]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
ext4: update direct I/O read lock pattern for IOCB_NOWAIT
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82 }
83
84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
105 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
141 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
143 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
145
146 /*
147 * Test whether an inode is a fast symlink.
148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
149 */
150 int ext4_inode_is_fast_symlink(struct inode *inode)
151 {
152 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
153 int ea_blocks = EXT4_I(inode)->i_file_acl ?
154 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
155
156 if (ext4_has_inline_data(inode))
157 return 0;
158
159 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
160 }
161 return S_ISLNK(inode->i_mode) && inode->i_size &&
162 (inode->i_size < EXT4_N_BLOCKS * 4);
163 }
164
165 /*
166 * Restart the transaction associated with *handle. This does a commit,
167 * so before we call here everything must be consistently dirtied against
168 * this transaction.
169 */
170 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
171 int nblocks)
172 {
173 int ret;
174
175 /*
176 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
177 * moment, get_block can be called only for blocks inside i_size since
178 * page cache has been already dropped and writes are blocked by
179 * i_mutex. So we can safely drop the i_data_sem here.
180 */
181 BUG_ON(EXT4_JOURNAL(inode) == NULL);
182 jbd_debug(2, "restarting handle %p\n", handle);
183 up_write(&EXT4_I(inode)->i_data_sem);
184 ret = ext4_journal_restart(handle, nblocks);
185 down_write(&EXT4_I(inode)->i_data_sem);
186 ext4_discard_preallocations(inode);
187
188 return ret;
189 }
190
191 /*
192 * Called at the last iput() if i_nlink is zero.
193 */
194 void ext4_evict_inode(struct inode *inode)
195 {
196 handle_t *handle;
197 int err;
198 /*
199 * Credits for final inode cleanup and freeing:
200 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
201 * (xattr block freeing), bitmap, group descriptor (inode freeing)
202 */
203 int extra_credits = 6;
204 struct ext4_xattr_inode_array *ea_inode_array = NULL;
205
206 trace_ext4_evict_inode(inode);
207
208 if (inode->i_nlink) {
209 /*
210 * When journalling data dirty buffers are tracked only in the
211 * journal. So although mm thinks everything is clean and
212 * ready for reaping the inode might still have some pages to
213 * write in the running transaction or waiting to be
214 * checkpointed. Thus calling jbd2_journal_invalidatepage()
215 * (via truncate_inode_pages()) to discard these buffers can
216 * cause data loss. Also even if we did not discard these
217 * buffers, we would have no way to find them after the inode
218 * is reaped and thus user could see stale data if he tries to
219 * read them before the transaction is checkpointed. So be
220 * careful and force everything to disk here... We use
221 * ei->i_datasync_tid to store the newest transaction
222 * containing inode's data.
223 *
224 * Note that directories do not have this problem because they
225 * don't use page cache.
226 */
227 if (inode->i_ino != EXT4_JOURNAL_INO &&
228 ext4_should_journal_data(inode) &&
229 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
230 inode->i_data.nrpages) {
231 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
232 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
233
234 jbd2_complete_transaction(journal, commit_tid);
235 filemap_write_and_wait(&inode->i_data);
236 }
237 truncate_inode_pages_final(&inode->i_data);
238
239 goto no_delete;
240 }
241
242 if (is_bad_inode(inode))
243 goto no_delete;
244 dquot_initialize(inode);
245
246 if (ext4_should_order_data(inode))
247 ext4_begin_ordered_truncate(inode, 0);
248 truncate_inode_pages_final(&inode->i_data);
249
250 /*
251 * Protect us against freezing - iput() caller didn't have to have any
252 * protection against it
253 */
254 sb_start_intwrite(inode->i_sb);
255
256 if (!IS_NOQUOTA(inode))
257 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
258
259 /*
260 * Block bitmap, group descriptor, and inode are accounted in both
261 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
262 */
263 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
264 ext4_blocks_for_truncate(inode) + extra_credits - 3);
265 if (IS_ERR(handle)) {
266 ext4_std_error(inode->i_sb, PTR_ERR(handle));
267 /*
268 * If we're going to skip the normal cleanup, we still need to
269 * make sure that the in-core orphan linked list is properly
270 * cleaned up.
271 */
272 ext4_orphan_del(NULL, inode);
273 sb_end_intwrite(inode->i_sb);
274 goto no_delete;
275 }
276
277 if (IS_SYNC(inode))
278 ext4_handle_sync(handle);
279
280 /*
281 * Set inode->i_size to 0 before calling ext4_truncate(). We need
282 * special handling of symlinks here because i_size is used to
283 * determine whether ext4_inode_info->i_data contains symlink data or
284 * block mappings. Setting i_size to 0 will remove its fast symlink
285 * status. Erase i_data so that it becomes a valid empty block map.
286 */
287 if (ext4_inode_is_fast_symlink(inode))
288 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
289 inode->i_size = 0;
290 err = ext4_mark_inode_dirty(handle, inode);
291 if (err) {
292 ext4_warning(inode->i_sb,
293 "couldn't mark inode dirty (err %d)", err);
294 goto stop_handle;
295 }
296 if (inode->i_blocks) {
297 err = ext4_truncate(inode);
298 if (err) {
299 ext4_error(inode->i_sb,
300 "couldn't truncate inode %lu (err %d)",
301 inode->i_ino, err);
302 goto stop_handle;
303 }
304 }
305
306 /* Remove xattr references. */
307 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
308 extra_credits);
309 if (err) {
310 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
311 stop_handle:
312 ext4_journal_stop(handle);
313 ext4_orphan_del(NULL, inode);
314 sb_end_intwrite(inode->i_sb);
315 ext4_xattr_inode_array_free(ea_inode_array);
316 goto no_delete;
317 }
318
319 /*
320 * Kill off the orphan record which ext4_truncate created.
321 * AKPM: I think this can be inside the above `if'.
322 * Note that ext4_orphan_del() has to be able to cope with the
323 * deletion of a non-existent orphan - this is because we don't
324 * know if ext4_truncate() actually created an orphan record.
325 * (Well, we could do this if we need to, but heck - it works)
326 */
327 ext4_orphan_del(handle, inode);
328 EXT4_I(inode)->i_dtime = get_seconds();
329
330 /*
331 * One subtle ordering requirement: if anything has gone wrong
332 * (transaction abort, IO errors, whatever), then we can still
333 * do these next steps (the fs will already have been marked as
334 * having errors), but we can't free the inode if the mark_dirty
335 * fails.
336 */
337 if (ext4_mark_inode_dirty(handle, inode))
338 /* If that failed, just do the required in-core inode clear. */
339 ext4_clear_inode(inode);
340 else
341 ext4_free_inode(handle, inode);
342 ext4_journal_stop(handle);
343 sb_end_intwrite(inode->i_sb);
344 ext4_xattr_inode_array_free(ea_inode_array);
345 return;
346 no_delete:
347 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
348 }
349
350 #ifdef CONFIG_QUOTA
351 qsize_t *ext4_get_reserved_space(struct inode *inode)
352 {
353 return &EXT4_I(inode)->i_reserved_quota;
354 }
355 #endif
356
357 /*
358 * Called with i_data_sem down, which is important since we can call
359 * ext4_discard_preallocations() from here.
360 */
361 void ext4_da_update_reserve_space(struct inode *inode,
362 int used, int quota_claim)
363 {
364 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
365 struct ext4_inode_info *ei = EXT4_I(inode);
366
367 spin_lock(&ei->i_block_reservation_lock);
368 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
369 if (unlikely(used > ei->i_reserved_data_blocks)) {
370 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
371 "with only %d reserved data blocks",
372 __func__, inode->i_ino, used,
373 ei->i_reserved_data_blocks);
374 WARN_ON(1);
375 used = ei->i_reserved_data_blocks;
376 }
377
378 /* Update per-inode reservations */
379 ei->i_reserved_data_blocks -= used;
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
381
382 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
383
384 /* Update quota subsystem for data blocks */
385 if (quota_claim)
386 dquot_claim_block(inode, EXT4_C2B(sbi, used));
387 else {
388 /*
389 * We did fallocate with an offset that is already delayed
390 * allocated. So on delayed allocated writeback we should
391 * not re-claim the quota for fallocated blocks.
392 */
393 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
394 }
395
396 /*
397 * If we have done all the pending block allocations and if
398 * there aren't any writers on the inode, we can discard the
399 * inode's preallocations.
400 */
401 if ((ei->i_reserved_data_blocks == 0) &&
402 (atomic_read(&inode->i_writecount) == 0))
403 ext4_discard_preallocations(inode);
404 }
405
406 static int __check_block_validity(struct inode *inode, const char *func,
407 unsigned int line,
408 struct ext4_map_blocks *map)
409 {
410 if (ext4_has_feature_journal(inode->i_sb) &&
411 (inode->i_ino ==
412 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
413 return 0;
414 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
415 map->m_len)) {
416 ext4_error_inode(inode, func, line, map->m_pblk,
417 "lblock %lu mapped to illegal pblock %llu "
418 "(length %d)", (unsigned long) map->m_lblk,
419 map->m_pblk, map->m_len);
420 return -EFSCORRUPTED;
421 }
422 return 0;
423 }
424
425 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
426 ext4_lblk_t len)
427 {
428 int ret;
429
430 if (ext4_encrypted_inode(inode))
431 return fscrypt_zeroout_range(inode, lblk, pblk, len);
432
433 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
434 if (ret > 0)
435 ret = 0;
436
437 return ret;
438 }
439
440 #define check_block_validity(inode, map) \
441 __check_block_validity((inode), __func__, __LINE__, (map))
442
443 #ifdef ES_AGGRESSIVE_TEST
444 static void ext4_map_blocks_es_recheck(handle_t *handle,
445 struct inode *inode,
446 struct ext4_map_blocks *es_map,
447 struct ext4_map_blocks *map,
448 int flags)
449 {
450 int retval;
451
452 map->m_flags = 0;
453 /*
454 * There is a race window that the result is not the same.
455 * e.g. xfstests #223 when dioread_nolock enables. The reason
456 * is that we lookup a block mapping in extent status tree with
457 * out taking i_data_sem. So at the time the unwritten extent
458 * could be converted.
459 */
460 down_read(&EXT4_I(inode)->i_data_sem);
461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
462 retval = ext4_ext_map_blocks(handle, inode, map, flags &
463 EXT4_GET_BLOCKS_KEEP_SIZE);
464 } else {
465 retval = ext4_ind_map_blocks(handle, inode, map, flags &
466 EXT4_GET_BLOCKS_KEEP_SIZE);
467 }
468 up_read((&EXT4_I(inode)->i_data_sem));
469
470 /*
471 * We don't check m_len because extent will be collpased in status
472 * tree. So the m_len might not equal.
473 */
474 if (es_map->m_lblk != map->m_lblk ||
475 es_map->m_flags != map->m_flags ||
476 es_map->m_pblk != map->m_pblk) {
477 printk("ES cache assertion failed for inode: %lu "
478 "es_cached ex [%d/%d/%llu/%x] != "
479 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
480 inode->i_ino, es_map->m_lblk, es_map->m_len,
481 es_map->m_pblk, es_map->m_flags, map->m_lblk,
482 map->m_len, map->m_pblk, map->m_flags,
483 retval, flags);
484 }
485 }
486 #endif /* ES_AGGRESSIVE_TEST */
487
488 /*
489 * The ext4_map_blocks() function tries to look up the requested blocks,
490 * and returns if the blocks are already mapped.
491 *
492 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
493 * and store the allocated blocks in the result buffer head and mark it
494 * mapped.
495 *
496 * If file type is extents based, it will call ext4_ext_map_blocks(),
497 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
498 * based files
499 *
500 * On success, it returns the number of blocks being mapped or allocated. if
501 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
502 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
503 *
504 * It returns 0 if plain look up failed (blocks have not been allocated), in
505 * that case, @map is returned as unmapped but we still do fill map->m_len to
506 * indicate the length of a hole starting at map->m_lblk.
507 *
508 * It returns the error in case of allocation failure.
509 */
510 int ext4_map_blocks(handle_t *handle, struct inode *inode,
511 struct ext4_map_blocks *map, int flags)
512 {
513 struct extent_status es;
514 int retval;
515 int ret = 0;
516 #ifdef ES_AGGRESSIVE_TEST
517 struct ext4_map_blocks orig_map;
518
519 memcpy(&orig_map, map, sizeof(*map));
520 #endif
521
522 map->m_flags = 0;
523 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
524 "logical block %lu\n", inode->i_ino, flags, map->m_len,
525 (unsigned long) map->m_lblk);
526
527 /*
528 * ext4_map_blocks returns an int, and m_len is an unsigned int
529 */
530 if (unlikely(map->m_len > INT_MAX))
531 map->m_len = INT_MAX;
532
533 /* We can handle the block number less than EXT_MAX_BLOCKS */
534 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
535 return -EFSCORRUPTED;
536
537 /* Lookup extent status tree firstly */
538 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
539 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
540 map->m_pblk = ext4_es_pblock(&es) +
541 map->m_lblk - es.es_lblk;
542 map->m_flags |= ext4_es_is_written(&es) ?
543 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
544 retval = es.es_len - (map->m_lblk - es.es_lblk);
545 if (retval > map->m_len)
546 retval = map->m_len;
547 map->m_len = retval;
548 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
549 map->m_pblk = 0;
550 retval = es.es_len - (map->m_lblk - es.es_lblk);
551 if (retval > map->m_len)
552 retval = map->m_len;
553 map->m_len = retval;
554 retval = 0;
555 } else {
556 BUG_ON(1);
557 }
558 #ifdef ES_AGGRESSIVE_TEST
559 ext4_map_blocks_es_recheck(handle, inode, map,
560 &orig_map, flags);
561 #endif
562 goto found;
563 }
564
565 /*
566 * Try to see if we can get the block without requesting a new
567 * file system block.
568 */
569 down_read(&EXT4_I(inode)->i_data_sem);
570 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
571 retval = ext4_ext_map_blocks(handle, inode, map, flags &
572 EXT4_GET_BLOCKS_KEEP_SIZE);
573 } else {
574 retval = ext4_ind_map_blocks(handle, inode, map, flags &
575 EXT4_GET_BLOCKS_KEEP_SIZE);
576 }
577 if (retval > 0) {
578 unsigned int status;
579
580 if (unlikely(retval != map->m_len)) {
581 ext4_warning(inode->i_sb,
582 "ES len assertion failed for inode "
583 "%lu: retval %d != map->m_len %d",
584 inode->i_ino, retval, map->m_len);
585 WARN_ON(1);
586 }
587
588 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
589 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
590 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
591 !(status & EXTENT_STATUS_WRITTEN) &&
592 ext4_find_delalloc_range(inode, map->m_lblk,
593 map->m_lblk + map->m_len - 1))
594 status |= EXTENT_STATUS_DELAYED;
595 ret = ext4_es_insert_extent(inode, map->m_lblk,
596 map->m_len, map->m_pblk, status);
597 if (ret < 0)
598 retval = ret;
599 }
600 up_read((&EXT4_I(inode)->i_data_sem));
601
602 found:
603 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
604 ret = check_block_validity(inode, map);
605 if (ret != 0)
606 return ret;
607 }
608
609 /* If it is only a block(s) look up */
610 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
611 return retval;
612
613 /*
614 * Returns if the blocks have already allocated
615 *
616 * Note that if blocks have been preallocated
617 * ext4_ext_get_block() returns the create = 0
618 * with buffer head unmapped.
619 */
620 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
621 /*
622 * If we need to convert extent to unwritten
623 * we continue and do the actual work in
624 * ext4_ext_map_blocks()
625 */
626 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
627 return retval;
628
629 /*
630 * Here we clear m_flags because after allocating an new extent,
631 * it will be set again.
632 */
633 map->m_flags &= ~EXT4_MAP_FLAGS;
634
635 /*
636 * New blocks allocate and/or writing to unwritten extent
637 * will possibly result in updating i_data, so we take
638 * the write lock of i_data_sem, and call get_block()
639 * with create == 1 flag.
640 */
641 down_write(&EXT4_I(inode)->i_data_sem);
642
643 /*
644 * We need to check for EXT4 here because migrate
645 * could have changed the inode type in between
646 */
647 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
648 retval = ext4_ext_map_blocks(handle, inode, map, flags);
649 } else {
650 retval = ext4_ind_map_blocks(handle, inode, map, flags);
651
652 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
653 /*
654 * We allocated new blocks which will result in
655 * i_data's format changing. Force the migrate
656 * to fail by clearing migrate flags
657 */
658 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
659 }
660
661 /*
662 * Update reserved blocks/metadata blocks after successful
663 * block allocation which had been deferred till now. We don't
664 * support fallocate for non extent files. So we can update
665 * reserve space here.
666 */
667 if ((retval > 0) &&
668 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
669 ext4_da_update_reserve_space(inode, retval, 1);
670 }
671
672 if (retval > 0) {
673 unsigned int status;
674
675 if (unlikely(retval != map->m_len)) {
676 ext4_warning(inode->i_sb,
677 "ES len assertion failed for inode "
678 "%lu: retval %d != map->m_len %d",
679 inode->i_ino, retval, map->m_len);
680 WARN_ON(1);
681 }
682
683 /*
684 * We have to zeroout blocks before inserting them into extent
685 * status tree. Otherwise someone could look them up there and
686 * use them before they are really zeroed. We also have to
687 * unmap metadata before zeroing as otherwise writeback can
688 * overwrite zeros with stale data from block device.
689 */
690 if (flags & EXT4_GET_BLOCKS_ZERO &&
691 map->m_flags & EXT4_MAP_MAPPED &&
692 map->m_flags & EXT4_MAP_NEW) {
693 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
694 map->m_len);
695 ret = ext4_issue_zeroout(inode, map->m_lblk,
696 map->m_pblk, map->m_len);
697 if (ret) {
698 retval = ret;
699 goto out_sem;
700 }
701 }
702
703 /*
704 * If the extent has been zeroed out, we don't need to update
705 * extent status tree.
706 */
707 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
708 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
709 if (ext4_es_is_written(&es))
710 goto out_sem;
711 }
712 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
713 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
714 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
715 !(status & EXTENT_STATUS_WRITTEN) &&
716 ext4_find_delalloc_range(inode, map->m_lblk,
717 map->m_lblk + map->m_len - 1))
718 status |= EXTENT_STATUS_DELAYED;
719 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
720 map->m_pblk, status);
721 if (ret < 0) {
722 retval = ret;
723 goto out_sem;
724 }
725 }
726
727 out_sem:
728 up_write((&EXT4_I(inode)->i_data_sem));
729 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
730 ret = check_block_validity(inode, map);
731 if (ret != 0)
732 return ret;
733
734 /*
735 * Inodes with freshly allocated blocks where contents will be
736 * visible after transaction commit must be on transaction's
737 * ordered data list.
738 */
739 if (map->m_flags & EXT4_MAP_NEW &&
740 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
741 !(flags & EXT4_GET_BLOCKS_ZERO) &&
742 !ext4_is_quota_file(inode) &&
743 ext4_should_order_data(inode)) {
744 loff_t start_byte =
745 (loff_t)map->m_lblk << inode->i_blkbits;
746 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
747
748 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
749 ret = ext4_jbd2_inode_add_wait(handle, inode,
750 start_byte, length);
751 else
752 ret = ext4_jbd2_inode_add_write(handle, inode,
753 start_byte, length);
754 if (ret)
755 return ret;
756 }
757 }
758 return retval;
759 }
760
761 /*
762 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
763 * we have to be careful as someone else may be manipulating b_state as well.
764 */
765 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
766 {
767 unsigned long old_state;
768 unsigned long new_state;
769
770 flags &= EXT4_MAP_FLAGS;
771
772 /* Dummy buffer_head? Set non-atomically. */
773 if (!bh->b_page) {
774 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
775 return;
776 }
777 /*
778 * Someone else may be modifying b_state. Be careful! This is ugly but
779 * once we get rid of using bh as a container for mapping information
780 * to pass to / from get_block functions, this can go away.
781 */
782 do {
783 old_state = READ_ONCE(bh->b_state);
784 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
785 } while (unlikely(
786 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
787 }
788
789 static int _ext4_get_block(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh, int flags)
791 {
792 struct ext4_map_blocks map;
793 int ret = 0;
794
795 if (ext4_has_inline_data(inode))
796 return -ERANGE;
797
798 map.m_lblk = iblock;
799 map.m_len = bh->b_size >> inode->i_blkbits;
800
801 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
802 flags);
803 if (ret > 0) {
804 map_bh(bh, inode->i_sb, map.m_pblk);
805 ext4_update_bh_state(bh, map.m_flags);
806 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
807 ret = 0;
808 } else if (ret == 0) {
809 /* hole case, need to fill in bh->b_size */
810 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
811 }
812 return ret;
813 }
814
815 int ext4_get_block(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh, int create)
817 {
818 return _ext4_get_block(inode, iblock, bh,
819 create ? EXT4_GET_BLOCKS_CREATE : 0);
820 }
821
822 /*
823 * Get block function used when preparing for buffered write if we require
824 * creating an unwritten extent if blocks haven't been allocated. The extent
825 * will be converted to written after the IO is complete.
826 */
827 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
828 struct buffer_head *bh_result, int create)
829 {
830 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
831 inode->i_ino, create);
832 return _ext4_get_block(inode, iblock, bh_result,
833 EXT4_GET_BLOCKS_IO_CREATE_EXT);
834 }
835
836 /* Maximum number of blocks we map for direct IO at once. */
837 #define DIO_MAX_BLOCKS 4096
838
839 /*
840 * Get blocks function for the cases that need to start a transaction -
841 * generally difference cases of direct IO and DAX IO. It also handles retries
842 * in case of ENOSPC.
843 */
844 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
845 struct buffer_head *bh_result, int flags)
846 {
847 int dio_credits;
848 handle_t *handle;
849 int retries = 0;
850 int ret;
851
852 /* Trim mapping request to maximum we can map at once for DIO */
853 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
854 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
855 dio_credits = ext4_chunk_trans_blocks(inode,
856 bh_result->b_size >> inode->i_blkbits);
857 retry:
858 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
859 if (IS_ERR(handle))
860 return PTR_ERR(handle);
861
862 ret = _ext4_get_block(inode, iblock, bh_result, flags);
863 ext4_journal_stop(handle);
864
865 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
866 goto retry;
867 return ret;
868 }
869
870 /* Get block function for DIO reads and writes to inodes without extents */
871 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
872 struct buffer_head *bh, int create)
873 {
874 /* We don't expect handle for direct IO */
875 WARN_ON_ONCE(ext4_journal_current_handle());
876
877 if (!create)
878 return _ext4_get_block(inode, iblock, bh, 0);
879 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
880 }
881
882 /*
883 * Get block function for AIO DIO writes when we create unwritten extent if
884 * blocks are not allocated yet. The extent will be converted to written
885 * after IO is complete.
886 */
887 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
888 sector_t iblock, struct buffer_head *bh_result, int create)
889 {
890 int ret;
891
892 /* We don't expect handle for direct IO */
893 WARN_ON_ONCE(ext4_journal_current_handle());
894
895 ret = ext4_get_block_trans(inode, iblock, bh_result,
896 EXT4_GET_BLOCKS_IO_CREATE_EXT);
897
898 /*
899 * When doing DIO using unwritten extents, we need io_end to convert
900 * unwritten extents to written on IO completion. We allocate io_end
901 * once we spot unwritten extent and store it in b_private. Generic
902 * DIO code keeps b_private set and furthermore passes the value to
903 * our completion callback in 'private' argument.
904 */
905 if (!ret && buffer_unwritten(bh_result)) {
906 if (!bh_result->b_private) {
907 ext4_io_end_t *io_end;
908
909 io_end = ext4_init_io_end(inode, GFP_KERNEL);
910 if (!io_end)
911 return -ENOMEM;
912 bh_result->b_private = io_end;
913 ext4_set_io_unwritten_flag(inode, io_end);
914 }
915 set_buffer_defer_completion(bh_result);
916 }
917
918 return ret;
919 }
920
921 /*
922 * Get block function for non-AIO DIO writes when we create unwritten extent if
923 * blocks are not allocated yet. The extent will be converted to written
924 * after IO is complete by ext4_direct_IO_write().
925 */
926 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
927 sector_t iblock, struct buffer_head *bh_result, int create)
928 {
929 int ret;
930
931 /* We don't expect handle for direct IO */
932 WARN_ON_ONCE(ext4_journal_current_handle());
933
934 ret = ext4_get_block_trans(inode, iblock, bh_result,
935 EXT4_GET_BLOCKS_IO_CREATE_EXT);
936
937 /*
938 * Mark inode as having pending DIO writes to unwritten extents.
939 * ext4_direct_IO_write() checks this flag and converts extents to
940 * written.
941 */
942 if (!ret && buffer_unwritten(bh_result))
943 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
944
945 return ret;
946 }
947
948 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
949 struct buffer_head *bh_result, int create)
950 {
951 int ret;
952
953 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
954 inode->i_ino, create);
955 /* We don't expect handle for direct IO */
956 WARN_ON_ONCE(ext4_journal_current_handle());
957
958 ret = _ext4_get_block(inode, iblock, bh_result, 0);
959 /*
960 * Blocks should have been preallocated! ext4_file_write_iter() checks
961 * that.
962 */
963 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
964
965 return ret;
966 }
967
968
969 /*
970 * `handle' can be NULL if create is zero
971 */
972 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
973 ext4_lblk_t block, int map_flags)
974 {
975 struct ext4_map_blocks map;
976 struct buffer_head *bh;
977 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
978 int err;
979
980 J_ASSERT(handle != NULL || create == 0);
981
982 map.m_lblk = block;
983 map.m_len = 1;
984 err = ext4_map_blocks(handle, inode, &map, map_flags);
985
986 if (err == 0)
987 return create ? ERR_PTR(-ENOSPC) : NULL;
988 if (err < 0)
989 return ERR_PTR(err);
990
991 bh = sb_getblk(inode->i_sb, map.m_pblk);
992 if (unlikely(!bh))
993 return ERR_PTR(-ENOMEM);
994 if (map.m_flags & EXT4_MAP_NEW) {
995 J_ASSERT(create != 0);
996 J_ASSERT(handle != NULL);
997
998 /*
999 * Now that we do not always journal data, we should
1000 * keep in mind whether this should always journal the
1001 * new buffer as metadata. For now, regular file
1002 * writes use ext4_get_block instead, so it's not a
1003 * problem.
1004 */
1005 lock_buffer(bh);
1006 BUFFER_TRACE(bh, "call get_create_access");
1007 err = ext4_journal_get_create_access(handle, bh);
1008 if (unlikely(err)) {
1009 unlock_buffer(bh);
1010 goto errout;
1011 }
1012 if (!buffer_uptodate(bh)) {
1013 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1014 set_buffer_uptodate(bh);
1015 }
1016 unlock_buffer(bh);
1017 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1018 err = ext4_handle_dirty_metadata(handle, inode, bh);
1019 if (unlikely(err))
1020 goto errout;
1021 } else
1022 BUFFER_TRACE(bh, "not a new buffer");
1023 return bh;
1024 errout:
1025 brelse(bh);
1026 return ERR_PTR(err);
1027 }
1028
1029 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1030 ext4_lblk_t block, int map_flags)
1031 {
1032 struct buffer_head *bh;
1033
1034 bh = ext4_getblk(handle, inode, block, map_flags);
1035 if (IS_ERR(bh))
1036 return bh;
1037 if (!bh || buffer_uptodate(bh))
1038 return bh;
1039 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1040 wait_on_buffer(bh);
1041 if (buffer_uptodate(bh))
1042 return bh;
1043 put_bh(bh);
1044 return ERR_PTR(-EIO);
1045 }
1046
1047 /* Read a contiguous batch of blocks. */
1048 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1049 bool wait, struct buffer_head **bhs)
1050 {
1051 int i, err;
1052
1053 for (i = 0; i < bh_count; i++) {
1054 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1055 if (IS_ERR(bhs[i])) {
1056 err = PTR_ERR(bhs[i]);
1057 bh_count = i;
1058 goto out_brelse;
1059 }
1060 }
1061
1062 for (i = 0; i < bh_count; i++)
1063 /* Note that NULL bhs[i] is valid because of holes. */
1064 if (bhs[i] && !buffer_uptodate(bhs[i]))
1065 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1066 &bhs[i]);
1067
1068 if (!wait)
1069 return 0;
1070
1071 for (i = 0; i < bh_count; i++)
1072 if (bhs[i])
1073 wait_on_buffer(bhs[i]);
1074
1075 for (i = 0; i < bh_count; i++) {
1076 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1077 err = -EIO;
1078 goto out_brelse;
1079 }
1080 }
1081 return 0;
1082
1083 out_brelse:
1084 for (i = 0; i < bh_count; i++) {
1085 brelse(bhs[i]);
1086 bhs[i] = NULL;
1087 }
1088 return err;
1089 }
1090
1091 int ext4_walk_page_buffers(handle_t *handle,
1092 struct buffer_head *head,
1093 unsigned from,
1094 unsigned to,
1095 int *partial,
1096 int (*fn)(handle_t *handle,
1097 struct buffer_head *bh))
1098 {
1099 struct buffer_head *bh;
1100 unsigned block_start, block_end;
1101 unsigned blocksize = head->b_size;
1102 int err, ret = 0;
1103 struct buffer_head *next;
1104
1105 for (bh = head, block_start = 0;
1106 ret == 0 && (bh != head || !block_start);
1107 block_start = block_end, bh = next) {
1108 next = bh->b_this_page;
1109 block_end = block_start + blocksize;
1110 if (block_end <= from || block_start >= to) {
1111 if (partial && !buffer_uptodate(bh))
1112 *partial = 1;
1113 continue;
1114 }
1115 err = (*fn)(handle, bh);
1116 if (!ret)
1117 ret = err;
1118 }
1119 return ret;
1120 }
1121
1122 /*
1123 * To preserve ordering, it is essential that the hole instantiation and
1124 * the data write be encapsulated in a single transaction. We cannot
1125 * close off a transaction and start a new one between the ext4_get_block()
1126 * and the commit_write(). So doing the jbd2_journal_start at the start of
1127 * prepare_write() is the right place.
1128 *
1129 * Also, this function can nest inside ext4_writepage(). In that case, we
1130 * *know* that ext4_writepage() has generated enough buffer credits to do the
1131 * whole page. So we won't block on the journal in that case, which is good,
1132 * because the caller may be PF_MEMALLOC.
1133 *
1134 * By accident, ext4 can be reentered when a transaction is open via
1135 * quota file writes. If we were to commit the transaction while thus
1136 * reentered, there can be a deadlock - we would be holding a quota
1137 * lock, and the commit would never complete if another thread had a
1138 * transaction open and was blocking on the quota lock - a ranking
1139 * violation.
1140 *
1141 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1142 * will _not_ run commit under these circumstances because handle->h_ref
1143 * is elevated. We'll still have enough credits for the tiny quotafile
1144 * write.
1145 */
1146 int do_journal_get_write_access(handle_t *handle,
1147 struct buffer_head *bh)
1148 {
1149 int dirty = buffer_dirty(bh);
1150 int ret;
1151
1152 if (!buffer_mapped(bh) || buffer_freed(bh))
1153 return 0;
1154 /*
1155 * __block_write_begin() could have dirtied some buffers. Clean
1156 * the dirty bit as jbd2_journal_get_write_access() could complain
1157 * otherwise about fs integrity issues. Setting of the dirty bit
1158 * by __block_write_begin() isn't a real problem here as we clear
1159 * the bit before releasing a page lock and thus writeback cannot
1160 * ever write the buffer.
1161 */
1162 if (dirty)
1163 clear_buffer_dirty(bh);
1164 BUFFER_TRACE(bh, "get write access");
1165 ret = ext4_journal_get_write_access(handle, bh);
1166 if (!ret && dirty)
1167 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1168 return ret;
1169 }
1170
1171 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1172 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1173 get_block_t *get_block)
1174 {
1175 unsigned from = pos & (PAGE_SIZE - 1);
1176 unsigned to = from + len;
1177 struct inode *inode = page->mapping->host;
1178 unsigned block_start, block_end;
1179 sector_t block;
1180 int err = 0;
1181 unsigned blocksize = inode->i_sb->s_blocksize;
1182 unsigned bbits;
1183 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1184 bool decrypt = false;
1185
1186 BUG_ON(!PageLocked(page));
1187 BUG_ON(from > PAGE_SIZE);
1188 BUG_ON(to > PAGE_SIZE);
1189 BUG_ON(from > to);
1190
1191 if (!page_has_buffers(page))
1192 create_empty_buffers(page, blocksize, 0);
1193 head = page_buffers(page);
1194 bbits = ilog2(blocksize);
1195 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1196
1197 for (bh = head, block_start = 0; bh != head || !block_start;
1198 block++, block_start = block_end, bh = bh->b_this_page) {
1199 block_end = block_start + blocksize;
1200 if (block_end <= from || block_start >= to) {
1201 if (PageUptodate(page)) {
1202 if (!buffer_uptodate(bh))
1203 set_buffer_uptodate(bh);
1204 }
1205 continue;
1206 }
1207 if (buffer_new(bh))
1208 clear_buffer_new(bh);
1209 if (!buffer_mapped(bh)) {
1210 WARN_ON(bh->b_size != blocksize);
1211 err = get_block(inode, block, bh, 1);
1212 if (err)
1213 break;
1214 if (buffer_new(bh)) {
1215 clean_bdev_bh_alias(bh);
1216 if (PageUptodate(page)) {
1217 clear_buffer_new(bh);
1218 set_buffer_uptodate(bh);
1219 mark_buffer_dirty(bh);
1220 continue;
1221 }
1222 if (block_end > to || block_start < from)
1223 zero_user_segments(page, to, block_end,
1224 block_start, from);
1225 continue;
1226 }
1227 }
1228 if (PageUptodate(page)) {
1229 if (!buffer_uptodate(bh))
1230 set_buffer_uptodate(bh);
1231 continue;
1232 }
1233 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1234 !buffer_unwritten(bh) &&
1235 (block_start < from || block_end > to)) {
1236 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1237 *wait_bh++ = bh;
1238 decrypt = ext4_encrypted_inode(inode) &&
1239 S_ISREG(inode->i_mode);
1240 }
1241 }
1242 /*
1243 * If we issued read requests, let them complete.
1244 */
1245 while (wait_bh > wait) {
1246 wait_on_buffer(*--wait_bh);
1247 if (!buffer_uptodate(*wait_bh))
1248 err = -EIO;
1249 }
1250 if (unlikely(err))
1251 page_zero_new_buffers(page, from, to);
1252 else if (decrypt)
1253 err = fscrypt_decrypt_page(page->mapping->host, page,
1254 PAGE_SIZE, 0, page->index);
1255 return err;
1256 }
1257 #endif
1258
1259 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1260 loff_t pos, unsigned len, unsigned flags,
1261 struct page **pagep, void **fsdata)
1262 {
1263 struct inode *inode = mapping->host;
1264 int ret, needed_blocks;
1265 handle_t *handle;
1266 int retries = 0;
1267 struct page *page;
1268 pgoff_t index;
1269 unsigned from, to;
1270
1271 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1272 return -EIO;
1273
1274 trace_ext4_write_begin(inode, pos, len, flags);
1275 /*
1276 * Reserve one block more for addition to orphan list in case
1277 * we allocate blocks but write fails for some reason
1278 */
1279 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1280 index = pos >> PAGE_SHIFT;
1281 from = pos & (PAGE_SIZE - 1);
1282 to = from + len;
1283
1284 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1285 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1286 flags, pagep);
1287 if (ret < 0)
1288 return ret;
1289 if (ret == 1)
1290 return 0;
1291 }
1292
1293 /*
1294 * grab_cache_page_write_begin() can take a long time if the
1295 * system is thrashing due to memory pressure, or if the page
1296 * is being written back. So grab it first before we start
1297 * the transaction handle. This also allows us to allocate
1298 * the page (if needed) without using GFP_NOFS.
1299 */
1300 retry_grab:
1301 page = grab_cache_page_write_begin(mapping, index, flags);
1302 if (!page)
1303 return -ENOMEM;
1304 unlock_page(page);
1305
1306 retry_journal:
1307 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1308 if (IS_ERR(handle)) {
1309 put_page(page);
1310 return PTR_ERR(handle);
1311 }
1312
1313 lock_page(page);
1314 if (page->mapping != mapping) {
1315 /* The page got truncated from under us */
1316 unlock_page(page);
1317 put_page(page);
1318 ext4_journal_stop(handle);
1319 goto retry_grab;
1320 }
1321 /* In case writeback began while the page was unlocked */
1322 wait_for_stable_page(page);
1323
1324 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1325 if (ext4_should_dioread_nolock(inode))
1326 ret = ext4_block_write_begin(page, pos, len,
1327 ext4_get_block_unwritten);
1328 else
1329 ret = ext4_block_write_begin(page, pos, len,
1330 ext4_get_block);
1331 #else
1332 if (ext4_should_dioread_nolock(inode))
1333 ret = __block_write_begin(page, pos, len,
1334 ext4_get_block_unwritten);
1335 else
1336 ret = __block_write_begin(page, pos, len, ext4_get_block);
1337 #endif
1338 if (!ret && ext4_should_journal_data(inode)) {
1339 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1340 from, to, NULL,
1341 do_journal_get_write_access);
1342 }
1343
1344 if (ret) {
1345 unlock_page(page);
1346 /*
1347 * __block_write_begin may have instantiated a few blocks
1348 * outside i_size. Trim these off again. Don't need
1349 * i_size_read because we hold i_mutex.
1350 *
1351 * Add inode to orphan list in case we crash before
1352 * truncate finishes
1353 */
1354 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1355 ext4_orphan_add(handle, inode);
1356
1357 ext4_journal_stop(handle);
1358 if (pos + len > inode->i_size) {
1359 ext4_truncate_failed_write(inode);
1360 /*
1361 * If truncate failed early the inode might
1362 * still be on the orphan list; we need to
1363 * make sure the inode is removed from the
1364 * orphan list in that case.
1365 */
1366 if (inode->i_nlink)
1367 ext4_orphan_del(NULL, inode);
1368 }
1369
1370 if (ret == -ENOSPC &&
1371 ext4_should_retry_alloc(inode->i_sb, &retries))
1372 goto retry_journal;
1373 put_page(page);
1374 return ret;
1375 }
1376 *pagep = page;
1377 return ret;
1378 }
1379
1380 /* For write_end() in data=journal mode */
1381 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1382 {
1383 int ret;
1384 if (!buffer_mapped(bh) || buffer_freed(bh))
1385 return 0;
1386 set_buffer_uptodate(bh);
1387 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1388 clear_buffer_meta(bh);
1389 clear_buffer_prio(bh);
1390 return ret;
1391 }
1392
1393 /*
1394 * We need to pick up the new inode size which generic_commit_write gave us
1395 * `file' can be NULL - eg, when called from page_symlink().
1396 *
1397 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1398 * buffers are managed internally.
1399 */
1400 static int ext4_write_end(struct file *file,
1401 struct address_space *mapping,
1402 loff_t pos, unsigned len, unsigned copied,
1403 struct page *page, void *fsdata)
1404 {
1405 handle_t *handle = ext4_journal_current_handle();
1406 struct inode *inode = mapping->host;
1407 loff_t old_size = inode->i_size;
1408 int ret = 0, ret2;
1409 int i_size_changed = 0;
1410 int inline_data = ext4_has_inline_data(inode);
1411
1412 trace_ext4_write_end(inode, pos, len, copied);
1413 if (inline_data) {
1414 ret = ext4_write_inline_data_end(inode, pos, len,
1415 copied, page);
1416 if (ret < 0) {
1417 unlock_page(page);
1418 put_page(page);
1419 goto errout;
1420 }
1421 copied = ret;
1422 } else
1423 copied = block_write_end(file, mapping, pos,
1424 len, copied, page, fsdata);
1425 /*
1426 * it's important to update i_size while still holding page lock:
1427 * page writeout could otherwise come in and zero beyond i_size.
1428 */
1429 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1430 unlock_page(page);
1431 put_page(page);
1432
1433 if (old_size < pos)
1434 pagecache_isize_extended(inode, old_size, pos);
1435 /*
1436 * Don't mark the inode dirty under page lock. First, it unnecessarily
1437 * makes the holding time of page lock longer. Second, it forces lock
1438 * ordering of page lock and transaction start for journaling
1439 * filesystems.
1440 */
1441 if (i_size_changed || inline_data)
1442 ext4_mark_inode_dirty(handle, inode);
1443
1444 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1445 /* if we have allocated more blocks and copied
1446 * less. We will have blocks allocated outside
1447 * inode->i_size. So truncate them
1448 */
1449 ext4_orphan_add(handle, inode);
1450 errout:
1451 ret2 = ext4_journal_stop(handle);
1452 if (!ret)
1453 ret = ret2;
1454
1455 if (pos + len > inode->i_size) {
1456 ext4_truncate_failed_write(inode);
1457 /*
1458 * If truncate failed early the inode might still be
1459 * on the orphan list; we need to make sure the inode
1460 * is removed from the orphan list in that case.
1461 */
1462 if (inode->i_nlink)
1463 ext4_orphan_del(NULL, inode);
1464 }
1465
1466 return ret ? ret : copied;
1467 }
1468
1469 /*
1470 * This is a private version of page_zero_new_buffers() which doesn't
1471 * set the buffer to be dirty, since in data=journalled mode we need
1472 * to call ext4_handle_dirty_metadata() instead.
1473 */
1474 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1475 struct page *page,
1476 unsigned from, unsigned to)
1477 {
1478 unsigned int block_start = 0, block_end;
1479 struct buffer_head *head, *bh;
1480
1481 bh = head = page_buffers(page);
1482 do {
1483 block_end = block_start + bh->b_size;
1484 if (buffer_new(bh)) {
1485 if (block_end > from && block_start < to) {
1486 if (!PageUptodate(page)) {
1487 unsigned start, size;
1488
1489 start = max(from, block_start);
1490 size = min(to, block_end) - start;
1491
1492 zero_user(page, start, size);
1493 write_end_fn(handle, bh);
1494 }
1495 clear_buffer_new(bh);
1496 }
1497 }
1498 block_start = block_end;
1499 bh = bh->b_this_page;
1500 } while (bh != head);
1501 }
1502
1503 static int ext4_journalled_write_end(struct file *file,
1504 struct address_space *mapping,
1505 loff_t pos, unsigned len, unsigned copied,
1506 struct page *page, void *fsdata)
1507 {
1508 handle_t *handle = ext4_journal_current_handle();
1509 struct inode *inode = mapping->host;
1510 loff_t old_size = inode->i_size;
1511 int ret = 0, ret2;
1512 int partial = 0;
1513 unsigned from, to;
1514 int size_changed = 0;
1515 int inline_data = ext4_has_inline_data(inode);
1516
1517 trace_ext4_journalled_write_end(inode, pos, len, copied);
1518 from = pos & (PAGE_SIZE - 1);
1519 to = from + len;
1520
1521 BUG_ON(!ext4_handle_valid(handle));
1522
1523 if (inline_data) {
1524 ret = ext4_write_inline_data_end(inode, pos, len,
1525 copied, page);
1526 if (ret < 0) {
1527 unlock_page(page);
1528 put_page(page);
1529 goto errout;
1530 }
1531 copied = ret;
1532 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1533 copied = 0;
1534 ext4_journalled_zero_new_buffers(handle, page, from, to);
1535 } else {
1536 if (unlikely(copied < len))
1537 ext4_journalled_zero_new_buffers(handle, page,
1538 from + copied, to);
1539 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1540 from + copied, &partial,
1541 write_end_fn);
1542 if (!partial)
1543 SetPageUptodate(page);
1544 }
1545 size_changed = ext4_update_inode_size(inode, pos + copied);
1546 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1547 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1548 unlock_page(page);
1549 put_page(page);
1550
1551 if (old_size < pos)
1552 pagecache_isize_extended(inode, old_size, pos);
1553
1554 if (size_changed || inline_data) {
1555 ret2 = ext4_mark_inode_dirty(handle, inode);
1556 if (!ret)
1557 ret = ret2;
1558 }
1559
1560 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1561 /* if we have allocated more blocks and copied
1562 * less. We will have blocks allocated outside
1563 * inode->i_size. So truncate them
1564 */
1565 ext4_orphan_add(handle, inode);
1566
1567 errout:
1568 ret2 = ext4_journal_stop(handle);
1569 if (!ret)
1570 ret = ret2;
1571 if (pos + len > inode->i_size) {
1572 ext4_truncate_failed_write(inode);
1573 /*
1574 * If truncate failed early the inode might still be
1575 * on the orphan list; we need to make sure the inode
1576 * is removed from the orphan list in that case.
1577 */
1578 if (inode->i_nlink)
1579 ext4_orphan_del(NULL, inode);
1580 }
1581
1582 return ret ? ret : copied;
1583 }
1584
1585 /*
1586 * Reserve space for a single cluster
1587 */
1588 static int ext4_da_reserve_space(struct inode *inode)
1589 {
1590 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1591 struct ext4_inode_info *ei = EXT4_I(inode);
1592 int ret;
1593
1594 /*
1595 * We will charge metadata quota at writeout time; this saves
1596 * us from metadata over-estimation, though we may go over by
1597 * a small amount in the end. Here we just reserve for data.
1598 */
1599 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1600 if (ret)
1601 return ret;
1602
1603 spin_lock(&ei->i_block_reservation_lock);
1604 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1605 spin_unlock(&ei->i_block_reservation_lock);
1606 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1607 return -ENOSPC;
1608 }
1609 ei->i_reserved_data_blocks++;
1610 trace_ext4_da_reserve_space(inode);
1611 spin_unlock(&ei->i_block_reservation_lock);
1612
1613 return 0; /* success */
1614 }
1615
1616 static void ext4_da_release_space(struct inode *inode, int to_free)
1617 {
1618 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1619 struct ext4_inode_info *ei = EXT4_I(inode);
1620
1621 if (!to_free)
1622 return; /* Nothing to release, exit */
1623
1624 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1625
1626 trace_ext4_da_release_space(inode, to_free);
1627 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1628 /*
1629 * if there aren't enough reserved blocks, then the
1630 * counter is messed up somewhere. Since this
1631 * function is called from invalidate page, it's
1632 * harmless to return without any action.
1633 */
1634 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1635 "ino %lu, to_free %d with only %d reserved "
1636 "data blocks", inode->i_ino, to_free,
1637 ei->i_reserved_data_blocks);
1638 WARN_ON(1);
1639 to_free = ei->i_reserved_data_blocks;
1640 }
1641 ei->i_reserved_data_blocks -= to_free;
1642
1643 /* update fs dirty data blocks counter */
1644 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1645
1646 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1647
1648 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1649 }
1650
1651 static void ext4_da_page_release_reservation(struct page *page,
1652 unsigned int offset,
1653 unsigned int length)
1654 {
1655 int to_release = 0, contiguous_blks = 0;
1656 struct buffer_head *head, *bh;
1657 unsigned int curr_off = 0;
1658 struct inode *inode = page->mapping->host;
1659 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1660 unsigned int stop = offset + length;
1661 int num_clusters;
1662 ext4_fsblk_t lblk;
1663
1664 BUG_ON(stop > PAGE_SIZE || stop < length);
1665
1666 head = page_buffers(page);
1667 bh = head;
1668 do {
1669 unsigned int next_off = curr_off + bh->b_size;
1670
1671 if (next_off > stop)
1672 break;
1673
1674 if ((offset <= curr_off) && (buffer_delay(bh))) {
1675 to_release++;
1676 contiguous_blks++;
1677 clear_buffer_delay(bh);
1678 } else if (contiguous_blks) {
1679 lblk = page->index <<
1680 (PAGE_SHIFT - inode->i_blkbits);
1681 lblk += (curr_off >> inode->i_blkbits) -
1682 contiguous_blks;
1683 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1684 contiguous_blks = 0;
1685 }
1686 curr_off = next_off;
1687 } while ((bh = bh->b_this_page) != head);
1688
1689 if (contiguous_blks) {
1690 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1691 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1692 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1693 }
1694
1695 /* If we have released all the blocks belonging to a cluster, then we
1696 * need to release the reserved space for that cluster. */
1697 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1698 while (num_clusters > 0) {
1699 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1700 ((num_clusters - 1) << sbi->s_cluster_bits);
1701 if (sbi->s_cluster_ratio == 1 ||
1702 !ext4_find_delalloc_cluster(inode, lblk))
1703 ext4_da_release_space(inode, 1);
1704
1705 num_clusters--;
1706 }
1707 }
1708
1709 /*
1710 * Delayed allocation stuff
1711 */
1712
1713 struct mpage_da_data {
1714 struct inode *inode;
1715 struct writeback_control *wbc;
1716
1717 pgoff_t first_page; /* The first page to write */
1718 pgoff_t next_page; /* Current page to examine */
1719 pgoff_t last_page; /* Last page to examine */
1720 /*
1721 * Extent to map - this can be after first_page because that can be
1722 * fully mapped. We somewhat abuse m_flags to store whether the extent
1723 * is delalloc or unwritten.
1724 */
1725 struct ext4_map_blocks map;
1726 struct ext4_io_submit io_submit; /* IO submission data */
1727 unsigned int do_map:1;
1728 };
1729
1730 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1731 bool invalidate)
1732 {
1733 int nr_pages, i;
1734 pgoff_t index, end;
1735 struct pagevec pvec;
1736 struct inode *inode = mpd->inode;
1737 struct address_space *mapping = inode->i_mapping;
1738
1739 /* This is necessary when next_page == 0. */
1740 if (mpd->first_page >= mpd->next_page)
1741 return;
1742
1743 index = mpd->first_page;
1744 end = mpd->next_page - 1;
1745 if (invalidate) {
1746 ext4_lblk_t start, last;
1747 start = index << (PAGE_SHIFT - inode->i_blkbits);
1748 last = end << (PAGE_SHIFT - inode->i_blkbits);
1749 ext4_es_remove_extent(inode, start, last - start + 1);
1750 }
1751
1752 pagevec_init(&pvec);
1753 while (index <= end) {
1754 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1755 if (nr_pages == 0)
1756 break;
1757 for (i = 0; i < nr_pages; i++) {
1758 struct page *page = pvec.pages[i];
1759
1760 BUG_ON(!PageLocked(page));
1761 BUG_ON(PageWriteback(page));
1762 if (invalidate) {
1763 if (page_mapped(page))
1764 clear_page_dirty_for_io(page);
1765 block_invalidatepage(page, 0, PAGE_SIZE);
1766 ClearPageUptodate(page);
1767 }
1768 unlock_page(page);
1769 }
1770 pagevec_release(&pvec);
1771 }
1772 }
1773
1774 static void ext4_print_free_blocks(struct inode *inode)
1775 {
1776 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1777 struct super_block *sb = inode->i_sb;
1778 struct ext4_inode_info *ei = EXT4_I(inode);
1779
1780 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1781 EXT4_C2B(EXT4_SB(inode->i_sb),
1782 ext4_count_free_clusters(sb)));
1783 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1784 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1785 (long long) EXT4_C2B(EXT4_SB(sb),
1786 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1787 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1788 (long long) EXT4_C2B(EXT4_SB(sb),
1789 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1790 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1791 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1792 ei->i_reserved_data_blocks);
1793 return;
1794 }
1795
1796 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1797 {
1798 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1799 }
1800
1801 /*
1802 * This function is grabs code from the very beginning of
1803 * ext4_map_blocks, but assumes that the caller is from delayed write
1804 * time. This function looks up the requested blocks and sets the
1805 * buffer delay bit under the protection of i_data_sem.
1806 */
1807 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1808 struct ext4_map_blocks *map,
1809 struct buffer_head *bh)
1810 {
1811 struct extent_status es;
1812 int retval;
1813 sector_t invalid_block = ~((sector_t) 0xffff);
1814 #ifdef ES_AGGRESSIVE_TEST
1815 struct ext4_map_blocks orig_map;
1816
1817 memcpy(&orig_map, map, sizeof(*map));
1818 #endif
1819
1820 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1821 invalid_block = ~0;
1822
1823 map->m_flags = 0;
1824 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1825 "logical block %lu\n", inode->i_ino, map->m_len,
1826 (unsigned long) map->m_lblk);
1827
1828 /* Lookup extent status tree firstly */
1829 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1830 if (ext4_es_is_hole(&es)) {
1831 retval = 0;
1832 down_read(&EXT4_I(inode)->i_data_sem);
1833 goto add_delayed;
1834 }
1835
1836 /*
1837 * Delayed extent could be allocated by fallocate.
1838 * So we need to check it.
1839 */
1840 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1841 map_bh(bh, inode->i_sb, invalid_block);
1842 set_buffer_new(bh);
1843 set_buffer_delay(bh);
1844 return 0;
1845 }
1846
1847 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1848 retval = es.es_len - (iblock - es.es_lblk);
1849 if (retval > map->m_len)
1850 retval = map->m_len;
1851 map->m_len = retval;
1852 if (ext4_es_is_written(&es))
1853 map->m_flags |= EXT4_MAP_MAPPED;
1854 else if (ext4_es_is_unwritten(&es))
1855 map->m_flags |= EXT4_MAP_UNWRITTEN;
1856 else
1857 BUG_ON(1);
1858
1859 #ifdef ES_AGGRESSIVE_TEST
1860 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1861 #endif
1862 return retval;
1863 }
1864
1865 /*
1866 * Try to see if we can get the block without requesting a new
1867 * file system block.
1868 */
1869 down_read(&EXT4_I(inode)->i_data_sem);
1870 if (ext4_has_inline_data(inode))
1871 retval = 0;
1872 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1873 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1874 else
1875 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1876
1877 add_delayed:
1878 if (retval == 0) {
1879 int ret;
1880 /*
1881 * XXX: __block_prepare_write() unmaps passed block,
1882 * is it OK?
1883 */
1884 /*
1885 * If the block was allocated from previously allocated cluster,
1886 * then we don't need to reserve it again. However we still need
1887 * to reserve metadata for every block we're going to write.
1888 */
1889 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1890 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1891 ret = ext4_da_reserve_space(inode);
1892 if (ret) {
1893 /* not enough space to reserve */
1894 retval = ret;
1895 goto out_unlock;
1896 }
1897 }
1898
1899 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1900 ~0, EXTENT_STATUS_DELAYED);
1901 if (ret) {
1902 retval = ret;
1903 goto out_unlock;
1904 }
1905
1906 map_bh(bh, inode->i_sb, invalid_block);
1907 set_buffer_new(bh);
1908 set_buffer_delay(bh);
1909 } else if (retval > 0) {
1910 int ret;
1911 unsigned int status;
1912
1913 if (unlikely(retval != map->m_len)) {
1914 ext4_warning(inode->i_sb,
1915 "ES len assertion failed for inode "
1916 "%lu: retval %d != map->m_len %d",
1917 inode->i_ino, retval, map->m_len);
1918 WARN_ON(1);
1919 }
1920
1921 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1922 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1923 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1924 map->m_pblk, status);
1925 if (ret != 0)
1926 retval = ret;
1927 }
1928
1929 out_unlock:
1930 up_read((&EXT4_I(inode)->i_data_sem));
1931
1932 return retval;
1933 }
1934
1935 /*
1936 * This is a special get_block_t callback which is used by
1937 * ext4_da_write_begin(). It will either return mapped block or
1938 * reserve space for a single block.
1939 *
1940 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1941 * We also have b_blocknr = -1 and b_bdev initialized properly
1942 *
1943 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1944 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1945 * initialized properly.
1946 */
1947 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1948 struct buffer_head *bh, int create)
1949 {
1950 struct ext4_map_blocks map;
1951 int ret = 0;
1952
1953 BUG_ON(create == 0);
1954 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1955
1956 map.m_lblk = iblock;
1957 map.m_len = 1;
1958
1959 /*
1960 * first, we need to know whether the block is allocated already
1961 * preallocated blocks are unmapped but should treated
1962 * the same as allocated blocks.
1963 */
1964 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1965 if (ret <= 0)
1966 return ret;
1967
1968 map_bh(bh, inode->i_sb, map.m_pblk);
1969 ext4_update_bh_state(bh, map.m_flags);
1970
1971 if (buffer_unwritten(bh)) {
1972 /* A delayed write to unwritten bh should be marked
1973 * new and mapped. Mapped ensures that we don't do
1974 * get_block multiple times when we write to the same
1975 * offset and new ensures that we do proper zero out
1976 * for partial write.
1977 */
1978 set_buffer_new(bh);
1979 set_buffer_mapped(bh);
1980 }
1981 return 0;
1982 }
1983
1984 static int bget_one(handle_t *handle, struct buffer_head *bh)
1985 {
1986 get_bh(bh);
1987 return 0;
1988 }
1989
1990 static int bput_one(handle_t *handle, struct buffer_head *bh)
1991 {
1992 put_bh(bh);
1993 return 0;
1994 }
1995
1996 static int __ext4_journalled_writepage(struct page *page,
1997 unsigned int len)
1998 {
1999 struct address_space *mapping = page->mapping;
2000 struct inode *inode = mapping->host;
2001 struct buffer_head *page_bufs = NULL;
2002 handle_t *handle = NULL;
2003 int ret = 0, err = 0;
2004 int inline_data = ext4_has_inline_data(inode);
2005 struct buffer_head *inode_bh = NULL;
2006
2007 ClearPageChecked(page);
2008
2009 if (inline_data) {
2010 BUG_ON(page->index != 0);
2011 BUG_ON(len > ext4_get_max_inline_size(inode));
2012 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2013 if (inode_bh == NULL)
2014 goto out;
2015 } else {
2016 page_bufs = page_buffers(page);
2017 if (!page_bufs) {
2018 BUG();
2019 goto out;
2020 }
2021 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2022 NULL, bget_one);
2023 }
2024 /*
2025 * We need to release the page lock before we start the
2026 * journal, so grab a reference so the page won't disappear
2027 * out from under us.
2028 */
2029 get_page(page);
2030 unlock_page(page);
2031
2032 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2033 ext4_writepage_trans_blocks(inode));
2034 if (IS_ERR(handle)) {
2035 ret = PTR_ERR(handle);
2036 put_page(page);
2037 goto out_no_pagelock;
2038 }
2039 BUG_ON(!ext4_handle_valid(handle));
2040
2041 lock_page(page);
2042 put_page(page);
2043 if (page->mapping != mapping) {
2044 /* The page got truncated from under us */
2045 ext4_journal_stop(handle);
2046 ret = 0;
2047 goto out;
2048 }
2049
2050 if (inline_data) {
2051 ret = ext4_mark_inode_dirty(handle, inode);
2052 } else {
2053 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2054 do_journal_get_write_access);
2055
2056 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2057 write_end_fn);
2058 }
2059 if (ret == 0)
2060 ret = err;
2061 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2062 err = ext4_journal_stop(handle);
2063 if (!ret)
2064 ret = err;
2065
2066 if (!ext4_has_inline_data(inode))
2067 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2068 NULL, bput_one);
2069 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2070 out:
2071 unlock_page(page);
2072 out_no_pagelock:
2073 brelse(inode_bh);
2074 return ret;
2075 }
2076
2077 /*
2078 * Note that we don't need to start a transaction unless we're journaling data
2079 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2080 * need to file the inode to the transaction's list in ordered mode because if
2081 * we are writing back data added by write(), the inode is already there and if
2082 * we are writing back data modified via mmap(), no one guarantees in which
2083 * transaction the data will hit the disk. In case we are journaling data, we
2084 * cannot start transaction directly because transaction start ranks above page
2085 * lock so we have to do some magic.
2086 *
2087 * This function can get called via...
2088 * - ext4_writepages after taking page lock (have journal handle)
2089 * - journal_submit_inode_data_buffers (no journal handle)
2090 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2091 * - grab_page_cache when doing write_begin (have journal handle)
2092 *
2093 * We don't do any block allocation in this function. If we have page with
2094 * multiple blocks we need to write those buffer_heads that are mapped. This
2095 * is important for mmaped based write. So if we do with blocksize 1K
2096 * truncate(f, 1024);
2097 * a = mmap(f, 0, 4096);
2098 * a[0] = 'a';
2099 * truncate(f, 4096);
2100 * we have in the page first buffer_head mapped via page_mkwrite call back
2101 * but other buffer_heads would be unmapped but dirty (dirty done via the
2102 * do_wp_page). So writepage should write the first block. If we modify
2103 * the mmap area beyond 1024 we will again get a page_fault and the
2104 * page_mkwrite callback will do the block allocation and mark the
2105 * buffer_heads mapped.
2106 *
2107 * We redirty the page if we have any buffer_heads that is either delay or
2108 * unwritten in the page.
2109 *
2110 * We can get recursively called as show below.
2111 *
2112 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2113 * ext4_writepage()
2114 *
2115 * But since we don't do any block allocation we should not deadlock.
2116 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2117 */
2118 static int ext4_writepage(struct page *page,
2119 struct writeback_control *wbc)
2120 {
2121 int ret = 0;
2122 loff_t size;
2123 unsigned int len;
2124 struct buffer_head *page_bufs = NULL;
2125 struct inode *inode = page->mapping->host;
2126 struct ext4_io_submit io_submit;
2127 bool keep_towrite = false;
2128
2129 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2130 ext4_invalidatepage(page, 0, PAGE_SIZE);
2131 unlock_page(page);
2132 return -EIO;
2133 }
2134
2135 trace_ext4_writepage(page);
2136 size = i_size_read(inode);
2137 if (page->index == size >> PAGE_SHIFT)
2138 len = size & ~PAGE_MASK;
2139 else
2140 len = PAGE_SIZE;
2141
2142 page_bufs = page_buffers(page);
2143 /*
2144 * We cannot do block allocation or other extent handling in this
2145 * function. If there are buffers needing that, we have to redirty
2146 * the page. But we may reach here when we do a journal commit via
2147 * journal_submit_inode_data_buffers() and in that case we must write
2148 * allocated buffers to achieve data=ordered mode guarantees.
2149 *
2150 * Also, if there is only one buffer per page (the fs block
2151 * size == the page size), if one buffer needs block
2152 * allocation or needs to modify the extent tree to clear the
2153 * unwritten flag, we know that the page can't be written at
2154 * all, so we might as well refuse the write immediately.
2155 * Unfortunately if the block size != page size, we can't as
2156 * easily detect this case using ext4_walk_page_buffers(), but
2157 * for the extremely common case, this is an optimization that
2158 * skips a useless round trip through ext4_bio_write_page().
2159 */
2160 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2161 ext4_bh_delay_or_unwritten)) {
2162 redirty_page_for_writepage(wbc, page);
2163 if ((current->flags & PF_MEMALLOC) ||
2164 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2165 /*
2166 * For memory cleaning there's no point in writing only
2167 * some buffers. So just bail out. Warn if we came here
2168 * from direct reclaim.
2169 */
2170 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2171 == PF_MEMALLOC);
2172 unlock_page(page);
2173 return 0;
2174 }
2175 keep_towrite = true;
2176 }
2177
2178 if (PageChecked(page) && ext4_should_journal_data(inode))
2179 /*
2180 * It's mmapped pagecache. Add buffers and journal it. There
2181 * doesn't seem much point in redirtying the page here.
2182 */
2183 return __ext4_journalled_writepage(page, len);
2184
2185 ext4_io_submit_init(&io_submit, wbc);
2186 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2187 if (!io_submit.io_end) {
2188 redirty_page_for_writepage(wbc, page);
2189 unlock_page(page);
2190 return -ENOMEM;
2191 }
2192 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2193 ext4_io_submit(&io_submit);
2194 /* Drop io_end reference we got from init */
2195 ext4_put_io_end_defer(io_submit.io_end);
2196 return ret;
2197 }
2198
2199 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2200 {
2201 int len;
2202 loff_t size;
2203 int err;
2204
2205 BUG_ON(page->index != mpd->first_page);
2206 clear_page_dirty_for_io(page);
2207 /*
2208 * We have to be very careful here! Nothing protects writeback path
2209 * against i_size changes and the page can be writeably mapped into
2210 * page tables. So an application can be growing i_size and writing
2211 * data through mmap while writeback runs. clear_page_dirty_for_io()
2212 * write-protects our page in page tables and the page cannot get
2213 * written to again until we release page lock. So only after
2214 * clear_page_dirty_for_io() we are safe to sample i_size for
2215 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2216 * on the barrier provided by TestClearPageDirty in
2217 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2218 * after page tables are updated.
2219 */
2220 size = i_size_read(mpd->inode);
2221 if (page->index == size >> PAGE_SHIFT)
2222 len = size & ~PAGE_MASK;
2223 else
2224 len = PAGE_SIZE;
2225 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2226 if (!err)
2227 mpd->wbc->nr_to_write--;
2228 mpd->first_page++;
2229
2230 return err;
2231 }
2232
2233 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2234
2235 /*
2236 * mballoc gives us at most this number of blocks...
2237 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2238 * The rest of mballoc seems to handle chunks up to full group size.
2239 */
2240 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2241
2242 /*
2243 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2244 *
2245 * @mpd - extent of blocks
2246 * @lblk - logical number of the block in the file
2247 * @bh - buffer head we want to add to the extent
2248 *
2249 * The function is used to collect contig. blocks in the same state. If the
2250 * buffer doesn't require mapping for writeback and we haven't started the
2251 * extent of buffers to map yet, the function returns 'true' immediately - the
2252 * caller can write the buffer right away. Otherwise the function returns true
2253 * if the block has been added to the extent, false if the block couldn't be
2254 * added.
2255 */
2256 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2257 struct buffer_head *bh)
2258 {
2259 struct ext4_map_blocks *map = &mpd->map;
2260
2261 /* Buffer that doesn't need mapping for writeback? */
2262 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2263 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2264 /* So far no extent to map => we write the buffer right away */
2265 if (map->m_len == 0)
2266 return true;
2267 return false;
2268 }
2269
2270 /* First block in the extent? */
2271 if (map->m_len == 0) {
2272 /* We cannot map unless handle is started... */
2273 if (!mpd->do_map)
2274 return false;
2275 map->m_lblk = lblk;
2276 map->m_len = 1;
2277 map->m_flags = bh->b_state & BH_FLAGS;
2278 return true;
2279 }
2280
2281 /* Don't go larger than mballoc is willing to allocate */
2282 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2283 return false;
2284
2285 /* Can we merge the block to our big extent? */
2286 if (lblk == map->m_lblk + map->m_len &&
2287 (bh->b_state & BH_FLAGS) == map->m_flags) {
2288 map->m_len++;
2289 return true;
2290 }
2291 return false;
2292 }
2293
2294 /*
2295 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2296 *
2297 * @mpd - extent of blocks for mapping
2298 * @head - the first buffer in the page
2299 * @bh - buffer we should start processing from
2300 * @lblk - logical number of the block in the file corresponding to @bh
2301 *
2302 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2303 * the page for IO if all buffers in this page were mapped and there's no
2304 * accumulated extent of buffers to map or add buffers in the page to the
2305 * extent of buffers to map. The function returns 1 if the caller can continue
2306 * by processing the next page, 0 if it should stop adding buffers to the
2307 * extent to map because we cannot extend it anymore. It can also return value
2308 * < 0 in case of error during IO submission.
2309 */
2310 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2311 struct buffer_head *head,
2312 struct buffer_head *bh,
2313 ext4_lblk_t lblk)
2314 {
2315 struct inode *inode = mpd->inode;
2316 int err;
2317 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2318 >> inode->i_blkbits;
2319
2320 do {
2321 BUG_ON(buffer_locked(bh));
2322
2323 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2324 /* Found extent to map? */
2325 if (mpd->map.m_len)
2326 return 0;
2327 /* Buffer needs mapping and handle is not started? */
2328 if (!mpd->do_map)
2329 return 0;
2330 /* Everything mapped so far and we hit EOF */
2331 break;
2332 }
2333 } while (lblk++, (bh = bh->b_this_page) != head);
2334 /* So far everything mapped? Submit the page for IO. */
2335 if (mpd->map.m_len == 0) {
2336 err = mpage_submit_page(mpd, head->b_page);
2337 if (err < 0)
2338 return err;
2339 }
2340 return lblk < blocks;
2341 }
2342
2343 /*
2344 * mpage_map_buffers - update buffers corresponding to changed extent and
2345 * submit fully mapped pages for IO
2346 *
2347 * @mpd - description of extent to map, on return next extent to map
2348 *
2349 * Scan buffers corresponding to changed extent (we expect corresponding pages
2350 * to be already locked) and update buffer state according to new extent state.
2351 * We map delalloc buffers to their physical location, clear unwritten bits,
2352 * and mark buffers as uninit when we perform writes to unwritten extents
2353 * and do extent conversion after IO is finished. If the last page is not fully
2354 * mapped, we update @map to the next extent in the last page that needs
2355 * mapping. Otherwise we submit the page for IO.
2356 */
2357 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2358 {
2359 struct pagevec pvec;
2360 int nr_pages, i;
2361 struct inode *inode = mpd->inode;
2362 struct buffer_head *head, *bh;
2363 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2364 pgoff_t start, end;
2365 ext4_lblk_t lblk;
2366 sector_t pblock;
2367 int err;
2368
2369 start = mpd->map.m_lblk >> bpp_bits;
2370 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2371 lblk = start << bpp_bits;
2372 pblock = mpd->map.m_pblk;
2373
2374 pagevec_init(&pvec);
2375 while (start <= end) {
2376 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2377 &start, end);
2378 if (nr_pages == 0)
2379 break;
2380 for (i = 0; i < nr_pages; i++) {
2381 struct page *page = pvec.pages[i];
2382
2383 bh = head = page_buffers(page);
2384 do {
2385 if (lblk < mpd->map.m_lblk)
2386 continue;
2387 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2388 /*
2389 * Buffer after end of mapped extent.
2390 * Find next buffer in the page to map.
2391 */
2392 mpd->map.m_len = 0;
2393 mpd->map.m_flags = 0;
2394 /*
2395 * FIXME: If dioread_nolock supports
2396 * blocksize < pagesize, we need to make
2397 * sure we add size mapped so far to
2398 * io_end->size as the following call
2399 * can submit the page for IO.
2400 */
2401 err = mpage_process_page_bufs(mpd, head,
2402 bh, lblk);
2403 pagevec_release(&pvec);
2404 if (err > 0)
2405 err = 0;
2406 return err;
2407 }
2408 if (buffer_delay(bh)) {
2409 clear_buffer_delay(bh);
2410 bh->b_blocknr = pblock++;
2411 }
2412 clear_buffer_unwritten(bh);
2413 } while (lblk++, (bh = bh->b_this_page) != head);
2414
2415 /*
2416 * FIXME: This is going to break if dioread_nolock
2417 * supports blocksize < pagesize as we will try to
2418 * convert potentially unmapped parts of inode.
2419 */
2420 mpd->io_submit.io_end->size += PAGE_SIZE;
2421 /* Page fully mapped - let IO run! */
2422 err = mpage_submit_page(mpd, page);
2423 if (err < 0) {
2424 pagevec_release(&pvec);
2425 return err;
2426 }
2427 }
2428 pagevec_release(&pvec);
2429 }
2430 /* Extent fully mapped and matches with page boundary. We are done. */
2431 mpd->map.m_len = 0;
2432 mpd->map.m_flags = 0;
2433 return 0;
2434 }
2435
2436 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2437 {
2438 struct inode *inode = mpd->inode;
2439 struct ext4_map_blocks *map = &mpd->map;
2440 int get_blocks_flags;
2441 int err, dioread_nolock;
2442
2443 trace_ext4_da_write_pages_extent(inode, map);
2444 /*
2445 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2446 * to convert an unwritten extent to be initialized (in the case
2447 * where we have written into one or more preallocated blocks). It is
2448 * possible that we're going to need more metadata blocks than
2449 * previously reserved. However we must not fail because we're in
2450 * writeback and there is nothing we can do about it so it might result
2451 * in data loss. So use reserved blocks to allocate metadata if
2452 * possible.
2453 *
2454 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2455 * the blocks in question are delalloc blocks. This indicates
2456 * that the blocks and quotas has already been checked when
2457 * the data was copied into the page cache.
2458 */
2459 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2460 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2461 EXT4_GET_BLOCKS_IO_SUBMIT;
2462 dioread_nolock = ext4_should_dioread_nolock(inode);
2463 if (dioread_nolock)
2464 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2465 if (map->m_flags & (1 << BH_Delay))
2466 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2467
2468 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2469 if (err < 0)
2470 return err;
2471 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2472 if (!mpd->io_submit.io_end->handle &&
2473 ext4_handle_valid(handle)) {
2474 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2475 handle->h_rsv_handle = NULL;
2476 }
2477 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2478 }
2479
2480 BUG_ON(map->m_len == 0);
2481 if (map->m_flags & EXT4_MAP_NEW) {
2482 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2483 map->m_len);
2484 }
2485 return 0;
2486 }
2487
2488 /*
2489 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2490 * mpd->len and submit pages underlying it for IO
2491 *
2492 * @handle - handle for journal operations
2493 * @mpd - extent to map
2494 * @give_up_on_write - we set this to true iff there is a fatal error and there
2495 * is no hope of writing the data. The caller should discard
2496 * dirty pages to avoid infinite loops.
2497 *
2498 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2499 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2500 * them to initialized or split the described range from larger unwritten
2501 * extent. Note that we need not map all the described range since allocation
2502 * can return less blocks or the range is covered by more unwritten extents. We
2503 * cannot map more because we are limited by reserved transaction credits. On
2504 * the other hand we always make sure that the last touched page is fully
2505 * mapped so that it can be written out (and thus forward progress is
2506 * guaranteed). After mapping we submit all mapped pages for IO.
2507 */
2508 static int mpage_map_and_submit_extent(handle_t *handle,
2509 struct mpage_da_data *mpd,
2510 bool *give_up_on_write)
2511 {
2512 struct inode *inode = mpd->inode;
2513 struct ext4_map_blocks *map = &mpd->map;
2514 int err;
2515 loff_t disksize;
2516 int progress = 0;
2517
2518 mpd->io_submit.io_end->offset =
2519 ((loff_t)map->m_lblk) << inode->i_blkbits;
2520 do {
2521 err = mpage_map_one_extent(handle, mpd);
2522 if (err < 0) {
2523 struct super_block *sb = inode->i_sb;
2524
2525 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2526 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2527 goto invalidate_dirty_pages;
2528 /*
2529 * Let the uper layers retry transient errors.
2530 * In the case of ENOSPC, if ext4_count_free_blocks()
2531 * is non-zero, a commit should free up blocks.
2532 */
2533 if ((err == -ENOMEM) ||
2534 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2535 if (progress)
2536 goto update_disksize;
2537 return err;
2538 }
2539 ext4_msg(sb, KERN_CRIT,
2540 "Delayed block allocation failed for "
2541 "inode %lu at logical offset %llu with"
2542 " max blocks %u with error %d",
2543 inode->i_ino,
2544 (unsigned long long)map->m_lblk,
2545 (unsigned)map->m_len, -err);
2546 ext4_msg(sb, KERN_CRIT,
2547 "This should not happen!! Data will "
2548 "be lost\n");
2549 if (err == -ENOSPC)
2550 ext4_print_free_blocks(inode);
2551 invalidate_dirty_pages:
2552 *give_up_on_write = true;
2553 return err;
2554 }
2555 progress = 1;
2556 /*
2557 * Update buffer state, submit mapped pages, and get us new
2558 * extent to map
2559 */
2560 err = mpage_map_and_submit_buffers(mpd);
2561 if (err < 0)
2562 goto update_disksize;
2563 } while (map->m_len);
2564
2565 update_disksize:
2566 /*
2567 * Update on-disk size after IO is submitted. Races with
2568 * truncate are avoided by checking i_size under i_data_sem.
2569 */
2570 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2571 if (disksize > EXT4_I(inode)->i_disksize) {
2572 int err2;
2573 loff_t i_size;
2574
2575 down_write(&EXT4_I(inode)->i_data_sem);
2576 i_size = i_size_read(inode);
2577 if (disksize > i_size)
2578 disksize = i_size;
2579 if (disksize > EXT4_I(inode)->i_disksize)
2580 EXT4_I(inode)->i_disksize = disksize;
2581 up_write(&EXT4_I(inode)->i_data_sem);
2582 err2 = ext4_mark_inode_dirty(handle, inode);
2583 if (err2)
2584 ext4_error(inode->i_sb,
2585 "Failed to mark inode %lu dirty",
2586 inode->i_ino);
2587 if (!err)
2588 err = err2;
2589 }
2590 return err;
2591 }
2592
2593 /*
2594 * Calculate the total number of credits to reserve for one writepages
2595 * iteration. This is called from ext4_writepages(). We map an extent of
2596 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2597 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2598 * bpp - 1 blocks in bpp different extents.
2599 */
2600 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2601 {
2602 int bpp = ext4_journal_blocks_per_page(inode);
2603
2604 return ext4_meta_trans_blocks(inode,
2605 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2606 }
2607
2608 /*
2609 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2610 * and underlying extent to map
2611 *
2612 * @mpd - where to look for pages
2613 *
2614 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2615 * IO immediately. When we find a page which isn't mapped we start accumulating
2616 * extent of buffers underlying these pages that needs mapping (formed by
2617 * either delayed or unwritten buffers). We also lock the pages containing
2618 * these buffers. The extent found is returned in @mpd structure (starting at
2619 * mpd->lblk with length mpd->len blocks).
2620 *
2621 * Note that this function can attach bios to one io_end structure which are
2622 * neither logically nor physically contiguous. Although it may seem as an
2623 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2624 * case as we need to track IO to all buffers underlying a page in one io_end.
2625 */
2626 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2627 {
2628 struct address_space *mapping = mpd->inode->i_mapping;
2629 struct pagevec pvec;
2630 unsigned int nr_pages;
2631 long left = mpd->wbc->nr_to_write;
2632 pgoff_t index = mpd->first_page;
2633 pgoff_t end = mpd->last_page;
2634 int tag;
2635 int i, err = 0;
2636 int blkbits = mpd->inode->i_blkbits;
2637 ext4_lblk_t lblk;
2638 struct buffer_head *head;
2639
2640 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2641 tag = PAGECACHE_TAG_TOWRITE;
2642 else
2643 tag = PAGECACHE_TAG_DIRTY;
2644
2645 pagevec_init(&pvec);
2646 mpd->map.m_len = 0;
2647 mpd->next_page = index;
2648 while (index <= end) {
2649 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2650 tag);
2651 if (nr_pages == 0)
2652 goto out;
2653
2654 for (i = 0; i < nr_pages; i++) {
2655 struct page *page = pvec.pages[i];
2656
2657 /*
2658 * Accumulated enough dirty pages? This doesn't apply
2659 * to WB_SYNC_ALL mode. For integrity sync we have to
2660 * keep going because someone may be concurrently
2661 * dirtying pages, and we might have synced a lot of
2662 * newly appeared dirty pages, but have not synced all
2663 * of the old dirty pages.
2664 */
2665 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2666 goto out;
2667
2668 /* If we can't merge this page, we are done. */
2669 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2670 goto out;
2671
2672 lock_page(page);
2673 /*
2674 * If the page is no longer dirty, or its mapping no
2675 * longer corresponds to inode we are writing (which
2676 * means it has been truncated or invalidated), or the
2677 * page is already under writeback and we are not doing
2678 * a data integrity writeback, skip the page
2679 */
2680 if (!PageDirty(page) ||
2681 (PageWriteback(page) &&
2682 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2683 unlikely(page->mapping != mapping)) {
2684 unlock_page(page);
2685 continue;
2686 }
2687
2688 wait_on_page_writeback(page);
2689 BUG_ON(PageWriteback(page));
2690
2691 if (mpd->map.m_len == 0)
2692 mpd->first_page = page->index;
2693 mpd->next_page = page->index + 1;
2694 /* Add all dirty buffers to mpd */
2695 lblk = ((ext4_lblk_t)page->index) <<
2696 (PAGE_SHIFT - blkbits);
2697 head = page_buffers(page);
2698 err = mpage_process_page_bufs(mpd, head, head, lblk);
2699 if (err <= 0)
2700 goto out;
2701 err = 0;
2702 left--;
2703 }
2704 pagevec_release(&pvec);
2705 cond_resched();
2706 }
2707 return 0;
2708 out:
2709 pagevec_release(&pvec);
2710 return err;
2711 }
2712
2713 static int __writepage(struct page *page, struct writeback_control *wbc,
2714 void *data)
2715 {
2716 struct address_space *mapping = data;
2717 int ret = ext4_writepage(page, wbc);
2718 mapping_set_error(mapping, ret);
2719 return ret;
2720 }
2721
2722 static int ext4_writepages(struct address_space *mapping,
2723 struct writeback_control *wbc)
2724 {
2725 pgoff_t writeback_index = 0;
2726 long nr_to_write = wbc->nr_to_write;
2727 int range_whole = 0;
2728 int cycled = 1;
2729 handle_t *handle = NULL;
2730 struct mpage_da_data mpd;
2731 struct inode *inode = mapping->host;
2732 int needed_blocks, rsv_blocks = 0, ret = 0;
2733 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2734 bool done;
2735 struct blk_plug plug;
2736 bool give_up_on_write = false;
2737
2738 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2739 return -EIO;
2740
2741 percpu_down_read(&sbi->s_journal_flag_rwsem);
2742 trace_ext4_writepages(inode, wbc);
2743
2744 if (dax_mapping(mapping)) {
2745 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2746 wbc);
2747 goto out_writepages;
2748 }
2749
2750 /*
2751 * No pages to write? This is mainly a kludge to avoid starting
2752 * a transaction for special inodes like journal inode on last iput()
2753 * because that could violate lock ordering on umount
2754 */
2755 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2756 goto out_writepages;
2757
2758 if (ext4_should_journal_data(inode)) {
2759 struct blk_plug plug;
2760
2761 blk_start_plug(&plug);
2762 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2763 blk_finish_plug(&plug);
2764 goto out_writepages;
2765 }
2766
2767 /*
2768 * If the filesystem has aborted, it is read-only, so return
2769 * right away instead of dumping stack traces later on that
2770 * will obscure the real source of the problem. We test
2771 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2772 * the latter could be true if the filesystem is mounted
2773 * read-only, and in that case, ext4_writepages should
2774 * *never* be called, so if that ever happens, we would want
2775 * the stack trace.
2776 */
2777 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2778 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2779 ret = -EROFS;
2780 goto out_writepages;
2781 }
2782
2783 if (ext4_should_dioread_nolock(inode)) {
2784 /*
2785 * We may need to convert up to one extent per block in
2786 * the page and we may dirty the inode.
2787 */
2788 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2789 PAGE_SIZE >> inode->i_blkbits);
2790 }
2791
2792 /*
2793 * If we have inline data and arrive here, it means that
2794 * we will soon create the block for the 1st page, so
2795 * we'd better clear the inline data here.
2796 */
2797 if (ext4_has_inline_data(inode)) {
2798 /* Just inode will be modified... */
2799 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2800 if (IS_ERR(handle)) {
2801 ret = PTR_ERR(handle);
2802 goto out_writepages;
2803 }
2804 BUG_ON(ext4_test_inode_state(inode,
2805 EXT4_STATE_MAY_INLINE_DATA));
2806 ext4_destroy_inline_data(handle, inode);
2807 ext4_journal_stop(handle);
2808 }
2809
2810 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2811 range_whole = 1;
2812
2813 if (wbc->range_cyclic) {
2814 writeback_index = mapping->writeback_index;
2815 if (writeback_index)
2816 cycled = 0;
2817 mpd.first_page = writeback_index;
2818 mpd.last_page = -1;
2819 } else {
2820 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2821 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2822 }
2823
2824 mpd.inode = inode;
2825 mpd.wbc = wbc;
2826 ext4_io_submit_init(&mpd.io_submit, wbc);
2827 retry:
2828 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2829 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2830 done = false;
2831 blk_start_plug(&plug);
2832
2833 /*
2834 * First writeback pages that don't need mapping - we can avoid
2835 * starting a transaction unnecessarily and also avoid being blocked
2836 * in the block layer on device congestion while having transaction
2837 * started.
2838 */
2839 mpd.do_map = 0;
2840 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2841 if (!mpd.io_submit.io_end) {
2842 ret = -ENOMEM;
2843 goto unplug;
2844 }
2845 ret = mpage_prepare_extent_to_map(&mpd);
2846 /* Submit prepared bio */
2847 ext4_io_submit(&mpd.io_submit);
2848 ext4_put_io_end_defer(mpd.io_submit.io_end);
2849 mpd.io_submit.io_end = NULL;
2850 /* Unlock pages we didn't use */
2851 mpage_release_unused_pages(&mpd, false);
2852 if (ret < 0)
2853 goto unplug;
2854
2855 while (!done && mpd.first_page <= mpd.last_page) {
2856 /* For each extent of pages we use new io_end */
2857 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2858 if (!mpd.io_submit.io_end) {
2859 ret = -ENOMEM;
2860 break;
2861 }
2862
2863 /*
2864 * We have two constraints: We find one extent to map and we
2865 * must always write out whole page (makes a difference when
2866 * blocksize < pagesize) so that we don't block on IO when we
2867 * try to write out the rest of the page. Journalled mode is
2868 * not supported by delalloc.
2869 */
2870 BUG_ON(ext4_should_journal_data(inode));
2871 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2872
2873 /* start a new transaction */
2874 handle = ext4_journal_start_with_reserve(inode,
2875 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2876 if (IS_ERR(handle)) {
2877 ret = PTR_ERR(handle);
2878 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2879 "%ld pages, ino %lu; err %d", __func__,
2880 wbc->nr_to_write, inode->i_ino, ret);
2881 /* Release allocated io_end */
2882 ext4_put_io_end(mpd.io_submit.io_end);
2883 mpd.io_submit.io_end = NULL;
2884 break;
2885 }
2886 mpd.do_map = 1;
2887
2888 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2889 ret = mpage_prepare_extent_to_map(&mpd);
2890 if (!ret) {
2891 if (mpd.map.m_len)
2892 ret = mpage_map_and_submit_extent(handle, &mpd,
2893 &give_up_on_write);
2894 else {
2895 /*
2896 * We scanned the whole range (or exhausted
2897 * nr_to_write), submitted what was mapped and
2898 * didn't find anything needing mapping. We are
2899 * done.
2900 */
2901 done = true;
2902 }
2903 }
2904 /*
2905 * Caution: If the handle is synchronous,
2906 * ext4_journal_stop() can wait for transaction commit
2907 * to finish which may depend on writeback of pages to
2908 * complete or on page lock to be released. In that
2909 * case, we have to wait until after after we have
2910 * submitted all the IO, released page locks we hold,
2911 * and dropped io_end reference (for extent conversion
2912 * to be able to complete) before stopping the handle.
2913 */
2914 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2915 ext4_journal_stop(handle);
2916 handle = NULL;
2917 mpd.do_map = 0;
2918 }
2919 /* Submit prepared bio */
2920 ext4_io_submit(&mpd.io_submit);
2921 /* Unlock pages we didn't use */
2922 mpage_release_unused_pages(&mpd, give_up_on_write);
2923 /*
2924 * Drop our io_end reference we got from init. We have
2925 * to be careful and use deferred io_end finishing if
2926 * we are still holding the transaction as we can
2927 * release the last reference to io_end which may end
2928 * up doing unwritten extent conversion.
2929 */
2930 if (handle) {
2931 ext4_put_io_end_defer(mpd.io_submit.io_end);
2932 ext4_journal_stop(handle);
2933 } else
2934 ext4_put_io_end(mpd.io_submit.io_end);
2935 mpd.io_submit.io_end = NULL;
2936
2937 if (ret == -ENOSPC && sbi->s_journal) {
2938 /*
2939 * Commit the transaction which would
2940 * free blocks released in the transaction
2941 * and try again
2942 */
2943 jbd2_journal_force_commit_nested(sbi->s_journal);
2944 ret = 0;
2945 continue;
2946 }
2947 /* Fatal error - ENOMEM, EIO... */
2948 if (ret)
2949 break;
2950 }
2951 unplug:
2952 blk_finish_plug(&plug);
2953 if (!ret && !cycled && wbc->nr_to_write > 0) {
2954 cycled = 1;
2955 mpd.last_page = writeback_index - 1;
2956 mpd.first_page = 0;
2957 goto retry;
2958 }
2959
2960 /* Update index */
2961 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2962 /*
2963 * Set the writeback_index so that range_cyclic
2964 * mode will write it back later
2965 */
2966 mapping->writeback_index = mpd.first_page;
2967
2968 out_writepages:
2969 trace_ext4_writepages_result(inode, wbc, ret,
2970 nr_to_write - wbc->nr_to_write);
2971 percpu_up_read(&sbi->s_journal_flag_rwsem);
2972 return ret;
2973 }
2974
2975 static int ext4_nonda_switch(struct super_block *sb)
2976 {
2977 s64 free_clusters, dirty_clusters;
2978 struct ext4_sb_info *sbi = EXT4_SB(sb);
2979
2980 /*
2981 * switch to non delalloc mode if we are running low
2982 * on free block. The free block accounting via percpu
2983 * counters can get slightly wrong with percpu_counter_batch getting
2984 * accumulated on each CPU without updating global counters
2985 * Delalloc need an accurate free block accounting. So switch
2986 * to non delalloc when we are near to error range.
2987 */
2988 free_clusters =
2989 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2990 dirty_clusters =
2991 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2992 /*
2993 * Start pushing delalloc when 1/2 of free blocks are dirty.
2994 */
2995 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2996 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2997
2998 if (2 * free_clusters < 3 * dirty_clusters ||
2999 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3000 /*
3001 * free block count is less than 150% of dirty blocks
3002 * or free blocks is less than watermark
3003 */
3004 return 1;
3005 }
3006 return 0;
3007 }
3008
3009 /* We always reserve for an inode update; the superblock could be there too */
3010 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3011 {
3012 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3013 return 1;
3014
3015 if (pos + len <= 0x7fffffffULL)
3016 return 1;
3017
3018 /* We might need to update the superblock to set LARGE_FILE */
3019 return 2;
3020 }
3021
3022 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3023 loff_t pos, unsigned len, unsigned flags,
3024 struct page **pagep, void **fsdata)
3025 {
3026 int ret, retries = 0;
3027 struct page *page;
3028 pgoff_t index;
3029 struct inode *inode = mapping->host;
3030 handle_t *handle;
3031
3032 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3033 return -EIO;
3034
3035 index = pos >> PAGE_SHIFT;
3036
3037 if (ext4_nonda_switch(inode->i_sb) ||
3038 S_ISLNK(inode->i_mode)) {
3039 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3040 return ext4_write_begin(file, mapping, pos,
3041 len, flags, pagep, fsdata);
3042 }
3043 *fsdata = (void *)0;
3044 trace_ext4_da_write_begin(inode, pos, len, flags);
3045
3046 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3047 ret = ext4_da_write_inline_data_begin(mapping, inode,
3048 pos, len, flags,
3049 pagep, fsdata);
3050 if (ret < 0)
3051 return ret;
3052 if (ret == 1)
3053 return 0;
3054 }
3055
3056 /*
3057 * grab_cache_page_write_begin() can take a long time if the
3058 * system is thrashing due to memory pressure, or if the page
3059 * is being written back. So grab it first before we start
3060 * the transaction handle. This also allows us to allocate
3061 * the page (if needed) without using GFP_NOFS.
3062 */
3063 retry_grab:
3064 page = grab_cache_page_write_begin(mapping, index, flags);
3065 if (!page)
3066 return -ENOMEM;
3067 unlock_page(page);
3068
3069 /*
3070 * With delayed allocation, we don't log the i_disksize update
3071 * if there is delayed block allocation. But we still need
3072 * to journalling the i_disksize update if writes to the end
3073 * of file which has an already mapped buffer.
3074 */
3075 retry_journal:
3076 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3077 ext4_da_write_credits(inode, pos, len));
3078 if (IS_ERR(handle)) {
3079 put_page(page);
3080 return PTR_ERR(handle);
3081 }
3082
3083 lock_page(page);
3084 if (page->mapping != mapping) {
3085 /* The page got truncated from under us */
3086 unlock_page(page);
3087 put_page(page);
3088 ext4_journal_stop(handle);
3089 goto retry_grab;
3090 }
3091 /* In case writeback began while the page was unlocked */
3092 wait_for_stable_page(page);
3093
3094 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3095 ret = ext4_block_write_begin(page, pos, len,
3096 ext4_da_get_block_prep);
3097 #else
3098 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3099 #endif
3100 if (ret < 0) {
3101 unlock_page(page);
3102 ext4_journal_stop(handle);
3103 /*
3104 * block_write_begin may have instantiated a few blocks
3105 * outside i_size. Trim these off again. Don't need
3106 * i_size_read because we hold i_mutex.
3107 */
3108 if (pos + len > inode->i_size)
3109 ext4_truncate_failed_write(inode);
3110
3111 if (ret == -ENOSPC &&
3112 ext4_should_retry_alloc(inode->i_sb, &retries))
3113 goto retry_journal;
3114
3115 put_page(page);
3116 return ret;
3117 }
3118
3119 *pagep = page;
3120 return ret;
3121 }
3122
3123 /*
3124 * Check if we should update i_disksize
3125 * when write to the end of file but not require block allocation
3126 */
3127 static int ext4_da_should_update_i_disksize(struct page *page,
3128 unsigned long offset)
3129 {
3130 struct buffer_head *bh;
3131 struct inode *inode = page->mapping->host;
3132 unsigned int idx;
3133 int i;
3134
3135 bh = page_buffers(page);
3136 idx = offset >> inode->i_blkbits;
3137
3138 for (i = 0; i < idx; i++)
3139 bh = bh->b_this_page;
3140
3141 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3142 return 0;
3143 return 1;
3144 }
3145
3146 static int ext4_da_write_end(struct file *file,
3147 struct address_space *mapping,
3148 loff_t pos, unsigned len, unsigned copied,
3149 struct page *page, void *fsdata)
3150 {
3151 struct inode *inode = mapping->host;
3152 int ret = 0, ret2;
3153 handle_t *handle = ext4_journal_current_handle();
3154 loff_t new_i_size;
3155 unsigned long start, end;
3156 int write_mode = (int)(unsigned long)fsdata;
3157
3158 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3159 return ext4_write_end(file, mapping, pos,
3160 len, copied, page, fsdata);
3161
3162 trace_ext4_da_write_end(inode, pos, len, copied);
3163 start = pos & (PAGE_SIZE - 1);
3164 end = start + copied - 1;
3165
3166 /*
3167 * generic_write_end() will run mark_inode_dirty() if i_size
3168 * changes. So let's piggyback the i_disksize mark_inode_dirty
3169 * into that.
3170 */
3171 new_i_size = pos + copied;
3172 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3173 if (ext4_has_inline_data(inode) ||
3174 ext4_da_should_update_i_disksize(page, end)) {
3175 ext4_update_i_disksize(inode, new_i_size);
3176 /* We need to mark inode dirty even if
3177 * new_i_size is less that inode->i_size
3178 * bu greater than i_disksize.(hint delalloc)
3179 */
3180 ext4_mark_inode_dirty(handle, inode);
3181 }
3182 }
3183
3184 if (write_mode != CONVERT_INLINE_DATA &&
3185 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3186 ext4_has_inline_data(inode))
3187 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3188 page);
3189 else
3190 ret2 = generic_write_end(file, mapping, pos, len, copied,
3191 page, fsdata);
3192
3193 copied = ret2;
3194 if (ret2 < 0)
3195 ret = ret2;
3196 ret2 = ext4_journal_stop(handle);
3197 if (!ret)
3198 ret = ret2;
3199
3200 return ret ? ret : copied;
3201 }
3202
3203 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3204 unsigned int length)
3205 {
3206 /*
3207 * Drop reserved blocks
3208 */
3209 BUG_ON(!PageLocked(page));
3210 if (!page_has_buffers(page))
3211 goto out;
3212
3213 ext4_da_page_release_reservation(page, offset, length);
3214
3215 out:
3216 ext4_invalidatepage(page, offset, length);
3217
3218 return;
3219 }
3220
3221 /*
3222 * Force all delayed allocation blocks to be allocated for a given inode.
3223 */
3224 int ext4_alloc_da_blocks(struct inode *inode)
3225 {
3226 trace_ext4_alloc_da_blocks(inode);
3227
3228 if (!EXT4_I(inode)->i_reserved_data_blocks)
3229 return 0;
3230
3231 /*
3232 * We do something simple for now. The filemap_flush() will
3233 * also start triggering a write of the data blocks, which is
3234 * not strictly speaking necessary (and for users of
3235 * laptop_mode, not even desirable). However, to do otherwise
3236 * would require replicating code paths in:
3237 *
3238 * ext4_writepages() ->
3239 * write_cache_pages() ---> (via passed in callback function)
3240 * __mpage_da_writepage() -->
3241 * mpage_add_bh_to_extent()
3242 * mpage_da_map_blocks()
3243 *
3244 * The problem is that write_cache_pages(), located in
3245 * mm/page-writeback.c, marks pages clean in preparation for
3246 * doing I/O, which is not desirable if we're not planning on
3247 * doing I/O at all.
3248 *
3249 * We could call write_cache_pages(), and then redirty all of
3250 * the pages by calling redirty_page_for_writepage() but that
3251 * would be ugly in the extreme. So instead we would need to
3252 * replicate parts of the code in the above functions,
3253 * simplifying them because we wouldn't actually intend to
3254 * write out the pages, but rather only collect contiguous
3255 * logical block extents, call the multi-block allocator, and
3256 * then update the buffer heads with the block allocations.
3257 *
3258 * For now, though, we'll cheat by calling filemap_flush(),
3259 * which will map the blocks, and start the I/O, but not
3260 * actually wait for the I/O to complete.
3261 */
3262 return filemap_flush(inode->i_mapping);
3263 }
3264
3265 /*
3266 * bmap() is special. It gets used by applications such as lilo and by
3267 * the swapper to find the on-disk block of a specific piece of data.
3268 *
3269 * Naturally, this is dangerous if the block concerned is still in the
3270 * journal. If somebody makes a swapfile on an ext4 data-journaling
3271 * filesystem and enables swap, then they may get a nasty shock when the
3272 * data getting swapped to that swapfile suddenly gets overwritten by
3273 * the original zero's written out previously to the journal and
3274 * awaiting writeback in the kernel's buffer cache.
3275 *
3276 * So, if we see any bmap calls here on a modified, data-journaled file,
3277 * take extra steps to flush any blocks which might be in the cache.
3278 */
3279 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3280 {
3281 struct inode *inode = mapping->host;
3282 journal_t *journal;
3283 int err;
3284
3285 /*
3286 * We can get here for an inline file via the FIBMAP ioctl
3287 */
3288 if (ext4_has_inline_data(inode))
3289 return 0;
3290
3291 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3292 test_opt(inode->i_sb, DELALLOC)) {
3293 /*
3294 * With delalloc we want to sync the file
3295 * so that we can make sure we allocate
3296 * blocks for file
3297 */
3298 filemap_write_and_wait(mapping);
3299 }
3300
3301 if (EXT4_JOURNAL(inode) &&
3302 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3303 /*
3304 * This is a REALLY heavyweight approach, but the use of
3305 * bmap on dirty files is expected to be extremely rare:
3306 * only if we run lilo or swapon on a freshly made file
3307 * do we expect this to happen.
3308 *
3309 * (bmap requires CAP_SYS_RAWIO so this does not
3310 * represent an unprivileged user DOS attack --- we'd be
3311 * in trouble if mortal users could trigger this path at
3312 * will.)
3313 *
3314 * NB. EXT4_STATE_JDATA is not set on files other than
3315 * regular files. If somebody wants to bmap a directory
3316 * or symlink and gets confused because the buffer
3317 * hasn't yet been flushed to disk, they deserve
3318 * everything they get.
3319 */
3320
3321 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3322 journal = EXT4_JOURNAL(inode);
3323 jbd2_journal_lock_updates(journal);
3324 err = jbd2_journal_flush(journal);
3325 jbd2_journal_unlock_updates(journal);
3326
3327 if (err)
3328 return 0;
3329 }
3330
3331 return generic_block_bmap(mapping, block, ext4_get_block);
3332 }
3333
3334 static int ext4_readpage(struct file *file, struct page *page)
3335 {
3336 int ret = -EAGAIN;
3337 struct inode *inode = page->mapping->host;
3338
3339 trace_ext4_readpage(page);
3340
3341 if (ext4_has_inline_data(inode))
3342 ret = ext4_readpage_inline(inode, page);
3343
3344 if (ret == -EAGAIN)
3345 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3346
3347 return ret;
3348 }
3349
3350 static int
3351 ext4_readpages(struct file *file, struct address_space *mapping,
3352 struct list_head *pages, unsigned nr_pages)
3353 {
3354 struct inode *inode = mapping->host;
3355
3356 /* If the file has inline data, no need to do readpages. */
3357 if (ext4_has_inline_data(inode))
3358 return 0;
3359
3360 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3361 }
3362
3363 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3364 unsigned int length)
3365 {
3366 trace_ext4_invalidatepage(page, offset, length);
3367
3368 /* No journalling happens on data buffers when this function is used */
3369 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3370
3371 block_invalidatepage(page, offset, length);
3372 }
3373
3374 static int __ext4_journalled_invalidatepage(struct page *page,
3375 unsigned int offset,
3376 unsigned int length)
3377 {
3378 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3379
3380 trace_ext4_journalled_invalidatepage(page, offset, length);
3381
3382 /*
3383 * If it's a full truncate we just forget about the pending dirtying
3384 */
3385 if (offset == 0 && length == PAGE_SIZE)
3386 ClearPageChecked(page);
3387
3388 return jbd2_journal_invalidatepage(journal, page, offset, length);
3389 }
3390
3391 /* Wrapper for aops... */
3392 static void ext4_journalled_invalidatepage(struct page *page,
3393 unsigned int offset,
3394 unsigned int length)
3395 {
3396 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3397 }
3398
3399 static int ext4_releasepage(struct page *page, gfp_t wait)
3400 {
3401 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3402
3403 trace_ext4_releasepage(page);
3404
3405 /* Page has dirty journalled data -> cannot release */
3406 if (PageChecked(page))
3407 return 0;
3408 if (journal)
3409 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3410 else
3411 return try_to_free_buffers(page);
3412 }
3413
3414 static bool ext4_inode_datasync_dirty(struct inode *inode)
3415 {
3416 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3417
3418 if (journal)
3419 return !jbd2_transaction_committed(journal,
3420 EXT4_I(inode)->i_datasync_tid);
3421 /* Any metadata buffers to write? */
3422 if (!list_empty(&inode->i_mapping->private_list))
3423 return true;
3424 return inode->i_state & I_DIRTY_DATASYNC;
3425 }
3426
3427 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3428 unsigned flags, struct iomap *iomap)
3429 {
3430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3431 unsigned int blkbits = inode->i_blkbits;
3432 unsigned long first_block, last_block;
3433 struct ext4_map_blocks map;
3434 bool delalloc = false;
3435 int ret;
3436
3437 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3438 return -EINVAL;
3439 first_block = offset >> blkbits;
3440 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3441 EXT4_MAX_LOGICAL_BLOCK);
3442
3443 if (flags & IOMAP_REPORT) {
3444 if (ext4_has_inline_data(inode)) {
3445 ret = ext4_inline_data_iomap(inode, iomap);
3446 if (ret != -EAGAIN) {
3447 if (ret == 0 && offset >= iomap->length)
3448 ret = -ENOENT;
3449 return ret;
3450 }
3451 }
3452 } else {
3453 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3454 return -ERANGE;
3455 }
3456
3457 map.m_lblk = first_block;
3458 map.m_len = last_block - first_block + 1;
3459
3460 if (flags & IOMAP_REPORT) {
3461 ret = ext4_map_blocks(NULL, inode, &map, 0);
3462 if (ret < 0)
3463 return ret;
3464
3465 if (ret == 0) {
3466 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3467 struct extent_status es;
3468
3469 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3470
3471 if (!es.es_len || es.es_lblk > end) {
3472 /* entire range is a hole */
3473 } else if (es.es_lblk > map.m_lblk) {
3474 /* range starts with a hole */
3475 map.m_len = es.es_lblk - map.m_lblk;
3476 } else {
3477 ext4_lblk_t offs = 0;
3478
3479 if (es.es_lblk < map.m_lblk)
3480 offs = map.m_lblk - es.es_lblk;
3481 map.m_lblk = es.es_lblk + offs;
3482 map.m_len = es.es_len - offs;
3483 delalloc = true;
3484 }
3485 }
3486 } else if (flags & IOMAP_WRITE) {
3487 int dio_credits;
3488 handle_t *handle;
3489 int retries = 0;
3490
3491 /* Trim mapping request to maximum we can map at once for DIO */
3492 if (map.m_len > DIO_MAX_BLOCKS)
3493 map.m_len = DIO_MAX_BLOCKS;
3494 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3495 retry:
3496 /*
3497 * Either we allocate blocks and then we don't get unwritten
3498 * extent so we have reserved enough credits, or the blocks
3499 * are already allocated and unwritten and in that case
3500 * extent conversion fits in the credits as well.
3501 */
3502 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3503 dio_credits);
3504 if (IS_ERR(handle))
3505 return PTR_ERR(handle);
3506
3507 ret = ext4_map_blocks(handle, inode, &map,
3508 EXT4_GET_BLOCKS_CREATE_ZERO);
3509 if (ret < 0) {
3510 ext4_journal_stop(handle);
3511 if (ret == -ENOSPC &&
3512 ext4_should_retry_alloc(inode->i_sb, &retries))
3513 goto retry;
3514 return ret;
3515 }
3516
3517 /*
3518 * If we added blocks beyond i_size, we need to make sure they
3519 * will get truncated if we crash before updating i_size in
3520 * ext4_iomap_end(). For faults we don't need to do that (and
3521 * even cannot because for orphan list operations inode_lock is
3522 * required) - if we happen to instantiate block beyond i_size,
3523 * it is because we race with truncate which has already added
3524 * the inode to the orphan list.
3525 */
3526 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3527 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3528 int err;
3529
3530 err = ext4_orphan_add(handle, inode);
3531 if (err < 0) {
3532 ext4_journal_stop(handle);
3533 return err;
3534 }
3535 }
3536 ext4_journal_stop(handle);
3537 } else {
3538 ret = ext4_map_blocks(NULL, inode, &map, 0);
3539 if (ret < 0)
3540 return ret;
3541 }
3542
3543 iomap->flags = 0;
3544 if (ext4_inode_datasync_dirty(inode))
3545 iomap->flags |= IOMAP_F_DIRTY;
3546 iomap->bdev = inode->i_sb->s_bdev;
3547 iomap->dax_dev = sbi->s_daxdev;
3548 iomap->offset = (u64)first_block << blkbits;
3549 iomap->length = (u64)map.m_len << blkbits;
3550
3551 if (ret == 0) {
3552 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3553 iomap->addr = IOMAP_NULL_ADDR;
3554 } else {
3555 if (map.m_flags & EXT4_MAP_MAPPED) {
3556 iomap->type = IOMAP_MAPPED;
3557 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3558 iomap->type = IOMAP_UNWRITTEN;
3559 } else {
3560 WARN_ON_ONCE(1);
3561 return -EIO;
3562 }
3563 iomap->addr = (u64)map.m_pblk << blkbits;
3564 }
3565
3566 if (map.m_flags & EXT4_MAP_NEW)
3567 iomap->flags |= IOMAP_F_NEW;
3568
3569 return 0;
3570 }
3571
3572 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3573 ssize_t written, unsigned flags, struct iomap *iomap)
3574 {
3575 int ret = 0;
3576 handle_t *handle;
3577 int blkbits = inode->i_blkbits;
3578 bool truncate = false;
3579
3580 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3581 return 0;
3582
3583 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3584 if (IS_ERR(handle)) {
3585 ret = PTR_ERR(handle);
3586 goto orphan_del;
3587 }
3588 if (ext4_update_inode_size(inode, offset + written))
3589 ext4_mark_inode_dirty(handle, inode);
3590 /*
3591 * We may need to truncate allocated but not written blocks beyond EOF.
3592 */
3593 if (iomap->offset + iomap->length >
3594 ALIGN(inode->i_size, 1 << blkbits)) {
3595 ext4_lblk_t written_blk, end_blk;
3596
3597 written_blk = (offset + written) >> blkbits;
3598 end_blk = (offset + length) >> blkbits;
3599 if (written_blk < end_blk && ext4_can_truncate(inode))
3600 truncate = true;
3601 }
3602 /*
3603 * Remove inode from orphan list if we were extending a inode and
3604 * everything went fine.
3605 */
3606 if (!truncate && inode->i_nlink &&
3607 !list_empty(&EXT4_I(inode)->i_orphan))
3608 ext4_orphan_del(handle, inode);
3609 ext4_journal_stop(handle);
3610 if (truncate) {
3611 ext4_truncate_failed_write(inode);
3612 orphan_del:
3613 /*
3614 * If truncate failed early the inode might still be on the
3615 * orphan list; we need to make sure the inode is removed from
3616 * the orphan list in that case.
3617 */
3618 if (inode->i_nlink)
3619 ext4_orphan_del(NULL, inode);
3620 }
3621 return ret;
3622 }
3623
3624 const struct iomap_ops ext4_iomap_ops = {
3625 .iomap_begin = ext4_iomap_begin,
3626 .iomap_end = ext4_iomap_end,
3627 };
3628
3629 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3630 ssize_t size, void *private)
3631 {
3632 ext4_io_end_t *io_end = private;
3633
3634 /* if not async direct IO just return */
3635 if (!io_end)
3636 return 0;
3637
3638 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3639 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3640 io_end, io_end->inode->i_ino, iocb, offset, size);
3641
3642 /*
3643 * Error during AIO DIO. We cannot convert unwritten extents as the
3644 * data was not written. Just clear the unwritten flag and drop io_end.
3645 */
3646 if (size <= 0) {
3647 ext4_clear_io_unwritten_flag(io_end);
3648 size = 0;
3649 }
3650 io_end->offset = offset;
3651 io_end->size = size;
3652 ext4_put_io_end(io_end);
3653
3654 return 0;
3655 }
3656
3657 /*
3658 * Handling of direct IO writes.
3659 *
3660 * For ext4 extent files, ext4 will do direct-io write even to holes,
3661 * preallocated extents, and those write extend the file, no need to
3662 * fall back to buffered IO.
3663 *
3664 * For holes, we fallocate those blocks, mark them as unwritten
3665 * If those blocks were preallocated, we mark sure they are split, but
3666 * still keep the range to write as unwritten.
3667 *
3668 * The unwritten extents will be converted to written when DIO is completed.
3669 * For async direct IO, since the IO may still pending when return, we
3670 * set up an end_io call back function, which will do the conversion
3671 * when async direct IO completed.
3672 *
3673 * If the O_DIRECT write will extend the file then add this inode to the
3674 * orphan list. So recovery will truncate it back to the original size
3675 * if the machine crashes during the write.
3676 *
3677 */
3678 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3679 {
3680 struct file *file = iocb->ki_filp;
3681 struct inode *inode = file->f_mapping->host;
3682 ssize_t ret;
3683 loff_t offset = iocb->ki_pos;
3684 size_t count = iov_iter_count(iter);
3685 int overwrite = 0;
3686 get_block_t *get_block_func = NULL;
3687 int dio_flags = 0;
3688 loff_t final_size = offset + count;
3689 int orphan = 0;
3690 handle_t *handle;
3691
3692 if (final_size > inode->i_size) {
3693 /* Credits for sb + inode write */
3694 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3695 if (IS_ERR(handle)) {
3696 ret = PTR_ERR(handle);
3697 goto out;
3698 }
3699 ret = ext4_orphan_add(handle, inode);
3700 if (ret) {
3701 ext4_journal_stop(handle);
3702 goto out;
3703 }
3704 orphan = 1;
3705 ext4_update_i_disksize(inode, inode->i_size);
3706 ext4_journal_stop(handle);
3707 }
3708
3709 BUG_ON(iocb->private == NULL);
3710
3711 /*
3712 * Make all waiters for direct IO properly wait also for extent
3713 * conversion. This also disallows race between truncate() and
3714 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3715 */
3716 inode_dio_begin(inode);
3717
3718 /* If we do a overwrite dio, i_mutex locking can be released */
3719 overwrite = *((int *)iocb->private);
3720
3721 if (overwrite)
3722 inode_unlock(inode);
3723
3724 /*
3725 * For extent mapped files we could direct write to holes and fallocate.
3726 *
3727 * Allocated blocks to fill the hole are marked as unwritten to prevent
3728 * parallel buffered read to expose the stale data before DIO complete
3729 * the data IO.
3730 *
3731 * As to previously fallocated extents, ext4 get_block will just simply
3732 * mark the buffer mapped but still keep the extents unwritten.
3733 *
3734 * For non AIO case, we will convert those unwritten extents to written
3735 * after return back from blockdev_direct_IO. That way we save us from
3736 * allocating io_end structure and also the overhead of offloading
3737 * the extent convertion to a workqueue.
3738 *
3739 * For async DIO, the conversion needs to be deferred when the
3740 * IO is completed. The ext4 end_io callback function will be
3741 * called to take care of the conversion work. Here for async
3742 * case, we allocate an io_end structure to hook to the iocb.
3743 */
3744 iocb->private = NULL;
3745 if (overwrite)
3746 get_block_func = ext4_dio_get_block_overwrite;
3747 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3748 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3749 get_block_func = ext4_dio_get_block;
3750 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3751 } else if (is_sync_kiocb(iocb)) {
3752 get_block_func = ext4_dio_get_block_unwritten_sync;
3753 dio_flags = DIO_LOCKING;
3754 } else {
3755 get_block_func = ext4_dio_get_block_unwritten_async;
3756 dio_flags = DIO_LOCKING;
3757 }
3758 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3759 get_block_func, ext4_end_io_dio, NULL,
3760 dio_flags);
3761
3762 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3763 EXT4_STATE_DIO_UNWRITTEN)) {
3764 int err;
3765 /*
3766 * for non AIO case, since the IO is already
3767 * completed, we could do the conversion right here
3768 */
3769 err = ext4_convert_unwritten_extents(NULL, inode,
3770 offset, ret);
3771 if (err < 0)
3772 ret = err;
3773 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3774 }
3775
3776 inode_dio_end(inode);
3777 /* take i_mutex locking again if we do a ovewrite dio */
3778 if (overwrite)
3779 inode_lock(inode);
3780
3781 if (ret < 0 && final_size > inode->i_size)
3782 ext4_truncate_failed_write(inode);
3783
3784 /* Handle extending of i_size after direct IO write */
3785 if (orphan) {
3786 int err;
3787
3788 /* Credits for sb + inode write */
3789 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3790 if (IS_ERR(handle)) {
3791 /*
3792 * We wrote the data but cannot extend
3793 * i_size. Bail out. In async io case, we do
3794 * not return error here because we have
3795 * already submmitted the corresponding
3796 * bio. Returning error here makes the caller
3797 * think that this IO is done and failed
3798 * resulting in race with bio's completion
3799 * handler.
3800 */
3801 if (!ret)
3802 ret = PTR_ERR(handle);
3803 if (inode->i_nlink)
3804 ext4_orphan_del(NULL, inode);
3805
3806 goto out;
3807 }
3808 if (inode->i_nlink)
3809 ext4_orphan_del(handle, inode);
3810 if (ret > 0) {
3811 loff_t end = offset + ret;
3812 if (end > inode->i_size) {
3813 ext4_update_i_disksize(inode, end);
3814 i_size_write(inode, end);
3815 /*
3816 * We're going to return a positive `ret'
3817 * here due to non-zero-length I/O, so there's
3818 * no way of reporting error returns from
3819 * ext4_mark_inode_dirty() to userspace. So
3820 * ignore it.
3821 */
3822 ext4_mark_inode_dirty(handle, inode);
3823 }
3824 }
3825 err = ext4_journal_stop(handle);
3826 if (ret == 0)
3827 ret = err;
3828 }
3829 out:
3830 return ret;
3831 }
3832
3833 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3834 {
3835 struct address_space *mapping = iocb->ki_filp->f_mapping;
3836 struct inode *inode = mapping->host;
3837 size_t count = iov_iter_count(iter);
3838 ssize_t ret;
3839
3840 /*
3841 * Shared inode_lock is enough for us - it protects against concurrent
3842 * writes & truncates and since we take care of writing back page cache,
3843 * we are protected against page writeback as well.
3844 */
3845 if (iocb->ki_flags & IOCB_NOWAIT) {
3846 if (!inode_trylock_shared(inode))
3847 return -EAGAIN;
3848 } else {
3849 inode_lock_shared(inode);
3850 }
3851
3852 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3853 iocb->ki_pos + count - 1);
3854 if (ret)
3855 goto out_unlock;
3856 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3857 iter, ext4_dio_get_block, NULL, NULL, 0);
3858 out_unlock:
3859 inode_unlock_shared(inode);
3860 return ret;
3861 }
3862
3863 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3864 {
3865 struct file *file = iocb->ki_filp;
3866 struct inode *inode = file->f_mapping->host;
3867 size_t count = iov_iter_count(iter);
3868 loff_t offset = iocb->ki_pos;
3869 ssize_t ret;
3870
3871 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3872 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3873 return 0;
3874 #endif
3875
3876 /*
3877 * If we are doing data journalling we don't support O_DIRECT
3878 */
3879 if (ext4_should_journal_data(inode))
3880 return 0;
3881
3882 /* Let buffer I/O handle the inline data case. */
3883 if (ext4_has_inline_data(inode))
3884 return 0;
3885
3886 /* DAX uses iomap path now */
3887 if (WARN_ON_ONCE(IS_DAX(inode)))
3888 return 0;
3889
3890 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3891 if (iov_iter_rw(iter) == READ)
3892 ret = ext4_direct_IO_read(iocb, iter);
3893 else
3894 ret = ext4_direct_IO_write(iocb, iter);
3895 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3896 return ret;
3897 }
3898
3899 /*
3900 * Pages can be marked dirty completely asynchronously from ext4's journalling
3901 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3902 * much here because ->set_page_dirty is called under VFS locks. The page is
3903 * not necessarily locked.
3904 *
3905 * We cannot just dirty the page and leave attached buffers clean, because the
3906 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3907 * or jbddirty because all the journalling code will explode.
3908 *
3909 * So what we do is to mark the page "pending dirty" and next time writepage
3910 * is called, propagate that into the buffers appropriately.
3911 */
3912 static int ext4_journalled_set_page_dirty(struct page *page)
3913 {
3914 SetPageChecked(page);
3915 return __set_page_dirty_nobuffers(page);
3916 }
3917
3918 static int ext4_set_page_dirty(struct page *page)
3919 {
3920 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3921 WARN_ON_ONCE(!page_has_buffers(page));
3922 return __set_page_dirty_buffers(page);
3923 }
3924
3925 static const struct address_space_operations ext4_aops = {
3926 .readpage = ext4_readpage,
3927 .readpages = ext4_readpages,
3928 .writepage = ext4_writepage,
3929 .writepages = ext4_writepages,
3930 .write_begin = ext4_write_begin,
3931 .write_end = ext4_write_end,
3932 .set_page_dirty = ext4_set_page_dirty,
3933 .bmap = ext4_bmap,
3934 .invalidatepage = ext4_invalidatepage,
3935 .releasepage = ext4_releasepage,
3936 .direct_IO = ext4_direct_IO,
3937 .migratepage = buffer_migrate_page,
3938 .is_partially_uptodate = block_is_partially_uptodate,
3939 .error_remove_page = generic_error_remove_page,
3940 };
3941
3942 static const struct address_space_operations ext4_journalled_aops = {
3943 .readpage = ext4_readpage,
3944 .readpages = ext4_readpages,
3945 .writepage = ext4_writepage,
3946 .writepages = ext4_writepages,
3947 .write_begin = ext4_write_begin,
3948 .write_end = ext4_journalled_write_end,
3949 .set_page_dirty = ext4_journalled_set_page_dirty,
3950 .bmap = ext4_bmap,
3951 .invalidatepage = ext4_journalled_invalidatepage,
3952 .releasepage = ext4_releasepage,
3953 .direct_IO = ext4_direct_IO,
3954 .is_partially_uptodate = block_is_partially_uptodate,
3955 .error_remove_page = generic_error_remove_page,
3956 };
3957
3958 static const struct address_space_operations ext4_da_aops = {
3959 .readpage = ext4_readpage,
3960 .readpages = ext4_readpages,
3961 .writepage = ext4_writepage,
3962 .writepages = ext4_writepages,
3963 .write_begin = ext4_da_write_begin,
3964 .write_end = ext4_da_write_end,
3965 .set_page_dirty = ext4_set_page_dirty,
3966 .bmap = ext4_bmap,
3967 .invalidatepage = ext4_da_invalidatepage,
3968 .releasepage = ext4_releasepage,
3969 .direct_IO = ext4_direct_IO,
3970 .migratepage = buffer_migrate_page,
3971 .is_partially_uptodate = block_is_partially_uptodate,
3972 .error_remove_page = generic_error_remove_page,
3973 };
3974
3975 void ext4_set_aops(struct inode *inode)
3976 {
3977 switch (ext4_inode_journal_mode(inode)) {
3978 case EXT4_INODE_ORDERED_DATA_MODE:
3979 case EXT4_INODE_WRITEBACK_DATA_MODE:
3980 break;
3981 case EXT4_INODE_JOURNAL_DATA_MODE:
3982 inode->i_mapping->a_ops = &ext4_journalled_aops;
3983 return;
3984 default:
3985 BUG();
3986 }
3987 if (test_opt(inode->i_sb, DELALLOC))
3988 inode->i_mapping->a_ops = &ext4_da_aops;
3989 else
3990 inode->i_mapping->a_ops = &ext4_aops;
3991 }
3992
3993 static int __ext4_block_zero_page_range(handle_t *handle,
3994 struct address_space *mapping, loff_t from, loff_t length)
3995 {
3996 ext4_fsblk_t index = from >> PAGE_SHIFT;
3997 unsigned offset = from & (PAGE_SIZE-1);
3998 unsigned blocksize, pos;
3999 ext4_lblk_t iblock;
4000 struct inode *inode = mapping->host;
4001 struct buffer_head *bh;
4002 struct page *page;
4003 int err = 0;
4004
4005 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4006 mapping_gfp_constraint(mapping, ~__GFP_FS));
4007 if (!page)
4008 return -ENOMEM;
4009
4010 blocksize = inode->i_sb->s_blocksize;
4011
4012 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4013
4014 if (!page_has_buffers(page))
4015 create_empty_buffers(page, blocksize, 0);
4016
4017 /* Find the buffer that contains "offset" */
4018 bh = page_buffers(page);
4019 pos = blocksize;
4020 while (offset >= pos) {
4021 bh = bh->b_this_page;
4022 iblock++;
4023 pos += blocksize;
4024 }
4025 if (buffer_freed(bh)) {
4026 BUFFER_TRACE(bh, "freed: skip");
4027 goto unlock;
4028 }
4029 if (!buffer_mapped(bh)) {
4030 BUFFER_TRACE(bh, "unmapped");
4031 ext4_get_block(inode, iblock, bh, 0);
4032 /* unmapped? It's a hole - nothing to do */
4033 if (!buffer_mapped(bh)) {
4034 BUFFER_TRACE(bh, "still unmapped");
4035 goto unlock;
4036 }
4037 }
4038
4039 /* Ok, it's mapped. Make sure it's up-to-date */
4040 if (PageUptodate(page))
4041 set_buffer_uptodate(bh);
4042
4043 if (!buffer_uptodate(bh)) {
4044 err = -EIO;
4045 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4046 wait_on_buffer(bh);
4047 /* Uhhuh. Read error. Complain and punt. */
4048 if (!buffer_uptodate(bh))
4049 goto unlock;
4050 if (S_ISREG(inode->i_mode) &&
4051 ext4_encrypted_inode(inode)) {
4052 /* We expect the key to be set. */
4053 BUG_ON(!fscrypt_has_encryption_key(inode));
4054 BUG_ON(blocksize != PAGE_SIZE);
4055 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
4056 page, PAGE_SIZE, 0, page->index));
4057 }
4058 }
4059 if (ext4_should_journal_data(inode)) {
4060 BUFFER_TRACE(bh, "get write access");
4061 err = ext4_journal_get_write_access(handle, bh);
4062 if (err)
4063 goto unlock;
4064 }
4065 zero_user(page, offset, length);
4066 BUFFER_TRACE(bh, "zeroed end of block");
4067
4068 if (ext4_should_journal_data(inode)) {
4069 err = ext4_handle_dirty_metadata(handle, inode, bh);
4070 } else {
4071 err = 0;
4072 mark_buffer_dirty(bh);
4073 if (ext4_should_order_data(inode))
4074 err = ext4_jbd2_inode_add_write(handle, inode, from,
4075 length);
4076 }
4077
4078 unlock:
4079 unlock_page(page);
4080 put_page(page);
4081 return err;
4082 }
4083
4084 /*
4085 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4086 * starting from file offset 'from'. The range to be zero'd must
4087 * be contained with in one block. If the specified range exceeds
4088 * the end of the block it will be shortened to end of the block
4089 * that cooresponds to 'from'
4090 */
4091 static int ext4_block_zero_page_range(handle_t *handle,
4092 struct address_space *mapping, loff_t from, loff_t length)
4093 {
4094 struct inode *inode = mapping->host;
4095 unsigned offset = from & (PAGE_SIZE-1);
4096 unsigned blocksize = inode->i_sb->s_blocksize;
4097 unsigned max = blocksize - (offset & (blocksize - 1));
4098
4099 /*
4100 * correct length if it does not fall between
4101 * 'from' and the end of the block
4102 */
4103 if (length > max || length < 0)
4104 length = max;
4105
4106 if (IS_DAX(inode)) {
4107 return iomap_zero_range(inode, from, length, NULL,
4108 &ext4_iomap_ops);
4109 }
4110 return __ext4_block_zero_page_range(handle, mapping, from, length);
4111 }
4112
4113 /*
4114 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4115 * up to the end of the block which corresponds to `from'.
4116 * This required during truncate. We need to physically zero the tail end
4117 * of that block so it doesn't yield old data if the file is later grown.
4118 */
4119 static int ext4_block_truncate_page(handle_t *handle,
4120 struct address_space *mapping, loff_t from)
4121 {
4122 unsigned offset = from & (PAGE_SIZE-1);
4123 unsigned length;
4124 unsigned blocksize;
4125 struct inode *inode = mapping->host;
4126
4127 /* If we are processing an encrypted inode during orphan list handling */
4128 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4129 return 0;
4130
4131 blocksize = inode->i_sb->s_blocksize;
4132 length = blocksize - (offset & (blocksize - 1));
4133
4134 return ext4_block_zero_page_range(handle, mapping, from, length);
4135 }
4136
4137 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4138 loff_t lstart, loff_t length)
4139 {
4140 struct super_block *sb = inode->i_sb;
4141 struct address_space *mapping = inode->i_mapping;
4142 unsigned partial_start, partial_end;
4143 ext4_fsblk_t start, end;
4144 loff_t byte_end = (lstart + length - 1);
4145 int err = 0;
4146
4147 partial_start = lstart & (sb->s_blocksize - 1);
4148 partial_end = byte_end & (sb->s_blocksize - 1);
4149
4150 start = lstart >> sb->s_blocksize_bits;
4151 end = byte_end >> sb->s_blocksize_bits;
4152
4153 /* Handle partial zero within the single block */
4154 if (start == end &&
4155 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4156 err = ext4_block_zero_page_range(handle, mapping,
4157 lstart, length);
4158 return err;
4159 }
4160 /* Handle partial zero out on the start of the range */
4161 if (partial_start) {
4162 err = ext4_block_zero_page_range(handle, mapping,
4163 lstart, sb->s_blocksize);
4164 if (err)
4165 return err;
4166 }
4167 /* Handle partial zero out on the end of the range */
4168 if (partial_end != sb->s_blocksize - 1)
4169 err = ext4_block_zero_page_range(handle, mapping,
4170 byte_end - partial_end,
4171 partial_end + 1);
4172 return err;
4173 }
4174
4175 int ext4_can_truncate(struct inode *inode)
4176 {
4177 if (S_ISREG(inode->i_mode))
4178 return 1;
4179 if (S_ISDIR(inode->i_mode))
4180 return 1;
4181 if (S_ISLNK(inode->i_mode))
4182 return !ext4_inode_is_fast_symlink(inode);
4183 return 0;
4184 }
4185
4186 /*
4187 * We have to make sure i_disksize gets properly updated before we truncate
4188 * page cache due to hole punching or zero range. Otherwise i_disksize update
4189 * can get lost as it may have been postponed to submission of writeback but
4190 * that will never happen after we truncate page cache.
4191 */
4192 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4193 loff_t len)
4194 {
4195 handle_t *handle;
4196 loff_t size = i_size_read(inode);
4197
4198 WARN_ON(!inode_is_locked(inode));
4199 if (offset > size || offset + len < size)
4200 return 0;
4201
4202 if (EXT4_I(inode)->i_disksize >= size)
4203 return 0;
4204
4205 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4206 if (IS_ERR(handle))
4207 return PTR_ERR(handle);
4208 ext4_update_i_disksize(inode, size);
4209 ext4_mark_inode_dirty(handle, inode);
4210 ext4_journal_stop(handle);
4211
4212 return 0;
4213 }
4214
4215 /*
4216 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4217 * associated with the given offset and length
4218 *
4219 * @inode: File inode
4220 * @offset: The offset where the hole will begin
4221 * @len: The length of the hole
4222 *
4223 * Returns: 0 on success or negative on failure
4224 */
4225
4226 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4227 {
4228 struct super_block *sb = inode->i_sb;
4229 ext4_lblk_t first_block, stop_block;
4230 struct address_space *mapping = inode->i_mapping;
4231 loff_t first_block_offset, last_block_offset;
4232 handle_t *handle;
4233 unsigned int credits;
4234 int ret = 0;
4235
4236 if (!S_ISREG(inode->i_mode))
4237 return -EOPNOTSUPP;
4238
4239 trace_ext4_punch_hole(inode, offset, length, 0);
4240
4241 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4242 if (ext4_has_inline_data(inode)) {
4243 down_write(&EXT4_I(inode)->i_mmap_sem);
4244 ret = ext4_convert_inline_data(inode);
4245 up_write(&EXT4_I(inode)->i_mmap_sem);
4246 if (ret)
4247 return ret;
4248 }
4249
4250 /*
4251 * Write out all dirty pages to avoid race conditions
4252 * Then release them.
4253 */
4254 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4255 ret = filemap_write_and_wait_range(mapping, offset,
4256 offset + length - 1);
4257 if (ret)
4258 return ret;
4259 }
4260
4261 inode_lock(inode);
4262
4263 /* No need to punch hole beyond i_size */
4264 if (offset >= inode->i_size)
4265 goto out_mutex;
4266
4267 /*
4268 * If the hole extends beyond i_size, set the hole
4269 * to end after the page that contains i_size
4270 */
4271 if (offset + length > inode->i_size) {
4272 length = inode->i_size +
4273 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4274 offset;
4275 }
4276
4277 if (offset & (sb->s_blocksize - 1) ||
4278 (offset + length) & (sb->s_blocksize - 1)) {
4279 /*
4280 * Attach jinode to inode for jbd2 if we do any zeroing of
4281 * partial block
4282 */
4283 ret = ext4_inode_attach_jinode(inode);
4284 if (ret < 0)
4285 goto out_mutex;
4286
4287 }
4288
4289 /* Wait all existing dio workers, newcomers will block on i_mutex */
4290 ext4_inode_block_unlocked_dio(inode);
4291 inode_dio_wait(inode);
4292
4293 /*
4294 * Prevent page faults from reinstantiating pages we have released from
4295 * page cache.
4296 */
4297 down_write(&EXT4_I(inode)->i_mmap_sem);
4298 first_block_offset = round_up(offset, sb->s_blocksize);
4299 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4300
4301 /* Now release the pages and zero block aligned part of pages*/
4302 if (last_block_offset > first_block_offset) {
4303 ret = ext4_update_disksize_before_punch(inode, offset, length);
4304 if (ret)
4305 goto out_dio;
4306 truncate_pagecache_range(inode, first_block_offset,
4307 last_block_offset);
4308 }
4309
4310 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4311 credits = ext4_writepage_trans_blocks(inode);
4312 else
4313 credits = ext4_blocks_for_truncate(inode);
4314 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4315 if (IS_ERR(handle)) {
4316 ret = PTR_ERR(handle);
4317 ext4_std_error(sb, ret);
4318 goto out_dio;
4319 }
4320
4321 ret = ext4_zero_partial_blocks(handle, inode, offset,
4322 length);
4323 if (ret)
4324 goto out_stop;
4325
4326 first_block = (offset + sb->s_blocksize - 1) >>
4327 EXT4_BLOCK_SIZE_BITS(sb);
4328 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4329
4330 /* If there are blocks to remove, do it */
4331 if (stop_block > first_block) {
4332
4333 down_write(&EXT4_I(inode)->i_data_sem);
4334 ext4_discard_preallocations(inode);
4335
4336 ret = ext4_es_remove_extent(inode, first_block,
4337 stop_block - first_block);
4338 if (ret) {
4339 up_write(&EXT4_I(inode)->i_data_sem);
4340 goto out_stop;
4341 }
4342
4343 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4344 ret = ext4_ext_remove_space(inode, first_block,
4345 stop_block - 1);
4346 else
4347 ret = ext4_ind_remove_space(handle, inode, first_block,
4348 stop_block);
4349
4350 up_write(&EXT4_I(inode)->i_data_sem);
4351 }
4352 if (IS_SYNC(inode))
4353 ext4_handle_sync(handle);
4354
4355 inode->i_mtime = inode->i_ctime = current_time(inode);
4356 ext4_mark_inode_dirty(handle, inode);
4357 if (ret >= 0)
4358 ext4_update_inode_fsync_trans(handle, inode, 1);
4359 out_stop:
4360 ext4_journal_stop(handle);
4361 out_dio:
4362 up_write(&EXT4_I(inode)->i_mmap_sem);
4363 ext4_inode_resume_unlocked_dio(inode);
4364 out_mutex:
4365 inode_unlock(inode);
4366 return ret;
4367 }
4368
4369 int ext4_inode_attach_jinode(struct inode *inode)
4370 {
4371 struct ext4_inode_info *ei = EXT4_I(inode);
4372 struct jbd2_inode *jinode;
4373
4374 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4375 return 0;
4376
4377 jinode = jbd2_alloc_inode(GFP_KERNEL);
4378 spin_lock(&inode->i_lock);
4379 if (!ei->jinode) {
4380 if (!jinode) {
4381 spin_unlock(&inode->i_lock);
4382 return -ENOMEM;
4383 }
4384 ei->jinode = jinode;
4385 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4386 jinode = NULL;
4387 }
4388 spin_unlock(&inode->i_lock);
4389 if (unlikely(jinode != NULL))
4390 jbd2_free_inode(jinode);
4391 return 0;
4392 }
4393
4394 /*
4395 * ext4_truncate()
4396 *
4397 * We block out ext4_get_block() block instantiations across the entire
4398 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4399 * simultaneously on behalf of the same inode.
4400 *
4401 * As we work through the truncate and commit bits of it to the journal there
4402 * is one core, guiding principle: the file's tree must always be consistent on
4403 * disk. We must be able to restart the truncate after a crash.
4404 *
4405 * The file's tree may be transiently inconsistent in memory (although it
4406 * probably isn't), but whenever we close off and commit a journal transaction,
4407 * the contents of (the filesystem + the journal) must be consistent and
4408 * restartable. It's pretty simple, really: bottom up, right to left (although
4409 * left-to-right works OK too).
4410 *
4411 * Note that at recovery time, journal replay occurs *before* the restart of
4412 * truncate against the orphan inode list.
4413 *
4414 * The committed inode has the new, desired i_size (which is the same as
4415 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4416 * that this inode's truncate did not complete and it will again call
4417 * ext4_truncate() to have another go. So there will be instantiated blocks
4418 * to the right of the truncation point in a crashed ext4 filesystem. But
4419 * that's fine - as long as they are linked from the inode, the post-crash
4420 * ext4_truncate() run will find them and release them.
4421 */
4422 int ext4_truncate(struct inode *inode)
4423 {
4424 struct ext4_inode_info *ei = EXT4_I(inode);
4425 unsigned int credits;
4426 int err = 0;
4427 handle_t *handle;
4428 struct address_space *mapping = inode->i_mapping;
4429
4430 /*
4431 * There is a possibility that we're either freeing the inode
4432 * or it's a completely new inode. In those cases we might not
4433 * have i_mutex locked because it's not necessary.
4434 */
4435 if (!(inode->i_state & (I_NEW|I_FREEING)))
4436 WARN_ON(!inode_is_locked(inode));
4437 trace_ext4_truncate_enter(inode);
4438
4439 if (!ext4_can_truncate(inode))
4440 return 0;
4441
4442 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4443
4444 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4445 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4446
4447 if (ext4_has_inline_data(inode)) {
4448 int has_inline = 1;
4449
4450 err = ext4_inline_data_truncate(inode, &has_inline);
4451 if (err)
4452 return err;
4453 if (has_inline)
4454 return 0;
4455 }
4456
4457 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4458 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4459 if (ext4_inode_attach_jinode(inode) < 0)
4460 return 0;
4461 }
4462
4463 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4464 credits = ext4_writepage_trans_blocks(inode);
4465 else
4466 credits = ext4_blocks_for_truncate(inode);
4467
4468 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4469 if (IS_ERR(handle))
4470 return PTR_ERR(handle);
4471
4472 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4473 ext4_block_truncate_page(handle, mapping, inode->i_size);
4474
4475 /*
4476 * We add the inode to the orphan list, so that if this
4477 * truncate spans multiple transactions, and we crash, we will
4478 * resume the truncate when the filesystem recovers. It also
4479 * marks the inode dirty, to catch the new size.
4480 *
4481 * Implication: the file must always be in a sane, consistent
4482 * truncatable state while each transaction commits.
4483 */
4484 err = ext4_orphan_add(handle, inode);
4485 if (err)
4486 goto out_stop;
4487
4488 down_write(&EXT4_I(inode)->i_data_sem);
4489
4490 ext4_discard_preallocations(inode);
4491
4492 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4493 err = ext4_ext_truncate(handle, inode);
4494 else
4495 ext4_ind_truncate(handle, inode);
4496
4497 up_write(&ei->i_data_sem);
4498 if (err)
4499 goto out_stop;
4500
4501 if (IS_SYNC(inode))
4502 ext4_handle_sync(handle);
4503
4504 out_stop:
4505 /*
4506 * If this was a simple ftruncate() and the file will remain alive,
4507 * then we need to clear up the orphan record which we created above.
4508 * However, if this was a real unlink then we were called by
4509 * ext4_evict_inode(), and we allow that function to clean up the
4510 * orphan info for us.
4511 */
4512 if (inode->i_nlink)
4513 ext4_orphan_del(handle, inode);
4514
4515 inode->i_mtime = inode->i_ctime = current_time(inode);
4516 ext4_mark_inode_dirty(handle, inode);
4517 ext4_journal_stop(handle);
4518
4519 trace_ext4_truncate_exit(inode);
4520 return err;
4521 }
4522
4523 /*
4524 * ext4_get_inode_loc returns with an extra refcount against the inode's
4525 * underlying buffer_head on success. If 'in_mem' is true, we have all
4526 * data in memory that is needed to recreate the on-disk version of this
4527 * inode.
4528 */
4529 static int __ext4_get_inode_loc(struct inode *inode,
4530 struct ext4_iloc *iloc, int in_mem)
4531 {
4532 struct ext4_group_desc *gdp;
4533 struct buffer_head *bh;
4534 struct super_block *sb = inode->i_sb;
4535 ext4_fsblk_t block;
4536 int inodes_per_block, inode_offset;
4537
4538 iloc->bh = NULL;
4539 if (inode->i_ino < EXT4_ROOT_INO ||
4540 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4541 return -EFSCORRUPTED;
4542
4543 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4544 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4545 if (!gdp)
4546 return -EIO;
4547
4548 /*
4549 * Figure out the offset within the block group inode table
4550 */
4551 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4552 inode_offset = ((inode->i_ino - 1) %
4553 EXT4_INODES_PER_GROUP(sb));
4554 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4555 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4556
4557 bh = sb_getblk(sb, block);
4558 if (unlikely(!bh))
4559 return -ENOMEM;
4560 if (!buffer_uptodate(bh)) {
4561 lock_buffer(bh);
4562
4563 /*
4564 * If the buffer has the write error flag, we have failed
4565 * to write out another inode in the same block. In this
4566 * case, we don't have to read the block because we may
4567 * read the old inode data successfully.
4568 */
4569 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4570 set_buffer_uptodate(bh);
4571
4572 if (buffer_uptodate(bh)) {
4573 /* someone brought it uptodate while we waited */
4574 unlock_buffer(bh);
4575 goto has_buffer;
4576 }
4577
4578 /*
4579 * If we have all information of the inode in memory and this
4580 * is the only valid inode in the block, we need not read the
4581 * block.
4582 */
4583 if (in_mem) {
4584 struct buffer_head *bitmap_bh;
4585 int i, start;
4586
4587 start = inode_offset & ~(inodes_per_block - 1);
4588
4589 /* Is the inode bitmap in cache? */
4590 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4591 if (unlikely(!bitmap_bh))
4592 goto make_io;
4593
4594 /*
4595 * If the inode bitmap isn't in cache then the
4596 * optimisation may end up performing two reads instead
4597 * of one, so skip it.
4598 */
4599 if (!buffer_uptodate(bitmap_bh)) {
4600 brelse(bitmap_bh);
4601 goto make_io;
4602 }
4603 for (i = start; i < start + inodes_per_block; i++) {
4604 if (i == inode_offset)
4605 continue;
4606 if (ext4_test_bit(i, bitmap_bh->b_data))
4607 break;
4608 }
4609 brelse(bitmap_bh);
4610 if (i == start + inodes_per_block) {
4611 /* all other inodes are free, so skip I/O */
4612 memset(bh->b_data, 0, bh->b_size);
4613 set_buffer_uptodate(bh);
4614 unlock_buffer(bh);
4615 goto has_buffer;
4616 }
4617 }
4618
4619 make_io:
4620 /*
4621 * If we need to do any I/O, try to pre-readahead extra
4622 * blocks from the inode table.
4623 */
4624 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4625 ext4_fsblk_t b, end, table;
4626 unsigned num;
4627 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4628
4629 table = ext4_inode_table(sb, gdp);
4630 /* s_inode_readahead_blks is always a power of 2 */
4631 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4632 if (table > b)
4633 b = table;
4634 end = b + ra_blks;
4635 num = EXT4_INODES_PER_GROUP(sb);
4636 if (ext4_has_group_desc_csum(sb))
4637 num -= ext4_itable_unused_count(sb, gdp);
4638 table += num / inodes_per_block;
4639 if (end > table)
4640 end = table;
4641 while (b <= end)
4642 sb_breadahead(sb, b++);
4643 }
4644
4645 /*
4646 * There are other valid inodes in the buffer, this inode
4647 * has in-inode xattrs, or we don't have this inode in memory.
4648 * Read the block from disk.
4649 */
4650 trace_ext4_load_inode(inode);
4651 get_bh(bh);
4652 bh->b_end_io = end_buffer_read_sync;
4653 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4654 wait_on_buffer(bh);
4655 if (!buffer_uptodate(bh)) {
4656 EXT4_ERROR_INODE_BLOCK(inode, block,
4657 "unable to read itable block");
4658 brelse(bh);
4659 return -EIO;
4660 }
4661 }
4662 has_buffer:
4663 iloc->bh = bh;
4664 return 0;
4665 }
4666
4667 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4668 {
4669 /* We have all inode data except xattrs in memory here. */
4670 return __ext4_get_inode_loc(inode, iloc,
4671 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4672 }
4673
4674 static bool ext4_should_use_dax(struct inode *inode)
4675 {
4676 if (!test_opt(inode->i_sb, DAX))
4677 return false;
4678 if (!S_ISREG(inode->i_mode))
4679 return false;
4680 if (ext4_should_journal_data(inode))
4681 return false;
4682 if (ext4_has_inline_data(inode))
4683 return false;
4684 if (ext4_encrypted_inode(inode))
4685 return false;
4686 return true;
4687 }
4688
4689 void ext4_set_inode_flags(struct inode *inode)
4690 {
4691 unsigned int flags = EXT4_I(inode)->i_flags;
4692 unsigned int new_fl = 0;
4693
4694 if (flags & EXT4_SYNC_FL)
4695 new_fl |= S_SYNC;
4696 if (flags & EXT4_APPEND_FL)
4697 new_fl |= S_APPEND;
4698 if (flags & EXT4_IMMUTABLE_FL)
4699 new_fl |= S_IMMUTABLE;
4700 if (flags & EXT4_NOATIME_FL)
4701 new_fl |= S_NOATIME;
4702 if (flags & EXT4_DIRSYNC_FL)
4703 new_fl |= S_DIRSYNC;
4704 if (ext4_should_use_dax(inode))
4705 new_fl |= S_DAX;
4706 if (flags & EXT4_ENCRYPT_FL)
4707 new_fl |= S_ENCRYPTED;
4708 inode_set_flags(inode, new_fl,
4709 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4710 S_ENCRYPTED);
4711 }
4712
4713 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4714 struct ext4_inode_info *ei)
4715 {
4716 blkcnt_t i_blocks ;
4717 struct inode *inode = &(ei->vfs_inode);
4718 struct super_block *sb = inode->i_sb;
4719
4720 if (ext4_has_feature_huge_file(sb)) {
4721 /* we are using combined 48 bit field */
4722 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4723 le32_to_cpu(raw_inode->i_blocks_lo);
4724 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4725 /* i_blocks represent file system block size */
4726 return i_blocks << (inode->i_blkbits - 9);
4727 } else {
4728 return i_blocks;
4729 }
4730 } else {
4731 return le32_to_cpu(raw_inode->i_blocks_lo);
4732 }
4733 }
4734
4735 static inline int ext4_iget_extra_inode(struct inode *inode,
4736 struct ext4_inode *raw_inode,
4737 struct ext4_inode_info *ei)
4738 {
4739 __le32 *magic = (void *)raw_inode +
4740 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4741
4742 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4743 EXT4_INODE_SIZE(inode->i_sb) &&
4744 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4745 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4746 return ext4_find_inline_data_nolock(inode);
4747 } else
4748 EXT4_I(inode)->i_inline_off = 0;
4749 return 0;
4750 }
4751
4752 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4753 {
4754 if (!ext4_has_feature_project(inode->i_sb))
4755 return -EOPNOTSUPP;
4756 *projid = EXT4_I(inode)->i_projid;
4757 return 0;
4758 }
4759
4760 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4761 ext4_iget_flags flags, const char *function,
4762 unsigned int line)
4763 {
4764 struct ext4_iloc iloc;
4765 struct ext4_inode *raw_inode;
4766 struct ext4_inode_info *ei;
4767 struct inode *inode;
4768 journal_t *journal = EXT4_SB(sb)->s_journal;
4769 long ret;
4770 loff_t size;
4771 int block;
4772 uid_t i_uid;
4773 gid_t i_gid;
4774 projid_t i_projid;
4775
4776 if ((!(flags & EXT4_IGET_SPECIAL) &&
4777 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4778 (ino < EXT4_ROOT_INO) ||
4779 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4780 if (flags & EXT4_IGET_HANDLE)
4781 return ERR_PTR(-ESTALE);
4782 __ext4_error(sb, function, line,
4783 "inode #%lu: comm %s: iget: illegal inode #",
4784 ino, current->comm);
4785 return ERR_PTR(-EFSCORRUPTED);
4786 }
4787
4788 inode = iget_locked(sb, ino);
4789 if (!inode)
4790 return ERR_PTR(-ENOMEM);
4791 if (!(inode->i_state & I_NEW))
4792 return inode;
4793
4794 ei = EXT4_I(inode);
4795 iloc.bh = NULL;
4796
4797 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4798 if (ret < 0)
4799 goto bad_inode;
4800 raw_inode = ext4_raw_inode(&iloc);
4801
4802 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4803 ext4_error_inode(inode, function, line, 0,
4804 "iget: root inode unallocated");
4805 ret = -EFSCORRUPTED;
4806 goto bad_inode;
4807 }
4808
4809 if ((flags & EXT4_IGET_HANDLE) &&
4810 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4811 ret = -ESTALE;
4812 goto bad_inode;
4813 }
4814
4815 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4816 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4817 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4818 EXT4_INODE_SIZE(inode->i_sb) ||
4819 (ei->i_extra_isize & 3)) {
4820 ext4_error_inode(inode, function, line, 0,
4821 "iget: bad extra_isize %u "
4822 "(inode size %u)",
4823 ei->i_extra_isize,
4824 EXT4_INODE_SIZE(inode->i_sb));
4825 ret = -EFSCORRUPTED;
4826 goto bad_inode;
4827 }
4828 } else
4829 ei->i_extra_isize = 0;
4830
4831 /* Precompute checksum seed for inode metadata */
4832 if (ext4_has_metadata_csum(sb)) {
4833 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4834 __u32 csum;
4835 __le32 inum = cpu_to_le32(inode->i_ino);
4836 __le32 gen = raw_inode->i_generation;
4837 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4838 sizeof(inum));
4839 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4840 sizeof(gen));
4841 }
4842
4843 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4844 ext4_error_inode(inode, function, line, 0,
4845 "iget: checksum invalid");
4846 ret = -EFSBADCRC;
4847 goto bad_inode;
4848 }
4849
4850 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4851 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4852 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4853 if (ext4_has_feature_project(sb) &&
4854 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4855 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4856 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4857 else
4858 i_projid = EXT4_DEF_PROJID;
4859
4860 if (!(test_opt(inode->i_sb, NO_UID32))) {
4861 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4862 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4863 }
4864 i_uid_write(inode, i_uid);
4865 i_gid_write(inode, i_gid);
4866 ei->i_projid = make_kprojid(sb->s_user_ns, i_projid);
4867 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4868
4869 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4870 ei->i_inline_off = 0;
4871 ei->i_dir_start_lookup = 0;
4872 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4873 /* We now have enough fields to check if the inode was active or not.
4874 * This is needed because nfsd might try to access dead inodes
4875 * the test is that same one that e2fsck uses
4876 * NeilBrown 1999oct15
4877 */
4878 if (inode->i_nlink == 0) {
4879 if ((inode->i_mode == 0 ||
4880 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4881 ino != EXT4_BOOT_LOADER_INO) {
4882 /* this inode is deleted */
4883 ret = -ESTALE;
4884 goto bad_inode;
4885 }
4886 /* The only unlinked inodes we let through here have
4887 * valid i_mode and are being read by the orphan
4888 * recovery code: that's fine, we're about to complete
4889 * the process of deleting those.
4890 * OR it is the EXT4_BOOT_LOADER_INO which is
4891 * not initialized on a new filesystem. */
4892 }
4893 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4894 ext4_set_inode_flags(inode);
4895 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4896 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4897 if (ext4_has_feature_64bit(sb))
4898 ei->i_file_acl |=
4899 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4900 inode->i_size = ext4_isize(sb, raw_inode);
4901 if ((size = i_size_read(inode)) < 0) {
4902 ext4_error_inode(inode, function, line, 0,
4903 "iget: bad i_size value: %lld", size);
4904 ret = -EFSCORRUPTED;
4905 goto bad_inode;
4906 }
4907 ei->i_disksize = inode->i_size;
4908 #ifdef CONFIG_QUOTA
4909 ei->i_reserved_quota = 0;
4910 #endif
4911 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4912 ei->i_block_group = iloc.block_group;
4913 ei->i_last_alloc_group = ~0;
4914 /*
4915 * NOTE! The in-memory inode i_data array is in little-endian order
4916 * even on big-endian machines: we do NOT byteswap the block numbers!
4917 */
4918 for (block = 0; block < EXT4_N_BLOCKS; block++)
4919 ei->i_data[block] = raw_inode->i_block[block];
4920 INIT_LIST_HEAD(&ei->i_orphan);
4921
4922 /*
4923 * Set transaction id's of transactions that have to be committed
4924 * to finish f[data]sync. We set them to currently running transaction
4925 * as we cannot be sure that the inode or some of its metadata isn't
4926 * part of the transaction - the inode could have been reclaimed and
4927 * now it is reread from disk.
4928 */
4929 if (journal) {
4930 transaction_t *transaction;
4931 tid_t tid;
4932
4933 read_lock(&journal->j_state_lock);
4934 if (journal->j_running_transaction)
4935 transaction = journal->j_running_transaction;
4936 else
4937 transaction = journal->j_committing_transaction;
4938 if (transaction)
4939 tid = transaction->t_tid;
4940 else
4941 tid = journal->j_commit_sequence;
4942 read_unlock(&journal->j_state_lock);
4943 ei->i_sync_tid = tid;
4944 ei->i_datasync_tid = tid;
4945 }
4946
4947 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4948 if (ei->i_extra_isize == 0) {
4949 /* The extra space is currently unused. Use it. */
4950 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4951 ei->i_extra_isize = sizeof(struct ext4_inode) -
4952 EXT4_GOOD_OLD_INODE_SIZE;
4953 } else {
4954 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4955 if (ret)
4956 goto bad_inode;
4957 }
4958 }
4959
4960 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4961 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4962 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4963 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4964
4965 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4966 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4967 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4968 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4969 inode->i_version |=
4970 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4971 }
4972 }
4973
4974 ret = 0;
4975 if (ei->i_file_acl &&
4976 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4977 ext4_error_inode(inode, function, line, 0,
4978 "iget: bad extended attribute block %llu",
4979 ei->i_file_acl);
4980 ret = -EFSCORRUPTED;
4981 goto bad_inode;
4982 } else if (!ext4_has_inline_data(inode)) {
4983 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4984 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4985 (S_ISLNK(inode->i_mode) &&
4986 !ext4_inode_is_fast_symlink(inode))))
4987 /* Validate extent which is part of inode */
4988 ret = ext4_ext_check_inode(inode);
4989 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4990 (S_ISLNK(inode->i_mode) &&
4991 !ext4_inode_is_fast_symlink(inode))) {
4992 /* Validate block references which are part of inode */
4993 ret = ext4_ind_check_inode(inode);
4994 }
4995 }
4996 if (ret)
4997 goto bad_inode;
4998
4999 if (S_ISREG(inode->i_mode)) {
5000 inode->i_op = &ext4_file_inode_operations;
5001 inode->i_fop = &ext4_file_operations;
5002 ext4_set_aops(inode);
5003 } else if (S_ISDIR(inode->i_mode)) {
5004 inode->i_op = &ext4_dir_inode_operations;
5005 inode->i_fop = &ext4_dir_operations;
5006 } else if (S_ISLNK(inode->i_mode)) {
5007 /* VFS does not allow setting these so must be corruption */
5008 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5009 ext4_error_inode(inode, function, line, 0,
5010 "iget: immutable or append flags "
5011 "not allowed on symlinks");
5012 ret = -EFSCORRUPTED;
5013 goto bad_inode;
5014 }
5015 if (ext4_encrypted_inode(inode)) {
5016 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5017 ext4_set_aops(inode);
5018 } else if (ext4_inode_is_fast_symlink(inode)) {
5019 inode->i_link = (char *)ei->i_data;
5020 inode->i_op = &ext4_fast_symlink_inode_operations;
5021 nd_terminate_link(ei->i_data, inode->i_size,
5022 sizeof(ei->i_data) - 1);
5023 } else {
5024 inode->i_op = &ext4_symlink_inode_operations;
5025 ext4_set_aops(inode);
5026 }
5027 inode_nohighmem(inode);
5028 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5029 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5030 inode->i_op = &ext4_special_inode_operations;
5031 if (raw_inode->i_block[0])
5032 init_special_inode(inode, inode->i_mode,
5033 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5034 else
5035 init_special_inode(inode, inode->i_mode,
5036 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5037 } else if (ino == EXT4_BOOT_LOADER_INO) {
5038 make_bad_inode(inode);
5039 } else {
5040 ret = -EFSCORRUPTED;
5041 ext4_error_inode(inode, function, line, 0,
5042 "iget: bogus i_mode (%o)", inode->i_mode);
5043 goto bad_inode;
5044 }
5045 brelse(iloc.bh);
5046
5047 unlock_new_inode(inode);
5048 return inode;
5049
5050 bad_inode:
5051 brelse(iloc.bh);
5052 iget_failed(inode);
5053 return ERR_PTR(ret);
5054 }
5055
5056 static int ext4_inode_blocks_set(handle_t *handle,
5057 struct ext4_inode *raw_inode,
5058 struct ext4_inode_info *ei)
5059 {
5060 struct inode *inode = &(ei->vfs_inode);
5061 u64 i_blocks = inode->i_blocks;
5062 struct super_block *sb = inode->i_sb;
5063
5064 if (i_blocks <= ~0U) {
5065 /*
5066 * i_blocks can be represented in a 32 bit variable
5067 * as multiple of 512 bytes
5068 */
5069 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5070 raw_inode->i_blocks_high = 0;
5071 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5072 return 0;
5073 }
5074 if (!ext4_has_feature_huge_file(sb))
5075 return -EFBIG;
5076
5077 if (i_blocks <= 0xffffffffffffULL) {
5078 /*
5079 * i_blocks can be represented in a 48 bit variable
5080 * as multiple of 512 bytes
5081 */
5082 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5083 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5084 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5085 } else {
5086 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5087 /* i_block is stored in file system block size */
5088 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5089 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5090 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5091 }
5092 return 0;
5093 }
5094
5095 struct other_inode {
5096 unsigned long orig_ino;
5097 struct ext4_inode *raw_inode;
5098 };
5099
5100 static int other_inode_match(struct inode * inode, unsigned long ino,
5101 void *data)
5102 {
5103 struct other_inode *oi = (struct other_inode *) data;
5104
5105 if ((inode->i_ino != ino) ||
5106 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5107 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5108 ((inode->i_state & I_DIRTY_TIME) == 0))
5109 return 0;
5110 spin_lock(&inode->i_lock);
5111 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5112 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5113 (inode->i_state & I_DIRTY_TIME)) {
5114 struct ext4_inode_info *ei = EXT4_I(inode);
5115
5116 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5117 spin_unlock(&inode->i_lock);
5118
5119 spin_lock(&ei->i_raw_lock);
5120 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5121 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5122 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5123 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5124 spin_unlock(&ei->i_raw_lock);
5125 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5126 return -1;
5127 }
5128 spin_unlock(&inode->i_lock);
5129 return -1;
5130 }
5131
5132 /*
5133 * Opportunistically update the other time fields for other inodes in
5134 * the same inode table block.
5135 */
5136 static void ext4_update_other_inodes_time(struct super_block *sb,
5137 unsigned long orig_ino, char *buf)
5138 {
5139 struct other_inode oi;
5140 unsigned long ino;
5141 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5142 int inode_size = EXT4_INODE_SIZE(sb);
5143
5144 oi.orig_ino = orig_ino;
5145 /*
5146 * Calculate the first inode in the inode table block. Inode
5147 * numbers are one-based. That is, the first inode in a block
5148 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5149 */
5150 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5151 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5152 if (ino == orig_ino)
5153 continue;
5154 oi.raw_inode = (struct ext4_inode *) buf;
5155 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5156 }
5157 }
5158
5159 /*
5160 * Post the struct inode info into an on-disk inode location in the
5161 * buffer-cache. This gobbles the caller's reference to the
5162 * buffer_head in the inode location struct.
5163 *
5164 * The caller must have write access to iloc->bh.
5165 */
5166 static int ext4_do_update_inode(handle_t *handle,
5167 struct inode *inode,
5168 struct ext4_iloc *iloc)
5169 {
5170 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5171 struct ext4_inode_info *ei = EXT4_I(inode);
5172 struct buffer_head *bh = iloc->bh;
5173 struct super_block *sb = inode->i_sb;
5174 int err = 0, rc, block;
5175 int need_datasync = 0, set_large_file = 0;
5176 uid_t i_uid;
5177 gid_t i_gid;
5178 projid_t i_projid;
5179
5180 spin_lock(&ei->i_raw_lock);
5181
5182 /* For fields not tracked in the in-memory inode,
5183 * initialise them to zero for new inodes. */
5184 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5185 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5186
5187 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5188 i_uid = i_uid_read(inode);
5189 i_gid = i_gid_read(inode);
5190 i_projid = from_kprojid(sb->s_user_ns, ei->i_projid);
5191 if (!(test_opt(inode->i_sb, NO_UID32))) {
5192 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5193 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5194 /*
5195 * Fix up interoperability with old kernels. Otherwise, old inodes get
5196 * re-used with the upper 16 bits of the uid/gid intact
5197 */
5198 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5199 raw_inode->i_uid_high = 0;
5200 raw_inode->i_gid_high = 0;
5201 } else {
5202 raw_inode->i_uid_high =
5203 cpu_to_le16(high_16_bits(i_uid));
5204 raw_inode->i_gid_high =
5205 cpu_to_le16(high_16_bits(i_gid));
5206 }
5207 } else {
5208 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5209 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5210 raw_inode->i_uid_high = 0;
5211 raw_inode->i_gid_high = 0;
5212 }
5213 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5214
5215 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5216 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5217 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5218 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5219
5220 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5221 if (err) {
5222 spin_unlock(&ei->i_raw_lock);
5223 goto out_brelse;
5224 }
5225 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5226 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5227 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5228 raw_inode->i_file_acl_high =
5229 cpu_to_le16(ei->i_file_acl >> 32);
5230 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5231 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5232 ext4_isize_set(raw_inode, ei->i_disksize);
5233 need_datasync = 1;
5234 }
5235 if (ei->i_disksize > 0x7fffffffULL) {
5236 if (!ext4_has_feature_large_file(sb) ||
5237 EXT4_SB(sb)->s_es->s_rev_level ==
5238 cpu_to_le32(EXT4_GOOD_OLD_REV))
5239 set_large_file = 1;
5240 }
5241 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5242 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5243 if (old_valid_dev(inode->i_rdev)) {
5244 raw_inode->i_block[0] =
5245 cpu_to_le32(old_encode_dev(inode->i_rdev));
5246 raw_inode->i_block[1] = 0;
5247 } else {
5248 raw_inode->i_block[0] = 0;
5249 raw_inode->i_block[1] =
5250 cpu_to_le32(new_encode_dev(inode->i_rdev));
5251 raw_inode->i_block[2] = 0;
5252 }
5253 } else if (!ext4_has_inline_data(inode)) {
5254 for (block = 0; block < EXT4_N_BLOCKS; block++)
5255 raw_inode->i_block[block] = ei->i_data[block];
5256 }
5257
5258 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5259 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5260 if (ei->i_extra_isize) {
5261 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5262 raw_inode->i_version_hi =
5263 cpu_to_le32(inode->i_version >> 32);
5264 raw_inode->i_extra_isize =
5265 cpu_to_le16(ei->i_extra_isize);
5266 }
5267 }
5268
5269 if (i_projid != (projid_t)-1) {
5270 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5271 i_projid != EXT4_DEF_PROJID);
5272
5273 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5274 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5275 raw_inode->i_projid = cpu_to_le32(i_projid);
5276 }
5277
5278 ext4_inode_csum_set(inode, raw_inode, ei);
5279 spin_unlock(&ei->i_raw_lock);
5280 if (inode->i_sb->s_flags & SB_LAZYTIME)
5281 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5282 bh->b_data);
5283
5284 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5285 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5286 if (!err)
5287 err = rc;
5288 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5289 if (set_large_file) {
5290 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5291 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5292 if (err)
5293 goto out_brelse;
5294 ext4_set_feature_large_file(sb);
5295 ext4_handle_sync(handle);
5296 err = ext4_handle_dirty_super(handle, sb);
5297 }
5298 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5299 out_brelse:
5300 brelse(bh);
5301 ext4_std_error(inode->i_sb, err);
5302 return err;
5303 }
5304
5305 /*
5306 * ext4_write_inode()
5307 *
5308 * We are called from a few places:
5309 *
5310 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5311 * Here, there will be no transaction running. We wait for any running
5312 * transaction to commit.
5313 *
5314 * - Within flush work (sys_sync(), kupdate and such).
5315 * We wait on commit, if told to.
5316 *
5317 * - Within iput_final() -> write_inode_now()
5318 * We wait on commit, if told to.
5319 *
5320 * In all cases it is actually safe for us to return without doing anything,
5321 * because the inode has been copied into a raw inode buffer in
5322 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5323 * writeback.
5324 *
5325 * Note that we are absolutely dependent upon all inode dirtiers doing the
5326 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5327 * which we are interested.
5328 *
5329 * It would be a bug for them to not do this. The code:
5330 *
5331 * mark_inode_dirty(inode)
5332 * stuff();
5333 * inode->i_size = expr;
5334 *
5335 * is in error because write_inode() could occur while `stuff()' is running,
5336 * and the new i_size will be lost. Plus the inode will no longer be on the
5337 * superblock's dirty inode list.
5338 */
5339 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5340 {
5341 int err;
5342
5343 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5344 sb_rdonly(inode->i_sb))
5345 return 0;
5346
5347 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5348 return -EIO;
5349
5350 if (EXT4_SB(inode->i_sb)->s_journal) {
5351 if (ext4_journal_current_handle()) {
5352 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5353 dump_stack();
5354 return -EIO;
5355 }
5356
5357 /*
5358 * No need to force transaction in WB_SYNC_NONE mode. Also
5359 * ext4_sync_fs() will force the commit after everything is
5360 * written.
5361 */
5362 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5363 return 0;
5364
5365 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5366 EXT4_I(inode)->i_sync_tid);
5367 } else {
5368 struct ext4_iloc iloc;
5369
5370 err = __ext4_get_inode_loc(inode, &iloc, 0);
5371 if (err)
5372 return err;
5373 /*
5374 * sync(2) will flush the whole buffer cache. No need to do
5375 * it here separately for each inode.
5376 */
5377 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5378 sync_dirty_buffer(iloc.bh);
5379 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5380 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5381 "IO error syncing inode");
5382 err = -EIO;
5383 }
5384 brelse(iloc.bh);
5385 }
5386 return err;
5387 }
5388
5389 /*
5390 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5391 * buffers that are attached to a page stradding i_size and are undergoing
5392 * commit. In that case we have to wait for commit to finish and try again.
5393 */
5394 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5395 {
5396 struct page *page;
5397 unsigned offset;
5398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5399 tid_t commit_tid = 0;
5400 int ret;
5401
5402 offset = inode->i_size & (PAGE_SIZE - 1);
5403 /*
5404 * If the page is fully truncated, we don't need to wait for any commit
5405 * (and we even should not as __ext4_journalled_invalidatepage() may
5406 * strip all buffers from the page but keep the page dirty which can then
5407 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5408 * buffers). Also we don't need to wait for any commit if all buffers in
5409 * the page remain valid. This is most beneficial for the common case of
5410 * blocksize == PAGESIZE.
5411 */
5412 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5413 return;
5414 while (1) {
5415 page = find_lock_page(inode->i_mapping,
5416 inode->i_size >> PAGE_SHIFT);
5417 if (!page)
5418 return;
5419 ret = __ext4_journalled_invalidatepage(page, offset,
5420 PAGE_SIZE - offset);
5421 unlock_page(page);
5422 put_page(page);
5423 if (ret != -EBUSY)
5424 return;
5425 commit_tid = 0;
5426 read_lock(&journal->j_state_lock);
5427 if (journal->j_committing_transaction)
5428 commit_tid = journal->j_committing_transaction->t_tid;
5429 read_unlock(&journal->j_state_lock);
5430 if (commit_tid)
5431 jbd2_log_wait_commit(journal, commit_tid);
5432 }
5433 }
5434
5435 /*
5436 * ext4_setattr()
5437 *
5438 * Called from notify_change.
5439 *
5440 * We want to trap VFS attempts to truncate the file as soon as
5441 * possible. In particular, we want to make sure that when the VFS
5442 * shrinks i_size, we put the inode on the orphan list and modify
5443 * i_disksize immediately, so that during the subsequent flushing of
5444 * dirty pages and freeing of disk blocks, we can guarantee that any
5445 * commit will leave the blocks being flushed in an unused state on
5446 * disk. (On recovery, the inode will get truncated and the blocks will
5447 * be freed, so we have a strong guarantee that no future commit will
5448 * leave these blocks visible to the user.)
5449 *
5450 * Another thing we have to assure is that if we are in ordered mode
5451 * and inode is still attached to the committing transaction, we must
5452 * we start writeout of all the dirty pages which are being truncated.
5453 * This way we are sure that all the data written in the previous
5454 * transaction are already on disk (truncate waits for pages under
5455 * writeback).
5456 *
5457 * Called with inode->i_mutex down.
5458 */
5459 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5460 {
5461 struct inode *inode = d_inode(dentry);
5462 int error, rc = 0;
5463 int orphan = 0;
5464 const unsigned int ia_valid = attr->ia_valid;
5465
5466 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5467 return -EIO;
5468
5469 if (unlikely(IS_IMMUTABLE(inode)))
5470 return -EPERM;
5471
5472 if (unlikely(IS_APPEND(inode) &&
5473 (ia_valid & (ATTR_MODE | ATTR_UID |
5474 ATTR_GID | ATTR_TIMES_SET))))
5475 return -EPERM;
5476
5477 error = setattr_prepare(dentry, attr);
5478 if (error)
5479 return error;
5480
5481 error = fscrypt_prepare_setattr(dentry, attr);
5482 if (error)
5483 return error;
5484
5485 if (is_quota_modification(inode, attr)) {
5486 error = dquot_initialize(inode);
5487 if (error)
5488 return error;
5489 }
5490 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5491 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5492 handle_t *handle;
5493
5494 /* (user+group)*(old+new) structure, inode write (sb,
5495 * inode block, ? - but truncate inode update has it) */
5496 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5497 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5498 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5499 if (IS_ERR(handle)) {
5500 error = PTR_ERR(handle);
5501 goto err_out;
5502 }
5503
5504 /* dquot_transfer() calls back ext4_get_inode_usage() which
5505 * counts xattr inode references.
5506 */
5507 down_read(&EXT4_I(inode)->xattr_sem);
5508 error = dquot_transfer(inode, attr);
5509 up_read(&EXT4_I(inode)->xattr_sem);
5510
5511 if (error) {
5512 ext4_journal_stop(handle);
5513 return error;
5514 }
5515 /* Update corresponding info in inode so that everything is in
5516 * one transaction */
5517 if (attr->ia_valid & ATTR_UID)
5518 inode->i_uid = attr->ia_uid;
5519 if (attr->ia_valid & ATTR_GID)
5520 inode->i_gid = attr->ia_gid;
5521 error = ext4_mark_inode_dirty(handle, inode);
5522 ext4_journal_stop(handle);
5523 }
5524
5525 if (attr->ia_valid & ATTR_SIZE) {
5526 handle_t *handle;
5527 loff_t oldsize = inode->i_size;
5528 int shrink = (attr->ia_size <= inode->i_size);
5529
5530 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5531 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5532
5533 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5534 return -EFBIG;
5535 }
5536 if (!S_ISREG(inode->i_mode))
5537 return -EINVAL;
5538
5539 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5540 inode_inc_iversion(inode);
5541
5542 if (ext4_should_order_data(inode) &&
5543 (attr->ia_size < inode->i_size)) {
5544 error = ext4_begin_ordered_truncate(inode,
5545 attr->ia_size);
5546 if (error)
5547 goto err_out;
5548 }
5549 if (attr->ia_size != inode->i_size) {
5550 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5551 if (IS_ERR(handle)) {
5552 error = PTR_ERR(handle);
5553 goto err_out;
5554 }
5555 if (ext4_handle_valid(handle) && shrink) {
5556 error = ext4_orphan_add(handle, inode);
5557 orphan = 1;
5558 }
5559 /*
5560 * Update c/mtime on truncate up, ext4_truncate() will
5561 * update c/mtime in shrink case below
5562 */
5563 if (!shrink) {
5564 inode->i_mtime = current_time(inode);
5565 inode->i_ctime = inode->i_mtime;
5566 }
5567 down_write(&EXT4_I(inode)->i_data_sem);
5568 EXT4_I(inode)->i_disksize = attr->ia_size;
5569 rc = ext4_mark_inode_dirty(handle, inode);
5570 if (!error)
5571 error = rc;
5572 /*
5573 * We have to update i_size under i_data_sem together
5574 * with i_disksize to avoid races with writeback code
5575 * running ext4_wb_update_i_disksize().
5576 */
5577 if (!error)
5578 i_size_write(inode, attr->ia_size);
5579 up_write(&EXT4_I(inode)->i_data_sem);
5580 ext4_journal_stop(handle);
5581 if (error) {
5582 if (orphan && inode->i_nlink)
5583 ext4_orphan_del(NULL, inode);
5584 goto err_out;
5585 }
5586 }
5587 if (!shrink) {
5588 pagecache_isize_extended(inode, oldsize, inode->i_size);
5589 } else {
5590 /*
5591 * Blocks are going to be removed from the inode. Wait
5592 * for dio in flight.
5593 */
5594 inode_dio_wait(inode);
5595 }
5596 if (orphan && ext4_should_journal_data(inode))
5597 ext4_wait_for_tail_page_commit(inode);
5598 down_write(&EXT4_I(inode)->i_mmap_sem);
5599 /*
5600 * Truncate pagecache after we've waited for commit
5601 * in data=journal mode to make pages freeable.
5602 */
5603 truncate_pagecache(inode, inode->i_size);
5604 if (shrink) {
5605 rc = ext4_truncate(inode);
5606 if (rc)
5607 error = rc;
5608 }
5609 up_write(&EXT4_I(inode)->i_mmap_sem);
5610 }
5611
5612 if (!error) {
5613 setattr_copy(inode, attr);
5614 mark_inode_dirty(inode);
5615 }
5616
5617 /*
5618 * If the call to ext4_truncate failed to get a transaction handle at
5619 * all, we need to clean up the in-core orphan list manually.
5620 */
5621 if (orphan && inode->i_nlink)
5622 ext4_orphan_del(NULL, inode);
5623
5624 if (!error && (ia_valid & ATTR_MODE))
5625 rc = posix_acl_chmod(inode, inode->i_mode);
5626
5627 err_out:
5628 ext4_std_error(inode->i_sb, error);
5629 if (!error)
5630 error = rc;
5631 return error;
5632 }
5633
5634 int ext4_getattr(const struct path *path, struct kstat *stat,
5635 u32 request_mask, unsigned int query_flags)
5636 {
5637 struct inode *inode = d_inode(path->dentry);
5638 struct ext4_inode *raw_inode;
5639 struct ext4_inode_info *ei = EXT4_I(inode);
5640 unsigned int flags;
5641
5642 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5643 stat->result_mask |= STATX_BTIME;
5644 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5645 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5646 }
5647
5648 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5649 if (flags & EXT4_APPEND_FL)
5650 stat->attributes |= STATX_ATTR_APPEND;
5651 if (flags & EXT4_COMPR_FL)
5652 stat->attributes |= STATX_ATTR_COMPRESSED;
5653 if (flags & EXT4_ENCRYPT_FL)
5654 stat->attributes |= STATX_ATTR_ENCRYPTED;
5655 if (flags & EXT4_IMMUTABLE_FL)
5656 stat->attributes |= STATX_ATTR_IMMUTABLE;
5657 if (flags & EXT4_NODUMP_FL)
5658 stat->attributes |= STATX_ATTR_NODUMP;
5659
5660 stat->attributes_mask |= (STATX_ATTR_APPEND |
5661 STATX_ATTR_COMPRESSED |
5662 STATX_ATTR_ENCRYPTED |
5663 STATX_ATTR_IMMUTABLE |
5664 STATX_ATTR_NODUMP);
5665
5666 generic_fillattr(inode, stat);
5667 return 0;
5668 }
5669
5670 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5671 u32 request_mask, unsigned int query_flags)
5672 {
5673 struct inode *inode = d_inode(path->dentry);
5674 u64 delalloc_blocks;
5675
5676 ext4_getattr(path, stat, request_mask, query_flags);
5677
5678 /*
5679 * If there is inline data in the inode, the inode will normally not
5680 * have data blocks allocated (it may have an external xattr block).
5681 * Report at least one sector for such files, so tools like tar, rsync,
5682 * others don't incorrectly think the file is completely sparse.
5683 */
5684 if (unlikely(ext4_has_inline_data(inode)))
5685 stat->blocks += (stat->size + 511) >> 9;
5686
5687 /*
5688 * We can't update i_blocks if the block allocation is delayed
5689 * otherwise in the case of system crash before the real block
5690 * allocation is done, we will have i_blocks inconsistent with
5691 * on-disk file blocks.
5692 * We always keep i_blocks updated together with real
5693 * allocation. But to not confuse with user, stat
5694 * will return the blocks that include the delayed allocation
5695 * blocks for this file.
5696 */
5697 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5698 EXT4_I(inode)->i_reserved_data_blocks);
5699 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5700 return 0;
5701 }
5702
5703 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5704 int pextents)
5705 {
5706 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5707 return ext4_ind_trans_blocks(inode, lblocks);
5708 return ext4_ext_index_trans_blocks(inode, pextents);
5709 }
5710
5711 /*
5712 * Account for index blocks, block groups bitmaps and block group
5713 * descriptor blocks if modify datablocks and index blocks
5714 * worse case, the indexs blocks spread over different block groups
5715 *
5716 * If datablocks are discontiguous, they are possible to spread over
5717 * different block groups too. If they are contiguous, with flexbg,
5718 * they could still across block group boundary.
5719 *
5720 * Also account for superblock, inode, quota and xattr blocks
5721 */
5722 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5723 int pextents)
5724 {
5725 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5726 int gdpblocks;
5727 int idxblocks;
5728 int ret = 0;
5729
5730 /*
5731 * How many index blocks need to touch to map @lblocks logical blocks
5732 * to @pextents physical extents?
5733 */
5734 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5735
5736 ret = idxblocks;
5737
5738 /*
5739 * Now let's see how many group bitmaps and group descriptors need
5740 * to account
5741 */
5742 groups = idxblocks + pextents;
5743 gdpblocks = groups;
5744 if (groups > ngroups)
5745 groups = ngroups;
5746 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5747 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5748
5749 /* bitmaps and block group descriptor blocks */
5750 ret += groups + gdpblocks;
5751
5752 /* Blocks for super block, inode, quota and xattr blocks */
5753 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5754
5755 return ret;
5756 }
5757
5758 /*
5759 * Calculate the total number of credits to reserve to fit
5760 * the modification of a single pages into a single transaction,
5761 * which may include multiple chunks of block allocations.
5762 *
5763 * This could be called via ext4_write_begin()
5764 *
5765 * We need to consider the worse case, when
5766 * one new block per extent.
5767 */
5768 int ext4_writepage_trans_blocks(struct inode *inode)
5769 {
5770 int bpp = ext4_journal_blocks_per_page(inode);
5771 int ret;
5772
5773 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5774
5775 /* Account for data blocks for journalled mode */
5776 if (ext4_should_journal_data(inode))
5777 ret += bpp;
5778 return ret;
5779 }
5780
5781 /*
5782 * Calculate the journal credits for a chunk of data modification.
5783 *
5784 * This is called from DIO, fallocate or whoever calling
5785 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5786 *
5787 * journal buffers for data blocks are not included here, as DIO
5788 * and fallocate do no need to journal data buffers.
5789 */
5790 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5791 {
5792 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5793 }
5794
5795 /*
5796 * The caller must have previously called ext4_reserve_inode_write().
5797 * Give this, we know that the caller already has write access to iloc->bh.
5798 */
5799 int ext4_mark_iloc_dirty(handle_t *handle,
5800 struct inode *inode, struct ext4_iloc *iloc)
5801 {
5802 int err = 0;
5803
5804 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5805 put_bh(iloc->bh);
5806 return -EIO;
5807 }
5808 if (IS_I_VERSION(inode))
5809 inode_inc_iversion(inode);
5810
5811 /* the do_update_inode consumes one bh->b_count */
5812 get_bh(iloc->bh);
5813
5814 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5815 err = ext4_do_update_inode(handle, inode, iloc);
5816 put_bh(iloc->bh);
5817 return err;
5818 }
5819
5820 /*
5821 * On success, We end up with an outstanding reference count against
5822 * iloc->bh. This _must_ be cleaned up later.
5823 */
5824
5825 int
5826 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5827 struct ext4_iloc *iloc)
5828 {
5829 int err;
5830
5831 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5832 return -EIO;
5833
5834 err = ext4_get_inode_loc(inode, iloc);
5835 if (!err) {
5836 BUFFER_TRACE(iloc->bh, "get_write_access");
5837 err = ext4_journal_get_write_access(handle, iloc->bh);
5838 if (err) {
5839 brelse(iloc->bh);
5840 iloc->bh = NULL;
5841 }
5842 }
5843 ext4_std_error(inode->i_sb, err);
5844 return err;
5845 }
5846
5847 static int __ext4_expand_extra_isize(struct inode *inode,
5848 unsigned int new_extra_isize,
5849 struct ext4_iloc *iloc,
5850 handle_t *handle, int *no_expand)
5851 {
5852 struct ext4_inode *raw_inode;
5853 struct ext4_xattr_ibody_header *header;
5854 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5855 struct ext4_inode_info *ei = EXT4_I(inode);
5856 int error;
5857
5858 /* this was checked at iget time, but double check for good measure */
5859 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5860 (ei->i_extra_isize & 3)) {
5861 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5862 ei->i_extra_isize,
5863 EXT4_INODE_SIZE(inode->i_sb));
5864 return -EFSCORRUPTED;
5865 }
5866 if ((new_extra_isize < ei->i_extra_isize) ||
5867 (new_extra_isize < 4) ||
5868 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5869 return -EINVAL; /* Should never happen */
5870
5871 raw_inode = ext4_raw_inode(iloc);
5872
5873 header = IHDR(inode, raw_inode);
5874
5875 /* No extended attributes present */
5876 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5877 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5878 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5879 EXT4_I(inode)->i_extra_isize, 0,
5880 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5881 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5882 return 0;
5883 }
5884
5885 /* try to expand with EAs present */
5886 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5887 raw_inode, handle);
5888 if (error) {
5889 /*
5890 * Inode size expansion failed; don't try again
5891 */
5892 *no_expand = 1;
5893 }
5894
5895 return error;
5896 }
5897
5898 /*
5899 * Expand an inode by new_extra_isize bytes.
5900 * Returns 0 on success or negative error number on failure.
5901 */
5902 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5903 unsigned int new_extra_isize,
5904 struct ext4_iloc iloc,
5905 handle_t *handle)
5906 {
5907 int no_expand;
5908 int error;
5909
5910 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5911 return -EOVERFLOW;
5912
5913 /*
5914 * In nojournal mode, we can immediately attempt to expand
5915 * the inode. When journaled, we first need to obtain extra
5916 * buffer credits since we may write into the EA block
5917 * with this same handle. If journal_extend fails, then it will
5918 * only result in a minor loss of functionality for that inode.
5919 * If this is felt to be critical, then e2fsck should be run to
5920 * force a large enough s_min_extra_isize.
5921 */
5922 if (ext4_handle_valid(handle) &&
5923 jbd2_journal_extend(handle,
5924 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5925 return -ENOSPC;
5926
5927 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5928 return -EBUSY;
5929
5930 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5931 handle, &no_expand);
5932 ext4_write_unlock_xattr(inode, &no_expand);
5933
5934 return error;
5935 }
5936
5937 int ext4_expand_extra_isize(struct inode *inode,
5938 unsigned int new_extra_isize,
5939 struct ext4_iloc *iloc)
5940 {
5941 handle_t *handle;
5942 int no_expand;
5943 int error, rc;
5944
5945 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5946 brelse(iloc->bh);
5947 return -EOVERFLOW;
5948 }
5949
5950 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5951 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5952 if (IS_ERR(handle)) {
5953 error = PTR_ERR(handle);
5954 brelse(iloc->bh);
5955 return error;
5956 }
5957
5958 ext4_write_lock_xattr(inode, &no_expand);
5959
5960 BUFFER_TRACE(iloc->bh, "get_write_access");
5961 error = ext4_journal_get_write_access(handle, iloc->bh);
5962 if (error) {
5963 brelse(iloc->bh);
5964 goto out_unlock;
5965 }
5966
5967 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5968 handle, &no_expand);
5969
5970 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5971 if (!error)
5972 error = rc;
5973
5974 out_unlock:
5975 ext4_write_unlock_xattr(inode, &no_expand);
5976 ext4_journal_stop(handle);
5977 return error;
5978 }
5979
5980 /*
5981 * What we do here is to mark the in-core inode as clean with respect to inode
5982 * dirtiness (it may still be data-dirty).
5983 * This means that the in-core inode may be reaped by prune_icache
5984 * without having to perform any I/O. This is a very good thing,
5985 * because *any* task may call prune_icache - even ones which
5986 * have a transaction open against a different journal.
5987 *
5988 * Is this cheating? Not really. Sure, we haven't written the
5989 * inode out, but prune_icache isn't a user-visible syncing function.
5990 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5991 * we start and wait on commits.
5992 */
5993 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5994 {
5995 struct ext4_iloc iloc;
5996 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5997 int err;
5998
5999 might_sleep();
6000 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6001 err = ext4_reserve_inode_write(handle, inode, &iloc);
6002 if (err)
6003 return err;
6004
6005 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6006 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6007 iloc, handle);
6008
6009 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6010 }
6011
6012 /*
6013 * ext4_dirty_inode() is called from __mark_inode_dirty()
6014 *
6015 * We're really interested in the case where a file is being extended.
6016 * i_size has been changed by generic_commit_write() and we thus need
6017 * to include the updated inode in the current transaction.
6018 *
6019 * Also, dquot_alloc_block() will always dirty the inode when blocks
6020 * are allocated to the file.
6021 *
6022 * If the inode is marked synchronous, we don't honour that here - doing
6023 * so would cause a commit on atime updates, which we don't bother doing.
6024 * We handle synchronous inodes at the highest possible level.
6025 *
6026 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6027 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6028 * to copy into the on-disk inode structure are the timestamp files.
6029 */
6030 void ext4_dirty_inode(struct inode *inode, int flags)
6031 {
6032 handle_t *handle;
6033
6034 if (flags == I_DIRTY_TIME)
6035 return;
6036 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6037 if (IS_ERR(handle))
6038 goto out;
6039
6040 ext4_mark_inode_dirty(handle, inode);
6041
6042 ext4_journal_stop(handle);
6043 out:
6044 return;
6045 }
6046
6047 #if 0
6048 /*
6049 * Bind an inode's backing buffer_head into this transaction, to prevent
6050 * it from being flushed to disk early. Unlike
6051 * ext4_reserve_inode_write, this leaves behind no bh reference and
6052 * returns no iloc structure, so the caller needs to repeat the iloc
6053 * lookup to mark the inode dirty later.
6054 */
6055 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
6056 {
6057 struct ext4_iloc iloc;
6058
6059 int err = 0;
6060 if (handle) {
6061 err = ext4_get_inode_loc(inode, &iloc);
6062 if (!err) {
6063 BUFFER_TRACE(iloc.bh, "get_write_access");
6064 err = jbd2_journal_get_write_access(handle, iloc.bh);
6065 if (!err)
6066 err = ext4_handle_dirty_metadata(handle,
6067 NULL,
6068 iloc.bh);
6069 brelse(iloc.bh);
6070 }
6071 }
6072 ext4_std_error(inode->i_sb, err);
6073 return err;
6074 }
6075 #endif
6076
6077 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6078 {
6079 journal_t *journal;
6080 handle_t *handle;
6081 int err;
6082 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6083
6084 /*
6085 * We have to be very careful here: changing a data block's
6086 * journaling status dynamically is dangerous. If we write a
6087 * data block to the journal, change the status and then delete
6088 * that block, we risk forgetting to revoke the old log record
6089 * from the journal and so a subsequent replay can corrupt data.
6090 * So, first we make sure that the journal is empty and that
6091 * nobody is changing anything.
6092 */
6093
6094 journal = EXT4_JOURNAL(inode);
6095 if (!journal)
6096 return 0;
6097 if (is_journal_aborted(journal))
6098 return -EROFS;
6099
6100 /* Wait for all existing dio workers */
6101 ext4_inode_block_unlocked_dio(inode);
6102 inode_dio_wait(inode);
6103
6104 /*
6105 * Before flushing the journal and switching inode's aops, we have
6106 * to flush all dirty data the inode has. There can be outstanding
6107 * delayed allocations, there can be unwritten extents created by
6108 * fallocate or buffered writes in dioread_nolock mode covered by
6109 * dirty data which can be converted only after flushing the dirty
6110 * data (and journalled aops don't know how to handle these cases).
6111 */
6112 if (val) {
6113 down_write(&EXT4_I(inode)->i_mmap_sem);
6114 err = filemap_write_and_wait(inode->i_mapping);
6115 if (err < 0) {
6116 up_write(&EXT4_I(inode)->i_mmap_sem);
6117 ext4_inode_resume_unlocked_dio(inode);
6118 return err;
6119 }
6120 }
6121
6122 percpu_down_write(&sbi->s_journal_flag_rwsem);
6123 jbd2_journal_lock_updates(journal);
6124
6125 /*
6126 * OK, there are no updates running now, and all cached data is
6127 * synced to disk. We are now in a completely consistent state
6128 * which doesn't have anything in the journal, and we know that
6129 * no filesystem updates are running, so it is safe to modify
6130 * the inode's in-core data-journaling state flag now.
6131 */
6132
6133 if (val)
6134 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6135 else {
6136 err = jbd2_journal_flush(journal);
6137 if (err < 0) {
6138 jbd2_journal_unlock_updates(journal);
6139 percpu_up_write(&sbi->s_journal_flag_rwsem);
6140 ext4_inode_resume_unlocked_dio(inode);
6141 return err;
6142 }
6143 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6144 }
6145 ext4_set_aops(inode);
6146
6147 jbd2_journal_unlock_updates(journal);
6148 percpu_up_write(&sbi->s_journal_flag_rwsem);
6149
6150 if (val)
6151 up_write(&EXT4_I(inode)->i_mmap_sem);
6152 ext4_inode_resume_unlocked_dio(inode);
6153
6154 /* Finally we can mark the inode as dirty. */
6155
6156 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6157 if (IS_ERR(handle))
6158 return PTR_ERR(handle);
6159
6160 err = ext4_mark_inode_dirty(handle, inode);
6161 ext4_handle_sync(handle);
6162 ext4_journal_stop(handle);
6163 ext4_std_error(inode->i_sb, err);
6164
6165 return err;
6166 }
6167
6168 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6169 {
6170 return !buffer_mapped(bh);
6171 }
6172
6173 int ext4_page_mkwrite(struct vm_fault *vmf)
6174 {
6175 struct vm_area_struct *vma = vmf->vma;
6176 struct page *page = vmf->page;
6177 loff_t size;
6178 unsigned long len;
6179 int ret;
6180 struct file *file = vma->vm_file;
6181 struct inode *inode = file_inode(file);
6182 struct address_space *mapping = inode->i_mapping;
6183 handle_t *handle;
6184 get_block_t *get_block;
6185 int retries = 0;
6186
6187 if (unlikely(IS_IMMUTABLE(inode)))
6188 return VM_FAULT_SIGBUS;
6189
6190 sb_start_pagefault(inode->i_sb);
6191 file_update_time(vma->vm_file);
6192
6193 down_read(&EXT4_I(inode)->i_mmap_sem);
6194
6195 ret = ext4_convert_inline_data(inode);
6196 if (ret)
6197 goto out_ret;
6198
6199 /* Delalloc case is easy... */
6200 if (test_opt(inode->i_sb, DELALLOC) &&
6201 !ext4_should_journal_data(inode) &&
6202 !ext4_nonda_switch(inode->i_sb)) {
6203 do {
6204 ret = block_page_mkwrite(vma, vmf,
6205 ext4_da_get_block_prep);
6206 } while (ret == -ENOSPC &&
6207 ext4_should_retry_alloc(inode->i_sb, &retries));
6208 goto out_ret;
6209 }
6210
6211 lock_page(page);
6212 size = i_size_read(inode);
6213 /* Page got truncated from under us? */
6214 if (page->mapping != mapping || page_offset(page) > size) {
6215 unlock_page(page);
6216 ret = VM_FAULT_NOPAGE;
6217 goto out;
6218 }
6219
6220 if (page->index == size >> PAGE_SHIFT)
6221 len = size & ~PAGE_MASK;
6222 else
6223 len = PAGE_SIZE;
6224 /*
6225 * Return if we have all the buffers mapped. This avoids the need to do
6226 * journal_start/journal_stop which can block and take a long time
6227 */
6228 if (page_has_buffers(page)) {
6229 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6230 0, len, NULL,
6231 ext4_bh_unmapped)) {
6232 /* Wait so that we don't change page under IO */
6233 wait_for_stable_page(page);
6234 ret = VM_FAULT_LOCKED;
6235 goto out;
6236 }
6237 }
6238 unlock_page(page);
6239 /* OK, we need to fill the hole... */
6240 if (ext4_should_dioread_nolock(inode))
6241 get_block = ext4_get_block_unwritten;
6242 else
6243 get_block = ext4_get_block;
6244 retry_alloc:
6245 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6246 ext4_writepage_trans_blocks(inode));
6247 if (IS_ERR(handle)) {
6248 ret = VM_FAULT_SIGBUS;
6249 goto out;
6250 }
6251 ret = block_page_mkwrite(vma, vmf, get_block);
6252 if (!ret && ext4_should_journal_data(inode)) {
6253 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6254 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6255 unlock_page(page);
6256 ret = VM_FAULT_SIGBUS;
6257 ext4_journal_stop(handle);
6258 goto out;
6259 }
6260 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6261 }
6262 ext4_journal_stop(handle);
6263 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6264 goto retry_alloc;
6265 out_ret:
6266 ret = block_page_mkwrite_return(ret);
6267 out:
6268 up_read(&EXT4_I(inode)->i_mmap_sem);
6269 sb_end_pagefault(inode->i_sb);
6270 return ret;
6271 }
6272
6273 int ext4_filemap_fault(struct vm_fault *vmf)
6274 {
6275 struct inode *inode = file_inode(vmf->vma->vm_file);
6276 int err;
6277
6278 down_read(&EXT4_I(inode)->i_mmap_sem);
6279 err = filemap_fault(vmf);
6280 up_read(&EXT4_I(inode)->i_mmap_sem);
6281
6282 return err;
6283 }