {
2948 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2949 return ext4_write_begin(file, mapping, pos,
2950 len, flags, pagep, fsdata);
2951 }
2952 *fsdata = (void *)0;
2953 trace_ext4_da_write_begin(inode, pos, len, flags);
2954
2955 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2956 ret = ext4_da_write_inline_data_begin(mapping, inode,
2957 pos, len, flags,
2958 pagep, fsdata);
2959 if (ret < 0)
2960 return ret;
2961 if (ret == 1)
2962 return 0;
2963 }
2964
2965 retry:
2966 page = grab_cache_page_write_begin(mapping, index, flags);
2967 if (!page)
2968 return -ENOMEM;
2969
2970 /* In case writeback began while the page was unlocked */
2971 wait_for_stable_page(page);
2972
2973 #ifdef CONFIG_FS_ENCRYPTION
2974 ret = ext4_block_write_begin(page, pos, len,
2975 ext4_da_get_block_prep);
2976 #else
2977 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2978 #endif
2979 if (ret < 0) {
2980 unlock_page(page);
2981 put_page(page);
2982 /*
2983 * block_write_begin may have instantiated a few blocks
2984 * outside i_size. Trim these off again. Don't need
2985 * i_size_read because we hold inode lock.
2986 */
2987 if (pos + len > inode->i_size)
2988 ext4_truncate_failed_write(inode);
2989
2990 if (ret == -ENOSPC &&
2991 ext4_should_retry_alloc(inode->i_sb, &retries))
2992 goto retry;
2993 return ret;
2994 }
2995
2996 *pagep = page;
2997 return ret;
2998 }
2999
3000 /*
3001 * Check if we should update i_disksize
3002 * when write to the end of file but not require block allocation
3003 */
3004 static int ext4_da_should_update_i_disksize(struct page *page,
3005 unsigned long offset)
3006 {
3007 struct buffer_head *bh;
3008 struct inode *inode = page->mapping->host;
3009 unsigned int idx;
3010 int i;
3011
3012 bh = page_buffers(page);
3013 idx = offset >> inode->i_blkbits;
3014
3015 for (i = 0; i < idx; i++)
3016 bh = bh->b_this_page;
3017
3018 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3019 return 0;
3020 return 1;
3021 }
3022
3023 static int ext4_da_write_end(struct file *file,
3024 struct address_space *mapping,
3025 loff_t pos, unsigned len, unsigned copied,
3026 struct page *page, void *fsdata)
3027 {
3028 struct inode *inode = mapping->host;
3029 loff_t new_i_size;
3030 unsigned long start, end;
3031 int write_mode = (int)(unsigned long)fsdata;
3032
3033 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3034 return ext4_write_end(file, mapping, pos,
3035 len, copied, page, fsdata);
3036
3037 trace_ext4_da_write_end(inode, pos, len, copied);
3038
3039 if (write_mode != CONVERT_INLINE_DATA &&
3040 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3041 ext4_has_inline_data(inode))
3042 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3043
3044 start = pos & (PAGE_SIZE - 1);
3045 end = start + copied - 1;
3046
3047 /*
3048 * Since we are holding inode lock, we are sure i_disksize <=
3049 * i_size. We also know that if i_disksize < i_size, there are
3050 * delalloc writes pending in the range upto i_size. If the end of
3051 * the current write is <= i_size, there's no need to touch
3052 * i_disksize since writeback will push i_disksize upto i_size
3053 * eventually. If the end of the current write is > i_size and
3054 * inside an allocated block (ext4_da_should_update_i_disksize()
3055 * check), we need to update i_disksize here as neither
3056 * ext4_writepage() nor certain ext4_writepages() paths not
3057 * allocating blocks update i_disksize.
3058 *
3059 * Note that we defer inode dirtying to generic_write_end() /
3060 * ext4_da_write_inline_data_end().
3061 */
3062 new_i_size = pos + copied;
3063 if (copied && new_i_size > inode->i_size &&
3064 ext4_da_should_update_i_disksize(page, end))
3065 ext4_update_i_disksize(inode, new_i_size);
3066
3067 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3068 }
3069
3070 /*
3071 * Force all delayed allocation blocks to be allocated for a given inode.
3072 */
3073 int ext4_alloc_da_blocks(struct inode *inode)
3074 {
3075 trace_ext4_alloc_da_blocks(inode);
3076
3077 if (!EXT4_I(inode)->i_reserved_data_blocks)
3078 return 0;
3079
3080 /*
3081 * We do something simple for now. The filemap_flush() will
3082 * also start triggering a write of the data blocks, which is
3083 * not strictly speaking necessary (and for users of
3084 * laptop_mode, not even desirable). However, to do otherwise
3085 * would require replicating code paths in:
3086 *
3087 * ext4_writepages() ->
3088 * write_cache_pages() ---> (via passed in callback function)
3089 * __mpage_da_writepage() -->
3090 * mpage_add_bh_to_extent()
3091 * mpage_da_map_blocks()
3092 *
3093 * The problem is that write_cache_pages(), located in
3094 * mm/page-writeback.c, marks pages clean in preparation for
3095 * doing I/O, which is not desirable if we're not planning on
3096 * doing I/O at all.
3097 *
3098 * We could call write_cache_pages(), and then redirty all of
3099 * the pages by calling redirty_page_for_writepage() but that
3100 * would be ugly in the extreme. So instead we would need to
3101 * replicate parts of the code in the above functions,
3102 * simplifying them because we wouldn't actually intend to
3103 * write out the pages, but rather only collect contiguous
3104 * logical block extents, call the multi-block allocator, and
3105 * then update the buffer heads with the block allocations.
3106 *
3107 * For now, though, we'll cheat by calling filemap_flush(),
3108 * which will map the blocks, and start the I/O, but not
3109 * actually wait for the I/O to complete.
3110 */
3111 return filemap_flush(inode->i_mapping);
3112 }
3113
3114 /*
3115 * bmap() is special. It gets used by applications such as lilo and by
3116 * the swapper to find the on-disk block of a specific piece of data.
3117 *
3118 * Naturally, this is dangerous if the block concerned is still in the
3119 * journal. If somebody makes a swapfile on an ext4 data-journaling
3120 * filesystem and enables swap, then they may get a nasty shock when the
3121 * data getting swapped to that swapfile suddenly gets overwritten by
3122 * the original zero's written out previously to the journal and
3123 * awaiting writeback in the kernel's buffer cache.
3124 *
3125 * So, if we see any bmap calls here on a modified, data-journaled file,
3126 * take extra steps to flush any blocks which might be in the cache.
3127 */
3128 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3129 {
3130 struct inode *inode = mapping->host;
3131 journal_t *journal;
3132 int err;
3133
3134 /*
3135 * We can get here for an inline file via the FIBMAP ioctl
3136 */
3137 if (ext4_has_inline_data(inode))
3138 return 0;
3139
3140 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3141 test_opt(inode->i_sb, DELALLOC)) {
3142 /*
3143 * With delalloc we want to sync the file
3144 * so that we can make sure we allocate
3145 * blocks for file
3146 */
3147 filemap_write_and_wait(mapping);
3148 }
3149
3150 if (EXT4_JOURNAL(inode) &&
3151 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3152 /*
3153 * This is a REALLY heavyweight approach, but the use of
3154 * bmap on dirty files is expected to be extremely rare:
3155 * only if we run lilo or swapon on a freshly made file
3156 * do we expect this to happen.
3157 *
3158 * (bmap requires CAP_SYS_RAWIO so this does not
3159 * represent an unprivileged user DOS attack --- we'd be
3160 * in trouble if mortal users could trigger this path at
3161 * will.)
3162 *
3163 * NB. EXT4_STATE_JDATA is not set on files other than
3164 * regular files. If somebody wants to bmap a directory
3165 * or symlink and gets confused because the buffer
3166 * hasn't yet been flushed to disk, they deserve
3167 * everything they get.
3168 */
3169
3170 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3171 journal = EXT4_JOURNAL(inode);
3172 jbd2_journal_lock_updates(journal);
3173 err = jbd2_journal_flush(journal, 0);
3174 jbd2_journal_unlock_updates(journal);
3175
3176 if (err)
3177 return 0;
3178 }
3179
3180 return iomap_bmap(mapping, block, &ext4_iomap_ops);
3181 }
3182
3183 static int ext4_readpage(struct file *file, struct page *page)
3184 {
3185 int ret = -EAGAIN;
3186 struct inode *inode = page->mapping->host;
3187
3188 trace_ext4_readpage(page);
3189
3190 if (ext4_has_inline_data(inode))
3191 ret = ext4_readpage_inline(inode, page);
3192
3193 if (ret == -EAGAIN)
3194 return ext4_mpage_readpages(inode, NULL, page);
3195
3196 return ret;
3197 }
3198
3199 static void ext4_readahead(struct readahead_control *rac)
3200 {
3201 struct inode *inode = rac->mapping->host;
3202
3203 /* If the file has inline data, no need to do readahead. */
3204 if (ext4_has_inline_data(inode))
3205 return;
3206
3207 ext4_mpage_readpages(inode, rac, NULL);
3208 }
3209
3210 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3211 unsigned int length)
3212 {
3213 trace_ext4_invalidatepage(page, offset, length);
3214
3215 /* No journalling happens on data buffers when this function is used */
3216 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3217
3218 block_invalidatepage(page, offset, length);
3219 }
3220
3221 static int __ext4_journalled_invalidatepage(struct page *page,
3222 unsigned int offset,
3223 unsigned int length)
3224 {
3225 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3226
3227 trace_ext4_journalled_invalidatepage(page, offset, length);
3228
3229 /*
3230 * If it's a full truncate we just forget about the pending dirtying
3231 */
3232 if (offset == 0 && length == PAGE_SIZE)
3233 ClearPageChecked(page);
3234
3235 return jbd2_journal_invalidatepage(journal, page, offset, length);
3236 }
3237
3238 /* Wrapper for aops... */
3239 static void ext4_journalled_invalidatepage(struct page *page,
3240 unsigned int offset,
3241 unsigned int length)
3242 {
3243 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3244 }
3245
3246 static int ext4_releasepage(struct page *page, gfp_t wait)
3247 {
3248 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3249
3250 trace_ext4_releasepage(page);
3251
3252 /* Page has dirty journalled data -> cannot release */
3253 if (PageChecked(page))
3254 return 0;
3255 if (journal)
3256 return jbd2_journal_try_to_free_buffers(journal, page);
3257 else
3258 return try_to_free_buffers(page);
3259 }
3260
3261 static bool ext4_inode_datasync_dirty(struct inode *inode)
3262 {
3263 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3264
3265 if (journal) {
3266 if (jbd2_transaction_committed(journal,
3267 EXT4_I(inode)->i_datasync_tid))
3268 return false;
3269 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3270 return !list_empty(&EXT4_I(inode)->i_fc_list);
3271 return true;
3272 }
3273
3274 /* Any metadata buffers to write? */
3275 if (!list_empty(&inode->i_mapping->private_list))
3276 return true;
3277 return inode->i_state & I_DIRTY_DATASYNC;
3278 }
3279
3280 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3281 struct ext4_map_blocks *map, loff_t offset,
3282 loff_t length, unsigned int flags)
3283 {
3284 u8 blkbits = inode->i_blkbits;
3285
3286 /*
3287 * Writes that span EOF might trigger an I/O size update on completion,
3288 * so consider them to be dirty for the purpose of O_DSYNC, even if
3289 * there is no other metadata changes being made or are pending.
3290 */
3291 iomap->flags = 0;
3292 if (ext4_inode_datasync_dirty(inode) ||
3293 offset + length > i_size_read(inode))
3294 iomap->flags |= IOMAP_F_DIRTY;
3295
3296 if (map->m_flags & EXT4_MAP_NEW)
3297 iomap->flags |= IOMAP_F_NEW;
3298
3299 if (flags & IOMAP_DAX)
3300 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3301 else
3302 iomap->bdev = inode->i_sb->s_bdev;
3303 iomap->offset = (u64) map->m_lblk << blkbits;
3304 iomap->length = (u64) map->m_len << blkbits;
3305
3306 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3307 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3308 iomap->flags |= IOMAP_F_MERGED;
3309
3310 /*
3311 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3312 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3313 * set. In order for any allocated unwritten extents to be converted
3314 * into written extents correctly within the ->end_io() handler, we
3315 * need to ensure that the iomap->type is set appropriately. Hence, the
3316 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3317 * been set first.
3318 */
3319 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3320 iomap->type = IOMAP_UNWRITTEN;
3321 iomap->addr = (u64) map->m_pblk << blkbits;
3322 if (flags & IOMAP_DAX)
3323 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3324 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3325 iomap->type = IOMAP_MAPPED;
3326 iomap->addr = (u64) map->m_pblk << blkbits;
3327 if (flags & IOMAP_DAX)
3328 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3329 } else {
3330 iomap->type = IOMAP_HOLE;
3331 iomap->addr = IOMAP_NULL_ADDR;
3332 }
3333 }
3334
3335 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3336 unsigned int flags)
3337 {
3338 handle_t *handle;
3339 u8 blkbits = inode->i_blkbits;
3340 int ret, dio_credits, m_flags = 0, retries = 0;
3341
3342 /*
3343 * Trim the mapping request to the maximum value that we can map at
3344 * once for direct I/O.
3345 */
3346 if (map->m_len > DIO_MAX_BLOCKS)
3347 map->m_len = DIO_MAX_BLOCKS;
3348 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3349
3350 retry:
3351 /*
3352 * Either we allocate blocks and then don't get an unwritten extent, so
3353 * in that case we have reserved enough credits. Or, the blocks are
3354 * already allocated and unwritten. In that case, the extent conversion
3355 * fits into the credits as well.
3356 */
3357 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3358 if (IS_ERR(handle))
3359 return PTR_ERR(handle);
3360
3361 /*
3362 * DAX and direct I/O are the only two operations that are currently
3363 * supported with IOMAP_WRITE.
3364 */
3365 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3366 if (flags & IOMAP_DAX)
3367 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3368 /*
3369 * We use i_size instead of i_disksize here because delalloc writeback
3370 * can complete at any point during the I/O and subsequently push the
3371 * i_disksize out to i_size. This could be beyond where direct I/O is
3372 * happening and thus expose allocated blocks to direct I/O reads.
3373 */
3374 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3375 m_flags = EXT4_GET_BLOCKS_CREATE;
3376 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3377 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3378
3379 ret = ext4_map_blocks(handle, inode, map, m_flags);
3380
3381 /*
3382 * We cannot fill holes in indirect tree based inodes as that could
3383 * expose stale data in the case of a crash. Use the magic error code
3384 * to fallback to buffered I/O.
3385 */
3386 if (!m_flags && !ret)
3387 ret = -ENOTBLK;
3388
3389 ext4_journal_stop(handle);
3390 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3391 goto retry;
3392
3393 return ret;
3394 }
3395
3396
3397 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3398 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3399 {
3400 int ret;
3401 struct ext4_map_blocks map;
3402 u8 blkbits = inode->i_blkbits;
3403
3404 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3405 return -EINVAL;
3406
3407 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3408 return -ERANGE;
3409
3410 /*
3411 * Calculate the first and last logical blocks respectively.
3412 */
3413 map.m_lblk = offset >> blkbits;
3414 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3415 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3416
3417 if (flags & IOMAP_WRITE) {
3418 /*
3419 * We check here if the blocks are already allocated, then we
3420 * don't need to start a journal txn and we can directly return
3421 * the mapping information. This could boost performance
3422 * especially in multi-threaded overwrite requests.
3423 */
3424 if (offset + length <= i_size_read(inode)) {
3425 ret = ext4_map_blocks(NULL, inode, &map, 0);
3426 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3427 goto out;
3428 }
3429 ret = ext4_iomap_alloc(inode, &map, flags);
3430 } else {
3431 ret = ext4_map_blocks(NULL, inode, &map, 0);
3432 }
3433
3434 if (ret < 0)
3435 return ret;
3436 out:
3437 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3438
3439 return 0;
3440 }
3441
3442 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3443 loff_t length, unsigned flags, struct iomap *iomap,
3444 struct iomap *srcmap)
3445 {
3446 int ret;
3447
3448 /*
3449 * Even for writes we don't need to allocate blocks, so just pretend
3450 * we are reading to save overhead of starting a transaction.
3451 */
3452 flags &= ~IOMAP_WRITE;
3453 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3454 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3455 return ret;
3456 }
3457
3458 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3459 ssize_t written, unsigned flags, struct iomap *iomap)
3460 {
3461 /*
3462 * Check to see whether an error occurred while writing out the data to
3463 * the allocated blocks. If so, return the magic error code so that we
3464 * fallback to buffered I/O and attempt to complete the remainder of
3465 * the I/O. Any blocks that may have been allocated in preparation for
3466 * the direct I/O will be reused during buffered I/O.
3467 */
3468 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3469 return -ENOTBLK;
3470
3471 return 0;
3472 }
3473
3474 const struct iomap_ops ext4_iomap_ops = {
3475 .iomap_begin = ext4_iomap_begin,
3476 .iomap_end = ext4_iomap_end,
3477 };
3478
3479 const struct iomap_ops ext4_iomap_overwrite_ops = {
3480 .iomap_begin = ext4_iomap_overwrite_begin,
3481 .iomap_end = ext4_iomap_end,
3482 };
3483
3484 static bool ext4_iomap_is_delalloc(struct inode *inode,
3485 struct ext4_map_blocks *map)
3486 {
3487 struct extent_status es;
3488 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3489
3490 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3491 map->m_lblk, end, &es);
3492
3493 if (!es.es_len || es.es_lblk > end)
3494 return false;
3495
3496 if (es.es_lblk > map->m_lblk) {
3497 map->m_len = es.es_lblk - map->m_lblk;
3498 return false;
3499 }
3500
3501 offset = map->m_lblk - es.es_lblk;
3502 map->m_len = es.es_len - offset;
3503
3504 return true;
3505 }
3506
3507 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3508 loff_t length, unsigned int flags,
3509 struct iomap *iomap, struct iomap *srcmap)
3510 {
3511 int ret;
3512 bool delalloc = false;
3513 struct ext4_map_blocks map;
3514 u8 blkbits = inode->i_blkbits;
3515
3516 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3517 return -EINVAL;
3518
3519 if (ext4_has_inline_data(inode)) {
3520 ret = ext4_inline_data_iomap(inode, iomap);
3521 if (ret != -EAGAIN) {
3522 if (ret == 0 && offset >= iomap->length)
3523 ret = -ENOENT;
3524 return ret;
3525 }
3526 }
3527
3528 /*
3529 * Calculate the first and last logical block respectively.
3530 */
3531 map.m_lblk = offset >> blkbits;
3532 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3533 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3534
3535 /*
3536 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3537 * So handle it here itself instead of querying ext4_map_blocks().
3538 * Since ext4_map_blocks() will warn about it and will return
3539 * -EIO error.
3540 */
3541 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3542 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3543
3544 if (offset >= sbi->s_bitmap_maxbytes) {
3545 map.m_flags = 0;
3546 goto set_iomap;
3547 }
3548 }
3549
3550 ret = ext4_map_blocks(NULL, inode, &map, 0);
3551 if (ret < 0)
3552 return ret;
3553 if (ret == 0)
3554 delalloc = ext4_iomap_is_delalloc(inode, &map);
3555
3556 set_iomap:
3557 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3558 if (delalloc && iomap->type == IOMAP_HOLE)
3559 iomap->type = IOMAP_DELALLOC;
3560
3561 return 0;
3562 }
3563
3564 const struct iomap_ops ext4_iomap_report_ops = {
3565 .iomap_begin = ext4_iomap_begin_report,
3566 };
3567
3568 /*
3569 * Whenever the page is being dirtied, corresponding buffers should already be
3570 * attached to the transaction (we take care of this in ext4_page_mkwrite() and
3571 * ext4_write_begin()). However we cannot move buffers to dirty transaction
3572 * lists here because ->set_page_dirty is called under VFS locks and the page
3573 * is not necessarily locked.
3574 *
3575 * We cannot just dirty the page and leave attached buffers clean, because the
3576 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3577 * or jbddirty because all the journalling code will explode.
3578 *
3579 * So what we do is to mark the page "pending dirty" and next time writepage
3580 * is called, propagate that into the buffers appropriately.
3581 */
3582 static int ext4_journalled_set_page_dirty(struct page *page)
3583 {
3584 WARN_ON_ONCE(!page_has_buffers(page));
3585 SetPageChecked(page);
3586 return __set_page_dirty_nobuffers(page);
3587 }
3588
3589 static int ext4_set_page_dirty(struct page *page)
3590 {
3591 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3592 WARN_ON_ONCE(!page_has_buffers(page));
3593 return __set_page_dirty_buffers(page);
3594 }
3595
3596 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3597 struct file *file, sector_t *span)
3598 {
3599 return iomap_swapfile_activate(sis, file, span,
3600 &ext4_iomap_report_ops);
3601 }
3602
3603 static const struct address_space_operations ext4_aops = {
3604 .readpage = ext4_readpage,
3605 .readahead = ext4_readahead,
3606 .writepage = ext4_writepage,
3607 .writepages = ext4_writepages,
3608 .write_begin = ext4_write_begin,
3609 .write_end = ext4_write_end,
3610 .set_page_dirty = ext4_set_page_dirty,
3611 .bmap = ext4_bmap,
3612 .invalidatepage = ext4_invalidatepage,
3613 .releasepage = ext4_releasepage,
3614 .direct_IO = noop_direct_IO,
3615 .migratepage = buffer_migrate_page,
3616 .is_partially_uptodate = block_is_partially_uptodate,
3617 .error_remove_page = generic_error_remove_page,
3618 .swap_activate = ext4_iomap_swap_activate,
3619 };
3620
3621 static const struct address_space_operations ext4_journalled_aops = {
3622 .readpage = ext4_readpage,
3623 .readahead = ext4_readahead,
3624 .writepage = ext4_writepage,
3625 .writepages = ext4_writepages,
3626 .write_begin = ext4_write_begin,
3627 .write_end = ext4_journalled_write_end,
3628 .set_page_dirty = ext4_journalled_set_page_dirty,
3629 .bmap = ext4_bmap,
3630 .invalidatepage = ext4_journalled_invalidatepage,
3631 .releasepage = ext4_releasepage,
3632 .direct_IO = noop_direct_IO,
3633 .is_partially_uptodate = block_is_partially_uptodate,
3634 .error_remove_page = generic_error_remove_page,
3635 .swap_activate = ext4_iomap_swap_activate,
3636 };
3637
3638 static const struct address_space_operations ext4_da_aops = {
3639 .readpage = ext4_readpage,
3640 .readahead = ext4_readahead,
3641 .writepage = ext4_writepage,
3642 .writepages = ext4_writepages,
3643 .write_begin = ext4_da_write_begin,
3644 .write_end = ext4_da_write_end,
3645 .set_page_dirty = ext4_set_page_dirty,
3646 .bmap = ext4_bmap,
3647 .invalidatepage = ext4_invalidatepage,
3648 .releasepage = ext4_releasepage,
3649 .direct_IO = noop_direct_IO,
3650 .migratepage = buffer_migrate_page,
3651 .is_partially_uptodate = block_is_partially_uptodate,
3652 .error_remove_page = generic_error_remove_page,
3653 .swap_activate = ext4_iomap_swap_activate,
3654 };
3655
3656 static const struct address_space_operations ext4_dax_aops = {
3657 .writepages = ext4_dax_writepages,
3658 .direct_IO = noop_direct_IO,
3659 .set_page_dirty = __set_page_dirty_no_writeback,
3660 .bmap = ext4_bmap,
3661 .invalidatepage = noop_invalidatepage,
3662 .swap_activate = ext4_iomap_swap_activate,
3663 };
3664
3665 void ext4_set_aops(struct inode *inode)
3666 {
3667 switch (ext4_inode_journal_mode(inode)) {
3668 case EXT4_INODE_ORDERED_DATA_MODE:
3669 case EXT4_INODE_WRITEBACK_DATA_MODE:
3670 break;
3671 case EXT4_INODE_JOURNAL_DATA_MODE:
3672 inode->i_mapping->a_ops = &ext4_journalled_aops;
3673 return;
3674 default:
3675 BUG();
3676 }
3677 if (IS_DAX(inode))
3678 inode->i_mapping->a_ops = &ext4_dax_aops;
3679 else if (test_opt(inode->i_sb, DELALLOC))
3680 inode->i_mapping->a_ops = &ext4_da_aops;
3681 else
3682 inode->i_mapping->a_ops = &ext4_aops;
3683 }
3684
3685 static int __ext4_block_zero_page_range(handle_t *handle,
3686 struct address_space *mapping, loff_t from, loff_t length)
3687 {
3688 ext4_fsblk_t index = from >> PAGE_SHIFT;
3689 unsigned offset = from & (PAGE_SIZE-1);
3690 unsigned blocksize, pos;
3691 ext4_lblk_t iblock;
3692 struct inode *inode = mapping->host;
3693 struct buffer_head *bh;
3694 struct page *page;
3695 int err = 0;
3696
3697 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3698 mapping_gfp_constraint(mapping, ~__GFP_FS));
3699 if (!page)
3700 return -ENOMEM;
3701
3702 blocksize = inode->i_sb->s_blocksize;
3703
3704 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3705
3706 if (!page_has_buffers(page))
3707 create_empty_buffers(page, blocksize, 0);
3708
3709 /* Find the buffer that contains "offset" */
3710 bh = page_buffers(page);
3711 pos = blocksize;
3712 while (offset >= pos) {
3713 bh = bh->b_this_page;
3714 iblock++;
3715 pos += blocksize;
3716 }
3717 if (buffer_freed(bh)) {
3718 BUFFER_TRACE(bh, "freed: skip");
3719 goto unlock;
3720 }
3721 if (!buffer_mapped(bh)) {
3722 BUFFER_TRACE(bh, "unmapped");
3723 ext4_get_block(inode, iblock, bh, 0);
3724 /* unmapped? It's a hole - nothing to do */
3725 if (!buffer_mapped(bh)) {
3726 BUFFER_TRACE(bh, "still unmapped");
3727 goto unlock;
3728 }
3729 }
3730
3731 /* Ok, it's mapped. Make sure it's up-to-date */
3732 if (PageUptodate(page))
3733 set_buffer_uptodate(bh);
3734
3735 if (!buffer_uptodate(bh)) {
3736 err = ext4_read_bh_lock(bh, 0, true);
3737 if (err)
3738 goto unlock;
3739 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3740 /* We expect the key to be set. */
3741 BUG_ON(!fscrypt_has_encryption_key(inode));
3742 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3743 bh_offset(bh));
3744 if (err) {
3745 clear_buffer_uptodate(bh);
3746 goto unlock;
3747 }
3748 }
3749 }
3750 if (ext4_should_journal_data(inode)) {
3751 BUFFER_TRACE(bh, "get write access");
3752 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3753 EXT4_JTR_NONE);
3754 if (err)
3755 goto unlock;
3756 }
3757 zero_user(page, offset, length);
3758 BUFFER_TRACE(bh, "zeroed end of block");
3759
3760 if (ext4_should_journal_data(inode)) {
3761 err = ext4_handle_dirty_metadata(handle, inode, bh);
3762 } else {
3763 err = 0;
3764 mark_buffer_dirty(bh);
3765 if (ext4_should_order_data(inode))
3766 err = ext4_jbd2_inode_add_write(handle, inode, from,
3767 length);
3768 }
3769
3770 unlock:
3771 unlock_page(page);
3772 put_page(page);
3773 return err;
3774 }
3775
3776 /*
3777 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3778 * starting from file offset 'from'. The range to be zero'd must
3779 * be contained with in one block. If the specified range exceeds
3780 * the end of the block it will be shortened to end of the block
3781 * that corresponds to 'from'
3782 */
3783 static int ext4_block_zero_page_range(handle_t *handle,
3784 struct address_space *mapping, loff_t from, loff_t length)
3785 {
3786 struct inode *inode = mapping->host;
3787 unsigned offset = from & (PAGE_SIZE-1);
3788 unsigned blocksize = inode->i_sb->s_blocksize;
3789 unsigned max = blocksize - (offset & (blocksize - 1));
3790
3791 /*
3792 * correct length if it does not fall between
3793 * 'from' and the end of the block
3794 */
3795 if (length > max || length < 0)
3796 length = max;
3797
3798 if (IS_DAX(inode)) {
3799 return dax_zero_range(inode, from, length, NULL,
3800 &ext4_iomap_ops);
3801 }
3802 return __ext4_block_zero_page_range(handle, mapping, from, length);
3803 }
3804
3805 /*
3806 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3807 * up to the end of the block which corresponds to `from'.
3808 * This required during truncate. We need to physically zero the tail end
3809 * of that block so it doesn't yield old data if the file is later grown.
3810 */
3811 static int ext4_block_truncate_page(handle_t *handle,
3812 struct address_space *mapping, loff_t from)
3813 {
3814 unsigned offset = from & (PAGE_SIZE-1);
3815 unsigned length;
3816 unsigned blocksize;
3817 struct inode *inode = mapping->host;
3818
3819 /* If we are processing an encrypted inode during orphan list handling */
3820 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3821 return 0;
3822
3823 blocksize = inode->i_sb->s_blocksize;
3824 length = blocksize - (offset & (blocksize - 1));
3825
3826 return ext4_block_zero_page_range(handle, mapping, from, length);
3827 }
3828
3829 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3830 loff_t lstart, loff_t length)
3831 {
3832 struct super_block *sb = inode->i_sb;
3833 struct address_space *mapping = inode->i_mapping;
3834 unsigned partial_start, partial_end;
3835 ext4_fsblk_t start, end;
3836 loff_t byte_end = (lstart + length - 1);
3837 int err = 0;
3838
3839 partial_start = lstart & (sb->s_blocksize - 1);
3840 partial_end = byte_end & (sb->s_blocksize - 1);
3841
3842 start = lstart >> sb->s_blocksize_bits;
3843 end = byte_end >> sb->s_blocksize_bits;
3844
3845 /* Handle partial zero within the single block */
3846 if (start == end &&
3847 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3848 err = ext4_block_zero_page_range(handle, mapping,
3849 lstart, length);
3850 return err;
3851 }
3852 /* Handle partial zero out on the start of the range */
3853 if (partial_start) {
3854 err = ext4_block_zero_page_range(handle, mapping,
3855 lstart, sb->s_blocksize);
3856 if (err)
3857 return err;
3858 }
3859 /* Handle partial zero out on the end of the range */
3860 if (partial_end != sb->s_blocksize - 1)
3861 err = ext4_block_zero_page_range(handle, mapping,
3862 byte_end - partial_end,
3863 partial_end + 1);
3864 return err;
3865 }
3866
3867 int ext4_can_truncate(struct inode *inode)
3868 {
3869 if (S_ISREG(inode->i_mode))
3870 return 1;
3871 if (S_ISDIR(inode->i_mode))
3872 return 1;
3873 if (S_ISLNK(inode->i_mode))
3874 return !ext4_inode_is_fast_symlink(inode);
3875 return 0;
3876 }
3877
3878 /*
3879 * We have to make sure i_disksize gets properly updated before we truncate
3880 * page cache due to hole punching or zero range. Otherwise i_disksize update
3881 * can get lost as it may have been postponed to submission of writeback but
3882 * that will never happen after we truncate page cache.
3883 */
3884 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3885 loff_t len)
3886 {
3887 handle_t *handle;
3888 int ret;
3889
3890 loff_t size = i_size_read(inode);
3891
3892 WARN_ON(!inode_is_locked(inode));
3893 if (offset > size || offset + len < size)
3894 return 0;
3895
3896 if (EXT4_I(inode)->i_disksize >= size)
3897 return 0;
3898
3899 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3900 if (IS_ERR(handle))
3901 return PTR_ERR(handle);
3902 ext4_update_i_disksize(inode, size);
3903 ret = ext4_mark_inode_dirty(handle, inode);
3904 ext4_journal_stop(handle);
3905
3906 return ret;
3907 }
3908
3909 static void ext4_wait_dax_page(struct inode *inode)
3910 {
3911 filemap_invalidate_unlock(inode->i_mapping);
3912 schedule();
3913 filemap_invalidate_lock(inode->i_mapping);
3914 }
3915
3916 int ext4_break_layouts(struct inode *inode)
3917 {
3918 struct page *page;
3919 int error;
3920
3921 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3922 return -EINVAL;
3923
3924 do {
3925 page = dax_layout_busy_page(inode->i_mapping);
3926 if (!page)
3927 return 0;
3928
3929 error = ___wait_var_event(&page->_refcount,
3930 atomic_read(&page->_refcount) == 1,
3931 TASK_INTERRUPTIBLE, 0, 0,
3932 ext4_wait_dax_page(inode));
3933 } while (error == 0);
3934
3935 return error;
3936 }
3937
3938 /*
3939 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940 * associated with the given offset and length
3941 *
3942 * @inode: File inode
3943 * @offset: The offset where the hole will begin
3944 * @len: The length of the hole
3945 *
3946 * Returns: 0 on success or negative on failure
3947 */
3948
3949 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3950 {
3951 struct inode *inode = file_inode(file);
3952 struct super_block *sb = inode->i_sb;
3953 ext4_lblk_t first_block, stop_block;
3954 struct address_space *mapping = inode->i_mapping;
3955 loff_t first_block_offset, last_block_offset, max_length;
3956 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3957 handle_t *handle;
3958 unsigned int credits;
3959 int ret = 0, ret2 = 0;
3960
3961 trace_ext4_punch_hole(inode, offset, length, 0);
3962
3963 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3964 if (ext4_has_inline_data(inode)) {
3965 filemap_invalidate_lock(mapping);
3966 ret = ext4_convert_inline_data(inode);
3967 filemap_invalidate_unlock(mapping);
3968 if (ret)
3969 return ret;
3970 }
3971
3972 /*
3973 * Write out all dirty pages to avoid race conditions
3974 * Then release them.
3975 */
3976 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3977 ret = filemap_write_and_wait_range(mapping, offset,
3978 offset + length - 1);
3979 if (ret)
3980 return ret;
3981 }
3982
3983 inode_lock(inode);
3984
3985 /* No need to punch hole beyond i_size */
3986 if (offset >= inode->i_size)
3987 goto out_mutex;
3988
3989 /*
3990 * If the hole extends beyond i_size, set the hole
3991 * to end after the page that contains i_size
3992 */
3993 if (offset + length > inode->i_size) {
3994 length = inode->i_size +
3995 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3996 offset;
3997 }
3998
3999 /*
4000 * For punch hole the length + offset needs to be within one block
4001 * before last range. Adjust the length if it goes beyond that limit.
4002 */
4003 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4004 if (offset + length > max_length)
4005 length = max_length - offset;
4006
4007 if (offset & (sb->s_blocksize - 1) ||
4008 (offset + length) & (sb->s_blocksize - 1)) {
4009 /*
4010 * Attach jinode to inode for jbd2 if we do any zeroing of
4011 * partial block
4012 */
4013 ret = ext4_inode_attach_jinode(inode);
4014 if (ret < 0)
4015 goto out_mutex;
4016
4017 }
4018
4019 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4020 inode_dio_wait(inode);
4021
4022 ret = file_modified(file);
4023 if (ret)
4024 goto out_mutex;
4025
4026 /*
4027 * Prevent page faults from reinstantiating pages we have released from
4028 * page cache.
4029 */
4030 filemap_invalidate_lock(mapping);
4031
4032 ret = ext4_break_layouts(inode);
4033 if (ret)
4034 goto out_dio;
4035
4036 first_block_offset = round_up(offset, sb->s_blocksize);
4037 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4038
4039 /* Now release the pages and zero block aligned part of pages*/
4040 if (last_block_offset > first_block_offset) {
4041 ret = ext4_update_disksize_before_punch(inode, offset, length);
4042 if (ret)
4043 goto out_dio;
4044 truncate_pagecache_range(inode, first_block_offset,
4045 last_block_offset);
4046 }
4047
4048 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4049 credits = ext4_writepage_trans_blocks(inode);
4050 else
4051 credits = ext4_blocks_for_truncate(inode);
4052 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4053 if (IS_ERR(handle)) {
4054 ret = PTR_ERR(handle);
4055 ext4_std_error(sb, ret);
4056 goto out_dio;
4057 }
4058
4059 ret = ext4_zero_partial_blocks(handle, inode, offset,
4060 length);
4061 if (ret)
4062 goto out_stop;
4063
4064 first_block = (offset + sb->s_blocksize - 1) >>
4065 EXT4_BLOCK_SIZE_BITS(sb);
4066 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4067
4068 /* If there are blocks to remove, do it */
4069 if (stop_block > first_block) {
4070
4071 down_write(&EXT4_I(inode)->i_data_sem);
4072 ext4_discard_preallocations(inode, 0);
4073
4074 ret = ext4_es_remove_extent(inode, first_block,
4075 stop_block - first_block);
4076 if (ret) {
4077 up_write(&EXT4_I(inode)->i_data_sem);
4078 goto out_stop;
4079 }
4080
4081 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4082 ret = ext4_ext_remove_space(inode, first_block,
4083 stop_block - 1);
4084 else
4085 ret = ext4_ind_remove_space(handle, inode, first_block,
4086 stop_block);
4087
4088 up_write(&EXT4_I(inode)->i_data_sem);
4089 }
4090 ext4_fc_track_range(handle, inode, first_block, stop_block);
4091 if (IS_SYNC(inode))
4092 ext4_handle_sync(handle);
4093
4094 inode->i_mtime = inode->i_ctime = current_time(inode);
4095 ret2 = ext4_mark_inode_dirty(handle, inode);
4096 if (unlikely(ret2))
4097 ret = ret2;
4098 if (ret >= 0)
4099 ext4_update_inode_fsync_trans(handle, inode, 1);
4100 out_stop:
4101 ext4_journal_stop(handle);
4102 out_dio:
4103 filemap_invalidate_unlock(mapping);
4104 out_mutex:
4105 inode_unlock(inode);
4106 return ret;
4107 }
4108
4109 int ext4_inode_attach_jinode(struct inode *inode)
4110 {
4111 struct ext4_inode_info *ei = EXT4_I(inode);
4112 struct jbd2_inode *jinode;
4113
4114 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4115 return 0;
4116
4117 jinode = jbd2_alloc_inode(GFP_KERNEL);
4118 spin_lock(&inode->i_lock);
4119 if (!ei->jinode) {
4120 if (!jinode) {
4121 spin_unlock(&inode->i_lock);
4122 return -ENOMEM;
4123 }
4124 ei->jinode = jinode;
4125 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4126 jinode = NULL;
4127 }
4128 spin_unlock(&inode->i_lock);
4129 if (unlikely(jinode != NULL))
4130 jbd2_free_inode(jinode);
4131 return 0;
4132 }
4133
4134 /*
4135 * ext4_truncate()
4136 *
4137 * We block out ext4_get_block() block instantiations across the entire
4138 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4139 * simultaneously on behalf of the same inode.
4140 *
4141 * As we work through the truncate and commit bits of it to the journal there
4142 * is one core, guiding principle: the file's tree must always be consistent on
4143 * disk. We must be able to restart the truncate after a crash.
4144 *
4145 * The file's tree may be transiently inconsistent in memory (although it
4146 * probably isn't), but whenever we close off and commit a journal transaction,
4147 * the contents of (the filesystem + the journal) must be consistent and
4148 * restartable. It's pretty simple, really: bottom up, right to left (although
4149 * left-to-right works OK too).
4150 *
4151 * Note that at recovery time, journal replay occurs *before* the restart of
4152 * truncate against the orphan inode list.
4153 *
4154 * The committed inode has the new, desired i_size (which is the same as
4155 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4156 * that this inode's truncate did not complete and it will again call
4157 * ext4_truncate() to have another go. So there will be instantiated blocks
4158 * to the right of the truncation point in a crashed ext4 filesystem. But
4159 * that's fine - as long as they are linked from the inode, the post-crash
4160 * ext4_truncate() run will find them and release them.
4161 */
4162 int ext4_truncate(struct inode *inode)
4163 {
4164 struct ext4_inode_info *ei = EXT4_I(inode);
4165 unsigned int credits;
4166 int err = 0, err2;
4167 handle_t *handle;
4168 struct address_space *mapping = inode->i_mapping;
4169
4170 /*
4171 * There is a possibility that we're either freeing the inode
4172 * or it's a completely new inode. In those cases we might not
4173 * have i_rwsem locked because it's not necessary.
4174 */
4175 if (!(inode->i_state & (I_NEW|I_FREEING)))
4176 WARN_ON(!inode_is_locked(inode));
4177 trace_ext4_truncate_enter(inode);
4178
4179 if (!ext4_can_truncate(inode))
4180 goto out_trace;
4181
4182 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4183 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4184
4185 if (ext4_has_inline_data(inode)) {
4186 int has_inline = 1;
4187
4188 err = ext4_inline_data_truncate(inode, &has_inline);
4189 if (err || has_inline)
4190 goto out_trace;
4191 }
4192
4193 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4194 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4195 if (ext4_inode_attach_jinode(inode) < 0)
4196 goto out_trace;
4197 }
4198
4199 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4200 credits = ext4_writepage_trans_blocks(inode);
4201 else
4202 credits = ext4_blocks_for_truncate(inode);
4203
4204 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4205 if (IS_ERR(handle)) {
4206 err = PTR_ERR(handle);
4207 goto out_trace;
4208 }
4209
4210 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4211 ext4_block_truncate_page(handle, mapping, inode->i_size);
4212
4213 /*
4214 * We add the inode to the orphan list, so that if this
4215 * truncate spans multiple transactions, and we crash, we will
4216 * resume the truncate when the filesystem recovers. It also
4217 * marks the inode dirty, to catch the new size.
4218 *
4219 * Implication: the file must always be in a sane, consistent
4220 * truncatable state while each transaction commits.
4221 */
4222 err = ext4_orphan_add(handle, inode);
4223 if (err)
4224 goto out_stop;
4225
4226 down_write(&EXT4_I(inode)->i_data_sem);
4227
4228 ext4_discard_preallocations(inode, 0);
4229
4230 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4231 err = ext4_ext_truncate(handle, inode);
4232 else
4233 ext4_ind_truncate(handle, inode);
4234
4235 up_write(&ei->i_data_sem);
4236 if (err)
4237 goto out_stop;
4238
4239 if (IS_SYNC(inode))
4240 ext4_handle_sync(handle);
4241
4242 out_stop:
4243 /*
4244 * If this was a simple ftruncate() and the file will remain alive,
4245 * then we need to clear up the orphan record which we created above.
4246 * However, if this was a real unlink then we were called by
4247 * ext4_evict_inode(), and we allow that function to clean up the
4248 * orphan info for us.
4249 */
4250 if (inode->i_nlink)
4251 ext4_orphan_del(handle, inode);
4252
4253 inode->i_mtime = inode->i_ctime = current_time(inode);
4254 err2 = ext4_mark_inode_dirty(handle, inode);
4255 if (unlikely(err2 && !err))
4256 err = err2;
4257 ext4_journal_stop(handle);
4258
4259 out_trace:
4260 trace_ext4_truncate_exit(inode);
4261 return err;
4262 }
4263
4264 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4265 {
4266 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4267 return inode_peek_iversion_raw(inode);
4268 else
4269 return inode_peek_iversion(inode);
4270 }
4271
4272 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4273 struct ext4_inode_info *ei)
4274 {
4275 struct inode *inode = &(ei->vfs_inode);
4276 u64 i_blocks = READ_ONCE(inode->i_blocks);
4277 struct super_block *sb = inode->i_sb;
4278
4279 if (i_blocks <= ~0U) {
4280 /*
4281 * i_blocks can be represented in a 32 bit variable
4282 * as multiple of 512 bytes
4283 */
4284 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4285 raw_inode->i_blocks_high = 0;
4286 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4287 return 0;
4288 }
4289
4290 /*
4291 * This should never happen since sb->s_maxbytes should not have
4292 * allowed this, sb->s_maxbytes was set according to the huge_file
4293 * feature in ext4_fill_super().
4294 */
4295 if (!ext4_has_feature_huge_file(sb))
4296 return -EFSCORRUPTED;
4297
4298 if (i_blocks <= 0xffffffffffffULL) {
4299 /*
4300 * i_blocks can be represented in a 48 bit variable
4301 * as multiple of 512 bytes
4302 */
4303 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4304 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4305 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4306 } else {
4307 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4308 /* i_block is stored in file system block size */
4309 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4310 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4311 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4312 }
4313 return 0;
4314 }
4315
4316 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4317 {
4318 struct ext4_inode_info *ei = EXT4_I(inode);
4319 uid_t i_uid;
4320 gid_t i_gid;
4321 projid_t i_projid;
4322 int block;
4323 int err;
4324
4325 err = ext4_inode_blocks_set(raw_inode, ei);
4326
4327 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4328 i_uid = i_uid_read(inode);
4329 i_gid = i_gid_read(inode);
4330 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4331 if (!(test_opt(inode->i_sb, NO_UID32))) {
4332 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4333 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4334 /*
4335 * Fix up interoperability with old kernels. Otherwise,
4336 * old inodes get re-used with the upper 16 bits of the
4337 * uid/gid intact.
4338 */
4339 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4340 raw_inode->i_uid_high = 0;
4341 raw_inode->i_gid_high = 0;
4342 } else {
4343 raw_inode->i_uid_high =
4344 cpu_to_le16(high_16_bits(i_uid));
4345 raw_inode->i_gid_high =
4346 cpu_to_le16(high_16_bits(i_gid));
4347 }
4348 } else {
4349 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4350 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4351 raw_inode->i_uid_high = 0;
4352 raw_inode->i_gid_high = 0;
4353 }
4354 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4355
4356 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4357 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4358 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4359 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4360
4361 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4362 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4363 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4364 raw_inode->i_file_acl_high =
4365 cpu_to_le16(ei->i_file_acl >> 32);
4366 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4367 ext4_isize_set(raw_inode, ei->i_disksize);
4368
4369 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4370 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4371 if (old_valid_dev(inode->i_rdev)) {
4372 raw_inode->i_block[0] =
4373 cpu_to_le32(old_encode_dev(inode->i_rdev));
4374 raw_inode->i_block[1] = 0;
4375 } else {
4376 raw_inode->i_block[0] = 0;
4377 raw_inode->i_block[1] =
4378 cpu_to_le32(new_encode_dev(inode->i_rdev));
4379 raw_inode->i_block[2] = 0;
4380 }
4381 } else if (!ext4_has_inline_data(inode)) {
4382 for (block = 0; block < EXT4_N_BLOCKS; block++)
4383 raw_inode->i_block[block] = ei->i_data[block];
4384 }
4385
4386 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4387 u64 ivers = ext4_inode_peek_iversion(inode);
4388
4389 raw_inode->i_disk_version = cpu_to_le32(ivers);
4390 if (ei->i_extra_isize) {
4391 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4392 raw_inode->i_version_hi =
4393 cpu_to_le32(ivers >> 32);
4394 raw_inode->i_extra_isize =
4395 cpu_to_le16(ei->i_extra_isize);
4396 }
4397 }
4398
4399 if (i_projid != EXT4_DEF_PROJID &&
4400 !ext4_has_feature_project(inode->i_sb))
4401 err = err ?: -EFSCORRUPTED;
4402
4403 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4404 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4405 raw_inode->i_projid = cpu_to_le32(i_projid);
4406
4407 ext4_inode_csum_set(inode, raw_inode, ei);
4408 return err;
4409 }
4410
4411 /*
4412 * ext4_get_inode_loc returns with an extra refcount against the inode's
4413 * underlying buffer_head on success. If we pass 'inode' and it does not
4414 * have in-inode xattr, we have all inode data in memory that is needed
4415 * to recreate the on-disk version of this inode.
4416 */
4417 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4418 struct inode *inode, struct ext4_iloc *iloc,
4419 ext4_fsblk_t *ret_block)
4420 {
4421 struct ext4_group_desc *gdp;
4422 struct buffer_head *bh;
4423 ext4_fsblk_t block;
4424 struct blk_plug plug;
4425 int inodes_per_block, inode_offset;
4426
4427 iloc->bh = NULL;
4428 if (ino < EXT4_ROOT_INO ||
4429 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4430 return -EFSCORRUPTED;
4431
4432 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4433 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4434 if (!gdp)
4435 return -EIO;
4436
4437 /*
4438 * Figure out the offset within the block group inode table
4439 */
4440 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4441 inode_offset = ((ino - 1) %
4442 EXT4_INODES_PER_GROUP(sb));
4443 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4444 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4445
4446 bh = sb_getblk(sb, block);
4447 if (unlikely(!bh))
4448 return -ENOMEM;
4449 if (ext4_buffer_uptodate(bh))
4450 goto has_buffer;
4451
4452 lock_buffer(bh);
4453 if (ext4_buffer_uptodate(bh)) {
4454 /* Someone brought it uptodate while we waited */
4455 unlock_buffer(bh);
4456 goto has_buffer;
4457 }
4458
4459 /*
4460 * If we have all information of the inode in memory and this
4461 * is the only valid inode in the block, we need not read the
4462 * block.
4463 */
4464 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4465 struct buffer_head *bitmap_bh;
4466 int i, start;
4467
4468 start = inode_offset & ~(inodes_per_block - 1);
4469
4470 /* Is the inode bitmap in cache? */
4471 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4472 if (unlikely(!bitmap_bh))
4473 goto make_io;
4474
4475 /*
4476 * If the inode bitmap isn't in cache then the
4477 * optimisation may end up performing two reads instead
4478 * of one, so skip it.
4479 */
4480 if (!buffer_uptodate(bitmap_bh)) {
4481 brelse(bitmap_bh);
4482 goto make_io;
4483 }
4484 for (i = start; i < start + inodes_per_block; i++) {
4485 if (i == inode_offset)
4486 continue;
4487 if (ext4_test_bit(i, bitmap_bh->b_data))
4488 break;
4489 }
4490 brelse(bitmap_bh);
4491 if (i == start + inodes_per_block) {
4492 struct ext4_inode *raw_inode =
4493 (struct ext4_inode *) (bh->b_data + iloc->offset);
4494
4495 /* all other inodes are free, so skip I/O */
4496 memset(bh->b_data, 0, bh->b_size);
4497 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4498 ext4_fill_raw_inode(inode, raw_inode);
4499 set_buffer_uptodate(bh);
4500 unlock_buffer(bh);
4501 goto has_buffer;
4502 }
4503 }
4504
4505 make_io:
4506 /*
4507 * If we need to do any I/O, try to pre-readahead extra
4508 * blocks from the inode table.
4509 */
4510 blk_start_plug(&plug);
4511 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4512 ext4_fsblk_t b, end, table;
4513 unsigned num;
4514 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4515
4516 table = ext4_inode_table(sb, gdp);
4517 /* s_inode_readahead_blks is always a power of 2 */
4518 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4519 if (table > b)
4520 b = table;
4521 end = b + ra_blks;
4522 num = EXT4_INODES_PER_GROUP(sb);
4523 if (ext4_has_group_desc_csum(sb))
4524 num -= ext4_itable_unused_count(sb, gdp);
4525 table += num / inodes_per_block;
4526 if (end > table)
4527 end = table;
4528 while (b <= end)
4529 ext4_sb_breadahead_unmovable(sb, b++);
4530 }
4531
4532 /*
4533 * There are other valid inodes in the buffer, this inode
4534 * has in-inode xattrs, or we don't have this inode in memory.
4535 * Read the block from disk.
4536 */
4537 trace_ext4_load_inode(sb, ino);
4538 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4539 blk_finish_plug(&plug);
4540 wait_on_buffer(bh);
4541 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4542 if (!buffer_uptodate(bh)) {
4543 if (ret_block)
4544 *ret_block = block;
4545 brelse(bh);
4546 return -EIO;
4547 }
4548 has_buffer:
4549 iloc->bh = bh;
4550 return 0;
4551 }
4552
4553 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4554 struct ext4_iloc *iloc)
4555 {
4556 ext4_fsblk_t err_blk = 0;
4557 int ret;
4558
4559 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4560 &err_blk);
4561
4562 if (ret == -EIO)
4563 ext4_error_inode_block(inode, err_blk, EIO,
4564 "unable to read itable block");
4565
4566 return ret;
4567 }
4568
4569 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4570 {
4571 ext4_fsblk_t err_blk = 0;
4572 int ret;
4573
4574 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4575 &err_blk);
4576
4577 if (ret == -EIO)
4578 ext4_error_inode_block(inode, err_blk, EIO,
4579 "unable to read itable block");
4580
4581 return ret;
4582 }
4583
4584
4585 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4586 struct ext4_iloc *iloc)
4587 {
4588 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4589 }
4590
4591 static bool ext4_should_enable_dax(struct inode *inode)
4592 {
4593 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4594
4595 if (test_opt2(inode->i_sb, DAX_NEVER))
4596 return false;
4597 if (!S_ISREG(inode->i_mode))
4598 return false;
4599 if (ext4_should_journal_data(inode))
4600 return false;
4601 if (ext4_has_inline_data(inode))
4602 return false;
4603 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4604 return false;
4605 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4606 return false;
4607 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4608 return false;
4609 if (test_opt(inode->i_sb, DAX_ALWAYS))
4610 return true;
4611
4612 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4613 }
4614
4615 void ext4_set_inode_flags(struct inode *inode, bool init)
4616 {
4617 unsigned int flags = EXT4_I(inode)->i_flags;
4618 unsigned int new_fl = 0;
4619
4620 WARN_ON_ONCE(IS_DAX(inode) && init);
4621
4622 if (flags & EXT4_SYNC_FL)
4623 new_fl |= S_SYNC;
4624 if (flags & EXT4_APPEND_FL)
4625 new_fl |= S_APPEND;
4626 if (flags & EXT4_IMMUTABLE_FL)
4627 new_fl |= S_IMMUTABLE;
4628 if (flags & EXT4_NOATIME_FL)
4629 new_fl |= S_NOATIME;
4630 if (flags & EXT4_DIRSYNC_FL)
4631 new_fl |= S_DIRSYNC;
4632
4633 /* Because of the way inode_set_flags() works we must preserve S_DAX
4634 * here if already set. */
4635 new_fl |= (inode->i_flags & S_DAX);
4636 if (init && ext4_should_enable_dax(inode))
4637 new_fl |= S_DAX;
4638
4639 if (flags & EXT4_ENCRYPT_FL)
4640 new_fl |= S_ENCRYPTED;
4641 if (flags & EXT4_CASEFOLD_FL)
4642 new_fl |= S_CASEFOLD;
4643 if (flags & EXT4_VERITY_FL)
4644 new_fl |= S_VERITY;
4645 inode_set_flags(inode, new_fl,
4646 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4647 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4648 }
4649
4650 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4651 struct ext4_inode_info *ei)
4652 {
4653 blkcnt_t i_blocks ;
4654 struct inode *inode = &(ei->vfs_inode);
4655 struct super_block *sb = inode->i_sb;
4656
4657 if (ext4_has_feature_huge_file(sb)) {
4658 /* we are using combined 48 bit field */
4659 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4660 le32_to_cpu(raw_inode->i_blocks_lo);
4661 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4662 /* i_blocks represent file system block size */
4663 return i_blocks << (inode->i_blkbits - 9);
4664 } else {
4665 return i_blocks;
4666 }
4667 } else {
4668 return le32_to_cpu(raw_inode->i_blocks_lo);
4669 }
4670 }
4671
4672 static inline int ext4_iget_extra_inode(struct inode *inode,
4673 struct ext4_inode *raw_inode,
4674 struct ext4_inode_info *ei)
4675 {
4676 __le32 *magic = (void *)raw_inode +
4677 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4678
4679 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4680 EXT4_INODE_SIZE(inode->i_sb) &&
4681 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4682 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4683 return ext4_find_inline_data_nolock(inode);
4684 } else
4685 EXT4_I(inode)->i_inline_off = 0;
4686 return 0;
4687 }
4688
4689 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4690 {
4691 if (!ext4_has_feature_project(inode->i_sb))
4692 return -EOPNOTSUPP;
4693 *projid = EXT4_I(inode)->i_projid;
4694 return 0;
4695 }
4696
4697 /*
4698 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4699 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4700 * set.
4701 */
4702 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4703 {
4704 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4705 inode_set_iversion_raw(inode, val);
4706 else
4707 inode_set_iversion_queried(inode, val);
4708 }
4709
4710 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4711 ext4_iget_flags flags, const char *function,
4712 unsigned int line)
4713 {
4714 struct ext4_iloc iloc;
4715 struct ext4_inode *raw_inode;
4716 struct ext4_inode_info *ei;
4717 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4718 struct inode *inode;
4719 journal_t *journal = EXT4_SB(sb)->s_journal;
4720 long ret;
4721 loff_t size;
4722 int block;
4723 uid_t i_uid;
4724 gid_t i_gid;
4725 projid_t i_projid;
4726
4727 if ((!(flags & EXT4_IGET_SPECIAL) &&
4728 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4729 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4730 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4731 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4732 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4733 (ino < EXT4_ROOT_INO) ||
4734 (ino > le32_to_cpu(es->s_inodes_count))) {
4735 if (flags & EXT4_IGET_HANDLE)
4736 return ERR_PTR(-ESTALE);
4737 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4738 "inode #%lu: comm %s: iget: illegal inode #",
4739 ino, current->comm);
4740 return ERR_PTR(-EFSCORRUPTED);
4741 }
4742
4743 inode = iget_locked(sb, ino);
4744 if (!inode)
4745 return ERR_PTR(-ENOMEM);
4746 if (!(inode->i_state & I_NEW))
4747 return inode;
4748
4749 ei = EXT4_I(inode);
4750 iloc.bh = NULL;
4751
4752 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4753 if (ret < 0)
4754 goto bad_inode;
4755 raw_inode = ext4_raw_inode(&iloc);
4756
4757 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4758 ext4_error_inode(inode, function, line, 0,
4759 "iget: root inode unallocated");
4760 ret = -EFSCORRUPTED;
4761 goto bad_inode;
4762 }
4763
4764 if ((flags & EXT4_IGET_HANDLE) &&
4765 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4766 ret = -ESTALE;
4767 goto bad_inode;
4768 }
4769
4770 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4771 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4772 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4773 EXT4_INODE_SIZE(inode->i_sb) ||
4774 (ei->i_extra_isize & 3)) {
4775 ext4_error_inode(inode, function, line, 0,
4776 "iget: bad extra_isize %u "
4777 "(inode size %u)",
4778 ei->i_extra_isize,
4779 EXT4_INODE_SIZE(inode->i_sb));
4780 ret = -EFSCORRUPTED;
4781 goto bad_inode;
4782 }
4783 } else
4784 ei->i_extra_isize = 0;
4785
4786 /* Precompute checksum seed for inode metadata */
4787 if (ext4_has_metadata_csum(sb)) {
4788 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4789 __u32 csum;
4790 __le32 inum = cpu_to_le32(inode->i_ino);
4791 __le32 gen = raw_inode->i_generation;
4792 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4793 sizeof(inum));
4794 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4795 sizeof(gen));
4796 }
4797
4798 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4799 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4800 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4801 ext4_error_inode_err(inode, function, line, 0,
4802 EFSBADCRC, "iget: checksum invalid");
4803 ret = -EFSBADCRC;
4804 goto bad_inode;
4805 }
4806
4807 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4808 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4809 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4810 if (ext4_has_feature_project(sb) &&
4811 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4812 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4813 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4814 else
4815 i_projid = EXT4_DEF_PROJID;
4816
4817 if (!(test_opt(inode->i_sb, NO_UID32))) {
4818 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4819 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4820 }
4821 i_uid_write(inode, i_uid);
4822 i_gid_write(inode, i_gid);
4823 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4824 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4825
4826 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4827 ei->i_inline_off = 0;
4828 ei->i_dir_start_lookup = 0;
4829 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4830 /* We now have enough fields to check if the inode was active or not.
4831 * This is needed because nfsd might try to access dead inodes
4832 * the test is that same one that e2fsck uses
4833 * NeilBrown 1999oct15
4834 */
4835 if (inode->i_nlink == 0) {
4836 if ((inode->i_mode == 0 ||
4837 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4838 ino != EXT4_BOOT_LOADER_INO) {
4839 /* this inode is deleted */
4840 ret = -ESTALE;
4841 goto bad_inode;
4842 }
4843 /* The only unlinked inodes we let through here have
4844 * valid i_mode and are being read by the orphan
4845 * recovery code: that's fine, we're about to complete
4846 * the process of deleting those.
4847 * OR it is the EXT4_BOOT_LOADER_INO which is
4848 * not initialized on a new filesystem. */
4849 }
4850 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4851 ext4_set_inode_flags(inode, true);
4852 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4853 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4854 if (ext4_has_feature_64bit(sb))
4855 ei->i_file_acl |=
4856 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4857 inode->i_size = ext4_isize(sb, raw_inode);
4858 if ((size = i_size_read(inode)) < 0) {
4859 ext4_error_inode(inode, function, line, 0,
4860 "iget: bad i_size value: %lld", size);
4861 ret = -EFSCORRUPTED;
4862 goto bad_inode;
4863 }
4864 /*
4865 * If dir_index is not enabled but there's dir with INDEX flag set,
4866 * we'd normally treat htree data as empty space. But with metadata
4867 * checksumming that corrupts checksums so forbid that.
4868 */
4869 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4870 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4871 ext4_error_inode(inode, function, line, 0,
4872 "iget: Dir with htree data on filesystem without dir_index feature.");
4873 ret = -EFSCORRUPTED;
4874 goto bad_inode;
4875 }
4876 ei->i_disksize = inode->i_size;
4877 #ifdef CONFIG_QUOTA
4878 ei->i_reserved_quota = 0;
4879 #endif
4880 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4881 ei->i_block_group = iloc.block_group;
4882 ei->i_last_alloc_group = ~0;
4883 /*
4884 * NOTE! The in-memory inode i_data array is in little-endian order
4885 * even on big-endian machines: we do NOT byteswap the block numbers!
4886 */
4887 for (block = 0; block < EXT4_N_BLOCKS; block++)
4888 ei->i_data[block] = raw_inode->i_block[block];
4889 INIT_LIST_HEAD(&ei->i_orphan);
4890 ext4_fc_init_inode(&ei->vfs_inode);
4891
4892 /*
4893 * Set transaction id's of transactions that have to be committed
4894 * to finish f[data]sync. We set them to currently running transaction
4895 * as we cannot be sure that the inode or some of its metadata isn't
4896 * part of the transaction - the inode could have been reclaimed and
4897 * now it is reread from disk.
4898 */
4899 if (journal) {
4900 transaction_t *transaction;
4901 tid_t tid;
4902
4903 read_lock(&journal->j_state_lock);
4904 if (journal->j_running_transaction)
4905 transaction = journal->j_running_transaction;
4906 else
4907 transaction = journal->j_committing_transaction;
4908 if (transaction)
4909 tid = transaction->t_tid;
4910 else
4911 tid = journal->j_commit_sequence;
4912 read_unlock(&journal->j_state_lock);
4913 ei->i_sync_tid = tid;
4914 ei->i_datasync_tid = tid;
4915 }
4916
4917 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4918 if (ei->i_extra_isize == 0) {
4919 /* The extra space is currently unused. Use it. */
4920 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4921 ei->i_extra_isize = sizeof(struct ext4_inode) -
4922 EXT4_GOOD_OLD_INODE_SIZE;
4923 } else {
4924 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4925 if (ret)
4926 goto bad_inode;
4927 }
4928 }
4929
4930 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4931 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4932 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4933 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4934
4935 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4936 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4937
4938 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4940 ivers |=
4941 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4942 }
4943 ext4_inode_set_iversion_queried(inode, ivers);
4944 }
4945
4946 ret = 0;
4947 if (ei->i_file_acl &&
4948 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4949 ext4_error_inode(inode, function, line, 0,
4950 "iget: bad extended attribute block %llu",
4951 ei->i_file_acl);
4952 ret = -EFSCORRUPTED;
4953 goto bad_inode;
4954 } else if (!ext4_has_inline_data(inode)) {
4955 /* validate the block references in the inode */
4956 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4957 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4958 (S_ISLNK(inode->i_mode) &&
4959 !ext4_inode_is_fast_symlink(inode)))) {
4960 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4961 ret = ext4_ext_check_inode(inode);
4962 else
4963 ret = ext4_ind_check_inode(inode);
4964 }
4965 }
4966 if (ret)
4967 goto bad_inode;
4968
4969 if (S_ISREG(inode->i_mode)) {
4970 inode->i_op = &ext4_file_inode_operations;
4971 inode->i_fop = &ext4_file_operations;
4972 ext4_set_aops(inode);
4973 } else if (S_ISDIR(inode->i_mode)) {
4974 inode->i_op = &ext4_dir_inode_operations;
4975 inode->i_fop = &ext4_dir_operations;
4976 } else if (S_ISLNK(inode->i_mode)) {
4977 /* VFS does not allow setting these so must be corruption */
4978 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4979 ext4_error_inode(inode, function, line, 0,
4980 "iget: immutable or append flags "
4981 "not allowed on symlinks");
4982 ret = -EFSCORRUPTED;
4983 goto bad_inode;
4984 }
4985 if (IS_ENCRYPTED(inode)) {
4986 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4987 ext4_set_aops(inode);
4988 } else if (ext4_inode_is_fast_symlink(inode)) {
4989 inode->i_link = (char *)ei->i_data;
4990 inode->i_op = &ext4_fast_symlink_inode_operations;
4991 nd_terminate_link(ei->i_data, inode->i_size,
4992 sizeof(ei->i_data) - 1);
4993 } else {
4994 inode->i_op = &ext4_symlink_inode_operations;
4995 ext4_set_aops(inode);
4996 }
4997 inode_nohighmem(inode);
4998 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4999 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5000 inode->i_op = &ext4_special_inode_operations;
5001 if (raw_inode->i_block[0])
5002 init_special_inode(inode, inode->i_mode,
5003 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5004 else
5005 init_special_inode(inode, inode->i_mode,
5006 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5007 } else if (ino == EXT4_BOOT_LOADER_INO) {
5008 make_bad_inode(inode);
5009 } else {
5010 ret = -EFSCORRUPTED;
5011 ext4_error_inode(inode, function, line, 0,
5012 "iget: bogus i_mode (%o)", inode->i_mode);
5013 goto bad_inode;
5014 }
5015 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5016 ext4_error_inode(inode, function, line, 0,
5017 "casefold flag without casefold feature");
5018 brelse(iloc.bh);
5019
5020 unlock_new_inode(inode);
5021 return inode;
5022
5023 bad_inode:
5024 brelse(iloc.bh);
5025 iget_failed(inode);
5026 return ERR_PTR(ret);
5027 }
5028
5029 static void __ext4_update_other_inode_time(struct super_block *sb,
5030 unsigned long orig_ino,
5031 unsigned long ino,
5032 struct ext4_inode *raw_inode)
5033 {
5034 struct inode *inode;
5035
5036 inode = find_inode_by_ino_rcu(sb, ino);
5037 if (!inode)
5038 return;
5039
5040 if (!inode_is_dirtytime_only(inode))
5041 return;
5042
5043 spin_lock(&inode->i_lock);
5044 if (inode_is_dirtytime_only(inode)) {
5045 struct ext4_inode_info *ei = EXT4_I(inode);
5046
5047 inode->i_state &= ~I_DIRTY_TIME;
5048 spin_unlock(&inode->i_lock);
5049
5050 spin_lock(&ei->i_raw_lock);
5051 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5052 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5053 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5054 ext4_inode_csum_set(inode, raw_inode, ei);
5055 spin_unlock(&ei->i_raw_lock);
5056 trace_ext4_other_inode_update_time(inode, orig_ino);
5057 return;
5058 }
5059 spin_unlock(&inode->i_lock);
5060 }
5061
5062 /*
5063 * Opportunistically update the other time fields for other inodes in
5064 * the same inode table block.
5065 */
5066 static void ext4_update_other_inodes_time(struct super_block *sb,
5067 unsigned long orig_ino, char *buf)
5068 {
5069 unsigned long ino;
5070 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5071 int inode_size = EXT4_INODE_SIZE(sb);
5072
5073 /*
5074 * Calculate the first inode in the inode table block. Inode
5075 * numbers are one-based. That is, the first inode in a block
5076 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5077 */
5078 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5079 rcu_read_lock();
5080 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5081 if (ino == orig_ino)
5082 continue;
5083 __ext4_update_other_inode_time(sb, orig_ino, ino,
5084 (struct ext4_inode *)buf);
5085 }
5086 rcu_read_unlock();
5087 }
5088
5089 /*
5090 * Post the struct inode info into an on-disk inode location in the
5091 * buffer-cache. This gobbles the caller's reference to the
5092 * buffer_head in the inode location struct.
5093 *
5094 * The caller must have write access to iloc->bh.
5095 */
5096 static int ext4_do_update_inode(handle_t *handle,
5097 struct inode *inode,
5098 struct ext4_iloc *iloc)
5099 {
5100 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5101 struct ext4_inode_info *ei = EXT4_I(inode);
5102 struct buffer_head *bh = iloc->bh;
5103 struct super_block *sb = inode->i_sb;
5104 int err;
5105 int need_datasync = 0, set_large_file = 0;
5106
5107 spin_lock(&ei->i_raw_lock);
5108
5109 /*
5110 * For fields not tracked in the in-memory inode, initialise them
5111 * to zero for new inodes.
5112 */
5113 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5114 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5115
5116 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5117 need_datasync = 1;
5118 if (ei->i_disksize > 0x7fffffffULL) {
5119 if (!ext4_has_feature_large_file(sb) ||
5120 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5121 set_large_file = 1;
5122 }
5123
5124 err = ext4_fill_raw_inode(inode, raw_inode);
5125 spin_unlock(&ei->i_raw_lock);
5126 if (err) {
5127 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5128 goto out_brelse;
5129 }
5130
5131 if (inode->i_sb->s_flags & SB_LAZYTIME)
5132 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5133 bh->b_data);
5134
5135 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5136 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5137 if (err)
5138 goto out_error;
5139 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5140 if (set_large_file) {
5141 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5142 err = ext4_journal_get_write_access(handle, sb,
5143 EXT4_SB(sb)->s_sbh,
5144 EXT4_JTR_NONE);
5145 if (err)
5146 goto out_error;
5147 lock_buffer(EXT4_SB(sb)->s_sbh);
5148 ext4_set_feature_large_file(sb);
5149 ext4_superblock_csum_set(sb);
5150 unlock_buffer(EXT4_SB(sb)->s_sbh);
5151 ext4_handle_sync(handle);
5152 err = ext4_handle_dirty_metadata(handle, NULL,
5153 EXT4_SB(sb)->s_sbh);
5154 }
5155 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5156 out_error:
5157 ext4_std_error(inode->i_sb, err);
5158 out_brelse:
5159 brelse(bh);
5160 return err;
5161 }
5162
5163 /*
5164 * ext4_write_inode()
5165 *
5166 * We are called from a few places:
5167 *
5168 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5169 * Here, there will be no transaction running. We wait for any running
5170 * transaction to commit.
5171 *
5172 * - Within flush work (sys_sync(), kupdate and such).
5173 * We wait on commit, if told to.
5174 *
5175 * - Within iput_final() -> write_inode_now()
5176 * We wait on commit, if told to.
5177 *
5178 * In all cases it is actually safe for us to return without doing anything,
5179 * because the inode has been copied into a raw inode buffer in
5180 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5181 * writeback.
5182 *
5183 * Note that we are absolutely dependent upon all inode dirtiers doing the
5184 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5185 * which we are interested.
5186 *
5187 * It would be a bug for them to not do this. The code:
5188 *
5189 * mark_inode_dirty(inode)
5190 * stuff();
5191 * inode->i_size = expr;
5192 *
5193 * is in error because write_inode() could occur while `stuff()' is running,
5194 * and the new i_size will be lost. Plus the inode will no longer be on the
5195 * superblock's dirty inode list.
5196 */
5197 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5198 {
5199 int err;
5200
5201 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5202 sb_rdonly(inode->i_sb))
5203 return 0;
5204
5205 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5206 return -EIO;
5207
5208 if (EXT4_SB(inode->i_sb)->s_journal) {
5209 if (ext4_journal_current_handle()) {
5210 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5211 dump_stack();
5212 return -EIO;
5213 }
5214
5215 /*
5216 * No need to force transaction in WB_SYNC_NONE mode. Also
5217 * ext4_sync_fs() will force the commit after everything is
5218 * written.
5219 */
5220 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5221 return 0;
5222
5223 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5224 EXT4_I(inode)->i_sync_tid);
5225 } else {
5226 struct ext4_iloc iloc;
5227
5228 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5229 if (err)
5230 return err;
5231 /*
5232 * sync(2) will flush the whole buffer cache. No need to do
5233 * it here separately for each inode.
5234 */
5235 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5236 sync_dirty_buffer(iloc.bh);
5237 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5238 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5239 "IO error syncing inode");
5240 err = -EIO;
5241 }
5242 brelse(iloc.bh);
5243 }
5244 return err;
5245 }
5246
5247 /*
5248 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5249 * buffers that are attached to a page stradding i_size and are undergoing
5250 * commit. In that case we have to wait for commit to finish and try again.
5251 */
5252 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5253 {
5254 struct page *page;
5255 unsigned offset;
5256 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5257 tid_t commit_tid = 0;
5258 int ret;
5259
5260 offset = inode->i_size & (PAGE_SIZE - 1);
5261 /*
5262 * If the page is fully truncated, we don't need to wait for any commit
5263 * (and we even should not as __ext4_journalled_invalidatepage() may
5264 * strip all buffers from the page but keep the page dirty which can then
5265 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5266 * buffers). Also we don't need to wait for any commit if all buffers in
5267 * the page remain valid. This is most beneficial for the common case of
5268 * blocksize == PAGESIZE.
5269 */
5270 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5271 return;
5272 while (1) {
5273 page = find_lock_page(inode->i_mapping,
5274 inode->i_size >> PAGE_SHIFT);
5275 if (!page)
5276 return;
5277 ret = __ext4_journalled_invalidatepage(page, offset,
5278 PAGE_SIZE - offset);
5279 unlock_page(page);
5280 put_page(page);
5281 if (ret != -EBUSY)
5282 return;
5283 commit_tid = 0;
5284 read_lock(&journal->j_state_lock);
5285 if (journal->j_committing_transaction)
5286 commit_tid = journal->j_committing_transaction->t_tid;
5287 read_unlock(&journal->j_state_lock);
5288 if (commit_tid)
5289 jbd2_log_wait_commit(journal, commit_tid);
5290 }
5291 }
5292
5293 /*
5294 * ext4_setattr()
5295 *
5296 * Called from notify_change.
5297 *
5298 * We want to trap VFS attempts to truncate the file as soon as
5299 * possible. In particular, we want to make sure that when the VFS
5300 * shrinks i_size, we put the inode on the orphan list and modify
5301 * i_disksize immediately, so that during the subsequent flushing of
5302 * dirty pages and freeing of disk blocks, we can guarantee that any
5303 * commit will leave the blocks being flushed in an unused state on
5304 * disk. (On recovery, the inode will get truncated and the blocks will
5305 * be freed, so we have a strong guarantee that no future commit will
5306 * leave these blocks visible to the user.)
5307 *
5308 * Another thing we have to assure is that if we are in ordered mode
5309 * and inode is still attached to the committing transaction, we must
5310 * we start writeout of all the dirty pages which are being truncated.
5311 * This way we are sure that all the data written in the previous
5312 * transaction are already on disk (truncate waits for pages under
5313 * writeback).
5314 *
5315 * Called with inode->i_rwsem down.
5316 */
5317 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5318 struct iattr *attr)
5319 {
5320 struct inode *inode = d_inode(dentry);
5321 int error, rc = 0;
5322 int orphan = 0;
5323 const unsigned int ia_valid = attr->ia_valid;
5324
5325 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5326 return -EIO;
5327
5328 if (unlikely(IS_IMMUTABLE(inode)))
5329 return -EPERM;
5330
5331 if (unlikely(IS_APPEND(inode) &&
5332 (ia_valid & (ATTR_MODE | ATTR_UID |
5333 ATTR_GID | ATTR_TIMES_SET))))
5334 return -EPERM;
5335
5336 error = setattr_prepare(mnt_userns, dentry, attr);
5337 if (error)
5338 return error;
5339
5340 error = fscrypt_prepare_setattr(dentry, attr);
5341 if (error)
5342 return error;
5343
5344 error = fsverity_prepare_setattr(dentry, attr);
5345 if (error)
5346 return error;
5347
5348 if (is_quota_modification(inode, attr)) {
5349 error = dquot_initialize(inode);
5350 if (error)
5351 return error;
5352 }
5353
5354 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5355 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5356 handle_t *handle;
5357
5358 /* (user+group)*(old+new) structure, inode write (sb,
5359 * inode block, ? - but truncate inode update has it) */
5360 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5361 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5362 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5363 if (IS_ERR(handle)) {
5364 error = PTR_ERR(handle);
5365 goto err_out;
5366 }
5367
5368 /* dquot_transfer() calls back ext4_get_inode_usage() which
5369 * counts xattr inode references.
5370 */
5371 down_read(&EXT4_I(inode)->xattr_sem);
5372 error = dquot_transfer(inode, attr);
5373 up_read(&EXT4_I(inode)->xattr_sem);
5374
5375 if (error) {
5376 ext4_journal_stop(handle);
5377 return error;
5378 }
5379 /* Update corresponding info in inode so that everything is in
5380 * one transaction */
5381 if (attr->ia_valid & ATTR_UID)
5382 inode->i_uid = attr->ia_uid;
5383 if (attr->ia_valid & ATTR_GID)
5384 inode->i_gid = attr->ia_gid;
5385 error = ext4_mark_inode_dirty(handle, inode);
5386 ext4_journal_stop(handle);
5387 if (unlikely(error)) {
5388 return error;
5389 }
5390 }
5391
5392 if (attr->ia_valid & ATTR_SIZE) {
5393 handle_t *handle;
5394 loff_t oldsize = inode->i_size;
5395 int shrink = (attr->ia_size < inode->i_size);
5396
5397 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5398 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5399
5400 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5401 return -EFBIG;
5402 }
5403 }
5404 if (!S_ISREG(inode->i_mode)) {
5405 return -EINVAL;
5406 }
5407
5408 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5409 inode_inc_iversion(inode);
5410
5411 if (shrink) {
5412 if (ext4_should_order_data(inode)) {
5413 error = ext4_begin_ordered_truncate(inode,
5414 attr->ia_size);
5415 if (error)
5416 goto err_out;
5417 }
5418 /*
5419 * Blocks are going to be removed from the inode. Wait
5420 * for dio in flight.
5421 */
5422 inode_dio_wait(inode);
5423 }
5424
5425 filemap_invalidate_lock(inode->i_mapping);
5426
5427 rc = ext4_break_layouts(inode);
5428 if (rc) {
5429 filemap_invalidate_unlock(inode->i_mapping);
5430 goto err_out;
5431 }
5432
5433 if (attr->ia_size != inode->i_size) {
5434 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5435 if (IS_ERR(handle)) {
5436 error = PTR_ERR(handle);
5437 goto out_mmap_sem;
5438 }
5439 if (ext4_handle_valid(handle) && shrink) {
5440 error = ext4_orphan_add(handle, inode);
5441 orphan = 1;
5442 }
5443 /*
5444 * Update c/mtime on truncate up, ext4_truncate() will
5445 * update c/mtime in shrink case below
5446 */
5447 if (!shrink) {
5448 inode->i_mtime = current_time(inode);
5449 inode->i_ctime = inode->i_mtime;
5450 }
5451
5452 if (shrink)
5453 ext4_fc_track_range(handle, inode,
5454 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5455 inode->i_sb->s_blocksize_bits,
5456 EXT_MAX_BLOCKS - 1);
5457 else
5458 ext4_fc_track_range(
5459 handle, inode,
5460 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5461 inode->i_sb->s_blocksize_bits,
5462 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5463 inode->i_sb->s_blocksize_bits);
5464
5465 down_write(&EXT4_I(inode)->i_data_sem);
5466 EXT4_I(inode)->i_disksize = attr->ia_size;
5467 rc = ext4_mark_inode_dirty(handle, inode);
5468 if (!error)
5469 error = rc;
5470 /*
5471 * We have to update i_size under i_data_sem together
5472 * with i_disksize to avoid races with writeback code
5473 * running ext4_wb_update_i_disksize().
5474 */
5475 if (!error)
5476 i_size_write(inode, attr->ia_size);
5477 up_write(&EXT4_I(inode)->i_data_sem);
5478 ext4_journal_stop(handle);
5479 if (error)
5480 goto out_mmap_sem;
5481 if (!shrink) {
5482 pagecache_isize_extended(inode, oldsize,
5483 inode->i_size);
5484 } else if (ext4_should_journal_data(inode)) {
5485 ext4_wait_for_tail_page_commit(inode);
5486 }
5487 }
5488
5489 /*
5490 * Truncate pagecache after we've waited for commit
5491 * in data=journal mode to make pages freeable.
5492 */
5493 truncate_pagecache(inode, inode->i_size);
5494 /*
5495 * Call ext4_truncate() even if i_size didn't change to
5496 * truncate possible preallocated blocks.
5497 */
5498 if (attr->ia_size <= oldsize) {
5499 rc = ext4_truncate(inode);
5500 if (rc)
5501 error = rc;
5502 }
5503 out_mmap_sem:
5504 filemap_invalidate_unlock(inode->i_mapping);
5505 }
5506
5507 if (!error) {
5508 setattr_copy(mnt_userns, inode, attr);
5509 mark_inode_dirty(inode);
5510 }
5511
5512 /*
5513 * If the call to ext4_truncate failed to get a transaction handle at
5514 * all, we need to clean up the in-core orphan list manually.
5515 */
5516 if (orphan && inode->i_nlink)
5517 ext4_orphan_del(NULL, inode);
5518
5519 if (!error && (ia_valid & ATTR_MODE))
5520 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5521
5522 err_out:
5523 if (error)
5524 ext4_std_error(inode->i_sb, error);
5525 if (!error)
5526 error = rc;
5527 return error;
5528 }
5529
5530 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5531 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5532 {
5533 struct inode *inode = d_inode(path->dentry);
5534 struct ext4_inode *raw_inode;
5535 struct ext4_inode_info *ei = EXT4_I(inode);
5536 unsigned int flags;
5537
5538 if ((request_mask & STATX_BTIME) &&
5539 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5540 stat->result_mask |= STATX_BTIME;
5541 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5542 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5543 }
5544
5545 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5546 if (flags & EXT4_APPEND_FL)
5547 stat->attributes |= STATX_ATTR_APPEND;
5548 if (flags & EXT4_COMPR_FL)
5549 stat->attributes |= STATX_ATTR_COMPRESSED;
5550 if (flags & EXT4_ENCRYPT_FL)
5551 stat->attributes |= STATX_ATTR_ENCRYPTED;
5552 if (flags & EXT4_IMMUTABLE_FL)
5553 stat->attributes |= STATX_ATTR_IMMUTABLE;
5554 if (flags & EXT4_NODUMP_FL)
5555 stat->attributes |= STATX_ATTR_NODUMP;
5556 if (flags & EXT4_VERITY_FL)
5557 stat->attributes |= STATX_ATTR_VERITY;
5558
5559 stat->attributes_mask |= (STATX_ATTR_APPEND |
5560 STATX_ATTR_COMPRESSED |
5561 STATX_ATTR_ENCRYPTED |
5562 STATX_ATTR_IMMUTABLE |
5563 STATX_ATTR_NODUMP |
5564 STATX_ATTR_VERITY);
5565
5566 generic_fillattr(mnt_userns, inode, stat);
5567 return 0;
5568 }
5569
5570 int ext4_file_getattr(struct user_namespace *mnt_userns,
5571 const struct path *path, struct kstat *stat,
5572 u32 request_mask, unsigned int query_flags)
5573 {
5574 struct inode *inode = d_inode(path->dentry);
5575 u64 delalloc_blocks;
5576
5577 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5578
5579 /*
5580 * If there is inline data in the inode, the inode will normally not
5581 * have data blocks allocated (it may have an external xattr block).
5582 * Report at least one sector for such files, so tools like tar, rsync,
5583 * others don't incorrectly think the file is completely sparse.
5584 */
5585 if (unlikely(ext4_has_inline_data(inode)))
5586 stat->blocks += (stat->size + 511) >> 9;
5587
5588 /*
5589 * We can't update i_blocks if the block allocation is delayed
5590 * otherwise in the case of system crash before the real block
5591 * allocation is done, we will have i_blocks inconsistent with
5592 * on-disk file blocks.
5593 * We always keep i_blocks updated together with real
5594 * allocation. But to not confuse with user, stat
5595 * will return the blocks that include the delayed allocation
5596 * blocks for this file.
5597 */
5598 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5599 EXT4_I(inode)->i_reserved_data_blocks);
5600 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5601 return 0;
5602 }
5603
5604 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5605 int pextents)
5606 {
5607 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5608 return ext4_ind_trans_blocks(inode, lblocks);
5609 return ext4_ext_index_trans_blocks(inode, pextents);
5610 }
5611
5612 /*
5613 * Account for index blocks, block groups bitmaps and block group
5614 * descriptor blocks if modify datablocks and index blocks
5615 * worse case, the indexs blocks spread over different block groups
5616 *
5617 * If datablocks are discontiguous, they are possible to spread over
5618 * different block groups too. If they are contiguous, with flexbg,
5619 * they could still across block group boundary.
5620 *
5621 * Also account for superblock, inode, quota and xattr blocks
5622 */
5623 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5624 int pextents)
5625 {
5626 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5627 int gdpblocks;
5628 int idxblocks;
5629 int ret = 0;
5630
5631 /*
5632 * How many index blocks need to touch to map @lblocks logical blocks
5633 * to @pextents physical extents?
5634 */
5635 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5636
5637 ret = idxblocks;
5638
5639 /*
5640 * Now let's see how many group bitmaps and group descriptors need
5641 * to account
5642 */
5643 groups = idxblocks + pextents;
5644 gdpblocks = groups;
5645 if (groups > ngroups)
5646 groups = ngroups;
5647 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5648 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5649
5650 /* bitmaps and block group descriptor blocks */
5651 ret += groups + gdpblocks;
5652
5653 /* Blocks for super block, inode, quota and xattr blocks */
5654 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5655
5656 return ret;
5657 }
5658
5659 /*
5660 * Calculate the total number of credits to reserve to fit
5661 * the modification of a single pages into a single transaction,
5662 * which may include multiple chunks of block allocations.
5663 *
5664 * This could be called via ext4_write_begin()
5665 *
5666 * We need to consider the worse case, when
5667 * one new block per extent.
5668 */
5669 int ext4_writepage_trans_blocks(struct inode *inode)
5670 {
5671 int bpp = ext4_journal_blocks_per_page(inode);
5672 int ret;
5673
5674 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5675
5676 /* Account for data blocks for journalled mode */
5677 if (ext4_should_journal_data(inode))
5678 ret += bpp;
5679 return ret;
5680 }
5681
5682 /*
5683 * Calculate the journal credits for a chunk of data modification.
5684 *
5685 * This is called from DIO, fallocate or whoever calling
5686 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5687 *
5688 * journal buffers for data blocks are not included here, as DIO
5689 * and fallocate do no need to journal data buffers.
5690 */
5691 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5692 {
5693 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5694 }
5695
5696 /*
5697 * The caller must have previously called ext4_reserve_inode_write().
5698 * Give this, we know that the caller already has write access to iloc->bh.
5699 */
5700 int ext4_mark_iloc_dirty(handle_t *handle,
5701 struct inode *inode, struct ext4_iloc *iloc)
5702 {
5703 int err = 0;
5704
5705 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5706 put_bh(iloc->bh);
5707 return -EIO;
5708 }
5709 ext4_fc_track_inode(handle, inode);
5710
5711 if (IS_I_VERSION(inode))
5712 inode_inc_iversion(inode);
5713
5714 /* the do_update_inode consumes one bh->b_count */
5715 get_bh(iloc->bh);
5716
5717 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5718 err = ext4_do_update_inode(handle, inode, iloc);
5719 put_bh(iloc->bh);
5720 return err;
5721 }
5722
5723 /*
5724 * On success, We end up with an outstanding reference count against
5725 * iloc->bh. This _must_ be cleaned up later.
5726 */
5727
5728 int
5729 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5730 struct ext4_iloc *iloc)
5731 {
5732 int err;
5733
5734 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5735 return -EIO;
5736
5737 err = ext4_get_inode_loc(inode, iloc);
5738 if (!err) {
5739 BUFFER_TRACE(iloc->bh, "get_write_access");
5740 err = ext4_journal_get_write_access(handle, inode->i_sb,
5741 iloc->bh, EXT4_JTR_NONE);
5742 if (err) {
5743 brelse(iloc->bh);
5744 iloc->bh = NULL;
5745 }
5746 }
5747 ext4_std_error(inode->i_sb, err);
5748 return err;
5749 }
5750
5751 static int __ext4_expand_extra_isize(struct inode *inode,
5752 unsigned int new_extra_isize,
5753 struct ext4_iloc *iloc,
5754 handle_t *handle, int *no_expand)
5755 {
5756 struct ext4_inode *raw_inode;
5757 struct ext4_xattr_ibody_header *header;
5758 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5759 struct ext4_inode_info *ei = EXT4_I(inode);
5760 int error;
5761
5762 /* this was checked at iget time, but double check for good measure */
5763 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5764 (ei->i_extra_isize & 3)) {
5765 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5766 ei->i_extra_isize,
5767 EXT4_INODE_SIZE(inode->i_sb));
5768 return -EFSCORRUPTED;
5769 }
5770 if ((new_extra_isize < ei->i_extra_isize) ||
5771 (new_extra_isize < 4) ||
5772 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5773 return -EINVAL; /* Should never happen */
5774
5775 raw_inode = ext4_raw_inode(iloc);
5776
5777 header = IHDR(inode, raw_inode);
5778
5779 /* No extended attributes present */
5780 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5781 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5782 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5783 EXT4_I(inode)->i_extra_isize, 0,
5784 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5785 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5786 return 0;
5787 }
5788
5789 /* try to expand with EAs present */
5790 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5791 raw_inode, handle);
5792 if (error) {
5793 /*
5794 * Inode size expansion failed; don't try again
5795 */
5796 *no_expand = 1;
5797 }
5798
5799 return error;
5800 }
5801
5802 /*
5803 * Expand an inode by new_extra_isize bytes.
5804 * Returns 0 on success or negative error number on failure.
5805 */
5806 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5807 unsigned int new_extra_isize,
5808 struct ext4_iloc iloc,
5809 handle_t *handle)
5810 {
5811 int no_expand;
5812 int error;
5813
5814 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5815 return -EOVERFLOW;
5816
5817 /*
5818 * In nojournal mode, we can immediately attempt to expand
5819 * the inode. When journaled, we first need to obtain extra
5820 * buffer credits since we may write into the EA block
5821 * with this same handle. If journal_extend fails, then it will
5822 * only result in a minor loss of functionality for that inode.
5823 * If this is felt to be critical, then e2fsck should be run to
5824 * force a large enough s_min_extra_isize.
5825 */
5826 if (ext4_journal_extend(handle,
5827 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5828 return -ENOSPC;
5829
5830 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5831 return -EBUSY;
5832
5833 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5834 handle, &no_expand);
5835 ext4_write_unlock_xattr(inode, &no_expand);
5836
5837 return error;
5838 }
5839
5840 int ext4_expand_extra_isize(struct inode *inode,
5841 unsigned int new_extra_isize,
5842 struct ext4_iloc *iloc)
5843 {
5844 handle_t *handle;
5845 int no_expand;
5846 int error, rc;
5847
5848 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5849 brelse(iloc->bh);
5850 return -EOVERFLOW;
5851 }
5852
5853 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5854 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5855 if (IS_ERR(handle)) {
5856 error = PTR_ERR(handle);
5857 brelse(iloc->bh);
5858 return error;
5859 }
5860
5861 ext4_write_lock_xattr(inode, &no_expand);
5862
5863 BUFFER_TRACE(iloc->bh, "get_write_access");
5864 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5865 EXT4_JTR_NONE);
5866 if (error) {
5867 brelse(iloc->bh);
5868 goto out_unlock;
5869 }
5870
5871 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5872 handle, &no_expand);
5873
5874 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5875 if (!error)
5876 error = rc;
5877
5878 out_unlock:
5879 ext4_write_unlock_xattr(inode, &no_expand);
5880 ext4_journal_stop(handle);
5881 return error;
5882 }
5883
5884 /*
5885 * What we do here is to mark the in-core inode as clean with respect to inode
5886 * dirtiness (it may still be data-dirty).
5887 * This means that the in-core inode may be reaped by prune_icache
5888 * without having to perform any I/O. This is a very good thing,
5889 * because *any* task may call prune_icache - even ones which
5890 * have a transaction open against a different journal.
5891 *
5892 * Is this cheating? Not really. Sure, we haven't written the
5893 * inode out, but prune_icache isn't a user-visible syncing function.
5894 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5895 * we start and wait on commits.
5896 */
5897 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5898 const char *func, unsigned int line)
5899 {
5900 struct ext4_iloc iloc;
5901 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5902 int err;
5903
5904 might_sleep();
5905 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5906 err = ext4_reserve_inode_write(handle, inode, &iloc);
5907 if (err)
5908 goto out;
5909
5910 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5911 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5912 iloc, handle);
5913
5914 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5915 out:
5916 if (unlikely(err))
5917 ext4_error_inode_err(inode, func, line, 0, err,
5918 "mark_inode_dirty error");
5919 return err;
5920 }
5921
5922 /*
5923 * ext4_dirty_inode() is called from __mark_inode_dirty()
5924 *
5925 * We're really interested in the case where a file is being extended.
5926 * i_size has been changed by generic_commit_write() and we thus need
5927 * to include the updated inode in the current transaction.
5928 *
5929 * Also, dquot_alloc_block() will always dirty the inode when blocks
5930 * are allocated to the file.
5931 *
5932 * If the inode is marked synchronous, we don't honour that here - doing
5933 * so would cause a commit on atime updates, which we don't bother doing.
5934 * We handle synchronous inodes at the highest possible level.
5935 */
5936 void ext4_dirty_inode(struct inode *inode, int flags)
5937 {
5938 handle_t *handle;
5939
5940 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5941 if (IS_ERR(handle))
5942 return;
5943 ext4_mark_inode_dirty(handle, inode);
5944 ext4_journal_stop(handle);
5945 }
5946
5947 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5948 {
5949 journal_t *journal;
5950 handle_t *handle;
5951 int err;
5952 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5953
5954 /*
5955 * We have to be very careful here: changing a data block's
5956 * journaling status dynamically is dangerous. If we write a
5957 * data block to the journal, change the status and then delete
5958 * that block, we risk forgetting to revoke the old log record
5959 * from the journal and so a subsequent replay can corrupt data.
5960 * So, first we make sure that the journal is empty and that
5961 * nobody is changing anything.
5962 */
5963
5964 journal = EXT4_JOURNAL(inode);
5965 if (!journal)
5966 return 0;
5967 if (is_journal_aborted(journal))
5968 return -EROFS;
5969
5970 /* Wait for all existing dio workers */
5971 inode_dio_wait(inode);
5972
5973 /*
5974 * Before flushing the journal and switching inode's aops, we have
5975 * to flush all dirty data the inode has. There can be outstanding
5976 * delayed allocations, there can be unwritten extents created by
5977 * fallocate or buffered writes in dioread_nolock mode covered by
5978 * dirty data which can be converted only after flushing the dirty
5979 * data (and journalled aops don't know how to handle these cases).
5980 */
5981 if (val) {
5982 filemap_invalidate_lock(inode->i_mapping);
5983 err = filemap_write_and_wait(inode->i_mapping);
5984 if (err < 0) {
5985 filemap_invalidate_unlock(inode->i_mapping);
5986 return err;
5987 }
5988 }
5989
5990 percpu_down_write(&sbi->s_writepages_rwsem);
5991 jbd2_journal_lock_updates(journal);
5992
5993 /*
5994 * OK, there are no updates running now, and all cached data is
5995 * synced to disk. We are now in a completely consistent state
5996 * which doesn't have anything in the journal, and we know that
5997 * no filesystem updates are running, so it is safe to modify
5998 * the inode's in-core data-journaling state flag now.
5999 */
6000
6001 if (val)
6002 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6003 else {
6004 err = jbd2_journal_flush(journal, 0);
6005 if (err < 0) {
6006 jbd2_journal_unlock_updates(journal);
6007 percpu_up_write(&sbi->s_writepages_rwsem);
6008 return err;
6009 }
6010 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6011 }
6012 ext4_set_aops(inode);
6013
6014 jbd2_journal_unlock_updates(journal);
6015 percpu_up_write(&sbi->s_writepages_rwsem);
6016
6017 if (val)
6018 filemap_invalidate_unlock(inode->i_mapping);
6019
6020 /* Finally we can mark the inode as dirty. */
6021
6022 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6023 if (IS_ERR(handle))
6024 return PTR_ERR(handle);
6025
6026 ext4_fc_mark_ineligible(inode->i_sb,
6027 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6028 err = ext4_mark_inode_dirty(handle, inode);
6029 ext4_handle_sync(handle);
6030 ext4_journal_stop(handle);
6031 ext4_std_error(inode->i_sb, err);
6032
6033 return err;
6034 }
6035
6036 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6037 struct buffer_head *bh)
6038 {
6039 return !buffer_mapped(bh);
6040 }
6041
6042 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6043 {
6044 struct vm_area_struct *vma = vmf->vma;
6045 struct page *page = vmf->page;
6046 loff_t size;
6047 unsigned long len;
6048 int err;
6049 vm_fault_t ret;
6050 struct file *file = vma->vm_file;
6051 struct inode *inode = file_inode(file);
6052 struct address_space *mapping = inode->i_mapping;
6053 handle_t *handle;
6054 get_block_t *get_block;
6055 int retries = 0;
6056
6057 if (unlikely(IS_IMMUTABLE(inode)))
6058 return VM_FAULT_SIGBUS;
6059
6060 sb_start_pagefault(inode->i_sb);
6061 file_update_time(vma->vm_file);
6062
6063 filemap_invalidate_lock_shared(mapping);
6064
6065 err = ext4_convert_inline_data(inode);
6066 if (err)
6067 goto out_ret;
6068
6069 /*
6070 * On data journalling we skip straight to the transaction handle:
6071 * there's no delalloc; page truncated will be checked later; the
6072 * early return w/ all buffers mapped (calculates size/len) can't
6073 * be used; and there's no dioread_nolock, so only ext4_get_block.
6074 */
6075 if (ext4_should_journal_data(inode))
6076 goto retry_alloc;
6077
6078 /* Delalloc case is easy... */
6079 if (test_opt(inode->i_sb, DELALLOC) &&
6080 !ext4_nonda_switch(inode->i_sb)) {
6081 do {
6082 err = block_page_mkwrite(vma, vmf,
6083 ext4_da_get_block_prep);
6084 } while (err == -ENOSPC &&
6085 ext4_should_retry_alloc(inode->i_sb, &retries));
6086 goto out_ret;
6087 }
6088
6089 lock_page(page);
6090 size = i_size_read(inode);
6091 /* Page got truncated from under us? */
6092 if (page->mapping != mapping || page_offset(page) > size) {
6093 unlock_page(page);
6094 ret = VM_FAULT_NOPAGE;
6095 goto out;
6096 }
6097
6098 if (page->index == size >> PAGE_SHIFT)
6099 len = size & ~PAGE_MASK;
6100 else
6101 len = PAGE_SIZE;
6102 /*
6103 * Return if we have all the buffers mapped. This avoids the need to do
6104 * journal_start/journal_stop which can block and take a long time
6105 *
6106 * This cannot be done for data journalling, as we have to add the
6107 * inode to the transaction's list to writeprotect pages on commit.
6108 */
6109 if (page_has_buffers(page)) {
6110 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6111 0, len, NULL,
6112 ext4_bh_unmapped)) {
6113 /* Wait so that we don't change page under IO */
6114 wait_for_stable_page(page);
6115 ret = VM_FAULT_LOCKED;
6116 goto out;
6117 }
6118 }
6119 unlock_page(page);
6120 /* OK, we need to fill the hole... */
6121 if (ext4_should_dioread_nolock(inode))
6122 get_block = ext4_get_block_unwritten;
6123 else
6124 get_block = ext4_get_block;
6125 retry_alloc:
6126 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6127 ext4_writepage_trans_blocks(inode));
6128 if (IS_ERR(handle)) {
6129 ret = VM_FAULT_SIGBUS;
6130 goto out;
6131 }
6132 /*
6133 * Data journalling can't use block_page_mkwrite() because it
6134 * will set_buffer_dirty() before do_journal_get_write_access()
6135 * thus might hit warning messages for dirty metadata buffers.
6136 */
6137 if (!ext4_should_journal_data(inode)) {
6138 err = block_page_mkwrite(vma, vmf, get_block);
6139 } else {
6140 lock_page(page);
6141 size = i_size_read(inode);
6142 /* Page got truncated from under us? */
6143 if (page->mapping != mapping || page_offset(page) > size) {
6144 ret = VM_FAULT_NOPAGE;
6145 goto out_error;
6146 }
6147
6148 if (page->index == size >> PAGE_SHIFT)
6149 len = size & ~PAGE_MASK;
6150 else
6151 len = PAGE_SIZE;
6152
6153 err = __block_write_begin(page, 0, len, ext4_get_block);
6154 if (!err) {
6155 ret = VM_FAULT_SIGBUS;
6156 if (ext4_walk_page_buffers(handle, inode,
6157 page_buffers(page), 0, len, NULL,
6158 do_journal_get_write_access))
6159 goto out_error;
6160 if (ext4_walk_page_buffers(handle, inode,
6161 page_buffers(page), 0, len, NULL,
6162 write_end_fn))
6163 goto out_error;
6164 if (ext4_jbd2_inode_add_write(handle, inode,
6165 page_offset(page), len))
6166 goto out_error;
6167 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6168 } else {
6169 unlock_page(page);
6170 }
6171 }
6172 ext4_journal_stop(handle);
6173 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6174 goto retry_alloc;
6175 out_ret:
6176 ret = block_page_mkwrite_return(err);
6177 out:
6178 filemap_invalidate_unlock_shared(mapping);
6179 sb_end_pagefault(inode->i_sb);
6180 return ret;
6181 out_error:
6182 unlock_page(page);
6183 ext4_journal_stop(handle);
6184 goto out;
6185 }