]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
ext4: rename ext4_count_free_blocks() to ext4_count_free_clusters()
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
54 {
55 trace_ext4_begin_ordered_truncate(inode, new_size);
56 /*
57 * If jinode is zero, then we never opened the file for
58 * writing, so there's no need to call
59 * jbd2_journal_begin_ordered_truncate() since there's no
60 * outstanding writes we need to flush.
61 */
62 if (!EXT4_I(inode)->jinode)
63 return 0;
64 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
65 EXT4_I(inode)->jinode,
66 new_size);
67 }
68
69 static void ext4_invalidatepage(struct page *page, unsigned long offset);
70 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
71 struct buffer_head *bh_result, int create);
72 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
73 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
74 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
75 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
76
77 /*
78 * Test whether an inode is a fast symlink.
79 */
80 static int ext4_inode_is_fast_symlink(struct inode *inode)
81 {
82 int ea_blocks = EXT4_I(inode)->i_file_acl ?
83 (inode->i_sb->s_blocksize >> 9) : 0;
84
85 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
86 }
87
88 /*
89 * Restart the transaction associated with *handle. This does a commit,
90 * so before we call here everything must be consistently dirtied against
91 * this transaction.
92 */
93 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
94 int nblocks)
95 {
96 int ret;
97
98 /*
99 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
100 * moment, get_block can be called only for blocks inside i_size since
101 * page cache has been already dropped and writes are blocked by
102 * i_mutex. So we can safely drop the i_data_sem here.
103 */
104 BUG_ON(EXT4_JOURNAL(inode) == NULL);
105 jbd_debug(2, "restarting handle %p\n", handle);
106 up_write(&EXT4_I(inode)->i_data_sem);
107 ret = ext4_journal_restart(handle, nblocks);
108 down_write(&EXT4_I(inode)->i_data_sem);
109 ext4_discard_preallocations(inode);
110
111 return ret;
112 }
113
114 /*
115 * Called at the last iput() if i_nlink is zero.
116 */
117 void ext4_evict_inode(struct inode *inode)
118 {
119 handle_t *handle;
120 int err;
121
122 trace_ext4_evict_inode(inode);
123
124 ext4_ioend_wait(inode);
125
126 if (inode->i_nlink) {
127 /*
128 * When journalling data dirty buffers are tracked only in the
129 * journal. So although mm thinks everything is clean and
130 * ready for reaping the inode might still have some pages to
131 * write in the running transaction or waiting to be
132 * checkpointed. Thus calling jbd2_journal_invalidatepage()
133 * (via truncate_inode_pages()) to discard these buffers can
134 * cause data loss. Also even if we did not discard these
135 * buffers, we would have no way to find them after the inode
136 * is reaped and thus user could see stale data if he tries to
137 * read them before the transaction is checkpointed. So be
138 * careful and force everything to disk here... We use
139 * ei->i_datasync_tid to store the newest transaction
140 * containing inode's data.
141 *
142 * Note that directories do not have this problem because they
143 * don't use page cache.
144 */
145 if (ext4_should_journal_data(inode) &&
146 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
147 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
148 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
149
150 jbd2_log_start_commit(journal, commit_tid);
151 jbd2_log_wait_commit(journal, commit_tid);
152 filemap_write_and_wait(&inode->i_data);
153 }
154 truncate_inode_pages(&inode->i_data, 0);
155 goto no_delete;
156 }
157
158 if (!is_bad_inode(inode))
159 dquot_initialize(inode);
160
161 if (ext4_should_order_data(inode))
162 ext4_begin_ordered_truncate(inode, 0);
163 truncate_inode_pages(&inode->i_data, 0);
164
165 if (is_bad_inode(inode))
166 goto no_delete;
167
168 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
169 if (IS_ERR(handle)) {
170 ext4_std_error(inode->i_sb, PTR_ERR(handle));
171 /*
172 * If we're going to skip the normal cleanup, we still need to
173 * make sure that the in-core orphan linked list is properly
174 * cleaned up.
175 */
176 ext4_orphan_del(NULL, inode);
177 goto no_delete;
178 }
179
180 if (IS_SYNC(inode))
181 ext4_handle_sync(handle);
182 inode->i_size = 0;
183 err = ext4_mark_inode_dirty(handle, inode);
184 if (err) {
185 ext4_warning(inode->i_sb,
186 "couldn't mark inode dirty (err %d)", err);
187 goto stop_handle;
188 }
189 if (inode->i_blocks)
190 ext4_truncate(inode);
191
192 /*
193 * ext4_ext_truncate() doesn't reserve any slop when it
194 * restarts journal transactions; therefore there may not be
195 * enough credits left in the handle to remove the inode from
196 * the orphan list and set the dtime field.
197 */
198 if (!ext4_handle_has_enough_credits(handle, 3)) {
199 err = ext4_journal_extend(handle, 3);
200 if (err > 0)
201 err = ext4_journal_restart(handle, 3);
202 if (err != 0) {
203 ext4_warning(inode->i_sb,
204 "couldn't extend journal (err %d)", err);
205 stop_handle:
206 ext4_journal_stop(handle);
207 ext4_orphan_del(NULL, inode);
208 goto no_delete;
209 }
210 }
211
212 /*
213 * Kill off the orphan record which ext4_truncate created.
214 * AKPM: I think this can be inside the above `if'.
215 * Note that ext4_orphan_del() has to be able to cope with the
216 * deletion of a non-existent orphan - this is because we don't
217 * know if ext4_truncate() actually created an orphan record.
218 * (Well, we could do this if we need to, but heck - it works)
219 */
220 ext4_orphan_del(handle, inode);
221 EXT4_I(inode)->i_dtime = get_seconds();
222
223 /*
224 * One subtle ordering requirement: if anything has gone wrong
225 * (transaction abort, IO errors, whatever), then we can still
226 * do these next steps (the fs will already have been marked as
227 * having errors), but we can't free the inode if the mark_dirty
228 * fails.
229 */
230 if (ext4_mark_inode_dirty(handle, inode))
231 /* If that failed, just do the required in-core inode clear. */
232 ext4_clear_inode(inode);
233 else
234 ext4_free_inode(handle, inode);
235 ext4_journal_stop(handle);
236 return;
237 no_delete:
238 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
239 }
240
241 #ifdef CONFIG_QUOTA
242 qsize_t *ext4_get_reserved_space(struct inode *inode)
243 {
244 return &EXT4_I(inode)->i_reserved_quota;
245 }
246 #endif
247
248 /*
249 * Calculate the number of metadata blocks need to reserve
250 * to allocate a block located at @lblock
251 */
252 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
253 {
254 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
255 return ext4_ext_calc_metadata_amount(inode, lblock);
256
257 return ext4_ind_calc_metadata_amount(inode, lblock);
258 }
259
260 /*
261 * Called with i_data_sem down, which is important since we can call
262 * ext4_discard_preallocations() from here.
263 */
264 void ext4_da_update_reserve_space(struct inode *inode,
265 int used, int quota_claim)
266 {
267 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
268 struct ext4_inode_info *ei = EXT4_I(inode);
269
270 spin_lock(&ei->i_block_reservation_lock);
271 trace_ext4_da_update_reserve_space(inode, used);
272 if (unlikely(used > ei->i_reserved_data_blocks)) {
273 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
274 "with only %d reserved data blocks\n",
275 __func__, inode->i_ino, used,
276 ei->i_reserved_data_blocks);
277 WARN_ON(1);
278 used = ei->i_reserved_data_blocks;
279 }
280
281 /* Update per-inode reservations */
282 ei->i_reserved_data_blocks -= used;
283 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
284 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
285 used + ei->i_allocated_meta_blocks);
286 ei->i_allocated_meta_blocks = 0;
287
288 if (ei->i_reserved_data_blocks == 0) {
289 /*
290 * We can release all of the reserved metadata blocks
291 * only when we have written all of the delayed
292 * allocation blocks.
293 */
294 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
295 ei->i_reserved_meta_blocks);
296 ei->i_reserved_meta_blocks = 0;
297 ei->i_da_metadata_calc_len = 0;
298 }
299 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
300
301 /* Update quota subsystem for data blocks */
302 if (quota_claim)
303 dquot_claim_block(inode, EXT4_C2B(sbi, used));
304 else {
305 /*
306 * We did fallocate with an offset that is already delayed
307 * allocated. So on delayed allocated writeback we should
308 * not re-claim the quota for fallocated blocks.
309 */
310 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
311 }
312
313 /*
314 * If we have done all the pending block allocations and if
315 * there aren't any writers on the inode, we can discard the
316 * inode's preallocations.
317 */
318 if ((ei->i_reserved_data_blocks == 0) &&
319 (atomic_read(&inode->i_writecount) == 0))
320 ext4_discard_preallocations(inode);
321 }
322
323 static int __check_block_validity(struct inode *inode, const char *func,
324 unsigned int line,
325 struct ext4_map_blocks *map)
326 {
327 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
328 map->m_len)) {
329 ext4_error_inode(inode, func, line, map->m_pblk,
330 "lblock %lu mapped to illegal pblock "
331 "(length %d)", (unsigned long) map->m_lblk,
332 map->m_len);
333 return -EIO;
334 }
335 return 0;
336 }
337
338 #define check_block_validity(inode, map) \
339 __check_block_validity((inode), __func__, __LINE__, (map))
340
341 /*
342 * Return the number of contiguous dirty pages in a given inode
343 * starting at page frame idx.
344 */
345 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
346 unsigned int max_pages)
347 {
348 struct address_space *mapping = inode->i_mapping;
349 pgoff_t index;
350 struct pagevec pvec;
351 pgoff_t num = 0;
352 int i, nr_pages, done = 0;
353
354 if (max_pages == 0)
355 return 0;
356 pagevec_init(&pvec, 0);
357 while (!done) {
358 index = idx;
359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
360 PAGECACHE_TAG_DIRTY,
361 (pgoff_t)PAGEVEC_SIZE);
362 if (nr_pages == 0)
363 break;
364 for (i = 0; i < nr_pages; i++) {
365 struct page *page = pvec.pages[i];
366 struct buffer_head *bh, *head;
367
368 lock_page(page);
369 if (unlikely(page->mapping != mapping) ||
370 !PageDirty(page) ||
371 PageWriteback(page) ||
372 page->index != idx) {
373 done = 1;
374 unlock_page(page);
375 break;
376 }
377 if (page_has_buffers(page)) {
378 bh = head = page_buffers(page);
379 do {
380 if (!buffer_delay(bh) &&
381 !buffer_unwritten(bh))
382 done = 1;
383 bh = bh->b_this_page;
384 } while (!done && (bh != head));
385 }
386 unlock_page(page);
387 if (done)
388 break;
389 idx++;
390 num++;
391 if (num >= max_pages) {
392 done = 1;
393 break;
394 }
395 }
396 pagevec_release(&pvec);
397 }
398 return num;
399 }
400
401 /*
402 * The ext4_map_blocks() function tries to look up the requested blocks,
403 * and returns if the blocks are already mapped.
404 *
405 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
406 * and store the allocated blocks in the result buffer head and mark it
407 * mapped.
408 *
409 * If file type is extents based, it will call ext4_ext_map_blocks(),
410 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
411 * based files
412 *
413 * On success, it returns the number of blocks being mapped or allocate.
414 * if create==0 and the blocks are pre-allocated and uninitialized block,
415 * the result buffer head is unmapped. If the create ==1, it will make sure
416 * the buffer head is mapped.
417 *
418 * It returns 0 if plain look up failed (blocks have not been allocated), in
419 * that casem, buffer head is unmapped
420 *
421 * It returns the error in case of allocation failure.
422 */
423 int ext4_map_blocks(handle_t *handle, struct inode *inode,
424 struct ext4_map_blocks *map, int flags)
425 {
426 int retval;
427
428 map->m_flags = 0;
429 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
430 "logical block %lu\n", inode->i_ino, flags, map->m_len,
431 (unsigned long) map->m_lblk);
432 /*
433 * Try to see if we can get the block without requesting a new
434 * file system block.
435 */
436 down_read((&EXT4_I(inode)->i_data_sem));
437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 retval = ext4_ext_map_blocks(handle, inode, map, 0);
439 } else {
440 retval = ext4_ind_map_blocks(handle, inode, map, 0);
441 }
442 up_read((&EXT4_I(inode)->i_data_sem));
443
444 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
445 int ret = check_block_validity(inode, map);
446 if (ret != 0)
447 return ret;
448 }
449
450 /* If it is only a block(s) look up */
451 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
452 return retval;
453
454 /*
455 * Returns if the blocks have already allocated
456 *
457 * Note that if blocks have been preallocated
458 * ext4_ext_get_block() returns th create = 0
459 * with buffer head unmapped.
460 */
461 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
462 return retval;
463
464 /*
465 * When we call get_blocks without the create flag, the
466 * BH_Unwritten flag could have gotten set if the blocks
467 * requested were part of a uninitialized extent. We need to
468 * clear this flag now that we are committed to convert all or
469 * part of the uninitialized extent to be an initialized
470 * extent. This is because we need to avoid the combination
471 * of BH_Unwritten and BH_Mapped flags being simultaneously
472 * set on the buffer_head.
473 */
474 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
475
476 /*
477 * New blocks allocate and/or writing to uninitialized extent
478 * will possibly result in updating i_data, so we take
479 * the write lock of i_data_sem, and call get_blocks()
480 * with create == 1 flag.
481 */
482 down_write((&EXT4_I(inode)->i_data_sem));
483
484 /*
485 * if the caller is from delayed allocation writeout path
486 * we have already reserved fs blocks for allocation
487 * let the underlying get_block() function know to
488 * avoid double accounting
489 */
490 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
491 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
492 /*
493 * We need to check for EXT4 here because migrate
494 * could have changed the inode type in between
495 */
496 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
497 retval = ext4_ext_map_blocks(handle, inode, map, flags);
498 } else {
499 retval = ext4_ind_map_blocks(handle, inode, map, flags);
500
501 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
502 /*
503 * We allocated new blocks which will result in
504 * i_data's format changing. Force the migrate
505 * to fail by clearing migrate flags
506 */
507 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
508 }
509
510 /*
511 * Update reserved blocks/metadata blocks after successful
512 * block allocation which had been deferred till now. We don't
513 * support fallocate for non extent files. So we can update
514 * reserve space here.
515 */
516 if ((retval > 0) &&
517 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
518 ext4_da_update_reserve_space(inode, retval, 1);
519 }
520 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
521 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
522
523 up_write((&EXT4_I(inode)->i_data_sem));
524 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
525 int ret = check_block_validity(inode, map);
526 if (ret != 0)
527 return ret;
528 }
529 return retval;
530 }
531
532 /* Maximum number of blocks we map for direct IO at once. */
533 #define DIO_MAX_BLOCKS 4096
534
535 static int _ext4_get_block(struct inode *inode, sector_t iblock,
536 struct buffer_head *bh, int flags)
537 {
538 handle_t *handle = ext4_journal_current_handle();
539 struct ext4_map_blocks map;
540 int ret = 0, started = 0;
541 int dio_credits;
542
543 map.m_lblk = iblock;
544 map.m_len = bh->b_size >> inode->i_blkbits;
545
546 if (flags && !handle) {
547 /* Direct IO write... */
548 if (map.m_len > DIO_MAX_BLOCKS)
549 map.m_len = DIO_MAX_BLOCKS;
550 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
551 handle = ext4_journal_start(inode, dio_credits);
552 if (IS_ERR(handle)) {
553 ret = PTR_ERR(handle);
554 return ret;
555 }
556 started = 1;
557 }
558
559 ret = ext4_map_blocks(handle, inode, &map, flags);
560 if (ret > 0) {
561 map_bh(bh, inode->i_sb, map.m_pblk);
562 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
563 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
564 ret = 0;
565 }
566 if (started)
567 ext4_journal_stop(handle);
568 return ret;
569 }
570
571 int ext4_get_block(struct inode *inode, sector_t iblock,
572 struct buffer_head *bh, int create)
573 {
574 return _ext4_get_block(inode, iblock, bh,
575 create ? EXT4_GET_BLOCKS_CREATE : 0);
576 }
577
578 /*
579 * `handle' can be NULL if create is zero
580 */
581 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
582 ext4_lblk_t block, int create, int *errp)
583 {
584 struct ext4_map_blocks map;
585 struct buffer_head *bh;
586 int fatal = 0, err;
587
588 J_ASSERT(handle != NULL || create == 0);
589
590 map.m_lblk = block;
591 map.m_len = 1;
592 err = ext4_map_blocks(handle, inode, &map,
593 create ? EXT4_GET_BLOCKS_CREATE : 0);
594
595 if (err < 0)
596 *errp = err;
597 if (err <= 0)
598 return NULL;
599 *errp = 0;
600
601 bh = sb_getblk(inode->i_sb, map.m_pblk);
602 if (!bh) {
603 *errp = -EIO;
604 return NULL;
605 }
606 if (map.m_flags & EXT4_MAP_NEW) {
607 J_ASSERT(create != 0);
608 J_ASSERT(handle != NULL);
609
610 /*
611 * Now that we do not always journal data, we should
612 * keep in mind whether this should always journal the
613 * new buffer as metadata. For now, regular file
614 * writes use ext4_get_block instead, so it's not a
615 * problem.
616 */
617 lock_buffer(bh);
618 BUFFER_TRACE(bh, "call get_create_access");
619 fatal = ext4_journal_get_create_access(handle, bh);
620 if (!fatal && !buffer_uptodate(bh)) {
621 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
622 set_buffer_uptodate(bh);
623 }
624 unlock_buffer(bh);
625 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
626 err = ext4_handle_dirty_metadata(handle, inode, bh);
627 if (!fatal)
628 fatal = err;
629 } else {
630 BUFFER_TRACE(bh, "not a new buffer");
631 }
632 if (fatal) {
633 *errp = fatal;
634 brelse(bh);
635 bh = NULL;
636 }
637 return bh;
638 }
639
640 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
641 ext4_lblk_t block, int create, int *err)
642 {
643 struct buffer_head *bh;
644
645 bh = ext4_getblk(handle, inode, block, create, err);
646 if (!bh)
647 return bh;
648 if (buffer_uptodate(bh))
649 return bh;
650 ll_rw_block(READ_META, 1, &bh);
651 wait_on_buffer(bh);
652 if (buffer_uptodate(bh))
653 return bh;
654 put_bh(bh);
655 *err = -EIO;
656 return NULL;
657 }
658
659 static int walk_page_buffers(handle_t *handle,
660 struct buffer_head *head,
661 unsigned from,
662 unsigned to,
663 int *partial,
664 int (*fn)(handle_t *handle,
665 struct buffer_head *bh))
666 {
667 struct buffer_head *bh;
668 unsigned block_start, block_end;
669 unsigned blocksize = head->b_size;
670 int err, ret = 0;
671 struct buffer_head *next;
672
673 for (bh = head, block_start = 0;
674 ret == 0 && (bh != head || !block_start);
675 block_start = block_end, bh = next) {
676 next = bh->b_this_page;
677 block_end = block_start + blocksize;
678 if (block_end <= from || block_start >= to) {
679 if (partial && !buffer_uptodate(bh))
680 *partial = 1;
681 continue;
682 }
683 err = (*fn)(handle, bh);
684 if (!ret)
685 ret = err;
686 }
687 return ret;
688 }
689
690 /*
691 * To preserve ordering, it is essential that the hole instantiation and
692 * the data write be encapsulated in a single transaction. We cannot
693 * close off a transaction and start a new one between the ext4_get_block()
694 * and the commit_write(). So doing the jbd2_journal_start at the start of
695 * prepare_write() is the right place.
696 *
697 * Also, this function can nest inside ext4_writepage() ->
698 * block_write_full_page(). In that case, we *know* that ext4_writepage()
699 * has generated enough buffer credits to do the whole page. So we won't
700 * block on the journal in that case, which is good, because the caller may
701 * be PF_MEMALLOC.
702 *
703 * By accident, ext4 can be reentered when a transaction is open via
704 * quota file writes. If we were to commit the transaction while thus
705 * reentered, there can be a deadlock - we would be holding a quota
706 * lock, and the commit would never complete if another thread had a
707 * transaction open and was blocking on the quota lock - a ranking
708 * violation.
709 *
710 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
711 * will _not_ run commit under these circumstances because handle->h_ref
712 * is elevated. We'll still have enough credits for the tiny quotafile
713 * write.
714 */
715 static int do_journal_get_write_access(handle_t *handle,
716 struct buffer_head *bh)
717 {
718 int dirty = buffer_dirty(bh);
719 int ret;
720
721 if (!buffer_mapped(bh) || buffer_freed(bh))
722 return 0;
723 /*
724 * __block_write_begin() could have dirtied some buffers. Clean
725 * the dirty bit as jbd2_journal_get_write_access() could complain
726 * otherwise about fs integrity issues. Setting of the dirty bit
727 * by __block_write_begin() isn't a real problem here as we clear
728 * the bit before releasing a page lock and thus writeback cannot
729 * ever write the buffer.
730 */
731 if (dirty)
732 clear_buffer_dirty(bh);
733 ret = ext4_journal_get_write_access(handle, bh);
734 if (!ret && dirty)
735 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
736 return ret;
737 }
738
739 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
740 struct buffer_head *bh_result, int create);
741 static int ext4_write_begin(struct file *file, struct address_space *mapping,
742 loff_t pos, unsigned len, unsigned flags,
743 struct page **pagep, void **fsdata)
744 {
745 struct inode *inode = mapping->host;
746 int ret, needed_blocks;
747 handle_t *handle;
748 int retries = 0;
749 struct page *page;
750 pgoff_t index;
751 unsigned from, to;
752
753 trace_ext4_write_begin(inode, pos, len, flags);
754 /*
755 * Reserve one block more for addition to orphan list in case
756 * we allocate blocks but write fails for some reason
757 */
758 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
759 index = pos >> PAGE_CACHE_SHIFT;
760 from = pos & (PAGE_CACHE_SIZE - 1);
761 to = from + len;
762
763 retry:
764 handle = ext4_journal_start(inode, needed_blocks);
765 if (IS_ERR(handle)) {
766 ret = PTR_ERR(handle);
767 goto out;
768 }
769
770 /* We cannot recurse into the filesystem as the transaction is already
771 * started */
772 flags |= AOP_FLAG_NOFS;
773
774 page = grab_cache_page_write_begin(mapping, index, flags);
775 if (!page) {
776 ext4_journal_stop(handle);
777 ret = -ENOMEM;
778 goto out;
779 }
780 *pagep = page;
781
782 if (ext4_should_dioread_nolock(inode))
783 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
784 else
785 ret = __block_write_begin(page, pos, len, ext4_get_block);
786
787 if (!ret && ext4_should_journal_data(inode)) {
788 ret = walk_page_buffers(handle, page_buffers(page),
789 from, to, NULL, do_journal_get_write_access);
790 }
791
792 if (ret) {
793 unlock_page(page);
794 page_cache_release(page);
795 /*
796 * __block_write_begin may have instantiated a few blocks
797 * outside i_size. Trim these off again. Don't need
798 * i_size_read because we hold i_mutex.
799 *
800 * Add inode to orphan list in case we crash before
801 * truncate finishes
802 */
803 if (pos + len > inode->i_size && ext4_can_truncate(inode))
804 ext4_orphan_add(handle, inode);
805
806 ext4_journal_stop(handle);
807 if (pos + len > inode->i_size) {
808 ext4_truncate_failed_write(inode);
809 /*
810 * If truncate failed early the inode might
811 * still be on the orphan list; we need to
812 * make sure the inode is removed from the
813 * orphan list in that case.
814 */
815 if (inode->i_nlink)
816 ext4_orphan_del(NULL, inode);
817 }
818 }
819
820 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
821 goto retry;
822 out:
823 return ret;
824 }
825
826 /* For write_end() in data=journal mode */
827 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
828 {
829 if (!buffer_mapped(bh) || buffer_freed(bh))
830 return 0;
831 set_buffer_uptodate(bh);
832 return ext4_handle_dirty_metadata(handle, NULL, bh);
833 }
834
835 static int ext4_generic_write_end(struct file *file,
836 struct address_space *mapping,
837 loff_t pos, unsigned len, unsigned copied,
838 struct page *page, void *fsdata)
839 {
840 int i_size_changed = 0;
841 struct inode *inode = mapping->host;
842 handle_t *handle = ext4_journal_current_handle();
843
844 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
845
846 /*
847 * No need to use i_size_read() here, the i_size
848 * cannot change under us because we hold i_mutex.
849 *
850 * But it's important to update i_size while still holding page lock:
851 * page writeout could otherwise come in and zero beyond i_size.
852 */
853 if (pos + copied > inode->i_size) {
854 i_size_write(inode, pos + copied);
855 i_size_changed = 1;
856 }
857
858 if (pos + copied > EXT4_I(inode)->i_disksize) {
859 /* We need to mark inode dirty even if
860 * new_i_size is less that inode->i_size
861 * bu greater than i_disksize.(hint delalloc)
862 */
863 ext4_update_i_disksize(inode, (pos + copied));
864 i_size_changed = 1;
865 }
866 unlock_page(page);
867 page_cache_release(page);
868
869 /*
870 * Don't mark the inode dirty under page lock. First, it unnecessarily
871 * makes the holding time of page lock longer. Second, it forces lock
872 * ordering of page lock and transaction start for journaling
873 * filesystems.
874 */
875 if (i_size_changed)
876 ext4_mark_inode_dirty(handle, inode);
877
878 return copied;
879 }
880
881 /*
882 * We need to pick up the new inode size which generic_commit_write gave us
883 * `file' can be NULL - eg, when called from page_symlink().
884 *
885 * ext4 never places buffers on inode->i_mapping->private_list. metadata
886 * buffers are managed internally.
887 */
888 static int ext4_ordered_write_end(struct file *file,
889 struct address_space *mapping,
890 loff_t pos, unsigned len, unsigned copied,
891 struct page *page, void *fsdata)
892 {
893 handle_t *handle = ext4_journal_current_handle();
894 struct inode *inode = mapping->host;
895 int ret = 0, ret2;
896
897 trace_ext4_ordered_write_end(inode, pos, len, copied);
898 ret = ext4_jbd2_file_inode(handle, inode);
899
900 if (ret == 0) {
901 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
902 page, fsdata);
903 copied = ret2;
904 if (pos + len > inode->i_size && ext4_can_truncate(inode))
905 /* if we have allocated more blocks and copied
906 * less. We will have blocks allocated outside
907 * inode->i_size. So truncate them
908 */
909 ext4_orphan_add(handle, inode);
910 if (ret2 < 0)
911 ret = ret2;
912 }
913 ret2 = ext4_journal_stop(handle);
914 if (!ret)
915 ret = ret2;
916
917 if (pos + len > inode->i_size) {
918 ext4_truncate_failed_write(inode);
919 /*
920 * If truncate failed early the inode might still be
921 * on the orphan list; we need to make sure the inode
922 * is removed from the orphan list in that case.
923 */
924 if (inode->i_nlink)
925 ext4_orphan_del(NULL, inode);
926 }
927
928
929 return ret ? ret : copied;
930 }
931
932 static int ext4_writeback_write_end(struct file *file,
933 struct address_space *mapping,
934 loff_t pos, unsigned len, unsigned copied,
935 struct page *page, void *fsdata)
936 {
937 handle_t *handle = ext4_journal_current_handle();
938 struct inode *inode = mapping->host;
939 int ret = 0, ret2;
940
941 trace_ext4_writeback_write_end(inode, pos, len, copied);
942 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
943 page, fsdata);
944 copied = ret2;
945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 /* if we have allocated more blocks and copied
947 * less. We will have blocks allocated outside
948 * inode->i_size. So truncate them
949 */
950 ext4_orphan_add(handle, inode);
951
952 if (ret2 < 0)
953 ret = ret2;
954
955 ret2 = ext4_journal_stop(handle);
956 if (!ret)
957 ret = ret2;
958
959 if (pos + len > inode->i_size) {
960 ext4_truncate_failed_write(inode);
961 /*
962 * If truncate failed early the inode might still be
963 * on the orphan list; we need to make sure the inode
964 * is removed from the orphan list in that case.
965 */
966 if (inode->i_nlink)
967 ext4_orphan_del(NULL, inode);
968 }
969
970 return ret ? ret : copied;
971 }
972
973 static int ext4_journalled_write_end(struct file *file,
974 struct address_space *mapping,
975 loff_t pos, unsigned len, unsigned copied,
976 struct page *page, void *fsdata)
977 {
978 handle_t *handle = ext4_journal_current_handle();
979 struct inode *inode = mapping->host;
980 int ret = 0, ret2;
981 int partial = 0;
982 unsigned from, to;
983 loff_t new_i_size;
984
985 trace_ext4_journalled_write_end(inode, pos, len, copied);
986 from = pos & (PAGE_CACHE_SIZE - 1);
987 to = from + len;
988
989 BUG_ON(!ext4_handle_valid(handle));
990
991 if (copied < len) {
992 if (!PageUptodate(page))
993 copied = 0;
994 page_zero_new_buffers(page, from+copied, to);
995 }
996
997 ret = walk_page_buffers(handle, page_buffers(page), from,
998 to, &partial, write_end_fn);
999 if (!partial)
1000 SetPageUptodate(page);
1001 new_i_size = pos + copied;
1002 if (new_i_size > inode->i_size)
1003 i_size_write(inode, pos+copied);
1004 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1005 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1006 if (new_i_size > EXT4_I(inode)->i_disksize) {
1007 ext4_update_i_disksize(inode, new_i_size);
1008 ret2 = ext4_mark_inode_dirty(handle, inode);
1009 if (!ret)
1010 ret = ret2;
1011 }
1012
1013 unlock_page(page);
1014 page_cache_release(page);
1015 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1016 /* if we have allocated more blocks and copied
1017 * less. We will have blocks allocated outside
1018 * inode->i_size. So truncate them
1019 */
1020 ext4_orphan_add(handle, inode);
1021
1022 ret2 = ext4_journal_stop(handle);
1023 if (!ret)
1024 ret = ret2;
1025 if (pos + len > inode->i_size) {
1026 ext4_truncate_failed_write(inode);
1027 /*
1028 * If truncate failed early the inode might still be
1029 * on the orphan list; we need to make sure the inode
1030 * is removed from the orphan list in that case.
1031 */
1032 if (inode->i_nlink)
1033 ext4_orphan_del(NULL, inode);
1034 }
1035
1036 return ret ? ret : copied;
1037 }
1038
1039 /*
1040 * Reserve a single cluster located at lblock
1041 */
1042 int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1043 {
1044 int retries = 0;
1045 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1046 struct ext4_inode_info *ei = EXT4_I(inode);
1047 unsigned int md_needed;
1048 int ret;
1049
1050 /*
1051 * recalculate the amount of metadata blocks to reserve
1052 * in order to allocate nrblocks
1053 * worse case is one extent per block
1054 */
1055 repeat:
1056 spin_lock(&ei->i_block_reservation_lock);
1057 md_needed = EXT4_NUM_B2C(sbi,
1058 ext4_calc_metadata_amount(inode, lblock));
1059 trace_ext4_da_reserve_space(inode, md_needed);
1060 spin_unlock(&ei->i_block_reservation_lock);
1061
1062 /*
1063 * We will charge metadata quota at writeout time; this saves
1064 * us from metadata over-estimation, though we may go over by
1065 * a small amount in the end. Here we just reserve for data.
1066 */
1067 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1068 if (ret)
1069 return ret;
1070 /*
1071 * We do still charge estimated metadata to the sb though;
1072 * we cannot afford to run out of free blocks.
1073 */
1074 if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
1075 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1076 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1077 yield();
1078 goto repeat;
1079 }
1080 return -ENOSPC;
1081 }
1082 spin_lock(&ei->i_block_reservation_lock);
1083 ei->i_reserved_data_blocks++;
1084 ei->i_reserved_meta_blocks += md_needed;
1085 spin_unlock(&ei->i_block_reservation_lock);
1086
1087 return 0; /* success */
1088 }
1089
1090 static void ext4_da_release_space(struct inode *inode, int to_free)
1091 {
1092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1093 struct ext4_inode_info *ei = EXT4_I(inode);
1094
1095 if (!to_free)
1096 return; /* Nothing to release, exit */
1097
1098 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1099
1100 trace_ext4_da_release_space(inode, to_free);
1101 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1102 /*
1103 * if there aren't enough reserved blocks, then the
1104 * counter is messed up somewhere. Since this
1105 * function is called from invalidate page, it's
1106 * harmless to return without any action.
1107 */
1108 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1109 "ino %lu, to_free %d with only %d reserved "
1110 "data blocks\n", inode->i_ino, to_free,
1111 ei->i_reserved_data_blocks);
1112 WARN_ON(1);
1113 to_free = ei->i_reserved_data_blocks;
1114 }
1115 ei->i_reserved_data_blocks -= to_free;
1116
1117 if (ei->i_reserved_data_blocks == 0) {
1118 /*
1119 * We can release all of the reserved metadata blocks
1120 * only when we have written all of the delayed
1121 * allocation blocks.
1122 * Note that in case of bigalloc, i_reserved_meta_blocks,
1123 * i_reserved_data_blocks, etc. refer to number of clusters.
1124 */
1125 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1126 ei->i_reserved_meta_blocks);
1127 ei->i_reserved_meta_blocks = 0;
1128 ei->i_da_metadata_calc_len = 0;
1129 }
1130
1131 /* update fs dirty data blocks counter */
1132 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1133
1134 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1135
1136 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1137 }
1138
1139 static void ext4_da_page_release_reservation(struct page *page,
1140 unsigned long offset)
1141 {
1142 int to_release = 0;
1143 struct buffer_head *head, *bh;
1144 unsigned int curr_off = 0;
1145 struct inode *inode = page->mapping->host;
1146 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1147 int num_clusters;
1148
1149 head = page_buffers(page);
1150 bh = head;
1151 do {
1152 unsigned int next_off = curr_off + bh->b_size;
1153
1154 if ((offset <= curr_off) && (buffer_delay(bh))) {
1155 to_release++;
1156 clear_buffer_delay(bh);
1157 }
1158 curr_off = next_off;
1159 } while ((bh = bh->b_this_page) != head);
1160
1161 /* If we have released all the blocks belonging to a cluster, then we
1162 * need to release the reserved space for that cluster. */
1163 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1164 while (num_clusters > 0) {
1165 ext4_fsblk_t lblk;
1166 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1167 ((num_clusters - 1) << sbi->s_cluster_bits);
1168 if (sbi->s_cluster_ratio == 1 ||
1169 !ext4_find_delalloc_cluster(inode, lblk, 1))
1170 ext4_da_release_space(inode, 1);
1171
1172 num_clusters--;
1173 }
1174 }
1175
1176 /*
1177 * Delayed allocation stuff
1178 */
1179
1180 /*
1181 * mpage_da_submit_io - walks through extent of pages and try to write
1182 * them with writepage() call back
1183 *
1184 * @mpd->inode: inode
1185 * @mpd->first_page: first page of the extent
1186 * @mpd->next_page: page after the last page of the extent
1187 *
1188 * By the time mpage_da_submit_io() is called we expect all blocks
1189 * to be allocated. this may be wrong if allocation failed.
1190 *
1191 * As pages are already locked by write_cache_pages(), we can't use it
1192 */
1193 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1194 struct ext4_map_blocks *map)
1195 {
1196 struct pagevec pvec;
1197 unsigned long index, end;
1198 int ret = 0, err, nr_pages, i;
1199 struct inode *inode = mpd->inode;
1200 struct address_space *mapping = inode->i_mapping;
1201 loff_t size = i_size_read(inode);
1202 unsigned int len, block_start;
1203 struct buffer_head *bh, *page_bufs = NULL;
1204 int journal_data = ext4_should_journal_data(inode);
1205 sector_t pblock = 0, cur_logical = 0;
1206 struct ext4_io_submit io_submit;
1207
1208 BUG_ON(mpd->next_page <= mpd->first_page);
1209 memset(&io_submit, 0, sizeof(io_submit));
1210 /*
1211 * We need to start from the first_page to the next_page - 1
1212 * to make sure we also write the mapped dirty buffer_heads.
1213 * If we look at mpd->b_blocknr we would only be looking
1214 * at the currently mapped buffer_heads.
1215 */
1216 index = mpd->first_page;
1217 end = mpd->next_page - 1;
1218
1219 pagevec_init(&pvec, 0);
1220 while (index <= end) {
1221 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1222 if (nr_pages == 0)
1223 break;
1224 for (i = 0; i < nr_pages; i++) {
1225 int commit_write = 0, skip_page = 0;
1226 struct page *page = pvec.pages[i];
1227
1228 index = page->index;
1229 if (index > end)
1230 break;
1231
1232 if (index == size >> PAGE_CACHE_SHIFT)
1233 len = size & ~PAGE_CACHE_MASK;
1234 else
1235 len = PAGE_CACHE_SIZE;
1236 if (map) {
1237 cur_logical = index << (PAGE_CACHE_SHIFT -
1238 inode->i_blkbits);
1239 pblock = map->m_pblk + (cur_logical -
1240 map->m_lblk);
1241 }
1242 index++;
1243
1244 BUG_ON(!PageLocked(page));
1245 BUG_ON(PageWriteback(page));
1246
1247 /*
1248 * If the page does not have buffers (for
1249 * whatever reason), try to create them using
1250 * __block_write_begin. If this fails,
1251 * skip the page and move on.
1252 */
1253 if (!page_has_buffers(page)) {
1254 if (__block_write_begin(page, 0, len,
1255 noalloc_get_block_write)) {
1256 skip_page:
1257 unlock_page(page);
1258 continue;
1259 }
1260 commit_write = 1;
1261 }
1262
1263 bh = page_bufs = page_buffers(page);
1264 block_start = 0;
1265 do {
1266 if (!bh)
1267 goto skip_page;
1268 if (map && (cur_logical >= map->m_lblk) &&
1269 (cur_logical <= (map->m_lblk +
1270 (map->m_len - 1)))) {
1271 if (buffer_delay(bh)) {
1272 clear_buffer_delay(bh);
1273 bh->b_blocknr = pblock;
1274 }
1275 if (buffer_unwritten(bh) ||
1276 buffer_mapped(bh))
1277 BUG_ON(bh->b_blocknr != pblock);
1278 if (map->m_flags & EXT4_MAP_UNINIT)
1279 set_buffer_uninit(bh);
1280 clear_buffer_unwritten(bh);
1281 }
1282
1283 /* skip page if block allocation undone */
1284 if (buffer_delay(bh) || buffer_unwritten(bh))
1285 skip_page = 1;
1286 bh = bh->b_this_page;
1287 block_start += bh->b_size;
1288 cur_logical++;
1289 pblock++;
1290 } while (bh != page_bufs);
1291
1292 if (skip_page)
1293 goto skip_page;
1294
1295 if (commit_write)
1296 /* mark the buffer_heads as dirty & uptodate */
1297 block_commit_write(page, 0, len);
1298
1299 clear_page_dirty_for_io(page);
1300 /*
1301 * Delalloc doesn't support data journalling,
1302 * but eventually maybe we'll lift this
1303 * restriction.
1304 */
1305 if (unlikely(journal_data && PageChecked(page)))
1306 err = __ext4_journalled_writepage(page, len);
1307 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1308 err = ext4_bio_write_page(&io_submit, page,
1309 len, mpd->wbc);
1310 else if (buffer_uninit(page_bufs)) {
1311 ext4_set_bh_endio(page_bufs, inode);
1312 err = block_write_full_page_endio(page,
1313 noalloc_get_block_write,
1314 mpd->wbc, ext4_end_io_buffer_write);
1315 } else
1316 err = block_write_full_page(page,
1317 noalloc_get_block_write, mpd->wbc);
1318
1319 if (!err)
1320 mpd->pages_written++;
1321 /*
1322 * In error case, we have to continue because
1323 * remaining pages are still locked
1324 */
1325 if (ret == 0)
1326 ret = err;
1327 }
1328 pagevec_release(&pvec);
1329 }
1330 ext4_io_submit(&io_submit);
1331 return ret;
1332 }
1333
1334 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1335 {
1336 int nr_pages, i;
1337 pgoff_t index, end;
1338 struct pagevec pvec;
1339 struct inode *inode = mpd->inode;
1340 struct address_space *mapping = inode->i_mapping;
1341
1342 index = mpd->first_page;
1343 end = mpd->next_page - 1;
1344 while (index <= end) {
1345 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1346 if (nr_pages == 0)
1347 break;
1348 for (i = 0; i < nr_pages; i++) {
1349 struct page *page = pvec.pages[i];
1350 if (page->index > end)
1351 break;
1352 BUG_ON(!PageLocked(page));
1353 BUG_ON(PageWriteback(page));
1354 block_invalidatepage(page, 0);
1355 ClearPageUptodate(page);
1356 unlock_page(page);
1357 }
1358 index = pvec.pages[nr_pages - 1]->index + 1;
1359 pagevec_release(&pvec);
1360 }
1361 return;
1362 }
1363
1364 static void ext4_print_free_blocks(struct inode *inode)
1365 {
1366 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1367 printk(KERN_CRIT "Total free blocks count %lld\n",
1368 EXT4_C2B(EXT4_SB(inode->i_sb),
1369 ext4_count_free_clusters(inode->i_sb)));
1370 printk(KERN_CRIT "Free/Dirty block details\n");
1371 printk(KERN_CRIT "free_blocks=%lld\n",
1372 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1373 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1374 printk(KERN_CRIT "dirty_blocks=%lld\n",
1375 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1376 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1377 printk(KERN_CRIT "Block reservation details\n");
1378 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1379 EXT4_I(inode)->i_reserved_data_blocks);
1380 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1381 EXT4_I(inode)->i_reserved_meta_blocks);
1382 return;
1383 }
1384
1385 /*
1386 * mpage_da_map_and_submit - go through given space, map them
1387 * if necessary, and then submit them for I/O
1388 *
1389 * @mpd - bh describing space
1390 *
1391 * The function skips space we know is already mapped to disk blocks.
1392 *
1393 */
1394 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1395 {
1396 int err, blks, get_blocks_flags;
1397 struct ext4_map_blocks map, *mapp = NULL;
1398 sector_t next = mpd->b_blocknr;
1399 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1400 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1401 handle_t *handle = NULL;
1402
1403 /*
1404 * If the blocks are mapped already, or we couldn't accumulate
1405 * any blocks, then proceed immediately to the submission stage.
1406 */
1407 if ((mpd->b_size == 0) ||
1408 ((mpd->b_state & (1 << BH_Mapped)) &&
1409 !(mpd->b_state & (1 << BH_Delay)) &&
1410 !(mpd->b_state & (1 << BH_Unwritten))))
1411 goto submit_io;
1412
1413 handle = ext4_journal_current_handle();
1414 BUG_ON(!handle);
1415
1416 /*
1417 * Call ext4_map_blocks() to allocate any delayed allocation
1418 * blocks, or to convert an uninitialized extent to be
1419 * initialized (in the case where we have written into
1420 * one or more preallocated blocks).
1421 *
1422 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1423 * indicate that we are on the delayed allocation path. This
1424 * affects functions in many different parts of the allocation
1425 * call path. This flag exists primarily because we don't
1426 * want to change *many* call functions, so ext4_map_blocks()
1427 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1428 * inode's allocation semaphore is taken.
1429 *
1430 * If the blocks in questions were delalloc blocks, set
1431 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1432 * variables are updated after the blocks have been allocated.
1433 */
1434 map.m_lblk = next;
1435 map.m_len = max_blocks;
1436 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1437 if (ext4_should_dioread_nolock(mpd->inode))
1438 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1439 if (mpd->b_state & (1 << BH_Delay))
1440 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1441
1442 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1443 if (blks < 0) {
1444 struct super_block *sb = mpd->inode->i_sb;
1445
1446 err = blks;
1447 /*
1448 * If get block returns EAGAIN or ENOSPC and there
1449 * appears to be free blocks we will just let
1450 * mpage_da_submit_io() unlock all of the pages.
1451 */
1452 if (err == -EAGAIN)
1453 goto submit_io;
1454
1455 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1456 mpd->retval = err;
1457 goto submit_io;
1458 }
1459
1460 /*
1461 * get block failure will cause us to loop in
1462 * writepages, because a_ops->writepage won't be able
1463 * to make progress. The page will be redirtied by
1464 * writepage and writepages will again try to write
1465 * the same.
1466 */
1467 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1468 ext4_msg(sb, KERN_CRIT,
1469 "delayed block allocation failed for inode %lu "
1470 "at logical offset %llu with max blocks %zd "
1471 "with error %d", mpd->inode->i_ino,
1472 (unsigned long long) next,
1473 mpd->b_size >> mpd->inode->i_blkbits, err);
1474 ext4_msg(sb, KERN_CRIT,
1475 "This should not happen!! Data will be lost\n");
1476 if (err == -ENOSPC)
1477 ext4_print_free_blocks(mpd->inode);
1478 }
1479 /* invalidate all the pages */
1480 ext4_da_block_invalidatepages(mpd);
1481
1482 /* Mark this page range as having been completed */
1483 mpd->io_done = 1;
1484 return;
1485 }
1486 BUG_ON(blks == 0);
1487
1488 mapp = &map;
1489 if (map.m_flags & EXT4_MAP_NEW) {
1490 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1491 int i;
1492
1493 for (i = 0; i < map.m_len; i++)
1494 unmap_underlying_metadata(bdev, map.m_pblk + i);
1495
1496 if (ext4_should_order_data(mpd->inode)) {
1497 err = ext4_jbd2_file_inode(handle, mpd->inode);
1498 if (err)
1499 /* Only if the journal is aborted */
1500 return;
1501 }
1502 }
1503
1504 /*
1505 * Update on-disk size along with block allocation.
1506 */
1507 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1508 if (disksize > i_size_read(mpd->inode))
1509 disksize = i_size_read(mpd->inode);
1510 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1511 ext4_update_i_disksize(mpd->inode, disksize);
1512 err = ext4_mark_inode_dirty(handle, mpd->inode);
1513 if (err)
1514 ext4_error(mpd->inode->i_sb,
1515 "Failed to mark inode %lu dirty",
1516 mpd->inode->i_ino);
1517 }
1518
1519 submit_io:
1520 mpage_da_submit_io(mpd, mapp);
1521 mpd->io_done = 1;
1522 }
1523
1524 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1525 (1 << BH_Delay) | (1 << BH_Unwritten))
1526
1527 /*
1528 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1529 *
1530 * @mpd->lbh - extent of blocks
1531 * @logical - logical number of the block in the file
1532 * @bh - bh of the block (used to access block's state)
1533 *
1534 * the function is used to collect contig. blocks in same state
1535 */
1536 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1537 sector_t logical, size_t b_size,
1538 unsigned long b_state)
1539 {
1540 sector_t next;
1541 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1542
1543 /*
1544 * XXX Don't go larger than mballoc is willing to allocate
1545 * This is a stopgap solution. We eventually need to fold
1546 * mpage_da_submit_io() into this function and then call
1547 * ext4_map_blocks() multiple times in a loop
1548 */
1549 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1550 goto flush_it;
1551
1552 /* check if thereserved journal credits might overflow */
1553 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1554 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1555 /*
1556 * With non-extent format we are limited by the journal
1557 * credit available. Total credit needed to insert
1558 * nrblocks contiguous blocks is dependent on the
1559 * nrblocks. So limit nrblocks.
1560 */
1561 goto flush_it;
1562 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1563 EXT4_MAX_TRANS_DATA) {
1564 /*
1565 * Adding the new buffer_head would make it cross the
1566 * allowed limit for which we have journal credit
1567 * reserved. So limit the new bh->b_size
1568 */
1569 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1570 mpd->inode->i_blkbits;
1571 /* we will do mpage_da_submit_io in the next loop */
1572 }
1573 }
1574 /*
1575 * First block in the extent
1576 */
1577 if (mpd->b_size == 0) {
1578 mpd->b_blocknr = logical;
1579 mpd->b_size = b_size;
1580 mpd->b_state = b_state & BH_FLAGS;
1581 return;
1582 }
1583
1584 next = mpd->b_blocknr + nrblocks;
1585 /*
1586 * Can we merge the block to our big extent?
1587 */
1588 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1589 mpd->b_size += b_size;
1590 return;
1591 }
1592
1593 flush_it:
1594 /*
1595 * We couldn't merge the block to our extent, so we
1596 * need to flush current extent and start new one
1597 */
1598 mpage_da_map_and_submit(mpd);
1599 return;
1600 }
1601
1602 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1603 {
1604 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1605 }
1606
1607 /*
1608 * This is a special get_blocks_t callback which is used by
1609 * ext4_da_write_begin(). It will either return mapped block or
1610 * reserve space for a single block.
1611 *
1612 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1613 * We also have b_blocknr = -1 and b_bdev initialized properly
1614 *
1615 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1616 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1617 * initialized properly.
1618 */
1619 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1620 struct buffer_head *bh, int create)
1621 {
1622 struct ext4_map_blocks map;
1623 int ret = 0;
1624 sector_t invalid_block = ~((sector_t) 0xffff);
1625
1626 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1627 invalid_block = ~0;
1628
1629 BUG_ON(create == 0);
1630 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1631
1632 map.m_lblk = iblock;
1633 map.m_len = 1;
1634
1635 /*
1636 * first, we need to know whether the block is allocated already
1637 * preallocated blocks are unmapped but should treated
1638 * the same as allocated blocks.
1639 */
1640 ret = ext4_map_blocks(NULL, inode, &map, 0);
1641 if (ret < 0)
1642 return ret;
1643 if (ret == 0) {
1644 if (buffer_delay(bh))
1645 return 0; /* Not sure this could or should happen */
1646 /*
1647 * XXX: __block_write_begin() unmaps passed block, is it OK?
1648 */
1649 /* If the block was allocated from previously allocated cluster,
1650 * then we dont need to reserve it again. */
1651 if (!(map.m_flags & EXT4_MAP_FROM_CLUSTER)) {
1652 ret = ext4_da_reserve_space(inode, iblock);
1653 if (ret)
1654 /* not enough space to reserve */
1655 return ret;
1656 }
1657
1658 map_bh(bh, inode->i_sb, invalid_block);
1659 set_buffer_new(bh);
1660 set_buffer_delay(bh);
1661 return 0;
1662 }
1663
1664 map_bh(bh, inode->i_sb, map.m_pblk);
1665 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1666
1667 if (buffer_unwritten(bh)) {
1668 /* A delayed write to unwritten bh should be marked
1669 * new and mapped. Mapped ensures that we don't do
1670 * get_block multiple times when we write to the same
1671 * offset and new ensures that we do proper zero out
1672 * for partial write.
1673 */
1674 set_buffer_new(bh);
1675 set_buffer_mapped(bh);
1676 }
1677 return 0;
1678 }
1679
1680 /*
1681 * This function is used as a standard get_block_t calback function
1682 * when there is no desire to allocate any blocks. It is used as a
1683 * callback function for block_write_begin() and block_write_full_page().
1684 * These functions should only try to map a single block at a time.
1685 *
1686 * Since this function doesn't do block allocations even if the caller
1687 * requests it by passing in create=1, it is critically important that
1688 * any caller checks to make sure that any buffer heads are returned
1689 * by this function are either all already mapped or marked for
1690 * delayed allocation before calling block_write_full_page(). Otherwise,
1691 * b_blocknr could be left unitialized, and the page write functions will
1692 * be taken by surprise.
1693 */
1694 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1695 struct buffer_head *bh_result, int create)
1696 {
1697 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1698 return _ext4_get_block(inode, iblock, bh_result, 0);
1699 }
1700
1701 static int bget_one(handle_t *handle, struct buffer_head *bh)
1702 {
1703 get_bh(bh);
1704 return 0;
1705 }
1706
1707 static int bput_one(handle_t *handle, struct buffer_head *bh)
1708 {
1709 put_bh(bh);
1710 return 0;
1711 }
1712
1713 static int __ext4_journalled_writepage(struct page *page,
1714 unsigned int len)
1715 {
1716 struct address_space *mapping = page->mapping;
1717 struct inode *inode = mapping->host;
1718 struct buffer_head *page_bufs;
1719 handle_t *handle = NULL;
1720 int ret = 0;
1721 int err;
1722
1723 ClearPageChecked(page);
1724 page_bufs = page_buffers(page);
1725 BUG_ON(!page_bufs);
1726 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1727 /* As soon as we unlock the page, it can go away, but we have
1728 * references to buffers so we are safe */
1729 unlock_page(page);
1730
1731 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1732 if (IS_ERR(handle)) {
1733 ret = PTR_ERR(handle);
1734 goto out;
1735 }
1736
1737 BUG_ON(!ext4_handle_valid(handle));
1738
1739 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1740 do_journal_get_write_access);
1741
1742 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1743 write_end_fn);
1744 if (ret == 0)
1745 ret = err;
1746 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1747 err = ext4_journal_stop(handle);
1748 if (!ret)
1749 ret = err;
1750
1751 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1752 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1753 out:
1754 return ret;
1755 }
1756
1757 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1758 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1759
1760 /*
1761 * Note that we don't need to start a transaction unless we're journaling data
1762 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1763 * need to file the inode to the transaction's list in ordered mode because if
1764 * we are writing back data added by write(), the inode is already there and if
1765 * we are writing back data modified via mmap(), no one guarantees in which
1766 * transaction the data will hit the disk. In case we are journaling data, we
1767 * cannot start transaction directly because transaction start ranks above page
1768 * lock so we have to do some magic.
1769 *
1770 * This function can get called via...
1771 * - ext4_da_writepages after taking page lock (have journal handle)
1772 * - journal_submit_inode_data_buffers (no journal handle)
1773 * - shrink_page_list via pdflush (no journal handle)
1774 * - grab_page_cache when doing write_begin (have journal handle)
1775 *
1776 * We don't do any block allocation in this function. If we have page with
1777 * multiple blocks we need to write those buffer_heads that are mapped. This
1778 * is important for mmaped based write. So if we do with blocksize 1K
1779 * truncate(f, 1024);
1780 * a = mmap(f, 0, 4096);
1781 * a[0] = 'a';
1782 * truncate(f, 4096);
1783 * we have in the page first buffer_head mapped via page_mkwrite call back
1784 * but other bufer_heads would be unmapped but dirty(dirty done via the
1785 * do_wp_page). So writepage should write the first block. If we modify
1786 * the mmap area beyond 1024 we will again get a page_fault and the
1787 * page_mkwrite callback will do the block allocation and mark the
1788 * buffer_heads mapped.
1789 *
1790 * We redirty the page if we have any buffer_heads that is either delay or
1791 * unwritten in the page.
1792 *
1793 * We can get recursively called as show below.
1794 *
1795 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1796 * ext4_writepage()
1797 *
1798 * But since we don't do any block allocation we should not deadlock.
1799 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1800 */
1801 static int ext4_writepage(struct page *page,
1802 struct writeback_control *wbc)
1803 {
1804 int ret = 0, commit_write = 0;
1805 loff_t size;
1806 unsigned int len;
1807 struct buffer_head *page_bufs = NULL;
1808 struct inode *inode = page->mapping->host;
1809
1810 trace_ext4_writepage(page);
1811 size = i_size_read(inode);
1812 if (page->index == size >> PAGE_CACHE_SHIFT)
1813 len = size & ~PAGE_CACHE_MASK;
1814 else
1815 len = PAGE_CACHE_SIZE;
1816
1817 /*
1818 * If the page does not have buffers (for whatever reason),
1819 * try to create them using __block_write_begin. If this
1820 * fails, redirty the page and move on.
1821 */
1822 if (!page_has_buffers(page)) {
1823 if (__block_write_begin(page, 0, len,
1824 noalloc_get_block_write)) {
1825 redirty_page:
1826 redirty_page_for_writepage(wbc, page);
1827 unlock_page(page);
1828 return 0;
1829 }
1830 commit_write = 1;
1831 }
1832 page_bufs = page_buffers(page);
1833 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1834 ext4_bh_delay_or_unwritten)) {
1835 /*
1836 * We don't want to do block allocation, so redirty
1837 * the page and return. We may reach here when we do
1838 * a journal commit via journal_submit_inode_data_buffers.
1839 * We can also reach here via shrink_page_list
1840 */
1841 goto redirty_page;
1842 }
1843 if (commit_write)
1844 /* now mark the buffer_heads as dirty and uptodate */
1845 block_commit_write(page, 0, len);
1846
1847 if (PageChecked(page) && ext4_should_journal_data(inode))
1848 /*
1849 * It's mmapped pagecache. Add buffers and journal it. There
1850 * doesn't seem much point in redirtying the page here.
1851 */
1852 return __ext4_journalled_writepage(page, len);
1853
1854 if (buffer_uninit(page_bufs)) {
1855 ext4_set_bh_endio(page_bufs, inode);
1856 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1857 wbc, ext4_end_io_buffer_write);
1858 } else
1859 ret = block_write_full_page(page, noalloc_get_block_write,
1860 wbc);
1861
1862 return ret;
1863 }
1864
1865 /*
1866 * This is called via ext4_da_writepages() to
1867 * calculate the total number of credits to reserve to fit
1868 * a single extent allocation into a single transaction,
1869 * ext4_da_writpeages() will loop calling this before
1870 * the block allocation.
1871 */
1872
1873 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1874 {
1875 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1876
1877 /*
1878 * With non-extent format the journal credit needed to
1879 * insert nrblocks contiguous block is dependent on
1880 * number of contiguous block. So we will limit
1881 * number of contiguous block to a sane value
1882 */
1883 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1884 (max_blocks > EXT4_MAX_TRANS_DATA))
1885 max_blocks = EXT4_MAX_TRANS_DATA;
1886
1887 return ext4_chunk_trans_blocks(inode, max_blocks);
1888 }
1889
1890 /*
1891 * write_cache_pages_da - walk the list of dirty pages of the given
1892 * address space and accumulate pages that need writing, and call
1893 * mpage_da_map_and_submit to map a single contiguous memory region
1894 * and then write them.
1895 */
1896 static int write_cache_pages_da(struct address_space *mapping,
1897 struct writeback_control *wbc,
1898 struct mpage_da_data *mpd,
1899 pgoff_t *done_index)
1900 {
1901 struct buffer_head *bh, *head;
1902 struct inode *inode = mapping->host;
1903 struct pagevec pvec;
1904 unsigned int nr_pages;
1905 sector_t logical;
1906 pgoff_t index, end;
1907 long nr_to_write = wbc->nr_to_write;
1908 int i, tag, ret = 0;
1909
1910 memset(mpd, 0, sizeof(struct mpage_da_data));
1911 mpd->wbc = wbc;
1912 mpd->inode = inode;
1913 pagevec_init(&pvec, 0);
1914 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1915 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1916
1917 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1918 tag = PAGECACHE_TAG_TOWRITE;
1919 else
1920 tag = PAGECACHE_TAG_DIRTY;
1921
1922 *done_index = index;
1923 while (index <= end) {
1924 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1925 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1926 if (nr_pages == 0)
1927 return 0;
1928
1929 for (i = 0; i < nr_pages; i++) {
1930 struct page *page = pvec.pages[i];
1931
1932 /*
1933 * At this point, the page may be truncated or
1934 * invalidated (changing page->mapping to NULL), or
1935 * even swizzled back from swapper_space to tmpfs file
1936 * mapping. However, page->index will not change
1937 * because we have a reference on the page.
1938 */
1939 if (page->index > end)
1940 goto out;
1941
1942 *done_index = page->index + 1;
1943
1944 /*
1945 * If we can't merge this page, and we have
1946 * accumulated an contiguous region, write it
1947 */
1948 if ((mpd->next_page != page->index) &&
1949 (mpd->next_page != mpd->first_page)) {
1950 mpage_da_map_and_submit(mpd);
1951 goto ret_extent_tail;
1952 }
1953
1954 lock_page(page);
1955
1956 /*
1957 * If the page is no longer dirty, or its
1958 * mapping no longer corresponds to inode we
1959 * are writing (which means it has been
1960 * truncated or invalidated), or the page is
1961 * already under writeback and we are not
1962 * doing a data integrity writeback, skip the page
1963 */
1964 if (!PageDirty(page) ||
1965 (PageWriteback(page) &&
1966 (wbc->sync_mode == WB_SYNC_NONE)) ||
1967 unlikely(page->mapping != mapping)) {
1968 unlock_page(page);
1969 continue;
1970 }
1971
1972 wait_on_page_writeback(page);
1973 BUG_ON(PageWriteback(page));
1974
1975 if (mpd->next_page != page->index)
1976 mpd->first_page = page->index;
1977 mpd->next_page = page->index + 1;
1978 logical = (sector_t) page->index <<
1979 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1980
1981 if (!page_has_buffers(page)) {
1982 mpage_add_bh_to_extent(mpd, logical,
1983 PAGE_CACHE_SIZE,
1984 (1 << BH_Dirty) | (1 << BH_Uptodate));
1985 if (mpd->io_done)
1986 goto ret_extent_tail;
1987 } else {
1988 /*
1989 * Page with regular buffer heads,
1990 * just add all dirty ones
1991 */
1992 head = page_buffers(page);
1993 bh = head;
1994 do {
1995 BUG_ON(buffer_locked(bh));
1996 /*
1997 * We need to try to allocate
1998 * unmapped blocks in the same page.
1999 * Otherwise we won't make progress
2000 * with the page in ext4_writepage
2001 */
2002 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2003 mpage_add_bh_to_extent(mpd, logical,
2004 bh->b_size,
2005 bh->b_state);
2006 if (mpd->io_done)
2007 goto ret_extent_tail;
2008 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2009 /*
2010 * mapped dirty buffer. We need
2011 * to update the b_state
2012 * because we look at b_state
2013 * in mpage_da_map_blocks. We
2014 * don't update b_size because
2015 * if we find an unmapped
2016 * buffer_head later we need to
2017 * use the b_state flag of that
2018 * buffer_head.
2019 */
2020 if (mpd->b_size == 0)
2021 mpd->b_state = bh->b_state & BH_FLAGS;
2022 }
2023 logical++;
2024 } while ((bh = bh->b_this_page) != head);
2025 }
2026
2027 if (nr_to_write > 0) {
2028 nr_to_write--;
2029 if (nr_to_write == 0 &&
2030 wbc->sync_mode == WB_SYNC_NONE)
2031 /*
2032 * We stop writing back only if we are
2033 * not doing integrity sync. In case of
2034 * integrity sync we have to keep going
2035 * because someone may be concurrently
2036 * dirtying pages, and we might have
2037 * synced a lot of newly appeared dirty
2038 * pages, but have not synced all of the
2039 * old dirty pages.
2040 */
2041 goto out;
2042 }
2043 }
2044 pagevec_release(&pvec);
2045 cond_resched();
2046 }
2047 return 0;
2048 ret_extent_tail:
2049 ret = MPAGE_DA_EXTENT_TAIL;
2050 out:
2051 pagevec_release(&pvec);
2052 cond_resched();
2053 return ret;
2054 }
2055
2056
2057 static int ext4_da_writepages(struct address_space *mapping,
2058 struct writeback_control *wbc)
2059 {
2060 pgoff_t index;
2061 int range_whole = 0;
2062 handle_t *handle = NULL;
2063 struct mpage_da_data mpd;
2064 struct inode *inode = mapping->host;
2065 int pages_written = 0;
2066 unsigned int max_pages;
2067 int range_cyclic, cycled = 1, io_done = 0;
2068 int needed_blocks, ret = 0;
2069 long desired_nr_to_write, nr_to_writebump = 0;
2070 loff_t range_start = wbc->range_start;
2071 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2072 pgoff_t done_index = 0;
2073 pgoff_t end;
2074
2075 trace_ext4_da_writepages(inode, wbc);
2076
2077 /*
2078 * No pages to write? This is mainly a kludge to avoid starting
2079 * a transaction for special inodes like journal inode on last iput()
2080 * because that could violate lock ordering on umount
2081 */
2082 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2083 return 0;
2084
2085 /*
2086 * If the filesystem has aborted, it is read-only, so return
2087 * right away instead of dumping stack traces later on that
2088 * will obscure the real source of the problem. We test
2089 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2090 * the latter could be true if the filesystem is mounted
2091 * read-only, and in that case, ext4_da_writepages should
2092 * *never* be called, so if that ever happens, we would want
2093 * the stack trace.
2094 */
2095 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2096 return -EROFS;
2097
2098 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2099 range_whole = 1;
2100
2101 range_cyclic = wbc->range_cyclic;
2102 if (wbc->range_cyclic) {
2103 index = mapping->writeback_index;
2104 if (index)
2105 cycled = 0;
2106 wbc->range_start = index << PAGE_CACHE_SHIFT;
2107 wbc->range_end = LLONG_MAX;
2108 wbc->range_cyclic = 0;
2109 end = -1;
2110 } else {
2111 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2112 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2113 }
2114
2115 /*
2116 * This works around two forms of stupidity. The first is in
2117 * the writeback code, which caps the maximum number of pages
2118 * written to be 1024 pages. This is wrong on multiple
2119 * levels; different architectues have a different page size,
2120 * which changes the maximum amount of data which gets
2121 * written. Secondly, 4 megabytes is way too small. XFS
2122 * forces this value to be 16 megabytes by multiplying
2123 * nr_to_write parameter by four, and then relies on its
2124 * allocator to allocate larger extents to make them
2125 * contiguous. Unfortunately this brings us to the second
2126 * stupidity, which is that ext4's mballoc code only allocates
2127 * at most 2048 blocks. So we force contiguous writes up to
2128 * the number of dirty blocks in the inode, or
2129 * sbi->max_writeback_mb_bump whichever is smaller.
2130 */
2131 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2132 if (!range_cyclic && range_whole) {
2133 if (wbc->nr_to_write == LONG_MAX)
2134 desired_nr_to_write = wbc->nr_to_write;
2135 else
2136 desired_nr_to_write = wbc->nr_to_write * 8;
2137 } else
2138 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2139 max_pages);
2140 if (desired_nr_to_write > max_pages)
2141 desired_nr_to_write = max_pages;
2142
2143 if (wbc->nr_to_write < desired_nr_to_write) {
2144 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2145 wbc->nr_to_write = desired_nr_to_write;
2146 }
2147
2148 retry:
2149 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2150 tag_pages_for_writeback(mapping, index, end);
2151
2152 while (!ret && wbc->nr_to_write > 0) {
2153
2154 /*
2155 * we insert one extent at a time. So we need
2156 * credit needed for single extent allocation.
2157 * journalled mode is currently not supported
2158 * by delalloc
2159 */
2160 BUG_ON(ext4_should_journal_data(inode));
2161 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2162
2163 /* start a new transaction*/
2164 handle = ext4_journal_start(inode, needed_blocks);
2165 if (IS_ERR(handle)) {
2166 ret = PTR_ERR(handle);
2167 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2168 "%ld pages, ino %lu; err %d", __func__,
2169 wbc->nr_to_write, inode->i_ino, ret);
2170 goto out_writepages;
2171 }
2172
2173 /*
2174 * Now call write_cache_pages_da() to find the next
2175 * contiguous region of logical blocks that need
2176 * blocks to be allocated by ext4 and submit them.
2177 */
2178 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2179 /*
2180 * If we have a contiguous extent of pages and we
2181 * haven't done the I/O yet, map the blocks and submit
2182 * them for I/O.
2183 */
2184 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2185 mpage_da_map_and_submit(&mpd);
2186 ret = MPAGE_DA_EXTENT_TAIL;
2187 }
2188 trace_ext4_da_write_pages(inode, &mpd);
2189 wbc->nr_to_write -= mpd.pages_written;
2190
2191 ext4_journal_stop(handle);
2192
2193 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2194 /* commit the transaction which would
2195 * free blocks released in the transaction
2196 * and try again
2197 */
2198 jbd2_journal_force_commit_nested(sbi->s_journal);
2199 ret = 0;
2200 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2201 /*
2202 * got one extent now try with
2203 * rest of the pages
2204 */
2205 pages_written += mpd.pages_written;
2206 ret = 0;
2207 io_done = 1;
2208 } else if (wbc->nr_to_write)
2209 /*
2210 * There is no more writeout needed
2211 * or we requested for a noblocking writeout
2212 * and we found the device congested
2213 */
2214 break;
2215 }
2216 if (!io_done && !cycled) {
2217 cycled = 1;
2218 index = 0;
2219 wbc->range_start = index << PAGE_CACHE_SHIFT;
2220 wbc->range_end = mapping->writeback_index - 1;
2221 goto retry;
2222 }
2223
2224 /* Update index */
2225 wbc->range_cyclic = range_cyclic;
2226 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2227 /*
2228 * set the writeback_index so that range_cyclic
2229 * mode will write it back later
2230 */
2231 mapping->writeback_index = done_index;
2232
2233 out_writepages:
2234 wbc->nr_to_write -= nr_to_writebump;
2235 wbc->range_start = range_start;
2236 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2237 return ret;
2238 }
2239
2240 #define FALL_BACK_TO_NONDELALLOC 1
2241 static int ext4_nonda_switch(struct super_block *sb)
2242 {
2243 s64 free_blocks, dirty_blocks;
2244 struct ext4_sb_info *sbi = EXT4_SB(sb);
2245
2246 /*
2247 * switch to non delalloc mode if we are running low
2248 * on free block. The free block accounting via percpu
2249 * counters can get slightly wrong with percpu_counter_batch getting
2250 * accumulated on each CPU without updating global counters
2251 * Delalloc need an accurate free block accounting. So switch
2252 * to non delalloc when we are near to error range.
2253 */
2254 free_blocks = EXT4_C2B(sbi,
2255 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2256 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2257 if (2 * free_blocks < 3 * dirty_blocks ||
2258 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2259 /*
2260 * free block count is less than 150% of dirty blocks
2261 * or free blocks is less than watermark
2262 */
2263 return 1;
2264 }
2265 /*
2266 * Even if we don't switch but are nearing capacity,
2267 * start pushing delalloc when 1/2 of free blocks are dirty.
2268 */
2269 if (free_blocks < 2 * dirty_blocks)
2270 writeback_inodes_sb_if_idle(sb);
2271
2272 return 0;
2273 }
2274
2275 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2276 loff_t pos, unsigned len, unsigned flags,
2277 struct page **pagep, void **fsdata)
2278 {
2279 int ret, retries = 0;
2280 struct page *page;
2281 pgoff_t index;
2282 struct inode *inode = mapping->host;
2283 handle_t *handle;
2284 loff_t page_len;
2285
2286 index = pos >> PAGE_CACHE_SHIFT;
2287
2288 if (ext4_nonda_switch(inode->i_sb)) {
2289 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2290 return ext4_write_begin(file, mapping, pos,
2291 len, flags, pagep, fsdata);
2292 }
2293 *fsdata = (void *)0;
2294 trace_ext4_da_write_begin(inode, pos, len, flags);
2295 retry:
2296 /*
2297 * With delayed allocation, we don't log the i_disksize update
2298 * if there is delayed block allocation. But we still need
2299 * to journalling the i_disksize update if writes to the end
2300 * of file which has an already mapped buffer.
2301 */
2302 handle = ext4_journal_start(inode, 1);
2303 if (IS_ERR(handle)) {
2304 ret = PTR_ERR(handle);
2305 goto out;
2306 }
2307 /* We cannot recurse into the filesystem as the transaction is already
2308 * started */
2309 flags |= AOP_FLAG_NOFS;
2310
2311 page = grab_cache_page_write_begin(mapping, index, flags);
2312 if (!page) {
2313 ext4_journal_stop(handle);
2314 ret = -ENOMEM;
2315 goto out;
2316 }
2317 *pagep = page;
2318
2319 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2320 if (ret < 0) {
2321 unlock_page(page);
2322 ext4_journal_stop(handle);
2323 page_cache_release(page);
2324 /*
2325 * block_write_begin may have instantiated a few blocks
2326 * outside i_size. Trim these off again. Don't need
2327 * i_size_read because we hold i_mutex.
2328 */
2329 if (pos + len > inode->i_size)
2330 ext4_truncate_failed_write(inode);
2331 } else {
2332 page_len = pos & (PAGE_CACHE_SIZE - 1);
2333 if (page_len > 0) {
2334 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2335 inode, page, pos - page_len, page_len,
2336 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2337 }
2338 }
2339
2340 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2341 goto retry;
2342 out:
2343 return ret;
2344 }
2345
2346 /*
2347 * Check if we should update i_disksize
2348 * when write to the end of file but not require block allocation
2349 */
2350 static int ext4_da_should_update_i_disksize(struct page *page,
2351 unsigned long offset)
2352 {
2353 struct buffer_head *bh;
2354 struct inode *inode = page->mapping->host;
2355 unsigned int idx;
2356 int i;
2357
2358 bh = page_buffers(page);
2359 idx = offset >> inode->i_blkbits;
2360
2361 for (i = 0; i < idx; i++)
2362 bh = bh->b_this_page;
2363
2364 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2365 return 0;
2366 return 1;
2367 }
2368
2369 static int ext4_da_write_end(struct file *file,
2370 struct address_space *mapping,
2371 loff_t pos, unsigned len, unsigned copied,
2372 struct page *page, void *fsdata)
2373 {
2374 struct inode *inode = mapping->host;
2375 int ret = 0, ret2;
2376 handle_t *handle = ext4_journal_current_handle();
2377 loff_t new_i_size;
2378 unsigned long start, end;
2379 int write_mode = (int)(unsigned long)fsdata;
2380 loff_t page_len;
2381
2382 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2383 if (ext4_should_order_data(inode)) {
2384 return ext4_ordered_write_end(file, mapping, pos,
2385 len, copied, page, fsdata);
2386 } else if (ext4_should_writeback_data(inode)) {
2387 return ext4_writeback_write_end(file, mapping, pos,
2388 len, copied, page, fsdata);
2389 } else {
2390 BUG();
2391 }
2392 }
2393
2394 trace_ext4_da_write_end(inode, pos, len, copied);
2395 start = pos & (PAGE_CACHE_SIZE - 1);
2396 end = start + copied - 1;
2397
2398 /*
2399 * generic_write_end() will run mark_inode_dirty() if i_size
2400 * changes. So let's piggyback the i_disksize mark_inode_dirty
2401 * into that.
2402 */
2403
2404 new_i_size = pos + copied;
2405 if (new_i_size > EXT4_I(inode)->i_disksize) {
2406 if (ext4_da_should_update_i_disksize(page, end)) {
2407 down_write(&EXT4_I(inode)->i_data_sem);
2408 if (new_i_size > EXT4_I(inode)->i_disksize) {
2409 /*
2410 * Updating i_disksize when extending file
2411 * without needing block allocation
2412 */
2413 if (ext4_should_order_data(inode))
2414 ret = ext4_jbd2_file_inode(handle,
2415 inode);
2416
2417 EXT4_I(inode)->i_disksize = new_i_size;
2418 }
2419 up_write(&EXT4_I(inode)->i_data_sem);
2420 /* We need to mark inode dirty even if
2421 * new_i_size is less that inode->i_size
2422 * bu greater than i_disksize.(hint delalloc)
2423 */
2424 ext4_mark_inode_dirty(handle, inode);
2425 }
2426 }
2427 ret2 = generic_write_end(file, mapping, pos, len, copied,
2428 page, fsdata);
2429
2430 page_len = PAGE_CACHE_SIZE -
2431 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2432
2433 if (page_len > 0) {
2434 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2435 inode, page, pos + copied - 1, page_len,
2436 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2437 }
2438
2439 copied = ret2;
2440 if (ret2 < 0)
2441 ret = ret2;
2442 ret2 = ext4_journal_stop(handle);
2443 if (!ret)
2444 ret = ret2;
2445
2446 return ret ? ret : copied;
2447 }
2448
2449 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2450 {
2451 /*
2452 * Drop reserved blocks
2453 */
2454 BUG_ON(!PageLocked(page));
2455 if (!page_has_buffers(page))
2456 goto out;
2457
2458 ext4_da_page_release_reservation(page, offset);
2459
2460 out:
2461 ext4_invalidatepage(page, offset);
2462
2463 return;
2464 }
2465
2466 /*
2467 * Force all delayed allocation blocks to be allocated for a given inode.
2468 */
2469 int ext4_alloc_da_blocks(struct inode *inode)
2470 {
2471 trace_ext4_alloc_da_blocks(inode);
2472
2473 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2474 !EXT4_I(inode)->i_reserved_meta_blocks)
2475 return 0;
2476
2477 /*
2478 * We do something simple for now. The filemap_flush() will
2479 * also start triggering a write of the data blocks, which is
2480 * not strictly speaking necessary (and for users of
2481 * laptop_mode, not even desirable). However, to do otherwise
2482 * would require replicating code paths in:
2483 *
2484 * ext4_da_writepages() ->
2485 * write_cache_pages() ---> (via passed in callback function)
2486 * __mpage_da_writepage() -->
2487 * mpage_add_bh_to_extent()
2488 * mpage_da_map_blocks()
2489 *
2490 * The problem is that write_cache_pages(), located in
2491 * mm/page-writeback.c, marks pages clean in preparation for
2492 * doing I/O, which is not desirable if we're not planning on
2493 * doing I/O at all.
2494 *
2495 * We could call write_cache_pages(), and then redirty all of
2496 * the pages by calling redirty_page_for_writepage() but that
2497 * would be ugly in the extreme. So instead we would need to
2498 * replicate parts of the code in the above functions,
2499 * simplifying them because we wouldn't actually intend to
2500 * write out the pages, but rather only collect contiguous
2501 * logical block extents, call the multi-block allocator, and
2502 * then update the buffer heads with the block allocations.
2503 *
2504 * For now, though, we'll cheat by calling filemap_flush(),
2505 * which will map the blocks, and start the I/O, but not
2506 * actually wait for the I/O to complete.
2507 */
2508 return filemap_flush(inode->i_mapping);
2509 }
2510
2511 /*
2512 * bmap() is special. It gets used by applications such as lilo and by
2513 * the swapper to find the on-disk block of a specific piece of data.
2514 *
2515 * Naturally, this is dangerous if the block concerned is still in the
2516 * journal. If somebody makes a swapfile on an ext4 data-journaling
2517 * filesystem and enables swap, then they may get a nasty shock when the
2518 * data getting swapped to that swapfile suddenly gets overwritten by
2519 * the original zero's written out previously to the journal and
2520 * awaiting writeback in the kernel's buffer cache.
2521 *
2522 * So, if we see any bmap calls here on a modified, data-journaled file,
2523 * take extra steps to flush any blocks which might be in the cache.
2524 */
2525 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2526 {
2527 struct inode *inode = mapping->host;
2528 journal_t *journal;
2529 int err;
2530
2531 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2532 test_opt(inode->i_sb, DELALLOC)) {
2533 /*
2534 * With delalloc we want to sync the file
2535 * so that we can make sure we allocate
2536 * blocks for file
2537 */
2538 filemap_write_and_wait(mapping);
2539 }
2540
2541 if (EXT4_JOURNAL(inode) &&
2542 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2543 /*
2544 * This is a REALLY heavyweight approach, but the use of
2545 * bmap on dirty files is expected to be extremely rare:
2546 * only if we run lilo or swapon on a freshly made file
2547 * do we expect this to happen.
2548 *
2549 * (bmap requires CAP_SYS_RAWIO so this does not
2550 * represent an unprivileged user DOS attack --- we'd be
2551 * in trouble if mortal users could trigger this path at
2552 * will.)
2553 *
2554 * NB. EXT4_STATE_JDATA is not set on files other than
2555 * regular files. If somebody wants to bmap a directory
2556 * or symlink and gets confused because the buffer
2557 * hasn't yet been flushed to disk, they deserve
2558 * everything they get.
2559 */
2560
2561 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2562 journal = EXT4_JOURNAL(inode);
2563 jbd2_journal_lock_updates(journal);
2564 err = jbd2_journal_flush(journal);
2565 jbd2_journal_unlock_updates(journal);
2566
2567 if (err)
2568 return 0;
2569 }
2570
2571 return generic_block_bmap(mapping, block, ext4_get_block);
2572 }
2573
2574 static int ext4_readpage(struct file *file, struct page *page)
2575 {
2576 trace_ext4_readpage(page);
2577 return mpage_readpage(page, ext4_get_block);
2578 }
2579
2580 static int
2581 ext4_readpages(struct file *file, struct address_space *mapping,
2582 struct list_head *pages, unsigned nr_pages)
2583 {
2584 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2585 }
2586
2587 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2588 {
2589 struct buffer_head *head, *bh;
2590 unsigned int curr_off = 0;
2591
2592 if (!page_has_buffers(page))
2593 return;
2594 head = bh = page_buffers(page);
2595 do {
2596 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2597 && bh->b_private) {
2598 ext4_free_io_end(bh->b_private);
2599 bh->b_private = NULL;
2600 bh->b_end_io = NULL;
2601 }
2602 curr_off = curr_off + bh->b_size;
2603 bh = bh->b_this_page;
2604 } while (bh != head);
2605 }
2606
2607 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2608 {
2609 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2610
2611 trace_ext4_invalidatepage(page, offset);
2612
2613 /*
2614 * free any io_end structure allocated for buffers to be discarded
2615 */
2616 if (ext4_should_dioread_nolock(page->mapping->host))
2617 ext4_invalidatepage_free_endio(page, offset);
2618 /*
2619 * If it's a full truncate we just forget about the pending dirtying
2620 */
2621 if (offset == 0)
2622 ClearPageChecked(page);
2623
2624 if (journal)
2625 jbd2_journal_invalidatepage(journal, page, offset);
2626 else
2627 block_invalidatepage(page, offset);
2628 }
2629
2630 static int ext4_releasepage(struct page *page, gfp_t wait)
2631 {
2632 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2633
2634 trace_ext4_releasepage(page);
2635
2636 WARN_ON(PageChecked(page));
2637 if (!page_has_buffers(page))
2638 return 0;
2639 if (journal)
2640 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2641 else
2642 return try_to_free_buffers(page);
2643 }
2644
2645 /*
2646 * ext4_get_block used when preparing for a DIO write or buffer write.
2647 * We allocate an uinitialized extent if blocks haven't been allocated.
2648 * The extent will be converted to initialized after the IO is complete.
2649 */
2650 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2651 struct buffer_head *bh_result, int create)
2652 {
2653 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2654 inode->i_ino, create);
2655 return _ext4_get_block(inode, iblock, bh_result,
2656 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2657 }
2658
2659 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2660 ssize_t size, void *private, int ret,
2661 bool is_async)
2662 {
2663 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2664 ext4_io_end_t *io_end = iocb->private;
2665 struct workqueue_struct *wq;
2666 unsigned long flags;
2667 struct ext4_inode_info *ei;
2668
2669 /* if not async direct IO or dio with 0 bytes write, just return */
2670 if (!io_end || !size)
2671 goto out;
2672
2673 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2674 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2675 iocb->private, io_end->inode->i_ino, iocb, offset,
2676 size);
2677
2678 /* if not aio dio with unwritten extents, just free io and return */
2679 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2680 ext4_free_io_end(io_end);
2681 iocb->private = NULL;
2682 out:
2683 if (is_async)
2684 aio_complete(iocb, ret, 0);
2685 inode_dio_done(inode);
2686 return;
2687 }
2688
2689 io_end->offset = offset;
2690 io_end->size = size;
2691 if (is_async) {
2692 io_end->iocb = iocb;
2693 io_end->result = ret;
2694 }
2695 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2696
2697 /* Add the io_end to per-inode completed aio dio list*/
2698 ei = EXT4_I(io_end->inode);
2699 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2700 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2701 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2702
2703 /* queue the work to convert unwritten extents to written */
2704 queue_work(wq, &io_end->work);
2705 iocb->private = NULL;
2706
2707 /* XXX: probably should move into the real I/O completion handler */
2708 inode_dio_done(inode);
2709 }
2710
2711 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2712 {
2713 ext4_io_end_t *io_end = bh->b_private;
2714 struct workqueue_struct *wq;
2715 struct inode *inode;
2716 unsigned long flags;
2717
2718 if (!test_clear_buffer_uninit(bh) || !io_end)
2719 goto out;
2720
2721 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2722 printk("sb umounted, discard end_io request for inode %lu\n",
2723 io_end->inode->i_ino);
2724 ext4_free_io_end(io_end);
2725 goto out;
2726 }
2727
2728 /*
2729 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2730 * but being more careful is always safe for the future change.
2731 */
2732 inode = io_end->inode;
2733 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2734 io_end->flag |= EXT4_IO_END_UNWRITTEN;
2735 atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
2736 }
2737
2738 /* Add the io_end to per-inode completed io list*/
2739 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2740 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2741 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2742
2743 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2744 /* queue the work to convert unwritten extents to written */
2745 queue_work(wq, &io_end->work);
2746 out:
2747 bh->b_private = NULL;
2748 bh->b_end_io = NULL;
2749 clear_buffer_uninit(bh);
2750 end_buffer_async_write(bh, uptodate);
2751 }
2752
2753 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2754 {
2755 ext4_io_end_t *io_end;
2756 struct page *page = bh->b_page;
2757 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2758 size_t size = bh->b_size;
2759
2760 retry:
2761 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2762 if (!io_end) {
2763 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2764 schedule();
2765 goto retry;
2766 }
2767 io_end->offset = offset;
2768 io_end->size = size;
2769 /*
2770 * We need to hold a reference to the page to make sure it
2771 * doesn't get evicted before ext4_end_io_work() has a chance
2772 * to convert the extent from written to unwritten.
2773 */
2774 io_end->page = page;
2775 get_page(io_end->page);
2776
2777 bh->b_private = io_end;
2778 bh->b_end_io = ext4_end_io_buffer_write;
2779 return 0;
2780 }
2781
2782 /*
2783 * For ext4 extent files, ext4 will do direct-io write to holes,
2784 * preallocated extents, and those write extend the file, no need to
2785 * fall back to buffered IO.
2786 *
2787 * For holes, we fallocate those blocks, mark them as uninitialized
2788 * If those blocks were preallocated, we mark sure they are splited, but
2789 * still keep the range to write as uninitialized.
2790 *
2791 * The unwrritten extents will be converted to written when DIO is completed.
2792 * For async direct IO, since the IO may still pending when return, we
2793 * set up an end_io call back function, which will do the conversion
2794 * when async direct IO completed.
2795 *
2796 * If the O_DIRECT write will extend the file then add this inode to the
2797 * orphan list. So recovery will truncate it back to the original size
2798 * if the machine crashes during the write.
2799 *
2800 */
2801 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2802 const struct iovec *iov, loff_t offset,
2803 unsigned long nr_segs)
2804 {
2805 struct file *file = iocb->ki_filp;
2806 struct inode *inode = file->f_mapping->host;
2807 ssize_t ret;
2808 size_t count = iov_length(iov, nr_segs);
2809
2810 loff_t final_size = offset + count;
2811 if (rw == WRITE && final_size <= inode->i_size) {
2812 /*
2813 * We could direct write to holes and fallocate.
2814 *
2815 * Allocated blocks to fill the hole are marked as uninitialized
2816 * to prevent parallel buffered read to expose the stale data
2817 * before DIO complete the data IO.
2818 *
2819 * As to previously fallocated extents, ext4 get_block
2820 * will just simply mark the buffer mapped but still
2821 * keep the extents uninitialized.
2822 *
2823 * for non AIO case, we will convert those unwritten extents
2824 * to written after return back from blockdev_direct_IO.
2825 *
2826 * for async DIO, the conversion needs to be defered when
2827 * the IO is completed. The ext4 end_io callback function
2828 * will be called to take care of the conversion work.
2829 * Here for async case, we allocate an io_end structure to
2830 * hook to the iocb.
2831 */
2832 iocb->private = NULL;
2833 EXT4_I(inode)->cur_aio_dio = NULL;
2834 if (!is_sync_kiocb(iocb)) {
2835 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2836 if (!iocb->private)
2837 return -ENOMEM;
2838 /*
2839 * we save the io structure for current async
2840 * direct IO, so that later ext4_map_blocks()
2841 * could flag the io structure whether there
2842 * is a unwritten extents needs to be converted
2843 * when IO is completed.
2844 */
2845 EXT4_I(inode)->cur_aio_dio = iocb->private;
2846 }
2847
2848 ret = __blockdev_direct_IO(rw, iocb, inode,
2849 inode->i_sb->s_bdev, iov,
2850 offset, nr_segs,
2851 ext4_get_block_write,
2852 ext4_end_io_dio,
2853 NULL,
2854 DIO_LOCKING | DIO_SKIP_HOLES);
2855 if (iocb->private)
2856 EXT4_I(inode)->cur_aio_dio = NULL;
2857 /*
2858 * The io_end structure takes a reference to the inode,
2859 * that structure needs to be destroyed and the
2860 * reference to the inode need to be dropped, when IO is
2861 * complete, even with 0 byte write, or failed.
2862 *
2863 * In the successful AIO DIO case, the io_end structure will be
2864 * desctroyed and the reference to the inode will be dropped
2865 * after the end_io call back function is called.
2866 *
2867 * In the case there is 0 byte write, or error case, since
2868 * VFS direct IO won't invoke the end_io call back function,
2869 * we need to free the end_io structure here.
2870 */
2871 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2872 ext4_free_io_end(iocb->private);
2873 iocb->private = NULL;
2874 } else if (ret > 0 && ext4_test_inode_state(inode,
2875 EXT4_STATE_DIO_UNWRITTEN)) {
2876 int err;
2877 /*
2878 * for non AIO case, since the IO is already
2879 * completed, we could do the conversion right here
2880 */
2881 err = ext4_convert_unwritten_extents(inode,
2882 offset, ret);
2883 if (err < 0)
2884 ret = err;
2885 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2886 }
2887 return ret;
2888 }
2889
2890 /* for write the the end of file case, we fall back to old way */
2891 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2892 }
2893
2894 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2895 const struct iovec *iov, loff_t offset,
2896 unsigned long nr_segs)
2897 {
2898 struct file *file = iocb->ki_filp;
2899 struct inode *inode = file->f_mapping->host;
2900 ssize_t ret;
2901
2902 /*
2903 * If we are doing data journalling we don't support O_DIRECT
2904 */
2905 if (ext4_should_journal_data(inode))
2906 return 0;
2907
2908 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
2909 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2910 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
2911 else
2912 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2913 trace_ext4_direct_IO_exit(inode, offset,
2914 iov_length(iov, nr_segs), rw, ret);
2915 return ret;
2916 }
2917
2918 /*
2919 * Pages can be marked dirty completely asynchronously from ext4's journalling
2920 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2921 * much here because ->set_page_dirty is called under VFS locks. The page is
2922 * not necessarily locked.
2923 *
2924 * We cannot just dirty the page and leave attached buffers clean, because the
2925 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2926 * or jbddirty because all the journalling code will explode.
2927 *
2928 * So what we do is to mark the page "pending dirty" and next time writepage
2929 * is called, propagate that into the buffers appropriately.
2930 */
2931 static int ext4_journalled_set_page_dirty(struct page *page)
2932 {
2933 SetPageChecked(page);
2934 return __set_page_dirty_nobuffers(page);
2935 }
2936
2937 static const struct address_space_operations ext4_ordered_aops = {
2938 .readpage = ext4_readpage,
2939 .readpages = ext4_readpages,
2940 .writepage = ext4_writepage,
2941 .write_begin = ext4_write_begin,
2942 .write_end = ext4_ordered_write_end,
2943 .bmap = ext4_bmap,
2944 .invalidatepage = ext4_invalidatepage,
2945 .releasepage = ext4_releasepage,
2946 .direct_IO = ext4_direct_IO,
2947 .migratepage = buffer_migrate_page,
2948 .is_partially_uptodate = block_is_partially_uptodate,
2949 .error_remove_page = generic_error_remove_page,
2950 };
2951
2952 static const struct address_space_operations ext4_writeback_aops = {
2953 .readpage = ext4_readpage,
2954 .readpages = ext4_readpages,
2955 .writepage = ext4_writepage,
2956 .write_begin = ext4_write_begin,
2957 .write_end = ext4_writeback_write_end,
2958 .bmap = ext4_bmap,
2959 .invalidatepage = ext4_invalidatepage,
2960 .releasepage = ext4_releasepage,
2961 .direct_IO = ext4_direct_IO,
2962 .migratepage = buffer_migrate_page,
2963 .is_partially_uptodate = block_is_partially_uptodate,
2964 .error_remove_page = generic_error_remove_page,
2965 };
2966
2967 static const struct address_space_operations ext4_journalled_aops = {
2968 .readpage = ext4_readpage,
2969 .readpages = ext4_readpages,
2970 .writepage = ext4_writepage,
2971 .write_begin = ext4_write_begin,
2972 .write_end = ext4_journalled_write_end,
2973 .set_page_dirty = ext4_journalled_set_page_dirty,
2974 .bmap = ext4_bmap,
2975 .invalidatepage = ext4_invalidatepage,
2976 .releasepage = ext4_releasepage,
2977 .direct_IO = ext4_direct_IO,
2978 .is_partially_uptodate = block_is_partially_uptodate,
2979 .error_remove_page = generic_error_remove_page,
2980 };
2981
2982 static const struct address_space_operations ext4_da_aops = {
2983 .readpage = ext4_readpage,
2984 .readpages = ext4_readpages,
2985 .writepage = ext4_writepage,
2986 .writepages = ext4_da_writepages,
2987 .write_begin = ext4_da_write_begin,
2988 .write_end = ext4_da_write_end,
2989 .bmap = ext4_bmap,
2990 .invalidatepage = ext4_da_invalidatepage,
2991 .releasepage = ext4_releasepage,
2992 .direct_IO = ext4_direct_IO,
2993 .migratepage = buffer_migrate_page,
2994 .is_partially_uptodate = block_is_partially_uptodate,
2995 .error_remove_page = generic_error_remove_page,
2996 };
2997
2998 void ext4_set_aops(struct inode *inode)
2999 {
3000 if (ext4_should_order_data(inode) &&
3001 test_opt(inode->i_sb, DELALLOC))
3002 inode->i_mapping->a_ops = &ext4_da_aops;
3003 else if (ext4_should_order_data(inode))
3004 inode->i_mapping->a_ops = &ext4_ordered_aops;
3005 else if (ext4_should_writeback_data(inode) &&
3006 test_opt(inode->i_sb, DELALLOC))
3007 inode->i_mapping->a_ops = &ext4_da_aops;
3008 else if (ext4_should_writeback_data(inode))
3009 inode->i_mapping->a_ops = &ext4_writeback_aops;
3010 else
3011 inode->i_mapping->a_ops = &ext4_journalled_aops;
3012 }
3013
3014
3015 /*
3016 * ext4_discard_partial_page_buffers()
3017 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3018 * This function finds and locks the page containing the offset
3019 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3020 * Calling functions that already have the page locked should call
3021 * ext4_discard_partial_page_buffers_no_lock directly.
3022 */
3023 int ext4_discard_partial_page_buffers(handle_t *handle,
3024 struct address_space *mapping, loff_t from,
3025 loff_t length, int flags)
3026 {
3027 struct inode *inode = mapping->host;
3028 struct page *page;
3029 int err = 0;
3030
3031 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3032 mapping_gfp_mask(mapping) & ~__GFP_FS);
3033 if (!page)
3034 return -EINVAL;
3035
3036 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3037 from, length, flags);
3038
3039 unlock_page(page);
3040 page_cache_release(page);
3041 return err;
3042 }
3043
3044 /*
3045 * ext4_discard_partial_page_buffers_no_lock()
3046 * Zeros a page range of length 'length' starting from offset 'from'.
3047 * Buffer heads that correspond to the block aligned regions of the
3048 * zeroed range will be unmapped. Unblock aligned regions
3049 * will have the corresponding buffer head mapped if needed so that
3050 * that region of the page can be updated with the partial zero out.
3051 *
3052 * This function assumes that the page has already been locked. The
3053 * The range to be discarded must be contained with in the given page.
3054 * If the specified range exceeds the end of the page it will be shortened
3055 * to the end of the page that corresponds to 'from'. This function is
3056 * appropriate for updating a page and it buffer heads to be unmapped and
3057 * zeroed for blocks that have been either released, or are going to be
3058 * released.
3059 *
3060 * handle: The journal handle
3061 * inode: The files inode
3062 * page: A locked page that contains the offset "from"
3063 * from: The starting byte offset (from the begining of the file)
3064 * to begin discarding
3065 * len: The length of bytes to discard
3066 * flags: Optional flags that may be used:
3067 *
3068 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3069 * Only zero the regions of the page whose buffer heads
3070 * have already been unmapped. This flag is appropriate
3071 * for updateing the contents of a page whose blocks may
3072 * have already been released, and we only want to zero
3073 * out the regions that correspond to those released blocks.
3074 *
3075 * Returns zero on sucess or negative on failure.
3076 */
3077 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3078 struct inode *inode, struct page *page, loff_t from,
3079 loff_t length, int flags)
3080 {
3081 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3082 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3083 unsigned int blocksize, max, pos;
3084 unsigned int end_of_block, range_to_discard;
3085 ext4_lblk_t iblock;
3086 struct buffer_head *bh;
3087 int err = 0;
3088
3089 blocksize = inode->i_sb->s_blocksize;
3090 max = PAGE_CACHE_SIZE - offset;
3091
3092 if (index != page->index)
3093 return -EINVAL;
3094
3095 /*
3096 * correct length if it does not fall between
3097 * 'from' and the end of the page
3098 */
3099 if (length > max || length < 0)
3100 length = max;
3101
3102 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3103
3104 if (!page_has_buffers(page)) {
3105 /*
3106 * If the range to be discarded covers a partial block
3107 * we need to get the page buffers. This is because
3108 * partial blocks cannot be released and the page needs
3109 * to be updated with the contents of the block before
3110 * we write the zeros on top of it.
3111 */
3112 if (!(from & (blocksize - 1)) ||
3113 !((from + length) & (blocksize - 1))) {
3114 create_empty_buffers(page, blocksize, 0);
3115 } else {
3116 /*
3117 * If there are no partial blocks,
3118 * there is nothing to update,
3119 * so we can return now
3120 */
3121 return 0;
3122 }
3123 }
3124
3125 /* Find the buffer that contains "offset" */
3126 bh = page_buffers(page);
3127 pos = blocksize;
3128 while (offset >= pos) {
3129 bh = bh->b_this_page;
3130 iblock++;
3131 pos += blocksize;
3132 }
3133
3134 pos = offset;
3135 while (pos < offset + length) {
3136 err = 0;
3137
3138 /* The length of space left to zero and unmap */
3139 range_to_discard = offset + length - pos;
3140
3141 /* The length of space until the end of the block */
3142 end_of_block = blocksize - (pos & (blocksize-1));
3143
3144 /*
3145 * Do not unmap or zero past end of block
3146 * for this buffer head
3147 */
3148 if (range_to_discard > end_of_block)
3149 range_to_discard = end_of_block;
3150
3151
3152 /*
3153 * Skip this buffer head if we are only zeroing unampped
3154 * regions of the page
3155 */
3156 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3157 buffer_mapped(bh))
3158 goto next;
3159
3160 /* If the range is block aligned, unmap */
3161 if (range_to_discard == blocksize) {
3162 clear_buffer_dirty(bh);
3163 bh->b_bdev = NULL;
3164 clear_buffer_mapped(bh);
3165 clear_buffer_req(bh);
3166 clear_buffer_new(bh);
3167 clear_buffer_delay(bh);
3168 clear_buffer_unwritten(bh);
3169 clear_buffer_uptodate(bh);
3170 zero_user(page, pos, range_to_discard);
3171 BUFFER_TRACE(bh, "Buffer discarded");
3172 goto next;
3173 }
3174
3175 /*
3176 * If this block is not completely contained in the range
3177 * to be discarded, then it is not going to be released. Because
3178 * we need to keep this block, we need to make sure this part
3179 * of the page is uptodate before we modify it by writeing
3180 * partial zeros on it.
3181 */
3182 if (!buffer_mapped(bh)) {
3183 /*
3184 * Buffer head must be mapped before we can read
3185 * from the block
3186 */
3187 BUFFER_TRACE(bh, "unmapped");
3188 ext4_get_block(inode, iblock, bh, 0);
3189 /* unmapped? It's a hole - nothing to do */
3190 if (!buffer_mapped(bh)) {
3191 BUFFER_TRACE(bh, "still unmapped");
3192 goto next;
3193 }
3194 }
3195
3196 /* Ok, it's mapped. Make sure it's up-to-date */
3197 if (PageUptodate(page))
3198 set_buffer_uptodate(bh);
3199
3200 if (!buffer_uptodate(bh)) {
3201 err = -EIO;
3202 ll_rw_block(READ, 1, &bh);
3203 wait_on_buffer(bh);
3204 /* Uhhuh. Read error. Complain and punt.*/
3205 if (!buffer_uptodate(bh))
3206 goto next;
3207 }
3208
3209 if (ext4_should_journal_data(inode)) {
3210 BUFFER_TRACE(bh, "get write access");
3211 err = ext4_journal_get_write_access(handle, bh);
3212 if (err)
3213 goto next;
3214 }
3215
3216 zero_user(page, pos, range_to_discard);
3217
3218 err = 0;
3219 if (ext4_should_journal_data(inode)) {
3220 err = ext4_handle_dirty_metadata(handle, inode, bh);
3221 } else
3222 mark_buffer_dirty(bh);
3223
3224 BUFFER_TRACE(bh, "Partial buffer zeroed");
3225 next:
3226 bh = bh->b_this_page;
3227 iblock++;
3228 pos += range_to_discard;
3229 }
3230
3231 return err;
3232 }
3233
3234 /*
3235 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3236 * up to the end of the block which corresponds to `from'.
3237 * This required during truncate. We need to physically zero the tail end
3238 * of that block so it doesn't yield old data if the file is later grown.
3239 */
3240 int ext4_block_truncate_page(handle_t *handle,
3241 struct address_space *mapping, loff_t from)
3242 {
3243 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3244 unsigned length;
3245 unsigned blocksize;
3246 struct inode *inode = mapping->host;
3247
3248 blocksize = inode->i_sb->s_blocksize;
3249 length = blocksize - (offset & (blocksize - 1));
3250
3251 return ext4_block_zero_page_range(handle, mapping, from, length);
3252 }
3253
3254 /*
3255 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3256 * starting from file offset 'from'. The range to be zero'd must
3257 * be contained with in one block. If the specified range exceeds
3258 * the end of the block it will be shortened to end of the block
3259 * that cooresponds to 'from'
3260 */
3261 int ext4_block_zero_page_range(handle_t *handle,
3262 struct address_space *mapping, loff_t from, loff_t length)
3263 {
3264 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3265 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3266 unsigned blocksize, max, pos;
3267 ext4_lblk_t iblock;
3268 struct inode *inode = mapping->host;
3269 struct buffer_head *bh;
3270 struct page *page;
3271 int err = 0;
3272
3273 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3274 mapping_gfp_mask(mapping) & ~__GFP_FS);
3275 if (!page)
3276 return -EINVAL;
3277
3278 blocksize = inode->i_sb->s_blocksize;
3279 max = blocksize - (offset & (blocksize - 1));
3280
3281 /*
3282 * correct length if it does not fall between
3283 * 'from' and the end of the block
3284 */
3285 if (length > max || length < 0)
3286 length = max;
3287
3288 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3289
3290 if (!page_has_buffers(page))
3291 create_empty_buffers(page, blocksize, 0);
3292
3293 /* Find the buffer that contains "offset" */
3294 bh = page_buffers(page);
3295 pos = blocksize;
3296 while (offset >= pos) {
3297 bh = bh->b_this_page;
3298 iblock++;
3299 pos += blocksize;
3300 }
3301
3302 err = 0;
3303 if (buffer_freed(bh)) {
3304 BUFFER_TRACE(bh, "freed: skip");
3305 goto unlock;
3306 }
3307
3308 if (!buffer_mapped(bh)) {
3309 BUFFER_TRACE(bh, "unmapped");
3310 ext4_get_block(inode, iblock, bh, 0);
3311 /* unmapped? It's a hole - nothing to do */
3312 if (!buffer_mapped(bh)) {
3313 BUFFER_TRACE(bh, "still unmapped");
3314 goto unlock;
3315 }
3316 }
3317
3318 /* Ok, it's mapped. Make sure it's up-to-date */
3319 if (PageUptodate(page))
3320 set_buffer_uptodate(bh);
3321
3322 if (!buffer_uptodate(bh)) {
3323 err = -EIO;
3324 ll_rw_block(READ, 1, &bh);
3325 wait_on_buffer(bh);
3326 /* Uhhuh. Read error. Complain and punt. */
3327 if (!buffer_uptodate(bh))
3328 goto unlock;
3329 }
3330
3331 if (ext4_should_journal_data(inode)) {
3332 BUFFER_TRACE(bh, "get write access");
3333 err = ext4_journal_get_write_access(handle, bh);
3334 if (err)
3335 goto unlock;
3336 }
3337
3338 zero_user(page, offset, length);
3339
3340 BUFFER_TRACE(bh, "zeroed end of block");
3341
3342 err = 0;
3343 if (ext4_should_journal_data(inode)) {
3344 err = ext4_handle_dirty_metadata(handle, inode, bh);
3345 } else
3346 mark_buffer_dirty(bh);
3347
3348 unlock:
3349 unlock_page(page);
3350 page_cache_release(page);
3351 return err;
3352 }
3353
3354 int ext4_can_truncate(struct inode *inode)
3355 {
3356 if (S_ISREG(inode->i_mode))
3357 return 1;
3358 if (S_ISDIR(inode->i_mode))
3359 return 1;
3360 if (S_ISLNK(inode->i_mode))
3361 return !ext4_inode_is_fast_symlink(inode);
3362 return 0;
3363 }
3364
3365 /*
3366 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3367 * associated with the given offset and length
3368 *
3369 * @inode: File inode
3370 * @offset: The offset where the hole will begin
3371 * @len: The length of the hole
3372 *
3373 * Returns: 0 on sucess or negative on failure
3374 */
3375
3376 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3377 {
3378 struct inode *inode = file->f_path.dentry->d_inode;
3379 if (!S_ISREG(inode->i_mode))
3380 return -ENOTSUPP;
3381
3382 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3383 /* TODO: Add support for non extent hole punching */
3384 return -ENOTSUPP;
3385 }
3386
3387 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3388 /* TODO: Add support for bigalloc file systems */
3389 return -ENOTSUPP;
3390 }
3391
3392 return ext4_ext_punch_hole(file, offset, length);
3393 }
3394
3395 /*
3396 * ext4_truncate()
3397 *
3398 * We block out ext4_get_block() block instantiations across the entire
3399 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3400 * simultaneously on behalf of the same inode.
3401 *
3402 * As we work through the truncate and commmit bits of it to the journal there
3403 * is one core, guiding principle: the file's tree must always be consistent on
3404 * disk. We must be able to restart the truncate after a crash.
3405 *
3406 * The file's tree may be transiently inconsistent in memory (although it
3407 * probably isn't), but whenever we close off and commit a journal transaction,
3408 * the contents of (the filesystem + the journal) must be consistent and
3409 * restartable. It's pretty simple, really: bottom up, right to left (although
3410 * left-to-right works OK too).
3411 *
3412 * Note that at recovery time, journal replay occurs *before* the restart of
3413 * truncate against the orphan inode list.
3414 *
3415 * The committed inode has the new, desired i_size (which is the same as
3416 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3417 * that this inode's truncate did not complete and it will again call
3418 * ext4_truncate() to have another go. So there will be instantiated blocks
3419 * to the right of the truncation point in a crashed ext4 filesystem. But
3420 * that's fine - as long as they are linked from the inode, the post-crash
3421 * ext4_truncate() run will find them and release them.
3422 */
3423 void ext4_truncate(struct inode *inode)
3424 {
3425 trace_ext4_truncate_enter(inode);
3426
3427 if (!ext4_can_truncate(inode))
3428 return;
3429
3430 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3431
3432 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3433 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3434
3435 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3436 ext4_ext_truncate(inode);
3437 else
3438 ext4_ind_truncate(inode);
3439
3440 trace_ext4_truncate_exit(inode);
3441 }
3442
3443 /*
3444 * ext4_get_inode_loc returns with an extra refcount against the inode's
3445 * underlying buffer_head on success. If 'in_mem' is true, we have all
3446 * data in memory that is needed to recreate the on-disk version of this
3447 * inode.
3448 */
3449 static int __ext4_get_inode_loc(struct inode *inode,
3450 struct ext4_iloc *iloc, int in_mem)
3451 {
3452 struct ext4_group_desc *gdp;
3453 struct buffer_head *bh;
3454 struct super_block *sb = inode->i_sb;
3455 ext4_fsblk_t block;
3456 int inodes_per_block, inode_offset;
3457
3458 iloc->bh = NULL;
3459 if (!ext4_valid_inum(sb, inode->i_ino))
3460 return -EIO;
3461
3462 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3463 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3464 if (!gdp)
3465 return -EIO;
3466
3467 /*
3468 * Figure out the offset within the block group inode table
3469 */
3470 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3471 inode_offset = ((inode->i_ino - 1) %
3472 EXT4_INODES_PER_GROUP(sb));
3473 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3474 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3475
3476 bh = sb_getblk(sb, block);
3477 if (!bh) {
3478 EXT4_ERROR_INODE_BLOCK(inode, block,
3479 "unable to read itable block");
3480 return -EIO;
3481 }
3482 if (!buffer_uptodate(bh)) {
3483 lock_buffer(bh);
3484
3485 /*
3486 * If the buffer has the write error flag, we have failed
3487 * to write out another inode in the same block. In this
3488 * case, we don't have to read the block because we may
3489 * read the old inode data successfully.
3490 */
3491 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3492 set_buffer_uptodate(bh);
3493
3494 if (buffer_uptodate(bh)) {
3495 /* someone brought it uptodate while we waited */
3496 unlock_buffer(bh);
3497 goto has_buffer;
3498 }
3499
3500 /*
3501 * If we have all information of the inode in memory and this
3502 * is the only valid inode in the block, we need not read the
3503 * block.
3504 */
3505 if (in_mem) {
3506 struct buffer_head *bitmap_bh;
3507 int i, start;
3508
3509 start = inode_offset & ~(inodes_per_block - 1);
3510
3511 /* Is the inode bitmap in cache? */
3512 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3513 if (!bitmap_bh)
3514 goto make_io;
3515
3516 /*
3517 * If the inode bitmap isn't in cache then the
3518 * optimisation may end up performing two reads instead
3519 * of one, so skip it.
3520 */
3521 if (!buffer_uptodate(bitmap_bh)) {
3522 brelse(bitmap_bh);
3523 goto make_io;
3524 }
3525 for (i = start; i < start + inodes_per_block; i++) {
3526 if (i == inode_offset)
3527 continue;
3528 if (ext4_test_bit(i, bitmap_bh->b_data))
3529 break;
3530 }
3531 brelse(bitmap_bh);
3532 if (i == start + inodes_per_block) {
3533 /* all other inodes are free, so skip I/O */
3534 memset(bh->b_data, 0, bh->b_size);
3535 set_buffer_uptodate(bh);
3536 unlock_buffer(bh);
3537 goto has_buffer;
3538 }
3539 }
3540
3541 make_io:
3542 /*
3543 * If we need to do any I/O, try to pre-readahead extra
3544 * blocks from the inode table.
3545 */
3546 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3547 ext4_fsblk_t b, end, table;
3548 unsigned num;
3549
3550 table = ext4_inode_table(sb, gdp);
3551 /* s_inode_readahead_blks is always a power of 2 */
3552 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3553 if (table > b)
3554 b = table;
3555 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3556 num = EXT4_INODES_PER_GROUP(sb);
3557 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3558 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3559 num -= ext4_itable_unused_count(sb, gdp);
3560 table += num / inodes_per_block;
3561 if (end > table)
3562 end = table;
3563 while (b <= end)
3564 sb_breadahead(sb, b++);
3565 }
3566
3567 /*
3568 * There are other valid inodes in the buffer, this inode
3569 * has in-inode xattrs, or we don't have this inode in memory.
3570 * Read the block from disk.
3571 */
3572 trace_ext4_load_inode(inode);
3573 get_bh(bh);
3574 bh->b_end_io = end_buffer_read_sync;
3575 submit_bh(READ_META, bh);
3576 wait_on_buffer(bh);
3577 if (!buffer_uptodate(bh)) {
3578 EXT4_ERROR_INODE_BLOCK(inode, block,
3579 "unable to read itable block");
3580 brelse(bh);
3581 return -EIO;
3582 }
3583 }
3584 has_buffer:
3585 iloc->bh = bh;
3586 return 0;
3587 }
3588
3589 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3590 {
3591 /* We have all inode data except xattrs in memory here. */
3592 return __ext4_get_inode_loc(inode, iloc,
3593 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3594 }
3595
3596 void ext4_set_inode_flags(struct inode *inode)
3597 {
3598 unsigned int flags = EXT4_I(inode)->i_flags;
3599
3600 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3601 if (flags & EXT4_SYNC_FL)
3602 inode->i_flags |= S_SYNC;
3603 if (flags & EXT4_APPEND_FL)
3604 inode->i_flags |= S_APPEND;
3605 if (flags & EXT4_IMMUTABLE_FL)
3606 inode->i_flags |= S_IMMUTABLE;
3607 if (flags & EXT4_NOATIME_FL)
3608 inode->i_flags |= S_NOATIME;
3609 if (flags & EXT4_DIRSYNC_FL)
3610 inode->i_flags |= S_DIRSYNC;
3611 }
3612
3613 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3614 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3615 {
3616 unsigned int vfs_fl;
3617 unsigned long old_fl, new_fl;
3618
3619 do {
3620 vfs_fl = ei->vfs_inode.i_flags;
3621 old_fl = ei->i_flags;
3622 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3623 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3624 EXT4_DIRSYNC_FL);
3625 if (vfs_fl & S_SYNC)
3626 new_fl |= EXT4_SYNC_FL;
3627 if (vfs_fl & S_APPEND)
3628 new_fl |= EXT4_APPEND_FL;
3629 if (vfs_fl & S_IMMUTABLE)
3630 new_fl |= EXT4_IMMUTABLE_FL;
3631 if (vfs_fl & S_NOATIME)
3632 new_fl |= EXT4_NOATIME_FL;
3633 if (vfs_fl & S_DIRSYNC)
3634 new_fl |= EXT4_DIRSYNC_FL;
3635 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3636 }
3637
3638 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3639 struct ext4_inode_info *ei)
3640 {
3641 blkcnt_t i_blocks ;
3642 struct inode *inode = &(ei->vfs_inode);
3643 struct super_block *sb = inode->i_sb;
3644
3645 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3646 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3647 /* we are using combined 48 bit field */
3648 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3649 le32_to_cpu(raw_inode->i_blocks_lo);
3650 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3651 /* i_blocks represent file system block size */
3652 return i_blocks << (inode->i_blkbits - 9);
3653 } else {
3654 return i_blocks;
3655 }
3656 } else {
3657 return le32_to_cpu(raw_inode->i_blocks_lo);
3658 }
3659 }
3660
3661 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3662 {
3663 struct ext4_iloc iloc;
3664 struct ext4_inode *raw_inode;
3665 struct ext4_inode_info *ei;
3666 struct inode *inode;
3667 journal_t *journal = EXT4_SB(sb)->s_journal;
3668 long ret;
3669 int block;
3670
3671 inode = iget_locked(sb, ino);
3672 if (!inode)
3673 return ERR_PTR(-ENOMEM);
3674 if (!(inode->i_state & I_NEW))
3675 return inode;
3676
3677 ei = EXT4_I(inode);
3678 iloc.bh = NULL;
3679
3680 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3681 if (ret < 0)
3682 goto bad_inode;
3683 raw_inode = ext4_raw_inode(&iloc);
3684 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3685 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3686 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3687 if (!(test_opt(inode->i_sb, NO_UID32))) {
3688 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3689 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3690 }
3691 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3692
3693 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3694 ei->i_dir_start_lookup = 0;
3695 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3696 /* We now have enough fields to check if the inode was active or not.
3697 * This is needed because nfsd might try to access dead inodes
3698 * the test is that same one that e2fsck uses
3699 * NeilBrown 1999oct15
3700 */
3701 if (inode->i_nlink == 0) {
3702 if (inode->i_mode == 0 ||
3703 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3704 /* this inode is deleted */
3705 ret = -ESTALE;
3706 goto bad_inode;
3707 }
3708 /* The only unlinked inodes we let through here have
3709 * valid i_mode and are being read by the orphan
3710 * recovery code: that's fine, we're about to complete
3711 * the process of deleting those. */
3712 }
3713 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3714 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3715 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3716 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3717 ei->i_file_acl |=
3718 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3719 inode->i_size = ext4_isize(raw_inode);
3720 ei->i_disksize = inode->i_size;
3721 #ifdef CONFIG_QUOTA
3722 ei->i_reserved_quota = 0;
3723 #endif
3724 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3725 ei->i_block_group = iloc.block_group;
3726 ei->i_last_alloc_group = ~0;
3727 /*
3728 * NOTE! The in-memory inode i_data array is in little-endian order
3729 * even on big-endian machines: we do NOT byteswap the block numbers!
3730 */
3731 for (block = 0; block < EXT4_N_BLOCKS; block++)
3732 ei->i_data[block] = raw_inode->i_block[block];
3733 INIT_LIST_HEAD(&ei->i_orphan);
3734
3735 /*
3736 * Set transaction id's of transactions that have to be committed
3737 * to finish f[data]sync. We set them to currently running transaction
3738 * as we cannot be sure that the inode or some of its metadata isn't
3739 * part of the transaction - the inode could have been reclaimed and
3740 * now it is reread from disk.
3741 */
3742 if (journal) {
3743 transaction_t *transaction;
3744 tid_t tid;
3745
3746 read_lock(&journal->j_state_lock);
3747 if (journal->j_running_transaction)
3748 transaction = journal->j_running_transaction;
3749 else
3750 transaction = journal->j_committing_transaction;
3751 if (transaction)
3752 tid = transaction->t_tid;
3753 else
3754 tid = journal->j_commit_sequence;
3755 read_unlock(&journal->j_state_lock);
3756 ei->i_sync_tid = tid;
3757 ei->i_datasync_tid = tid;
3758 }
3759
3760 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3761 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3762 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3763 EXT4_INODE_SIZE(inode->i_sb)) {
3764 ret = -EIO;
3765 goto bad_inode;
3766 }
3767 if (ei->i_extra_isize == 0) {
3768 /* The extra space is currently unused. Use it. */
3769 ei->i_extra_isize = sizeof(struct ext4_inode) -
3770 EXT4_GOOD_OLD_INODE_SIZE;
3771 } else {
3772 __le32 *magic = (void *)raw_inode +
3773 EXT4_GOOD_OLD_INODE_SIZE +
3774 ei->i_extra_isize;
3775 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3776 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3777 }
3778 } else
3779 ei->i_extra_isize = 0;
3780
3781 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3782 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3783 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3784 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3785
3786 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3787 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3788 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3789 inode->i_version |=
3790 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3791 }
3792
3793 ret = 0;
3794 if (ei->i_file_acl &&
3795 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3796 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3797 ei->i_file_acl);
3798 ret = -EIO;
3799 goto bad_inode;
3800 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3801 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3802 (S_ISLNK(inode->i_mode) &&
3803 !ext4_inode_is_fast_symlink(inode)))
3804 /* Validate extent which is part of inode */
3805 ret = ext4_ext_check_inode(inode);
3806 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3807 (S_ISLNK(inode->i_mode) &&
3808 !ext4_inode_is_fast_symlink(inode))) {
3809 /* Validate block references which are part of inode */
3810 ret = ext4_ind_check_inode(inode);
3811 }
3812 if (ret)
3813 goto bad_inode;
3814
3815 if (S_ISREG(inode->i_mode)) {
3816 inode->i_op = &ext4_file_inode_operations;
3817 inode->i_fop = &ext4_file_operations;
3818 ext4_set_aops(inode);
3819 } else if (S_ISDIR(inode->i_mode)) {
3820 inode->i_op = &ext4_dir_inode_operations;
3821 inode->i_fop = &ext4_dir_operations;
3822 } else if (S_ISLNK(inode->i_mode)) {
3823 if (ext4_inode_is_fast_symlink(inode)) {
3824 inode->i_op = &ext4_fast_symlink_inode_operations;
3825 nd_terminate_link(ei->i_data, inode->i_size,
3826 sizeof(ei->i_data) - 1);
3827 } else {
3828 inode->i_op = &ext4_symlink_inode_operations;
3829 ext4_set_aops(inode);
3830 }
3831 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3832 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3833 inode->i_op = &ext4_special_inode_operations;
3834 if (raw_inode->i_block[0])
3835 init_special_inode(inode, inode->i_mode,
3836 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3837 else
3838 init_special_inode(inode, inode->i_mode,
3839 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3840 } else {
3841 ret = -EIO;
3842 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3843 goto bad_inode;
3844 }
3845 brelse(iloc.bh);
3846 ext4_set_inode_flags(inode);
3847 unlock_new_inode(inode);
3848 return inode;
3849
3850 bad_inode:
3851 brelse(iloc.bh);
3852 iget_failed(inode);
3853 return ERR_PTR(ret);
3854 }
3855
3856 static int ext4_inode_blocks_set(handle_t *handle,
3857 struct ext4_inode *raw_inode,
3858 struct ext4_inode_info *ei)
3859 {
3860 struct inode *inode = &(ei->vfs_inode);
3861 u64 i_blocks = inode->i_blocks;
3862 struct super_block *sb = inode->i_sb;
3863
3864 if (i_blocks <= ~0U) {
3865 /*
3866 * i_blocks can be represnted in a 32 bit variable
3867 * as multiple of 512 bytes
3868 */
3869 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3870 raw_inode->i_blocks_high = 0;
3871 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3872 return 0;
3873 }
3874 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3875 return -EFBIG;
3876
3877 if (i_blocks <= 0xffffffffffffULL) {
3878 /*
3879 * i_blocks can be represented in a 48 bit variable
3880 * as multiple of 512 bytes
3881 */
3882 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3883 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3884 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3885 } else {
3886 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3887 /* i_block is stored in file system block size */
3888 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3889 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3890 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3891 }
3892 return 0;
3893 }
3894
3895 /*
3896 * Post the struct inode info into an on-disk inode location in the
3897 * buffer-cache. This gobbles the caller's reference to the
3898 * buffer_head in the inode location struct.
3899 *
3900 * The caller must have write access to iloc->bh.
3901 */
3902 static int ext4_do_update_inode(handle_t *handle,
3903 struct inode *inode,
3904 struct ext4_iloc *iloc)
3905 {
3906 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3907 struct ext4_inode_info *ei = EXT4_I(inode);
3908 struct buffer_head *bh = iloc->bh;
3909 int err = 0, rc, block;
3910
3911 /* For fields not not tracking in the in-memory inode,
3912 * initialise them to zero for new inodes. */
3913 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3914 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3915
3916 ext4_get_inode_flags(ei);
3917 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3918 if (!(test_opt(inode->i_sb, NO_UID32))) {
3919 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3920 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3921 /*
3922 * Fix up interoperability with old kernels. Otherwise, old inodes get
3923 * re-used with the upper 16 bits of the uid/gid intact
3924 */
3925 if (!ei->i_dtime) {
3926 raw_inode->i_uid_high =
3927 cpu_to_le16(high_16_bits(inode->i_uid));
3928 raw_inode->i_gid_high =
3929 cpu_to_le16(high_16_bits(inode->i_gid));
3930 } else {
3931 raw_inode->i_uid_high = 0;
3932 raw_inode->i_gid_high = 0;
3933 }
3934 } else {
3935 raw_inode->i_uid_low =
3936 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3937 raw_inode->i_gid_low =
3938 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3939 raw_inode->i_uid_high = 0;
3940 raw_inode->i_gid_high = 0;
3941 }
3942 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3943
3944 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3945 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3946 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3947 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3948
3949 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3950 goto out_brelse;
3951 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3952 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3953 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3954 cpu_to_le32(EXT4_OS_HURD))
3955 raw_inode->i_file_acl_high =
3956 cpu_to_le16(ei->i_file_acl >> 32);
3957 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3958 ext4_isize_set(raw_inode, ei->i_disksize);
3959 if (ei->i_disksize > 0x7fffffffULL) {
3960 struct super_block *sb = inode->i_sb;
3961 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3962 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3963 EXT4_SB(sb)->s_es->s_rev_level ==
3964 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3965 /* If this is the first large file
3966 * created, add a flag to the superblock.
3967 */
3968 err = ext4_journal_get_write_access(handle,
3969 EXT4_SB(sb)->s_sbh);
3970 if (err)
3971 goto out_brelse;
3972 ext4_update_dynamic_rev(sb);
3973 EXT4_SET_RO_COMPAT_FEATURE(sb,
3974 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
3975 sb->s_dirt = 1;
3976 ext4_handle_sync(handle);
3977 err = ext4_handle_dirty_metadata(handle, NULL,
3978 EXT4_SB(sb)->s_sbh);
3979 }
3980 }
3981 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3982 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3983 if (old_valid_dev(inode->i_rdev)) {
3984 raw_inode->i_block[0] =
3985 cpu_to_le32(old_encode_dev(inode->i_rdev));
3986 raw_inode->i_block[1] = 0;
3987 } else {
3988 raw_inode->i_block[0] = 0;
3989 raw_inode->i_block[1] =
3990 cpu_to_le32(new_encode_dev(inode->i_rdev));
3991 raw_inode->i_block[2] = 0;
3992 }
3993 } else
3994 for (block = 0; block < EXT4_N_BLOCKS; block++)
3995 raw_inode->i_block[block] = ei->i_data[block];
3996
3997 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3998 if (ei->i_extra_isize) {
3999 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4000 raw_inode->i_version_hi =
4001 cpu_to_le32(inode->i_version >> 32);
4002 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4003 }
4004
4005 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4006 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4007 if (!err)
4008 err = rc;
4009 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4010
4011 ext4_update_inode_fsync_trans(handle, inode, 0);
4012 out_brelse:
4013 brelse(bh);
4014 ext4_std_error(inode->i_sb, err);
4015 return err;
4016 }
4017
4018 /*
4019 * ext4_write_inode()
4020 *
4021 * We are called from a few places:
4022 *
4023 * - Within generic_file_write() for O_SYNC files.
4024 * Here, there will be no transaction running. We wait for any running
4025 * trasnaction to commit.
4026 *
4027 * - Within sys_sync(), kupdate and such.
4028 * We wait on commit, if tol to.
4029 *
4030 * - Within prune_icache() (PF_MEMALLOC == true)
4031 * Here we simply return. We can't afford to block kswapd on the
4032 * journal commit.
4033 *
4034 * In all cases it is actually safe for us to return without doing anything,
4035 * because the inode has been copied into a raw inode buffer in
4036 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4037 * knfsd.
4038 *
4039 * Note that we are absolutely dependent upon all inode dirtiers doing the
4040 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4041 * which we are interested.
4042 *
4043 * It would be a bug for them to not do this. The code:
4044 *
4045 * mark_inode_dirty(inode)
4046 * stuff();
4047 * inode->i_size = expr;
4048 *
4049 * is in error because a kswapd-driven write_inode() could occur while
4050 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4051 * will no longer be on the superblock's dirty inode list.
4052 */
4053 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4054 {
4055 int err;
4056
4057 if (current->flags & PF_MEMALLOC)
4058 return 0;
4059
4060 if (EXT4_SB(inode->i_sb)->s_journal) {
4061 if (ext4_journal_current_handle()) {
4062 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4063 dump_stack();
4064 return -EIO;
4065 }
4066
4067 if (wbc->sync_mode != WB_SYNC_ALL)
4068 return 0;
4069
4070 err = ext4_force_commit(inode->i_sb);
4071 } else {
4072 struct ext4_iloc iloc;
4073
4074 err = __ext4_get_inode_loc(inode, &iloc, 0);
4075 if (err)
4076 return err;
4077 if (wbc->sync_mode == WB_SYNC_ALL)
4078 sync_dirty_buffer(iloc.bh);
4079 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4080 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4081 "IO error syncing inode");
4082 err = -EIO;
4083 }
4084 brelse(iloc.bh);
4085 }
4086 return err;
4087 }
4088
4089 /*
4090 * ext4_setattr()
4091 *
4092 * Called from notify_change.
4093 *
4094 * We want to trap VFS attempts to truncate the file as soon as
4095 * possible. In particular, we want to make sure that when the VFS
4096 * shrinks i_size, we put the inode on the orphan list and modify
4097 * i_disksize immediately, so that during the subsequent flushing of
4098 * dirty pages and freeing of disk blocks, we can guarantee that any
4099 * commit will leave the blocks being flushed in an unused state on
4100 * disk. (On recovery, the inode will get truncated and the blocks will
4101 * be freed, so we have a strong guarantee that no future commit will
4102 * leave these blocks visible to the user.)
4103 *
4104 * Another thing we have to assure is that if we are in ordered mode
4105 * and inode is still attached to the committing transaction, we must
4106 * we start writeout of all the dirty pages which are being truncated.
4107 * This way we are sure that all the data written in the previous
4108 * transaction are already on disk (truncate waits for pages under
4109 * writeback).
4110 *
4111 * Called with inode->i_mutex down.
4112 */
4113 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4114 {
4115 struct inode *inode = dentry->d_inode;
4116 int error, rc = 0;
4117 int orphan = 0;
4118 const unsigned int ia_valid = attr->ia_valid;
4119
4120 error = inode_change_ok(inode, attr);
4121 if (error)
4122 return error;
4123
4124 if (is_quota_modification(inode, attr))
4125 dquot_initialize(inode);
4126 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4127 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4128 handle_t *handle;
4129
4130 /* (user+group)*(old+new) structure, inode write (sb,
4131 * inode block, ? - but truncate inode update has it) */
4132 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4133 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4134 if (IS_ERR(handle)) {
4135 error = PTR_ERR(handle);
4136 goto err_out;
4137 }
4138 error = dquot_transfer(inode, attr);
4139 if (error) {
4140 ext4_journal_stop(handle);
4141 return error;
4142 }
4143 /* Update corresponding info in inode so that everything is in
4144 * one transaction */
4145 if (attr->ia_valid & ATTR_UID)
4146 inode->i_uid = attr->ia_uid;
4147 if (attr->ia_valid & ATTR_GID)
4148 inode->i_gid = attr->ia_gid;
4149 error = ext4_mark_inode_dirty(handle, inode);
4150 ext4_journal_stop(handle);
4151 }
4152
4153 if (attr->ia_valid & ATTR_SIZE) {
4154 inode_dio_wait(inode);
4155
4156 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4157 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4158
4159 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4160 return -EFBIG;
4161 }
4162 }
4163
4164 if (S_ISREG(inode->i_mode) &&
4165 attr->ia_valid & ATTR_SIZE &&
4166 (attr->ia_size < inode->i_size)) {
4167 handle_t *handle;
4168
4169 handle = ext4_journal_start(inode, 3);
4170 if (IS_ERR(handle)) {
4171 error = PTR_ERR(handle);
4172 goto err_out;
4173 }
4174 if (ext4_handle_valid(handle)) {
4175 error = ext4_orphan_add(handle, inode);
4176 orphan = 1;
4177 }
4178 EXT4_I(inode)->i_disksize = attr->ia_size;
4179 rc = ext4_mark_inode_dirty(handle, inode);
4180 if (!error)
4181 error = rc;
4182 ext4_journal_stop(handle);
4183
4184 if (ext4_should_order_data(inode)) {
4185 error = ext4_begin_ordered_truncate(inode,
4186 attr->ia_size);
4187 if (error) {
4188 /* Do as much error cleanup as possible */
4189 handle = ext4_journal_start(inode, 3);
4190 if (IS_ERR(handle)) {
4191 ext4_orphan_del(NULL, inode);
4192 goto err_out;
4193 }
4194 ext4_orphan_del(handle, inode);
4195 orphan = 0;
4196 ext4_journal_stop(handle);
4197 goto err_out;
4198 }
4199 }
4200 }
4201
4202 if (attr->ia_valid & ATTR_SIZE) {
4203 if (attr->ia_size != i_size_read(inode)) {
4204 truncate_setsize(inode, attr->ia_size);
4205 ext4_truncate(inode);
4206 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4207 ext4_truncate(inode);
4208 }
4209
4210 if (!rc) {
4211 setattr_copy(inode, attr);
4212 mark_inode_dirty(inode);
4213 }
4214
4215 /*
4216 * If the call to ext4_truncate failed to get a transaction handle at
4217 * all, we need to clean up the in-core orphan list manually.
4218 */
4219 if (orphan && inode->i_nlink)
4220 ext4_orphan_del(NULL, inode);
4221
4222 if (!rc && (ia_valid & ATTR_MODE))
4223 rc = ext4_acl_chmod(inode);
4224
4225 err_out:
4226 ext4_std_error(inode->i_sb, error);
4227 if (!error)
4228 error = rc;
4229 return error;
4230 }
4231
4232 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4233 struct kstat *stat)
4234 {
4235 struct inode *inode;
4236 unsigned long delalloc_blocks;
4237
4238 inode = dentry->d_inode;
4239 generic_fillattr(inode, stat);
4240
4241 /*
4242 * We can't update i_blocks if the block allocation is delayed
4243 * otherwise in the case of system crash before the real block
4244 * allocation is done, we will have i_blocks inconsistent with
4245 * on-disk file blocks.
4246 * We always keep i_blocks updated together with real
4247 * allocation. But to not confuse with user, stat
4248 * will return the blocks that include the delayed allocation
4249 * blocks for this file.
4250 */
4251 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4252
4253 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4254 return 0;
4255 }
4256
4257 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4258 {
4259 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4260 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4261 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4262 }
4263
4264 /*
4265 * Account for index blocks, block groups bitmaps and block group
4266 * descriptor blocks if modify datablocks and index blocks
4267 * worse case, the indexs blocks spread over different block groups
4268 *
4269 * If datablocks are discontiguous, they are possible to spread over
4270 * different block groups too. If they are contiuguous, with flexbg,
4271 * they could still across block group boundary.
4272 *
4273 * Also account for superblock, inode, quota and xattr blocks
4274 */
4275 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4276 {
4277 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4278 int gdpblocks;
4279 int idxblocks;
4280 int ret = 0;
4281
4282 /*
4283 * How many index blocks need to touch to modify nrblocks?
4284 * The "Chunk" flag indicating whether the nrblocks is
4285 * physically contiguous on disk
4286 *
4287 * For Direct IO and fallocate, they calls get_block to allocate
4288 * one single extent at a time, so they could set the "Chunk" flag
4289 */
4290 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4291
4292 ret = idxblocks;
4293
4294 /*
4295 * Now let's see how many group bitmaps and group descriptors need
4296 * to account
4297 */
4298 groups = idxblocks;
4299 if (chunk)
4300 groups += 1;
4301 else
4302 groups += nrblocks;
4303
4304 gdpblocks = groups;
4305 if (groups > ngroups)
4306 groups = ngroups;
4307 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4308 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4309
4310 /* bitmaps and block group descriptor blocks */
4311 ret += groups + gdpblocks;
4312
4313 /* Blocks for super block, inode, quota and xattr blocks */
4314 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4315
4316 return ret;
4317 }
4318
4319 /*
4320 * Calculate the total number of credits to reserve to fit
4321 * the modification of a single pages into a single transaction,
4322 * which may include multiple chunks of block allocations.
4323 *
4324 * This could be called via ext4_write_begin()
4325 *
4326 * We need to consider the worse case, when
4327 * one new block per extent.
4328 */
4329 int ext4_writepage_trans_blocks(struct inode *inode)
4330 {
4331 int bpp = ext4_journal_blocks_per_page(inode);
4332 int ret;
4333
4334 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4335
4336 /* Account for data blocks for journalled mode */
4337 if (ext4_should_journal_data(inode))
4338 ret += bpp;
4339 return ret;
4340 }
4341
4342 /*
4343 * Calculate the journal credits for a chunk of data modification.
4344 *
4345 * This is called from DIO, fallocate or whoever calling
4346 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4347 *
4348 * journal buffers for data blocks are not included here, as DIO
4349 * and fallocate do no need to journal data buffers.
4350 */
4351 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4352 {
4353 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4354 }
4355
4356 /*
4357 * The caller must have previously called ext4_reserve_inode_write().
4358 * Give this, we know that the caller already has write access to iloc->bh.
4359 */
4360 int ext4_mark_iloc_dirty(handle_t *handle,
4361 struct inode *inode, struct ext4_iloc *iloc)
4362 {
4363 int err = 0;
4364
4365 if (test_opt(inode->i_sb, I_VERSION))
4366 inode_inc_iversion(inode);
4367
4368 /* the do_update_inode consumes one bh->b_count */
4369 get_bh(iloc->bh);
4370
4371 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4372 err = ext4_do_update_inode(handle, inode, iloc);
4373 put_bh(iloc->bh);
4374 return err;
4375 }
4376
4377 /*
4378 * On success, We end up with an outstanding reference count against
4379 * iloc->bh. This _must_ be cleaned up later.
4380 */
4381
4382 int
4383 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4384 struct ext4_iloc *iloc)
4385 {
4386 int err;
4387
4388 err = ext4_get_inode_loc(inode, iloc);
4389 if (!err) {
4390 BUFFER_TRACE(iloc->bh, "get_write_access");
4391 err = ext4_journal_get_write_access(handle, iloc->bh);
4392 if (err) {
4393 brelse(iloc->bh);
4394 iloc->bh = NULL;
4395 }
4396 }
4397 ext4_std_error(inode->i_sb, err);
4398 return err;
4399 }
4400
4401 /*
4402 * Expand an inode by new_extra_isize bytes.
4403 * Returns 0 on success or negative error number on failure.
4404 */
4405 static int ext4_expand_extra_isize(struct inode *inode,
4406 unsigned int new_extra_isize,
4407 struct ext4_iloc iloc,
4408 handle_t *handle)
4409 {
4410 struct ext4_inode *raw_inode;
4411 struct ext4_xattr_ibody_header *header;
4412
4413 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4414 return 0;
4415
4416 raw_inode = ext4_raw_inode(&iloc);
4417
4418 header = IHDR(inode, raw_inode);
4419
4420 /* No extended attributes present */
4421 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4422 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4423 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4424 new_extra_isize);
4425 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4426 return 0;
4427 }
4428
4429 /* try to expand with EAs present */
4430 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4431 raw_inode, handle);
4432 }
4433
4434 /*
4435 * What we do here is to mark the in-core inode as clean with respect to inode
4436 * dirtiness (it may still be data-dirty).
4437 * This means that the in-core inode may be reaped by prune_icache
4438 * without having to perform any I/O. This is a very good thing,
4439 * because *any* task may call prune_icache - even ones which
4440 * have a transaction open against a different journal.
4441 *
4442 * Is this cheating? Not really. Sure, we haven't written the
4443 * inode out, but prune_icache isn't a user-visible syncing function.
4444 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4445 * we start and wait on commits.
4446 *
4447 * Is this efficient/effective? Well, we're being nice to the system
4448 * by cleaning up our inodes proactively so they can be reaped
4449 * without I/O. But we are potentially leaving up to five seconds'
4450 * worth of inodes floating about which prune_icache wants us to
4451 * write out. One way to fix that would be to get prune_icache()
4452 * to do a write_super() to free up some memory. It has the desired
4453 * effect.
4454 */
4455 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4456 {
4457 struct ext4_iloc iloc;
4458 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4459 static unsigned int mnt_count;
4460 int err, ret;
4461
4462 might_sleep();
4463 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4464 err = ext4_reserve_inode_write(handle, inode, &iloc);
4465 if (ext4_handle_valid(handle) &&
4466 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4467 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4468 /*
4469 * We need extra buffer credits since we may write into EA block
4470 * with this same handle. If journal_extend fails, then it will
4471 * only result in a minor loss of functionality for that inode.
4472 * If this is felt to be critical, then e2fsck should be run to
4473 * force a large enough s_min_extra_isize.
4474 */
4475 if ((jbd2_journal_extend(handle,
4476 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4477 ret = ext4_expand_extra_isize(inode,
4478 sbi->s_want_extra_isize,
4479 iloc, handle);
4480 if (ret) {
4481 ext4_set_inode_state(inode,
4482 EXT4_STATE_NO_EXPAND);
4483 if (mnt_count !=
4484 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4485 ext4_warning(inode->i_sb,
4486 "Unable to expand inode %lu. Delete"
4487 " some EAs or run e2fsck.",
4488 inode->i_ino);
4489 mnt_count =
4490 le16_to_cpu(sbi->s_es->s_mnt_count);
4491 }
4492 }
4493 }
4494 }
4495 if (!err)
4496 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4497 return err;
4498 }
4499
4500 /*
4501 * ext4_dirty_inode() is called from __mark_inode_dirty()
4502 *
4503 * We're really interested in the case where a file is being extended.
4504 * i_size has been changed by generic_commit_write() and we thus need
4505 * to include the updated inode in the current transaction.
4506 *
4507 * Also, dquot_alloc_block() will always dirty the inode when blocks
4508 * are allocated to the file.
4509 *
4510 * If the inode is marked synchronous, we don't honour that here - doing
4511 * so would cause a commit on atime updates, which we don't bother doing.
4512 * We handle synchronous inodes at the highest possible level.
4513 */
4514 void ext4_dirty_inode(struct inode *inode, int flags)
4515 {
4516 handle_t *handle;
4517
4518 handle = ext4_journal_start(inode, 2);
4519 if (IS_ERR(handle))
4520 goto out;
4521
4522 ext4_mark_inode_dirty(handle, inode);
4523
4524 ext4_journal_stop(handle);
4525 out:
4526 return;
4527 }
4528
4529 #if 0
4530 /*
4531 * Bind an inode's backing buffer_head into this transaction, to prevent
4532 * it from being flushed to disk early. Unlike
4533 * ext4_reserve_inode_write, this leaves behind no bh reference and
4534 * returns no iloc structure, so the caller needs to repeat the iloc
4535 * lookup to mark the inode dirty later.
4536 */
4537 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4538 {
4539 struct ext4_iloc iloc;
4540
4541 int err = 0;
4542 if (handle) {
4543 err = ext4_get_inode_loc(inode, &iloc);
4544 if (!err) {
4545 BUFFER_TRACE(iloc.bh, "get_write_access");
4546 err = jbd2_journal_get_write_access(handle, iloc.bh);
4547 if (!err)
4548 err = ext4_handle_dirty_metadata(handle,
4549 NULL,
4550 iloc.bh);
4551 brelse(iloc.bh);
4552 }
4553 }
4554 ext4_std_error(inode->i_sb, err);
4555 return err;
4556 }
4557 #endif
4558
4559 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4560 {
4561 journal_t *journal;
4562 handle_t *handle;
4563 int err;
4564
4565 /*
4566 * We have to be very careful here: changing a data block's
4567 * journaling status dynamically is dangerous. If we write a
4568 * data block to the journal, change the status and then delete
4569 * that block, we risk forgetting to revoke the old log record
4570 * from the journal and so a subsequent replay can corrupt data.
4571 * So, first we make sure that the journal is empty and that
4572 * nobody is changing anything.
4573 */
4574
4575 journal = EXT4_JOURNAL(inode);
4576 if (!journal)
4577 return 0;
4578 if (is_journal_aborted(journal))
4579 return -EROFS;
4580
4581 jbd2_journal_lock_updates(journal);
4582 jbd2_journal_flush(journal);
4583
4584 /*
4585 * OK, there are no updates running now, and all cached data is
4586 * synced to disk. We are now in a completely consistent state
4587 * which doesn't have anything in the journal, and we know that
4588 * no filesystem updates are running, so it is safe to modify
4589 * the inode's in-core data-journaling state flag now.
4590 */
4591
4592 if (val)
4593 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4594 else
4595 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4596 ext4_set_aops(inode);
4597
4598 jbd2_journal_unlock_updates(journal);
4599
4600 /* Finally we can mark the inode as dirty. */
4601
4602 handle = ext4_journal_start(inode, 1);
4603 if (IS_ERR(handle))
4604 return PTR_ERR(handle);
4605
4606 err = ext4_mark_inode_dirty(handle, inode);
4607 ext4_handle_sync(handle);
4608 ext4_journal_stop(handle);
4609 ext4_std_error(inode->i_sb, err);
4610
4611 return err;
4612 }
4613
4614 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4615 {
4616 return !buffer_mapped(bh);
4617 }
4618
4619 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4620 {
4621 struct page *page = vmf->page;
4622 loff_t size;
4623 unsigned long len;
4624 int ret;
4625 struct file *file = vma->vm_file;
4626 struct inode *inode = file->f_path.dentry->d_inode;
4627 struct address_space *mapping = inode->i_mapping;
4628 handle_t *handle;
4629 get_block_t *get_block;
4630 int retries = 0;
4631
4632 /*
4633 * This check is racy but catches the common case. We rely on
4634 * __block_page_mkwrite() to do a reliable check.
4635 */
4636 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4637 /* Delalloc case is easy... */
4638 if (test_opt(inode->i_sb, DELALLOC) &&
4639 !ext4_should_journal_data(inode) &&
4640 !ext4_nonda_switch(inode->i_sb)) {
4641 do {
4642 ret = __block_page_mkwrite(vma, vmf,
4643 ext4_da_get_block_prep);
4644 } while (ret == -ENOSPC &&
4645 ext4_should_retry_alloc(inode->i_sb, &retries));
4646 goto out_ret;
4647 }
4648
4649 lock_page(page);
4650 size = i_size_read(inode);
4651 /* Page got truncated from under us? */
4652 if (page->mapping != mapping || page_offset(page) > size) {
4653 unlock_page(page);
4654 ret = VM_FAULT_NOPAGE;
4655 goto out;
4656 }
4657
4658 if (page->index == size >> PAGE_CACHE_SHIFT)
4659 len = size & ~PAGE_CACHE_MASK;
4660 else
4661 len = PAGE_CACHE_SIZE;
4662 /*
4663 * Return if we have all the buffers mapped. This avoids the need to do
4664 * journal_start/journal_stop which can block and take a long time
4665 */
4666 if (page_has_buffers(page)) {
4667 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4668 ext4_bh_unmapped)) {
4669 /* Wait so that we don't change page under IO */
4670 wait_on_page_writeback(page);
4671 ret = VM_FAULT_LOCKED;
4672 goto out;
4673 }
4674 }
4675 unlock_page(page);
4676 /* OK, we need to fill the hole... */
4677 if (ext4_should_dioread_nolock(inode))
4678 get_block = ext4_get_block_write;
4679 else
4680 get_block = ext4_get_block;
4681 retry_alloc:
4682 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4683 if (IS_ERR(handle)) {
4684 ret = VM_FAULT_SIGBUS;
4685 goto out;
4686 }
4687 ret = __block_page_mkwrite(vma, vmf, get_block);
4688 if (!ret && ext4_should_journal_data(inode)) {
4689 if (walk_page_buffers(handle, page_buffers(page), 0,
4690 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4691 unlock_page(page);
4692 ret = VM_FAULT_SIGBUS;
4693 goto out;
4694 }
4695 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4696 }
4697 ext4_journal_stop(handle);
4698 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4699 goto retry_alloc;
4700 out_ret:
4701 ret = block_page_mkwrite_return(ret);
4702 out:
4703 return ret;
4704 }