]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/ext4/inode.c
Merge tag 'dma-buf-for-4.0-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 #include <linux/bitops.h>
42
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "truncate.h"
47
48 #include <trace/events/ext4.h>
49
50 #define MPAGE_DA_EXTENT_TAIL 0x01
51
52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
75
76 return csum;
77 }
78
79 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81 {
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !ext4_has_metadata_csum(inode->i_sb))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !ext4_has_metadata_csum(inode->i_sb))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119 {
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned int offset,
135 unsigned int length);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
139 int pextents);
140
141 /*
142 * Test whether an inode is a fast symlink.
143 */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
148
149 if (ext4_has_inline_data(inode))
150 return 0;
151
152 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 }
154
155 /*
156 * Restart the transaction associated with *handle. This does a commit,
157 * so before we call here everything must be consistently dirtied against
158 * this transaction.
159 */
160 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
161 int nblocks)
162 {
163 int ret;
164
165 /*
166 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
167 * moment, get_block can be called only for blocks inside i_size since
168 * page cache has been already dropped and writes are blocked by
169 * i_mutex. So we can safely drop the i_data_sem here.
170 */
171 BUG_ON(EXT4_JOURNAL(inode) == NULL);
172 jbd_debug(2, "restarting handle %p\n", handle);
173 up_write(&EXT4_I(inode)->i_data_sem);
174 ret = ext4_journal_restart(handle, nblocks);
175 down_write(&EXT4_I(inode)->i_data_sem);
176 ext4_discard_preallocations(inode);
177
178 return ret;
179 }
180
181 /*
182 * Called at the last iput() if i_nlink is zero.
183 */
184 void ext4_evict_inode(struct inode *inode)
185 {
186 handle_t *handle;
187 int err;
188
189 trace_ext4_evict_inode(inode);
190
191 if (inode->i_nlink) {
192 /*
193 * When journalling data dirty buffers are tracked only in the
194 * journal. So although mm thinks everything is clean and
195 * ready for reaping the inode might still have some pages to
196 * write in the running transaction or waiting to be
197 * checkpointed. Thus calling jbd2_journal_invalidatepage()
198 * (via truncate_inode_pages()) to discard these buffers can
199 * cause data loss. Also even if we did not discard these
200 * buffers, we would have no way to find them after the inode
201 * is reaped and thus user could see stale data if he tries to
202 * read them before the transaction is checkpointed. So be
203 * careful and force everything to disk here... We use
204 * ei->i_datasync_tid to store the newest transaction
205 * containing inode's data.
206 *
207 * Note that directories do not have this problem because they
208 * don't use page cache.
209 */
210 if (ext4_should_journal_data(inode) &&
211 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
212 inode->i_ino != EXT4_JOURNAL_INO) {
213 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
214 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
215
216 jbd2_complete_transaction(journal, commit_tid);
217 filemap_write_and_wait(&inode->i_data);
218 }
219 truncate_inode_pages_final(&inode->i_data);
220
221 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
222 goto no_delete;
223 }
224
225 if (is_bad_inode(inode))
226 goto no_delete;
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages_final(&inode->i_data);
232
233 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
234
235 /*
236 * Protect us against freezing - iput() caller didn't have to have any
237 * protection against it
238 */
239 sb_start_intwrite(inode->i_sb);
240 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241 ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Called with i_data_sem down, which is important since we can call
326 * ext4_discard_preallocations() from here.
327 */
328 void ext4_da_update_reserve_space(struct inode *inode,
329 int used, int quota_claim)
330 {
331 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332 struct ext4_inode_info *ei = EXT4_I(inode);
333
334 spin_lock(&ei->i_block_reservation_lock);
335 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336 if (unlikely(used > ei->i_reserved_data_blocks)) {
337 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338 "with only %d reserved data blocks",
339 __func__, inode->i_ino, used,
340 ei->i_reserved_data_blocks);
341 WARN_ON(1);
342 used = ei->i_reserved_data_blocks;
343 }
344
345 /* Update per-inode reservations */
346 ei->i_reserved_data_blocks -= used;
347 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351 /* Update quota subsystem for data blocks */
352 if (quota_claim)
353 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354 else {
355 /*
356 * We did fallocate with an offset that is already delayed
357 * allocated. So on delayed allocated writeback we should
358 * not re-claim the quota for fallocated blocks.
359 */
360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361 }
362
363 /*
364 * If we have done all the pending block allocations and if
365 * there aren't any writers on the inode, we can discard the
366 * inode's preallocations.
367 */
368 if ((ei->i_reserved_data_blocks == 0) &&
369 (atomic_read(&inode->i_writecount) == 0))
370 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374 unsigned int line,
375 struct ext4_map_blocks *map)
376 {
377 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
378 map->m_len)) {
379 ext4_error_inode(inode, func, line, map->m_pblk,
380 "lblock %lu mapped to illegal pblock "
381 "(length %d)", (unsigned long) map->m_lblk,
382 map->m_len);
383 return -EIO;
384 }
385 return 0;
386 }
387
388 #define check_block_validity(inode, map) \
389 __check_block_validity((inode), __func__, __LINE__, (map))
390
391 #ifdef ES_AGGRESSIVE_TEST
392 static void ext4_map_blocks_es_recheck(handle_t *handle,
393 struct inode *inode,
394 struct ext4_map_blocks *es_map,
395 struct ext4_map_blocks *map,
396 int flags)
397 {
398 int retval;
399
400 map->m_flags = 0;
401 /*
402 * There is a race window that the result is not the same.
403 * e.g. xfstests #223 when dioread_nolock enables. The reason
404 * is that we lookup a block mapping in extent status tree with
405 * out taking i_data_sem. So at the time the unwritten extent
406 * could be converted.
407 */
408 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
409 down_read(&EXT4_I(inode)->i_data_sem);
410 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
411 retval = ext4_ext_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 } else {
414 retval = ext4_ind_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 }
417 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
418 up_read((&EXT4_I(inode)->i_data_sem));
419
420 /*
421 * We don't check m_len because extent will be collpased in status
422 * tree. So the m_len might not equal.
423 */
424 if (es_map->m_lblk != map->m_lblk ||
425 es_map->m_flags != map->m_flags ||
426 es_map->m_pblk != map->m_pblk) {
427 printk("ES cache assertion failed for inode: %lu "
428 "es_cached ex [%d/%d/%llu/%x] != "
429 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
430 inode->i_ino, es_map->m_lblk, es_map->m_len,
431 es_map->m_pblk, es_map->m_flags, map->m_lblk,
432 map->m_len, map->m_pblk, map->m_flags,
433 retval, flags);
434 }
435 }
436 #endif /* ES_AGGRESSIVE_TEST */
437
438 /*
439 * The ext4_map_blocks() function tries to look up the requested blocks,
440 * and returns if the blocks are already mapped.
441 *
442 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
443 * and store the allocated blocks in the result buffer head and mark it
444 * mapped.
445 *
446 * If file type is extents based, it will call ext4_ext_map_blocks(),
447 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
448 * based files
449 *
450 * On success, it returns the number of blocks being mapped or allocated.
451 * if create==0 and the blocks are pre-allocated and unwritten block,
452 * the result buffer head is unmapped. If the create ==1, it will make sure
453 * the buffer head is mapped.
454 *
455 * It returns 0 if plain look up failed (blocks have not been allocated), in
456 * that case, buffer head is unmapped
457 *
458 * It returns the error in case of allocation failure.
459 */
460 int ext4_map_blocks(handle_t *handle, struct inode *inode,
461 struct ext4_map_blocks *map, int flags)
462 {
463 struct extent_status es;
464 int retval;
465 int ret = 0;
466 #ifdef ES_AGGRESSIVE_TEST
467 struct ext4_map_blocks orig_map;
468
469 memcpy(&orig_map, map, sizeof(*map));
470 #endif
471
472 map->m_flags = 0;
473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 (unsigned long) map->m_lblk);
476
477 /*
478 * ext4_map_blocks returns an int, and m_len is an unsigned int
479 */
480 if (unlikely(map->m_len > INT_MAX))
481 map->m_len = INT_MAX;
482
483 /* We can handle the block number less than EXT_MAX_BLOCKS */
484 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
485 return -EIO;
486
487 /* Lookup extent status tree firstly */
488 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
489 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
490 map->m_pblk = ext4_es_pblock(&es) +
491 map->m_lblk - es.es_lblk;
492 map->m_flags |= ext4_es_is_written(&es) ?
493 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
494 retval = es.es_len - (map->m_lblk - es.es_lblk);
495 if (retval > map->m_len)
496 retval = map->m_len;
497 map->m_len = retval;
498 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
499 retval = 0;
500 } else {
501 BUG_ON(1);
502 }
503 #ifdef ES_AGGRESSIVE_TEST
504 ext4_map_blocks_es_recheck(handle, inode, map,
505 &orig_map, flags);
506 #endif
507 goto found;
508 }
509
510 /*
511 * Try to see if we can get the block without requesting a new
512 * file system block.
513 */
514 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
515 down_read(&EXT4_I(inode)->i_data_sem);
516 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
517 retval = ext4_ext_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
519 } else {
520 retval = ext4_ind_map_blocks(handle, inode, map, flags &
521 EXT4_GET_BLOCKS_KEEP_SIZE);
522 }
523 if (retval > 0) {
524 unsigned int status;
525
526 if (unlikely(retval != map->m_len)) {
527 ext4_warning(inode->i_sb,
528 "ES len assertion failed for inode "
529 "%lu: retval %d != map->m_len %d",
530 inode->i_ino, retval, map->m_len);
531 WARN_ON(1);
532 }
533
534 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
535 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
536 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
537 ext4_find_delalloc_range(inode, map->m_lblk,
538 map->m_lblk + map->m_len - 1))
539 status |= EXTENT_STATUS_DELAYED;
540 ret = ext4_es_insert_extent(inode, map->m_lblk,
541 map->m_len, map->m_pblk, status);
542 if (ret < 0)
543 retval = ret;
544 }
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 up_read((&EXT4_I(inode)->i_data_sem));
547
548 found:
549 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
550 ret = check_block_validity(inode, map);
551 if (ret != 0)
552 return ret;
553 }
554
555 /* If it is only a block(s) look up */
556 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
557 return retval;
558
559 /*
560 * Returns if the blocks have already allocated
561 *
562 * Note that if blocks have been preallocated
563 * ext4_ext_get_block() returns the create = 0
564 * with buffer head unmapped.
565 */
566 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
567 /*
568 * If we need to convert extent to unwritten
569 * we continue and do the actual work in
570 * ext4_ext_map_blocks()
571 */
572 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
573 return retval;
574
575 /*
576 * Here we clear m_flags because after allocating an new extent,
577 * it will be set again.
578 */
579 map->m_flags &= ~EXT4_MAP_FLAGS;
580
581 /*
582 * New blocks allocate and/or writing to unwritten extent
583 * will possibly result in updating i_data, so we take
584 * the write lock of i_data_sem, and call get_block()
585 * with create == 1 flag.
586 */
587 down_write(&EXT4_I(inode)->i_data_sem);
588
589 /*
590 * We need to check for EXT4 here because migrate
591 * could have changed the inode type in between
592 */
593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594 retval = ext4_ext_map_blocks(handle, inode, map, flags);
595 } else {
596 retval = ext4_ind_map_blocks(handle, inode, map, flags);
597
598 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
599 /*
600 * We allocated new blocks which will result in
601 * i_data's format changing. Force the migrate
602 * to fail by clearing migrate flags
603 */
604 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
605 }
606
607 /*
608 * Update reserved blocks/metadata blocks after successful
609 * block allocation which had been deferred till now. We don't
610 * support fallocate for non extent files. So we can update
611 * reserve space here.
612 */
613 if ((retval > 0) &&
614 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 ext4_da_update_reserve_space(inode, retval, 1);
616 }
617
618 if (retval > 0) {
619 unsigned int status;
620
621 if (unlikely(retval != map->m_len)) {
622 ext4_warning(inode->i_sb,
623 "ES len assertion failed for inode "
624 "%lu: retval %d != map->m_len %d",
625 inode->i_ino, retval, map->m_len);
626 WARN_ON(1);
627 }
628
629 /*
630 * If the extent has been zeroed out, we don't need to update
631 * extent status tree.
632 */
633 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
634 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
635 if (ext4_es_is_written(&es))
636 goto has_zeroout;
637 }
638 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
639 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
640 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
641 ext4_find_delalloc_range(inode, map->m_lblk,
642 map->m_lblk + map->m_len - 1))
643 status |= EXTENT_STATUS_DELAYED;
644 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
645 map->m_pblk, status);
646 if (ret < 0)
647 retval = ret;
648 }
649
650 has_zeroout:
651 up_write((&EXT4_I(inode)->i_data_sem));
652 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
653 ret = check_block_validity(inode, map);
654 if (ret != 0)
655 return ret;
656 }
657 return retval;
658 }
659
660 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
661 {
662 struct inode *inode = bh->b_assoc_map->host;
663 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
664 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
665 int err;
666 if (!uptodate)
667 return;
668 WARN_ON(!buffer_unwritten(bh));
669 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 struct buffer_head *bh, int flags)
677 {
678 handle_t *handle = ext4_journal_current_handle();
679 struct ext4_map_blocks map;
680 int ret = 0, started = 0;
681 int dio_credits;
682
683 if (ext4_has_inline_data(inode))
684 return -ERANGE;
685
686 map.m_lblk = iblock;
687 map.m_len = bh->b_size >> inode->i_blkbits;
688
689 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
690 /* Direct IO write... */
691 if (map.m_len > DIO_MAX_BLOCKS)
692 map.m_len = DIO_MAX_BLOCKS;
693 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
694 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
695 dio_credits);
696 if (IS_ERR(handle)) {
697 ret = PTR_ERR(handle);
698 return ret;
699 }
700 started = 1;
701 }
702
703 ret = ext4_map_blocks(handle, inode, &map, flags);
704 if (ret > 0) {
705 ext4_io_end_t *io_end = ext4_inode_aio(inode);
706
707 map_bh(bh, inode->i_sb, map.m_pblk);
708 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
709 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
710 bh->b_assoc_map = inode->i_mapping;
711 bh->b_private = (void *)(unsigned long)iblock;
712 bh->b_end_io = ext4_end_io_unwritten;
713 }
714 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
715 set_buffer_defer_completion(bh);
716 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
717 ret = 0;
718 }
719 if (started)
720 ext4_journal_stop(handle);
721 return ret;
722 }
723
724 int ext4_get_block(struct inode *inode, sector_t iblock,
725 struct buffer_head *bh, int create)
726 {
727 return _ext4_get_block(inode, iblock, bh,
728 create ? EXT4_GET_BLOCKS_CREATE : 0);
729 }
730
731 /*
732 * `handle' can be NULL if create is zero
733 */
734 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
735 ext4_lblk_t block, int create)
736 {
737 struct ext4_map_blocks map;
738 struct buffer_head *bh;
739 int err;
740
741 J_ASSERT(handle != NULL || create == 0);
742
743 map.m_lblk = block;
744 map.m_len = 1;
745 err = ext4_map_blocks(handle, inode, &map,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
747
748 if (err == 0)
749 return create ? ERR_PTR(-ENOSPC) : NULL;
750 if (err < 0)
751 return ERR_PTR(err);
752
753 bh = sb_getblk(inode->i_sb, map.m_pblk);
754 if (unlikely(!bh))
755 return ERR_PTR(-ENOMEM);
756 if (map.m_flags & EXT4_MAP_NEW) {
757 J_ASSERT(create != 0);
758 J_ASSERT(handle != NULL);
759
760 /*
761 * Now that we do not always journal data, we should
762 * keep in mind whether this should always journal the
763 * new buffer as metadata. For now, regular file
764 * writes use ext4_get_block instead, so it's not a
765 * problem.
766 */
767 lock_buffer(bh);
768 BUFFER_TRACE(bh, "call get_create_access");
769 err = ext4_journal_get_create_access(handle, bh);
770 if (unlikely(err)) {
771 unlock_buffer(bh);
772 goto errout;
773 }
774 if (!buffer_uptodate(bh)) {
775 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
776 set_buffer_uptodate(bh);
777 }
778 unlock_buffer(bh);
779 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
780 err = ext4_handle_dirty_metadata(handle, inode, bh);
781 if (unlikely(err))
782 goto errout;
783 } else
784 BUFFER_TRACE(bh, "not a new buffer");
785 return bh;
786 errout:
787 brelse(bh);
788 return ERR_PTR(err);
789 }
790
791 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
792 ext4_lblk_t block, int create)
793 {
794 struct buffer_head *bh;
795
796 bh = ext4_getblk(handle, inode, block, create);
797 if (IS_ERR(bh))
798 return bh;
799 if (!bh || buffer_uptodate(bh))
800 return bh;
801 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
802 wait_on_buffer(bh);
803 if (buffer_uptodate(bh))
804 return bh;
805 put_bh(bh);
806 return ERR_PTR(-EIO);
807 }
808
809 int ext4_walk_page_buffers(handle_t *handle,
810 struct buffer_head *head,
811 unsigned from,
812 unsigned to,
813 int *partial,
814 int (*fn)(handle_t *handle,
815 struct buffer_head *bh))
816 {
817 struct buffer_head *bh;
818 unsigned block_start, block_end;
819 unsigned blocksize = head->b_size;
820 int err, ret = 0;
821 struct buffer_head *next;
822
823 for (bh = head, block_start = 0;
824 ret == 0 && (bh != head || !block_start);
825 block_start = block_end, bh = next) {
826 next = bh->b_this_page;
827 block_end = block_start + blocksize;
828 if (block_end <= from || block_start >= to) {
829 if (partial && !buffer_uptodate(bh))
830 *partial = 1;
831 continue;
832 }
833 err = (*fn)(handle, bh);
834 if (!ret)
835 ret = err;
836 }
837 return ret;
838 }
839
840 /*
841 * To preserve ordering, it is essential that the hole instantiation and
842 * the data write be encapsulated in a single transaction. We cannot
843 * close off a transaction and start a new one between the ext4_get_block()
844 * and the commit_write(). So doing the jbd2_journal_start at the start of
845 * prepare_write() is the right place.
846 *
847 * Also, this function can nest inside ext4_writepage(). In that case, we
848 * *know* that ext4_writepage() has generated enough buffer credits to do the
849 * whole page. So we won't block on the journal in that case, which is good,
850 * because the caller may be PF_MEMALLOC.
851 *
852 * By accident, ext4 can be reentered when a transaction is open via
853 * quota file writes. If we were to commit the transaction while thus
854 * reentered, there can be a deadlock - we would be holding a quota
855 * lock, and the commit would never complete if another thread had a
856 * transaction open and was blocking on the quota lock - a ranking
857 * violation.
858 *
859 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
860 * will _not_ run commit under these circumstances because handle->h_ref
861 * is elevated. We'll still have enough credits for the tiny quotafile
862 * write.
863 */
864 int do_journal_get_write_access(handle_t *handle,
865 struct buffer_head *bh)
866 {
867 int dirty = buffer_dirty(bh);
868 int ret;
869
870 if (!buffer_mapped(bh) || buffer_freed(bh))
871 return 0;
872 /*
873 * __block_write_begin() could have dirtied some buffers. Clean
874 * the dirty bit as jbd2_journal_get_write_access() could complain
875 * otherwise about fs integrity issues. Setting of the dirty bit
876 * by __block_write_begin() isn't a real problem here as we clear
877 * the bit before releasing a page lock and thus writeback cannot
878 * ever write the buffer.
879 */
880 if (dirty)
881 clear_buffer_dirty(bh);
882 BUFFER_TRACE(bh, "get write access");
883 ret = ext4_journal_get_write_access(handle, bh);
884 if (!ret && dirty)
885 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
886 return ret;
887 }
888
889 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
890 struct buffer_head *bh_result, int create);
891 static int ext4_write_begin(struct file *file, struct address_space *mapping,
892 loff_t pos, unsigned len, unsigned flags,
893 struct page **pagep, void **fsdata)
894 {
895 struct inode *inode = mapping->host;
896 int ret, needed_blocks;
897 handle_t *handle;
898 int retries = 0;
899 struct page *page;
900 pgoff_t index;
901 unsigned from, to;
902
903 trace_ext4_write_begin(inode, pos, len, flags);
904 /*
905 * Reserve one block more for addition to orphan list in case
906 * we allocate blocks but write fails for some reason
907 */
908 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
909 index = pos >> PAGE_CACHE_SHIFT;
910 from = pos & (PAGE_CACHE_SIZE - 1);
911 to = from + len;
912
913 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
914 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
915 flags, pagep);
916 if (ret < 0)
917 return ret;
918 if (ret == 1)
919 return 0;
920 }
921
922 /*
923 * grab_cache_page_write_begin() can take a long time if the
924 * system is thrashing due to memory pressure, or if the page
925 * is being written back. So grab it first before we start
926 * the transaction handle. This also allows us to allocate
927 * the page (if needed) without using GFP_NOFS.
928 */
929 retry_grab:
930 page = grab_cache_page_write_begin(mapping, index, flags);
931 if (!page)
932 return -ENOMEM;
933 unlock_page(page);
934
935 retry_journal:
936 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
937 if (IS_ERR(handle)) {
938 page_cache_release(page);
939 return PTR_ERR(handle);
940 }
941
942 lock_page(page);
943 if (page->mapping != mapping) {
944 /* The page got truncated from under us */
945 unlock_page(page);
946 page_cache_release(page);
947 ext4_journal_stop(handle);
948 goto retry_grab;
949 }
950 /* In case writeback began while the page was unlocked */
951 wait_for_stable_page(page);
952
953 if (ext4_should_dioread_nolock(inode))
954 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
955 else
956 ret = __block_write_begin(page, pos, len, ext4_get_block);
957
958 if (!ret && ext4_should_journal_data(inode)) {
959 ret = ext4_walk_page_buffers(handle, page_buffers(page),
960 from, to, NULL,
961 do_journal_get_write_access);
962 }
963
964 if (ret) {
965 unlock_page(page);
966 /*
967 * __block_write_begin may have instantiated a few blocks
968 * outside i_size. Trim these off again. Don't need
969 * i_size_read because we hold i_mutex.
970 *
971 * Add inode to orphan list in case we crash before
972 * truncate finishes
973 */
974 if (pos + len > inode->i_size && ext4_can_truncate(inode))
975 ext4_orphan_add(handle, inode);
976
977 ext4_journal_stop(handle);
978 if (pos + len > inode->i_size) {
979 ext4_truncate_failed_write(inode);
980 /*
981 * If truncate failed early the inode might
982 * still be on the orphan list; we need to
983 * make sure the inode is removed from the
984 * orphan list in that case.
985 */
986 if (inode->i_nlink)
987 ext4_orphan_del(NULL, inode);
988 }
989
990 if (ret == -ENOSPC &&
991 ext4_should_retry_alloc(inode->i_sb, &retries))
992 goto retry_journal;
993 page_cache_release(page);
994 return ret;
995 }
996 *pagep = page;
997 return ret;
998 }
999
1000 /* For write_end() in data=journal mode */
1001 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1002 {
1003 int ret;
1004 if (!buffer_mapped(bh) || buffer_freed(bh))
1005 return 0;
1006 set_buffer_uptodate(bh);
1007 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1008 clear_buffer_meta(bh);
1009 clear_buffer_prio(bh);
1010 return ret;
1011 }
1012
1013 /*
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1016 *
1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1018 * buffers are managed internally.
1019 */
1020 static int ext4_write_end(struct file *file,
1021 struct address_space *mapping,
1022 loff_t pos, unsigned len, unsigned copied,
1023 struct page *page, void *fsdata)
1024 {
1025 handle_t *handle = ext4_journal_current_handle();
1026 struct inode *inode = mapping->host;
1027 loff_t old_size = inode->i_size;
1028 int ret = 0, ret2;
1029 int i_size_changed = 0;
1030
1031 trace_ext4_write_end(inode, pos, len, copied);
1032 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1033 ret = ext4_jbd2_file_inode(handle, inode);
1034 if (ret) {
1035 unlock_page(page);
1036 page_cache_release(page);
1037 goto errout;
1038 }
1039 }
1040
1041 if (ext4_has_inline_data(inode)) {
1042 ret = ext4_write_inline_data_end(inode, pos, len,
1043 copied, page);
1044 if (ret < 0)
1045 goto errout;
1046 copied = ret;
1047 } else
1048 copied = block_write_end(file, mapping, pos,
1049 len, copied, page, fsdata);
1050 /*
1051 * it's important to update i_size while still holding page lock:
1052 * page writeout could otherwise come in and zero beyond i_size.
1053 */
1054 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1055 unlock_page(page);
1056 page_cache_release(page);
1057
1058 if (old_size < pos)
1059 pagecache_isize_extended(inode, old_size, pos);
1060 /*
1061 * Don't mark the inode dirty under page lock. First, it unnecessarily
1062 * makes the holding time of page lock longer. Second, it forces lock
1063 * ordering of page lock and transaction start for journaling
1064 * filesystems.
1065 */
1066 if (i_size_changed)
1067 ext4_mark_inode_dirty(handle, inode);
1068
1069 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1070 /* if we have allocated more blocks and copied
1071 * less. We will have blocks allocated outside
1072 * inode->i_size. So truncate them
1073 */
1074 ext4_orphan_add(handle, inode);
1075 errout:
1076 ret2 = ext4_journal_stop(handle);
1077 if (!ret)
1078 ret = ret2;
1079
1080 if (pos + len > inode->i_size) {
1081 ext4_truncate_failed_write(inode);
1082 /*
1083 * If truncate failed early the inode might still be
1084 * on the orphan list; we need to make sure the inode
1085 * is removed from the orphan list in that case.
1086 */
1087 if (inode->i_nlink)
1088 ext4_orphan_del(NULL, inode);
1089 }
1090
1091 return ret ? ret : copied;
1092 }
1093
1094 static int ext4_journalled_write_end(struct file *file,
1095 struct address_space *mapping,
1096 loff_t pos, unsigned len, unsigned copied,
1097 struct page *page, void *fsdata)
1098 {
1099 handle_t *handle = ext4_journal_current_handle();
1100 struct inode *inode = mapping->host;
1101 loff_t old_size = inode->i_size;
1102 int ret = 0, ret2;
1103 int partial = 0;
1104 unsigned from, to;
1105 int size_changed = 0;
1106
1107 trace_ext4_journalled_write_end(inode, pos, len, copied);
1108 from = pos & (PAGE_CACHE_SIZE - 1);
1109 to = from + len;
1110
1111 BUG_ON(!ext4_handle_valid(handle));
1112
1113 if (ext4_has_inline_data(inode))
1114 copied = ext4_write_inline_data_end(inode, pos, len,
1115 copied, page);
1116 else {
1117 if (copied < len) {
1118 if (!PageUptodate(page))
1119 copied = 0;
1120 page_zero_new_buffers(page, from+copied, to);
1121 }
1122
1123 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1124 to, &partial, write_end_fn);
1125 if (!partial)
1126 SetPageUptodate(page);
1127 }
1128 size_changed = ext4_update_inode_size(inode, pos + copied);
1129 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1130 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1131 unlock_page(page);
1132 page_cache_release(page);
1133
1134 if (old_size < pos)
1135 pagecache_isize_extended(inode, old_size, pos);
1136
1137 if (size_changed) {
1138 ret2 = ext4_mark_inode_dirty(handle, inode);
1139 if (!ret)
1140 ret = ret2;
1141 }
1142
1143 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1144 /* if we have allocated more blocks and copied
1145 * less. We will have blocks allocated outside
1146 * inode->i_size. So truncate them
1147 */
1148 ext4_orphan_add(handle, inode);
1149
1150 ret2 = ext4_journal_stop(handle);
1151 if (!ret)
1152 ret = ret2;
1153 if (pos + len > inode->i_size) {
1154 ext4_truncate_failed_write(inode);
1155 /*
1156 * If truncate failed early the inode might still be
1157 * on the orphan list; we need to make sure the inode
1158 * is removed from the orphan list in that case.
1159 */
1160 if (inode->i_nlink)
1161 ext4_orphan_del(NULL, inode);
1162 }
1163
1164 return ret ? ret : copied;
1165 }
1166
1167 /*
1168 * Reserve a single cluster located at lblock
1169 */
1170 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1171 {
1172 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1173 struct ext4_inode_info *ei = EXT4_I(inode);
1174 unsigned int md_needed;
1175 int ret;
1176
1177 /*
1178 * We will charge metadata quota at writeout time; this saves
1179 * us from metadata over-estimation, though we may go over by
1180 * a small amount in the end. Here we just reserve for data.
1181 */
1182 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1183 if (ret)
1184 return ret;
1185
1186 /*
1187 * recalculate the amount of metadata blocks to reserve
1188 * in order to allocate nrblocks
1189 * worse case is one extent per block
1190 */
1191 spin_lock(&ei->i_block_reservation_lock);
1192 /*
1193 * ext4_calc_metadata_amount() has side effects, which we have
1194 * to be prepared undo if we fail to claim space.
1195 */
1196 md_needed = 0;
1197 trace_ext4_da_reserve_space(inode, 0);
1198
1199 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1200 spin_unlock(&ei->i_block_reservation_lock);
1201 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1202 return -ENOSPC;
1203 }
1204 ei->i_reserved_data_blocks++;
1205 spin_unlock(&ei->i_block_reservation_lock);
1206
1207 return 0; /* success */
1208 }
1209
1210 static void ext4_da_release_space(struct inode *inode, int to_free)
1211 {
1212 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1213 struct ext4_inode_info *ei = EXT4_I(inode);
1214
1215 if (!to_free)
1216 return; /* Nothing to release, exit */
1217
1218 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1219
1220 trace_ext4_da_release_space(inode, to_free);
1221 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1222 /*
1223 * if there aren't enough reserved blocks, then the
1224 * counter is messed up somewhere. Since this
1225 * function is called from invalidate page, it's
1226 * harmless to return without any action.
1227 */
1228 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1229 "ino %lu, to_free %d with only %d reserved "
1230 "data blocks", inode->i_ino, to_free,
1231 ei->i_reserved_data_blocks);
1232 WARN_ON(1);
1233 to_free = ei->i_reserved_data_blocks;
1234 }
1235 ei->i_reserved_data_blocks -= to_free;
1236
1237 /* update fs dirty data blocks counter */
1238 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1239
1240 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1241
1242 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1243 }
1244
1245 static void ext4_da_page_release_reservation(struct page *page,
1246 unsigned int offset,
1247 unsigned int length)
1248 {
1249 int to_release = 0;
1250 struct buffer_head *head, *bh;
1251 unsigned int curr_off = 0;
1252 struct inode *inode = page->mapping->host;
1253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1254 unsigned int stop = offset + length;
1255 int num_clusters;
1256 ext4_fsblk_t lblk;
1257
1258 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1259
1260 head = page_buffers(page);
1261 bh = head;
1262 do {
1263 unsigned int next_off = curr_off + bh->b_size;
1264
1265 if (next_off > stop)
1266 break;
1267
1268 if ((offset <= curr_off) && (buffer_delay(bh))) {
1269 to_release++;
1270 clear_buffer_delay(bh);
1271 }
1272 curr_off = next_off;
1273 } while ((bh = bh->b_this_page) != head);
1274
1275 if (to_release) {
1276 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1277 ext4_es_remove_extent(inode, lblk, to_release);
1278 }
1279
1280 /* If we have released all the blocks belonging to a cluster, then we
1281 * need to release the reserved space for that cluster. */
1282 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1283 while (num_clusters > 0) {
1284 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1285 ((num_clusters - 1) << sbi->s_cluster_bits);
1286 if (sbi->s_cluster_ratio == 1 ||
1287 !ext4_find_delalloc_cluster(inode, lblk))
1288 ext4_da_release_space(inode, 1);
1289
1290 num_clusters--;
1291 }
1292 }
1293
1294 /*
1295 * Delayed allocation stuff
1296 */
1297
1298 struct mpage_da_data {
1299 struct inode *inode;
1300 struct writeback_control *wbc;
1301
1302 pgoff_t first_page; /* The first page to write */
1303 pgoff_t next_page; /* Current page to examine */
1304 pgoff_t last_page; /* Last page to examine */
1305 /*
1306 * Extent to map - this can be after first_page because that can be
1307 * fully mapped. We somewhat abuse m_flags to store whether the extent
1308 * is delalloc or unwritten.
1309 */
1310 struct ext4_map_blocks map;
1311 struct ext4_io_submit io_submit; /* IO submission data */
1312 };
1313
1314 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1315 bool invalidate)
1316 {
1317 int nr_pages, i;
1318 pgoff_t index, end;
1319 struct pagevec pvec;
1320 struct inode *inode = mpd->inode;
1321 struct address_space *mapping = inode->i_mapping;
1322
1323 /* This is necessary when next_page == 0. */
1324 if (mpd->first_page >= mpd->next_page)
1325 return;
1326
1327 index = mpd->first_page;
1328 end = mpd->next_page - 1;
1329 if (invalidate) {
1330 ext4_lblk_t start, last;
1331 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1332 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1333 ext4_es_remove_extent(inode, start, last - start + 1);
1334 }
1335
1336 pagevec_init(&pvec, 0);
1337 while (index <= end) {
1338 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1339 if (nr_pages == 0)
1340 break;
1341 for (i = 0; i < nr_pages; i++) {
1342 struct page *page = pvec.pages[i];
1343 if (page->index > end)
1344 break;
1345 BUG_ON(!PageLocked(page));
1346 BUG_ON(PageWriteback(page));
1347 if (invalidate) {
1348 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1349 ClearPageUptodate(page);
1350 }
1351 unlock_page(page);
1352 }
1353 index = pvec.pages[nr_pages - 1]->index + 1;
1354 pagevec_release(&pvec);
1355 }
1356 }
1357
1358 static void ext4_print_free_blocks(struct inode *inode)
1359 {
1360 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1361 struct super_block *sb = inode->i_sb;
1362 struct ext4_inode_info *ei = EXT4_I(inode);
1363
1364 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1365 EXT4_C2B(EXT4_SB(inode->i_sb),
1366 ext4_count_free_clusters(sb)));
1367 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1368 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1369 (long long) EXT4_C2B(EXT4_SB(sb),
1370 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1371 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1372 (long long) EXT4_C2B(EXT4_SB(sb),
1373 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1374 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1375 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1376 ei->i_reserved_data_blocks);
1377 return;
1378 }
1379
1380 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1381 {
1382 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1383 }
1384
1385 /*
1386 * This function is grabs code from the very beginning of
1387 * ext4_map_blocks, but assumes that the caller is from delayed write
1388 * time. This function looks up the requested blocks and sets the
1389 * buffer delay bit under the protection of i_data_sem.
1390 */
1391 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1392 struct ext4_map_blocks *map,
1393 struct buffer_head *bh)
1394 {
1395 struct extent_status es;
1396 int retval;
1397 sector_t invalid_block = ~((sector_t) 0xffff);
1398 #ifdef ES_AGGRESSIVE_TEST
1399 struct ext4_map_blocks orig_map;
1400
1401 memcpy(&orig_map, map, sizeof(*map));
1402 #endif
1403
1404 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1405 invalid_block = ~0;
1406
1407 map->m_flags = 0;
1408 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1409 "logical block %lu\n", inode->i_ino, map->m_len,
1410 (unsigned long) map->m_lblk);
1411
1412 /* Lookup extent status tree firstly */
1413 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1414 if (ext4_es_is_hole(&es)) {
1415 retval = 0;
1416 down_read(&EXT4_I(inode)->i_data_sem);
1417 goto add_delayed;
1418 }
1419
1420 /*
1421 * Delayed extent could be allocated by fallocate.
1422 * So we need to check it.
1423 */
1424 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1425 map_bh(bh, inode->i_sb, invalid_block);
1426 set_buffer_new(bh);
1427 set_buffer_delay(bh);
1428 return 0;
1429 }
1430
1431 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1432 retval = es.es_len - (iblock - es.es_lblk);
1433 if (retval > map->m_len)
1434 retval = map->m_len;
1435 map->m_len = retval;
1436 if (ext4_es_is_written(&es))
1437 map->m_flags |= EXT4_MAP_MAPPED;
1438 else if (ext4_es_is_unwritten(&es))
1439 map->m_flags |= EXT4_MAP_UNWRITTEN;
1440 else
1441 BUG_ON(1);
1442
1443 #ifdef ES_AGGRESSIVE_TEST
1444 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1445 #endif
1446 return retval;
1447 }
1448
1449 /*
1450 * Try to see if we can get the block without requesting a new
1451 * file system block.
1452 */
1453 down_read(&EXT4_I(inode)->i_data_sem);
1454 if (ext4_has_inline_data(inode))
1455 retval = 0;
1456 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1457 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1458 else
1459 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1460
1461 add_delayed:
1462 if (retval == 0) {
1463 int ret;
1464 /*
1465 * XXX: __block_prepare_write() unmaps passed block,
1466 * is it OK?
1467 */
1468 /*
1469 * If the block was allocated from previously allocated cluster,
1470 * then we don't need to reserve it again. However we still need
1471 * to reserve metadata for every block we're going to write.
1472 */
1473 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1474 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1475 ret = ext4_da_reserve_space(inode, iblock);
1476 if (ret) {
1477 /* not enough space to reserve */
1478 retval = ret;
1479 goto out_unlock;
1480 }
1481 }
1482
1483 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1484 ~0, EXTENT_STATUS_DELAYED);
1485 if (ret) {
1486 retval = ret;
1487 goto out_unlock;
1488 }
1489
1490 map_bh(bh, inode->i_sb, invalid_block);
1491 set_buffer_new(bh);
1492 set_buffer_delay(bh);
1493 } else if (retval > 0) {
1494 int ret;
1495 unsigned int status;
1496
1497 if (unlikely(retval != map->m_len)) {
1498 ext4_warning(inode->i_sb,
1499 "ES len assertion failed for inode "
1500 "%lu: retval %d != map->m_len %d",
1501 inode->i_ino, retval, map->m_len);
1502 WARN_ON(1);
1503 }
1504
1505 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1506 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1507 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1508 map->m_pblk, status);
1509 if (ret != 0)
1510 retval = ret;
1511 }
1512
1513 out_unlock:
1514 up_read((&EXT4_I(inode)->i_data_sem));
1515
1516 return retval;
1517 }
1518
1519 /*
1520 * This is a special get_block_t callback which is used by
1521 * ext4_da_write_begin(). It will either return mapped block or
1522 * reserve space for a single block.
1523 *
1524 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1525 * We also have b_blocknr = -1 and b_bdev initialized properly
1526 *
1527 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1528 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1529 * initialized properly.
1530 */
1531 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1532 struct buffer_head *bh, int create)
1533 {
1534 struct ext4_map_blocks map;
1535 int ret = 0;
1536
1537 BUG_ON(create == 0);
1538 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1539
1540 map.m_lblk = iblock;
1541 map.m_len = 1;
1542
1543 /*
1544 * first, we need to know whether the block is allocated already
1545 * preallocated blocks are unmapped but should treated
1546 * the same as allocated blocks.
1547 */
1548 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1549 if (ret <= 0)
1550 return ret;
1551
1552 map_bh(bh, inode->i_sb, map.m_pblk);
1553 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1554
1555 if (buffer_unwritten(bh)) {
1556 /* A delayed write to unwritten bh should be marked
1557 * new and mapped. Mapped ensures that we don't do
1558 * get_block multiple times when we write to the same
1559 * offset and new ensures that we do proper zero out
1560 * for partial write.
1561 */
1562 set_buffer_new(bh);
1563 set_buffer_mapped(bh);
1564 }
1565 return 0;
1566 }
1567
1568 static int bget_one(handle_t *handle, struct buffer_head *bh)
1569 {
1570 get_bh(bh);
1571 return 0;
1572 }
1573
1574 static int bput_one(handle_t *handle, struct buffer_head *bh)
1575 {
1576 put_bh(bh);
1577 return 0;
1578 }
1579
1580 static int __ext4_journalled_writepage(struct page *page,
1581 unsigned int len)
1582 {
1583 struct address_space *mapping = page->mapping;
1584 struct inode *inode = mapping->host;
1585 struct buffer_head *page_bufs = NULL;
1586 handle_t *handle = NULL;
1587 int ret = 0, err = 0;
1588 int inline_data = ext4_has_inline_data(inode);
1589 struct buffer_head *inode_bh = NULL;
1590
1591 ClearPageChecked(page);
1592
1593 if (inline_data) {
1594 BUG_ON(page->index != 0);
1595 BUG_ON(len > ext4_get_max_inline_size(inode));
1596 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1597 if (inode_bh == NULL)
1598 goto out;
1599 } else {
1600 page_bufs = page_buffers(page);
1601 if (!page_bufs) {
1602 BUG();
1603 goto out;
1604 }
1605 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1606 NULL, bget_one);
1607 }
1608 /* As soon as we unlock the page, it can go away, but we have
1609 * references to buffers so we are safe */
1610 unlock_page(page);
1611
1612 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1613 ext4_writepage_trans_blocks(inode));
1614 if (IS_ERR(handle)) {
1615 ret = PTR_ERR(handle);
1616 goto out;
1617 }
1618
1619 BUG_ON(!ext4_handle_valid(handle));
1620
1621 if (inline_data) {
1622 BUFFER_TRACE(inode_bh, "get write access");
1623 ret = ext4_journal_get_write_access(handle, inode_bh);
1624
1625 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1626
1627 } else {
1628 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1629 do_journal_get_write_access);
1630
1631 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1632 write_end_fn);
1633 }
1634 if (ret == 0)
1635 ret = err;
1636 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1637 err = ext4_journal_stop(handle);
1638 if (!ret)
1639 ret = err;
1640
1641 if (!ext4_has_inline_data(inode))
1642 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1643 NULL, bput_one);
1644 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1645 out:
1646 brelse(inode_bh);
1647 return ret;
1648 }
1649
1650 /*
1651 * Note that we don't need to start a transaction unless we're journaling data
1652 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1653 * need to file the inode to the transaction's list in ordered mode because if
1654 * we are writing back data added by write(), the inode is already there and if
1655 * we are writing back data modified via mmap(), no one guarantees in which
1656 * transaction the data will hit the disk. In case we are journaling data, we
1657 * cannot start transaction directly because transaction start ranks above page
1658 * lock so we have to do some magic.
1659 *
1660 * This function can get called via...
1661 * - ext4_writepages after taking page lock (have journal handle)
1662 * - journal_submit_inode_data_buffers (no journal handle)
1663 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1664 * - grab_page_cache when doing write_begin (have journal handle)
1665 *
1666 * We don't do any block allocation in this function. If we have page with
1667 * multiple blocks we need to write those buffer_heads that are mapped. This
1668 * is important for mmaped based write. So if we do with blocksize 1K
1669 * truncate(f, 1024);
1670 * a = mmap(f, 0, 4096);
1671 * a[0] = 'a';
1672 * truncate(f, 4096);
1673 * we have in the page first buffer_head mapped via page_mkwrite call back
1674 * but other buffer_heads would be unmapped but dirty (dirty done via the
1675 * do_wp_page). So writepage should write the first block. If we modify
1676 * the mmap area beyond 1024 we will again get a page_fault and the
1677 * page_mkwrite callback will do the block allocation and mark the
1678 * buffer_heads mapped.
1679 *
1680 * We redirty the page if we have any buffer_heads that is either delay or
1681 * unwritten in the page.
1682 *
1683 * We can get recursively called as show below.
1684 *
1685 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1686 * ext4_writepage()
1687 *
1688 * But since we don't do any block allocation we should not deadlock.
1689 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1690 */
1691 static int ext4_writepage(struct page *page,
1692 struct writeback_control *wbc)
1693 {
1694 int ret = 0;
1695 loff_t size;
1696 unsigned int len;
1697 struct buffer_head *page_bufs = NULL;
1698 struct inode *inode = page->mapping->host;
1699 struct ext4_io_submit io_submit;
1700 bool keep_towrite = false;
1701
1702 trace_ext4_writepage(page);
1703 size = i_size_read(inode);
1704 if (page->index == size >> PAGE_CACHE_SHIFT)
1705 len = size & ~PAGE_CACHE_MASK;
1706 else
1707 len = PAGE_CACHE_SIZE;
1708
1709 page_bufs = page_buffers(page);
1710 /*
1711 * We cannot do block allocation or other extent handling in this
1712 * function. If there are buffers needing that, we have to redirty
1713 * the page. But we may reach here when we do a journal commit via
1714 * journal_submit_inode_data_buffers() and in that case we must write
1715 * allocated buffers to achieve data=ordered mode guarantees.
1716 */
1717 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1718 ext4_bh_delay_or_unwritten)) {
1719 redirty_page_for_writepage(wbc, page);
1720 if (current->flags & PF_MEMALLOC) {
1721 /*
1722 * For memory cleaning there's no point in writing only
1723 * some buffers. So just bail out. Warn if we came here
1724 * from direct reclaim.
1725 */
1726 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1727 == PF_MEMALLOC);
1728 unlock_page(page);
1729 return 0;
1730 }
1731 keep_towrite = true;
1732 }
1733
1734 if (PageChecked(page) && ext4_should_journal_data(inode))
1735 /*
1736 * It's mmapped pagecache. Add buffers and journal it. There
1737 * doesn't seem much point in redirtying the page here.
1738 */
1739 return __ext4_journalled_writepage(page, len);
1740
1741 ext4_io_submit_init(&io_submit, wbc);
1742 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1743 if (!io_submit.io_end) {
1744 redirty_page_for_writepage(wbc, page);
1745 unlock_page(page);
1746 return -ENOMEM;
1747 }
1748 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1749 ext4_io_submit(&io_submit);
1750 /* Drop io_end reference we got from init */
1751 ext4_put_io_end_defer(io_submit.io_end);
1752 return ret;
1753 }
1754
1755 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1756 {
1757 int len;
1758 loff_t size = i_size_read(mpd->inode);
1759 int err;
1760
1761 BUG_ON(page->index != mpd->first_page);
1762 if (page->index == size >> PAGE_CACHE_SHIFT)
1763 len = size & ~PAGE_CACHE_MASK;
1764 else
1765 len = PAGE_CACHE_SIZE;
1766 clear_page_dirty_for_io(page);
1767 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1768 if (!err)
1769 mpd->wbc->nr_to_write--;
1770 mpd->first_page++;
1771
1772 return err;
1773 }
1774
1775 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1776
1777 /*
1778 * mballoc gives us at most this number of blocks...
1779 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1780 * The rest of mballoc seems to handle chunks up to full group size.
1781 */
1782 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1783
1784 /*
1785 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1786 *
1787 * @mpd - extent of blocks
1788 * @lblk - logical number of the block in the file
1789 * @bh - buffer head we want to add to the extent
1790 *
1791 * The function is used to collect contig. blocks in the same state. If the
1792 * buffer doesn't require mapping for writeback and we haven't started the
1793 * extent of buffers to map yet, the function returns 'true' immediately - the
1794 * caller can write the buffer right away. Otherwise the function returns true
1795 * if the block has been added to the extent, false if the block couldn't be
1796 * added.
1797 */
1798 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1799 struct buffer_head *bh)
1800 {
1801 struct ext4_map_blocks *map = &mpd->map;
1802
1803 /* Buffer that doesn't need mapping for writeback? */
1804 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1805 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1806 /* So far no extent to map => we write the buffer right away */
1807 if (map->m_len == 0)
1808 return true;
1809 return false;
1810 }
1811
1812 /* First block in the extent? */
1813 if (map->m_len == 0) {
1814 map->m_lblk = lblk;
1815 map->m_len = 1;
1816 map->m_flags = bh->b_state & BH_FLAGS;
1817 return true;
1818 }
1819
1820 /* Don't go larger than mballoc is willing to allocate */
1821 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1822 return false;
1823
1824 /* Can we merge the block to our big extent? */
1825 if (lblk == map->m_lblk + map->m_len &&
1826 (bh->b_state & BH_FLAGS) == map->m_flags) {
1827 map->m_len++;
1828 return true;
1829 }
1830 return false;
1831 }
1832
1833 /*
1834 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1835 *
1836 * @mpd - extent of blocks for mapping
1837 * @head - the first buffer in the page
1838 * @bh - buffer we should start processing from
1839 * @lblk - logical number of the block in the file corresponding to @bh
1840 *
1841 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1842 * the page for IO if all buffers in this page were mapped and there's no
1843 * accumulated extent of buffers to map or add buffers in the page to the
1844 * extent of buffers to map. The function returns 1 if the caller can continue
1845 * by processing the next page, 0 if it should stop adding buffers to the
1846 * extent to map because we cannot extend it anymore. It can also return value
1847 * < 0 in case of error during IO submission.
1848 */
1849 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1850 struct buffer_head *head,
1851 struct buffer_head *bh,
1852 ext4_lblk_t lblk)
1853 {
1854 struct inode *inode = mpd->inode;
1855 int err;
1856 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1857 >> inode->i_blkbits;
1858
1859 do {
1860 BUG_ON(buffer_locked(bh));
1861
1862 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1863 /* Found extent to map? */
1864 if (mpd->map.m_len)
1865 return 0;
1866 /* Everything mapped so far and we hit EOF */
1867 break;
1868 }
1869 } while (lblk++, (bh = bh->b_this_page) != head);
1870 /* So far everything mapped? Submit the page for IO. */
1871 if (mpd->map.m_len == 0) {
1872 err = mpage_submit_page(mpd, head->b_page);
1873 if (err < 0)
1874 return err;
1875 }
1876 return lblk < blocks;
1877 }
1878
1879 /*
1880 * mpage_map_buffers - update buffers corresponding to changed extent and
1881 * submit fully mapped pages for IO
1882 *
1883 * @mpd - description of extent to map, on return next extent to map
1884 *
1885 * Scan buffers corresponding to changed extent (we expect corresponding pages
1886 * to be already locked) and update buffer state according to new extent state.
1887 * We map delalloc buffers to their physical location, clear unwritten bits,
1888 * and mark buffers as uninit when we perform writes to unwritten extents
1889 * and do extent conversion after IO is finished. If the last page is not fully
1890 * mapped, we update @map to the next extent in the last page that needs
1891 * mapping. Otherwise we submit the page for IO.
1892 */
1893 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1894 {
1895 struct pagevec pvec;
1896 int nr_pages, i;
1897 struct inode *inode = mpd->inode;
1898 struct buffer_head *head, *bh;
1899 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1900 pgoff_t start, end;
1901 ext4_lblk_t lblk;
1902 sector_t pblock;
1903 int err;
1904
1905 start = mpd->map.m_lblk >> bpp_bits;
1906 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1907 lblk = start << bpp_bits;
1908 pblock = mpd->map.m_pblk;
1909
1910 pagevec_init(&pvec, 0);
1911 while (start <= end) {
1912 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1913 PAGEVEC_SIZE);
1914 if (nr_pages == 0)
1915 break;
1916 for (i = 0; i < nr_pages; i++) {
1917 struct page *page = pvec.pages[i];
1918
1919 if (page->index > end)
1920 break;
1921 /* Up to 'end' pages must be contiguous */
1922 BUG_ON(page->index != start);
1923 bh = head = page_buffers(page);
1924 do {
1925 if (lblk < mpd->map.m_lblk)
1926 continue;
1927 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1928 /*
1929 * Buffer after end of mapped extent.
1930 * Find next buffer in the page to map.
1931 */
1932 mpd->map.m_len = 0;
1933 mpd->map.m_flags = 0;
1934 /*
1935 * FIXME: If dioread_nolock supports
1936 * blocksize < pagesize, we need to make
1937 * sure we add size mapped so far to
1938 * io_end->size as the following call
1939 * can submit the page for IO.
1940 */
1941 err = mpage_process_page_bufs(mpd, head,
1942 bh, lblk);
1943 pagevec_release(&pvec);
1944 if (err > 0)
1945 err = 0;
1946 return err;
1947 }
1948 if (buffer_delay(bh)) {
1949 clear_buffer_delay(bh);
1950 bh->b_blocknr = pblock++;
1951 }
1952 clear_buffer_unwritten(bh);
1953 } while (lblk++, (bh = bh->b_this_page) != head);
1954
1955 /*
1956 * FIXME: This is going to break if dioread_nolock
1957 * supports blocksize < pagesize as we will try to
1958 * convert potentially unmapped parts of inode.
1959 */
1960 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1961 /* Page fully mapped - let IO run! */
1962 err = mpage_submit_page(mpd, page);
1963 if (err < 0) {
1964 pagevec_release(&pvec);
1965 return err;
1966 }
1967 start++;
1968 }
1969 pagevec_release(&pvec);
1970 }
1971 /* Extent fully mapped and matches with page boundary. We are done. */
1972 mpd->map.m_len = 0;
1973 mpd->map.m_flags = 0;
1974 return 0;
1975 }
1976
1977 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1978 {
1979 struct inode *inode = mpd->inode;
1980 struct ext4_map_blocks *map = &mpd->map;
1981 int get_blocks_flags;
1982 int err, dioread_nolock;
1983
1984 trace_ext4_da_write_pages_extent(inode, map);
1985 /*
1986 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
1987 * to convert an unwritten extent to be initialized (in the case
1988 * where we have written into one or more preallocated blocks). It is
1989 * possible that we're going to need more metadata blocks than
1990 * previously reserved. However we must not fail because we're in
1991 * writeback and there is nothing we can do about it so it might result
1992 * in data loss. So use reserved blocks to allocate metadata if
1993 * possible.
1994 *
1995 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
1996 * the blocks in question are delalloc blocks. This indicates
1997 * that the blocks and quotas has already been checked when
1998 * the data was copied into the page cache.
1999 */
2000 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2001 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2002 dioread_nolock = ext4_should_dioread_nolock(inode);
2003 if (dioread_nolock)
2004 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2005 if (map->m_flags & (1 << BH_Delay))
2006 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2007
2008 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2009 if (err < 0)
2010 return err;
2011 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2012 if (!mpd->io_submit.io_end->handle &&
2013 ext4_handle_valid(handle)) {
2014 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2015 handle->h_rsv_handle = NULL;
2016 }
2017 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2018 }
2019
2020 BUG_ON(map->m_len == 0);
2021 if (map->m_flags & EXT4_MAP_NEW) {
2022 struct block_device *bdev = inode->i_sb->s_bdev;
2023 int i;
2024
2025 for (i = 0; i < map->m_len; i++)
2026 unmap_underlying_metadata(bdev, map->m_pblk + i);
2027 }
2028 return 0;
2029 }
2030
2031 /*
2032 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2033 * mpd->len and submit pages underlying it for IO
2034 *
2035 * @handle - handle for journal operations
2036 * @mpd - extent to map
2037 * @give_up_on_write - we set this to true iff there is a fatal error and there
2038 * is no hope of writing the data. The caller should discard
2039 * dirty pages to avoid infinite loops.
2040 *
2041 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2042 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2043 * them to initialized or split the described range from larger unwritten
2044 * extent. Note that we need not map all the described range since allocation
2045 * can return less blocks or the range is covered by more unwritten extents. We
2046 * cannot map more because we are limited by reserved transaction credits. On
2047 * the other hand we always make sure that the last touched page is fully
2048 * mapped so that it can be written out (and thus forward progress is
2049 * guaranteed). After mapping we submit all mapped pages for IO.
2050 */
2051 static int mpage_map_and_submit_extent(handle_t *handle,
2052 struct mpage_da_data *mpd,
2053 bool *give_up_on_write)
2054 {
2055 struct inode *inode = mpd->inode;
2056 struct ext4_map_blocks *map = &mpd->map;
2057 int err;
2058 loff_t disksize;
2059 int progress = 0;
2060
2061 mpd->io_submit.io_end->offset =
2062 ((loff_t)map->m_lblk) << inode->i_blkbits;
2063 do {
2064 err = mpage_map_one_extent(handle, mpd);
2065 if (err < 0) {
2066 struct super_block *sb = inode->i_sb;
2067
2068 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2069 goto invalidate_dirty_pages;
2070 /*
2071 * Let the uper layers retry transient errors.
2072 * In the case of ENOSPC, if ext4_count_free_blocks()
2073 * is non-zero, a commit should free up blocks.
2074 */
2075 if ((err == -ENOMEM) ||
2076 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2077 if (progress)
2078 goto update_disksize;
2079 return err;
2080 }
2081 ext4_msg(sb, KERN_CRIT,
2082 "Delayed block allocation failed for "
2083 "inode %lu at logical offset %llu with"
2084 " max blocks %u with error %d",
2085 inode->i_ino,
2086 (unsigned long long)map->m_lblk,
2087 (unsigned)map->m_len, -err);
2088 ext4_msg(sb, KERN_CRIT,
2089 "This should not happen!! Data will "
2090 "be lost\n");
2091 if (err == -ENOSPC)
2092 ext4_print_free_blocks(inode);
2093 invalidate_dirty_pages:
2094 *give_up_on_write = true;
2095 return err;
2096 }
2097 progress = 1;
2098 /*
2099 * Update buffer state, submit mapped pages, and get us new
2100 * extent to map
2101 */
2102 err = mpage_map_and_submit_buffers(mpd);
2103 if (err < 0)
2104 goto update_disksize;
2105 } while (map->m_len);
2106
2107 update_disksize:
2108 /*
2109 * Update on-disk size after IO is submitted. Races with
2110 * truncate are avoided by checking i_size under i_data_sem.
2111 */
2112 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2113 if (disksize > EXT4_I(inode)->i_disksize) {
2114 int err2;
2115 loff_t i_size;
2116
2117 down_write(&EXT4_I(inode)->i_data_sem);
2118 i_size = i_size_read(inode);
2119 if (disksize > i_size)
2120 disksize = i_size;
2121 if (disksize > EXT4_I(inode)->i_disksize)
2122 EXT4_I(inode)->i_disksize = disksize;
2123 err2 = ext4_mark_inode_dirty(handle, inode);
2124 up_write(&EXT4_I(inode)->i_data_sem);
2125 if (err2)
2126 ext4_error(inode->i_sb,
2127 "Failed to mark inode %lu dirty",
2128 inode->i_ino);
2129 if (!err)
2130 err = err2;
2131 }
2132 return err;
2133 }
2134
2135 /*
2136 * Calculate the total number of credits to reserve for one writepages
2137 * iteration. This is called from ext4_writepages(). We map an extent of
2138 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2139 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2140 * bpp - 1 blocks in bpp different extents.
2141 */
2142 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2143 {
2144 int bpp = ext4_journal_blocks_per_page(inode);
2145
2146 return ext4_meta_trans_blocks(inode,
2147 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2148 }
2149
2150 /*
2151 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2152 * and underlying extent to map
2153 *
2154 * @mpd - where to look for pages
2155 *
2156 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2157 * IO immediately. When we find a page which isn't mapped we start accumulating
2158 * extent of buffers underlying these pages that needs mapping (formed by
2159 * either delayed or unwritten buffers). We also lock the pages containing
2160 * these buffers. The extent found is returned in @mpd structure (starting at
2161 * mpd->lblk with length mpd->len blocks).
2162 *
2163 * Note that this function can attach bios to one io_end structure which are
2164 * neither logically nor physically contiguous. Although it may seem as an
2165 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2166 * case as we need to track IO to all buffers underlying a page in one io_end.
2167 */
2168 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2169 {
2170 struct address_space *mapping = mpd->inode->i_mapping;
2171 struct pagevec pvec;
2172 unsigned int nr_pages;
2173 long left = mpd->wbc->nr_to_write;
2174 pgoff_t index = mpd->first_page;
2175 pgoff_t end = mpd->last_page;
2176 int tag;
2177 int i, err = 0;
2178 int blkbits = mpd->inode->i_blkbits;
2179 ext4_lblk_t lblk;
2180 struct buffer_head *head;
2181
2182 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2183 tag = PAGECACHE_TAG_TOWRITE;
2184 else
2185 tag = PAGECACHE_TAG_DIRTY;
2186
2187 pagevec_init(&pvec, 0);
2188 mpd->map.m_len = 0;
2189 mpd->next_page = index;
2190 while (index <= end) {
2191 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2192 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2193 if (nr_pages == 0)
2194 goto out;
2195
2196 for (i = 0; i < nr_pages; i++) {
2197 struct page *page = pvec.pages[i];
2198
2199 /*
2200 * At this point, the page may be truncated or
2201 * invalidated (changing page->mapping to NULL), or
2202 * even swizzled back from swapper_space to tmpfs file
2203 * mapping. However, page->index will not change
2204 * because we have a reference on the page.
2205 */
2206 if (page->index > end)
2207 goto out;
2208
2209 /*
2210 * Accumulated enough dirty pages? This doesn't apply
2211 * to WB_SYNC_ALL mode. For integrity sync we have to
2212 * keep going because someone may be concurrently
2213 * dirtying pages, and we might have synced a lot of
2214 * newly appeared dirty pages, but have not synced all
2215 * of the old dirty pages.
2216 */
2217 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2218 goto out;
2219
2220 /* If we can't merge this page, we are done. */
2221 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2222 goto out;
2223
2224 lock_page(page);
2225 /*
2226 * If the page is no longer dirty, or its mapping no
2227 * longer corresponds to inode we are writing (which
2228 * means it has been truncated or invalidated), or the
2229 * page is already under writeback and we are not doing
2230 * a data integrity writeback, skip the page
2231 */
2232 if (!PageDirty(page) ||
2233 (PageWriteback(page) &&
2234 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2235 unlikely(page->mapping != mapping)) {
2236 unlock_page(page);
2237 continue;
2238 }
2239
2240 wait_on_page_writeback(page);
2241 BUG_ON(PageWriteback(page));
2242
2243 if (mpd->map.m_len == 0)
2244 mpd->first_page = page->index;
2245 mpd->next_page = page->index + 1;
2246 /* Add all dirty buffers to mpd */
2247 lblk = ((ext4_lblk_t)page->index) <<
2248 (PAGE_CACHE_SHIFT - blkbits);
2249 head = page_buffers(page);
2250 err = mpage_process_page_bufs(mpd, head, head, lblk);
2251 if (err <= 0)
2252 goto out;
2253 err = 0;
2254 left--;
2255 }
2256 pagevec_release(&pvec);
2257 cond_resched();
2258 }
2259 return 0;
2260 out:
2261 pagevec_release(&pvec);
2262 return err;
2263 }
2264
2265 static int __writepage(struct page *page, struct writeback_control *wbc,
2266 void *data)
2267 {
2268 struct address_space *mapping = data;
2269 int ret = ext4_writepage(page, wbc);
2270 mapping_set_error(mapping, ret);
2271 return ret;
2272 }
2273
2274 static int ext4_writepages(struct address_space *mapping,
2275 struct writeback_control *wbc)
2276 {
2277 pgoff_t writeback_index = 0;
2278 long nr_to_write = wbc->nr_to_write;
2279 int range_whole = 0;
2280 int cycled = 1;
2281 handle_t *handle = NULL;
2282 struct mpage_da_data mpd;
2283 struct inode *inode = mapping->host;
2284 int needed_blocks, rsv_blocks = 0, ret = 0;
2285 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2286 bool done;
2287 struct blk_plug plug;
2288 bool give_up_on_write = false;
2289
2290 trace_ext4_writepages(inode, wbc);
2291
2292 /*
2293 * No pages to write? This is mainly a kludge to avoid starting
2294 * a transaction for special inodes like journal inode on last iput()
2295 * because that could violate lock ordering on umount
2296 */
2297 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2298 goto out_writepages;
2299
2300 if (ext4_should_journal_data(inode)) {
2301 struct blk_plug plug;
2302
2303 blk_start_plug(&plug);
2304 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2305 blk_finish_plug(&plug);
2306 goto out_writepages;
2307 }
2308
2309 /*
2310 * If the filesystem has aborted, it is read-only, so return
2311 * right away instead of dumping stack traces later on that
2312 * will obscure the real source of the problem. We test
2313 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2314 * the latter could be true if the filesystem is mounted
2315 * read-only, and in that case, ext4_writepages should
2316 * *never* be called, so if that ever happens, we would want
2317 * the stack trace.
2318 */
2319 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2320 ret = -EROFS;
2321 goto out_writepages;
2322 }
2323
2324 if (ext4_should_dioread_nolock(inode)) {
2325 /*
2326 * We may need to convert up to one extent per block in
2327 * the page and we may dirty the inode.
2328 */
2329 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2330 }
2331
2332 /*
2333 * If we have inline data and arrive here, it means that
2334 * we will soon create the block for the 1st page, so
2335 * we'd better clear the inline data here.
2336 */
2337 if (ext4_has_inline_data(inode)) {
2338 /* Just inode will be modified... */
2339 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2340 if (IS_ERR(handle)) {
2341 ret = PTR_ERR(handle);
2342 goto out_writepages;
2343 }
2344 BUG_ON(ext4_test_inode_state(inode,
2345 EXT4_STATE_MAY_INLINE_DATA));
2346 ext4_destroy_inline_data(handle, inode);
2347 ext4_journal_stop(handle);
2348 }
2349
2350 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2351 range_whole = 1;
2352
2353 if (wbc->range_cyclic) {
2354 writeback_index = mapping->writeback_index;
2355 if (writeback_index)
2356 cycled = 0;
2357 mpd.first_page = writeback_index;
2358 mpd.last_page = -1;
2359 } else {
2360 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2361 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2362 }
2363
2364 mpd.inode = inode;
2365 mpd.wbc = wbc;
2366 ext4_io_submit_init(&mpd.io_submit, wbc);
2367 retry:
2368 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2369 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2370 done = false;
2371 blk_start_plug(&plug);
2372 while (!done && mpd.first_page <= mpd.last_page) {
2373 /* For each extent of pages we use new io_end */
2374 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2375 if (!mpd.io_submit.io_end) {
2376 ret = -ENOMEM;
2377 break;
2378 }
2379
2380 /*
2381 * We have two constraints: We find one extent to map and we
2382 * must always write out whole page (makes a difference when
2383 * blocksize < pagesize) so that we don't block on IO when we
2384 * try to write out the rest of the page. Journalled mode is
2385 * not supported by delalloc.
2386 */
2387 BUG_ON(ext4_should_journal_data(inode));
2388 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2389
2390 /* start a new transaction */
2391 handle = ext4_journal_start_with_reserve(inode,
2392 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2393 if (IS_ERR(handle)) {
2394 ret = PTR_ERR(handle);
2395 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2396 "%ld pages, ino %lu; err %d", __func__,
2397 wbc->nr_to_write, inode->i_ino, ret);
2398 /* Release allocated io_end */
2399 ext4_put_io_end(mpd.io_submit.io_end);
2400 break;
2401 }
2402
2403 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2404 ret = mpage_prepare_extent_to_map(&mpd);
2405 if (!ret) {
2406 if (mpd.map.m_len)
2407 ret = mpage_map_and_submit_extent(handle, &mpd,
2408 &give_up_on_write);
2409 else {
2410 /*
2411 * We scanned the whole range (or exhausted
2412 * nr_to_write), submitted what was mapped and
2413 * didn't find anything needing mapping. We are
2414 * done.
2415 */
2416 done = true;
2417 }
2418 }
2419 ext4_journal_stop(handle);
2420 /* Submit prepared bio */
2421 ext4_io_submit(&mpd.io_submit);
2422 /* Unlock pages we didn't use */
2423 mpage_release_unused_pages(&mpd, give_up_on_write);
2424 /* Drop our io_end reference we got from init */
2425 ext4_put_io_end(mpd.io_submit.io_end);
2426
2427 if (ret == -ENOSPC && sbi->s_journal) {
2428 /*
2429 * Commit the transaction which would
2430 * free blocks released in the transaction
2431 * and try again
2432 */
2433 jbd2_journal_force_commit_nested(sbi->s_journal);
2434 ret = 0;
2435 continue;
2436 }
2437 /* Fatal error - ENOMEM, EIO... */
2438 if (ret)
2439 break;
2440 }
2441 blk_finish_plug(&plug);
2442 if (!ret && !cycled && wbc->nr_to_write > 0) {
2443 cycled = 1;
2444 mpd.last_page = writeback_index - 1;
2445 mpd.first_page = 0;
2446 goto retry;
2447 }
2448
2449 /* Update index */
2450 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2451 /*
2452 * Set the writeback_index so that range_cyclic
2453 * mode will write it back later
2454 */
2455 mapping->writeback_index = mpd.first_page;
2456
2457 out_writepages:
2458 trace_ext4_writepages_result(inode, wbc, ret,
2459 nr_to_write - wbc->nr_to_write);
2460 return ret;
2461 }
2462
2463 static int ext4_nonda_switch(struct super_block *sb)
2464 {
2465 s64 free_clusters, dirty_clusters;
2466 struct ext4_sb_info *sbi = EXT4_SB(sb);
2467
2468 /*
2469 * switch to non delalloc mode if we are running low
2470 * on free block. The free block accounting via percpu
2471 * counters can get slightly wrong with percpu_counter_batch getting
2472 * accumulated on each CPU without updating global counters
2473 * Delalloc need an accurate free block accounting. So switch
2474 * to non delalloc when we are near to error range.
2475 */
2476 free_clusters =
2477 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2478 dirty_clusters =
2479 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2480 /*
2481 * Start pushing delalloc when 1/2 of free blocks are dirty.
2482 */
2483 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2484 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2485
2486 if (2 * free_clusters < 3 * dirty_clusters ||
2487 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2488 /*
2489 * free block count is less than 150% of dirty blocks
2490 * or free blocks is less than watermark
2491 */
2492 return 1;
2493 }
2494 return 0;
2495 }
2496
2497 /* We always reserve for an inode update; the superblock could be there too */
2498 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2499 {
2500 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2501 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2502 return 1;
2503
2504 if (pos + len <= 0x7fffffffULL)
2505 return 1;
2506
2507 /* We might need to update the superblock to set LARGE_FILE */
2508 return 2;
2509 }
2510
2511 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2512 loff_t pos, unsigned len, unsigned flags,
2513 struct page **pagep, void **fsdata)
2514 {
2515 int ret, retries = 0;
2516 struct page *page;
2517 pgoff_t index;
2518 struct inode *inode = mapping->host;
2519 handle_t *handle;
2520
2521 index = pos >> PAGE_CACHE_SHIFT;
2522
2523 if (ext4_nonda_switch(inode->i_sb)) {
2524 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2525 return ext4_write_begin(file, mapping, pos,
2526 len, flags, pagep, fsdata);
2527 }
2528 *fsdata = (void *)0;
2529 trace_ext4_da_write_begin(inode, pos, len, flags);
2530
2531 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2532 ret = ext4_da_write_inline_data_begin(mapping, inode,
2533 pos, len, flags,
2534 pagep, fsdata);
2535 if (ret < 0)
2536 return ret;
2537 if (ret == 1)
2538 return 0;
2539 }
2540
2541 /*
2542 * grab_cache_page_write_begin() can take a long time if the
2543 * system is thrashing due to memory pressure, or if the page
2544 * is being written back. So grab it first before we start
2545 * the transaction handle. This also allows us to allocate
2546 * the page (if needed) without using GFP_NOFS.
2547 */
2548 retry_grab:
2549 page = grab_cache_page_write_begin(mapping, index, flags);
2550 if (!page)
2551 return -ENOMEM;
2552 unlock_page(page);
2553
2554 /*
2555 * With delayed allocation, we don't log the i_disksize update
2556 * if there is delayed block allocation. But we still need
2557 * to journalling the i_disksize update if writes to the end
2558 * of file which has an already mapped buffer.
2559 */
2560 retry_journal:
2561 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2562 ext4_da_write_credits(inode, pos, len));
2563 if (IS_ERR(handle)) {
2564 page_cache_release(page);
2565 return PTR_ERR(handle);
2566 }
2567
2568 lock_page(page);
2569 if (page->mapping != mapping) {
2570 /* The page got truncated from under us */
2571 unlock_page(page);
2572 page_cache_release(page);
2573 ext4_journal_stop(handle);
2574 goto retry_grab;
2575 }
2576 /* In case writeback began while the page was unlocked */
2577 wait_for_stable_page(page);
2578
2579 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2580 if (ret < 0) {
2581 unlock_page(page);
2582 ext4_journal_stop(handle);
2583 /*
2584 * block_write_begin may have instantiated a few blocks
2585 * outside i_size. Trim these off again. Don't need
2586 * i_size_read because we hold i_mutex.
2587 */
2588 if (pos + len > inode->i_size)
2589 ext4_truncate_failed_write(inode);
2590
2591 if (ret == -ENOSPC &&
2592 ext4_should_retry_alloc(inode->i_sb, &retries))
2593 goto retry_journal;
2594
2595 page_cache_release(page);
2596 return ret;
2597 }
2598
2599 *pagep = page;
2600 return ret;
2601 }
2602
2603 /*
2604 * Check if we should update i_disksize
2605 * when write to the end of file but not require block allocation
2606 */
2607 static int ext4_da_should_update_i_disksize(struct page *page,
2608 unsigned long offset)
2609 {
2610 struct buffer_head *bh;
2611 struct inode *inode = page->mapping->host;
2612 unsigned int idx;
2613 int i;
2614
2615 bh = page_buffers(page);
2616 idx = offset >> inode->i_blkbits;
2617
2618 for (i = 0; i < idx; i++)
2619 bh = bh->b_this_page;
2620
2621 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2622 return 0;
2623 return 1;
2624 }
2625
2626 static int ext4_da_write_end(struct file *file,
2627 struct address_space *mapping,
2628 loff_t pos, unsigned len, unsigned copied,
2629 struct page *page, void *fsdata)
2630 {
2631 struct inode *inode = mapping->host;
2632 int ret = 0, ret2;
2633 handle_t *handle = ext4_journal_current_handle();
2634 loff_t new_i_size;
2635 unsigned long start, end;
2636 int write_mode = (int)(unsigned long)fsdata;
2637
2638 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2639 return ext4_write_end(file, mapping, pos,
2640 len, copied, page, fsdata);
2641
2642 trace_ext4_da_write_end(inode, pos, len, copied);
2643 start = pos & (PAGE_CACHE_SIZE - 1);
2644 end = start + copied - 1;
2645
2646 /*
2647 * generic_write_end() will run mark_inode_dirty() if i_size
2648 * changes. So let's piggyback the i_disksize mark_inode_dirty
2649 * into that.
2650 */
2651 new_i_size = pos + copied;
2652 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2653 if (ext4_has_inline_data(inode) ||
2654 ext4_da_should_update_i_disksize(page, end)) {
2655 ext4_update_i_disksize(inode, new_i_size);
2656 /* We need to mark inode dirty even if
2657 * new_i_size is less that inode->i_size
2658 * bu greater than i_disksize.(hint delalloc)
2659 */
2660 ext4_mark_inode_dirty(handle, inode);
2661 }
2662 }
2663
2664 if (write_mode != CONVERT_INLINE_DATA &&
2665 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2666 ext4_has_inline_data(inode))
2667 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2668 page);
2669 else
2670 ret2 = generic_write_end(file, mapping, pos, len, copied,
2671 page, fsdata);
2672
2673 copied = ret2;
2674 if (ret2 < 0)
2675 ret = ret2;
2676 ret2 = ext4_journal_stop(handle);
2677 if (!ret)
2678 ret = ret2;
2679
2680 return ret ? ret : copied;
2681 }
2682
2683 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2684 unsigned int length)
2685 {
2686 /*
2687 * Drop reserved blocks
2688 */
2689 BUG_ON(!PageLocked(page));
2690 if (!page_has_buffers(page))
2691 goto out;
2692
2693 ext4_da_page_release_reservation(page, offset, length);
2694
2695 out:
2696 ext4_invalidatepage(page, offset, length);
2697
2698 return;
2699 }
2700
2701 /*
2702 * Force all delayed allocation blocks to be allocated for a given inode.
2703 */
2704 int ext4_alloc_da_blocks(struct inode *inode)
2705 {
2706 trace_ext4_alloc_da_blocks(inode);
2707
2708 if (!EXT4_I(inode)->i_reserved_data_blocks)
2709 return 0;
2710
2711 /*
2712 * We do something simple for now. The filemap_flush() will
2713 * also start triggering a write of the data blocks, which is
2714 * not strictly speaking necessary (and for users of
2715 * laptop_mode, not even desirable). However, to do otherwise
2716 * would require replicating code paths in:
2717 *
2718 * ext4_writepages() ->
2719 * write_cache_pages() ---> (via passed in callback function)
2720 * __mpage_da_writepage() -->
2721 * mpage_add_bh_to_extent()
2722 * mpage_da_map_blocks()
2723 *
2724 * The problem is that write_cache_pages(), located in
2725 * mm/page-writeback.c, marks pages clean in preparation for
2726 * doing I/O, which is not desirable if we're not planning on
2727 * doing I/O at all.
2728 *
2729 * We could call write_cache_pages(), and then redirty all of
2730 * the pages by calling redirty_page_for_writepage() but that
2731 * would be ugly in the extreme. So instead we would need to
2732 * replicate parts of the code in the above functions,
2733 * simplifying them because we wouldn't actually intend to
2734 * write out the pages, but rather only collect contiguous
2735 * logical block extents, call the multi-block allocator, and
2736 * then update the buffer heads with the block allocations.
2737 *
2738 * For now, though, we'll cheat by calling filemap_flush(),
2739 * which will map the blocks, and start the I/O, but not
2740 * actually wait for the I/O to complete.
2741 */
2742 return filemap_flush(inode->i_mapping);
2743 }
2744
2745 /*
2746 * bmap() is special. It gets used by applications such as lilo and by
2747 * the swapper to find the on-disk block of a specific piece of data.
2748 *
2749 * Naturally, this is dangerous if the block concerned is still in the
2750 * journal. If somebody makes a swapfile on an ext4 data-journaling
2751 * filesystem and enables swap, then they may get a nasty shock when the
2752 * data getting swapped to that swapfile suddenly gets overwritten by
2753 * the original zero's written out previously to the journal and
2754 * awaiting writeback in the kernel's buffer cache.
2755 *
2756 * So, if we see any bmap calls here on a modified, data-journaled file,
2757 * take extra steps to flush any blocks which might be in the cache.
2758 */
2759 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2760 {
2761 struct inode *inode = mapping->host;
2762 journal_t *journal;
2763 int err;
2764
2765 /*
2766 * We can get here for an inline file via the FIBMAP ioctl
2767 */
2768 if (ext4_has_inline_data(inode))
2769 return 0;
2770
2771 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2772 test_opt(inode->i_sb, DELALLOC)) {
2773 /*
2774 * With delalloc we want to sync the file
2775 * so that we can make sure we allocate
2776 * blocks for file
2777 */
2778 filemap_write_and_wait(mapping);
2779 }
2780
2781 if (EXT4_JOURNAL(inode) &&
2782 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2783 /*
2784 * This is a REALLY heavyweight approach, but the use of
2785 * bmap on dirty files is expected to be extremely rare:
2786 * only if we run lilo or swapon on a freshly made file
2787 * do we expect this to happen.
2788 *
2789 * (bmap requires CAP_SYS_RAWIO so this does not
2790 * represent an unprivileged user DOS attack --- we'd be
2791 * in trouble if mortal users could trigger this path at
2792 * will.)
2793 *
2794 * NB. EXT4_STATE_JDATA is not set on files other than
2795 * regular files. If somebody wants to bmap a directory
2796 * or symlink and gets confused because the buffer
2797 * hasn't yet been flushed to disk, they deserve
2798 * everything they get.
2799 */
2800
2801 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2802 journal = EXT4_JOURNAL(inode);
2803 jbd2_journal_lock_updates(journal);
2804 err = jbd2_journal_flush(journal);
2805 jbd2_journal_unlock_updates(journal);
2806
2807 if (err)
2808 return 0;
2809 }
2810
2811 return generic_block_bmap(mapping, block, ext4_get_block);
2812 }
2813
2814 static int ext4_readpage(struct file *file, struct page *page)
2815 {
2816 int ret = -EAGAIN;
2817 struct inode *inode = page->mapping->host;
2818
2819 trace_ext4_readpage(page);
2820
2821 if (ext4_has_inline_data(inode))
2822 ret = ext4_readpage_inline(inode, page);
2823
2824 if (ret == -EAGAIN)
2825 return mpage_readpage(page, ext4_get_block);
2826
2827 return ret;
2828 }
2829
2830 static int
2831 ext4_readpages(struct file *file, struct address_space *mapping,
2832 struct list_head *pages, unsigned nr_pages)
2833 {
2834 struct inode *inode = mapping->host;
2835
2836 /* If the file has inline data, no need to do readpages. */
2837 if (ext4_has_inline_data(inode))
2838 return 0;
2839
2840 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2841 }
2842
2843 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2844 unsigned int length)
2845 {
2846 trace_ext4_invalidatepage(page, offset, length);
2847
2848 /* No journalling happens on data buffers when this function is used */
2849 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2850
2851 block_invalidatepage(page, offset, length);
2852 }
2853
2854 static int __ext4_journalled_invalidatepage(struct page *page,
2855 unsigned int offset,
2856 unsigned int length)
2857 {
2858 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2859
2860 trace_ext4_journalled_invalidatepage(page, offset, length);
2861
2862 /*
2863 * If it's a full truncate we just forget about the pending dirtying
2864 */
2865 if (offset == 0 && length == PAGE_CACHE_SIZE)
2866 ClearPageChecked(page);
2867
2868 return jbd2_journal_invalidatepage(journal, page, offset, length);
2869 }
2870
2871 /* Wrapper for aops... */
2872 static void ext4_journalled_invalidatepage(struct page *page,
2873 unsigned int offset,
2874 unsigned int length)
2875 {
2876 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2877 }
2878
2879 static int ext4_releasepage(struct page *page, gfp_t wait)
2880 {
2881 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2882
2883 trace_ext4_releasepage(page);
2884
2885 /* Page has dirty journalled data -> cannot release */
2886 if (PageChecked(page))
2887 return 0;
2888 if (journal)
2889 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2890 else
2891 return try_to_free_buffers(page);
2892 }
2893
2894 /*
2895 * ext4_get_block used when preparing for a DIO write or buffer write.
2896 * We allocate an uinitialized extent if blocks haven't been allocated.
2897 * The extent will be converted to initialized after the IO is complete.
2898 */
2899 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2900 struct buffer_head *bh_result, int create)
2901 {
2902 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2903 inode->i_ino, create);
2904 return _ext4_get_block(inode, iblock, bh_result,
2905 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2906 }
2907
2908 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2909 struct buffer_head *bh_result, int create)
2910 {
2911 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2912 inode->i_ino, create);
2913 return _ext4_get_block(inode, iblock, bh_result,
2914 EXT4_GET_BLOCKS_NO_LOCK);
2915 }
2916
2917 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2918 ssize_t size, void *private)
2919 {
2920 ext4_io_end_t *io_end = iocb->private;
2921
2922 /* if not async direct IO just return */
2923 if (!io_end)
2924 return;
2925
2926 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2927 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2928 iocb->private, io_end->inode->i_ino, iocb, offset,
2929 size);
2930
2931 iocb->private = NULL;
2932 io_end->offset = offset;
2933 io_end->size = size;
2934 ext4_put_io_end(io_end);
2935 }
2936
2937 /*
2938 * For ext4 extent files, ext4 will do direct-io write to holes,
2939 * preallocated extents, and those write extend the file, no need to
2940 * fall back to buffered IO.
2941 *
2942 * For holes, we fallocate those blocks, mark them as unwritten
2943 * If those blocks were preallocated, we mark sure they are split, but
2944 * still keep the range to write as unwritten.
2945 *
2946 * The unwritten extents will be converted to written when DIO is completed.
2947 * For async direct IO, since the IO may still pending when return, we
2948 * set up an end_io call back function, which will do the conversion
2949 * when async direct IO completed.
2950 *
2951 * If the O_DIRECT write will extend the file then add this inode to the
2952 * orphan list. So recovery will truncate it back to the original size
2953 * if the machine crashes during the write.
2954 *
2955 */
2956 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2957 struct iov_iter *iter, loff_t offset)
2958 {
2959 struct file *file = iocb->ki_filp;
2960 struct inode *inode = file->f_mapping->host;
2961 ssize_t ret;
2962 size_t count = iov_iter_count(iter);
2963 int overwrite = 0;
2964 get_block_t *get_block_func = NULL;
2965 int dio_flags = 0;
2966 loff_t final_size = offset + count;
2967 ext4_io_end_t *io_end = NULL;
2968
2969 /* Use the old path for reads and writes beyond i_size. */
2970 if (rw != WRITE || final_size > inode->i_size)
2971 return ext4_ind_direct_IO(rw, iocb, iter, offset);
2972
2973 BUG_ON(iocb->private == NULL);
2974
2975 /*
2976 * Make all waiters for direct IO properly wait also for extent
2977 * conversion. This also disallows race between truncate() and
2978 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2979 */
2980 if (rw == WRITE)
2981 atomic_inc(&inode->i_dio_count);
2982
2983 /* If we do a overwrite dio, i_mutex locking can be released */
2984 overwrite = *((int *)iocb->private);
2985
2986 if (overwrite) {
2987 down_read(&EXT4_I(inode)->i_data_sem);
2988 mutex_unlock(&inode->i_mutex);
2989 }
2990
2991 /*
2992 * We could direct write to holes and fallocate.
2993 *
2994 * Allocated blocks to fill the hole are marked as
2995 * unwritten to prevent parallel buffered read to expose
2996 * the stale data before DIO complete the data IO.
2997 *
2998 * As to previously fallocated extents, ext4 get_block will
2999 * just simply mark the buffer mapped but still keep the
3000 * extents unwritten.
3001 *
3002 * For non AIO case, we will convert those unwritten extents
3003 * to written after return back from blockdev_direct_IO.
3004 *
3005 * For async DIO, the conversion needs to be deferred when the
3006 * IO is completed. The ext4 end_io callback function will be
3007 * called to take care of the conversion work. Here for async
3008 * case, we allocate an io_end structure to hook to the iocb.
3009 */
3010 iocb->private = NULL;
3011 ext4_inode_aio_set(inode, NULL);
3012 if (!is_sync_kiocb(iocb)) {
3013 io_end = ext4_init_io_end(inode, GFP_NOFS);
3014 if (!io_end) {
3015 ret = -ENOMEM;
3016 goto retake_lock;
3017 }
3018 /*
3019 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3020 */
3021 iocb->private = ext4_get_io_end(io_end);
3022 /*
3023 * we save the io structure for current async direct
3024 * IO, so that later ext4_map_blocks() could flag the
3025 * io structure whether there is a unwritten extents
3026 * needs to be converted when IO is completed.
3027 */
3028 ext4_inode_aio_set(inode, io_end);
3029 }
3030
3031 if (overwrite) {
3032 get_block_func = ext4_get_block_write_nolock;
3033 } else {
3034 get_block_func = ext4_get_block_write;
3035 dio_flags = DIO_LOCKING;
3036 }
3037 if (IS_DAX(inode))
3038 ret = dax_do_io(rw, iocb, inode, iter, offset, get_block_func,
3039 ext4_end_io_dio, dio_flags);
3040 else
3041 ret = __blockdev_direct_IO(rw, iocb, inode,
3042 inode->i_sb->s_bdev, iter, offset,
3043 get_block_func,
3044 ext4_end_io_dio, NULL, dio_flags);
3045
3046 /*
3047 * Put our reference to io_end. This can free the io_end structure e.g.
3048 * in sync IO case or in case of error. It can even perform extent
3049 * conversion if all bios we submitted finished before we got here.
3050 * Note that in that case iocb->private can be already set to NULL
3051 * here.
3052 */
3053 if (io_end) {
3054 ext4_inode_aio_set(inode, NULL);
3055 ext4_put_io_end(io_end);
3056 /*
3057 * When no IO was submitted ext4_end_io_dio() was not
3058 * called so we have to put iocb's reference.
3059 */
3060 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3061 WARN_ON(iocb->private != io_end);
3062 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3063 ext4_put_io_end(io_end);
3064 iocb->private = NULL;
3065 }
3066 }
3067 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3068 EXT4_STATE_DIO_UNWRITTEN)) {
3069 int err;
3070 /*
3071 * for non AIO case, since the IO is already
3072 * completed, we could do the conversion right here
3073 */
3074 err = ext4_convert_unwritten_extents(NULL, inode,
3075 offset, ret);
3076 if (err < 0)
3077 ret = err;
3078 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3079 }
3080
3081 retake_lock:
3082 if (rw == WRITE)
3083 inode_dio_done(inode);
3084 /* take i_mutex locking again if we do a ovewrite dio */
3085 if (overwrite) {
3086 up_read(&EXT4_I(inode)->i_data_sem);
3087 mutex_lock(&inode->i_mutex);
3088 }
3089
3090 return ret;
3091 }
3092
3093 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3094 struct iov_iter *iter, loff_t offset)
3095 {
3096 struct file *file = iocb->ki_filp;
3097 struct inode *inode = file->f_mapping->host;
3098 size_t count = iov_iter_count(iter);
3099 ssize_t ret;
3100
3101 /*
3102 * If we are doing data journalling we don't support O_DIRECT
3103 */
3104 if (ext4_should_journal_data(inode))
3105 return 0;
3106
3107 /* Let buffer I/O handle the inline data case. */
3108 if (ext4_has_inline_data(inode))
3109 return 0;
3110
3111 trace_ext4_direct_IO_enter(inode, offset, count, rw);
3112 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3113 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
3114 else
3115 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
3116 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
3117 return ret;
3118 }
3119
3120 /*
3121 * Pages can be marked dirty completely asynchronously from ext4's journalling
3122 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3123 * much here because ->set_page_dirty is called under VFS locks. The page is
3124 * not necessarily locked.
3125 *
3126 * We cannot just dirty the page and leave attached buffers clean, because the
3127 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3128 * or jbddirty because all the journalling code will explode.
3129 *
3130 * So what we do is to mark the page "pending dirty" and next time writepage
3131 * is called, propagate that into the buffers appropriately.
3132 */
3133 static int ext4_journalled_set_page_dirty(struct page *page)
3134 {
3135 SetPageChecked(page);
3136 return __set_page_dirty_nobuffers(page);
3137 }
3138
3139 static const struct address_space_operations ext4_aops = {
3140 .readpage = ext4_readpage,
3141 .readpages = ext4_readpages,
3142 .writepage = ext4_writepage,
3143 .writepages = ext4_writepages,
3144 .write_begin = ext4_write_begin,
3145 .write_end = ext4_write_end,
3146 .bmap = ext4_bmap,
3147 .invalidatepage = ext4_invalidatepage,
3148 .releasepage = ext4_releasepage,
3149 .direct_IO = ext4_direct_IO,
3150 .migratepage = buffer_migrate_page,
3151 .is_partially_uptodate = block_is_partially_uptodate,
3152 .error_remove_page = generic_error_remove_page,
3153 };
3154
3155 static const struct address_space_operations ext4_journalled_aops = {
3156 .readpage = ext4_readpage,
3157 .readpages = ext4_readpages,
3158 .writepage = ext4_writepage,
3159 .writepages = ext4_writepages,
3160 .write_begin = ext4_write_begin,
3161 .write_end = ext4_journalled_write_end,
3162 .set_page_dirty = ext4_journalled_set_page_dirty,
3163 .bmap = ext4_bmap,
3164 .invalidatepage = ext4_journalled_invalidatepage,
3165 .releasepage = ext4_releasepage,
3166 .direct_IO = ext4_direct_IO,
3167 .is_partially_uptodate = block_is_partially_uptodate,
3168 .error_remove_page = generic_error_remove_page,
3169 };
3170
3171 static const struct address_space_operations ext4_da_aops = {
3172 .readpage = ext4_readpage,
3173 .readpages = ext4_readpages,
3174 .writepage = ext4_writepage,
3175 .writepages = ext4_writepages,
3176 .write_begin = ext4_da_write_begin,
3177 .write_end = ext4_da_write_end,
3178 .bmap = ext4_bmap,
3179 .invalidatepage = ext4_da_invalidatepage,
3180 .releasepage = ext4_releasepage,
3181 .direct_IO = ext4_direct_IO,
3182 .migratepage = buffer_migrate_page,
3183 .is_partially_uptodate = block_is_partially_uptodate,
3184 .error_remove_page = generic_error_remove_page,
3185 };
3186
3187 void ext4_set_aops(struct inode *inode)
3188 {
3189 switch (ext4_inode_journal_mode(inode)) {
3190 case EXT4_INODE_ORDERED_DATA_MODE:
3191 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3192 break;
3193 case EXT4_INODE_WRITEBACK_DATA_MODE:
3194 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3195 break;
3196 case EXT4_INODE_JOURNAL_DATA_MODE:
3197 inode->i_mapping->a_ops = &ext4_journalled_aops;
3198 return;
3199 default:
3200 BUG();
3201 }
3202 if (test_opt(inode->i_sb, DELALLOC))
3203 inode->i_mapping->a_ops = &ext4_da_aops;
3204 else
3205 inode->i_mapping->a_ops = &ext4_aops;
3206 }
3207
3208 static int __ext4_block_zero_page_range(handle_t *handle,
3209 struct address_space *mapping, loff_t from, loff_t length)
3210 {
3211 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3212 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3213 unsigned blocksize, pos;
3214 ext4_lblk_t iblock;
3215 struct inode *inode = mapping->host;
3216 struct buffer_head *bh;
3217 struct page *page;
3218 int err = 0;
3219
3220 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3221 mapping_gfp_mask(mapping) & ~__GFP_FS);
3222 if (!page)
3223 return -ENOMEM;
3224
3225 blocksize = inode->i_sb->s_blocksize;
3226
3227 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3228
3229 if (!page_has_buffers(page))
3230 create_empty_buffers(page, blocksize, 0);
3231
3232 /* Find the buffer that contains "offset" */
3233 bh = page_buffers(page);
3234 pos = blocksize;
3235 while (offset >= pos) {
3236 bh = bh->b_this_page;
3237 iblock++;
3238 pos += blocksize;
3239 }
3240 if (buffer_freed(bh)) {
3241 BUFFER_TRACE(bh, "freed: skip");
3242 goto unlock;
3243 }
3244 if (!buffer_mapped(bh)) {
3245 BUFFER_TRACE(bh, "unmapped");
3246 ext4_get_block(inode, iblock, bh, 0);
3247 /* unmapped? It's a hole - nothing to do */
3248 if (!buffer_mapped(bh)) {
3249 BUFFER_TRACE(bh, "still unmapped");
3250 goto unlock;
3251 }
3252 }
3253
3254 /* Ok, it's mapped. Make sure it's up-to-date */
3255 if (PageUptodate(page))
3256 set_buffer_uptodate(bh);
3257
3258 if (!buffer_uptodate(bh)) {
3259 err = -EIO;
3260 ll_rw_block(READ, 1, &bh);
3261 wait_on_buffer(bh);
3262 /* Uhhuh. Read error. Complain and punt. */
3263 if (!buffer_uptodate(bh))
3264 goto unlock;
3265 }
3266 if (ext4_should_journal_data(inode)) {
3267 BUFFER_TRACE(bh, "get write access");
3268 err = ext4_journal_get_write_access(handle, bh);
3269 if (err)
3270 goto unlock;
3271 }
3272 zero_user(page, offset, length);
3273 BUFFER_TRACE(bh, "zeroed end of block");
3274
3275 if (ext4_should_journal_data(inode)) {
3276 err = ext4_handle_dirty_metadata(handle, inode, bh);
3277 } else {
3278 err = 0;
3279 mark_buffer_dirty(bh);
3280 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3281 err = ext4_jbd2_file_inode(handle, inode);
3282 }
3283
3284 unlock:
3285 unlock_page(page);
3286 page_cache_release(page);
3287 return err;
3288 }
3289
3290 /*
3291 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3292 * starting from file offset 'from'. The range to be zero'd must
3293 * be contained with in one block. If the specified range exceeds
3294 * the end of the block it will be shortened to end of the block
3295 * that cooresponds to 'from'
3296 */
3297 static int ext4_block_zero_page_range(handle_t *handle,
3298 struct address_space *mapping, loff_t from, loff_t length)
3299 {
3300 struct inode *inode = mapping->host;
3301 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3302 unsigned blocksize = inode->i_sb->s_blocksize;
3303 unsigned max = blocksize - (offset & (blocksize - 1));
3304
3305 /*
3306 * correct length if it does not fall between
3307 * 'from' and the end of the block
3308 */
3309 if (length > max || length < 0)
3310 length = max;
3311
3312 if (IS_DAX(inode))
3313 return dax_zero_page_range(inode, from, length, ext4_get_block);
3314 return __ext4_block_zero_page_range(handle, mapping, from, length);
3315 }
3316
3317 /*
3318 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3319 * up to the end of the block which corresponds to `from'.
3320 * This required during truncate. We need to physically zero the tail end
3321 * of that block so it doesn't yield old data if the file is later grown.
3322 */
3323 static int ext4_block_truncate_page(handle_t *handle,
3324 struct address_space *mapping, loff_t from)
3325 {
3326 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3327 unsigned length;
3328 unsigned blocksize;
3329 struct inode *inode = mapping->host;
3330
3331 blocksize = inode->i_sb->s_blocksize;
3332 length = blocksize - (offset & (blocksize - 1));
3333
3334 return ext4_block_zero_page_range(handle, mapping, from, length);
3335 }
3336
3337 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3338 loff_t lstart, loff_t length)
3339 {
3340 struct super_block *sb = inode->i_sb;
3341 struct address_space *mapping = inode->i_mapping;
3342 unsigned partial_start, partial_end;
3343 ext4_fsblk_t start, end;
3344 loff_t byte_end = (lstart + length - 1);
3345 int err = 0;
3346
3347 partial_start = lstart & (sb->s_blocksize - 1);
3348 partial_end = byte_end & (sb->s_blocksize - 1);
3349
3350 start = lstart >> sb->s_blocksize_bits;
3351 end = byte_end >> sb->s_blocksize_bits;
3352
3353 /* Handle partial zero within the single block */
3354 if (start == end &&
3355 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3356 err = ext4_block_zero_page_range(handle, mapping,
3357 lstart, length);
3358 return err;
3359 }
3360 /* Handle partial zero out on the start of the range */
3361 if (partial_start) {
3362 err = ext4_block_zero_page_range(handle, mapping,
3363 lstart, sb->s_blocksize);
3364 if (err)
3365 return err;
3366 }
3367 /* Handle partial zero out on the end of the range */
3368 if (partial_end != sb->s_blocksize - 1)
3369 err = ext4_block_zero_page_range(handle, mapping,
3370 byte_end - partial_end,
3371 partial_end + 1);
3372 return err;
3373 }
3374
3375 int ext4_can_truncate(struct inode *inode)
3376 {
3377 if (S_ISREG(inode->i_mode))
3378 return 1;
3379 if (S_ISDIR(inode->i_mode))
3380 return 1;
3381 if (S_ISLNK(inode->i_mode))
3382 return !ext4_inode_is_fast_symlink(inode);
3383 return 0;
3384 }
3385
3386 /*
3387 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3388 * associated with the given offset and length
3389 *
3390 * @inode: File inode
3391 * @offset: The offset where the hole will begin
3392 * @len: The length of the hole
3393 *
3394 * Returns: 0 on success or negative on failure
3395 */
3396
3397 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3398 {
3399 struct super_block *sb = inode->i_sb;
3400 ext4_lblk_t first_block, stop_block;
3401 struct address_space *mapping = inode->i_mapping;
3402 loff_t first_block_offset, last_block_offset;
3403 handle_t *handle;
3404 unsigned int credits;
3405 int ret = 0;
3406
3407 if (!S_ISREG(inode->i_mode))
3408 return -EOPNOTSUPP;
3409
3410 trace_ext4_punch_hole(inode, offset, length, 0);
3411
3412 /*
3413 * Write out all dirty pages to avoid race conditions
3414 * Then release them.
3415 */
3416 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3417 ret = filemap_write_and_wait_range(mapping, offset,
3418 offset + length - 1);
3419 if (ret)
3420 return ret;
3421 }
3422
3423 mutex_lock(&inode->i_mutex);
3424
3425 /* No need to punch hole beyond i_size */
3426 if (offset >= inode->i_size)
3427 goto out_mutex;
3428
3429 /*
3430 * If the hole extends beyond i_size, set the hole
3431 * to end after the page that contains i_size
3432 */
3433 if (offset + length > inode->i_size) {
3434 length = inode->i_size +
3435 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3436 offset;
3437 }
3438
3439 if (offset & (sb->s_blocksize - 1) ||
3440 (offset + length) & (sb->s_blocksize - 1)) {
3441 /*
3442 * Attach jinode to inode for jbd2 if we do any zeroing of
3443 * partial block
3444 */
3445 ret = ext4_inode_attach_jinode(inode);
3446 if (ret < 0)
3447 goto out_mutex;
3448
3449 }
3450
3451 first_block_offset = round_up(offset, sb->s_blocksize);
3452 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3453
3454 /* Now release the pages and zero block aligned part of pages*/
3455 if (last_block_offset > first_block_offset)
3456 truncate_pagecache_range(inode, first_block_offset,
3457 last_block_offset);
3458
3459 /* Wait all existing dio workers, newcomers will block on i_mutex */
3460 ext4_inode_block_unlocked_dio(inode);
3461 inode_dio_wait(inode);
3462
3463 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3464 credits = ext4_writepage_trans_blocks(inode);
3465 else
3466 credits = ext4_blocks_for_truncate(inode);
3467 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3468 if (IS_ERR(handle)) {
3469 ret = PTR_ERR(handle);
3470 ext4_std_error(sb, ret);
3471 goto out_dio;
3472 }
3473
3474 ret = ext4_zero_partial_blocks(handle, inode, offset,
3475 length);
3476 if (ret)
3477 goto out_stop;
3478
3479 first_block = (offset + sb->s_blocksize - 1) >>
3480 EXT4_BLOCK_SIZE_BITS(sb);
3481 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3482
3483 /* If there are no blocks to remove, return now */
3484 if (first_block >= stop_block)
3485 goto out_stop;
3486
3487 down_write(&EXT4_I(inode)->i_data_sem);
3488 ext4_discard_preallocations(inode);
3489
3490 ret = ext4_es_remove_extent(inode, first_block,
3491 stop_block - first_block);
3492 if (ret) {
3493 up_write(&EXT4_I(inode)->i_data_sem);
3494 goto out_stop;
3495 }
3496
3497 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3498 ret = ext4_ext_remove_space(inode, first_block,
3499 stop_block - 1);
3500 else
3501 ret = ext4_ind_remove_space(handle, inode, first_block,
3502 stop_block);
3503
3504 up_write(&EXT4_I(inode)->i_data_sem);
3505 if (IS_SYNC(inode))
3506 ext4_handle_sync(handle);
3507
3508 /* Now release the pages again to reduce race window */
3509 if (last_block_offset > first_block_offset)
3510 truncate_pagecache_range(inode, first_block_offset,
3511 last_block_offset);
3512
3513 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3514 ext4_mark_inode_dirty(handle, inode);
3515 out_stop:
3516 ext4_journal_stop(handle);
3517 out_dio:
3518 ext4_inode_resume_unlocked_dio(inode);
3519 out_mutex:
3520 mutex_unlock(&inode->i_mutex);
3521 return ret;
3522 }
3523
3524 int ext4_inode_attach_jinode(struct inode *inode)
3525 {
3526 struct ext4_inode_info *ei = EXT4_I(inode);
3527 struct jbd2_inode *jinode;
3528
3529 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3530 return 0;
3531
3532 jinode = jbd2_alloc_inode(GFP_KERNEL);
3533 spin_lock(&inode->i_lock);
3534 if (!ei->jinode) {
3535 if (!jinode) {
3536 spin_unlock(&inode->i_lock);
3537 return -ENOMEM;
3538 }
3539 ei->jinode = jinode;
3540 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3541 jinode = NULL;
3542 }
3543 spin_unlock(&inode->i_lock);
3544 if (unlikely(jinode != NULL))
3545 jbd2_free_inode(jinode);
3546 return 0;
3547 }
3548
3549 /*
3550 * ext4_truncate()
3551 *
3552 * We block out ext4_get_block() block instantiations across the entire
3553 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3554 * simultaneously on behalf of the same inode.
3555 *
3556 * As we work through the truncate and commit bits of it to the journal there
3557 * is one core, guiding principle: the file's tree must always be consistent on
3558 * disk. We must be able to restart the truncate after a crash.
3559 *
3560 * The file's tree may be transiently inconsistent in memory (although it
3561 * probably isn't), but whenever we close off and commit a journal transaction,
3562 * the contents of (the filesystem + the journal) must be consistent and
3563 * restartable. It's pretty simple, really: bottom up, right to left (although
3564 * left-to-right works OK too).
3565 *
3566 * Note that at recovery time, journal replay occurs *before* the restart of
3567 * truncate against the orphan inode list.
3568 *
3569 * The committed inode has the new, desired i_size (which is the same as
3570 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3571 * that this inode's truncate did not complete and it will again call
3572 * ext4_truncate() to have another go. So there will be instantiated blocks
3573 * to the right of the truncation point in a crashed ext4 filesystem. But
3574 * that's fine - as long as they are linked from the inode, the post-crash
3575 * ext4_truncate() run will find them and release them.
3576 */
3577 void ext4_truncate(struct inode *inode)
3578 {
3579 struct ext4_inode_info *ei = EXT4_I(inode);
3580 unsigned int credits;
3581 handle_t *handle;
3582 struct address_space *mapping = inode->i_mapping;
3583
3584 /*
3585 * There is a possibility that we're either freeing the inode
3586 * or it's a completely new inode. In those cases we might not
3587 * have i_mutex locked because it's not necessary.
3588 */
3589 if (!(inode->i_state & (I_NEW|I_FREEING)))
3590 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3591 trace_ext4_truncate_enter(inode);
3592
3593 if (!ext4_can_truncate(inode))
3594 return;
3595
3596 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3597
3598 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3599 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3600
3601 if (ext4_has_inline_data(inode)) {
3602 int has_inline = 1;
3603
3604 ext4_inline_data_truncate(inode, &has_inline);
3605 if (has_inline)
3606 return;
3607 }
3608
3609 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3610 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3611 if (ext4_inode_attach_jinode(inode) < 0)
3612 return;
3613 }
3614
3615 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3616 credits = ext4_writepage_trans_blocks(inode);
3617 else
3618 credits = ext4_blocks_for_truncate(inode);
3619
3620 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3621 if (IS_ERR(handle)) {
3622 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3623 return;
3624 }
3625
3626 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3627 ext4_block_truncate_page(handle, mapping, inode->i_size);
3628
3629 /*
3630 * We add the inode to the orphan list, so that if this
3631 * truncate spans multiple transactions, and we crash, we will
3632 * resume the truncate when the filesystem recovers. It also
3633 * marks the inode dirty, to catch the new size.
3634 *
3635 * Implication: the file must always be in a sane, consistent
3636 * truncatable state while each transaction commits.
3637 */
3638 if (ext4_orphan_add(handle, inode))
3639 goto out_stop;
3640
3641 down_write(&EXT4_I(inode)->i_data_sem);
3642
3643 ext4_discard_preallocations(inode);
3644
3645 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3646 ext4_ext_truncate(handle, inode);
3647 else
3648 ext4_ind_truncate(handle, inode);
3649
3650 up_write(&ei->i_data_sem);
3651
3652 if (IS_SYNC(inode))
3653 ext4_handle_sync(handle);
3654
3655 out_stop:
3656 /*
3657 * If this was a simple ftruncate() and the file will remain alive,
3658 * then we need to clear up the orphan record which we created above.
3659 * However, if this was a real unlink then we were called by
3660 * ext4_evict_inode(), and we allow that function to clean up the
3661 * orphan info for us.
3662 */
3663 if (inode->i_nlink)
3664 ext4_orphan_del(handle, inode);
3665
3666 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3667 ext4_mark_inode_dirty(handle, inode);
3668 ext4_journal_stop(handle);
3669
3670 trace_ext4_truncate_exit(inode);
3671 }
3672
3673 /*
3674 * ext4_get_inode_loc returns with an extra refcount against the inode's
3675 * underlying buffer_head on success. If 'in_mem' is true, we have all
3676 * data in memory that is needed to recreate the on-disk version of this
3677 * inode.
3678 */
3679 static int __ext4_get_inode_loc(struct inode *inode,
3680 struct ext4_iloc *iloc, int in_mem)
3681 {
3682 struct ext4_group_desc *gdp;
3683 struct buffer_head *bh;
3684 struct super_block *sb = inode->i_sb;
3685 ext4_fsblk_t block;
3686 int inodes_per_block, inode_offset;
3687
3688 iloc->bh = NULL;
3689 if (!ext4_valid_inum(sb, inode->i_ino))
3690 return -EIO;
3691
3692 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3693 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3694 if (!gdp)
3695 return -EIO;
3696
3697 /*
3698 * Figure out the offset within the block group inode table
3699 */
3700 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3701 inode_offset = ((inode->i_ino - 1) %
3702 EXT4_INODES_PER_GROUP(sb));
3703 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3704 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3705
3706 bh = sb_getblk(sb, block);
3707 if (unlikely(!bh))
3708 return -ENOMEM;
3709 if (!buffer_uptodate(bh)) {
3710 lock_buffer(bh);
3711
3712 /*
3713 * If the buffer has the write error flag, we have failed
3714 * to write out another inode in the same block. In this
3715 * case, we don't have to read the block because we may
3716 * read the old inode data successfully.
3717 */
3718 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3719 set_buffer_uptodate(bh);
3720
3721 if (buffer_uptodate(bh)) {
3722 /* someone brought it uptodate while we waited */
3723 unlock_buffer(bh);
3724 goto has_buffer;
3725 }
3726
3727 /*
3728 * If we have all information of the inode in memory and this
3729 * is the only valid inode in the block, we need not read the
3730 * block.
3731 */
3732 if (in_mem) {
3733 struct buffer_head *bitmap_bh;
3734 int i, start;
3735
3736 start = inode_offset & ~(inodes_per_block - 1);
3737
3738 /* Is the inode bitmap in cache? */
3739 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3740 if (unlikely(!bitmap_bh))
3741 goto make_io;
3742
3743 /*
3744 * If the inode bitmap isn't in cache then the
3745 * optimisation may end up performing two reads instead
3746 * of one, so skip it.
3747 */
3748 if (!buffer_uptodate(bitmap_bh)) {
3749 brelse(bitmap_bh);
3750 goto make_io;
3751 }
3752 for (i = start; i < start + inodes_per_block; i++) {
3753 if (i == inode_offset)
3754 continue;
3755 if (ext4_test_bit(i, bitmap_bh->b_data))
3756 break;
3757 }
3758 brelse(bitmap_bh);
3759 if (i == start + inodes_per_block) {
3760 /* all other inodes are free, so skip I/O */
3761 memset(bh->b_data, 0, bh->b_size);
3762 set_buffer_uptodate(bh);
3763 unlock_buffer(bh);
3764 goto has_buffer;
3765 }
3766 }
3767
3768 make_io:
3769 /*
3770 * If we need to do any I/O, try to pre-readahead extra
3771 * blocks from the inode table.
3772 */
3773 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3774 ext4_fsblk_t b, end, table;
3775 unsigned num;
3776 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3777
3778 table = ext4_inode_table(sb, gdp);
3779 /* s_inode_readahead_blks is always a power of 2 */
3780 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3781 if (table > b)
3782 b = table;
3783 end = b + ra_blks;
3784 num = EXT4_INODES_PER_GROUP(sb);
3785 if (ext4_has_group_desc_csum(sb))
3786 num -= ext4_itable_unused_count(sb, gdp);
3787 table += num / inodes_per_block;
3788 if (end > table)
3789 end = table;
3790 while (b <= end)
3791 sb_breadahead(sb, b++);
3792 }
3793
3794 /*
3795 * There are other valid inodes in the buffer, this inode
3796 * has in-inode xattrs, or we don't have this inode in memory.
3797 * Read the block from disk.
3798 */
3799 trace_ext4_load_inode(inode);
3800 get_bh(bh);
3801 bh->b_end_io = end_buffer_read_sync;
3802 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3803 wait_on_buffer(bh);
3804 if (!buffer_uptodate(bh)) {
3805 EXT4_ERROR_INODE_BLOCK(inode, block,
3806 "unable to read itable block");
3807 brelse(bh);
3808 return -EIO;
3809 }
3810 }
3811 has_buffer:
3812 iloc->bh = bh;
3813 return 0;
3814 }
3815
3816 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3817 {
3818 /* We have all inode data except xattrs in memory here. */
3819 return __ext4_get_inode_loc(inode, iloc,
3820 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3821 }
3822
3823 void ext4_set_inode_flags(struct inode *inode)
3824 {
3825 unsigned int flags = EXT4_I(inode)->i_flags;
3826 unsigned int new_fl = 0;
3827
3828 if (flags & EXT4_SYNC_FL)
3829 new_fl |= S_SYNC;
3830 if (flags & EXT4_APPEND_FL)
3831 new_fl |= S_APPEND;
3832 if (flags & EXT4_IMMUTABLE_FL)
3833 new_fl |= S_IMMUTABLE;
3834 if (flags & EXT4_NOATIME_FL)
3835 new_fl |= S_NOATIME;
3836 if (flags & EXT4_DIRSYNC_FL)
3837 new_fl |= S_DIRSYNC;
3838 if (test_opt(inode->i_sb, DAX))
3839 new_fl |= S_DAX;
3840 inode_set_flags(inode, new_fl,
3841 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3842 }
3843
3844 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3845 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3846 {
3847 unsigned int vfs_fl;
3848 unsigned long old_fl, new_fl;
3849
3850 do {
3851 vfs_fl = ei->vfs_inode.i_flags;
3852 old_fl = ei->i_flags;
3853 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3854 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3855 EXT4_DIRSYNC_FL);
3856 if (vfs_fl & S_SYNC)
3857 new_fl |= EXT4_SYNC_FL;
3858 if (vfs_fl & S_APPEND)
3859 new_fl |= EXT4_APPEND_FL;
3860 if (vfs_fl & S_IMMUTABLE)
3861 new_fl |= EXT4_IMMUTABLE_FL;
3862 if (vfs_fl & S_NOATIME)
3863 new_fl |= EXT4_NOATIME_FL;
3864 if (vfs_fl & S_DIRSYNC)
3865 new_fl |= EXT4_DIRSYNC_FL;
3866 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3867 }
3868
3869 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3870 struct ext4_inode_info *ei)
3871 {
3872 blkcnt_t i_blocks ;
3873 struct inode *inode = &(ei->vfs_inode);
3874 struct super_block *sb = inode->i_sb;
3875
3876 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3877 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3878 /* we are using combined 48 bit field */
3879 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3880 le32_to_cpu(raw_inode->i_blocks_lo);
3881 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3882 /* i_blocks represent file system block size */
3883 return i_blocks << (inode->i_blkbits - 9);
3884 } else {
3885 return i_blocks;
3886 }
3887 } else {
3888 return le32_to_cpu(raw_inode->i_blocks_lo);
3889 }
3890 }
3891
3892 static inline void ext4_iget_extra_inode(struct inode *inode,
3893 struct ext4_inode *raw_inode,
3894 struct ext4_inode_info *ei)
3895 {
3896 __le32 *magic = (void *)raw_inode +
3897 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3898 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3899 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3900 ext4_find_inline_data_nolock(inode);
3901 } else
3902 EXT4_I(inode)->i_inline_off = 0;
3903 }
3904
3905 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3906 {
3907 struct ext4_iloc iloc;
3908 struct ext4_inode *raw_inode;
3909 struct ext4_inode_info *ei;
3910 struct inode *inode;
3911 journal_t *journal = EXT4_SB(sb)->s_journal;
3912 long ret;
3913 int block;
3914 uid_t i_uid;
3915 gid_t i_gid;
3916
3917 inode = iget_locked(sb, ino);
3918 if (!inode)
3919 return ERR_PTR(-ENOMEM);
3920 if (!(inode->i_state & I_NEW))
3921 return inode;
3922
3923 ei = EXT4_I(inode);
3924 iloc.bh = NULL;
3925
3926 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3927 if (ret < 0)
3928 goto bad_inode;
3929 raw_inode = ext4_raw_inode(&iloc);
3930
3931 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3932 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3933 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3934 EXT4_INODE_SIZE(inode->i_sb)) {
3935 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3936 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3937 EXT4_INODE_SIZE(inode->i_sb));
3938 ret = -EIO;
3939 goto bad_inode;
3940 }
3941 } else
3942 ei->i_extra_isize = 0;
3943
3944 /* Precompute checksum seed for inode metadata */
3945 if (ext4_has_metadata_csum(sb)) {
3946 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3947 __u32 csum;
3948 __le32 inum = cpu_to_le32(inode->i_ino);
3949 __le32 gen = raw_inode->i_generation;
3950 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3951 sizeof(inum));
3952 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3953 sizeof(gen));
3954 }
3955
3956 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3957 EXT4_ERROR_INODE(inode, "checksum invalid");
3958 ret = -EIO;
3959 goto bad_inode;
3960 }
3961
3962 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3963 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3964 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3965 if (!(test_opt(inode->i_sb, NO_UID32))) {
3966 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3967 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3968 }
3969 i_uid_write(inode, i_uid);
3970 i_gid_write(inode, i_gid);
3971 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3972
3973 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3974 ei->i_inline_off = 0;
3975 ei->i_dir_start_lookup = 0;
3976 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3977 /* We now have enough fields to check if the inode was active or not.
3978 * This is needed because nfsd might try to access dead inodes
3979 * the test is that same one that e2fsck uses
3980 * NeilBrown 1999oct15
3981 */
3982 if (inode->i_nlink == 0) {
3983 if ((inode->i_mode == 0 ||
3984 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3985 ino != EXT4_BOOT_LOADER_INO) {
3986 /* this inode is deleted */
3987 ret = -ESTALE;
3988 goto bad_inode;
3989 }
3990 /* The only unlinked inodes we let through here have
3991 * valid i_mode and are being read by the orphan
3992 * recovery code: that's fine, we're about to complete
3993 * the process of deleting those.
3994 * OR it is the EXT4_BOOT_LOADER_INO which is
3995 * not initialized on a new filesystem. */
3996 }
3997 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3998 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3999 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4000 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4001 ei->i_file_acl |=
4002 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4003 inode->i_size = ext4_isize(raw_inode);
4004 ei->i_disksize = inode->i_size;
4005 #ifdef CONFIG_QUOTA
4006 ei->i_reserved_quota = 0;
4007 #endif
4008 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4009 ei->i_block_group = iloc.block_group;
4010 ei->i_last_alloc_group = ~0;
4011 /*
4012 * NOTE! The in-memory inode i_data array is in little-endian order
4013 * even on big-endian machines: we do NOT byteswap the block numbers!
4014 */
4015 for (block = 0; block < EXT4_N_BLOCKS; block++)
4016 ei->i_data[block] = raw_inode->i_block[block];
4017 INIT_LIST_HEAD(&ei->i_orphan);
4018
4019 /*
4020 * Set transaction id's of transactions that have to be committed
4021 * to finish f[data]sync. We set them to currently running transaction
4022 * as we cannot be sure that the inode or some of its metadata isn't
4023 * part of the transaction - the inode could have been reclaimed and
4024 * now it is reread from disk.
4025 */
4026 if (journal) {
4027 transaction_t *transaction;
4028 tid_t tid;
4029
4030 read_lock(&journal->j_state_lock);
4031 if (journal->j_running_transaction)
4032 transaction = journal->j_running_transaction;
4033 else
4034 transaction = journal->j_committing_transaction;
4035 if (transaction)
4036 tid = transaction->t_tid;
4037 else
4038 tid = journal->j_commit_sequence;
4039 read_unlock(&journal->j_state_lock);
4040 ei->i_sync_tid = tid;
4041 ei->i_datasync_tid = tid;
4042 }
4043
4044 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4045 if (ei->i_extra_isize == 0) {
4046 /* The extra space is currently unused. Use it. */
4047 ei->i_extra_isize = sizeof(struct ext4_inode) -
4048 EXT4_GOOD_OLD_INODE_SIZE;
4049 } else {
4050 ext4_iget_extra_inode(inode, raw_inode, ei);
4051 }
4052 }
4053
4054 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4055 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4056 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4057 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4058
4059 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4060 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4061 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4062 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4063 inode->i_version |=
4064 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4065 }
4066 }
4067
4068 ret = 0;
4069 if (ei->i_file_acl &&
4070 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4071 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4072 ei->i_file_acl);
4073 ret = -EIO;
4074 goto bad_inode;
4075 } else if (!ext4_has_inline_data(inode)) {
4076 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4077 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4078 (S_ISLNK(inode->i_mode) &&
4079 !ext4_inode_is_fast_symlink(inode))))
4080 /* Validate extent which is part of inode */
4081 ret = ext4_ext_check_inode(inode);
4082 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4083 (S_ISLNK(inode->i_mode) &&
4084 !ext4_inode_is_fast_symlink(inode))) {
4085 /* Validate block references which are part of inode */
4086 ret = ext4_ind_check_inode(inode);
4087 }
4088 }
4089 if (ret)
4090 goto bad_inode;
4091
4092 if (S_ISREG(inode->i_mode)) {
4093 inode->i_op = &ext4_file_inode_operations;
4094 if (test_opt(inode->i_sb, DAX))
4095 inode->i_fop = &ext4_dax_file_operations;
4096 else
4097 inode->i_fop = &ext4_file_operations;
4098 ext4_set_aops(inode);
4099 } else if (S_ISDIR(inode->i_mode)) {
4100 inode->i_op = &ext4_dir_inode_operations;
4101 inode->i_fop = &ext4_dir_operations;
4102 } else if (S_ISLNK(inode->i_mode)) {
4103 if (ext4_inode_is_fast_symlink(inode)) {
4104 inode->i_op = &ext4_fast_symlink_inode_operations;
4105 nd_terminate_link(ei->i_data, inode->i_size,
4106 sizeof(ei->i_data) - 1);
4107 } else {
4108 inode->i_op = &ext4_symlink_inode_operations;
4109 ext4_set_aops(inode);
4110 }
4111 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4112 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4113 inode->i_op = &ext4_special_inode_operations;
4114 if (raw_inode->i_block[0])
4115 init_special_inode(inode, inode->i_mode,
4116 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4117 else
4118 init_special_inode(inode, inode->i_mode,
4119 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4120 } else if (ino == EXT4_BOOT_LOADER_INO) {
4121 make_bad_inode(inode);
4122 } else {
4123 ret = -EIO;
4124 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4125 goto bad_inode;
4126 }
4127 brelse(iloc.bh);
4128 ext4_set_inode_flags(inode);
4129 unlock_new_inode(inode);
4130 return inode;
4131
4132 bad_inode:
4133 brelse(iloc.bh);
4134 iget_failed(inode);
4135 return ERR_PTR(ret);
4136 }
4137
4138 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4139 {
4140 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4141 return ERR_PTR(-EIO);
4142 return ext4_iget(sb, ino);
4143 }
4144
4145 static int ext4_inode_blocks_set(handle_t *handle,
4146 struct ext4_inode *raw_inode,
4147 struct ext4_inode_info *ei)
4148 {
4149 struct inode *inode = &(ei->vfs_inode);
4150 u64 i_blocks = inode->i_blocks;
4151 struct super_block *sb = inode->i_sb;
4152
4153 if (i_blocks <= ~0U) {
4154 /*
4155 * i_blocks can be represented in a 32 bit variable
4156 * as multiple of 512 bytes
4157 */
4158 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4159 raw_inode->i_blocks_high = 0;
4160 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4161 return 0;
4162 }
4163 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4164 return -EFBIG;
4165
4166 if (i_blocks <= 0xffffffffffffULL) {
4167 /*
4168 * i_blocks can be represented in a 48 bit variable
4169 * as multiple of 512 bytes
4170 */
4171 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4172 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4173 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4174 } else {
4175 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4176 /* i_block is stored in file system block size */
4177 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4178 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4179 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4180 }
4181 return 0;
4182 }
4183
4184 struct other_inode {
4185 unsigned long orig_ino;
4186 struct ext4_inode *raw_inode;
4187 };
4188
4189 static int other_inode_match(struct inode * inode, unsigned long ino,
4190 void *data)
4191 {
4192 struct other_inode *oi = (struct other_inode *) data;
4193
4194 if ((inode->i_ino != ino) ||
4195 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4196 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4197 ((inode->i_state & I_DIRTY_TIME) == 0))
4198 return 0;
4199 spin_lock(&inode->i_lock);
4200 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4201 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4202 (inode->i_state & I_DIRTY_TIME)) {
4203 struct ext4_inode_info *ei = EXT4_I(inode);
4204
4205 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4206 spin_unlock(&inode->i_lock);
4207
4208 spin_lock(&ei->i_raw_lock);
4209 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4210 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4211 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4212 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4213 spin_unlock(&ei->i_raw_lock);
4214 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4215 return -1;
4216 }
4217 spin_unlock(&inode->i_lock);
4218 return -1;
4219 }
4220
4221 /*
4222 * Opportunistically update the other time fields for other inodes in
4223 * the same inode table block.
4224 */
4225 static void ext4_update_other_inodes_time(struct super_block *sb,
4226 unsigned long orig_ino, char *buf)
4227 {
4228 struct other_inode oi;
4229 unsigned long ino;
4230 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4231 int inode_size = EXT4_INODE_SIZE(sb);
4232
4233 oi.orig_ino = orig_ino;
4234 ino = orig_ino & ~(inodes_per_block - 1);
4235 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4236 if (ino == orig_ino)
4237 continue;
4238 oi.raw_inode = (struct ext4_inode *) buf;
4239 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4240 }
4241 }
4242
4243 /*
4244 * Post the struct inode info into an on-disk inode location in the
4245 * buffer-cache. This gobbles the caller's reference to the
4246 * buffer_head in the inode location struct.
4247 *
4248 * The caller must have write access to iloc->bh.
4249 */
4250 static int ext4_do_update_inode(handle_t *handle,
4251 struct inode *inode,
4252 struct ext4_iloc *iloc)
4253 {
4254 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4255 struct ext4_inode_info *ei = EXT4_I(inode);
4256 struct buffer_head *bh = iloc->bh;
4257 struct super_block *sb = inode->i_sb;
4258 int err = 0, rc, block;
4259 int need_datasync = 0, set_large_file = 0;
4260 uid_t i_uid;
4261 gid_t i_gid;
4262
4263 spin_lock(&ei->i_raw_lock);
4264
4265 /* For fields not tracked in the in-memory inode,
4266 * initialise them to zero for new inodes. */
4267 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4268 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4269
4270 ext4_get_inode_flags(ei);
4271 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4272 i_uid = i_uid_read(inode);
4273 i_gid = i_gid_read(inode);
4274 if (!(test_opt(inode->i_sb, NO_UID32))) {
4275 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4276 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4277 /*
4278 * Fix up interoperability with old kernels. Otherwise, old inodes get
4279 * re-used with the upper 16 bits of the uid/gid intact
4280 */
4281 if (!ei->i_dtime) {
4282 raw_inode->i_uid_high =
4283 cpu_to_le16(high_16_bits(i_uid));
4284 raw_inode->i_gid_high =
4285 cpu_to_le16(high_16_bits(i_gid));
4286 } else {
4287 raw_inode->i_uid_high = 0;
4288 raw_inode->i_gid_high = 0;
4289 }
4290 } else {
4291 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4292 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4293 raw_inode->i_uid_high = 0;
4294 raw_inode->i_gid_high = 0;
4295 }
4296 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4297
4298 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4299 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4300 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4301 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4302
4303 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4304 if (err) {
4305 spin_unlock(&ei->i_raw_lock);
4306 goto out_brelse;
4307 }
4308 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4309 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4310 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4311 raw_inode->i_file_acl_high =
4312 cpu_to_le16(ei->i_file_acl >> 32);
4313 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4314 if (ei->i_disksize != ext4_isize(raw_inode)) {
4315 ext4_isize_set(raw_inode, ei->i_disksize);
4316 need_datasync = 1;
4317 }
4318 if (ei->i_disksize > 0x7fffffffULL) {
4319 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4320 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4321 EXT4_SB(sb)->s_es->s_rev_level ==
4322 cpu_to_le32(EXT4_GOOD_OLD_REV))
4323 set_large_file = 1;
4324 }
4325 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4326 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4327 if (old_valid_dev(inode->i_rdev)) {
4328 raw_inode->i_block[0] =
4329 cpu_to_le32(old_encode_dev(inode->i_rdev));
4330 raw_inode->i_block[1] = 0;
4331 } else {
4332 raw_inode->i_block[0] = 0;
4333 raw_inode->i_block[1] =
4334 cpu_to_le32(new_encode_dev(inode->i_rdev));
4335 raw_inode->i_block[2] = 0;
4336 }
4337 } else if (!ext4_has_inline_data(inode)) {
4338 for (block = 0; block < EXT4_N_BLOCKS; block++)
4339 raw_inode->i_block[block] = ei->i_data[block];
4340 }
4341
4342 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4343 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4344 if (ei->i_extra_isize) {
4345 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4346 raw_inode->i_version_hi =
4347 cpu_to_le32(inode->i_version >> 32);
4348 raw_inode->i_extra_isize =
4349 cpu_to_le16(ei->i_extra_isize);
4350 }
4351 }
4352 ext4_inode_csum_set(inode, raw_inode, ei);
4353 spin_unlock(&ei->i_raw_lock);
4354 if (inode->i_sb->s_flags & MS_LAZYTIME)
4355 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4356 bh->b_data);
4357
4358 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4359 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4360 if (!err)
4361 err = rc;
4362 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4363 if (set_large_file) {
4364 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4365 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4366 if (err)
4367 goto out_brelse;
4368 ext4_update_dynamic_rev(sb);
4369 EXT4_SET_RO_COMPAT_FEATURE(sb,
4370 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4371 ext4_handle_sync(handle);
4372 err = ext4_handle_dirty_super(handle, sb);
4373 }
4374 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4375 out_brelse:
4376 brelse(bh);
4377 ext4_std_error(inode->i_sb, err);
4378 return err;
4379 }
4380
4381 /*
4382 * ext4_write_inode()
4383 *
4384 * We are called from a few places:
4385 *
4386 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4387 * Here, there will be no transaction running. We wait for any running
4388 * transaction to commit.
4389 *
4390 * - Within flush work (sys_sync(), kupdate and such).
4391 * We wait on commit, if told to.
4392 *
4393 * - Within iput_final() -> write_inode_now()
4394 * We wait on commit, if told to.
4395 *
4396 * In all cases it is actually safe for us to return without doing anything,
4397 * because the inode has been copied into a raw inode buffer in
4398 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4399 * writeback.
4400 *
4401 * Note that we are absolutely dependent upon all inode dirtiers doing the
4402 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4403 * which we are interested.
4404 *
4405 * It would be a bug for them to not do this. The code:
4406 *
4407 * mark_inode_dirty(inode)
4408 * stuff();
4409 * inode->i_size = expr;
4410 *
4411 * is in error because write_inode() could occur while `stuff()' is running,
4412 * and the new i_size will be lost. Plus the inode will no longer be on the
4413 * superblock's dirty inode list.
4414 */
4415 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4416 {
4417 int err;
4418
4419 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4420 return 0;
4421
4422 if (EXT4_SB(inode->i_sb)->s_journal) {
4423 if (ext4_journal_current_handle()) {
4424 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4425 dump_stack();
4426 return -EIO;
4427 }
4428
4429 /*
4430 * No need to force transaction in WB_SYNC_NONE mode. Also
4431 * ext4_sync_fs() will force the commit after everything is
4432 * written.
4433 */
4434 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4435 return 0;
4436
4437 err = ext4_force_commit(inode->i_sb);
4438 } else {
4439 struct ext4_iloc iloc;
4440
4441 err = __ext4_get_inode_loc(inode, &iloc, 0);
4442 if (err)
4443 return err;
4444 /*
4445 * sync(2) will flush the whole buffer cache. No need to do
4446 * it here separately for each inode.
4447 */
4448 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4449 sync_dirty_buffer(iloc.bh);
4450 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4451 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4452 "IO error syncing inode");
4453 err = -EIO;
4454 }
4455 brelse(iloc.bh);
4456 }
4457 return err;
4458 }
4459
4460 /*
4461 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4462 * buffers that are attached to a page stradding i_size and are undergoing
4463 * commit. In that case we have to wait for commit to finish and try again.
4464 */
4465 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4466 {
4467 struct page *page;
4468 unsigned offset;
4469 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4470 tid_t commit_tid = 0;
4471 int ret;
4472
4473 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4474 /*
4475 * All buffers in the last page remain valid? Then there's nothing to
4476 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4477 * blocksize case
4478 */
4479 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4480 return;
4481 while (1) {
4482 page = find_lock_page(inode->i_mapping,
4483 inode->i_size >> PAGE_CACHE_SHIFT);
4484 if (!page)
4485 return;
4486 ret = __ext4_journalled_invalidatepage(page, offset,
4487 PAGE_CACHE_SIZE - offset);
4488 unlock_page(page);
4489 page_cache_release(page);
4490 if (ret != -EBUSY)
4491 return;
4492 commit_tid = 0;
4493 read_lock(&journal->j_state_lock);
4494 if (journal->j_committing_transaction)
4495 commit_tid = journal->j_committing_transaction->t_tid;
4496 read_unlock(&journal->j_state_lock);
4497 if (commit_tid)
4498 jbd2_log_wait_commit(journal, commit_tid);
4499 }
4500 }
4501
4502 /*
4503 * ext4_setattr()
4504 *
4505 * Called from notify_change.
4506 *
4507 * We want to trap VFS attempts to truncate the file as soon as
4508 * possible. In particular, we want to make sure that when the VFS
4509 * shrinks i_size, we put the inode on the orphan list and modify
4510 * i_disksize immediately, so that during the subsequent flushing of
4511 * dirty pages and freeing of disk blocks, we can guarantee that any
4512 * commit will leave the blocks being flushed in an unused state on
4513 * disk. (On recovery, the inode will get truncated and the blocks will
4514 * be freed, so we have a strong guarantee that no future commit will
4515 * leave these blocks visible to the user.)
4516 *
4517 * Another thing we have to assure is that if we are in ordered mode
4518 * and inode is still attached to the committing transaction, we must
4519 * we start writeout of all the dirty pages which are being truncated.
4520 * This way we are sure that all the data written in the previous
4521 * transaction are already on disk (truncate waits for pages under
4522 * writeback).
4523 *
4524 * Called with inode->i_mutex down.
4525 */
4526 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4527 {
4528 struct inode *inode = dentry->d_inode;
4529 int error, rc = 0;
4530 int orphan = 0;
4531 const unsigned int ia_valid = attr->ia_valid;
4532
4533 error = inode_change_ok(inode, attr);
4534 if (error)
4535 return error;
4536
4537 if (is_quota_modification(inode, attr))
4538 dquot_initialize(inode);
4539 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4540 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4541 handle_t *handle;
4542
4543 /* (user+group)*(old+new) structure, inode write (sb,
4544 * inode block, ? - but truncate inode update has it) */
4545 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4546 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4547 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4548 if (IS_ERR(handle)) {
4549 error = PTR_ERR(handle);
4550 goto err_out;
4551 }
4552 error = dquot_transfer(inode, attr);
4553 if (error) {
4554 ext4_journal_stop(handle);
4555 return error;
4556 }
4557 /* Update corresponding info in inode so that everything is in
4558 * one transaction */
4559 if (attr->ia_valid & ATTR_UID)
4560 inode->i_uid = attr->ia_uid;
4561 if (attr->ia_valid & ATTR_GID)
4562 inode->i_gid = attr->ia_gid;
4563 error = ext4_mark_inode_dirty(handle, inode);
4564 ext4_journal_stop(handle);
4565 }
4566
4567 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4568 handle_t *handle;
4569
4570 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4572
4573 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4574 return -EFBIG;
4575 }
4576
4577 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4578 inode_inc_iversion(inode);
4579
4580 if (S_ISREG(inode->i_mode) &&
4581 (attr->ia_size < inode->i_size)) {
4582 if (ext4_should_order_data(inode)) {
4583 error = ext4_begin_ordered_truncate(inode,
4584 attr->ia_size);
4585 if (error)
4586 goto err_out;
4587 }
4588 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4589 if (IS_ERR(handle)) {
4590 error = PTR_ERR(handle);
4591 goto err_out;
4592 }
4593 if (ext4_handle_valid(handle)) {
4594 error = ext4_orphan_add(handle, inode);
4595 orphan = 1;
4596 }
4597 down_write(&EXT4_I(inode)->i_data_sem);
4598 EXT4_I(inode)->i_disksize = attr->ia_size;
4599 rc = ext4_mark_inode_dirty(handle, inode);
4600 if (!error)
4601 error = rc;
4602 /*
4603 * We have to update i_size under i_data_sem together
4604 * with i_disksize to avoid races with writeback code
4605 * running ext4_wb_update_i_disksize().
4606 */
4607 if (!error)
4608 i_size_write(inode, attr->ia_size);
4609 up_write(&EXT4_I(inode)->i_data_sem);
4610 ext4_journal_stop(handle);
4611 if (error) {
4612 ext4_orphan_del(NULL, inode);
4613 goto err_out;
4614 }
4615 } else {
4616 loff_t oldsize = inode->i_size;
4617
4618 i_size_write(inode, attr->ia_size);
4619 pagecache_isize_extended(inode, oldsize, inode->i_size);
4620 }
4621
4622 /*
4623 * Blocks are going to be removed from the inode. Wait
4624 * for dio in flight. Temporarily disable
4625 * dioread_nolock to prevent livelock.
4626 */
4627 if (orphan) {
4628 if (!ext4_should_journal_data(inode)) {
4629 ext4_inode_block_unlocked_dio(inode);
4630 inode_dio_wait(inode);
4631 ext4_inode_resume_unlocked_dio(inode);
4632 } else
4633 ext4_wait_for_tail_page_commit(inode);
4634 }
4635 /*
4636 * Truncate pagecache after we've waited for commit
4637 * in data=journal mode to make pages freeable.
4638 */
4639 truncate_pagecache(inode, inode->i_size);
4640 }
4641 /*
4642 * We want to call ext4_truncate() even if attr->ia_size ==
4643 * inode->i_size for cases like truncation of fallocated space
4644 */
4645 if (attr->ia_valid & ATTR_SIZE)
4646 ext4_truncate(inode);
4647
4648 if (!rc) {
4649 setattr_copy(inode, attr);
4650 mark_inode_dirty(inode);
4651 }
4652
4653 /*
4654 * If the call to ext4_truncate failed to get a transaction handle at
4655 * all, we need to clean up the in-core orphan list manually.
4656 */
4657 if (orphan && inode->i_nlink)
4658 ext4_orphan_del(NULL, inode);
4659
4660 if (!rc && (ia_valid & ATTR_MODE))
4661 rc = posix_acl_chmod(inode, inode->i_mode);
4662
4663 err_out:
4664 ext4_std_error(inode->i_sb, error);
4665 if (!error)
4666 error = rc;
4667 return error;
4668 }
4669
4670 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4671 struct kstat *stat)
4672 {
4673 struct inode *inode;
4674 unsigned long long delalloc_blocks;
4675
4676 inode = dentry->d_inode;
4677 generic_fillattr(inode, stat);
4678
4679 /*
4680 * If there is inline data in the inode, the inode will normally not
4681 * have data blocks allocated (it may have an external xattr block).
4682 * Report at least one sector for such files, so tools like tar, rsync,
4683 * others doen't incorrectly think the file is completely sparse.
4684 */
4685 if (unlikely(ext4_has_inline_data(inode)))
4686 stat->blocks += (stat->size + 511) >> 9;
4687
4688 /*
4689 * We can't update i_blocks if the block allocation is delayed
4690 * otherwise in the case of system crash before the real block
4691 * allocation is done, we will have i_blocks inconsistent with
4692 * on-disk file blocks.
4693 * We always keep i_blocks updated together with real
4694 * allocation. But to not confuse with user, stat
4695 * will return the blocks that include the delayed allocation
4696 * blocks for this file.
4697 */
4698 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4699 EXT4_I(inode)->i_reserved_data_blocks);
4700 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4701 return 0;
4702 }
4703
4704 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4705 int pextents)
4706 {
4707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4708 return ext4_ind_trans_blocks(inode, lblocks);
4709 return ext4_ext_index_trans_blocks(inode, pextents);
4710 }
4711
4712 /*
4713 * Account for index blocks, block groups bitmaps and block group
4714 * descriptor blocks if modify datablocks and index blocks
4715 * worse case, the indexs blocks spread over different block groups
4716 *
4717 * If datablocks are discontiguous, they are possible to spread over
4718 * different block groups too. If they are contiguous, with flexbg,
4719 * they could still across block group boundary.
4720 *
4721 * Also account for superblock, inode, quota and xattr blocks
4722 */
4723 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4724 int pextents)
4725 {
4726 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4727 int gdpblocks;
4728 int idxblocks;
4729 int ret = 0;
4730
4731 /*
4732 * How many index blocks need to touch to map @lblocks logical blocks
4733 * to @pextents physical extents?
4734 */
4735 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4736
4737 ret = idxblocks;
4738
4739 /*
4740 * Now let's see how many group bitmaps and group descriptors need
4741 * to account
4742 */
4743 groups = idxblocks + pextents;
4744 gdpblocks = groups;
4745 if (groups > ngroups)
4746 groups = ngroups;
4747 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4748 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4749
4750 /* bitmaps and block group descriptor blocks */
4751 ret += groups + gdpblocks;
4752
4753 /* Blocks for super block, inode, quota and xattr blocks */
4754 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4755
4756 return ret;
4757 }
4758
4759 /*
4760 * Calculate the total number of credits to reserve to fit
4761 * the modification of a single pages into a single transaction,
4762 * which may include multiple chunks of block allocations.
4763 *
4764 * This could be called via ext4_write_begin()
4765 *
4766 * We need to consider the worse case, when
4767 * one new block per extent.
4768 */
4769 int ext4_writepage_trans_blocks(struct inode *inode)
4770 {
4771 int bpp = ext4_journal_blocks_per_page(inode);
4772 int ret;
4773
4774 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4775
4776 /* Account for data blocks for journalled mode */
4777 if (ext4_should_journal_data(inode))
4778 ret += bpp;
4779 return ret;
4780 }
4781
4782 /*
4783 * Calculate the journal credits for a chunk of data modification.
4784 *
4785 * This is called from DIO, fallocate or whoever calling
4786 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4787 *
4788 * journal buffers for data blocks are not included here, as DIO
4789 * and fallocate do no need to journal data buffers.
4790 */
4791 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4792 {
4793 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4794 }
4795
4796 /*
4797 * The caller must have previously called ext4_reserve_inode_write().
4798 * Give this, we know that the caller already has write access to iloc->bh.
4799 */
4800 int ext4_mark_iloc_dirty(handle_t *handle,
4801 struct inode *inode, struct ext4_iloc *iloc)
4802 {
4803 int err = 0;
4804
4805 if (IS_I_VERSION(inode))
4806 inode_inc_iversion(inode);
4807
4808 /* the do_update_inode consumes one bh->b_count */
4809 get_bh(iloc->bh);
4810
4811 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4812 err = ext4_do_update_inode(handle, inode, iloc);
4813 put_bh(iloc->bh);
4814 return err;
4815 }
4816
4817 /*
4818 * On success, We end up with an outstanding reference count against
4819 * iloc->bh. This _must_ be cleaned up later.
4820 */
4821
4822 int
4823 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4824 struct ext4_iloc *iloc)
4825 {
4826 int err;
4827
4828 err = ext4_get_inode_loc(inode, iloc);
4829 if (!err) {
4830 BUFFER_TRACE(iloc->bh, "get_write_access");
4831 err = ext4_journal_get_write_access(handle, iloc->bh);
4832 if (err) {
4833 brelse(iloc->bh);
4834 iloc->bh = NULL;
4835 }
4836 }
4837 ext4_std_error(inode->i_sb, err);
4838 return err;
4839 }
4840
4841 /*
4842 * Expand an inode by new_extra_isize bytes.
4843 * Returns 0 on success or negative error number on failure.
4844 */
4845 static int ext4_expand_extra_isize(struct inode *inode,
4846 unsigned int new_extra_isize,
4847 struct ext4_iloc iloc,
4848 handle_t *handle)
4849 {
4850 struct ext4_inode *raw_inode;
4851 struct ext4_xattr_ibody_header *header;
4852
4853 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4854 return 0;
4855
4856 raw_inode = ext4_raw_inode(&iloc);
4857
4858 header = IHDR(inode, raw_inode);
4859
4860 /* No extended attributes present */
4861 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4862 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4863 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4864 new_extra_isize);
4865 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4866 return 0;
4867 }
4868
4869 /* try to expand with EAs present */
4870 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4871 raw_inode, handle);
4872 }
4873
4874 /*
4875 * What we do here is to mark the in-core inode as clean with respect to inode
4876 * dirtiness (it may still be data-dirty).
4877 * This means that the in-core inode may be reaped by prune_icache
4878 * without having to perform any I/O. This is a very good thing,
4879 * because *any* task may call prune_icache - even ones which
4880 * have a transaction open against a different journal.
4881 *
4882 * Is this cheating? Not really. Sure, we haven't written the
4883 * inode out, but prune_icache isn't a user-visible syncing function.
4884 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4885 * we start and wait on commits.
4886 */
4887 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4888 {
4889 struct ext4_iloc iloc;
4890 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4891 static unsigned int mnt_count;
4892 int err, ret;
4893
4894 might_sleep();
4895 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4896 err = ext4_reserve_inode_write(handle, inode, &iloc);
4897 if (ext4_handle_valid(handle) &&
4898 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4899 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4900 /*
4901 * We need extra buffer credits since we may write into EA block
4902 * with this same handle. If journal_extend fails, then it will
4903 * only result in a minor loss of functionality for that inode.
4904 * If this is felt to be critical, then e2fsck should be run to
4905 * force a large enough s_min_extra_isize.
4906 */
4907 if ((jbd2_journal_extend(handle,
4908 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4909 ret = ext4_expand_extra_isize(inode,
4910 sbi->s_want_extra_isize,
4911 iloc, handle);
4912 if (ret) {
4913 ext4_set_inode_state(inode,
4914 EXT4_STATE_NO_EXPAND);
4915 if (mnt_count !=
4916 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4917 ext4_warning(inode->i_sb,
4918 "Unable to expand inode %lu. Delete"
4919 " some EAs or run e2fsck.",
4920 inode->i_ino);
4921 mnt_count =
4922 le16_to_cpu(sbi->s_es->s_mnt_count);
4923 }
4924 }
4925 }
4926 }
4927 if (!err)
4928 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4929 return err;
4930 }
4931
4932 /*
4933 * ext4_dirty_inode() is called from __mark_inode_dirty()
4934 *
4935 * We're really interested in the case where a file is being extended.
4936 * i_size has been changed by generic_commit_write() and we thus need
4937 * to include the updated inode in the current transaction.
4938 *
4939 * Also, dquot_alloc_block() will always dirty the inode when blocks
4940 * are allocated to the file.
4941 *
4942 * If the inode is marked synchronous, we don't honour that here - doing
4943 * so would cause a commit on atime updates, which we don't bother doing.
4944 * We handle synchronous inodes at the highest possible level.
4945 *
4946 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
4947 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
4948 * to copy into the on-disk inode structure are the timestamp files.
4949 */
4950 void ext4_dirty_inode(struct inode *inode, int flags)
4951 {
4952 handle_t *handle;
4953
4954 if (flags == I_DIRTY_TIME)
4955 return;
4956 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4957 if (IS_ERR(handle))
4958 goto out;
4959
4960 ext4_mark_inode_dirty(handle, inode);
4961
4962 ext4_journal_stop(handle);
4963 out:
4964 return;
4965 }
4966
4967 #if 0
4968 /*
4969 * Bind an inode's backing buffer_head into this transaction, to prevent
4970 * it from being flushed to disk early. Unlike
4971 * ext4_reserve_inode_write, this leaves behind no bh reference and
4972 * returns no iloc structure, so the caller needs to repeat the iloc
4973 * lookup to mark the inode dirty later.
4974 */
4975 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4976 {
4977 struct ext4_iloc iloc;
4978
4979 int err = 0;
4980 if (handle) {
4981 err = ext4_get_inode_loc(inode, &iloc);
4982 if (!err) {
4983 BUFFER_TRACE(iloc.bh, "get_write_access");
4984 err = jbd2_journal_get_write_access(handle, iloc.bh);
4985 if (!err)
4986 err = ext4_handle_dirty_metadata(handle,
4987 NULL,
4988 iloc.bh);
4989 brelse(iloc.bh);
4990 }
4991 }
4992 ext4_std_error(inode->i_sb, err);
4993 return err;
4994 }
4995 #endif
4996
4997 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4998 {
4999 journal_t *journal;
5000 handle_t *handle;
5001 int err;
5002
5003 /*
5004 * We have to be very careful here: changing a data block's
5005 * journaling status dynamically is dangerous. If we write a
5006 * data block to the journal, change the status and then delete
5007 * that block, we risk forgetting to revoke the old log record
5008 * from the journal and so a subsequent replay can corrupt data.
5009 * So, first we make sure that the journal is empty and that
5010 * nobody is changing anything.
5011 */
5012
5013 journal = EXT4_JOURNAL(inode);
5014 if (!journal)
5015 return 0;
5016 if (is_journal_aborted(journal))
5017 return -EROFS;
5018 /* We have to allocate physical blocks for delalloc blocks
5019 * before flushing journal. otherwise delalloc blocks can not
5020 * be allocated any more. even more truncate on delalloc blocks
5021 * could trigger BUG by flushing delalloc blocks in journal.
5022 * There is no delalloc block in non-journal data mode.
5023 */
5024 if (val && test_opt(inode->i_sb, DELALLOC)) {
5025 err = ext4_alloc_da_blocks(inode);
5026 if (err < 0)
5027 return err;
5028 }
5029
5030 /* Wait for all existing dio workers */
5031 ext4_inode_block_unlocked_dio(inode);
5032 inode_dio_wait(inode);
5033
5034 jbd2_journal_lock_updates(journal);
5035
5036 /*
5037 * OK, there are no updates running now, and all cached data is
5038 * synced to disk. We are now in a completely consistent state
5039 * which doesn't have anything in the journal, and we know that
5040 * no filesystem updates are running, so it is safe to modify
5041 * the inode's in-core data-journaling state flag now.
5042 */
5043
5044 if (val)
5045 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5046 else {
5047 err = jbd2_journal_flush(journal);
5048 if (err < 0) {
5049 jbd2_journal_unlock_updates(journal);
5050 ext4_inode_resume_unlocked_dio(inode);
5051 return err;
5052 }
5053 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5054 }
5055 ext4_set_aops(inode);
5056
5057 jbd2_journal_unlock_updates(journal);
5058 ext4_inode_resume_unlocked_dio(inode);
5059
5060 /* Finally we can mark the inode as dirty. */
5061
5062 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5063 if (IS_ERR(handle))
5064 return PTR_ERR(handle);
5065
5066 err = ext4_mark_inode_dirty(handle, inode);
5067 ext4_handle_sync(handle);
5068 ext4_journal_stop(handle);
5069 ext4_std_error(inode->i_sb, err);
5070
5071 return err;
5072 }
5073
5074 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5075 {
5076 return !buffer_mapped(bh);
5077 }
5078
5079 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5080 {
5081 struct page *page = vmf->page;
5082 loff_t size;
5083 unsigned long len;
5084 int ret;
5085 struct file *file = vma->vm_file;
5086 struct inode *inode = file_inode(file);
5087 struct address_space *mapping = inode->i_mapping;
5088 handle_t *handle;
5089 get_block_t *get_block;
5090 int retries = 0;
5091
5092 sb_start_pagefault(inode->i_sb);
5093 file_update_time(vma->vm_file);
5094 /* Delalloc case is easy... */
5095 if (test_opt(inode->i_sb, DELALLOC) &&
5096 !ext4_should_journal_data(inode) &&
5097 !ext4_nonda_switch(inode->i_sb)) {
5098 do {
5099 ret = __block_page_mkwrite(vma, vmf,
5100 ext4_da_get_block_prep);
5101 } while (ret == -ENOSPC &&
5102 ext4_should_retry_alloc(inode->i_sb, &retries));
5103 goto out_ret;
5104 }
5105
5106 lock_page(page);
5107 size = i_size_read(inode);
5108 /* Page got truncated from under us? */
5109 if (page->mapping != mapping || page_offset(page) > size) {
5110 unlock_page(page);
5111 ret = VM_FAULT_NOPAGE;
5112 goto out;
5113 }
5114
5115 if (page->index == size >> PAGE_CACHE_SHIFT)
5116 len = size & ~PAGE_CACHE_MASK;
5117 else
5118 len = PAGE_CACHE_SIZE;
5119 /*
5120 * Return if we have all the buffers mapped. This avoids the need to do
5121 * journal_start/journal_stop which can block and take a long time
5122 */
5123 if (page_has_buffers(page)) {
5124 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5125 0, len, NULL,
5126 ext4_bh_unmapped)) {
5127 /* Wait so that we don't change page under IO */
5128 wait_for_stable_page(page);
5129 ret = VM_FAULT_LOCKED;
5130 goto out;
5131 }
5132 }
5133 unlock_page(page);
5134 /* OK, we need to fill the hole... */
5135 if (ext4_should_dioread_nolock(inode))
5136 get_block = ext4_get_block_write;
5137 else
5138 get_block = ext4_get_block;
5139 retry_alloc:
5140 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5141 ext4_writepage_trans_blocks(inode));
5142 if (IS_ERR(handle)) {
5143 ret = VM_FAULT_SIGBUS;
5144 goto out;
5145 }
5146 ret = __block_page_mkwrite(vma, vmf, get_block);
5147 if (!ret && ext4_should_journal_data(inode)) {
5148 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5149 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5150 unlock_page(page);
5151 ret = VM_FAULT_SIGBUS;
5152 ext4_journal_stop(handle);
5153 goto out;
5154 }
5155 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5156 }
5157 ext4_journal_stop(handle);
5158 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5159 goto retry_alloc;
5160 out_ret:
5161 ret = block_page_mkwrite_return(ret);
5162 out:
5163 sb_end_pagefault(inode->i_sb);
5164 return ret;
5165 }