2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
55 trace_ext4_begin_ordered_truncate(inode
, new_size
);
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
62 if (!EXT4_I(inode
)->jinode
)
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
65 EXT4_I(inode
)->jinode
,
69 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
70 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
71 struct buffer_head
*bh_result
, int create
);
72 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
73 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
74 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
75 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
78 * Test whether an inode is a fast symlink.
80 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
82 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
83 (inode
->i_sb
->s_blocksize
>> 9) : 0;
85 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
93 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
104 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
105 jbd_debug(2, "restarting handle %p\n", handle
);
106 up_write(&EXT4_I(inode
)->i_data_sem
);
107 ret
= ext4_journal_restart(handle
, nblocks
);
108 down_write(&EXT4_I(inode
)->i_data_sem
);
109 ext4_discard_preallocations(inode
);
115 * Called at the last iput() if i_nlink is zero.
117 void ext4_evict_inode(struct inode
*inode
)
122 trace_ext4_evict_inode(inode
);
124 ext4_ioend_wait(inode
);
126 if (inode
->i_nlink
) {
128 * When journalling data dirty buffers are tracked only in the
129 * journal. So although mm thinks everything is clean and
130 * ready for reaping the inode might still have some pages to
131 * write in the running transaction or waiting to be
132 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 * (via truncate_inode_pages()) to discard these buffers can
134 * cause data loss. Also even if we did not discard these
135 * buffers, we would have no way to find them after the inode
136 * is reaped and thus user could see stale data if he tries to
137 * read them before the transaction is checkpointed. So be
138 * careful and force everything to disk here... We use
139 * ei->i_datasync_tid to store the newest transaction
140 * containing inode's data.
142 * Note that directories do not have this problem because they
143 * don't use page cache.
145 if (ext4_should_journal_data(inode
) &&
146 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
147 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
148 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
150 jbd2_log_start_commit(journal
, commit_tid
);
151 jbd2_log_wait_commit(journal
, commit_tid
);
152 filemap_write_and_wait(&inode
->i_data
);
154 truncate_inode_pages(&inode
->i_data
, 0);
158 if (!is_bad_inode(inode
))
159 dquot_initialize(inode
);
161 if (ext4_should_order_data(inode
))
162 ext4_begin_ordered_truncate(inode
, 0);
163 truncate_inode_pages(&inode
->i_data
, 0);
165 if (is_bad_inode(inode
))
168 handle
= ext4_journal_start(inode
, ext4_blocks_for_truncate(inode
)+3);
169 if (IS_ERR(handle
)) {
170 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
176 ext4_orphan_del(NULL
, inode
);
181 ext4_handle_sync(handle
);
183 err
= ext4_mark_inode_dirty(handle
, inode
);
185 ext4_warning(inode
->i_sb
,
186 "couldn't mark inode dirty (err %d)", err
);
190 ext4_truncate(inode
);
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
198 if (!ext4_handle_has_enough_credits(handle
, 3)) {
199 err
= ext4_journal_extend(handle
, 3);
201 err
= ext4_journal_restart(handle
, 3);
203 ext4_warning(inode
->i_sb
,
204 "couldn't extend journal (err %d)", err
);
206 ext4_journal_stop(handle
);
207 ext4_orphan_del(NULL
, inode
);
213 * Kill off the orphan record which ext4_truncate created.
214 * AKPM: I think this can be inside the above `if'.
215 * Note that ext4_orphan_del() has to be able to cope with the
216 * deletion of a non-existent orphan - this is because we don't
217 * know if ext4_truncate() actually created an orphan record.
218 * (Well, we could do this if we need to, but heck - it works)
220 ext4_orphan_del(handle
, inode
);
221 EXT4_I(inode
)->i_dtime
= get_seconds();
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
230 if (ext4_mark_inode_dirty(handle
, inode
))
231 /* If that failed, just do the required in-core inode clear. */
232 ext4_clear_inode(inode
);
234 ext4_free_inode(handle
, inode
);
235 ext4_journal_stop(handle
);
238 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
242 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
244 return &EXT4_I(inode
)->i_reserved_quota
;
249 * Calculate the number of metadata blocks need to reserve
250 * to allocate a block located at @lblock
252 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
254 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
255 return ext4_ext_calc_metadata_amount(inode
, lblock
);
257 return ext4_ind_calc_metadata_amount(inode
, lblock
);
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
264 void ext4_da_update_reserve_space(struct inode
*inode
,
265 int used
, int quota_claim
)
267 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
268 struct ext4_inode_info
*ei
= EXT4_I(inode
);
270 spin_lock(&ei
->i_block_reservation_lock
);
271 trace_ext4_da_update_reserve_space(inode
, used
);
272 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
273 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks\n",
275 __func__
, inode
->i_ino
, used
,
276 ei
->i_reserved_data_blocks
);
278 used
= ei
->i_reserved_data_blocks
;
281 /* Update per-inode reservations */
282 ei
->i_reserved_data_blocks
-= used
;
283 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
284 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
285 used
+ ei
->i_allocated_meta_blocks
);
286 ei
->i_allocated_meta_blocks
= 0;
288 if (ei
->i_reserved_data_blocks
== 0) {
290 * We can release all of the reserved metadata blocks
291 * only when we have written all of the delayed
294 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
295 ei
->i_reserved_meta_blocks
);
296 ei
->i_reserved_meta_blocks
= 0;
297 ei
->i_da_metadata_calc_len
= 0;
299 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
301 /* Update quota subsystem for data blocks */
303 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
306 * We did fallocate with an offset that is already delayed
307 * allocated. So on delayed allocated writeback we should
308 * not re-claim the quota for fallocated blocks.
310 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
314 * If we have done all the pending block allocations and if
315 * there aren't any writers on the inode, we can discard the
316 * inode's preallocations.
318 if ((ei
->i_reserved_data_blocks
== 0) &&
319 (atomic_read(&inode
->i_writecount
) == 0))
320 ext4_discard_preallocations(inode
);
323 static int __check_block_validity(struct inode
*inode
, const char *func
,
325 struct ext4_map_blocks
*map
)
327 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
329 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
330 "lblock %lu mapped to illegal pblock "
331 "(length %d)", (unsigned long) map
->m_lblk
,
338 #define check_block_validity(inode, map) \
339 __check_block_validity((inode), __func__, __LINE__, (map))
342 * Return the number of contiguous dirty pages in a given inode
343 * starting at page frame idx.
345 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
346 unsigned int max_pages
)
348 struct address_space
*mapping
= inode
->i_mapping
;
352 int i
, nr_pages
, done
= 0;
356 pagevec_init(&pvec
, 0);
359 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
361 (pgoff_t
)PAGEVEC_SIZE
);
364 for (i
= 0; i
< nr_pages
; i
++) {
365 struct page
*page
= pvec
.pages
[i
];
366 struct buffer_head
*bh
, *head
;
369 if (unlikely(page
->mapping
!= mapping
) ||
371 PageWriteback(page
) ||
372 page
->index
!= idx
) {
377 if (page_has_buffers(page
)) {
378 bh
= head
= page_buffers(page
);
380 if (!buffer_delay(bh
) &&
381 !buffer_unwritten(bh
))
383 bh
= bh
->b_this_page
;
384 } while (!done
&& (bh
!= head
));
391 if (num
>= max_pages
) {
396 pagevec_release(&pvec
);
402 * The ext4_map_blocks() function tries to look up the requested blocks,
403 * and returns if the blocks are already mapped.
405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406 * and store the allocated blocks in the result buffer head and mark it
409 * If file type is extents based, it will call ext4_ext_map_blocks(),
410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
413 * On success, it returns the number of blocks being mapped or allocate.
414 * if create==0 and the blocks are pre-allocated and uninitialized block,
415 * the result buffer head is unmapped. If the create ==1, it will make sure
416 * the buffer head is mapped.
418 * It returns 0 if plain look up failed (blocks have not been allocated), in
419 * that casem, buffer head is unmapped
421 * It returns the error in case of allocation failure.
423 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
424 struct ext4_map_blocks
*map
, int flags
)
429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
431 (unsigned long) map
->m_lblk
);
433 * Try to see if we can get the block without requesting a new
436 down_read((&EXT4_I(inode
)->i_data_sem
));
437 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
438 retval
= ext4_ext_map_blocks(handle
, inode
, map
, 0);
440 retval
= ext4_ind_map_blocks(handle
, inode
, map
, 0);
442 up_read((&EXT4_I(inode
)->i_data_sem
));
444 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
445 int ret
= check_block_validity(inode
, map
);
450 /* If it is only a block(s) look up */
451 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
455 * Returns if the blocks have already allocated
457 * Note that if blocks have been preallocated
458 * ext4_ext_get_block() returns th create = 0
459 * with buffer head unmapped.
461 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
465 * When we call get_blocks without the create flag, the
466 * BH_Unwritten flag could have gotten set if the blocks
467 * requested were part of a uninitialized extent. We need to
468 * clear this flag now that we are committed to convert all or
469 * part of the uninitialized extent to be an initialized
470 * extent. This is because we need to avoid the combination
471 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 * set on the buffer_head.
474 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
477 * New blocks allocate and/or writing to uninitialized extent
478 * will possibly result in updating i_data, so we take
479 * the write lock of i_data_sem, and call get_blocks()
480 * with create == 1 flag.
482 down_write((&EXT4_I(inode
)->i_data_sem
));
485 * if the caller is from delayed allocation writeout path
486 * we have already reserved fs blocks for allocation
487 * let the underlying get_block() function know to
488 * avoid double accounting
490 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
491 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
493 * We need to check for EXT4 here because migrate
494 * could have changed the inode type in between
496 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
497 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
499 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
501 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
503 * We allocated new blocks which will result in
504 * i_data's format changing. Force the migrate
505 * to fail by clearing migrate flags
507 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
511 * Update reserved blocks/metadata blocks after successful
512 * block allocation which had been deferred till now. We don't
513 * support fallocate for non extent files. So we can update
514 * reserve space here.
517 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
518 ext4_da_update_reserve_space(inode
, retval
, 1);
520 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
521 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
523 up_write((&EXT4_I(inode
)->i_data_sem
));
524 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
525 int ret
= check_block_validity(inode
, map
);
532 /* Maximum number of blocks we map for direct IO at once. */
533 #define DIO_MAX_BLOCKS 4096
535 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
536 struct buffer_head
*bh
, int flags
)
538 handle_t
*handle
= ext4_journal_current_handle();
539 struct ext4_map_blocks map
;
540 int ret
= 0, started
= 0;
544 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
546 if (flags
&& !handle
) {
547 /* Direct IO write... */
548 if (map
.m_len
> DIO_MAX_BLOCKS
)
549 map
.m_len
= DIO_MAX_BLOCKS
;
550 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
551 handle
= ext4_journal_start(inode
, dio_credits
);
552 if (IS_ERR(handle
)) {
553 ret
= PTR_ERR(handle
);
559 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
561 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
562 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
563 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
567 ext4_journal_stop(handle
);
571 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
572 struct buffer_head
*bh
, int create
)
574 return _ext4_get_block(inode
, iblock
, bh
,
575 create
? EXT4_GET_BLOCKS_CREATE
: 0);
579 * `handle' can be NULL if create is zero
581 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
582 ext4_lblk_t block
, int create
, int *errp
)
584 struct ext4_map_blocks map
;
585 struct buffer_head
*bh
;
588 J_ASSERT(handle
!= NULL
|| create
== 0);
592 err
= ext4_map_blocks(handle
, inode
, &map
,
593 create
? EXT4_GET_BLOCKS_CREATE
: 0);
601 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
606 if (map
.m_flags
& EXT4_MAP_NEW
) {
607 J_ASSERT(create
!= 0);
608 J_ASSERT(handle
!= NULL
);
611 * Now that we do not always journal data, we should
612 * keep in mind whether this should always journal the
613 * new buffer as metadata. For now, regular file
614 * writes use ext4_get_block instead, so it's not a
618 BUFFER_TRACE(bh
, "call get_create_access");
619 fatal
= ext4_journal_get_create_access(handle
, bh
);
620 if (!fatal
&& !buffer_uptodate(bh
)) {
621 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
622 set_buffer_uptodate(bh
);
625 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
626 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
630 BUFFER_TRACE(bh
, "not a new buffer");
640 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
641 ext4_lblk_t block
, int create
, int *err
)
643 struct buffer_head
*bh
;
645 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
648 if (buffer_uptodate(bh
))
650 ll_rw_block(READ_META
, 1, &bh
);
652 if (buffer_uptodate(bh
))
659 static int walk_page_buffers(handle_t
*handle
,
660 struct buffer_head
*head
,
664 int (*fn
)(handle_t
*handle
,
665 struct buffer_head
*bh
))
667 struct buffer_head
*bh
;
668 unsigned block_start
, block_end
;
669 unsigned blocksize
= head
->b_size
;
671 struct buffer_head
*next
;
673 for (bh
= head
, block_start
= 0;
674 ret
== 0 && (bh
!= head
|| !block_start
);
675 block_start
= block_end
, bh
= next
) {
676 next
= bh
->b_this_page
;
677 block_end
= block_start
+ blocksize
;
678 if (block_end
<= from
|| block_start
>= to
) {
679 if (partial
&& !buffer_uptodate(bh
))
683 err
= (*fn
)(handle
, bh
);
691 * To preserve ordering, it is essential that the hole instantiation and
692 * the data write be encapsulated in a single transaction. We cannot
693 * close off a transaction and start a new one between the ext4_get_block()
694 * and the commit_write(). So doing the jbd2_journal_start at the start of
695 * prepare_write() is the right place.
697 * Also, this function can nest inside ext4_writepage() ->
698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 * has generated enough buffer credits to do the whole page. So we won't
700 * block on the journal in that case, which is good, because the caller may
703 * By accident, ext4 can be reentered when a transaction is open via
704 * quota file writes. If we were to commit the transaction while thus
705 * reentered, there can be a deadlock - we would be holding a quota
706 * lock, and the commit would never complete if another thread had a
707 * transaction open and was blocking on the quota lock - a ranking
710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 * will _not_ run commit under these circumstances because handle->h_ref
712 * is elevated. We'll still have enough credits for the tiny quotafile
715 static int do_journal_get_write_access(handle_t
*handle
,
716 struct buffer_head
*bh
)
718 int dirty
= buffer_dirty(bh
);
721 if (!buffer_mapped(bh
) || buffer_freed(bh
))
724 * __block_write_begin() could have dirtied some buffers. Clean
725 * the dirty bit as jbd2_journal_get_write_access() could complain
726 * otherwise about fs integrity issues. Setting of the dirty bit
727 * by __block_write_begin() isn't a real problem here as we clear
728 * the bit before releasing a page lock and thus writeback cannot
729 * ever write the buffer.
732 clear_buffer_dirty(bh
);
733 ret
= ext4_journal_get_write_access(handle
, bh
);
735 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
739 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
740 struct buffer_head
*bh_result
, int create
);
741 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
742 loff_t pos
, unsigned len
, unsigned flags
,
743 struct page
**pagep
, void **fsdata
)
745 struct inode
*inode
= mapping
->host
;
746 int ret
, needed_blocks
;
753 trace_ext4_write_begin(inode
, pos
, len
, flags
);
755 * Reserve one block more for addition to orphan list in case
756 * we allocate blocks but write fails for some reason
758 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
759 index
= pos
>> PAGE_CACHE_SHIFT
;
760 from
= pos
& (PAGE_CACHE_SIZE
- 1);
764 handle
= ext4_journal_start(inode
, needed_blocks
);
765 if (IS_ERR(handle
)) {
766 ret
= PTR_ERR(handle
);
770 /* We cannot recurse into the filesystem as the transaction is already
772 flags
|= AOP_FLAG_NOFS
;
774 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
776 ext4_journal_stop(handle
);
782 if (ext4_should_dioread_nolock(inode
))
783 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
785 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
787 if (!ret
&& ext4_should_journal_data(inode
)) {
788 ret
= walk_page_buffers(handle
, page_buffers(page
),
789 from
, to
, NULL
, do_journal_get_write_access
);
794 page_cache_release(page
);
796 * __block_write_begin may have instantiated a few blocks
797 * outside i_size. Trim these off again. Don't need
798 * i_size_read because we hold i_mutex.
800 * Add inode to orphan list in case we crash before
803 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
804 ext4_orphan_add(handle
, inode
);
806 ext4_journal_stop(handle
);
807 if (pos
+ len
> inode
->i_size
) {
808 ext4_truncate_failed_write(inode
);
810 * If truncate failed early the inode might
811 * still be on the orphan list; we need to
812 * make sure the inode is removed from the
813 * orphan list in that case.
816 ext4_orphan_del(NULL
, inode
);
820 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
826 /* For write_end() in data=journal mode */
827 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
829 if (!buffer_mapped(bh
) || buffer_freed(bh
))
831 set_buffer_uptodate(bh
);
832 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
835 static int ext4_generic_write_end(struct file
*file
,
836 struct address_space
*mapping
,
837 loff_t pos
, unsigned len
, unsigned copied
,
838 struct page
*page
, void *fsdata
)
840 int i_size_changed
= 0;
841 struct inode
*inode
= mapping
->host
;
842 handle_t
*handle
= ext4_journal_current_handle();
844 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
847 * No need to use i_size_read() here, the i_size
848 * cannot change under us because we hold i_mutex.
850 * But it's important to update i_size while still holding page lock:
851 * page writeout could otherwise come in and zero beyond i_size.
853 if (pos
+ copied
> inode
->i_size
) {
854 i_size_write(inode
, pos
+ copied
);
858 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
859 /* We need to mark inode dirty even if
860 * new_i_size is less that inode->i_size
861 * bu greater than i_disksize.(hint delalloc)
863 ext4_update_i_disksize(inode
, (pos
+ copied
));
867 page_cache_release(page
);
870 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 * makes the holding time of page lock longer. Second, it forces lock
872 * ordering of page lock and transaction start for journaling
876 ext4_mark_inode_dirty(handle
, inode
);
882 * We need to pick up the new inode size which generic_commit_write gave us
883 * `file' can be NULL - eg, when called from page_symlink().
885 * ext4 never places buffers on inode->i_mapping->private_list. metadata
886 * buffers are managed internally.
888 static int ext4_ordered_write_end(struct file
*file
,
889 struct address_space
*mapping
,
890 loff_t pos
, unsigned len
, unsigned copied
,
891 struct page
*page
, void *fsdata
)
893 handle_t
*handle
= ext4_journal_current_handle();
894 struct inode
*inode
= mapping
->host
;
897 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
898 ret
= ext4_jbd2_file_inode(handle
, inode
);
901 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
904 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
905 /* if we have allocated more blocks and copied
906 * less. We will have blocks allocated outside
907 * inode->i_size. So truncate them
909 ext4_orphan_add(handle
, inode
);
913 ret2
= ext4_journal_stop(handle
);
917 if (pos
+ len
> inode
->i_size
) {
918 ext4_truncate_failed_write(inode
);
920 * If truncate failed early the inode might still be
921 * on the orphan list; we need to make sure the inode
922 * is removed from the orphan list in that case.
925 ext4_orphan_del(NULL
, inode
);
929 return ret
? ret
: copied
;
932 static int ext4_writeback_write_end(struct file
*file
,
933 struct address_space
*mapping
,
934 loff_t pos
, unsigned len
, unsigned copied
,
935 struct page
*page
, void *fsdata
)
937 handle_t
*handle
= ext4_journal_current_handle();
938 struct inode
*inode
= mapping
->host
;
941 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
942 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
945 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
946 /* if we have allocated more blocks and copied
947 * less. We will have blocks allocated outside
948 * inode->i_size. So truncate them
950 ext4_orphan_add(handle
, inode
);
955 ret2
= ext4_journal_stop(handle
);
959 if (pos
+ len
> inode
->i_size
) {
960 ext4_truncate_failed_write(inode
);
962 * If truncate failed early the inode might still be
963 * on the orphan list; we need to make sure the inode
964 * is removed from the orphan list in that case.
967 ext4_orphan_del(NULL
, inode
);
970 return ret
? ret
: copied
;
973 static int ext4_journalled_write_end(struct file
*file
,
974 struct address_space
*mapping
,
975 loff_t pos
, unsigned len
, unsigned copied
,
976 struct page
*page
, void *fsdata
)
978 handle_t
*handle
= ext4_journal_current_handle();
979 struct inode
*inode
= mapping
->host
;
985 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
986 from
= pos
& (PAGE_CACHE_SIZE
- 1);
989 BUG_ON(!ext4_handle_valid(handle
));
992 if (!PageUptodate(page
))
994 page_zero_new_buffers(page
, from
+copied
, to
);
997 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
998 to
, &partial
, write_end_fn
);
1000 SetPageUptodate(page
);
1001 new_i_size
= pos
+ copied
;
1002 if (new_i_size
> inode
->i_size
)
1003 i_size_write(inode
, pos
+copied
);
1004 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1005 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1006 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1007 ext4_update_i_disksize(inode
, new_i_size
);
1008 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1014 page_cache_release(page
);
1015 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1016 /* if we have allocated more blocks and copied
1017 * less. We will have blocks allocated outside
1018 * inode->i_size. So truncate them
1020 ext4_orphan_add(handle
, inode
);
1022 ret2
= ext4_journal_stop(handle
);
1025 if (pos
+ len
> inode
->i_size
) {
1026 ext4_truncate_failed_write(inode
);
1028 * If truncate failed early the inode might still be
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1033 ext4_orphan_del(NULL
, inode
);
1036 return ret
? ret
: copied
;
1040 * Reserve a single cluster located at lblock
1042 int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1045 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1046 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1047 unsigned int md_needed
;
1051 * recalculate the amount of metadata blocks to reserve
1052 * in order to allocate nrblocks
1053 * worse case is one extent per block
1056 spin_lock(&ei
->i_block_reservation_lock
);
1057 md_needed
= EXT4_NUM_B2C(sbi
,
1058 ext4_calc_metadata_amount(inode
, lblock
));
1059 trace_ext4_da_reserve_space(inode
, md_needed
);
1060 spin_unlock(&ei
->i_block_reservation_lock
);
1063 * We will charge metadata quota at writeout time; this saves
1064 * us from metadata over-estimation, though we may go over by
1065 * a small amount in the end. Here we just reserve for data.
1067 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1071 * We do still charge estimated metadata to the sb though;
1072 * we cannot afford to run out of free blocks.
1074 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1, 0)) {
1075 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1076 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1082 spin_lock(&ei
->i_block_reservation_lock
);
1083 ei
->i_reserved_data_blocks
++;
1084 ei
->i_reserved_meta_blocks
+= md_needed
;
1085 spin_unlock(&ei
->i_block_reservation_lock
);
1087 return 0; /* success */
1090 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1092 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1093 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1096 return; /* Nothing to release, exit */
1098 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1100 trace_ext4_da_release_space(inode
, to_free
);
1101 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1103 * if there aren't enough reserved blocks, then the
1104 * counter is messed up somewhere. Since this
1105 * function is called from invalidate page, it's
1106 * harmless to return without any action.
1108 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1109 "ino %lu, to_free %d with only %d reserved "
1110 "data blocks\n", inode
->i_ino
, to_free
,
1111 ei
->i_reserved_data_blocks
);
1113 to_free
= ei
->i_reserved_data_blocks
;
1115 ei
->i_reserved_data_blocks
-= to_free
;
1117 if (ei
->i_reserved_data_blocks
== 0) {
1119 * We can release all of the reserved metadata blocks
1120 * only when we have written all of the delayed
1121 * allocation blocks.
1122 * Note that in case of bigalloc, i_reserved_meta_blocks,
1123 * i_reserved_data_blocks, etc. refer to number of clusters.
1125 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1126 ei
->i_reserved_meta_blocks
);
1127 ei
->i_reserved_meta_blocks
= 0;
1128 ei
->i_da_metadata_calc_len
= 0;
1131 /* update fs dirty data blocks counter */
1132 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1134 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1136 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1139 static void ext4_da_page_release_reservation(struct page
*page
,
1140 unsigned long offset
)
1143 struct buffer_head
*head
, *bh
;
1144 unsigned int curr_off
= 0;
1145 struct inode
*inode
= page
->mapping
->host
;
1146 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1149 head
= page_buffers(page
);
1152 unsigned int next_off
= curr_off
+ bh
->b_size
;
1154 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1156 clear_buffer_delay(bh
);
1158 curr_off
= next_off
;
1159 } while ((bh
= bh
->b_this_page
) != head
);
1161 /* If we have released all the blocks belonging to a cluster, then we
1162 * need to release the reserved space for that cluster. */
1163 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1164 while (num_clusters
> 0) {
1166 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1167 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1168 if (sbi
->s_cluster_ratio
== 1 ||
1169 !ext4_find_delalloc_cluster(inode
, lblk
, 1))
1170 ext4_da_release_space(inode
, 1);
1177 * Delayed allocation stuff
1181 * mpage_da_submit_io - walks through extent of pages and try to write
1182 * them with writepage() call back
1184 * @mpd->inode: inode
1185 * @mpd->first_page: first page of the extent
1186 * @mpd->next_page: page after the last page of the extent
1188 * By the time mpage_da_submit_io() is called we expect all blocks
1189 * to be allocated. this may be wrong if allocation failed.
1191 * As pages are already locked by write_cache_pages(), we can't use it
1193 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1194 struct ext4_map_blocks
*map
)
1196 struct pagevec pvec
;
1197 unsigned long index
, end
;
1198 int ret
= 0, err
, nr_pages
, i
;
1199 struct inode
*inode
= mpd
->inode
;
1200 struct address_space
*mapping
= inode
->i_mapping
;
1201 loff_t size
= i_size_read(inode
);
1202 unsigned int len
, block_start
;
1203 struct buffer_head
*bh
, *page_bufs
= NULL
;
1204 int journal_data
= ext4_should_journal_data(inode
);
1205 sector_t pblock
= 0, cur_logical
= 0;
1206 struct ext4_io_submit io_submit
;
1208 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1209 memset(&io_submit
, 0, sizeof(io_submit
));
1211 * We need to start from the first_page to the next_page - 1
1212 * to make sure we also write the mapped dirty buffer_heads.
1213 * If we look at mpd->b_blocknr we would only be looking
1214 * at the currently mapped buffer_heads.
1216 index
= mpd
->first_page
;
1217 end
= mpd
->next_page
- 1;
1219 pagevec_init(&pvec
, 0);
1220 while (index
<= end
) {
1221 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1224 for (i
= 0; i
< nr_pages
; i
++) {
1225 int commit_write
= 0, skip_page
= 0;
1226 struct page
*page
= pvec
.pages
[i
];
1228 index
= page
->index
;
1232 if (index
== size
>> PAGE_CACHE_SHIFT
)
1233 len
= size
& ~PAGE_CACHE_MASK
;
1235 len
= PAGE_CACHE_SIZE
;
1237 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1239 pblock
= map
->m_pblk
+ (cur_logical
-
1244 BUG_ON(!PageLocked(page
));
1245 BUG_ON(PageWriteback(page
));
1248 * If the page does not have buffers (for
1249 * whatever reason), try to create them using
1250 * __block_write_begin. If this fails,
1251 * skip the page and move on.
1253 if (!page_has_buffers(page
)) {
1254 if (__block_write_begin(page
, 0, len
,
1255 noalloc_get_block_write
)) {
1263 bh
= page_bufs
= page_buffers(page
);
1268 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1269 (cur_logical
<= (map
->m_lblk
+
1270 (map
->m_len
- 1)))) {
1271 if (buffer_delay(bh
)) {
1272 clear_buffer_delay(bh
);
1273 bh
->b_blocknr
= pblock
;
1275 if (buffer_unwritten(bh
) ||
1277 BUG_ON(bh
->b_blocknr
!= pblock
);
1278 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1279 set_buffer_uninit(bh
);
1280 clear_buffer_unwritten(bh
);
1283 /* skip page if block allocation undone */
1284 if (buffer_delay(bh
) || buffer_unwritten(bh
))
1286 bh
= bh
->b_this_page
;
1287 block_start
+= bh
->b_size
;
1290 } while (bh
!= page_bufs
);
1296 /* mark the buffer_heads as dirty & uptodate */
1297 block_commit_write(page
, 0, len
);
1299 clear_page_dirty_for_io(page
);
1301 * Delalloc doesn't support data journalling,
1302 * but eventually maybe we'll lift this
1305 if (unlikely(journal_data
&& PageChecked(page
)))
1306 err
= __ext4_journalled_writepage(page
, len
);
1307 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
1308 err
= ext4_bio_write_page(&io_submit
, page
,
1310 else if (buffer_uninit(page_bufs
)) {
1311 ext4_set_bh_endio(page_bufs
, inode
);
1312 err
= block_write_full_page_endio(page
,
1313 noalloc_get_block_write
,
1314 mpd
->wbc
, ext4_end_io_buffer_write
);
1316 err
= block_write_full_page(page
,
1317 noalloc_get_block_write
, mpd
->wbc
);
1320 mpd
->pages_written
++;
1322 * In error case, we have to continue because
1323 * remaining pages are still locked
1328 pagevec_release(&pvec
);
1330 ext4_io_submit(&io_submit
);
1334 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1338 struct pagevec pvec
;
1339 struct inode
*inode
= mpd
->inode
;
1340 struct address_space
*mapping
= inode
->i_mapping
;
1342 index
= mpd
->first_page
;
1343 end
= mpd
->next_page
- 1;
1344 while (index
<= end
) {
1345 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1348 for (i
= 0; i
< nr_pages
; i
++) {
1349 struct page
*page
= pvec
.pages
[i
];
1350 if (page
->index
> end
)
1352 BUG_ON(!PageLocked(page
));
1353 BUG_ON(PageWriteback(page
));
1354 block_invalidatepage(page
, 0);
1355 ClearPageUptodate(page
);
1358 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1359 pagevec_release(&pvec
);
1364 static void ext4_print_free_blocks(struct inode
*inode
)
1366 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1367 printk(KERN_CRIT
"Total free blocks count %lld\n",
1368 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1369 ext4_count_free_clusters(inode
->i_sb
)));
1370 printk(KERN_CRIT
"Free/Dirty block details\n");
1371 printk(KERN_CRIT
"free_blocks=%lld\n",
1372 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1373 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1374 printk(KERN_CRIT
"dirty_blocks=%lld\n",
1375 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1376 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1377 printk(KERN_CRIT
"Block reservation details\n");
1378 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
1379 EXT4_I(inode
)->i_reserved_data_blocks
);
1380 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
1381 EXT4_I(inode
)->i_reserved_meta_blocks
);
1386 * mpage_da_map_and_submit - go through given space, map them
1387 * if necessary, and then submit them for I/O
1389 * @mpd - bh describing space
1391 * The function skips space we know is already mapped to disk blocks.
1394 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1396 int err
, blks
, get_blocks_flags
;
1397 struct ext4_map_blocks map
, *mapp
= NULL
;
1398 sector_t next
= mpd
->b_blocknr
;
1399 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1400 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1401 handle_t
*handle
= NULL
;
1404 * If the blocks are mapped already, or we couldn't accumulate
1405 * any blocks, then proceed immediately to the submission stage.
1407 if ((mpd
->b_size
== 0) ||
1408 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1409 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1410 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1413 handle
= ext4_journal_current_handle();
1417 * Call ext4_map_blocks() to allocate any delayed allocation
1418 * blocks, or to convert an uninitialized extent to be
1419 * initialized (in the case where we have written into
1420 * one or more preallocated blocks).
1422 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1423 * indicate that we are on the delayed allocation path. This
1424 * affects functions in many different parts of the allocation
1425 * call path. This flag exists primarily because we don't
1426 * want to change *many* call functions, so ext4_map_blocks()
1427 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1428 * inode's allocation semaphore is taken.
1430 * If the blocks in questions were delalloc blocks, set
1431 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1432 * variables are updated after the blocks have been allocated.
1435 map
.m_len
= max_blocks
;
1436 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
1437 if (ext4_should_dioread_nolock(mpd
->inode
))
1438 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1439 if (mpd
->b_state
& (1 << BH_Delay
))
1440 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1442 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1444 struct super_block
*sb
= mpd
->inode
->i_sb
;
1448 * If get block returns EAGAIN or ENOSPC and there
1449 * appears to be free blocks we will just let
1450 * mpage_da_submit_io() unlock all of the pages.
1455 if (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)) {
1461 * get block failure will cause us to loop in
1462 * writepages, because a_ops->writepage won't be able
1463 * to make progress. The page will be redirtied by
1464 * writepage and writepages will again try to write
1467 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1468 ext4_msg(sb
, KERN_CRIT
,
1469 "delayed block allocation failed for inode %lu "
1470 "at logical offset %llu with max blocks %zd "
1471 "with error %d", mpd
->inode
->i_ino
,
1472 (unsigned long long) next
,
1473 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1474 ext4_msg(sb
, KERN_CRIT
,
1475 "This should not happen!! Data will be lost\n");
1477 ext4_print_free_blocks(mpd
->inode
);
1479 /* invalidate all the pages */
1480 ext4_da_block_invalidatepages(mpd
);
1482 /* Mark this page range as having been completed */
1489 if (map
.m_flags
& EXT4_MAP_NEW
) {
1490 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1493 for (i
= 0; i
< map
.m_len
; i
++)
1494 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1496 if (ext4_should_order_data(mpd
->inode
)) {
1497 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
1499 /* Only if the journal is aborted */
1505 * Update on-disk size along with block allocation.
1507 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1508 if (disksize
> i_size_read(mpd
->inode
))
1509 disksize
= i_size_read(mpd
->inode
);
1510 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1511 ext4_update_i_disksize(mpd
->inode
, disksize
);
1512 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1514 ext4_error(mpd
->inode
->i_sb
,
1515 "Failed to mark inode %lu dirty",
1520 mpage_da_submit_io(mpd
, mapp
);
1524 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1525 (1 << BH_Delay) | (1 << BH_Unwritten))
1528 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1530 * @mpd->lbh - extent of blocks
1531 * @logical - logical number of the block in the file
1532 * @bh - bh of the block (used to access block's state)
1534 * the function is used to collect contig. blocks in same state
1536 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1537 sector_t logical
, size_t b_size
,
1538 unsigned long b_state
)
1541 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1544 * XXX Don't go larger than mballoc is willing to allocate
1545 * This is a stopgap solution. We eventually need to fold
1546 * mpage_da_submit_io() into this function and then call
1547 * ext4_map_blocks() multiple times in a loop
1549 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
1552 /* check if thereserved journal credits might overflow */
1553 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
1554 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1556 * With non-extent format we are limited by the journal
1557 * credit available. Total credit needed to insert
1558 * nrblocks contiguous blocks is dependent on the
1559 * nrblocks. So limit nrblocks.
1562 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
1563 EXT4_MAX_TRANS_DATA
) {
1565 * Adding the new buffer_head would make it cross the
1566 * allowed limit for which we have journal credit
1567 * reserved. So limit the new bh->b_size
1569 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
1570 mpd
->inode
->i_blkbits
;
1571 /* we will do mpage_da_submit_io in the next loop */
1575 * First block in the extent
1577 if (mpd
->b_size
== 0) {
1578 mpd
->b_blocknr
= logical
;
1579 mpd
->b_size
= b_size
;
1580 mpd
->b_state
= b_state
& BH_FLAGS
;
1584 next
= mpd
->b_blocknr
+ nrblocks
;
1586 * Can we merge the block to our big extent?
1588 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1589 mpd
->b_size
+= b_size
;
1595 * We couldn't merge the block to our extent, so we
1596 * need to flush current extent and start new one
1598 mpage_da_map_and_submit(mpd
);
1602 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1604 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1608 * This is a special get_blocks_t callback which is used by
1609 * ext4_da_write_begin(). It will either return mapped block or
1610 * reserve space for a single block.
1612 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1613 * We also have b_blocknr = -1 and b_bdev initialized properly
1615 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1616 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1617 * initialized properly.
1619 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1620 struct buffer_head
*bh
, int create
)
1622 struct ext4_map_blocks map
;
1624 sector_t invalid_block
= ~((sector_t
) 0xffff);
1626 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1629 BUG_ON(create
== 0);
1630 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1632 map
.m_lblk
= iblock
;
1636 * first, we need to know whether the block is allocated already
1637 * preallocated blocks are unmapped but should treated
1638 * the same as allocated blocks.
1640 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
1644 if (buffer_delay(bh
))
1645 return 0; /* Not sure this could or should happen */
1647 * XXX: __block_write_begin() unmaps passed block, is it OK?
1649 /* If the block was allocated from previously allocated cluster,
1650 * then we dont need to reserve it again. */
1651 if (!(map
.m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1652 ret
= ext4_da_reserve_space(inode
, iblock
);
1654 /* not enough space to reserve */
1658 map_bh(bh
, inode
->i_sb
, invalid_block
);
1660 set_buffer_delay(bh
);
1664 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1665 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1667 if (buffer_unwritten(bh
)) {
1668 /* A delayed write to unwritten bh should be marked
1669 * new and mapped. Mapped ensures that we don't do
1670 * get_block multiple times when we write to the same
1671 * offset and new ensures that we do proper zero out
1672 * for partial write.
1675 set_buffer_mapped(bh
);
1681 * This function is used as a standard get_block_t calback function
1682 * when there is no desire to allocate any blocks. It is used as a
1683 * callback function for block_write_begin() and block_write_full_page().
1684 * These functions should only try to map a single block at a time.
1686 * Since this function doesn't do block allocations even if the caller
1687 * requests it by passing in create=1, it is critically important that
1688 * any caller checks to make sure that any buffer heads are returned
1689 * by this function are either all already mapped or marked for
1690 * delayed allocation before calling block_write_full_page(). Otherwise,
1691 * b_blocknr could be left unitialized, and the page write functions will
1692 * be taken by surprise.
1694 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
1695 struct buffer_head
*bh_result
, int create
)
1697 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1698 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
1701 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1707 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1713 static int __ext4_journalled_writepage(struct page
*page
,
1716 struct address_space
*mapping
= page
->mapping
;
1717 struct inode
*inode
= mapping
->host
;
1718 struct buffer_head
*page_bufs
;
1719 handle_t
*handle
= NULL
;
1723 ClearPageChecked(page
);
1724 page_bufs
= page_buffers(page
);
1726 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
1727 /* As soon as we unlock the page, it can go away, but we have
1728 * references to buffers so we are safe */
1731 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1732 if (IS_ERR(handle
)) {
1733 ret
= PTR_ERR(handle
);
1737 BUG_ON(!ext4_handle_valid(handle
));
1739 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1740 do_journal_get_write_access
);
1742 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1746 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1747 err
= ext4_journal_stop(handle
);
1751 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
1752 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1757 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
1758 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
1761 * Note that we don't need to start a transaction unless we're journaling data
1762 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1763 * need to file the inode to the transaction's list in ordered mode because if
1764 * we are writing back data added by write(), the inode is already there and if
1765 * we are writing back data modified via mmap(), no one guarantees in which
1766 * transaction the data will hit the disk. In case we are journaling data, we
1767 * cannot start transaction directly because transaction start ranks above page
1768 * lock so we have to do some magic.
1770 * This function can get called via...
1771 * - ext4_da_writepages after taking page lock (have journal handle)
1772 * - journal_submit_inode_data_buffers (no journal handle)
1773 * - shrink_page_list via pdflush (no journal handle)
1774 * - grab_page_cache when doing write_begin (have journal handle)
1776 * We don't do any block allocation in this function. If we have page with
1777 * multiple blocks we need to write those buffer_heads that are mapped. This
1778 * is important for mmaped based write. So if we do with blocksize 1K
1779 * truncate(f, 1024);
1780 * a = mmap(f, 0, 4096);
1782 * truncate(f, 4096);
1783 * we have in the page first buffer_head mapped via page_mkwrite call back
1784 * but other bufer_heads would be unmapped but dirty(dirty done via the
1785 * do_wp_page). So writepage should write the first block. If we modify
1786 * the mmap area beyond 1024 we will again get a page_fault and the
1787 * page_mkwrite callback will do the block allocation and mark the
1788 * buffer_heads mapped.
1790 * We redirty the page if we have any buffer_heads that is either delay or
1791 * unwritten in the page.
1793 * We can get recursively called as show below.
1795 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1798 * But since we don't do any block allocation we should not deadlock.
1799 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1801 static int ext4_writepage(struct page
*page
,
1802 struct writeback_control
*wbc
)
1804 int ret
= 0, commit_write
= 0;
1807 struct buffer_head
*page_bufs
= NULL
;
1808 struct inode
*inode
= page
->mapping
->host
;
1810 trace_ext4_writepage(page
);
1811 size
= i_size_read(inode
);
1812 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1813 len
= size
& ~PAGE_CACHE_MASK
;
1815 len
= PAGE_CACHE_SIZE
;
1818 * If the page does not have buffers (for whatever reason),
1819 * try to create them using __block_write_begin. If this
1820 * fails, redirty the page and move on.
1822 if (!page_has_buffers(page
)) {
1823 if (__block_write_begin(page
, 0, len
,
1824 noalloc_get_block_write
)) {
1826 redirty_page_for_writepage(wbc
, page
);
1832 page_bufs
= page_buffers(page
);
1833 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1834 ext4_bh_delay_or_unwritten
)) {
1836 * We don't want to do block allocation, so redirty
1837 * the page and return. We may reach here when we do
1838 * a journal commit via journal_submit_inode_data_buffers.
1839 * We can also reach here via shrink_page_list
1844 /* now mark the buffer_heads as dirty and uptodate */
1845 block_commit_write(page
, 0, len
);
1847 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1849 * It's mmapped pagecache. Add buffers and journal it. There
1850 * doesn't seem much point in redirtying the page here.
1852 return __ext4_journalled_writepage(page
, len
);
1854 if (buffer_uninit(page_bufs
)) {
1855 ext4_set_bh_endio(page_bufs
, inode
);
1856 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
1857 wbc
, ext4_end_io_buffer_write
);
1859 ret
= block_write_full_page(page
, noalloc_get_block_write
,
1866 * This is called via ext4_da_writepages() to
1867 * calculate the total number of credits to reserve to fit
1868 * a single extent allocation into a single transaction,
1869 * ext4_da_writpeages() will loop calling this before
1870 * the block allocation.
1873 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
1875 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
1878 * With non-extent format the journal credit needed to
1879 * insert nrblocks contiguous block is dependent on
1880 * number of contiguous block. So we will limit
1881 * number of contiguous block to a sane value
1883 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
1884 (max_blocks
> EXT4_MAX_TRANS_DATA
))
1885 max_blocks
= EXT4_MAX_TRANS_DATA
;
1887 return ext4_chunk_trans_blocks(inode
, max_blocks
);
1891 * write_cache_pages_da - walk the list of dirty pages of the given
1892 * address space and accumulate pages that need writing, and call
1893 * mpage_da_map_and_submit to map a single contiguous memory region
1894 * and then write them.
1896 static int write_cache_pages_da(struct address_space
*mapping
,
1897 struct writeback_control
*wbc
,
1898 struct mpage_da_data
*mpd
,
1899 pgoff_t
*done_index
)
1901 struct buffer_head
*bh
, *head
;
1902 struct inode
*inode
= mapping
->host
;
1903 struct pagevec pvec
;
1904 unsigned int nr_pages
;
1907 long nr_to_write
= wbc
->nr_to_write
;
1908 int i
, tag
, ret
= 0;
1910 memset(mpd
, 0, sizeof(struct mpage_da_data
));
1913 pagevec_init(&pvec
, 0);
1914 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
1915 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
1917 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
1918 tag
= PAGECACHE_TAG_TOWRITE
;
1920 tag
= PAGECACHE_TAG_DIRTY
;
1922 *done_index
= index
;
1923 while (index
<= end
) {
1924 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
1925 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1929 for (i
= 0; i
< nr_pages
; i
++) {
1930 struct page
*page
= pvec
.pages
[i
];
1933 * At this point, the page may be truncated or
1934 * invalidated (changing page->mapping to NULL), or
1935 * even swizzled back from swapper_space to tmpfs file
1936 * mapping. However, page->index will not change
1937 * because we have a reference on the page.
1939 if (page
->index
> end
)
1942 *done_index
= page
->index
+ 1;
1945 * If we can't merge this page, and we have
1946 * accumulated an contiguous region, write it
1948 if ((mpd
->next_page
!= page
->index
) &&
1949 (mpd
->next_page
!= mpd
->first_page
)) {
1950 mpage_da_map_and_submit(mpd
);
1951 goto ret_extent_tail
;
1957 * If the page is no longer dirty, or its
1958 * mapping no longer corresponds to inode we
1959 * are writing (which means it has been
1960 * truncated or invalidated), or the page is
1961 * already under writeback and we are not
1962 * doing a data integrity writeback, skip the page
1964 if (!PageDirty(page
) ||
1965 (PageWriteback(page
) &&
1966 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
1967 unlikely(page
->mapping
!= mapping
)) {
1972 wait_on_page_writeback(page
);
1973 BUG_ON(PageWriteback(page
));
1975 if (mpd
->next_page
!= page
->index
)
1976 mpd
->first_page
= page
->index
;
1977 mpd
->next_page
= page
->index
+ 1;
1978 logical
= (sector_t
) page
->index
<<
1979 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1981 if (!page_has_buffers(page
)) {
1982 mpage_add_bh_to_extent(mpd
, logical
,
1984 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
1986 goto ret_extent_tail
;
1989 * Page with regular buffer heads,
1990 * just add all dirty ones
1992 head
= page_buffers(page
);
1995 BUG_ON(buffer_locked(bh
));
1997 * We need to try to allocate
1998 * unmapped blocks in the same page.
1999 * Otherwise we won't make progress
2000 * with the page in ext4_writepage
2002 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2003 mpage_add_bh_to_extent(mpd
, logical
,
2007 goto ret_extent_tail
;
2008 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2010 * mapped dirty buffer. We need
2011 * to update the b_state
2012 * because we look at b_state
2013 * in mpage_da_map_blocks. We
2014 * don't update b_size because
2015 * if we find an unmapped
2016 * buffer_head later we need to
2017 * use the b_state flag of that
2020 if (mpd
->b_size
== 0)
2021 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2024 } while ((bh
= bh
->b_this_page
) != head
);
2027 if (nr_to_write
> 0) {
2029 if (nr_to_write
== 0 &&
2030 wbc
->sync_mode
== WB_SYNC_NONE
)
2032 * We stop writing back only if we are
2033 * not doing integrity sync. In case of
2034 * integrity sync we have to keep going
2035 * because someone may be concurrently
2036 * dirtying pages, and we might have
2037 * synced a lot of newly appeared dirty
2038 * pages, but have not synced all of the
2044 pagevec_release(&pvec
);
2049 ret
= MPAGE_DA_EXTENT_TAIL
;
2051 pagevec_release(&pvec
);
2057 static int ext4_da_writepages(struct address_space
*mapping
,
2058 struct writeback_control
*wbc
)
2061 int range_whole
= 0;
2062 handle_t
*handle
= NULL
;
2063 struct mpage_da_data mpd
;
2064 struct inode
*inode
= mapping
->host
;
2065 int pages_written
= 0;
2066 unsigned int max_pages
;
2067 int range_cyclic
, cycled
= 1, io_done
= 0;
2068 int needed_blocks
, ret
= 0;
2069 long desired_nr_to_write
, nr_to_writebump
= 0;
2070 loff_t range_start
= wbc
->range_start
;
2071 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2072 pgoff_t done_index
= 0;
2075 trace_ext4_da_writepages(inode
, wbc
);
2078 * No pages to write? This is mainly a kludge to avoid starting
2079 * a transaction for special inodes like journal inode on last iput()
2080 * because that could violate lock ordering on umount
2082 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2086 * If the filesystem has aborted, it is read-only, so return
2087 * right away instead of dumping stack traces later on that
2088 * will obscure the real source of the problem. We test
2089 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2090 * the latter could be true if the filesystem is mounted
2091 * read-only, and in that case, ext4_da_writepages should
2092 * *never* be called, so if that ever happens, we would want
2095 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2098 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2101 range_cyclic
= wbc
->range_cyclic
;
2102 if (wbc
->range_cyclic
) {
2103 index
= mapping
->writeback_index
;
2106 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2107 wbc
->range_end
= LLONG_MAX
;
2108 wbc
->range_cyclic
= 0;
2111 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2112 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2116 * This works around two forms of stupidity. The first is in
2117 * the writeback code, which caps the maximum number of pages
2118 * written to be 1024 pages. This is wrong on multiple
2119 * levels; different architectues have a different page size,
2120 * which changes the maximum amount of data which gets
2121 * written. Secondly, 4 megabytes is way too small. XFS
2122 * forces this value to be 16 megabytes by multiplying
2123 * nr_to_write parameter by four, and then relies on its
2124 * allocator to allocate larger extents to make them
2125 * contiguous. Unfortunately this brings us to the second
2126 * stupidity, which is that ext4's mballoc code only allocates
2127 * at most 2048 blocks. So we force contiguous writes up to
2128 * the number of dirty blocks in the inode, or
2129 * sbi->max_writeback_mb_bump whichever is smaller.
2131 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2132 if (!range_cyclic
&& range_whole
) {
2133 if (wbc
->nr_to_write
== LONG_MAX
)
2134 desired_nr_to_write
= wbc
->nr_to_write
;
2136 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2138 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2140 if (desired_nr_to_write
> max_pages
)
2141 desired_nr_to_write
= max_pages
;
2143 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2144 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2145 wbc
->nr_to_write
= desired_nr_to_write
;
2149 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2150 tag_pages_for_writeback(mapping
, index
, end
);
2152 while (!ret
&& wbc
->nr_to_write
> 0) {
2155 * we insert one extent at a time. So we need
2156 * credit needed for single extent allocation.
2157 * journalled mode is currently not supported
2160 BUG_ON(ext4_should_journal_data(inode
));
2161 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2163 /* start a new transaction*/
2164 handle
= ext4_journal_start(inode
, needed_blocks
);
2165 if (IS_ERR(handle
)) {
2166 ret
= PTR_ERR(handle
);
2167 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2168 "%ld pages, ino %lu; err %d", __func__
,
2169 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2170 goto out_writepages
;
2174 * Now call write_cache_pages_da() to find the next
2175 * contiguous region of logical blocks that need
2176 * blocks to be allocated by ext4 and submit them.
2178 ret
= write_cache_pages_da(mapping
, wbc
, &mpd
, &done_index
);
2180 * If we have a contiguous extent of pages and we
2181 * haven't done the I/O yet, map the blocks and submit
2184 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2185 mpage_da_map_and_submit(&mpd
);
2186 ret
= MPAGE_DA_EXTENT_TAIL
;
2188 trace_ext4_da_write_pages(inode
, &mpd
);
2189 wbc
->nr_to_write
-= mpd
.pages_written
;
2191 ext4_journal_stop(handle
);
2193 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2194 /* commit the transaction which would
2195 * free blocks released in the transaction
2198 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2200 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2202 * got one extent now try with
2205 pages_written
+= mpd
.pages_written
;
2208 } else if (wbc
->nr_to_write
)
2210 * There is no more writeout needed
2211 * or we requested for a noblocking writeout
2212 * and we found the device congested
2216 if (!io_done
&& !cycled
) {
2219 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2220 wbc
->range_end
= mapping
->writeback_index
- 1;
2225 wbc
->range_cyclic
= range_cyclic
;
2226 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2228 * set the writeback_index so that range_cyclic
2229 * mode will write it back later
2231 mapping
->writeback_index
= done_index
;
2234 wbc
->nr_to_write
-= nr_to_writebump
;
2235 wbc
->range_start
= range_start
;
2236 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2240 #define FALL_BACK_TO_NONDELALLOC 1
2241 static int ext4_nonda_switch(struct super_block
*sb
)
2243 s64 free_blocks
, dirty_blocks
;
2244 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2247 * switch to non delalloc mode if we are running low
2248 * on free block. The free block accounting via percpu
2249 * counters can get slightly wrong with percpu_counter_batch getting
2250 * accumulated on each CPU without updating global counters
2251 * Delalloc need an accurate free block accounting. So switch
2252 * to non delalloc when we are near to error range.
2254 free_blocks
= EXT4_C2B(sbi
,
2255 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
2256 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2257 if (2 * free_blocks
< 3 * dirty_blocks
||
2258 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
2260 * free block count is less than 150% of dirty blocks
2261 * or free blocks is less than watermark
2266 * Even if we don't switch but are nearing capacity,
2267 * start pushing delalloc when 1/2 of free blocks are dirty.
2269 if (free_blocks
< 2 * dirty_blocks
)
2270 writeback_inodes_sb_if_idle(sb
);
2275 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2276 loff_t pos
, unsigned len
, unsigned flags
,
2277 struct page
**pagep
, void **fsdata
)
2279 int ret
, retries
= 0;
2282 struct inode
*inode
= mapping
->host
;
2286 index
= pos
>> PAGE_CACHE_SHIFT
;
2288 if (ext4_nonda_switch(inode
->i_sb
)) {
2289 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2290 return ext4_write_begin(file
, mapping
, pos
,
2291 len
, flags
, pagep
, fsdata
);
2293 *fsdata
= (void *)0;
2294 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2297 * With delayed allocation, we don't log the i_disksize update
2298 * if there is delayed block allocation. But we still need
2299 * to journalling the i_disksize update if writes to the end
2300 * of file which has an already mapped buffer.
2302 handle
= ext4_journal_start(inode
, 1);
2303 if (IS_ERR(handle
)) {
2304 ret
= PTR_ERR(handle
);
2307 /* We cannot recurse into the filesystem as the transaction is already
2309 flags
|= AOP_FLAG_NOFS
;
2311 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2313 ext4_journal_stop(handle
);
2319 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2322 ext4_journal_stop(handle
);
2323 page_cache_release(page
);
2325 * block_write_begin may have instantiated a few blocks
2326 * outside i_size. Trim these off again. Don't need
2327 * i_size_read because we hold i_mutex.
2329 if (pos
+ len
> inode
->i_size
)
2330 ext4_truncate_failed_write(inode
);
2332 page_len
= pos
& (PAGE_CACHE_SIZE
- 1);
2334 ret
= ext4_discard_partial_page_buffers_no_lock(handle
,
2335 inode
, page
, pos
- page_len
, page_len
,
2336 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
);
2340 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2347 * Check if we should update i_disksize
2348 * when write to the end of file but not require block allocation
2350 static int ext4_da_should_update_i_disksize(struct page
*page
,
2351 unsigned long offset
)
2353 struct buffer_head
*bh
;
2354 struct inode
*inode
= page
->mapping
->host
;
2358 bh
= page_buffers(page
);
2359 idx
= offset
>> inode
->i_blkbits
;
2361 for (i
= 0; i
< idx
; i
++)
2362 bh
= bh
->b_this_page
;
2364 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2369 static int ext4_da_write_end(struct file
*file
,
2370 struct address_space
*mapping
,
2371 loff_t pos
, unsigned len
, unsigned copied
,
2372 struct page
*page
, void *fsdata
)
2374 struct inode
*inode
= mapping
->host
;
2376 handle_t
*handle
= ext4_journal_current_handle();
2378 unsigned long start
, end
;
2379 int write_mode
= (int)(unsigned long)fsdata
;
2382 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2383 if (ext4_should_order_data(inode
)) {
2384 return ext4_ordered_write_end(file
, mapping
, pos
,
2385 len
, copied
, page
, fsdata
);
2386 } else if (ext4_should_writeback_data(inode
)) {
2387 return ext4_writeback_write_end(file
, mapping
, pos
,
2388 len
, copied
, page
, fsdata
);
2394 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2395 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2396 end
= start
+ copied
- 1;
2399 * generic_write_end() will run mark_inode_dirty() if i_size
2400 * changes. So let's piggyback the i_disksize mark_inode_dirty
2404 new_i_size
= pos
+ copied
;
2405 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2406 if (ext4_da_should_update_i_disksize(page
, end
)) {
2407 down_write(&EXT4_I(inode
)->i_data_sem
);
2408 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
2410 * Updating i_disksize when extending file
2411 * without needing block allocation
2413 if (ext4_should_order_data(inode
))
2414 ret
= ext4_jbd2_file_inode(handle
,
2417 EXT4_I(inode
)->i_disksize
= new_i_size
;
2419 up_write(&EXT4_I(inode
)->i_data_sem
);
2420 /* We need to mark inode dirty even if
2421 * new_i_size is less that inode->i_size
2422 * bu greater than i_disksize.(hint delalloc)
2424 ext4_mark_inode_dirty(handle
, inode
);
2427 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2430 page_len
= PAGE_CACHE_SIZE
-
2431 ((pos
+ copied
- 1) & (PAGE_CACHE_SIZE
- 1));
2434 ret
= ext4_discard_partial_page_buffers_no_lock(handle
,
2435 inode
, page
, pos
+ copied
- 1, page_len
,
2436 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
);
2442 ret2
= ext4_journal_stop(handle
);
2446 return ret
? ret
: copied
;
2449 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2452 * Drop reserved blocks
2454 BUG_ON(!PageLocked(page
));
2455 if (!page_has_buffers(page
))
2458 ext4_da_page_release_reservation(page
, offset
);
2461 ext4_invalidatepage(page
, offset
);
2467 * Force all delayed allocation blocks to be allocated for a given inode.
2469 int ext4_alloc_da_blocks(struct inode
*inode
)
2471 trace_ext4_alloc_da_blocks(inode
);
2473 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2474 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2478 * We do something simple for now. The filemap_flush() will
2479 * also start triggering a write of the data blocks, which is
2480 * not strictly speaking necessary (and for users of
2481 * laptop_mode, not even desirable). However, to do otherwise
2482 * would require replicating code paths in:
2484 * ext4_da_writepages() ->
2485 * write_cache_pages() ---> (via passed in callback function)
2486 * __mpage_da_writepage() -->
2487 * mpage_add_bh_to_extent()
2488 * mpage_da_map_blocks()
2490 * The problem is that write_cache_pages(), located in
2491 * mm/page-writeback.c, marks pages clean in preparation for
2492 * doing I/O, which is not desirable if we're not planning on
2495 * We could call write_cache_pages(), and then redirty all of
2496 * the pages by calling redirty_page_for_writepage() but that
2497 * would be ugly in the extreme. So instead we would need to
2498 * replicate parts of the code in the above functions,
2499 * simplifying them because we wouldn't actually intend to
2500 * write out the pages, but rather only collect contiguous
2501 * logical block extents, call the multi-block allocator, and
2502 * then update the buffer heads with the block allocations.
2504 * For now, though, we'll cheat by calling filemap_flush(),
2505 * which will map the blocks, and start the I/O, but not
2506 * actually wait for the I/O to complete.
2508 return filemap_flush(inode
->i_mapping
);
2512 * bmap() is special. It gets used by applications such as lilo and by
2513 * the swapper to find the on-disk block of a specific piece of data.
2515 * Naturally, this is dangerous if the block concerned is still in the
2516 * journal. If somebody makes a swapfile on an ext4 data-journaling
2517 * filesystem and enables swap, then they may get a nasty shock when the
2518 * data getting swapped to that swapfile suddenly gets overwritten by
2519 * the original zero's written out previously to the journal and
2520 * awaiting writeback in the kernel's buffer cache.
2522 * So, if we see any bmap calls here on a modified, data-journaled file,
2523 * take extra steps to flush any blocks which might be in the cache.
2525 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2527 struct inode
*inode
= mapping
->host
;
2531 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2532 test_opt(inode
->i_sb
, DELALLOC
)) {
2534 * With delalloc we want to sync the file
2535 * so that we can make sure we allocate
2538 filemap_write_and_wait(mapping
);
2541 if (EXT4_JOURNAL(inode
) &&
2542 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2544 * This is a REALLY heavyweight approach, but the use of
2545 * bmap on dirty files is expected to be extremely rare:
2546 * only if we run lilo or swapon on a freshly made file
2547 * do we expect this to happen.
2549 * (bmap requires CAP_SYS_RAWIO so this does not
2550 * represent an unprivileged user DOS attack --- we'd be
2551 * in trouble if mortal users could trigger this path at
2554 * NB. EXT4_STATE_JDATA is not set on files other than
2555 * regular files. If somebody wants to bmap a directory
2556 * or symlink and gets confused because the buffer
2557 * hasn't yet been flushed to disk, they deserve
2558 * everything they get.
2561 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2562 journal
= EXT4_JOURNAL(inode
);
2563 jbd2_journal_lock_updates(journal
);
2564 err
= jbd2_journal_flush(journal
);
2565 jbd2_journal_unlock_updates(journal
);
2571 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2574 static int ext4_readpage(struct file
*file
, struct page
*page
)
2576 trace_ext4_readpage(page
);
2577 return mpage_readpage(page
, ext4_get_block
);
2581 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2582 struct list_head
*pages
, unsigned nr_pages
)
2584 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2587 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
2589 struct buffer_head
*head
, *bh
;
2590 unsigned int curr_off
= 0;
2592 if (!page_has_buffers(page
))
2594 head
= bh
= page_buffers(page
);
2596 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
2598 ext4_free_io_end(bh
->b_private
);
2599 bh
->b_private
= NULL
;
2600 bh
->b_end_io
= NULL
;
2602 curr_off
= curr_off
+ bh
->b_size
;
2603 bh
= bh
->b_this_page
;
2604 } while (bh
!= head
);
2607 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2609 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2611 trace_ext4_invalidatepage(page
, offset
);
2614 * free any io_end structure allocated for buffers to be discarded
2616 if (ext4_should_dioread_nolock(page
->mapping
->host
))
2617 ext4_invalidatepage_free_endio(page
, offset
);
2619 * If it's a full truncate we just forget about the pending dirtying
2622 ClearPageChecked(page
);
2625 jbd2_journal_invalidatepage(journal
, page
, offset
);
2627 block_invalidatepage(page
, offset
);
2630 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2632 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2634 trace_ext4_releasepage(page
);
2636 WARN_ON(PageChecked(page
));
2637 if (!page_has_buffers(page
))
2640 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2642 return try_to_free_buffers(page
);
2646 * ext4_get_block used when preparing for a DIO write or buffer write.
2647 * We allocate an uinitialized extent if blocks haven't been allocated.
2648 * The extent will be converted to initialized after the IO is complete.
2650 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2651 struct buffer_head
*bh_result
, int create
)
2653 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2654 inode
->i_ino
, create
);
2655 return _ext4_get_block(inode
, iblock
, bh_result
,
2656 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2659 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2660 ssize_t size
, void *private, int ret
,
2663 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2664 ext4_io_end_t
*io_end
= iocb
->private;
2665 struct workqueue_struct
*wq
;
2666 unsigned long flags
;
2667 struct ext4_inode_info
*ei
;
2669 /* if not async direct IO or dio with 0 bytes write, just return */
2670 if (!io_end
|| !size
)
2673 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2674 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2675 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2678 /* if not aio dio with unwritten extents, just free io and return */
2679 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2680 ext4_free_io_end(io_end
);
2681 iocb
->private = NULL
;
2684 aio_complete(iocb
, ret
, 0);
2685 inode_dio_done(inode
);
2689 io_end
->offset
= offset
;
2690 io_end
->size
= size
;
2692 io_end
->iocb
= iocb
;
2693 io_end
->result
= ret
;
2695 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
2697 /* Add the io_end to per-inode completed aio dio list*/
2698 ei
= EXT4_I(io_end
->inode
);
2699 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
2700 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
2701 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
2703 /* queue the work to convert unwritten extents to written */
2704 queue_work(wq
, &io_end
->work
);
2705 iocb
->private = NULL
;
2707 /* XXX: probably should move into the real I/O completion handler */
2708 inode_dio_done(inode
);
2711 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
2713 ext4_io_end_t
*io_end
= bh
->b_private
;
2714 struct workqueue_struct
*wq
;
2715 struct inode
*inode
;
2716 unsigned long flags
;
2718 if (!test_clear_buffer_uninit(bh
) || !io_end
)
2721 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
2722 printk("sb umounted, discard end_io request for inode %lu\n",
2723 io_end
->inode
->i_ino
);
2724 ext4_free_io_end(io_end
);
2729 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2730 * but being more careful is always safe for the future change.
2732 inode
= io_end
->inode
;
2733 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2734 io_end
->flag
|= EXT4_IO_END_UNWRITTEN
;
2735 atomic_inc(&EXT4_I(inode
)->i_aiodio_unwritten
);
2738 /* Add the io_end to per-inode completed io list*/
2739 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2740 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
2741 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
2743 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
2744 /* queue the work to convert unwritten extents to written */
2745 queue_work(wq
, &io_end
->work
);
2747 bh
->b_private
= NULL
;
2748 bh
->b_end_io
= NULL
;
2749 clear_buffer_uninit(bh
);
2750 end_buffer_async_write(bh
, uptodate
);
2753 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
2755 ext4_io_end_t
*io_end
;
2756 struct page
*page
= bh
->b_page
;
2757 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
2758 size_t size
= bh
->b_size
;
2761 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
2763 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
2767 io_end
->offset
= offset
;
2768 io_end
->size
= size
;
2770 * We need to hold a reference to the page to make sure it
2771 * doesn't get evicted before ext4_end_io_work() has a chance
2772 * to convert the extent from written to unwritten.
2774 io_end
->page
= page
;
2775 get_page(io_end
->page
);
2777 bh
->b_private
= io_end
;
2778 bh
->b_end_io
= ext4_end_io_buffer_write
;
2783 * For ext4 extent files, ext4 will do direct-io write to holes,
2784 * preallocated extents, and those write extend the file, no need to
2785 * fall back to buffered IO.
2787 * For holes, we fallocate those blocks, mark them as uninitialized
2788 * If those blocks were preallocated, we mark sure they are splited, but
2789 * still keep the range to write as uninitialized.
2791 * The unwrritten extents will be converted to written when DIO is completed.
2792 * For async direct IO, since the IO may still pending when return, we
2793 * set up an end_io call back function, which will do the conversion
2794 * when async direct IO completed.
2796 * If the O_DIRECT write will extend the file then add this inode to the
2797 * orphan list. So recovery will truncate it back to the original size
2798 * if the machine crashes during the write.
2801 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
2802 const struct iovec
*iov
, loff_t offset
,
2803 unsigned long nr_segs
)
2805 struct file
*file
= iocb
->ki_filp
;
2806 struct inode
*inode
= file
->f_mapping
->host
;
2808 size_t count
= iov_length(iov
, nr_segs
);
2810 loff_t final_size
= offset
+ count
;
2811 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
2813 * We could direct write to holes and fallocate.
2815 * Allocated blocks to fill the hole are marked as uninitialized
2816 * to prevent parallel buffered read to expose the stale data
2817 * before DIO complete the data IO.
2819 * As to previously fallocated extents, ext4 get_block
2820 * will just simply mark the buffer mapped but still
2821 * keep the extents uninitialized.
2823 * for non AIO case, we will convert those unwritten extents
2824 * to written after return back from blockdev_direct_IO.
2826 * for async DIO, the conversion needs to be defered when
2827 * the IO is completed. The ext4 end_io callback function
2828 * will be called to take care of the conversion work.
2829 * Here for async case, we allocate an io_end structure to
2832 iocb
->private = NULL
;
2833 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2834 if (!is_sync_kiocb(iocb
)) {
2835 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
2839 * we save the io structure for current async
2840 * direct IO, so that later ext4_map_blocks()
2841 * could flag the io structure whether there
2842 * is a unwritten extents needs to be converted
2843 * when IO is completed.
2845 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
2848 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
2849 inode
->i_sb
->s_bdev
, iov
,
2851 ext4_get_block_write
,
2854 DIO_LOCKING
| DIO_SKIP_HOLES
);
2856 EXT4_I(inode
)->cur_aio_dio
= NULL
;
2858 * The io_end structure takes a reference to the inode,
2859 * that structure needs to be destroyed and the
2860 * reference to the inode need to be dropped, when IO is
2861 * complete, even with 0 byte write, or failed.
2863 * In the successful AIO DIO case, the io_end structure will be
2864 * desctroyed and the reference to the inode will be dropped
2865 * after the end_io call back function is called.
2867 * In the case there is 0 byte write, or error case, since
2868 * VFS direct IO won't invoke the end_io call back function,
2869 * we need to free the end_io structure here.
2871 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
2872 ext4_free_io_end(iocb
->private);
2873 iocb
->private = NULL
;
2874 } else if (ret
> 0 && ext4_test_inode_state(inode
,
2875 EXT4_STATE_DIO_UNWRITTEN
)) {
2878 * for non AIO case, since the IO is already
2879 * completed, we could do the conversion right here
2881 err
= ext4_convert_unwritten_extents(inode
,
2885 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
2890 /* for write the the end of file case, we fall back to old way */
2891 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2894 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
2895 const struct iovec
*iov
, loff_t offset
,
2896 unsigned long nr_segs
)
2898 struct file
*file
= iocb
->ki_filp
;
2899 struct inode
*inode
= file
->f_mapping
->host
;
2903 * If we are doing data journalling we don't support O_DIRECT
2905 if (ext4_should_journal_data(inode
))
2908 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
2909 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
2910 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2912 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2913 trace_ext4_direct_IO_exit(inode
, offset
,
2914 iov_length(iov
, nr_segs
), rw
, ret
);
2919 * Pages can be marked dirty completely asynchronously from ext4's journalling
2920 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2921 * much here because ->set_page_dirty is called under VFS locks. The page is
2922 * not necessarily locked.
2924 * We cannot just dirty the page and leave attached buffers clean, because the
2925 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2926 * or jbddirty because all the journalling code will explode.
2928 * So what we do is to mark the page "pending dirty" and next time writepage
2929 * is called, propagate that into the buffers appropriately.
2931 static int ext4_journalled_set_page_dirty(struct page
*page
)
2933 SetPageChecked(page
);
2934 return __set_page_dirty_nobuffers(page
);
2937 static const struct address_space_operations ext4_ordered_aops
= {
2938 .readpage
= ext4_readpage
,
2939 .readpages
= ext4_readpages
,
2940 .writepage
= ext4_writepage
,
2941 .write_begin
= ext4_write_begin
,
2942 .write_end
= ext4_ordered_write_end
,
2944 .invalidatepage
= ext4_invalidatepage
,
2945 .releasepage
= ext4_releasepage
,
2946 .direct_IO
= ext4_direct_IO
,
2947 .migratepage
= buffer_migrate_page
,
2948 .is_partially_uptodate
= block_is_partially_uptodate
,
2949 .error_remove_page
= generic_error_remove_page
,
2952 static const struct address_space_operations ext4_writeback_aops
= {
2953 .readpage
= ext4_readpage
,
2954 .readpages
= ext4_readpages
,
2955 .writepage
= ext4_writepage
,
2956 .write_begin
= ext4_write_begin
,
2957 .write_end
= ext4_writeback_write_end
,
2959 .invalidatepage
= ext4_invalidatepage
,
2960 .releasepage
= ext4_releasepage
,
2961 .direct_IO
= ext4_direct_IO
,
2962 .migratepage
= buffer_migrate_page
,
2963 .is_partially_uptodate
= block_is_partially_uptodate
,
2964 .error_remove_page
= generic_error_remove_page
,
2967 static const struct address_space_operations ext4_journalled_aops
= {
2968 .readpage
= ext4_readpage
,
2969 .readpages
= ext4_readpages
,
2970 .writepage
= ext4_writepage
,
2971 .write_begin
= ext4_write_begin
,
2972 .write_end
= ext4_journalled_write_end
,
2973 .set_page_dirty
= ext4_journalled_set_page_dirty
,
2975 .invalidatepage
= ext4_invalidatepage
,
2976 .releasepage
= ext4_releasepage
,
2977 .direct_IO
= ext4_direct_IO
,
2978 .is_partially_uptodate
= block_is_partially_uptodate
,
2979 .error_remove_page
= generic_error_remove_page
,
2982 static const struct address_space_operations ext4_da_aops
= {
2983 .readpage
= ext4_readpage
,
2984 .readpages
= ext4_readpages
,
2985 .writepage
= ext4_writepage
,
2986 .writepages
= ext4_da_writepages
,
2987 .write_begin
= ext4_da_write_begin
,
2988 .write_end
= ext4_da_write_end
,
2990 .invalidatepage
= ext4_da_invalidatepage
,
2991 .releasepage
= ext4_releasepage
,
2992 .direct_IO
= ext4_direct_IO
,
2993 .migratepage
= buffer_migrate_page
,
2994 .is_partially_uptodate
= block_is_partially_uptodate
,
2995 .error_remove_page
= generic_error_remove_page
,
2998 void ext4_set_aops(struct inode
*inode
)
3000 if (ext4_should_order_data(inode
) &&
3001 test_opt(inode
->i_sb
, DELALLOC
))
3002 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3003 else if (ext4_should_order_data(inode
))
3004 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3005 else if (ext4_should_writeback_data(inode
) &&
3006 test_opt(inode
->i_sb
, DELALLOC
))
3007 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3008 else if (ext4_should_writeback_data(inode
))
3009 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3011 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3016 * ext4_discard_partial_page_buffers()
3017 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3018 * This function finds and locks the page containing the offset
3019 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3020 * Calling functions that already have the page locked should call
3021 * ext4_discard_partial_page_buffers_no_lock directly.
3023 int ext4_discard_partial_page_buffers(handle_t
*handle
,
3024 struct address_space
*mapping
, loff_t from
,
3025 loff_t length
, int flags
)
3027 struct inode
*inode
= mapping
->host
;
3031 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3032 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3036 err
= ext4_discard_partial_page_buffers_no_lock(handle
, inode
, page
,
3037 from
, length
, flags
);
3040 page_cache_release(page
);
3045 * ext4_discard_partial_page_buffers_no_lock()
3046 * Zeros a page range of length 'length' starting from offset 'from'.
3047 * Buffer heads that correspond to the block aligned regions of the
3048 * zeroed range will be unmapped. Unblock aligned regions
3049 * will have the corresponding buffer head mapped if needed so that
3050 * that region of the page can be updated with the partial zero out.
3052 * This function assumes that the page has already been locked. The
3053 * The range to be discarded must be contained with in the given page.
3054 * If the specified range exceeds the end of the page it will be shortened
3055 * to the end of the page that corresponds to 'from'. This function is
3056 * appropriate for updating a page and it buffer heads to be unmapped and
3057 * zeroed for blocks that have been either released, or are going to be
3060 * handle: The journal handle
3061 * inode: The files inode
3062 * page: A locked page that contains the offset "from"
3063 * from: The starting byte offset (from the begining of the file)
3064 * to begin discarding
3065 * len: The length of bytes to discard
3066 * flags: Optional flags that may be used:
3068 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3069 * Only zero the regions of the page whose buffer heads
3070 * have already been unmapped. This flag is appropriate
3071 * for updateing the contents of a page whose blocks may
3072 * have already been released, and we only want to zero
3073 * out the regions that correspond to those released blocks.
3075 * Returns zero on sucess or negative on failure.
3077 int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
3078 struct inode
*inode
, struct page
*page
, loff_t from
,
3079 loff_t length
, int flags
)
3081 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3082 unsigned int offset
= from
& (PAGE_CACHE_SIZE
-1);
3083 unsigned int blocksize
, max
, pos
;
3084 unsigned int end_of_block
, range_to_discard
;
3086 struct buffer_head
*bh
;
3089 blocksize
= inode
->i_sb
->s_blocksize
;
3090 max
= PAGE_CACHE_SIZE
- offset
;
3092 if (index
!= page
->index
)
3096 * correct length if it does not fall between
3097 * 'from' and the end of the page
3099 if (length
> max
|| length
< 0)
3102 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3104 if (!page_has_buffers(page
)) {
3106 * If the range to be discarded covers a partial block
3107 * we need to get the page buffers. This is because
3108 * partial blocks cannot be released and the page needs
3109 * to be updated with the contents of the block before
3110 * we write the zeros on top of it.
3112 if (!(from
& (blocksize
- 1)) ||
3113 !((from
+ length
) & (blocksize
- 1))) {
3114 create_empty_buffers(page
, blocksize
, 0);
3117 * If there are no partial blocks,
3118 * there is nothing to update,
3119 * so we can return now
3125 /* Find the buffer that contains "offset" */
3126 bh
= page_buffers(page
);
3128 while (offset
>= pos
) {
3129 bh
= bh
->b_this_page
;
3135 while (pos
< offset
+ length
) {
3138 /* The length of space left to zero and unmap */
3139 range_to_discard
= offset
+ length
- pos
;
3141 /* The length of space until the end of the block */
3142 end_of_block
= blocksize
- (pos
& (blocksize
-1));
3145 * Do not unmap or zero past end of block
3146 * for this buffer head
3148 if (range_to_discard
> end_of_block
)
3149 range_to_discard
= end_of_block
;
3153 * Skip this buffer head if we are only zeroing unampped
3154 * regions of the page
3156 if (flags
& EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
&&
3160 /* If the range is block aligned, unmap */
3161 if (range_to_discard
== blocksize
) {
3162 clear_buffer_dirty(bh
);
3164 clear_buffer_mapped(bh
);
3165 clear_buffer_req(bh
);
3166 clear_buffer_new(bh
);
3167 clear_buffer_delay(bh
);
3168 clear_buffer_unwritten(bh
);
3169 clear_buffer_uptodate(bh
);
3170 zero_user(page
, pos
, range_to_discard
);
3171 BUFFER_TRACE(bh
, "Buffer discarded");
3176 * If this block is not completely contained in the range
3177 * to be discarded, then it is not going to be released. Because
3178 * we need to keep this block, we need to make sure this part
3179 * of the page is uptodate before we modify it by writeing
3180 * partial zeros on it.
3182 if (!buffer_mapped(bh
)) {
3184 * Buffer head must be mapped before we can read
3187 BUFFER_TRACE(bh
, "unmapped");
3188 ext4_get_block(inode
, iblock
, bh
, 0);
3189 /* unmapped? It's a hole - nothing to do */
3190 if (!buffer_mapped(bh
)) {
3191 BUFFER_TRACE(bh
, "still unmapped");
3196 /* Ok, it's mapped. Make sure it's up-to-date */
3197 if (PageUptodate(page
))
3198 set_buffer_uptodate(bh
);
3200 if (!buffer_uptodate(bh
)) {
3202 ll_rw_block(READ
, 1, &bh
);
3204 /* Uhhuh. Read error. Complain and punt.*/
3205 if (!buffer_uptodate(bh
))
3209 if (ext4_should_journal_data(inode
)) {
3210 BUFFER_TRACE(bh
, "get write access");
3211 err
= ext4_journal_get_write_access(handle
, bh
);
3216 zero_user(page
, pos
, range_to_discard
);
3219 if (ext4_should_journal_data(inode
)) {
3220 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3222 mark_buffer_dirty(bh
);
3224 BUFFER_TRACE(bh
, "Partial buffer zeroed");
3226 bh
= bh
->b_this_page
;
3228 pos
+= range_to_discard
;
3235 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3236 * up to the end of the block which corresponds to `from'.
3237 * This required during truncate. We need to physically zero the tail end
3238 * of that block so it doesn't yield old data if the file is later grown.
3240 int ext4_block_truncate_page(handle_t
*handle
,
3241 struct address_space
*mapping
, loff_t from
)
3243 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3246 struct inode
*inode
= mapping
->host
;
3248 blocksize
= inode
->i_sb
->s_blocksize
;
3249 length
= blocksize
- (offset
& (blocksize
- 1));
3251 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3255 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3256 * starting from file offset 'from'. The range to be zero'd must
3257 * be contained with in one block. If the specified range exceeds
3258 * the end of the block it will be shortened to end of the block
3259 * that cooresponds to 'from'
3261 int ext4_block_zero_page_range(handle_t
*handle
,
3262 struct address_space
*mapping
, loff_t from
, loff_t length
)
3264 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3265 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3266 unsigned blocksize
, max
, pos
;
3268 struct inode
*inode
= mapping
->host
;
3269 struct buffer_head
*bh
;
3273 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3274 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3278 blocksize
= inode
->i_sb
->s_blocksize
;
3279 max
= blocksize
- (offset
& (blocksize
- 1));
3282 * correct length if it does not fall between
3283 * 'from' and the end of the block
3285 if (length
> max
|| length
< 0)
3288 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3290 if (!page_has_buffers(page
))
3291 create_empty_buffers(page
, blocksize
, 0);
3293 /* Find the buffer that contains "offset" */
3294 bh
= page_buffers(page
);
3296 while (offset
>= pos
) {
3297 bh
= bh
->b_this_page
;
3303 if (buffer_freed(bh
)) {
3304 BUFFER_TRACE(bh
, "freed: skip");
3308 if (!buffer_mapped(bh
)) {
3309 BUFFER_TRACE(bh
, "unmapped");
3310 ext4_get_block(inode
, iblock
, bh
, 0);
3311 /* unmapped? It's a hole - nothing to do */
3312 if (!buffer_mapped(bh
)) {
3313 BUFFER_TRACE(bh
, "still unmapped");
3318 /* Ok, it's mapped. Make sure it's up-to-date */
3319 if (PageUptodate(page
))
3320 set_buffer_uptodate(bh
);
3322 if (!buffer_uptodate(bh
)) {
3324 ll_rw_block(READ
, 1, &bh
);
3326 /* Uhhuh. Read error. Complain and punt. */
3327 if (!buffer_uptodate(bh
))
3331 if (ext4_should_journal_data(inode
)) {
3332 BUFFER_TRACE(bh
, "get write access");
3333 err
= ext4_journal_get_write_access(handle
, bh
);
3338 zero_user(page
, offset
, length
);
3340 BUFFER_TRACE(bh
, "zeroed end of block");
3343 if (ext4_should_journal_data(inode
)) {
3344 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3346 mark_buffer_dirty(bh
);
3350 page_cache_release(page
);
3354 int ext4_can_truncate(struct inode
*inode
)
3356 if (S_ISREG(inode
->i_mode
))
3358 if (S_ISDIR(inode
->i_mode
))
3360 if (S_ISLNK(inode
->i_mode
))
3361 return !ext4_inode_is_fast_symlink(inode
);
3366 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3367 * associated with the given offset and length
3369 * @inode: File inode
3370 * @offset: The offset where the hole will begin
3371 * @len: The length of the hole
3373 * Returns: 0 on sucess or negative on failure
3376 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3378 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
3379 if (!S_ISREG(inode
->i_mode
))
3382 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3383 /* TODO: Add support for non extent hole punching */
3387 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) {
3388 /* TODO: Add support for bigalloc file systems */
3392 return ext4_ext_punch_hole(file
, offset
, length
);
3398 * We block out ext4_get_block() block instantiations across the entire
3399 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3400 * simultaneously on behalf of the same inode.
3402 * As we work through the truncate and commmit bits of it to the journal there
3403 * is one core, guiding principle: the file's tree must always be consistent on
3404 * disk. We must be able to restart the truncate after a crash.
3406 * The file's tree may be transiently inconsistent in memory (although it
3407 * probably isn't), but whenever we close off and commit a journal transaction,
3408 * the contents of (the filesystem + the journal) must be consistent and
3409 * restartable. It's pretty simple, really: bottom up, right to left (although
3410 * left-to-right works OK too).
3412 * Note that at recovery time, journal replay occurs *before* the restart of
3413 * truncate against the orphan inode list.
3415 * The committed inode has the new, desired i_size (which is the same as
3416 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3417 * that this inode's truncate did not complete and it will again call
3418 * ext4_truncate() to have another go. So there will be instantiated blocks
3419 * to the right of the truncation point in a crashed ext4 filesystem. But
3420 * that's fine - as long as they are linked from the inode, the post-crash
3421 * ext4_truncate() run will find them and release them.
3423 void ext4_truncate(struct inode
*inode
)
3425 trace_ext4_truncate_enter(inode
);
3427 if (!ext4_can_truncate(inode
))
3430 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3432 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3433 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3435 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3436 ext4_ext_truncate(inode
);
3438 ext4_ind_truncate(inode
);
3440 trace_ext4_truncate_exit(inode
);
3444 * ext4_get_inode_loc returns with an extra refcount against the inode's
3445 * underlying buffer_head on success. If 'in_mem' is true, we have all
3446 * data in memory that is needed to recreate the on-disk version of this
3449 static int __ext4_get_inode_loc(struct inode
*inode
,
3450 struct ext4_iloc
*iloc
, int in_mem
)
3452 struct ext4_group_desc
*gdp
;
3453 struct buffer_head
*bh
;
3454 struct super_block
*sb
= inode
->i_sb
;
3456 int inodes_per_block
, inode_offset
;
3459 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3462 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3463 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3468 * Figure out the offset within the block group inode table
3470 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3471 inode_offset
= ((inode
->i_ino
- 1) %
3472 EXT4_INODES_PER_GROUP(sb
));
3473 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3474 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3476 bh
= sb_getblk(sb
, block
);
3478 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3479 "unable to read itable block");
3482 if (!buffer_uptodate(bh
)) {
3486 * If the buffer has the write error flag, we have failed
3487 * to write out another inode in the same block. In this
3488 * case, we don't have to read the block because we may
3489 * read the old inode data successfully.
3491 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3492 set_buffer_uptodate(bh
);
3494 if (buffer_uptodate(bh
)) {
3495 /* someone brought it uptodate while we waited */
3501 * If we have all information of the inode in memory and this
3502 * is the only valid inode in the block, we need not read the
3506 struct buffer_head
*bitmap_bh
;
3509 start
= inode_offset
& ~(inodes_per_block
- 1);
3511 /* Is the inode bitmap in cache? */
3512 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3517 * If the inode bitmap isn't in cache then the
3518 * optimisation may end up performing two reads instead
3519 * of one, so skip it.
3521 if (!buffer_uptodate(bitmap_bh
)) {
3525 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3526 if (i
== inode_offset
)
3528 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3532 if (i
== start
+ inodes_per_block
) {
3533 /* all other inodes are free, so skip I/O */
3534 memset(bh
->b_data
, 0, bh
->b_size
);
3535 set_buffer_uptodate(bh
);
3543 * If we need to do any I/O, try to pre-readahead extra
3544 * blocks from the inode table.
3546 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3547 ext4_fsblk_t b
, end
, table
;
3550 table
= ext4_inode_table(sb
, gdp
);
3551 /* s_inode_readahead_blks is always a power of 2 */
3552 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
3555 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
3556 num
= EXT4_INODES_PER_GROUP(sb
);
3557 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3558 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
3559 num
-= ext4_itable_unused_count(sb
, gdp
);
3560 table
+= num
/ inodes_per_block
;
3564 sb_breadahead(sb
, b
++);
3568 * There are other valid inodes in the buffer, this inode
3569 * has in-inode xattrs, or we don't have this inode in memory.
3570 * Read the block from disk.
3572 trace_ext4_load_inode(inode
);
3574 bh
->b_end_io
= end_buffer_read_sync
;
3575 submit_bh(READ_META
, bh
);
3577 if (!buffer_uptodate(bh
)) {
3578 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3579 "unable to read itable block");
3589 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3591 /* We have all inode data except xattrs in memory here. */
3592 return __ext4_get_inode_loc(inode
, iloc
,
3593 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3596 void ext4_set_inode_flags(struct inode
*inode
)
3598 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3600 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3601 if (flags
& EXT4_SYNC_FL
)
3602 inode
->i_flags
|= S_SYNC
;
3603 if (flags
& EXT4_APPEND_FL
)
3604 inode
->i_flags
|= S_APPEND
;
3605 if (flags
& EXT4_IMMUTABLE_FL
)
3606 inode
->i_flags
|= S_IMMUTABLE
;
3607 if (flags
& EXT4_NOATIME_FL
)
3608 inode
->i_flags
|= S_NOATIME
;
3609 if (flags
& EXT4_DIRSYNC_FL
)
3610 inode
->i_flags
|= S_DIRSYNC
;
3613 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3614 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3616 unsigned int vfs_fl
;
3617 unsigned long old_fl
, new_fl
;
3620 vfs_fl
= ei
->vfs_inode
.i_flags
;
3621 old_fl
= ei
->i_flags
;
3622 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3623 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3625 if (vfs_fl
& S_SYNC
)
3626 new_fl
|= EXT4_SYNC_FL
;
3627 if (vfs_fl
& S_APPEND
)
3628 new_fl
|= EXT4_APPEND_FL
;
3629 if (vfs_fl
& S_IMMUTABLE
)
3630 new_fl
|= EXT4_IMMUTABLE_FL
;
3631 if (vfs_fl
& S_NOATIME
)
3632 new_fl
|= EXT4_NOATIME_FL
;
3633 if (vfs_fl
& S_DIRSYNC
)
3634 new_fl
|= EXT4_DIRSYNC_FL
;
3635 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3638 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3639 struct ext4_inode_info
*ei
)
3642 struct inode
*inode
= &(ei
->vfs_inode
);
3643 struct super_block
*sb
= inode
->i_sb
;
3645 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3646 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3647 /* we are using combined 48 bit field */
3648 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3649 le32_to_cpu(raw_inode
->i_blocks_lo
);
3650 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3651 /* i_blocks represent file system block size */
3652 return i_blocks
<< (inode
->i_blkbits
- 9);
3657 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3661 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3663 struct ext4_iloc iloc
;
3664 struct ext4_inode
*raw_inode
;
3665 struct ext4_inode_info
*ei
;
3666 struct inode
*inode
;
3667 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3671 inode
= iget_locked(sb
, ino
);
3673 return ERR_PTR(-ENOMEM
);
3674 if (!(inode
->i_state
& I_NEW
))
3680 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3683 raw_inode
= ext4_raw_inode(&iloc
);
3684 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3685 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3686 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3687 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3688 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3689 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3691 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
3693 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3694 ei
->i_dir_start_lookup
= 0;
3695 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3696 /* We now have enough fields to check if the inode was active or not.
3697 * This is needed because nfsd might try to access dead inodes
3698 * the test is that same one that e2fsck uses
3699 * NeilBrown 1999oct15
3701 if (inode
->i_nlink
== 0) {
3702 if (inode
->i_mode
== 0 ||
3703 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3704 /* this inode is deleted */
3708 /* The only unlinked inodes we let through here have
3709 * valid i_mode and are being read by the orphan
3710 * recovery code: that's fine, we're about to complete
3711 * the process of deleting those. */
3713 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3714 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3715 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3716 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3718 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3719 inode
->i_size
= ext4_isize(raw_inode
);
3720 ei
->i_disksize
= inode
->i_size
;
3722 ei
->i_reserved_quota
= 0;
3724 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3725 ei
->i_block_group
= iloc
.block_group
;
3726 ei
->i_last_alloc_group
= ~0;
3728 * NOTE! The in-memory inode i_data array is in little-endian order
3729 * even on big-endian machines: we do NOT byteswap the block numbers!
3731 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3732 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3733 INIT_LIST_HEAD(&ei
->i_orphan
);
3736 * Set transaction id's of transactions that have to be committed
3737 * to finish f[data]sync. We set them to currently running transaction
3738 * as we cannot be sure that the inode or some of its metadata isn't
3739 * part of the transaction - the inode could have been reclaimed and
3740 * now it is reread from disk.
3743 transaction_t
*transaction
;
3746 read_lock(&journal
->j_state_lock
);
3747 if (journal
->j_running_transaction
)
3748 transaction
= journal
->j_running_transaction
;
3750 transaction
= journal
->j_committing_transaction
;
3752 tid
= transaction
->t_tid
;
3754 tid
= journal
->j_commit_sequence
;
3755 read_unlock(&journal
->j_state_lock
);
3756 ei
->i_sync_tid
= tid
;
3757 ei
->i_datasync_tid
= tid
;
3760 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3761 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3762 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3763 EXT4_INODE_SIZE(inode
->i_sb
)) {
3767 if (ei
->i_extra_isize
== 0) {
3768 /* The extra space is currently unused. Use it. */
3769 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
3770 EXT4_GOOD_OLD_INODE_SIZE
;
3772 __le32
*magic
= (void *)raw_inode
+
3773 EXT4_GOOD_OLD_INODE_SIZE
+
3775 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
3776 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3779 ei
->i_extra_isize
= 0;
3781 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
3782 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
3783 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
3784 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
3786 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
3787 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3788 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
3790 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
3794 if (ei
->i_file_acl
&&
3795 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
3796 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
3800 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3801 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3802 (S_ISLNK(inode
->i_mode
) &&
3803 !ext4_inode_is_fast_symlink(inode
)))
3804 /* Validate extent which is part of inode */
3805 ret
= ext4_ext_check_inode(inode
);
3806 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
3807 (S_ISLNK(inode
->i_mode
) &&
3808 !ext4_inode_is_fast_symlink(inode
))) {
3809 /* Validate block references which are part of inode */
3810 ret
= ext4_ind_check_inode(inode
);
3815 if (S_ISREG(inode
->i_mode
)) {
3816 inode
->i_op
= &ext4_file_inode_operations
;
3817 inode
->i_fop
= &ext4_file_operations
;
3818 ext4_set_aops(inode
);
3819 } else if (S_ISDIR(inode
->i_mode
)) {
3820 inode
->i_op
= &ext4_dir_inode_operations
;
3821 inode
->i_fop
= &ext4_dir_operations
;
3822 } else if (S_ISLNK(inode
->i_mode
)) {
3823 if (ext4_inode_is_fast_symlink(inode
)) {
3824 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
3825 nd_terminate_link(ei
->i_data
, inode
->i_size
,
3826 sizeof(ei
->i_data
) - 1);
3828 inode
->i_op
= &ext4_symlink_inode_operations
;
3829 ext4_set_aops(inode
);
3831 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
3832 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
3833 inode
->i_op
= &ext4_special_inode_operations
;
3834 if (raw_inode
->i_block
[0])
3835 init_special_inode(inode
, inode
->i_mode
,
3836 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
3838 init_special_inode(inode
, inode
->i_mode
,
3839 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
3842 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
3846 ext4_set_inode_flags(inode
);
3847 unlock_new_inode(inode
);
3853 return ERR_PTR(ret
);
3856 static int ext4_inode_blocks_set(handle_t
*handle
,
3857 struct ext4_inode
*raw_inode
,
3858 struct ext4_inode_info
*ei
)
3860 struct inode
*inode
= &(ei
->vfs_inode
);
3861 u64 i_blocks
= inode
->i_blocks
;
3862 struct super_block
*sb
= inode
->i_sb
;
3864 if (i_blocks
<= ~0U) {
3866 * i_blocks can be represnted in a 32 bit variable
3867 * as multiple of 512 bytes
3869 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3870 raw_inode
->i_blocks_high
= 0;
3871 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3874 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
3877 if (i_blocks
<= 0xffffffffffffULL
) {
3879 * i_blocks can be represented in a 48 bit variable
3880 * as multiple of 512 bytes
3882 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3883 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3884 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3886 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
3887 /* i_block is stored in file system block size */
3888 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
3889 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
3890 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
3896 * Post the struct inode info into an on-disk inode location in the
3897 * buffer-cache. This gobbles the caller's reference to the
3898 * buffer_head in the inode location struct.
3900 * The caller must have write access to iloc->bh.
3902 static int ext4_do_update_inode(handle_t
*handle
,
3903 struct inode
*inode
,
3904 struct ext4_iloc
*iloc
)
3906 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
3907 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3908 struct buffer_head
*bh
= iloc
->bh
;
3909 int err
= 0, rc
, block
;
3911 /* For fields not not tracking in the in-memory inode,
3912 * initialise them to zero for new inodes. */
3913 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
3914 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
3916 ext4_get_inode_flags(ei
);
3917 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
3918 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3919 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
3920 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
3922 * Fix up interoperability with old kernels. Otherwise, old inodes get
3923 * re-used with the upper 16 bits of the uid/gid intact
3926 raw_inode
->i_uid_high
=
3927 cpu_to_le16(high_16_bits(inode
->i_uid
));
3928 raw_inode
->i_gid_high
=
3929 cpu_to_le16(high_16_bits(inode
->i_gid
));
3931 raw_inode
->i_uid_high
= 0;
3932 raw_inode
->i_gid_high
= 0;
3935 raw_inode
->i_uid_low
=
3936 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
3937 raw_inode
->i_gid_low
=
3938 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
3939 raw_inode
->i_uid_high
= 0;
3940 raw_inode
->i_gid_high
= 0;
3942 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
3944 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
3945 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
3946 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
3947 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
3949 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
3951 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
3952 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
3953 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
3954 cpu_to_le32(EXT4_OS_HURD
))
3955 raw_inode
->i_file_acl_high
=
3956 cpu_to_le16(ei
->i_file_acl
>> 32);
3957 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
3958 ext4_isize_set(raw_inode
, ei
->i_disksize
);
3959 if (ei
->i_disksize
> 0x7fffffffULL
) {
3960 struct super_block
*sb
= inode
->i_sb
;
3961 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3962 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
3963 EXT4_SB(sb
)->s_es
->s_rev_level
==
3964 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
3965 /* If this is the first large file
3966 * created, add a flag to the superblock.
3968 err
= ext4_journal_get_write_access(handle
,
3969 EXT4_SB(sb
)->s_sbh
);
3972 ext4_update_dynamic_rev(sb
);
3973 EXT4_SET_RO_COMPAT_FEATURE(sb
,
3974 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
3976 ext4_handle_sync(handle
);
3977 err
= ext4_handle_dirty_metadata(handle
, NULL
,
3978 EXT4_SB(sb
)->s_sbh
);
3981 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
3982 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
3983 if (old_valid_dev(inode
->i_rdev
)) {
3984 raw_inode
->i_block
[0] =
3985 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
3986 raw_inode
->i_block
[1] = 0;
3988 raw_inode
->i_block
[0] = 0;
3989 raw_inode
->i_block
[1] =
3990 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
3991 raw_inode
->i_block
[2] = 0;
3994 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3995 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
3997 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
3998 if (ei
->i_extra_isize
) {
3999 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4000 raw_inode
->i_version_hi
=
4001 cpu_to_le32(inode
->i_version
>> 32);
4002 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4005 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4006 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4009 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4011 ext4_update_inode_fsync_trans(handle
, inode
, 0);
4014 ext4_std_error(inode
->i_sb
, err
);
4019 * ext4_write_inode()
4021 * We are called from a few places:
4023 * - Within generic_file_write() for O_SYNC files.
4024 * Here, there will be no transaction running. We wait for any running
4025 * trasnaction to commit.
4027 * - Within sys_sync(), kupdate and such.
4028 * We wait on commit, if tol to.
4030 * - Within prune_icache() (PF_MEMALLOC == true)
4031 * Here we simply return. We can't afford to block kswapd on the
4034 * In all cases it is actually safe for us to return without doing anything,
4035 * because the inode has been copied into a raw inode buffer in
4036 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4039 * Note that we are absolutely dependent upon all inode dirtiers doing the
4040 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4041 * which we are interested.
4043 * It would be a bug for them to not do this. The code:
4045 * mark_inode_dirty(inode)
4047 * inode->i_size = expr;
4049 * is in error because a kswapd-driven write_inode() could occur while
4050 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4051 * will no longer be on the superblock's dirty inode list.
4053 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4057 if (current
->flags
& PF_MEMALLOC
)
4060 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4061 if (ext4_journal_current_handle()) {
4062 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4067 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4070 err
= ext4_force_commit(inode
->i_sb
);
4072 struct ext4_iloc iloc
;
4074 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4077 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4078 sync_dirty_buffer(iloc
.bh
);
4079 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4080 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4081 "IO error syncing inode");
4092 * Called from notify_change.
4094 * We want to trap VFS attempts to truncate the file as soon as
4095 * possible. In particular, we want to make sure that when the VFS
4096 * shrinks i_size, we put the inode on the orphan list and modify
4097 * i_disksize immediately, so that during the subsequent flushing of
4098 * dirty pages and freeing of disk blocks, we can guarantee that any
4099 * commit will leave the blocks being flushed in an unused state on
4100 * disk. (On recovery, the inode will get truncated and the blocks will
4101 * be freed, so we have a strong guarantee that no future commit will
4102 * leave these blocks visible to the user.)
4104 * Another thing we have to assure is that if we are in ordered mode
4105 * and inode is still attached to the committing transaction, we must
4106 * we start writeout of all the dirty pages which are being truncated.
4107 * This way we are sure that all the data written in the previous
4108 * transaction are already on disk (truncate waits for pages under
4111 * Called with inode->i_mutex down.
4113 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4115 struct inode
*inode
= dentry
->d_inode
;
4118 const unsigned int ia_valid
= attr
->ia_valid
;
4120 error
= inode_change_ok(inode
, attr
);
4124 if (is_quota_modification(inode
, attr
))
4125 dquot_initialize(inode
);
4126 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
4127 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
4130 /* (user+group)*(old+new) structure, inode write (sb,
4131 * inode block, ? - but truncate inode update has it) */
4132 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
4133 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
4134 if (IS_ERR(handle
)) {
4135 error
= PTR_ERR(handle
);
4138 error
= dquot_transfer(inode
, attr
);
4140 ext4_journal_stop(handle
);
4143 /* Update corresponding info in inode so that everything is in
4144 * one transaction */
4145 if (attr
->ia_valid
& ATTR_UID
)
4146 inode
->i_uid
= attr
->ia_uid
;
4147 if (attr
->ia_valid
& ATTR_GID
)
4148 inode
->i_gid
= attr
->ia_gid
;
4149 error
= ext4_mark_inode_dirty(handle
, inode
);
4150 ext4_journal_stop(handle
);
4153 if (attr
->ia_valid
& ATTR_SIZE
) {
4154 inode_dio_wait(inode
);
4156 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4157 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4159 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4164 if (S_ISREG(inode
->i_mode
) &&
4165 attr
->ia_valid
& ATTR_SIZE
&&
4166 (attr
->ia_size
< inode
->i_size
)) {
4169 handle
= ext4_journal_start(inode
, 3);
4170 if (IS_ERR(handle
)) {
4171 error
= PTR_ERR(handle
);
4174 if (ext4_handle_valid(handle
)) {
4175 error
= ext4_orphan_add(handle
, inode
);
4178 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4179 rc
= ext4_mark_inode_dirty(handle
, inode
);
4182 ext4_journal_stop(handle
);
4184 if (ext4_should_order_data(inode
)) {
4185 error
= ext4_begin_ordered_truncate(inode
,
4188 /* Do as much error cleanup as possible */
4189 handle
= ext4_journal_start(inode
, 3);
4190 if (IS_ERR(handle
)) {
4191 ext4_orphan_del(NULL
, inode
);
4194 ext4_orphan_del(handle
, inode
);
4196 ext4_journal_stop(handle
);
4202 if (attr
->ia_valid
& ATTR_SIZE
) {
4203 if (attr
->ia_size
!= i_size_read(inode
)) {
4204 truncate_setsize(inode
, attr
->ia_size
);
4205 ext4_truncate(inode
);
4206 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
))
4207 ext4_truncate(inode
);
4211 setattr_copy(inode
, attr
);
4212 mark_inode_dirty(inode
);
4216 * If the call to ext4_truncate failed to get a transaction handle at
4217 * all, we need to clean up the in-core orphan list manually.
4219 if (orphan
&& inode
->i_nlink
)
4220 ext4_orphan_del(NULL
, inode
);
4222 if (!rc
&& (ia_valid
& ATTR_MODE
))
4223 rc
= ext4_acl_chmod(inode
);
4226 ext4_std_error(inode
->i_sb
, error
);
4232 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4235 struct inode
*inode
;
4236 unsigned long delalloc_blocks
;
4238 inode
= dentry
->d_inode
;
4239 generic_fillattr(inode
, stat
);
4242 * We can't update i_blocks if the block allocation is delayed
4243 * otherwise in the case of system crash before the real block
4244 * allocation is done, we will have i_blocks inconsistent with
4245 * on-disk file blocks.
4246 * We always keep i_blocks updated together with real
4247 * allocation. But to not confuse with user, stat
4248 * will return the blocks that include the delayed allocation
4249 * blocks for this file.
4251 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
4253 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4257 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4259 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4260 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
4261 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4265 * Account for index blocks, block groups bitmaps and block group
4266 * descriptor blocks if modify datablocks and index blocks
4267 * worse case, the indexs blocks spread over different block groups
4269 * If datablocks are discontiguous, they are possible to spread over
4270 * different block groups too. If they are contiuguous, with flexbg,
4271 * they could still across block group boundary.
4273 * Also account for superblock, inode, quota and xattr blocks
4275 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4277 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4283 * How many index blocks need to touch to modify nrblocks?
4284 * The "Chunk" flag indicating whether the nrblocks is
4285 * physically contiguous on disk
4287 * For Direct IO and fallocate, they calls get_block to allocate
4288 * one single extent at a time, so they could set the "Chunk" flag
4290 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4295 * Now let's see how many group bitmaps and group descriptors need
4305 if (groups
> ngroups
)
4307 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4308 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4310 /* bitmaps and block group descriptor blocks */
4311 ret
+= groups
+ gdpblocks
;
4313 /* Blocks for super block, inode, quota and xattr blocks */
4314 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4320 * Calculate the total number of credits to reserve to fit
4321 * the modification of a single pages into a single transaction,
4322 * which may include multiple chunks of block allocations.
4324 * This could be called via ext4_write_begin()
4326 * We need to consider the worse case, when
4327 * one new block per extent.
4329 int ext4_writepage_trans_blocks(struct inode
*inode
)
4331 int bpp
= ext4_journal_blocks_per_page(inode
);
4334 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4336 /* Account for data blocks for journalled mode */
4337 if (ext4_should_journal_data(inode
))
4343 * Calculate the journal credits for a chunk of data modification.
4345 * This is called from DIO, fallocate or whoever calling
4346 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4348 * journal buffers for data blocks are not included here, as DIO
4349 * and fallocate do no need to journal data buffers.
4351 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4353 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4357 * The caller must have previously called ext4_reserve_inode_write().
4358 * Give this, we know that the caller already has write access to iloc->bh.
4360 int ext4_mark_iloc_dirty(handle_t
*handle
,
4361 struct inode
*inode
, struct ext4_iloc
*iloc
)
4365 if (test_opt(inode
->i_sb
, I_VERSION
))
4366 inode_inc_iversion(inode
);
4368 /* the do_update_inode consumes one bh->b_count */
4371 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4372 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4378 * On success, We end up with an outstanding reference count against
4379 * iloc->bh. This _must_ be cleaned up later.
4383 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4384 struct ext4_iloc
*iloc
)
4388 err
= ext4_get_inode_loc(inode
, iloc
);
4390 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4391 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4397 ext4_std_error(inode
->i_sb
, err
);
4402 * Expand an inode by new_extra_isize bytes.
4403 * Returns 0 on success or negative error number on failure.
4405 static int ext4_expand_extra_isize(struct inode
*inode
,
4406 unsigned int new_extra_isize
,
4407 struct ext4_iloc iloc
,
4410 struct ext4_inode
*raw_inode
;
4411 struct ext4_xattr_ibody_header
*header
;
4413 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4416 raw_inode
= ext4_raw_inode(&iloc
);
4418 header
= IHDR(inode
, raw_inode
);
4420 /* No extended attributes present */
4421 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4422 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4423 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4425 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4429 /* try to expand with EAs present */
4430 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4435 * What we do here is to mark the in-core inode as clean with respect to inode
4436 * dirtiness (it may still be data-dirty).
4437 * This means that the in-core inode may be reaped by prune_icache
4438 * without having to perform any I/O. This is a very good thing,
4439 * because *any* task may call prune_icache - even ones which
4440 * have a transaction open against a different journal.
4442 * Is this cheating? Not really. Sure, we haven't written the
4443 * inode out, but prune_icache isn't a user-visible syncing function.
4444 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4445 * we start and wait on commits.
4447 * Is this efficient/effective? Well, we're being nice to the system
4448 * by cleaning up our inodes proactively so they can be reaped
4449 * without I/O. But we are potentially leaving up to five seconds'
4450 * worth of inodes floating about which prune_icache wants us to
4451 * write out. One way to fix that would be to get prune_icache()
4452 * to do a write_super() to free up some memory. It has the desired
4455 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4457 struct ext4_iloc iloc
;
4458 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4459 static unsigned int mnt_count
;
4463 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4464 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4465 if (ext4_handle_valid(handle
) &&
4466 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4467 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4469 * We need extra buffer credits since we may write into EA block
4470 * with this same handle. If journal_extend fails, then it will
4471 * only result in a minor loss of functionality for that inode.
4472 * If this is felt to be critical, then e2fsck should be run to
4473 * force a large enough s_min_extra_isize.
4475 if ((jbd2_journal_extend(handle
,
4476 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4477 ret
= ext4_expand_extra_isize(inode
,
4478 sbi
->s_want_extra_isize
,
4481 ext4_set_inode_state(inode
,
4482 EXT4_STATE_NO_EXPAND
);
4484 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4485 ext4_warning(inode
->i_sb
,
4486 "Unable to expand inode %lu. Delete"
4487 " some EAs or run e2fsck.",
4490 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4496 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4501 * ext4_dirty_inode() is called from __mark_inode_dirty()
4503 * We're really interested in the case where a file is being extended.
4504 * i_size has been changed by generic_commit_write() and we thus need
4505 * to include the updated inode in the current transaction.
4507 * Also, dquot_alloc_block() will always dirty the inode when blocks
4508 * are allocated to the file.
4510 * If the inode is marked synchronous, we don't honour that here - doing
4511 * so would cause a commit on atime updates, which we don't bother doing.
4512 * We handle synchronous inodes at the highest possible level.
4514 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4518 handle
= ext4_journal_start(inode
, 2);
4522 ext4_mark_inode_dirty(handle
, inode
);
4524 ext4_journal_stop(handle
);
4531 * Bind an inode's backing buffer_head into this transaction, to prevent
4532 * it from being flushed to disk early. Unlike
4533 * ext4_reserve_inode_write, this leaves behind no bh reference and
4534 * returns no iloc structure, so the caller needs to repeat the iloc
4535 * lookup to mark the inode dirty later.
4537 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4539 struct ext4_iloc iloc
;
4543 err
= ext4_get_inode_loc(inode
, &iloc
);
4545 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4546 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4548 err
= ext4_handle_dirty_metadata(handle
,
4554 ext4_std_error(inode
->i_sb
, err
);
4559 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4566 * We have to be very careful here: changing a data block's
4567 * journaling status dynamically is dangerous. If we write a
4568 * data block to the journal, change the status and then delete
4569 * that block, we risk forgetting to revoke the old log record
4570 * from the journal and so a subsequent replay can corrupt data.
4571 * So, first we make sure that the journal is empty and that
4572 * nobody is changing anything.
4575 journal
= EXT4_JOURNAL(inode
);
4578 if (is_journal_aborted(journal
))
4581 jbd2_journal_lock_updates(journal
);
4582 jbd2_journal_flush(journal
);
4585 * OK, there are no updates running now, and all cached data is
4586 * synced to disk. We are now in a completely consistent state
4587 * which doesn't have anything in the journal, and we know that
4588 * no filesystem updates are running, so it is safe to modify
4589 * the inode's in-core data-journaling state flag now.
4593 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4595 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4596 ext4_set_aops(inode
);
4598 jbd2_journal_unlock_updates(journal
);
4600 /* Finally we can mark the inode as dirty. */
4602 handle
= ext4_journal_start(inode
, 1);
4604 return PTR_ERR(handle
);
4606 err
= ext4_mark_inode_dirty(handle
, inode
);
4607 ext4_handle_sync(handle
);
4608 ext4_journal_stop(handle
);
4609 ext4_std_error(inode
->i_sb
, err
);
4614 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4616 return !buffer_mapped(bh
);
4619 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4621 struct page
*page
= vmf
->page
;
4625 struct file
*file
= vma
->vm_file
;
4626 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4627 struct address_space
*mapping
= inode
->i_mapping
;
4629 get_block_t
*get_block
;
4633 * This check is racy but catches the common case. We rely on
4634 * __block_page_mkwrite() to do a reliable check.
4636 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
4637 /* Delalloc case is easy... */
4638 if (test_opt(inode
->i_sb
, DELALLOC
) &&
4639 !ext4_should_journal_data(inode
) &&
4640 !ext4_nonda_switch(inode
->i_sb
)) {
4642 ret
= __block_page_mkwrite(vma
, vmf
,
4643 ext4_da_get_block_prep
);
4644 } while (ret
== -ENOSPC
&&
4645 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
4650 size
= i_size_read(inode
);
4651 /* Page got truncated from under us? */
4652 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
4654 ret
= VM_FAULT_NOPAGE
;
4658 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4659 len
= size
& ~PAGE_CACHE_MASK
;
4661 len
= PAGE_CACHE_SIZE
;
4663 * Return if we have all the buffers mapped. This avoids the need to do
4664 * journal_start/journal_stop which can block and take a long time
4666 if (page_has_buffers(page
)) {
4667 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
4668 ext4_bh_unmapped
)) {
4669 /* Wait so that we don't change page under IO */
4670 wait_on_page_writeback(page
);
4671 ret
= VM_FAULT_LOCKED
;
4676 /* OK, we need to fill the hole... */
4677 if (ext4_should_dioread_nolock(inode
))
4678 get_block
= ext4_get_block_write
;
4680 get_block
= ext4_get_block
;
4682 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
4683 if (IS_ERR(handle
)) {
4684 ret
= VM_FAULT_SIGBUS
;
4687 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
4688 if (!ret
&& ext4_should_journal_data(inode
)) {
4689 if (walk_page_buffers(handle
, page_buffers(page
), 0,
4690 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
4692 ret
= VM_FAULT_SIGBUS
;
4695 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
4697 ext4_journal_stop(handle
);
4698 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
4701 ret
= block_page_mkwrite_return(ret
);