]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
Merge tag 'dlm-3.12' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75 return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80 {
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120 {
121 trace_ext4_begin_ordered_truncate(inode, new_size);
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages(&inode->i_data, 0);
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
221 }
222
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 if (is_bad_inode(inode))
232 goto no_delete;
233
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
254 ext4_handle_sync(handle);
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks)
263 ext4_truncate(inode);
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
282 goto no_delete;
283 }
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
311 return;
312 no_delete:
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
326 */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332 return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
341 {
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
344
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
355
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
373
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
384 }
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 else {
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
395 */
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 }
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410 unsigned int line,
411 struct ext4_map_blocks *map)
412 {
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
419 return -EIO;
420 }
421 return 0;
422 }
423
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433 {
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
482 *
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
498 *
499 * It returns the error in case of allocation failure.
500 */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
503 {
504 struct extent_status es;
505 int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 ext4_es_lru_add(inode);
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537 #endif
538 goto found;
539 }
540
541 /*
542 * Try to see if we can get the block without requesting a new
543 * file system block.
544 */
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
550 } else {
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
553 }
554 if (retval > 0) {
555 int ret;
556 unsigned int status;
557
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
564 }
565
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 int ret = check_block_validity(inode, map);
583 if (ret != 0)
584 return ret;
585 }
586
587 /* If it is only a block(s) look up */
588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
595 * ext4_ext_get_block() returns the create = 0
596 * with buffer head unmapped.
597 */
598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 return retval;
600
601 /*
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
604 */
605 map->m_flags &= ~EXT4_MAP_FLAGS;
606
607 /*
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629 } else {
630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 }
640
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654 if (retval > 0) {
655 int ret;
656 unsigned int status;
657
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
663 WARN_ON(1);
664 }
665
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
685 }
686
687 has_zeroout:
688 up_write((&EXT4_I(inode)->i_data_sem));
689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 int ret = check_block_validity(inode, map);
691 if (ret != 0)
692 return ret;
693 }
694 return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
702 {
703 handle_t *handle = ext4_journal_current_handle();
704 struct ext4_map_blocks map;
705 int ret = 0, started = 0;
706 int dio_credits;
707
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715 /* Direct IO write... */
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
721 if (IS_ERR(handle)) {
722 ret = PTR_ERR(handle);
723 return ret;
724 }
725 started = 1;
726 }
727
728 ret = ext4_map_blocks(handle, inode, &map, flags);
729 if (ret > 0) {
730 map_bh(bh, inode->i_sb, map.m_pblk);
731 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
733 ret = 0;
734 }
735 if (started)
736 ext4_journal_stop(handle);
737 return ret;
738 }
739
740 int ext4_get_block(struct inode *inode, sector_t iblock,
741 struct buffer_head *bh, int create)
742 {
743 return _ext4_get_block(inode, iblock, bh,
744 create ? EXT4_GET_BLOCKS_CREATE : 0);
745 }
746
747 /*
748 * `handle' can be NULL if create is zero
749 */
750 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
751 ext4_lblk_t block, int create, int *errp)
752 {
753 struct ext4_map_blocks map;
754 struct buffer_head *bh;
755 int fatal = 0, err;
756
757 J_ASSERT(handle != NULL || create == 0);
758
759 map.m_lblk = block;
760 map.m_len = 1;
761 err = ext4_map_blocks(handle, inode, &map,
762 create ? EXT4_GET_BLOCKS_CREATE : 0);
763
764 /* ensure we send some value back into *errp */
765 *errp = 0;
766
767 if (create && err == 0)
768 err = -ENOSPC; /* should never happen */
769 if (err < 0)
770 *errp = err;
771 if (err <= 0)
772 return NULL;
773
774 bh = sb_getblk(inode->i_sb, map.m_pblk);
775 if (unlikely(!bh)) {
776 *errp = -ENOMEM;
777 return NULL;
778 }
779 if (map.m_flags & EXT4_MAP_NEW) {
780 J_ASSERT(create != 0);
781 J_ASSERT(handle != NULL);
782
783 /*
784 * Now that we do not always journal data, we should
785 * keep in mind whether this should always journal the
786 * new buffer as metadata. For now, regular file
787 * writes use ext4_get_block instead, so it's not a
788 * problem.
789 */
790 lock_buffer(bh);
791 BUFFER_TRACE(bh, "call get_create_access");
792 fatal = ext4_journal_get_create_access(handle, bh);
793 if (!fatal && !buffer_uptodate(bh)) {
794 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795 set_buffer_uptodate(bh);
796 }
797 unlock_buffer(bh);
798 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799 err = ext4_handle_dirty_metadata(handle, inode, bh);
800 if (!fatal)
801 fatal = err;
802 } else {
803 BUFFER_TRACE(bh, "not a new buffer");
804 }
805 if (fatal) {
806 *errp = fatal;
807 brelse(bh);
808 bh = NULL;
809 }
810 return bh;
811 }
812
813 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
814 ext4_lblk_t block, int create, int *err)
815 {
816 struct buffer_head *bh;
817
818 bh = ext4_getblk(handle, inode, block, create, err);
819 if (!bh)
820 return bh;
821 if (buffer_uptodate(bh))
822 return bh;
823 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
824 wait_on_buffer(bh);
825 if (buffer_uptodate(bh))
826 return bh;
827 put_bh(bh);
828 *err = -EIO;
829 return NULL;
830 }
831
832 int ext4_walk_page_buffers(handle_t *handle,
833 struct buffer_head *head,
834 unsigned from,
835 unsigned to,
836 int *partial,
837 int (*fn)(handle_t *handle,
838 struct buffer_head *bh))
839 {
840 struct buffer_head *bh;
841 unsigned block_start, block_end;
842 unsigned blocksize = head->b_size;
843 int err, ret = 0;
844 struct buffer_head *next;
845
846 for (bh = head, block_start = 0;
847 ret == 0 && (bh != head || !block_start);
848 block_start = block_end, bh = next) {
849 next = bh->b_this_page;
850 block_end = block_start + blocksize;
851 if (block_end <= from || block_start >= to) {
852 if (partial && !buffer_uptodate(bh))
853 *partial = 1;
854 continue;
855 }
856 err = (*fn)(handle, bh);
857 if (!ret)
858 ret = err;
859 }
860 return ret;
861 }
862
863 /*
864 * To preserve ordering, it is essential that the hole instantiation and
865 * the data write be encapsulated in a single transaction. We cannot
866 * close off a transaction and start a new one between the ext4_get_block()
867 * and the commit_write(). So doing the jbd2_journal_start at the start of
868 * prepare_write() is the right place.
869 *
870 * Also, this function can nest inside ext4_writepage(). In that case, we
871 * *know* that ext4_writepage() has generated enough buffer credits to do the
872 * whole page. So we won't block on the journal in that case, which is good,
873 * because the caller may be PF_MEMALLOC.
874 *
875 * By accident, ext4 can be reentered when a transaction is open via
876 * quota file writes. If we were to commit the transaction while thus
877 * reentered, there can be a deadlock - we would be holding a quota
878 * lock, and the commit would never complete if another thread had a
879 * transaction open and was blocking on the quota lock - a ranking
880 * violation.
881 *
882 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
883 * will _not_ run commit under these circumstances because handle->h_ref
884 * is elevated. We'll still have enough credits for the tiny quotafile
885 * write.
886 */
887 int do_journal_get_write_access(handle_t *handle,
888 struct buffer_head *bh)
889 {
890 int dirty = buffer_dirty(bh);
891 int ret;
892
893 if (!buffer_mapped(bh) || buffer_freed(bh))
894 return 0;
895 /*
896 * __block_write_begin() could have dirtied some buffers. Clean
897 * the dirty bit as jbd2_journal_get_write_access() could complain
898 * otherwise about fs integrity issues. Setting of the dirty bit
899 * by __block_write_begin() isn't a real problem here as we clear
900 * the bit before releasing a page lock and thus writeback cannot
901 * ever write the buffer.
902 */
903 if (dirty)
904 clear_buffer_dirty(bh);
905 ret = ext4_journal_get_write_access(handle, bh);
906 if (!ret && dirty)
907 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908 return ret;
909 }
910
911 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912 struct buffer_head *bh_result, int create);
913 static int ext4_write_begin(struct file *file, struct address_space *mapping,
914 loff_t pos, unsigned len, unsigned flags,
915 struct page **pagep, void **fsdata)
916 {
917 struct inode *inode = mapping->host;
918 int ret, needed_blocks;
919 handle_t *handle;
920 int retries = 0;
921 struct page *page;
922 pgoff_t index;
923 unsigned from, to;
924
925 trace_ext4_write_begin(inode, pos, len, flags);
926 /*
927 * Reserve one block more for addition to orphan list in case
928 * we allocate blocks but write fails for some reason
929 */
930 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
931 index = pos >> PAGE_CACHE_SHIFT;
932 from = pos & (PAGE_CACHE_SIZE - 1);
933 to = from + len;
934
935 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937 flags, pagep);
938 if (ret < 0)
939 return ret;
940 if (ret == 1)
941 return 0;
942 }
943
944 /*
945 * grab_cache_page_write_begin() can take a long time if the
946 * system is thrashing due to memory pressure, or if the page
947 * is being written back. So grab it first before we start
948 * the transaction handle. This also allows us to allocate
949 * the page (if needed) without using GFP_NOFS.
950 */
951 retry_grab:
952 page = grab_cache_page_write_begin(mapping, index, flags);
953 if (!page)
954 return -ENOMEM;
955 unlock_page(page);
956
957 retry_journal:
958 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
959 if (IS_ERR(handle)) {
960 page_cache_release(page);
961 return PTR_ERR(handle);
962 }
963
964 lock_page(page);
965 if (page->mapping != mapping) {
966 /* The page got truncated from under us */
967 unlock_page(page);
968 page_cache_release(page);
969 ext4_journal_stop(handle);
970 goto retry_grab;
971 }
972 /* In case writeback began while the page was unlocked */
973 wait_for_stable_page(page);
974
975 if (ext4_should_dioread_nolock(inode))
976 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
977 else
978 ret = __block_write_begin(page, pos, len, ext4_get_block);
979
980 if (!ret && ext4_should_journal_data(inode)) {
981 ret = ext4_walk_page_buffers(handle, page_buffers(page),
982 from, to, NULL,
983 do_journal_get_write_access);
984 }
985
986 if (ret) {
987 unlock_page(page);
988 /*
989 * __block_write_begin may have instantiated a few blocks
990 * outside i_size. Trim these off again. Don't need
991 * i_size_read because we hold i_mutex.
992 *
993 * Add inode to orphan list in case we crash before
994 * truncate finishes
995 */
996 if (pos + len > inode->i_size && ext4_can_truncate(inode))
997 ext4_orphan_add(handle, inode);
998
999 ext4_journal_stop(handle);
1000 if (pos + len > inode->i_size) {
1001 ext4_truncate_failed_write(inode);
1002 /*
1003 * If truncate failed early the inode might
1004 * still be on the orphan list; we need to
1005 * make sure the inode is removed from the
1006 * orphan list in that case.
1007 */
1008 if (inode->i_nlink)
1009 ext4_orphan_del(NULL, inode);
1010 }
1011
1012 if (ret == -ENOSPC &&
1013 ext4_should_retry_alloc(inode->i_sb, &retries))
1014 goto retry_journal;
1015 page_cache_release(page);
1016 return ret;
1017 }
1018 *pagep = page;
1019 return ret;
1020 }
1021
1022 /* For write_end() in data=journal mode */
1023 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1024 {
1025 int ret;
1026 if (!buffer_mapped(bh) || buffer_freed(bh))
1027 return 0;
1028 set_buffer_uptodate(bh);
1029 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1030 clear_buffer_meta(bh);
1031 clear_buffer_prio(bh);
1032 return ret;
1033 }
1034
1035 /*
1036 * We need to pick up the new inode size which generic_commit_write gave us
1037 * `file' can be NULL - eg, when called from page_symlink().
1038 *
1039 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1040 * buffers are managed internally.
1041 */
1042 static int ext4_write_end(struct file *file,
1043 struct address_space *mapping,
1044 loff_t pos, unsigned len, unsigned copied,
1045 struct page *page, void *fsdata)
1046 {
1047 handle_t *handle = ext4_journal_current_handle();
1048 struct inode *inode = mapping->host;
1049 int ret = 0, ret2;
1050 int i_size_changed = 0;
1051
1052 trace_ext4_write_end(inode, pos, len, copied);
1053 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1054 ret = ext4_jbd2_file_inode(handle, inode);
1055 if (ret) {
1056 unlock_page(page);
1057 page_cache_release(page);
1058 goto errout;
1059 }
1060 }
1061
1062 if (ext4_has_inline_data(inode)) {
1063 ret = ext4_write_inline_data_end(inode, pos, len,
1064 copied, page);
1065 if (ret < 0)
1066 goto errout;
1067 copied = ret;
1068 } else
1069 copied = block_write_end(file, mapping, pos,
1070 len, copied, page, fsdata);
1071
1072 /*
1073 * No need to use i_size_read() here, the i_size
1074 * cannot change under us because we hole i_mutex.
1075 *
1076 * But it's important to update i_size while still holding page lock:
1077 * page writeout could otherwise come in and zero beyond i_size.
1078 */
1079 if (pos + copied > inode->i_size) {
1080 i_size_write(inode, pos + copied);
1081 i_size_changed = 1;
1082 }
1083
1084 if (pos + copied > EXT4_I(inode)->i_disksize) {
1085 /* We need to mark inode dirty even if
1086 * new_i_size is less that inode->i_size
1087 * but greater than i_disksize. (hint delalloc)
1088 */
1089 ext4_update_i_disksize(inode, (pos + copied));
1090 i_size_changed = 1;
1091 }
1092 unlock_page(page);
1093 page_cache_release(page);
1094
1095 /*
1096 * Don't mark the inode dirty under page lock. First, it unnecessarily
1097 * makes the holding time of page lock longer. Second, it forces lock
1098 * ordering of page lock and transaction start for journaling
1099 * filesystems.
1100 */
1101 if (i_size_changed)
1102 ext4_mark_inode_dirty(handle, inode);
1103
1104 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1105 /* if we have allocated more blocks and copied
1106 * less. We will have blocks allocated outside
1107 * inode->i_size. So truncate them
1108 */
1109 ext4_orphan_add(handle, inode);
1110 errout:
1111 ret2 = ext4_journal_stop(handle);
1112 if (!ret)
1113 ret = ret2;
1114
1115 if (pos + len > inode->i_size) {
1116 ext4_truncate_failed_write(inode);
1117 /*
1118 * If truncate failed early the inode might still be
1119 * on the orphan list; we need to make sure the inode
1120 * is removed from the orphan list in that case.
1121 */
1122 if (inode->i_nlink)
1123 ext4_orphan_del(NULL, inode);
1124 }
1125
1126 return ret ? ret : copied;
1127 }
1128
1129 static int ext4_journalled_write_end(struct file *file,
1130 struct address_space *mapping,
1131 loff_t pos, unsigned len, unsigned copied,
1132 struct page *page, void *fsdata)
1133 {
1134 handle_t *handle = ext4_journal_current_handle();
1135 struct inode *inode = mapping->host;
1136 int ret = 0, ret2;
1137 int partial = 0;
1138 unsigned from, to;
1139 loff_t new_i_size;
1140
1141 trace_ext4_journalled_write_end(inode, pos, len, copied);
1142 from = pos & (PAGE_CACHE_SIZE - 1);
1143 to = from + len;
1144
1145 BUG_ON(!ext4_handle_valid(handle));
1146
1147 if (ext4_has_inline_data(inode))
1148 copied = ext4_write_inline_data_end(inode, pos, len,
1149 copied, page);
1150 else {
1151 if (copied < len) {
1152 if (!PageUptodate(page))
1153 copied = 0;
1154 page_zero_new_buffers(page, from+copied, to);
1155 }
1156
1157 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1158 to, &partial, write_end_fn);
1159 if (!partial)
1160 SetPageUptodate(page);
1161 }
1162 new_i_size = pos + copied;
1163 if (new_i_size > inode->i_size)
1164 i_size_write(inode, pos+copied);
1165 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1166 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1167 if (new_i_size > EXT4_I(inode)->i_disksize) {
1168 ext4_update_i_disksize(inode, new_i_size);
1169 ret2 = ext4_mark_inode_dirty(handle, inode);
1170 if (!ret)
1171 ret = ret2;
1172 }
1173
1174 unlock_page(page);
1175 page_cache_release(page);
1176 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1177 /* if we have allocated more blocks and copied
1178 * less. We will have blocks allocated outside
1179 * inode->i_size. So truncate them
1180 */
1181 ext4_orphan_add(handle, inode);
1182
1183 ret2 = ext4_journal_stop(handle);
1184 if (!ret)
1185 ret = ret2;
1186 if (pos + len > inode->i_size) {
1187 ext4_truncate_failed_write(inode);
1188 /*
1189 * If truncate failed early the inode might still be
1190 * on the orphan list; we need to make sure the inode
1191 * is removed from the orphan list in that case.
1192 */
1193 if (inode->i_nlink)
1194 ext4_orphan_del(NULL, inode);
1195 }
1196
1197 return ret ? ret : copied;
1198 }
1199
1200 /*
1201 * Reserve a metadata for a single block located at lblock
1202 */
1203 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1204 {
1205 int retries = 0;
1206 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1207 struct ext4_inode_info *ei = EXT4_I(inode);
1208 unsigned int md_needed;
1209 ext4_lblk_t save_last_lblock;
1210 int save_len;
1211
1212 /*
1213 * recalculate the amount of metadata blocks to reserve
1214 * in order to allocate nrblocks
1215 * worse case is one extent per block
1216 */
1217 repeat:
1218 spin_lock(&ei->i_block_reservation_lock);
1219 /*
1220 * ext4_calc_metadata_amount() has side effects, which we have
1221 * to be prepared undo if we fail to claim space.
1222 */
1223 save_len = ei->i_da_metadata_calc_len;
1224 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1225 md_needed = EXT4_NUM_B2C(sbi,
1226 ext4_calc_metadata_amount(inode, lblock));
1227 trace_ext4_da_reserve_space(inode, md_needed);
1228
1229 /*
1230 * We do still charge estimated metadata to the sb though;
1231 * we cannot afford to run out of free blocks.
1232 */
1233 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1234 ei->i_da_metadata_calc_len = save_len;
1235 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1236 spin_unlock(&ei->i_block_reservation_lock);
1237 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1238 cond_resched();
1239 goto repeat;
1240 }
1241 return -ENOSPC;
1242 }
1243 ei->i_reserved_meta_blocks += md_needed;
1244 spin_unlock(&ei->i_block_reservation_lock);
1245
1246 return 0; /* success */
1247 }
1248
1249 /*
1250 * Reserve a single cluster located at lblock
1251 */
1252 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1253 {
1254 int retries = 0;
1255 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1256 struct ext4_inode_info *ei = EXT4_I(inode);
1257 unsigned int md_needed;
1258 int ret;
1259 ext4_lblk_t save_last_lblock;
1260 int save_len;
1261
1262 /*
1263 * We will charge metadata quota at writeout time; this saves
1264 * us from metadata over-estimation, though we may go over by
1265 * a small amount in the end. Here we just reserve for data.
1266 */
1267 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1268 if (ret)
1269 return ret;
1270
1271 /*
1272 * recalculate the amount of metadata blocks to reserve
1273 * in order to allocate nrblocks
1274 * worse case is one extent per block
1275 */
1276 repeat:
1277 spin_lock(&ei->i_block_reservation_lock);
1278 /*
1279 * ext4_calc_metadata_amount() has side effects, which we have
1280 * to be prepared undo if we fail to claim space.
1281 */
1282 save_len = ei->i_da_metadata_calc_len;
1283 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1284 md_needed = EXT4_NUM_B2C(sbi,
1285 ext4_calc_metadata_amount(inode, lblock));
1286 trace_ext4_da_reserve_space(inode, md_needed);
1287
1288 /*
1289 * We do still charge estimated metadata to the sb though;
1290 * we cannot afford to run out of free blocks.
1291 */
1292 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1293 ei->i_da_metadata_calc_len = save_len;
1294 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1295 spin_unlock(&ei->i_block_reservation_lock);
1296 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1297 cond_resched();
1298 goto repeat;
1299 }
1300 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1301 return -ENOSPC;
1302 }
1303 ei->i_reserved_data_blocks++;
1304 ei->i_reserved_meta_blocks += md_needed;
1305 spin_unlock(&ei->i_block_reservation_lock);
1306
1307 return 0; /* success */
1308 }
1309
1310 static void ext4_da_release_space(struct inode *inode, int to_free)
1311 {
1312 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1313 struct ext4_inode_info *ei = EXT4_I(inode);
1314
1315 if (!to_free)
1316 return; /* Nothing to release, exit */
1317
1318 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1319
1320 trace_ext4_da_release_space(inode, to_free);
1321 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1322 /*
1323 * if there aren't enough reserved blocks, then the
1324 * counter is messed up somewhere. Since this
1325 * function is called from invalidate page, it's
1326 * harmless to return without any action.
1327 */
1328 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1329 "ino %lu, to_free %d with only %d reserved "
1330 "data blocks", inode->i_ino, to_free,
1331 ei->i_reserved_data_blocks);
1332 WARN_ON(1);
1333 to_free = ei->i_reserved_data_blocks;
1334 }
1335 ei->i_reserved_data_blocks -= to_free;
1336
1337 if (ei->i_reserved_data_blocks == 0) {
1338 /*
1339 * We can release all of the reserved metadata blocks
1340 * only when we have written all of the delayed
1341 * allocation blocks.
1342 * Note that in case of bigalloc, i_reserved_meta_blocks,
1343 * i_reserved_data_blocks, etc. refer to number of clusters.
1344 */
1345 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1346 ei->i_reserved_meta_blocks);
1347 ei->i_reserved_meta_blocks = 0;
1348 ei->i_da_metadata_calc_len = 0;
1349 }
1350
1351 /* update fs dirty data blocks counter */
1352 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1353
1354 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1355
1356 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1357 }
1358
1359 static void ext4_da_page_release_reservation(struct page *page,
1360 unsigned int offset,
1361 unsigned int length)
1362 {
1363 int to_release = 0;
1364 struct buffer_head *head, *bh;
1365 unsigned int curr_off = 0;
1366 struct inode *inode = page->mapping->host;
1367 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1368 unsigned int stop = offset + length;
1369 int num_clusters;
1370 ext4_fsblk_t lblk;
1371
1372 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1373
1374 head = page_buffers(page);
1375 bh = head;
1376 do {
1377 unsigned int next_off = curr_off + bh->b_size;
1378
1379 if (next_off > stop)
1380 break;
1381
1382 if ((offset <= curr_off) && (buffer_delay(bh))) {
1383 to_release++;
1384 clear_buffer_delay(bh);
1385 }
1386 curr_off = next_off;
1387 } while ((bh = bh->b_this_page) != head);
1388
1389 if (to_release) {
1390 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1391 ext4_es_remove_extent(inode, lblk, to_release);
1392 }
1393
1394 /* If we have released all the blocks belonging to a cluster, then we
1395 * need to release the reserved space for that cluster. */
1396 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1397 while (num_clusters > 0) {
1398 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1399 ((num_clusters - 1) << sbi->s_cluster_bits);
1400 if (sbi->s_cluster_ratio == 1 ||
1401 !ext4_find_delalloc_cluster(inode, lblk))
1402 ext4_da_release_space(inode, 1);
1403
1404 num_clusters--;
1405 }
1406 }
1407
1408 /*
1409 * Delayed allocation stuff
1410 */
1411
1412 struct mpage_da_data {
1413 struct inode *inode;
1414 struct writeback_control *wbc;
1415
1416 pgoff_t first_page; /* The first page to write */
1417 pgoff_t next_page; /* Current page to examine */
1418 pgoff_t last_page; /* Last page to examine */
1419 /*
1420 * Extent to map - this can be after first_page because that can be
1421 * fully mapped. We somewhat abuse m_flags to store whether the extent
1422 * is delalloc or unwritten.
1423 */
1424 struct ext4_map_blocks map;
1425 struct ext4_io_submit io_submit; /* IO submission data */
1426 };
1427
1428 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1429 bool invalidate)
1430 {
1431 int nr_pages, i;
1432 pgoff_t index, end;
1433 struct pagevec pvec;
1434 struct inode *inode = mpd->inode;
1435 struct address_space *mapping = inode->i_mapping;
1436
1437 /* This is necessary when next_page == 0. */
1438 if (mpd->first_page >= mpd->next_page)
1439 return;
1440
1441 index = mpd->first_page;
1442 end = mpd->next_page - 1;
1443 if (invalidate) {
1444 ext4_lblk_t start, last;
1445 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1446 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1447 ext4_es_remove_extent(inode, start, last - start + 1);
1448 }
1449
1450 pagevec_init(&pvec, 0);
1451 while (index <= end) {
1452 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1453 if (nr_pages == 0)
1454 break;
1455 for (i = 0; i < nr_pages; i++) {
1456 struct page *page = pvec.pages[i];
1457 if (page->index > end)
1458 break;
1459 BUG_ON(!PageLocked(page));
1460 BUG_ON(PageWriteback(page));
1461 if (invalidate) {
1462 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1463 ClearPageUptodate(page);
1464 }
1465 unlock_page(page);
1466 }
1467 index = pvec.pages[nr_pages - 1]->index + 1;
1468 pagevec_release(&pvec);
1469 }
1470 }
1471
1472 static void ext4_print_free_blocks(struct inode *inode)
1473 {
1474 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1475 struct super_block *sb = inode->i_sb;
1476 struct ext4_inode_info *ei = EXT4_I(inode);
1477
1478 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1479 EXT4_C2B(EXT4_SB(inode->i_sb),
1480 ext4_count_free_clusters(sb)));
1481 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1482 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1483 (long long) EXT4_C2B(EXT4_SB(sb),
1484 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1485 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1486 (long long) EXT4_C2B(EXT4_SB(sb),
1487 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1488 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1489 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1490 ei->i_reserved_data_blocks);
1491 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1492 ei->i_reserved_meta_blocks);
1493 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1494 ei->i_allocated_meta_blocks);
1495 return;
1496 }
1497
1498 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1499 {
1500 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1501 }
1502
1503 /*
1504 * This function is grabs code from the very beginning of
1505 * ext4_map_blocks, but assumes that the caller is from delayed write
1506 * time. This function looks up the requested blocks and sets the
1507 * buffer delay bit under the protection of i_data_sem.
1508 */
1509 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1510 struct ext4_map_blocks *map,
1511 struct buffer_head *bh)
1512 {
1513 struct extent_status es;
1514 int retval;
1515 sector_t invalid_block = ~((sector_t) 0xffff);
1516 #ifdef ES_AGGRESSIVE_TEST
1517 struct ext4_map_blocks orig_map;
1518
1519 memcpy(&orig_map, map, sizeof(*map));
1520 #endif
1521
1522 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1523 invalid_block = ~0;
1524
1525 map->m_flags = 0;
1526 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1527 "logical block %lu\n", inode->i_ino, map->m_len,
1528 (unsigned long) map->m_lblk);
1529
1530 /* Lookup extent status tree firstly */
1531 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1532 ext4_es_lru_add(inode);
1533 if (ext4_es_is_hole(&es)) {
1534 retval = 0;
1535 down_read((&EXT4_I(inode)->i_data_sem));
1536 goto add_delayed;
1537 }
1538
1539 /*
1540 * Delayed extent could be allocated by fallocate.
1541 * So we need to check it.
1542 */
1543 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1544 map_bh(bh, inode->i_sb, invalid_block);
1545 set_buffer_new(bh);
1546 set_buffer_delay(bh);
1547 return 0;
1548 }
1549
1550 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1551 retval = es.es_len - (iblock - es.es_lblk);
1552 if (retval > map->m_len)
1553 retval = map->m_len;
1554 map->m_len = retval;
1555 if (ext4_es_is_written(&es))
1556 map->m_flags |= EXT4_MAP_MAPPED;
1557 else if (ext4_es_is_unwritten(&es))
1558 map->m_flags |= EXT4_MAP_UNWRITTEN;
1559 else
1560 BUG_ON(1);
1561
1562 #ifdef ES_AGGRESSIVE_TEST
1563 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1564 #endif
1565 return retval;
1566 }
1567
1568 /*
1569 * Try to see if we can get the block without requesting a new
1570 * file system block.
1571 */
1572 down_read((&EXT4_I(inode)->i_data_sem));
1573 if (ext4_has_inline_data(inode)) {
1574 /*
1575 * We will soon create blocks for this page, and let
1576 * us pretend as if the blocks aren't allocated yet.
1577 * In case of clusters, we have to handle the work
1578 * of mapping from cluster so that the reserved space
1579 * is calculated properly.
1580 */
1581 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1582 ext4_find_delalloc_cluster(inode, map->m_lblk))
1583 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1584 retval = 0;
1585 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1586 retval = ext4_ext_map_blocks(NULL, inode, map,
1587 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1588 else
1589 retval = ext4_ind_map_blocks(NULL, inode, map,
1590 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1591
1592 add_delayed:
1593 if (retval == 0) {
1594 int ret;
1595 /*
1596 * XXX: __block_prepare_write() unmaps passed block,
1597 * is it OK?
1598 */
1599 /*
1600 * If the block was allocated from previously allocated cluster,
1601 * then we don't need to reserve it again. However we still need
1602 * to reserve metadata for every block we're going to write.
1603 */
1604 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1605 ret = ext4_da_reserve_space(inode, iblock);
1606 if (ret) {
1607 /* not enough space to reserve */
1608 retval = ret;
1609 goto out_unlock;
1610 }
1611 } else {
1612 ret = ext4_da_reserve_metadata(inode, iblock);
1613 if (ret) {
1614 /* not enough space to reserve */
1615 retval = ret;
1616 goto out_unlock;
1617 }
1618 }
1619
1620 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1621 ~0, EXTENT_STATUS_DELAYED);
1622 if (ret) {
1623 retval = ret;
1624 goto out_unlock;
1625 }
1626
1627 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1628 * and it should not appear on the bh->b_state.
1629 */
1630 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1631
1632 map_bh(bh, inode->i_sb, invalid_block);
1633 set_buffer_new(bh);
1634 set_buffer_delay(bh);
1635 } else if (retval > 0) {
1636 int ret;
1637 unsigned int status;
1638
1639 if (unlikely(retval != map->m_len)) {
1640 ext4_warning(inode->i_sb,
1641 "ES len assertion failed for inode "
1642 "%lu: retval %d != map->m_len %d",
1643 inode->i_ino, retval, map->m_len);
1644 WARN_ON(1);
1645 }
1646
1647 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1648 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1649 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1650 map->m_pblk, status);
1651 if (ret != 0)
1652 retval = ret;
1653 }
1654
1655 out_unlock:
1656 up_read((&EXT4_I(inode)->i_data_sem));
1657
1658 return retval;
1659 }
1660
1661 /*
1662 * This is a special get_blocks_t callback which is used by
1663 * ext4_da_write_begin(). It will either return mapped block or
1664 * reserve space for a single block.
1665 *
1666 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1667 * We also have b_blocknr = -1 and b_bdev initialized properly
1668 *
1669 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1670 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1671 * initialized properly.
1672 */
1673 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1674 struct buffer_head *bh, int create)
1675 {
1676 struct ext4_map_blocks map;
1677 int ret = 0;
1678
1679 BUG_ON(create == 0);
1680 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1681
1682 map.m_lblk = iblock;
1683 map.m_len = 1;
1684
1685 /*
1686 * first, we need to know whether the block is allocated already
1687 * preallocated blocks are unmapped but should treated
1688 * the same as allocated blocks.
1689 */
1690 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1691 if (ret <= 0)
1692 return ret;
1693
1694 map_bh(bh, inode->i_sb, map.m_pblk);
1695 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1696
1697 if (buffer_unwritten(bh)) {
1698 /* A delayed write to unwritten bh should be marked
1699 * new and mapped. Mapped ensures that we don't do
1700 * get_block multiple times when we write to the same
1701 * offset and new ensures that we do proper zero out
1702 * for partial write.
1703 */
1704 set_buffer_new(bh);
1705 set_buffer_mapped(bh);
1706 }
1707 return 0;
1708 }
1709
1710 static int bget_one(handle_t *handle, struct buffer_head *bh)
1711 {
1712 get_bh(bh);
1713 return 0;
1714 }
1715
1716 static int bput_one(handle_t *handle, struct buffer_head *bh)
1717 {
1718 put_bh(bh);
1719 return 0;
1720 }
1721
1722 static int __ext4_journalled_writepage(struct page *page,
1723 unsigned int len)
1724 {
1725 struct address_space *mapping = page->mapping;
1726 struct inode *inode = mapping->host;
1727 struct buffer_head *page_bufs = NULL;
1728 handle_t *handle = NULL;
1729 int ret = 0, err = 0;
1730 int inline_data = ext4_has_inline_data(inode);
1731 struct buffer_head *inode_bh = NULL;
1732
1733 ClearPageChecked(page);
1734
1735 if (inline_data) {
1736 BUG_ON(page->index != 0);
1737 BUG_ON(len > ext4_get_max_inline_size(inode));
1738 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1739 if (inode_bh == NULL)
1740 goto out;
1741 } else {
1742 page_bufs = page_buffers(page);
1743 if (!page_bufs) {
1744 BUG();
1745 goto out;
1746 }
1747 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1748 NULL, bget_one);
1749 }
1750 /* As soon as we unlock the page, it can go away, but we have
1751 * references to buffers so we are safe */
1752 unlock_page(page);
1753
1754 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1755 ext4_writepage_trans_blocks(inode));
1756 if (IS_ERR(handle)) {
1757 ret = PTR_ERR(handle);
1758 goto out;
1759 }
1760
1761 BUG_ON(!ext4_handle_valid(handle));
1762
1763 if (inline_data) {
1764 ret = ext4_journal_get_write_access(handle, inode_bh);
1765
1766 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1767
1768 } else {
1769 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1770 do_journal_get_write_access);
1771
1772 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1773 write_end_fn);
1774 }
1775 if (ret == 0)
1776 ret = err;
1777 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1778 err = ext4_journal_stop(handle);
1779 if (!ret)
1780 ret = err;
1781
1782 if (!ext4_has_inline_data(inode))
1783 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1784 NULL, bput_one);
1785 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1786 out:
1787 brelse(inode_bh);
1788 return ret;
1789 }
1790
1791 /*
1792 * Note that we don't need to start a transaction unless we're journaling data
1793 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794 * need to file the inode to the transaction's list in ordered mode because if
1795 * we are writing back data added by write(), the inode is already there and if
1796 * we are writing back data modified via mmap(), no one guarantees in which
1797 * transaction the data will hit the disk. In case we are journaling data, we
1798 * cannot start transaction directly because transaction start ranks above page
1799 * lock so we have to do some magic.
1800 *
1801 * This function can get called via...
1802 * - ext4_writepages after taking page lock (have journal handle)
1803 * - journal_submit_inode_data_buffers (no journal handle)
1804 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1805 * - grab_page_cache when doing write_begin (have journal handle)
1806 *
1807 * We don't do any block allocation in this function. If we have page with
1808 * multiple blocks we need to write those buffer_heads that are mapped. This
1809 * is important for mmaped based write. So if we do with blocksize 1K
1810 * truncate(f, 1024);
1811 * a = mmap(f, 0, 4096);
1812 * a[0] = 'a';
1813 * truncate(f, 4096);
1814 * we have in the page first buffer_head mapped via page_mkwrite call back
1815 * but other buffer_heads would be unmapped but dirty (dirty done via the
1816 * do_wp_page). So writepage should write the first block. If we modify
1817 * the mmap area beyond 1024 we will again get a page_fault and the
1818 * page_mkwrite callback will do the block allocation and mark the
1819 * buffer_heads mapped.
1820 *
1821 * We redirty the page if we have any buffer_heads that is either delay or
1822 * unwritten in the page.
1823 *
1824 * We can get recursively called as show below.
1825 *
1826 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1827 * ext4_writepage()
1828 *
1829 * But since we don't do any block allocation we should not deadlock.
1830 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1831 */
1832 static int ext4_writepage(struct page *page,
1833 struct writeback_control *wbc)
1834 {
1835 int ret = 0;
1836 loff_t size;
1837 unsigned int len;
1838 struct buffer_head *page_bufs = NULL;
1839 struct inode *inode = page->mapping->host;
1840 struct ext4_io_submit io_submit;
1841
1842 trace_ext4_writepage(page);
1843 size = i_size_read(inode);
1844 if (page->index == size >> PAGE_CACHE_SHIFT)
1845 len = size & ~PAGE_CACHE_MASK;
1846 else
1847 len = PAGE_CACHE_SIZE;
1848
1849 page_bufs = page_buffers(page);
1850 /*
1851 * We cannot do block allocation or other extent handling in this
1852 * function. If there are buffers needing that, we have to redirty
1853 * the page. But we may reach here when we do a journal commit via
1854 * journal_submit_inode_data_buffers() and in that case we must write
1855 * allocated buffers to achieve data=ordered mode guarantees.
1856 */
1857 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1858 ext4_bh_delay_or_unwritten)) {
1859 redirty_page_for_writepage(wbc, page);
1860 if (current->flags & PF_MEMALLOC) {
1861 /*
1862 * For memory cleaning there's no point in writing only
1863 * some buffers. So just bail out. Warn if we came here
1864 * from direct reclaim.
1865 */
1866 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1867 == PF_MEMALLOC);
1868 unlock_page(page);
1869 return 0;
1870 }
1871 }
1872
1873 if (PageChecked(page) && ext4_should_journal_data(inode))
1874 /*
1875 * It's mmapped pagecache. Add buffers and journal it. There
1876 * doesn't seem much point in redirtying the page here.
1877 */
1878 return __ext4_journalled_writepage(page, len);
1879
1880 ext4_io_submit_init(&io_submit, wbc);
1881 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1882 if (!io_submit.io_end) {
1883 redirty_page_for_writepage(wbc, page);
1884 unlock_page(page);
1885 return -ENOMEM;
1886 }
1887 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1888 ext4_io_submit(&io_submit);
1889 /* Drop io_end reference we got from init */
1890 ext4_put_io_end_defer(io_submit.io_end);
1891 return ret;
1892 }
1893
1894 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1895 {
1896 int len;
1897 loff_t size = i_size_read(mpd->inode);
1898 int err;
1899
1900 BUG_ON(page->index != mpd->first_page);
1901 if (page->index == size >> PAGE_CACHE_SHIFT)
1902 len = size & ~PAGE_CACHE_MASK;
1903 else
1904 len = PAGE_CACHE_SIZE;
1905 clear_page_dirty_for_io(page);
1906 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1907 if (!err)
1908 mpd->wbc->nr_to_write--;
1909 mpd->first_page++;
1910
1911 return err;
1912 }
1913
1914 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1915
1916 /*
1917 * mballoc gives us at most this number of blocks...
1918 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1919 * The rest of mballoc seems to handle chunks up to full group size.
1920 */
1921 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1922
1923 /*
1924 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1925 *
1926 * @mpd - extent of blocks
1927 * @lblk - logical number of the block in the file
1928 * @bh - buffer head we want to add to the extent
1929 *
1930 * The function is used to collect contig. blocks in the same state. If the
1931 * buffer doesn't require mapping for writeback and we haven't started the
1932 * extent of buffers to map yet, the function returns 'true' immediately - the
1933 * caller can write the buffer right away. Otherwise the function returns true
1934 * if the block has been added to the extent, false if the block couldn't be
1935 * added.
1936 */
1937 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1938 struct buffer_head *bh)
1939 {
1940 struct ext4_map_blocks *map = &mpd->map;
1941
1942 /* Buffer that doesn't need mapping for writeback? */
1943 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1944 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1945 /* So far no extent to map => we write the buffer right away */
1946 if (map->m_len == 0)
1947 return true;
1948 return false;
1949 }
1950
1951 /* First block in the extent? */
1952 if (map->m_len == 0) {
1953 map->m_lblk = lblk;
1954 map->m_len = 1;
1955 map->m_flags = bh->b_state & BH_FLAGS;
1956 return true;
1957 }
1958
1959 /* Don't go larger than mballoc is willing to allocate */
1960 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1961 return false;
1962
1963 /* Can we merge the block to our big extent? */
1964 if (lblk == map->m_lblk + map->m_len &&
1965 (bh->b_state & BH_FLAGS) == map->m_flags) {
1966 map->m_len++;
1967 return true;
1968 }
1969 return false;
1970 }
1971
1972 /*
1973 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1974 *
1975 * @mpd - extent of blocks for mapping
1976 * @head - the first buffer in the page
1977 * @bh - buffer we should start processing from
1978 * @lblk - logical number of the block in the file corresponding to @bh
1979 *
1980 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1981 * the page for IO if all buffers in this page were mapped and there's no
1982 * accumulated extent of buffers to map or add buffers in the page to the
1983 * extent of buffers to map. The function returns 1 if the caller can continue
1984 * by processing the next page, 0 if it should stop adding buffers to the
1985 * extent to map because we cannot extend it anymore. It can also return value
1986 * < 0 in case of error during IO submission.
1987 */
1988 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1989 struct buffer_head *head,
1990 struct buffer_head *bh,
1991 ext4_lblk_t lblk)
1992 {
1993 struct inode *inode = mpd->inode;
1994 int err;
1995 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1996 >> inode->i_blkbits;
1997
1998 do {
1999 BUG_ON(buffer_locked(bh));
2000
2001 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2002 /* Found extent to map? */
2003 if (mpd->map.m_len)
2004 return 0;
2005 /* Everything mapped so far and we hit EOF */
2006 break;
2007 }
2008 } while (lblk++, (bh = bh->b_this_page) != head);
2009 /* So far everything mapped? Submit the page for IO. */
2010 if (mpd->map.m_len == 0) {
2011 err = mpage_submit_page(mpd, head->b_page);
2012 if (err < 0)
2013 return err;
2014 }
2015 return lblk < blocks;
2016 }
2017
2018 /*
2019 * mpage_map_buffers - update buffers corresponding to changed extent and
2020 * submit fully mapped pages for IO
2021 *
2022 * @mpd - description of extent to map, on return next extent to map
2023 *
2024 * Scan buffers corresponding to changed extent (we expect corresponding pages
2025 * to be already locked) and update buffer state according to new extent state.
2026 * We map delalloc buffers to their physical location, clear unwritten bits,
2027 * and mark buffers as uninit when we perform writes to uninitialized extents
2028 * and do extent conversion after IO is finished. If the last page is not fully
2029 * mapped, we update @map to the next extent in the last page that needs
2030 * mapping. Otherwise we submit the page for IO.
2031 */
2032 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2033 {
2034 struct pagevec pvec;
2035 int nr_pages, i;
2036 struct inode *inode = mpd->inode;
2037 struct buffer_head *head, *bh;
2038 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2039 pgoff_t start, end;
2040 ext4_lblk_t lblk;
2041 sector_t pblock;
2042 int err;
2043
2044 start = mpd->map.m_lblk >> bpp_bits;
2045 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2046 lblk = start << bpp_bits;
2047 pblock = mpd->map.m_pblk;
2048
2049 pagevec_init(&pvec, 0);
2050 while (start <= end) {
2051 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2052 PAGEVEC_SIZE);
2053 if (nr_pages == 0)
2054 break;
2055 for (i = 0; i < nr_pages; i++) {
2056 struct page *page = pvec.pages[i];
2057
2058 if (page->index > end)
2059 break;
2060 /* Up to 'end' pages must be contiguous */
2061 BUG_ON(page->index != start);
2062 bh = head = page_buffers(page);
2063 do {
2064 if (lblk < mpd->map.m_lblk)
2065 continue;
2066 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2067 /*
2068 * Buffer after end of mapped extent.
2069 * Find next buffer in the page to map.
2070 */
2071 mpd->map.m_len = 0;
2072 mpd->map.m_flags = 0;
2073 /*
2074 * FIXME: If dioread_nolock supports
2075 * blocksize < pagesize, we need to make
2076 * sure we add size mapped so far to
2077 * io_end->size as the following call
2078 * can submit the page for IO.
2079 */
2080 err = mpage_process_page_bufs(mpd, head,
2081 bh, lblk);
2082 pagevec_release(&pvec);
2083 if (err > 0)
2084 err = 0;
2085 return err;
2086 }
2087 if (buffer_delay(bh)) {
2088 clear_buffer_delay(bh);
2089 bh->b_blocknr = pblock++;
2090 }
2091 clear_buffer_unwritten(bh);
2092 } while (lblk++, (bh = bh->b_this_page) != head);
2093
2094 /*
2095 * FIXME: This is going to break if dioread_nolock
2096 * supports blocksize < pagesize as we will try to
2097 * convert potentially unmapped parts of inode.
2098 */
2099 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2100 /* Page fully mapped - let IO run! */
2101 err = mpage_submit_page(mpd, page);
2102 if (err < 0) {
2103 pagevec_release(&pvec);
2104 return err;
2105 }
2106 start++;
2107 }
2108 pagevec_release(&pvec);
2109 }
2110 /* Extent fully mapped and matches with page boundary. We are done. */
2111 mpd->map.m_len = 0;
2112 mpd->map.m_flags = 0;
2113 return 0;
2114 }
2115
2116 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2117 {
2118 struct inode *inode = mpd->inode;
2119 struct ext4_map_blocks *map = &mpd->map;
2120 int get_blocks_flags;
2121 int err;
2122
2123 trace_ext4_da_write_pages_extent(inode, map);
2124 /*
2125 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2126 * to convert an uninitialized extent to be initialized (in the case
2127 * where we have written into one or more preallocated blocks). It is
2128 * possible that we're going to need more metadata blocks than
2129 * previously reserved. However we must not fail because we're in
2130 * writeback and there is nothing we can do about it so it might result
2131 * in data loss. So use reserved blocks to allocate metadata if
2132 * possible.
2133 *
2134 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2135 * in question are delalloc blocks. This affects functions in many
2136 * different parts of the allocation call path. This flag exists
2137 * primarily because we don't want to change *many* call functions, so
2138 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2139 * once the inode's allocation semaphore is taken.
2140 */
2141 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2142 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2143 if (ext4_should_dioread_nolock(inode))
2144 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2145 if (map->m_flags & (1 << BH_Delay))
2146 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2147
2148 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2149 if (err < 0)
2150 return err;
2151 if (map->m_flags & EXT4_MAP_UNINIT) {
2152 if (!mpd->io_submit.io_end->handle &&
2153 ext4_handle_valid(handle)) {
2154 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2155 handle->h_rsv_handle = NULL;
2156 }
2157 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2158 }
2159
2160 BUG_ON(map->m_len == 0);
2161 if (map->m_flags & EXT4_MAP_NEW) {
2162 struct block_device *bdev = inode->i_sb->s_bdev;
2163 int i;
2164
2165 for (i = 0; i < map->m_len; i++)
2166 unmap_underlying_metadata(bdev, map->m_pblk + i);
2167 }
2168 return 0;
2169 }
2170
2171 /*
2172 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2173 * mpd->len and submit pages underlying it for IO
2174 *
2175 * @handle - handle for journal operations
2176 * @mpd - extent to map
2177 *
2178 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2179 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2180 * them to initialized or split the described range from larger unwritten
2181 * extent. Note that we need not map all the described range since allocation
2182 * can return less blocks or the range is covered by more unwritten extents. We
2183 * cannot map more because we are limited by reserved transaction credits. On
2184 * the other hand we always make sure that the last touched page is fully
2185 * mapped so that it can be written out (and thus forward progress is
2186 * guaranteed). After mapping we submit all mapped pages for IO.
2187 */
2188 static int mpage_map_and_submit_extent(handle_t *handle,
2189 struct mpage_da_data *mpd,
2190 bool *give_up_on_write)
2191 {
2192 struct inode *inode = mpd->inode;
2193 struct ext4_map_blocks *map = &mpd->map;
2194 int err;
2195 loff_t disksize;
2196
2197 mpd->io_submit.io_end->offset =
2198 ((loff_t)map->m_lblk) << inode->i_blkbits;
2199 do {
2200 err = mpage_map_one_extent(handle, mpd);
2201 if (err < 0) {
2202 struct super_block *sb = inode->i_sb;
2203
2204 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2205 goto invalidate_dirty_pages;
2206 /*
2207 * Let the uper layers retry transient errors.
2208 * In the case of ENOSPC, if ext4_count_free_blocks()
2209 * is non-zero, a commit should free up blocks.
2210 */
2211 if ((err == -ENOMEM) ||
2212 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2213 return err;
2214 ext4_msg(sb, KERN_CRIT,
2215 "Delayed block allocation failed for "
2216 "inode %lu at logical offset %llu with"
2217 " max blocks %u with error %d",
2218 inode->i_ino,
2219 (unsigned long long)map->m_lblk,
2220 (unsigned)map->m_len, -err);
2221 ext4_msg(sb, KERN_CRIT,
2222 "This should not happen!! Data will "
2223 "be lost\n");
2224 if (err == -ENOSPC)
2225 ext4_print_free_blocks(inode);
2226 invalidate_dirty_pages:
2227 *give_up_on_write = true;
2228 return err;
2229 }
2230 /*
2231 * Update buffer state, submit mapped pages, and get us new
2232 * extent to map
2233 */
2234 err = mpage_map_and_submit_buffers(mpd);
2235 if (err < 0)
2236 return err;
2237 } while (map->m_len);
2238
2239 /* Update on-disk size after IO is submitted */
2240 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2241 if (disksize > EXT4_I(inode)->i_disksize) {
2242 int err2;
2243
2244 ext4_wb_update_i_disksize(inode, disksize);
2245 err2 = ext4_mark_inode_dirty(handle, inode);
2246 if (err2)
2247 ext4_error(inode->i_sb,
2248 "Failed to mark inode %lu dirty",
2249 inode->i_ino);
2250 if (!err)
2251 err = err2;
2252 }
2253 return err;
2254 }
2255
2256 /*
2257 * Calculate the total number of credits to reserve for one writepages
2258 * iteration. This is called from ext4_writepages(). We map an extent of
2259 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2260 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2261 * bpp - 1 blocks in bpp different extents.
2262 */
2263 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2264 {
2265 int bpp = ext4_journal_blocks_per_page(inode);
2266
2267 return ext4_meta_trans_blocks(inode,
2268 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2269 }
2270
2271 /*
2272 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2273 * and underlying extent to map
2274 *
2275 * @mpd - where to look for pages
2276 *
2277 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2278 * IO immediately. When we find a page which isn't mapped we start accumulating
2279 * extent of buffers underlying these pages that needs mapping (formed by
2280 * either delayed or unwritten buffers). We also lock the pages containing
2281 * these buffers. The extent found is returned in @mpd structure (starting at
2282 * mpd->lblk with length mpd->len blocks).
2283 *
2284 * Note that this function can attach bios to one io_end structure which are
2285 * neither logically nor physically contiguous. Although it may seem as an
2286 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2287 * case as we need to track IO to all buffers underlying a page in one io_end.
2288 */
2289 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2290 {
2291 struct address_space *mapping = mpd->inode->i_mapping;
2292 struct pagevec pvec;
2293 unsigned int nr_pages;
2294 pgoff_t index = mpd->first_page;
2295 pgoff_t end = mpd->last_page;
2296 int tag;
2297 int i, err = 0;
2298 int blkbits = mpd->inode->i_blkbits;
2299 ext4_lblk_t lblk;
2300 struct buffer_head *head;
2301
2302 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2303 tag = PAGECACHE_TAG_TOWRITE;
2304 else
2305 tag = PAGECACHE_TAG_DIRTY;
2306
2307 pagevec_init(&pvec, 0);
2308 mpd->map.m_len = 0;
2309 mpd->next_page = index;
2310 while (index <= end) {
2311 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2312 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2313 if (nr_pages == 0)
2314 goto out;
2315
2316 for (i = 0; i < nr_pages; i++) {
2317 struct page *page = pvec.pages[i];
2318
2319 /*
2320 * At this point, the page may be truncated or
2321 * invalidated (changing page->mapping to NULL), or
2322 * even swizzled back from swapper_space to tmpfs file
2323 * mapping. However, page->index will not change
2324 * because we have a reference on the page.
2325 */
2326 if (page->index > end)
2327 goto out;
2328
2329 /* If we can't merge this page, we are done. */
2330 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2331 goto out;
2332
2333 lock_page(page);
2334 /*
2335 * If the page is no longer dirty, or its mapping no
2336 * longer corresponds to inode we are writing (which
2337 * means it has been truncated or invalidated), or the
2338 * page is already under writeback and we are not doing
2339 * a data integrity writeback, skip the page
2340 */
2341 if (!PageDirty(page) ||
2342 (PageWriteback(page) &&
2343 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2344 unlikely(page->mapping != mapping)) {
2345 unlock_page(page);
2346 continue;
2347 }
2348
2349 wait_on_page_writeback(page);
2350 BUG_ON(PageWriteback(page));
2351
2352 if (mpd->map.m_len == 0)
2353 mpd->first_page = page->index;
2354 mpd->next_page = page->index + 1;
2355 /* Add all dirty buffers to mpd */
2356 lblk = ((ext4_lblk_t)page->index) <<
2357 (PAGE_CACHE_SHIFT - blkbits);
2358 head = page_buffers(page);
2359 err = mpage_process_page_bufs(mpd, head, head, lblk);
2360 if (err <= 0)
2361 goto out;
2362 err = 0;
2363
2364 /*
2365 * Accumulated enough dirty pages? This doesn't apply
2366 * to WB_SYNC_ALL mode. For integrity sync we have to
2367 * keep going because someone may be concurrently
2368 * dirtying pages, and we might have synced a lot of
2369 * newly appeared dirty pages, but have not synced all
2370 * of the old dirty pages.
2371 */
2372 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2373 mpd->next_page - mpd->first_page >=
2374 mpd->wbc->nr_to_write)
2375 goto out;
2376 }
2377 pagevec_release(&pvec);
2378 cond_resched();
2379 }
2380 return 0;
2381 out:
2382 pagevec_release(&pvec);
2383 return err;
2384 }
2385
2386 static int __writepage(struct page *page, struct writeback_control *wbc,
2387 void *data)
2388 {
2389 struct address_space *mapping = data;
2390 int ret = ext4_writepage(page, wbc);
2391 mapping_set_error(mapping, ret);
2392 return ret;
2393 }
2394
2395 static int ext4_writepages(struct address_space *mapping,
2396 struct writeback_control *wbc)
2397 {
2398 pgoff_t writeback_index = 0;
2399 long nr_to_write = wbc->nr_to_write;
2400 int range_whole = 0;
2401 int cycled = 1;
2402 handle_t *handle = NULL;
2403 struct mpage_da_data mpd;
2404 struct inode *inode = mapping->host;
2405 int needed_blocks, rsv_blocks = 0, ret = 0;
2406 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2407 bool done;
2408 struct blk_plug plug;
2409 bool give_up_on_write = false;
2410
2411 trace_ext4_writepages(inode, wbc);
2412
2413 /*
2414 * No pages to write? This is mainly a kludge to avoid starting
2415 * a transaction for special inodes like journal inode on last iput()
2416 * because that could violate lock ordering on umount
2417 */
2418 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2419 return 0;
2420
2421 if (ext4_should_journal_data(inode)) {
2422 struct blk_plug plug;
2423 int ret;
2424
2425 blk_start_plug(&plug);
2426 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2427 blk_finish_plug(&plug);
2428 return ret;
2429 }
2430
2431 /*
2432 * If the filesystem has aborted, it is read-only, so return
2433 * right away instead of dumping stack traces later on that
2434 * will obscure the real source of the problem. We test
2435 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2436 * the latter could be true if the filesystem is mounted
2437 * read-only, and in that case, ext4_writepages should
2438 * *never* be called, so if that ever happens, we would want
2439 * the stack trace.
2440 */
2441 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2442 return -EROFS;
2443
2444 if (ext4_should_dioread_nolock(inode)) {
2445 /*
2446 * We may need to convert up to one extent per block in
2447 * the page and we may dirty the inode.
2448 */
2449 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2450 }
2451
2452 /*
2453 * If we have inline data and arrive here, it means that
2454 * we will soon create the block for the 1st page, so
2455 * we'd better clear the inline data here.
2456 */
2457 if (ext4_has_inline_data(inode)) {
2458 /* Just inode will be modified... */
2459 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2460 if (IS_ERR(handle)) {
2461 ret = PTR_ERR(handle);
2462 goto out_writepages;
2463 }
2464 BUG_ON(ext4_test_inode_state(inode,
2465 EXT4_STATE_MAY_INLINE_DATA));
2466 ext4_destroy_inline_data(handle, inode);
2467 ext4_journal_stop(handle);
2468 }
2469
2470 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2471 range_whole = 1;
2472
2473 if (wbc->range_cyclic) {
2474 writeback_index = mapping->writeback_index;
2475 if (writeback_index)
2476 cycled = 0;
2477 mpd.first_page = writeback_index;
2478 mpd.last_page = -1;
2479 } else {
2480 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2481 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2482 }
2483
2484 mpd.inode = inode;
2485 mpd.wbc = wbc;
2486 ext4_io_submit_init(&mpd.io_submit, wbc);
2487 retry:
2488 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2489 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2490 done = false;
2491 blk_start_plug(&plug);
2492 while (!done && mpd.first_page <= mpd.last_page) {
2493 /* For each extent of pages we use new io_end */
2494 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2495 if (!mpd.io_submit.io_end) {
2496 ret = -ENOMEM;
2497 break;
2498 }
2499
2500 /*
2501 * We have two constraints: We find one extent to map and we
2502 * must always write out whole page (makes a difference when
2503 * blocksize < pagesize) so that we don't block on IO when we
2504 * try to write out the rest of the page. Journalled mode is
2505 * not supported by delalloc.
2506 */
2507 BUG_ON(ext4_should_journal_data(inode));
2508 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2509
2510 /* start a new transaction */
2511 handle = ext4_journal_start_with_reserve(inode,
2512 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2513 if (IS_ERR(handle)) {
2514 ret = PTR_ERR(handle);
2515 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2516 "%ld pages, ino %lu; err %d", __func__,
2517 wbc->nr_to_write, inode->i_ino, ret);
2518 /* Release allocated io_end */
2519 ext4_put_io_end(mpd.io_submit.io_end);
2520 break;
2521 }
2522
2523 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2524 ret = mpage_prepare_extent_to_map(&mpd);
2525 if (!ret) {
2526 if (mpd.map.m_len)
2527 ret = mpage_map_and_submit_extent(handle, &mpd,
2528 &give_up_on_write);
2529 else {
2530 /*
2531 * We scanned the whole range (or exhausted
2532 * nr_to_write), submitted what was mapped and
2533 * didn't find anything needing mapping. We are
2534 * done.
2535 */
2536 done = true;
2537 }
2538 }
2539 ext4_journal_stop(handle);
2540 /* Submit prepared bio */
2541 ext4_io_submit(&mpd.io_submit);
2542 /* Unlock pages we didn't use */
2543 mpage_release_unused_pages(&mpd, give_up_on_write);
2544 /* Drop our io_end reference we got from init */
2545 ext4_put_io_end(mpd.io_submit.io_end);
2546
2547 if (ret == -ENOSPC && sbi->s_journal) {
2548 /*
2549 * Commit the transaction which would
2550 * free blocks released in the transaction
2551 * and try again
2552 */
2553 jbd2_journal_force_commit_nested(sbi->s_journal);
2554 ret = 0;
2555 continue;
2556 }
2557 /* Fatal error - ENOMEM, EIO... */
2558 if (ret)
2559 break;
2560 }
2561 blk_finish_plug(&plug);
2562 if (!ret && !cycled) {
2563 cycled = 1;
2564 mpd.last_page = writeback_index - 1;
2565 mpd.first_page = 0;
2566 goto retry;
2567 }
2568
2569 /* Update index */
2570 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2571 /*
2572 * Set the writeback_index so that range_cyclic
2573 * mode will write it back later
2574 */
2575 mapping->writeback_index = mpd.first_page;
2576
2577 out_writepages:
2578 trace_ext4_writepages_result(inode, wbc, ret,
2579 nr_to_write - wbc->nr_to_write);
2580 return ret;
2581 }
2582
2583 static int ext4_nonda_switch(struct super_block *sb)
2584 {
2585 s64 free_clusters, dirty_clusters;
2586 struct ext4_sb_info *sbi = EXT4_SB(sb);
2587
2588 /*
2589 * switch to non delalloc mode if we are running low
2590 * on free block. The free block accounting via percpu
2591 * counters can get slightly wrong with percpu_counter_batch getting
2592 * accumulated on each CPU without updating global counters
2593 * Delalloc need an accurate free block accounting. So switch
2594 * to non delalloc when we are near to error range.
2595 */
2596 free_clusters =
2597 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2598 dirty_clusters =
2599 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2600 /*
2601 * Start pushing delalloc when 1/2 of free blocks are dirty.
2602 */
2603 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2604 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2605
2606 if (2 * free_clusters < 3 * dirty_clusters ||
2607 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2608 /*
2609 * free block count is less than 150% of dirty blocks
2610 * or free blocks is less than watermark
2611 */
2612 return 1;
2613 }
2614 return 0;
2615 }
2616
2617 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2618 loff_t pos, unsigned len, unsigned flags,
2619 struct page **pagep, void **fsdata)
2620 {
2621 int ret, retries = 0;
2622 struct page *page;
2623 pgoff_t index;
2624 struct inode *inode = mapping->host;
2625 handle_t *handle;
2626
2627 index = pos >> PAGE_CACHE_SHIFT;
2628
2629 if (ext4_nonda_switch(inode->i_sb)) {
2630 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2631 return ext4_write_begin(file, mapping, pos,
2632 len, flags, pagep, fsdata);
2633 }
2634 *fsdata = (void *)0;
2635 trace_ext4_da_write_begin(inode, pos, len, flags);
2636
2637 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2638 ret = ext4_da_write_inline_data_begin(mapping, inode,
2639 pos, len, flags,
2640 pagep, fsdata);
2641 if (ret < 0)
2642 return ret;
2643 if (ret == 1)
2644 return 0;
2645 }
2646
2647 /*
2648 * grab_cache_page_write_begin() can take a long time if the
2649 * system is thrashing due to memory pressure, or if the page
2650 * is being written back. So grab it first before we start
2651 * the transaction handle. This also allows us to allocate
2652 * the page (if needed) without using GFP_NOFS.
2653 */
2654 retry_grab:
2655 page = grab_cache_page_write_begin(mapping, index, flags);
2656 if (!page)
2657 return -ENOMEM;
2658 unlock_page(page);
2659
2660 /*
2661 * With delayed allocation, we don't log the i_disksize update
2662 * if there is delayed block allocation. But we still need
2663 * to journalling the i_disksize update if writes to the end
2664 * of file which has an already mapped buffer.
2665 */
2666 retry_journal:
2667 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2668 if (IS_ERR(handle)) {
2669 page_cache_release(page);
2670 return PTR_ERR(handle);
2671 }
2672
2673 lock_page(page);
2674 if (page->mapping != mapping) {
2675 /* The page got truncated from under us */
2676 unlock_page(page);
2677 page_cache_release(page);
2678 ext4_journal_stop(handle);
2679 goto retry_grab;
2680 }
2681 /* In case writeback began while the page was unlocked */
2682 wait_for_stable_page(page);
2683
2684 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2685 if (ret < 0) {
2686 unlock_page(page);
2687 ext4_journal_stop(handle);
2688 /*
2689 * block_write_begin may have instantiated a few blocks
2690 * outside i_size. Trim these off again. Don't need
2691 * i_size_read because we hold i_mutex.
2692 */
2693 if (pos + len > inode->i_size)
2694 ext4_truncate_failed_write(inode);
2695
2696 if (ret == -ENOSPC &&
2697 ext4_should_retry_alloc(inode->i_sb, &retries))
2698 goto retry_journal;
2699
2700 page_cache_release(page);
2701 return ret;
2702 }
2703
2704 *pagep = page;
2705 return ret;
2706 }
2707
2708 /*
2709 * Check if we should update i_disksize
2710 * when write to the end of file but not require block allocation
2711 */
2712 static int ext4_da_should_update_i_disksize(struct page *page,
2713 unsigned long offset)
2714 {
2715 struct buffer_head *bh;
2716 struct inode *inode = page->mapping->host;
2717 unsigned int idx;
2718 int i;
2719
2720 bh = page_buffers(page);
2721 idx = offset >> inode->i_blkbits;
2722
2723 for (i = 0; i < idx; i++)
2724 bh = bh->b_this_page;
2725
2726 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2727 return 0;
2728 return 1;
2729 }
2730
2731 static int ext4_da_write_end(struct file *file,
2732 struct address_space *mapping,
2733 loff_t pos, unsigned len, unsigned copied,
2734 struct page *page, void *fsdata)
2735 {
2736 struct inode *inode = mapping->host;
2737 int ret = 0, ret2;
2738 handle_t *handle = ext4_journal_current_handle();
2739 loff_t new_i_size;
2740 unsigned long start, end;
2741 int write_mode = (int)(unsigned long)fsdata;
2742
2743 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2744 return ext4_write_end(file, mapping, pos,
2745 len, copied, page, fsdata);
2746
2747 trace_ext4_da_write_end(inode, pos, len, copied);
2748 start = pos & (PAGE_CACHE_SIZE - 1);
2749 end = start + copied - 1;
2750
2751 /*
2752 * generic_write_end() will run mark_inode_dirty() if i_size
2753 * changes. So let's piggyback the i_disksize mark_inode_dirty
2754 * into that.
2755 */
2756 new_i_size = pos + copied;
2757 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2758 if (ext4_has_inline_data(inode) ||
2759 ext4_da_should_update_i_disksize(page, end)) {
2760 down_write(&EXT4_I(inode)->i_data_sem);
2761 if (new_i_size > EXT4_I(inode)->i_disksize)
2762 EXT4_I(inode)->i_disksize = new_i_size;
2763 up_write(&EXT4_I(inode)->i_data_sem);
2764 /* We need to mark inode dirty even if
2765 * new_i_size is less that inode->i_size
2766 * bu greater than i_disksize.(hint delalloc)
2767 */
2768 ext4_mark_inode_dirty(handle, inode);
2769 }
2770 }
2771
2772 if (write_mode != CONVERT_INLINE_DATA &&
2773 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2774 ext4_has_inline_data(inode))
2775 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2776 page);
2777 else
2778 ret2 = generic_write_end(file, mapping, pos, len, copied,
2779 page, fsdata);
2780
2781 copied = ret2;
2782 if (ret2 < 0)
2783 ret = ret2;
2784 ret2 = ext4_journal_stop(handle);
2785 if (!ret)
2786 ret = ret2;
2787
2788 return ret ? ret : copied;
2789 }
2790
2791 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2792 unsigned int length)
2793 {
2794 /*
2795 * Drop reserved blocks
2796 */
2797 BUG_ON(!PageLocked(page));
2798 if (!page_has_buffers(page))
2799 goto out;
2800
2801 ext4_da_page_release_reservation(page, offset, length);
2802
2803 out:
2804 ext4_invalidatepage(page, offset, length);
2805
2806 return;
2807 }
2808
2809 /*
2810 * Force all delayed allocation blocks to be allocated for a given inode.
2811 */
2812 int ext4_alloc_da_blocks(struct inode *inode)
2813 {
2814 trace_ext4_alloc_da_blocks(inode);
2815
2816 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2817 !EXT4_I(inode)->i_reserved_meta_blocks)
2818 return 0;
2819
2820 /*
2821 * We do something simple for now. The filemap_flush() will
2822 * also start triggering a write of the data blocks, which is
2823 * not strictly speaking necessary (and for users of
2824 * laptop_mode, not even desirable). However, to do otherwise
2825 * would require replicating code paths in:
2826 *
2827 * ext4_writepages() ->
2828 * write_cache_pages() ---> (via passed in callback function)
2829 * __mpage_da_writepage() -->
2830 * mpage_add_bh_to_extent()
2831 * mpage_da_map_blocks()
2832 *
2833 * The problem is that write_cache_pages(), located in
2834 * mm/page-writeback.c, marks pages clean in preparation for
2835 * doing I/O, which is not desirable if we're not planning on
2836 * doing I/O at all.
2837 *
2838 * We could call write_cache_pages(), and then redirty all of
2839 * the pages by calling redirty_page_for_writepage() but that
2840 * would be ugly in the extreme. So instead we would need to
2841 * replicate parts of the code in the above functions,
2842 * simplifying them because we wouldn't actually intend to
2843 * write out the pages, but rather only collect contiguous
2844 * logical block extents, call the multi-block allocator, and
2845 * then update the buffer heads with the block allocations.
2846 *
2847 * For now, though, we'll cheat by calling filemap_flush(),
2848 * which will map the blocks, and start the I/O, but not
2849 * actually wait for the I/O to complete.
2850 */
2851 return filemap_flush(inode->i_mapping);
2852 }
2853
2854 /*
2855 * bmap() is special. It gets used by applications such as lilo and by
2856 * the swapper to find the on-disk block of a specific piece of data.
2857 *
2858 * Naturally, this is dangerous if the block concerned is still in the
2859 * journal. If somebody makes a swapfile on an ext4 data-journaling
2860 * filesystem and enables swap, then they may get a nasty shock when the
2861 * data getting swapped to that swapfile suddenly gets overwritten by
2862 * the original zero's written out previously to the journal and
2863 * awaiting writeback in the kernel's buffer cache.
2864 *
2865 * So, if we see any bmap calls here on a modified, data-journaled file,
2866 * take extra steps to flush any blocks which might be in the cache.
2867 */
2868 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2869 {
2870 struct inode *inode = mapping->host;
2871 journal_t *journal;
2872 int err;
2873
2874 /*
2875 * We can get here for an inline file via the FIBMAP ioctl
2876 */
2877 if (ext4_has_inline_data(inode))
2878 return 0;
2879
2880 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2881 test_opt(inode->i_sb, DELALLOC)) {
2882 /*
2883 * With delalloc we want to sync the file
2884 * so that we can make sure we allocate
2885 * blocks for file
2886 */
2887 filemap_write_and_wait(mapping);
2888 }
2889
2890 if (EXT4_JOURNAL(inode) &&
2891 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2892 /*
2893 * This is a REALLY heavyweight approach, but the use of
2894 * bmap on dirty files is expected to be extremely rare:
2895 * only if we run lilo or swapon on a freshly made file
2896 * do we expect this to happen.
2897 *
2898 * (bmap requires CAP_SYS_RAWIO so this does not
2899 * represent an unprivileged user DOS attack --- we'd be
2900 * in trouble if mortal users could trigger this path at
2901 * will.)
2902 *
2903 * NB. EXT4_STATE_JDATA is not set on files other than
2904 * regular files. If somebody wants to bmap a directory
2905 * or symlink and gets confused because the buffer
2906 * hasn't yet been flushed to disk, they deserve
2907 * everything they get.
2908 */
2909
2910 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2911 journal = EXT4_JOURNAL(inode);
2912 jbd2_journal_lock_updates(journal);
2913 err = jbd2_journal_flush(journal);
2914 jbd2_journal_unlock_updates(journal);
2915
2916 if (err)
2917 return 0;
2918 }
2919
2920 return generic_block_bmap(mapping, block, ext4_get_block);
2921 }
2922
2923 static int ext4_readpage(struct file *file, struct page *page)
2924 {
2925 int ret = -EAGAIN;
2926 struct inode *inode = page->mapping->host;
2927
2928 trace_ext4_readpage(page);
2929
2930 if (ext4_has_inline_data(inode))
2931 ret = ext4_readpage_inline(inode, page);
2932
2933 if (ret == -EAGAIN)
2934 return mpage_readpage(page, ext4_get_block);
2935
2936 return ret;
2937 }
2938
2939 static int
2940 ext4_readpages(struct file *file, struct address_space *mapping,
2941 struct list_head *pages, unsigned nr_pages)
2942 {
2943 struct inode *inode = mapping->host;
2944
2945 /* If the file has inline data, no need to do readpages. */
2946 if (ext4_has_inline_data(inode))
2947 return 0;
2948
2949 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2950 }
2951
2952 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2953 unsigned int length)
2954 {
2955 trace_ext4_invalidatepage(page, offset, length);
2956
2957 /* No journalling happens on data buffers when this function is used */
2958 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2959
2960 block_invalidatepage(page, offset, length);
2961 }
2962
2963 static int __ext4_journalled_invalidatepage(struct page *page,
2964 unsigned int offset,
2965 unsigned int length)
2966 {
2967 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2968
2969 trace_ext4_journalled_invalidatepage(page, offset, length);
2970
2971 /*
2972 * If it's a full truncate we just forget about the pending dirtying
2973 */
2974 if (offset == 0 && length == PAGE_CACHE_SIZE)
2975 ClearPageChecked(page);
2976
2977 return jbd2_journal_invalidatepage(journal, page, offset, length);
2978 }
2979
2980 /* Wrapper for aops... */
2981 static void ext4_journalled_invalidatepage(struct page *page,
2982 unsigned int offset,
2983 unsigned int length)
2984 {
2985 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2986 }
2987
2988 static int ext4_releasepage(struct page *page, gfp_t wait)
2989 {
2990 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2991
2992 trace_ext4_releasepage(page);
2993
2994 /* Page has dirty journalled data -> cannot release */
2995 if (PageChecked(page))
2996 return 0;
2997 if (journal)
2998 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2999 else
3000 return try_to_free_buffers(page);
3001 }
3002
3003 /*
3004 * ext4_get_block used when preparing for a DIO write or buffer write.
3005 * We allocate an uinitialized extent if blocks haven't been allocated.
3006 * The extent will be converted to initialized after the IO is complete.
3007 */
3008 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3009 struct buffer_head *bh_result, int create)
3010 {
3011 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3012 inode->i_ino, create);
3013 return _ext4_get_block(inode, iblock, bh_result,
3014 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3015 }
3016
3017 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3018 struct buffer_head *bh_result, int create)
3019 {
3020 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3021 inode->i_ino, create);
3022 return _ext4_get_block(inode, iblock, bh_result,
3023 EXT4_GET_BLOCKS_NO_LOCK);
3024 }
3025
3026 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3027 ssize_t size, void *private, int ret,
3028 bool is_async)
3029 {
3030 struct inode *inode = file_inode(iocb->ki_filp);
3031 ext4_io_end_t *io_end = iocb->private;
3032
3033 /* if not async direct IO just return */
3034 if (!io_end) {
3035 inode_dio_done(inode);
3036 if (is_async)
3037 aio_complete(iocb, ret, 0);
3038 return;
3039 }
3040
3041 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3042 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3043 iocb->private, io_end->inode->i_ino, iocb, offset,
3044 size);
3045
3046 iocb->private = NULL;
3047 io_end->offset = offset;
3048 io_end->size = size;
3049 if (is_async) {
3050 io_end->iocb = iocb;
3051 io_end->result = ret;
3052 }
3053 ext4_put_io_end_defer(io_end);
3054 }
3055
3056 /*
3057 * For ext4 extent files, ext4 will do direct-io write to holes,
3058 * preallocated extents, and those write extend the file, no need to
3059 * fall back to buffered IO.
3060 *
3061 * For holes, we fallocate those blocks, mark them as uninitialized
3062 * If those blocks were preallocated, we mark sure they are split, but
3063 * still keep the range to write as uninitialized.
3064 *
3065 * The unwritten extents will be converted to written when DIO is completed.
3066 * For async direct IO, since the IO may still pending when return, we
3067 * set up an end_io call back function, which will do the conversion
3068 * when async direct IO completed.
3069 *
3070 * If the O_DIRECT write will extend the file then add this inode to the
3071 * orphan list. So recovery will truncate it back to the original size
3072 * if the machine crashes during the write.
3073 *
3074 */
3075 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3076 const struct iovec *iov, loff_t offset,
3077 unsigned long nr_segs)
3078 {
3079 struct file *file = iocb->ki_filp;
3080 struct inode *inode = file->f_mapping->host;
3081 ssize_t ret;
3082 size_t count = iov_length(iov, nr_segs);
3083 int overwrite = 0;
3084 get_block_t *get_block_func = NULL;
3085 int dio_flags = 0;
3086 loff_t final_size = offset + count;
3087 ext4_io_end_t *io_end = NULL;
3088
3089 /* Use the old path for reads and writes beyond i_size. */
3090 if (rw != WRITE || final_size > inode->i_size)
3091 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3092
3093 BUG_ON(iocb->private == NULL);
3094
3095 /*
3096 * Make all waiters for direct IO properly wait also for extent
3097 * conversion. This also disallows race between truncate() and
3098 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3099 */
3100 if (rw == WRITE)
3101 atomic_inc(&inode->i_dio_count);
3102
3103 /* If we do a overwrite dio, i_mutex locking can be released */
3104 overwrite = *((int *)iocb->private);
3105
3106 if (overwrite) {
3107 down_read(&EXT4_I(inode)->i_data_sem);
3108 mutex_unlock(&inode->i_mutex);
3109 }
3110
3111 /*
3112 * We could direct write to holes and fallocate.
3113 *
3114 * Allocated blocks to fill the hole are marked as
3115 * uninitialized to prevent parallel buffered read to expose
3116 * the stale data before DIO complete the data IO.
3117 *
3118 * As to previously fallocated extents, ext4 get_block will
3119 * just simply mark the buffer mapped but still keep the
3120 * extents uninitialized.
3121 *
3122 * For non AIO case, we will convert those unwritten extents
3123 * to written after return back from blockdev_direct_IO.
3124 *
3125 * For async DIO, the conversion needs to be deferred when the
3126 * IO is completed. The ext4 end_io callback function will be
3127 * called to take care of the conversion work. Here for async
3128 * case, we allocate an io_end structure to hook to the iocb.
3129 */
3130 iocb->private = NULL;
3131 ext4_inode_aio_set(inode, NULL);
3132 if (!is_sync_kiocb(iocb)) {
3133 io_end = ext4_init_io_end(inode, GFP_NOFS);
3134 if (!io_end) {
3135 ret = -ENOMEM;
3136 goto retake_lock;
3137 }
3138 io_end->flag |= EXT4_IO_END_DIRECT;
3139 /*
3140 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3141 */
3142 iocb->private = ext4_get_io_end(io_end);
3143 /*
3144 * we save the io structure for current async direct
3145 * IO, so that later ext4_map_blocks() could flag the
3146 * io structure whether there is a unwritten extents
3147 * needs to be converted when IO is completed.
3148 */
3149 ext4_inode_aio_set(inode, io_end);
3150 }
3151
3152 if (overwrite) {
3153 get_block_func = ext4_get_block_write_nolock;
3154 } else {
3155 get_block_func = ext4_get_block_write;
3156 dio_flags = DIO_LOCKING;
3157 }
3158 ret = __blockdev_direct_IO(rw, iocb, inode,
3159 inode->i_sb->s_bdev, iov,
3160 offset, nr_segs,
3161 get_block_func,
3162 ext4_end_io_dio,
3163 NULL,
3164 dio_flags);
3165
3166 /*
3167 * Put our reference to io_end. This can free the io_end structure e.g.
3168 * in sync IO case or in case of error. It can even perform extent
3169 * conversion if all bios we submitted finished before we got here.
3170 * Note that in that case iocb->private can be already set to NULL
3171 * here.
3172 */
3173 if (io_end) {
3174 ext4_inode_aio_set(inode, NULL);
3175 ext4_put_io_end(io_end);
3176 /*
3177 * When no IO was submitted ext4_end_io_dio() was not
3178 * called so we have to put iocb's reference.
3179 */
3180 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3181 WARN_ON(iocb->private != io_end);
3182 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3183 WARN_ON(io_end->iocb);
3184 /*
3185 * Generic code already did inode_dio_done() so we
3186 * have to clear EXT4_IO_END_DIRECT to not do it for
3187 * the second time.
3188 */
3189 io_end->flag = 0;
3190 ext4_put_io_end(io_end);
3191 iocb->private = NULL;
3192 }
3193 }
3194 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3195 EXT4_STATE_DIO_UNWRITTEN)) {
3196 int err;
3197 /*
3198 * for non AIO case, since the IO is already
3199 * completed, we could do the conversion right here
3200 */
3201 err = ext4_convert_unwritten_extents(NULL, inode,
3202 offset, ret);
3203 if (err < 0)
3204 ret = err;
3205 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3206 }
3207
3208 retake_lock:
3209 if (rw == WRITE)
3210 inode_dio_done(inode);
3211 /* take i_mutex locking again if we do a ovewrite dio */
3212 if (overwrite) {
3213 up_read(&EXT4_I(inode)->i_data_sem);
3214 mutex_lock(&inode->i_mutex);
3215 }
3216
3217 return ret;
3218 }
3219
3220 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3221 const struct iovec *iov, loff_t offset,
3222 unsigned long nr_segs)
3223 {
3224 struct file *file = iocb->ki_filp;
3225 struct inode *inode = file->f_mapping->host;
3226 ssize_t ret;
3227
3228 /*
3229 * If we are doing data journalling we don't support O_DIRECT
3230 */
3231 if (ext4_should_journal_data(inode))
3232 return 0;
3233
3234 /* Let buffer I/O handle the inline data case. */
3235 if (ext4_has_inline_data(inode))
3236 return 0;
3237
3238 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3240 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3241 else
3242 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3243 trace_ext4_direct_IO_exit(inode, offset,
3244 iov_length(iov, nr_segs), rw, ret);
3245 return ret;
3246 }
3247
3248 /*
3249 * Pages can be marked dirty completely asynchronously from ext4's journalling
3250 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3251 * much here because ->set_page_dirty is called under VFS locks. The page is
3252 * not necessarily locked.
3253 *
3254 * We cannot just dirty the page and leave attached buffers clean, because the
3255 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3256 * or jbddirty because all the journalling code will explode.
3257 *
3258 * So what we do is to mark the page "pending dirty" and next time writepage
3259 * is called, propagate that into the buffers appropriately.
3260 */
3261 static int ext4_journalled_set_page_dirty(struct page *page)
3262 {
3263 SetPageChecked(page);
3264 return __set_page_dirty_nobuffers(page);
3265 }
3266
3267 static const struct address_space_operations ext4_aops = {
3268 .readpage = ext4_readpage,
3269 .readpages = ext4_readpages,
3270 .writepage = ext4_writepage,
3271 .writepages = ext4_writepages,
3272 .write_begin = ext4_write_begin,
3273 .write_end = ext4_write_end,
3274 .bmap = ext4_bmap,
3275 .invalidatepage = ext4_invalidatepage,
3276 .releasepage = ext4_releasepage,
3277 .direct_IO = ext4_direct_IO,
3278 .migratepage = buffer_migrate_page,
3279 .is_partially_uptodate = block_is_partially_uptodate,
3280 .error_remove_page = generic_error_remove_page,
3281 };
3282
3283 static const struct address_space_operations ext4_journalled_aops = {
3284 .readpage = ext4_readpage,
3285 .readpages = ext4_readpages,
3286 .writepage = ext4_writepage,
3287 .writepages = ext4_writepages,
3288 .write_begin = ext4_write_begin,
3289 .write_end = ext4_journalled_write_end,
3290 .set_page_dirty = ext4_journalled_set_page_dirty,
3291 .bmap = ext4_bmap,
3292 .invalidatepage = ext4_journalled_invalidatepage,
3293 .releasepage = ext4_releasepage,
3294 .direct_IO = ext4_direct_IO,
3295 .is_partially_uptodate = block_is_partially_uptodate,
3296 .error_remove_page = generic_error_remove_page,
3297 };
3298
3299 static const struct address_space_operations ext4_da_aops = {
3300 .readpage = ext4_readpage,
3301 .readpages = ext4_readpages,
3302 .writepage = ext4_writepage,
3303 .writepages = ext4_writepages,
3304 .write_begin = ext4_da_write_begin,
3305 .write_end = ext4_da_write_end,
3306 .bmap = ext4_bmap,
3307 .invalidatepage = ext4_da_invalidatepage,
3308 .releasepage = ext4_releasepage,
3309 .direct_IO = ext4_direct_IO,
3310 .migratepage = buffer_migrate_page,
3311 .is_partially_uptodate = block_is_partially_uptodate,
3312 .error_remove_page = generic_error_remove_page,
3313 };
3314
3315 void ext4_set_aops(struct inode *inode)
3316 {
3317 switch (ext4_inode_journal_mode(inode)) {
3318 case EXT4_INODE_ORDERED_DATA_MODE:
3319 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3320 break;
3321 case EXT4_INODE_WRITEBACK_DATA_MODE:
3322 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3323 break;
3324 case EXT4_INODE_JOURNAL_DATA_MODE:
3325 inode->i_mapping->a_ops = &ext4_journalled_aops;
3326 return;
3327 default:
3328 BUG();
3329 }
3330 if (test_opt(inode->i_sb, DELALLOC))
3331 inode->i_mapping->a_ops = &ext4_da_aops;
3332 else
3333 inode->i_mapping->a_ops = &ext4_aops;
3334 }
3335
3336 /*
3337 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3338 * up to the end of the block which corresponds to `from'.
3339 * This required during truncate. We need to physically zero the tail end
3340 * of that block so it doesn't yield old data if the file is later grown.
3341 */
3342 int ext4_block_truncate_page(handle_t *handle,
3343 struct address_space *mapping, loff_t from)
3344 {
3345 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3346 unsigned length;
3347 unsigned blocksize;
3348 struct inode *inode = mapping->host;
3349
3350 blocksize = inode->i_sb->s_blocksize;
3351 length = blocksize - (offset & (blocksize - 1));
3352
3353 return ext4_block_zero_page_range(handle, mapping, from, length);
3354 }
3355
3356 /*
3357 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3358 * starting from file offset 'from'. The range to be zero'd must
3359 * be contained with in one block. If the specified range exceeds
3360 * the end of the block it will be shortened to end of the block
3361 * that cooresponds to 'from'
3362 */
3363 int ext4_block_zero_page_range(handle_t *handle,
3364 struct address_space *mapping, loff_t from, loff_t length)
3365 {
3366 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3367 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3368 unsigned blocksize, max, pos;
3369 ext4_lblk_t iblock;
3370 struct inode *inode = mapping->host;
3371 struct buffer_head *bh;
3372 struct page *page;
3373 int err = 0;
3374
3375 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3376 mapping_gfp_mask(mapping) & ~__GFP_FS);
3377 if (!page)
3378 return -ENOMEM;
3379
3380 blocksize = inode->i_sb->s_blocksize;
3381 max = blocksize - (offset & (blocksize - 1));
3382
3383 /*
3384 * correct length if it does not fall between
3385 * 'from' and the end of the block
3386 */
3387 if (length > max || length < 0)
3388 length = max;
3389
3390 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3391
3392 if (!page_has_buffers(page))
3393 create_empty_buffers(page, blocksize, 0);
3394
3395 /* Find the buffer that contains "offset" */
3396 bh = page_buffers(page);
3397 pos = blocksize;
3398 while (offset >= pos) {
3399 bh = bh->b_this_page;
3400 iblock++;
3401 pos += blocksize;
3402 }
3403 if (buffer_freed(bh)) {
3404 BUFFER_TRACE(bh, "freed: skip");
3405 goto unlock;
3406 }
3407 if (!buffer_mapped(bh)) {
3408 BUFFER_TRACE(bh, "unmapped");
3409 ext4_get_block(inode, iblock, bh, 0);
3410 /* unmapped? It's a hole - nothing to do */
3411 if (!buffer_mapped(bh)) {
3412 BUFFER_TRACE(bh, "still unmapped");
3413 goto unlock;
3414 }
3415 }
3416
3417 /* Ok, it's mapped. Make sure it's up-to-date */
3418 if (PageUptodate(page))
3419 set_buffer_uptodate(bh);
3420
3421 if (!buffer_uptodate(bh)) {
3422 err = -EIO;
3423 ll_rw_block(READ, 1, &bh);
3424 wait_on_buffer(bh);
3425 /* Uhhuh. Read error. Complain and punt. */
3426 if (!buffer_uptodate(bh))
3427 goto unlock;
3428 }
3429 if (ext4_should_journal_data(inode)) {
3430 BUFFER_TRACE(bh, "get write access");
3431 err = ext4_journal_get_write_access(handle, bh);
3432 if (err)
3433 goto unlock;
3434 }
3435 zero_user(page, offset, length);
3436 BUFFER_TRACE(bh, "zeroed end of block");
3437
3438 if (ext4_should_journal_data(inode)) {
3439 err = ext4_handle_dirty_metadata(handle, inode, bh);
3440 } else {
3441 err = 0;
3442 mark_buffer_dirty(bh);
3443 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3444 err = ext4_jbd2_file_inode(handle, inode);
3445 }
3446
3447 unlock:
3448 unlock_page(page);
3449 page_cache_release(page);
3450 return err;
3451 }
3452
3453 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3454 loff_t lstart, loff_t length)
3455 {
3456 struct super_block *sb = inode->i_sb;
3457 struct address_space *mapping = inode->i_mapping;
3458 unsigned partial_start, partial_end;
3459 ext4_fsblk_t start, end;
3460 loff_t byte_end = (lstart + length - 1);
3461 int err = 0;
3462
3463 partial_start = lstart & (sb->s_blocksize - 1);
3464 partial_end = byte_end & (sb->s_blocksize - 1);
3465
3466 start = lstart >> sb->s_blocksize_bits;
3467 end = byte_end >> sb->s_blocksize_bits;
3468
3469 /* Handle partial zero within the single block */
3470 if (start == end &&
3471 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3472 err = ext4_block_zero_page_range(handle, mapping,
3473 lstart, length);
3474 return err;
3475 }
3476 /* Handle partial zero out on the start of the range */
3477 if (partial_start) {
3478 err = ext4_block_zero_page_range(handle, mapping,
3479 lstart, sb->s_blocksize);
3480 if (err)
3481 return err;
3482 }
3483 /* Handle partial zero out on the end of the range */
3484 if (partial_end != sb->s_blocksize - 1)
3485 err = ext4_block_zero_page_range(handle, mapping,
3486 byte_end - partial_end,
3487 partial_end + 1);
3488 return err;
3489 }
3490
3491 int ext4_can_truncate(struct inode *inode)
3492 {
3493 if (S_ISREG(inode->i_mode))
3494 return 1;
3495 if (S_ISDIR(inode->i_mode))
3496 return 1;
3497 if (S_ISLNK(inode->i_mode))
3498 return !ext4_inode_is_fast_symlink(inode);
3499 return 0;
3500 }
3501
3502 /*
3503 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3504 * associated with the given offset and length
3505 *
3506 * @inode: File inode
3507 * @offset: The offset where the hole will begin
3508 * @len: The length of the hole
3509 *
3510 * Returns: 0 on success or negative on failure
3511 */
3512
3513 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3514 {
3515 struct super_block *sb = inode->i_sb;
3516 ext4_lblk_t first_block, stop_block;
3517 struct address_space *mapping = inode->i_mapping;
3518 loff_t first_block_offset, last_block_offset;
3519 handle_t *handle;
3520 unsigned int credits;
3521 int ret = 0;
3522
3523 if (!S_ISREG(inode->i_mode))
3524 return -EOPNOTSUPP;
3525
3526 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3527 /* TODO: Add support for bigalloc file systems */
3528 return -EOPNOTSUPP;
3529 }
3530
3531 trace_ext4_punch_hole(inode, offset, length);
3532
3533 /*
3534 * Write out all dirty pages to avoid race conditions
3535 * Then release them.
3536 */
3537 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3538 ret = filemap_write_and_wait_range(mapping, offset,
3539 offset + length - 1);
3540 if (ret)
3541 return ret;
3542 }
3543
3544 mutex_lock(&inode->i_mutex);
3545 /* It's not possible punch hole on append only file */
3546 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3547 ret = -EPERM;
3548 goto out_mutex;
3549 }
3550 if (IS_SWAPFILE(inode)) {
3551 ret = -ETXTBSY;
3552 goto out_mutex;
3553 }
3554
3555 /* No need to punch hole beyond i_size */
3556 if (offset >= inode->i_size)
3557 goto out_mutex;
3558
3559 /*
3560 * If the hole extends beyond i_size, set the hole
3561 * to end after the page that contains i_size
3562 */
3563 if (offset + length > inode->i_size) {
3564 length = inode->i_size +
3565 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3566 offset;
3567 }
3568
3569 if (offset & (sb->s_blocksize - 1) ||
3570 (offset + length) & (sb->s_blocksize - 1)) {
3571 /*
3572 * Attach jinode to inode for jbd2 if we do any zeroing of
3573 * partial block
3574 */
3575 ret = ext4_inode_attach_jinode(inode);
3576 if (ret < 0)
3577 goto out_mutex;
3578
3579 }
3580
3581 first_block_offset = round_up(offset, sb->s_blocksize);
3582 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3583
3584 /* Now release the pages and zero block aligned part of pages*/
3585 if (last_block_offset > first_block_offset)
3586 truncate_pagecache_range(inode, first_block_offset,
3587 last_block_offset);
3588
3589 /* Wait all existing dio workers, newcomers will block on i_mutex */
3590 ext4_inode_block_unlocked_dio(inode);
3591 inode_dio_wait(inode);
3592
3593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3594 credits = ext4_writepage_trans_blocks(inode);
3595 else
3596 credits = ext4_blocks_for_truncate(inode);
3597 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3598 if (IS_ERR(handle)) {
3599 ret = PTR_ERR(handle);
3600 ext4_std_error(sb, ret);
3601 goto out_dio;
3602 }
3603
3604 ret = ext4_zero_partial_blocks(handle, inode, offset,
3605 length);
3606 if (ret)
3607 goto out_stop;
3608
3609 first_block = (offset + sb->s_blocksize - 1) >>
3610 EXT4_BLOCK_SIZE_BITS(sb);
3611 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3612
3613 /* If there are no blocks to remove, return now */
3614 if (first_block >= stop_block)
3615 goto out_stop;
3616
3617 down_write(&EXT4_I(inode)->i_data_sem);
3618 ext4_discard_preallocations(inode);
3619
3620 ret = ext4_es_remove_extent(inode, first_block,
3621 stop_block - first_block);
3622 if (ret) {
3623 up_write(&EXT4_I(inode)->i_data_sem);
3624 goto out_stop;
3625 }
3626
3627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3628 ret = ext4_ext_remove_space(inode, first_block,
3629 stop_block - 1);
3630 else
3631 ret = ext4_free_hole_blocks(handle, inode, first_block,
3632 stop_block);
3633
3634 ext4_discard_preallocations(inode);
3635 up_write(&EXT4_I(inode)->i_data_sem);
3636 if (IS_SYNC(inode))
3637 ext4_handle_sync(handle);
3638 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3639 ext4_mark_inode_dirty(handle, inode);
3640 out_stop:
3641 ext4_journal_stop(handle);
3642 out_dio:
3643 ext4_inode_resume_unlocked_dio(inode);
3644 out_mutex:
3645 mutex_unlock(&inode->i_mutex);
3646 return ret;
3647 }
3648
3649 int ext4_inode_attach_jinode(struct inode *inode)
3650 {
3651 struct ext4_inode_info *ei = EXT4_I(inode);
3652 struct jbd2_inode *jinode;
3653
3654 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3655 return 0;
3656
3657 jinode = jbd2_alloc_inode(GFP_KERNEL);
3658 spin_lock(&inode->i_lock);
3659 if (!ei->jinode) {
3660 if (!jinode) {
3661 spin_unlock(&inode->i_lock);
3662 return -ENOMEM;
3663 }
3664 ei->jinode = jinode;
3665 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3666 jinode = NULL;
3667 }
3668 spin_unlock(&inode->i_lock);
3669 if (unlikely(jinode != NULL))
3670 jbd2_free_inode(jinode);
3671 return 0;
3672 }
3673
3674 /*
3675 * ext4_truncate()
3676 *
3677 * We block out ext4_get_block() block instantiations across the entire
3678 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3679 * simultaneously on behalf of the same inode.
3680 *
3681 * As we work through the truncate and commit bits of it to the journal there
3682 * is one core, guiding principle: the file's tree must always be consistent on
3683 * disk. We must be able to restart the truncate after a crash.
3684 *
3685 * The file's tree may be transiently inconsistent in memory (although it
3686 * probably isn't), but whenever we close off and commit a journal transaction,
3687 * the contents of (the filesystem + the journal) must be consistent and
3688 * restartable. It's pretty simple, really: bottom up, right to left (although
3689 * left-to-right works OK too).
3690 *
3691 * Note that at recovery time, journal replay occurs *before* the restart of
3692 * truncate against the orphan inode list.
3693 *
3694 * The committed inode has the new, desired i_size (which is the same as
3695 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3696 * that this inode's truncate did not complete and it will again call
3697 * ext4_truncate() to have another go. So there will be instantiated blocks
3698 * to the right of the truncation point in a crashed ext4 filesystem. But
3699 * that's fine - as long as they are linked from the inode, the post-crash
3700 * ext4_truncate() run will find them and release them.
3701 */
3702 void ext4_truncate(struct inode *inode)
3703 {
3704 struct ext4_inode_info *ei = EXT4_I(inode);
3705 unsigned int credits;
3706 handle_t *handle;
3707 struct address_space *mapping = inode->i_mapping;
3708
3709 /*
3710 * There is a possibility that we're either freeing the inode
3711 * or it completely new indode. In those cases we might not
3712 * have i_mutex locked because it's not necessary.
3713 */
3714 if (!(inode->i_state & (I_NEW|I_FREEING)))
3715 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3716 trace_ext4_truncate_enter(inode);
3717
3718 if (!ext4_can_truncate(inode))
3719 return;
3720
3721 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3722
3723 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3724 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3725
3726 if (ext4_has_inline_data(inode)) {
3727 int has_inline = 1;
3728
3729 ext4_inline_data_truncate(inode, &has_inline);
3730 if (has_inline)
3731 return;
3732 }
3733
3734 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3735 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3736 if (ext4_inode_attach_jinode(inode) < 0)
3737 return;
3738 }
3739
3740 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3741 credits = ext4_writepage_trans_blocks(inode);
3742 else
3743 credits = ext4_blocks_for_truncate(inode);
3744
3745 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3746 if (IS_ERR(handle)) {
3747 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3748 return;
3749 }
3750
3751 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3752 ext4_block_truncate_page(handle, mapping, inode->i_size);
3753
3754 /*
3755 * We add the inode to the orphan list, so that if this
3756 * truncate spans multiple transactions, and we crash, we will
3757 * resume the truncate when the filesystem recovers. It also
3758 * marks the inode dirty, to catch the new size.
3759 *
3760 * Implication: the file must always be in a sane, consistent
3761 * truncatable state while each transaction commits.
3762 */
3763 if (ext4_orphan_add(handle, inode))
3764 goto out_stop;
3765
3766 down_write(&EXT4_I(inode)->i_data_sem);
3767
3768 ext4_discard_preallocations(inode);
3769
3770 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3771 ext4_ext_truncate(handle, inode);
3772 else
3773 ext4_ind_truncate(handle, inode);
3774
3775 up_write(&ei->i_data_sem);
3776
3777 if (IS_SYNC(inode))
3778 ext4_handle_sync(handle);
3779
3780 out_stop:
3781 /*
3782 * If this was a simple ftruncate() and the file will remain alive,
3783 * then we need to clear up the orphan record which we created above.
3784 * However, if this was a real unlink then we were called by
3785 * ext4_delete_inode(), and we allow that function to clean up the
3786 * orphan info for us.
3787 */
3788 if (inode->i_nlink)
3789 ext4_orphan_del(handle, inode);
3790
3791 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3792 ext4_mark_inode_dirty(handle, inode);
3793 ext4_journal_stop(handle);
3794
3795 trace_ext4_truncate_exit(inode);
3796 }
3797
3798 /*
3799 * ext4_get_inode_loc returns with an extra refcount against the inode's
3800 * underlying buffer_head on success. If 'in_mem' is true, we have all
3801 * data in memory that is needed to recreate the on-disk version of this
3802 * inode.
3803 */
3804 static int __ext4_get_inode_loc(struct inode *inode,
3805 struct ext4_iloc *iloc, int in_mem)
3806 {
3807 struct ext4_group_desc *gdp;
3808 struct buffer_head *bh;
3809 struct super_block *sb = inode->i_sb;
3810 ext4_fsblk_t block;
3811 int inodes_per_block, inode_offset;
3812
3813 iloc->bh = NULL;
3814 if (!ext4_valid_inum(sb, inode->i_ino))
3815 return -EIO;
3816
3817 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3818 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3819 if (!gdp)
3820 return -EIO;
3821
3822 /*
3823 * Figure out the offset within the block group inode table
3824 */
3825 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3826 inode_offset = ((inode->i_ino - 1) %
3827 EXT4_INODES_PER_GROUP(sb));
3828 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3829 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3830
3831 bh = sb_getblk(sb, block);
3832 if (unlikely(!bh))
3833 return -ENOMEM;
3834 if (!buffer_uptodate(bh)) {
3835 lock_buffer(bh);
3836
3837 /*
3838 * If the buffer has the write error flag, we have failed
3839 * to write out another inode in the same block. In this
3840 * case, we don't have to read the block because we may
3841 * read the old inode data successfully.
3842 */
3843 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3844 set_buffer_uptodate(bh);
3845
3846 if (buffer_uptodate(bh)) {
3847 /* someone brought it uptodate while we waited */
3848 unlock_buffer(bh);
3849 goto has_buffer;
3850 }
3851
3852 /*
3853 * If we have all information of the inode in memory and this
3854 * is the only valid inode in the block, we need not read the
3855 * block.
3856 */
3857 if (in_mem) {
3858 struct buffer_head *bitmap_bh;
3859 int i, start;
3860
3861 start = inode_offset & ~(inodes_per_block - 1);
3862
3863 /* Is the inode bitmap in cache? */
3864 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3865 if (unlikely(!bitmap_bh))
3866 goto make_io;
3867
3868 /*
3869 * If the inode bitmap isn't in cache then the
3870 * optimisation may end up performing two reads instead
3871 * of one, so skip it.
3872 */
3873 if (!buffer_uptodate(bitmap_bh)) {
3874 brelse(bitmap_bh);
3875 goto make_io;
3876 }
3877 for (i = start; i < start + inodes_per_block; i++) {
3878 if (i == inode_offset)
3879 continue;
3880 if (ext4_test_bit(i, bitmap_bh->b_data))
3881 break;
3882 }
3883 brelse(bitmap_bh);
3884 if (i == start + inodes_per_block) {
3885 /* all other inodes are free, so skip I/O */
3886 memset(bh->b_data, 0, bh->b_size);
3887 set_buffer_uptodate(bh);
3888 unlock_buffer(bh);
3889 goto has_buffer;
3890 }
3891 }
3892
3893 make_io:
3894 /*
3895 * If we need to do any I/O, try to pre-readahead extra
3896 * blocks from the inode table.
3897 */
3898 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3899 ext4_fsblk_t b, end, table;
3900 unsigned num;
3901 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3902
3903 table = ext4_inode_table(sb, gdp);
3904 /* s_inode_readahead_blks is always a power of 2 */
3905 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3906 if (table > b)
3907 b = table;
3908 end = b + ra_blks;
3909 num = EXT4_INODES_PER_GROUP(sb);
3910 if (ext4_has_group_desc_csum(sb))
3911 num -= ext4_itable_unused_count(sb, gdp);
3912 table += num / inodes_per_block;
3913 if (end > table)
3914 end = table;
3915 while (b <= end)
3916 sb_breadahead(sb, b++);
3917 }
3918
3919 /*
3920 * There are other valid inodes in the buffer, this inode
3921 * has in-inode xattrs, or we don't have this inode in memory.
3922 * Read the block from disk.
3923 */
3924 trace_ext4_load_inode(inode);
3925 get_bh(bh);
3926 bh->b_end_io = end_buffer_read_sync;
3927 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3928 wait_on_buffer(bh);
3929 if (!buffer_uptodate(bh)) {
3930 EXT4_ERROR_INODE_BLOCK(inode, block,
3931 "unable to read itable block");
3932 brelse(bh);
3933 return -EIO;
3934 }
3935 }
3936 has_buffer:
3937 iloc->bh = bh;
3938 return 0;
3939 }
3940
3941 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3942 {
3943 /* We have all inode data except xattrs in memory here. */
3944 return __ext4_get_inode_loc(inode, iloc,
3945 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3946 }
3947
3948 void ext4_set_inode_flags(struct inode *inode)
3949 {
3950 unsigned int flags = EXT4_I(inode)->i_flags;
3951
3952 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3953 if (flags & EXT4_SYNC_FL)
3954 inode->i_flags |= S_SYNC;
3955 if (flags & EXT4_APPEND_FL)
3956 inode->i_flags |= S_APPEND;
3957 if (flags & EXT4_IMMUTABLE_FL)
3958 inode->i_flags |= S_IMMUTABLE;
3959 if (flags & EXT4_NOATIME_FL)
3960 inode->i_flags |= S_NOATIME;
3961 if (flags & EXT4_DIRSYNC_FL)
3962 inode->i_flags |= S_DIRSYNC;
3963 }
3964
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3967 {
3968 unsigned int vfs_fl;
3969 unsigned long old_fl, new_fl;
3970
3971 do {
3972 vfs_fl = ei->vfs_inode.i_flags;
3973 old_fl = ei->i_flags;
3974 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3975 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3976 EXT4_DIRSYNC_FL);
3977 if (vfs_fl & S_SYNC)
3978 new_fl |= EXT4_SYNC_FL;
3979 if (vfs_fl & S_APPEND)
3980 new_fl |= EXT4_APPEND_FL;
3981 if (vfs_fl & S_IMMUTABLE)
3982 new_fl |= EXT4_IMMUTABLE_FL;
3983 if (vfs_fl & S_NOATIME)
3984 new_fl |= EXT4_NOATIME_FL;
3985 if (vfs_fl & S_DIRSYNC)
3986 new_fl |= EXT4_DIRSYNC_FL;
3987 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3988 }
3989
3990 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3991 struct ext4_inode_info *ei)
3992 {
3993 blkcnt_t i_blocks ;
3994 struct inode *inode = &(ei->vfs_inode);
3995 struct super_block *sb = inode->i_sb;
3996
3997 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3998 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3999 /* we are using combined 48 bit field */
4000 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4001 le32_to_cpu(raw_inode->i_blocks_lo);
4002 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4003 /* i_blocks represent file system block size */
4004 return i_blocks << (inode->i_blkbits - 9);
4005 } else {
4006 return i_blocks;
4007 }
4008 } else {
4009 return le32_to_cpu(raw_inode->i_blocks_lo);
4010 }
4011 }
4012
4013 static inline void ext4_iget_extra_inode(struct inode *inode,
4014 struct ext4_inode *raw_inode,
4015 struct ext4_inode_info *ei)
4016 {
4017 __le32 *magic = (void *)raw_inode +
4018 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4019 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4020 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4021 ext4_find_inline_data_nolock(inode);
4022 } else
4023 EXT4_I(inode)->i_inline_off = 0;
4024 }
4025
4026 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4027 {
4028 struct ext4_iloc iloc;
4029 struct ext4_inode *raw_inode;
4030 struct ext4_inode_info *ei;
4031 struct inode *inode;
4032 journal_t *journal = EXT4_SB(sb)->s_journal;
4033 long ret;
4034 int block;
4035 uid_t i_uid;
4036 gid_t i_gid;
4037
4038 inode = iget_locked(sb, ino);
4039 if (!inode)
4040 return ERR_PTR(-ENOMEM);
4041 if (!(inode->i_state & I_NEW))
4042 return inode;
4043
4044 ei = EXT4_I(inode);
4045 iloc.bh = NULL;
4046
4047 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4048 if (ret < 0)
4049 goto bad_inode;
4050 raw_inode = ext4_raw_inode(&iloc);
4051
4052 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4053 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4054 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4055 EXT4_INODE_SIZE(inode->i_sb)) {
4056 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4057 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4058 EXT4_INODE_SIZE(inode->i_sb));
4059 ret = -EIO;
4060 goto bad_inode;
4061 }
4062 } else
4063 ei->i_extra_isize = 0;
4064
4065 /* Precompute checksum seed for inode metadata */
4066 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4067 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4068 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4069 __u32 csum;
4070 __le32 inum = cpu_to_le32(inode->i_ino);
4071 __le32 gen = raw_inode->i_generation;
4072 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4073 sizeof(inum));
4074 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4075 sizeof(gen));
4076 }
4077
4078 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4079 EXT4_ERROR_INODE(inode, "checksum invalid");
4080 ret = -EIO;
4081 goto bad_inode;
4082 }
4083
4084 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4085 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4086 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4087 if (!(test_opt(inode->i_sb, NO_UID32))) {
4088 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4089 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4090 }
4091 i_uid_write(inode, i_uid);
4092 i_gid_write(inode, i_gid);
4093 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4094
4095 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4096 ei->i_inline_off = 0;
4097 ei->i_dir_start_lookup = 0;
4098 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4099 /* We now have enough fields to check if the inode was active or not.
4100 * This is needed because nfsd might try to access dead inodes
4101 * the test is that same one that e2fsck uses
4102 * NeilBrown 1999oct15
4103 */
4104 if (inode->i_nlink == 0) {
4105 if ((inode->i_mode == 0 ||
4106 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4107 ino != EXT4_BOOT_LOADER_INO) {
4108 /* this inode is deleted */
4109 ret = -ESTALE;
4110 goto bad_inode;
4111 }
4112 /* The only unlinked inodes we let through here have
4113 * valid i_mode and are being read by the orphan
4114 * recovery code: that's fine, we're about to complete
4115 * the process of deleting those.
4116 * OR it is the EXT4_BOOT_LOADER_INO which is
4117 * not initialized on a new filesystem. */
4118 }
4119 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4120 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4121 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4122 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4123 ei->i_file_acl |=
4124 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4125 inode->i_size = ext4_isize(raw_inode);
4126 ei->i_disksize = inode->i_size;
4127 #ifdef CONFIG_QUOTA
4128 ei->i_reserved_quota = 0;
4129 #endif
4130 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4131 ei->i_block_group = iloc.block_group;
4132 ei->i_last_alloc_group = ~0;
4133 /*
4134 * NOTE! The in-memory inode i_data array is in little-endian order
4135 * even on big-endian machines: we do NOT byteswap the block numbers!
4136 */
4137 for (block = 0; block < EXT4_N_BLOCKS; block++)
4138 ei->i_data[block] = raw_inode->i_block[block];
4139 INIT_LIST_HEAD(&ei->i_orphan);
4140
4141 /*
4142 * Set transaction id's of transactions that have to be committed
4143 * to finish f[data]sync. We set them to currently running transaction
4144 * as we cannot be sure that the inode or some of its metadata isn't
4145 * part of the transaction - the inode could have been reclaimed and
4146 * now it is reread from disk.
4147 */
4148 if (journal) {
4149 transaction_t *transaction;
4150 tid_t tid;
4151
4152 read_lock(&journal->j_state_lock);
4153 if (journal->j_running_transaction)
4154 transaction = journal->j_running_transaction;
4155 else
4156 transaction = journal->j_committing_transaction;
4157 if (transaction)
4158 tid = transaction->t_tid;
4159 else
4160 tid = journal->j_commit_sequence;
4161 read_unlock(&journal->j_state_lock);
4162 ei->i_sync_tid = tid;
4163 ei->i_datasync_tid = tid;
4164 }
4165
4166 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4167 if (ei->i_extra_isize == 0) {
4168 /* The extra space is currently unused. Use it. */
4169 ei->i_extra_isize = sizeof(struct ext4_inode) -
4170 EXT4_GOOD_OLD_INODE_SIZE;
4171 } else {
4172 ext4_iget_extra_inode(inode, raw_inode, ei);
4173 }
4174 }
4175
4176 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4177 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4178 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4179 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4180
4181 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4182 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4183 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4184 inode->i_version |=
4185 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4186 }
4187
4188 ret = 0;
4189 if (ei->i_file_acl &&
4190 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4191 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4192 ei->i_file_acl);
4193 ret = -EIO;
4194 goto bad_inode;
4195 } else if (!ext4_has_inline_data(inode)) {
4196 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4197 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4198 (S_ISLNK(inode->i_mode) &&
4199 !ext4_inode_is_fast_symlink(inode))))
4200 /* Validate extent which is part of inode */
4201 ret = ext4_ext_check_inode(inode);
4202 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4203 (S_ISLNK(inode->i_mode) &&
4204 !ext4_inode_is_fast_symlink(inode))) {
4205 /* Validate block references which are part of inode */
4206 ret = ext4_ind_check_inode(inode);
4207 }
4208 }
4209 if (ret)
4210 goto bad_inode;
4211
4212 if (S_ISREG(inode->i_mode)) {
4213 inode->i_op = &ext4_file_inode_operations;
4214 inode->i_fop = &ext4_file_operations;
4215 ext4_set_aops(inode);
4216 } else if (S_ISDIR(inode->i_mode)) {
4217 inode->i_op = &ext4_dir_inode_operations;
4218 inode->i_fop = &ext4_dir_operations;
4219 } else if (S_ISLNK(inode->i_mode)) {
4220 if (ext4_inode_is_fast_symlink(inode)) {
4221 inode->i_op = &ext4_fast_symlink_inode_operations;
4222 nd_terminate_link(ei->i_data, inode->i_size,
4223 sizeof(ei->i_data) - 1);
4224 } else {
4225 inode->i_op = &ext4_symlink_inode_operations;
4226 ext4_set_aops(inode);
4227 }
4228 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4229 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4230 inode->i_op = &ext4_special_inode_operations;
4231 if (raw_inode->i_block[0])
4232 init_special_inode(inode, inode->i_mode,
4233 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4234 else
4235 init_special_inode(inode, inode->i_mode,
4236 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4237 } else if (ino == EXT4_BOOT_LOADER_INO) {
4238 make_bad_inode(inode);
4239 } else {
4240 ret = -EIO;
4241 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4242 goto bad_inode;
4243 }
4244 brelse(iloc.bh);
4245 ext4_set_inode_flags(inode);
4246 unlock_new_inode(inode);
4247 return inode;
4248
4249 bad_inode:
4250 brelse(iloc.bh);
4251 iget_failed(inode);
4252 return ERR_PTR(ret);
4253 }
4254
4255 static int ext4_inode_blocks_set(handle_t *handle,
4256 struct ext4_inode *raw_inode,
4257 struct ext4_inode_info *ei)
4258 {
4259 struct inode *inode = &(ei->vfs_inode);
4260 u64 i_blocks = inode->i_blocks;
4261 struct super_block *sb = inode->i_sb;
4262
4263 if (i_blocks <= ~0U) {
4264 /*
4265 * i_blocks can be represented in a 32 bit variable
4266 * as multiple of 512 bytes
4267 */
4268 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4269 raw_inode->i_blocks_high = 0;
4270 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4271 return 0;
4272 }
4273 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4274 return -EFBIG;
4275
4276 if (i_blocks <= 0xffffffffffffULL) {
4277 /*
4278 * i_blocks can be represented in a 48 bit variable
4279 * as multiple of 512 bytes
4280 */
4281 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4282 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4283 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4284 } else {
4285 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4286 /* i_block is stored in file system block size */
4287 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4288 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4289 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4290 }
4291 return 0;
4292 }
4293
4294 /*
4295 * Post the struct inode info into an on-disk inode location in the
4296 * buffer-cache. This gobbles the caller's reference to the
4297 * buffer_head in the inode location struct.
4298 *
4299 * The caller must have write access to iloc->bh.
4300 */
4301 static int ext4_do_update_inode(handle_t *handle,
4302 struct inode *inode,
4303 struct ext4_iloc *iloc)
4304 {
4305 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4306 struct ext4_inode_info *ei = EXT4_I(inode);
4307 struct buffer_head *bh = iloc->bh;
4308 int err = 0, rc, block;
4309 int need_datasync = 0;
4310 uid_t i_uid;
4311 gid_t i_gid;
4312
4313 /* For fields not not tracking in the in-memory inode,
4314 * initialise them to zero for new inodes. */
4315 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4316 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4317
4318 ext4_get_inode_flags(ei);
4319 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4320 i_uid = i_uid_read(inode);
4321 i_gid = i_gid_read(inode);
4322 if (!(test_opt(inode->i_sb, NO_UID32))) {
4323 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4324 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4325 /*
4326 * Fix up interoperability with old kernels. Otherwise, old inodes get
4327 * re-used with the upper 16 bits of the uid/gid intact
4328 */
4329 if (!ei->i_dtime) {
4330 raw_inode->i_uid_high =
4331 cpu_to_le16(high_16_bits(i_uid));
4332 raw_inode->i_gid_high =
4333 cpu_to_le16(high_16_bits(i_gid));
4334 } else {
4335 raw_inode->i_uid_high = 0;
4336 raw_inode->i_gid_high = 0;
4337 }
4338 } else {
4339 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4340 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4341 raw_inode->i_uid_high = 0;
4342 raw_inode->i_gid_high = 0;
4343 }
4344 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4345
4346 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4347 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4348 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4349 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4350
4351 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4352 goto out_brelse;
4353 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4354 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4355 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4356 cpu_to_le32(EXT4_OS_HURD))
4357 raw_inode->i_file_acl_high =
4358 cpu_to_le16(ei->i_file_acl >> 32);
4359 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4360 if (ei->i_disksize != ext4_isize(raw_inode)) {
4361 ext4_isize_set(raw_inode, ei->i_disksize);
4362 need_datasync = 1;
4363 }
4364 if (ei->i_disksize > 0x7fffffffULL) {
4365 struct super_block *sb = inode->i_sb;
4366 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4367 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4368 EXT4_SB(sb)->s_es->s_rev_level ==
4369 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4370 /* If this is the first large file
4371 * created, add a flag to the superblock.
4372 */
4373 err = ext4_journal_get_write_access(handle,
4374 EXT4_SB(sb)->s_sbh);
4375 if (err)
4376 goto out_brelse;
4377 ext4_update_dynamic_rev(sb);
4378 EXT4_SET_RO_COMPAT_FEATURE(sb,
4379 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4380 ext4_handle_sync(handle);
4381 err = ext4_handle_dirty_super(handle, sb);
4382 }
4383 }
4384 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4385 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4386 if (old_valid_dev(inode->i_rdev)) {
4387 raw_inode->i_block[0] =
4388 cpu_to_le32(old_encode_dev(inode->i_rdev));
4389 raw_inode->i_block[1] = 0;
4390 } else {
4391 raw_inode->i_block[0] = 0;
4392 raw_inode->i_block[1] =
4393 cpu_to_le32(new_encode_dev(inode->i_rdev));
4394 raw_inode->i_block[2] = 0;
4395 }
4396 } else if (!ext4_has_inline_data(inode)) {
4397 for (block = 0; block < EXT4_N_BLOCKS; block++)
4398 raw_inode->i_block[block] = ei->i_data[block];
4399 }
4400
4401 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4402 if (ei->i_extra_isize) {
4403 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4404 raw_inode->i_version_hi =
4405 cpu_to_le32(inode->i_version >> 32);
4406 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4407 }
4408
4409 ext4_inode_csum_set(inode, raw_inode, ei);
4410
4411 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4412 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4413 if (!err)
4414 err = rc;
4415 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4416
4417 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4418 out_brelse:
4419 brelse(bh);
4420 ext4_std_error(inode->i_sb, err);
4421 return err;
4422 }
4423
4424 /*
4425 * ext4_write_inode()
4426 *
4427 * We are called from a few places:
4428 *
4429 * - Within generic_file_write() for O_SYNC files.
4430 * Here, there will be no transaction running. We wait for any running
4431 * transaction to commit.
4432 *
4433 * - Within sys_sync(), kupdate and such.
4434 * We wait on commit, if tol to.
4435 *
4436 * - Within prune_icache() (PF_MEMALLOC == true)
4437 * Here we simply return. We can't afford to block kswapd on the
4438 * journal commit.
4439 *
4440 * In all cases it is actually safe for us to return without doing anything,
4441 * because the inode has been copied into a raw inode buffer in
4442 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4443 * knfsd.
4444 *
4445 * Note that we are absolutely dependent upon all inode dirtiers doing the
4446 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4447 * which we are interested.
4448 *
4449 * It would be a bug for them to not do this. The code:
4450 *
4451 * mark_inode_dirty(inode)
4452 * stuff();
4453 * inode->i_size = expr;
4454 *
4455 * is in error because a kswapd-driven write_inode() could occur while
4456 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4457 * will no longer be on the superblock's dirty inode list.
4458 */
4459 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4460 {
4461 int err;
4462
4463 if (current->flags & PF_MEMALLOC)
4464 return 0;
4465
4466 if (EXT4_SB(inode->i_sb)->s_journal) {
4467 if (ext4_journal_current_handle()) {
4468 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4469 dump_stack();
4470 return -EIO;
4471 }
4472
4473 if (wbc->sync_mode != WB_SYNC_ALL)
4474 return 0;
4475
4476 err = ext4_force_commit(inode->i_sb);
4477 } else {
4478 struct ext4_iloc iloc;
4479
4480 err = __ext4_get_inode_loc(inode, &iloc, 0);
4481 if (err)
4482 return err;
4483 if (wbc->sync_mode == WB_SYNC_ALL)
4484 sync_dirty_buffer(iloc.bh);
4485 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4486 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4487 "IO error syncing inode");
4488 err = -EIO;
4489 }
4490 brelse(iloc.bh);
4491 }
4492 return err;
4493 }
4494
4495 /*
4496 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4497 * buffers that are attached to a page stradding i_size and are undergoing
4498 * commit. In that case we have to wait for commit to finish and try again.
4499 */
4500 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4501 {
4502 struct page *page;
4503 unsigned offset;
4504 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4505 tid_t commit_tid = 0;
4506 int ret;
4507
4508 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4509 /*
4510 * All buffers in the last page remain valid? Then there's nothing to
4511 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4512 * blocksize case
4513 */
4514 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4515 return;
4516 while (1) {
4517 page = find_lock_page(inode->i_mapping,
4518 inode->i_size >> PAGE_CACHE_SHIFT);
4519 if (!page)
4520 return;
4521 ret = __ext4_journalled_invalidatepage(page, offset,
4522 PAGE_CACHE_SIZE - offset);
4523 unlock_page(page);
4524 page_cache_release(page);
4525 if (ret != -EBUSY)
4526 return;
4527 commit_tid = 0;
4528 read_lock(&journal->j_state_lock);
4529 if (journal->j_committing_transaction)
4530 commit_tid = journal->j_committing_transaction->t_tid;
4531 read_unlock(&journal->j_state_lock);
4532 if (commit_tid)
4533 jbd2_log_wait_commit(journal, commit_tid);
4534 }
4535 }
4536
4537 /*
4538 * ext4_setattr()
4539 *
4540 * Called from notify_change.
4541 *
4542 * We want to trap VFS attempts to truncate the file as soon as
4543 * possible. In particular, we want to make sure that when the VFS
4544 * shrinks i_size, we put the inode on the orphan list and modify
4545 * i_disksize immediately, so that during the subsequent flushing of
4546 * dirty pages and freeing of disk blocks, we can guarantee that any
4547 * commit will leave the blocks being flushed in an unused state on
4548 * disk. (On recovery, the inode will get truncated and the blocks will
4549 * be freed, so we have a strong guarantee that no future commit will
4550 * leave these blocks visible to the user.)
4551 *
4552 * Another thing we have to assure is that if we are in ordered mode
4553 * and inode is still attached to the committing transaction, we must
4554 * we start writeout of all the dirty pages which are being truncated.
4555 * This way we are sure that all the data written in the previous
4556 * transaction are already on disk (truncate waits for pages under
4557 * writeback).
4558 *
4559 * Called with inode->i_mutex down.
4560 */
4561 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4562 {
4563 struct inode *inode = dentry->d_inode;
4564 int error, rc = 0;
4565 int orphan = 0;
4566 const unsigned int ia_valid = attr->ia_valid;
4567
4568 error = inode_change_ok(inode, attr);
4569 if (error)
4570 return error;
4571
4572 if (is_quota_modification(inode, attr))
4573 dquot_initialize(inode);
4574 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4575 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4576 handle_t *handle;
4577
4578 /* (user+group)*(old+new) structure, inode write (sb,
4579 * inode block, ? - but truncate inode update has it) */
4580 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4581 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4582 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4583 if (IS_ERR(handle)) {
4584 error = PTR_ERR(handle);
4585 goto err_out;
4586 }
4587 error = dquot_transfer(inode, attr);
4588 if (error) {
4589 ext4_journal_stop(handle);
4590 return error;
4591 }
4592 /* Update corresponding info in inode so that everything is in
4593 * one transaction */
4594 if (attr->ia_valid & ATTR_UID)
4595 inode->i_uid = attr->ia_uid;
4596 if (attr->ia_valid & ATTR_GID)
4597 inode->i_gid = attr->ia_gid;
4598 error = ext4_mark_inode_dirty(handle, inode);
4599 ext4_journal_stop(handle);
4600 }
4601
4602 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4603 handle_t *handle;
4604 loff_t oldsize = inode->i_size;
4605
4606 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4607 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4608
4609 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4610 return -EFBIG;
4611 }
4612 if (S_ISREG(inode->i_mode) &&
4613 (attr->ia_size < inode->i_size)) {
4614 if (ext4_should_order_data(inode)) {
4615 error = ext4_begin_ordered_truncate(inode,
4616 attr->ia_size);
4617 if (error)
4618 goto err_out;
4619 }
4620 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4621 if (IS_ERR(handle)) {
4622 error = PTR_ERR(handle);
4623 goto err_out;
4624 }
4625 if (ext4_handle_valid(handle)) {
4626 error = ext4_orphan_add(handle, inode);
4627 orphan = 1;
4628 }
4629 down_write(&EXT4_I(inode)->i_data_sem);
4630 EXT4_I(inode)->i_disksize = attr->ia_size;
4631 rc = ext4_mark_inode_dirty(handle, inode);
4632 if (!error)
4633 error = rc;
4634 /*
4635 * We have to update i_size under i_data_sem together
4636 * with i_disksize to avoid races with writeback code
4637 * running ext4_wb_update_i_disksize().
4638 */
4639 if (!error)
4640 i_size_write(inode, attr->ia_size);
4641 up_write(&EXT4_I(inode)->i_data_sem);
4642 ext4_journal_stop(handle);
4643 if (error) {
4644 ext4_orphan_del(NULL, inode);
4645 goto err_out;
4646 }
4647 } else
4648 i_size_write(inode, attr->ia_size);
4649
4650 /*
4651 * Blocks are going to be removed from the inode. Wait
4652 * for dio in flight. Temporarily disable
4653 * dioread_nolock to prevent livelock.
4654 */
4655 if (orphan) {
4656 if (!ext4_should_journal_data(inode)) {
4657 ext4_inode_block_unlocked_dio(inode);
4658 inode_dio_wait(inode);
4659 ext4_inode_resume_unlocked_dio(inode);
4660 } else
4661 ext4_wait_for_tail_page_commit(inode);
4662 }
4663 /*
4664 * Truncate pagecache after we've waited for commit
4665 * in data=journal mode to make pages freeable.
4666 */
4667 truncate_pagecache(inode, oldsize, inode->i_size);
4668 }
4669 /*
4670 * We want to call ext4_truncate() even if attr->ia_size ==
4671 * inode->i_size for cases like truncation of fallocated space
4672 */
4673 if (attr->ia_valid & ATTR_SIZE)
4674 ext4_truncate(inode);
4675
4676 if (!rc) {
4677 setattr_copy(inode, attr);
4678 mark_inode_dirty(inode);
4679 }
4680
4681 /*
4682 * If the call to ext4_truncate failed to get a transaction handle at
4683 * all, we need to clean up the in-core orphan list manually.
4684 */
4685 if (orphan && inode->i_nlink)
4686 ext4_orphan_del(NULL, inode);
4687
4688 if (!rc && (ia_valid & ATTR_MODE))
4689 rc = ext4_acl_chmod(inode);
4690
4691 err_out:
4692 ext4_std_error(inode->i_sb, error);
4693 if (!error)
4694 error = rc;
4695 return error;
4696 }
4697
4698 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4699 struct kstat *stat)
4700 {
4701 struct inode *inode;
4702 unsigned long long delalloc_blocks;
4703
4704 inode = dentry->d_inode;
4705 generic_fillattr(inode, stat);
4706
4707 /*
4708 * We can't update i_blocks if the block allocation is delayed
4709 * otherwise in the case of system crash before the real block
4710 * allocation is done, we will have i_blocks inconsistent with
4711 * on-disk file blocks.
4712 * We always keep i_blocks updated together with real
4713 * allocation. But to not confuse with user, stat
4714 * will return the blocks that include the delayed allocation
4715 * blocks for this file.
4716 */
4717 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4718 EXT4_I(inode)->i_reserved_data_blocks);
4719
4720 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4721 return 0;
4722 }
4723
4724 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4725 int pextents)
4726 {
4727 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4728 return ext4_ind_trans_blocks(inode, lblocks);
4729 return ext4_ext_index_trans_blocks(inode, pextents);
4730 }
4731
4732 /*
4733 * Account for index blocks, block groups bitmaps and block group
4734 * descriptor blocks if modify datablocks and index blocks
4735 * worse case, the indexs blocks spread over different block groups
4736 *
4737 * If datablocks are discontiguous, they are possible to spread over
4738 * different block groups too. If they are contiguous, with flexbg,
4739 * they could still across block group boundary.
4740 *
4741 * Also account for superblock, inode, quota and xattr blocks
4742 */
4743 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4744 int pextents)
4745 {
4746 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4747 int gdpblocks;
4748 int idxblocks;
4749 int ret = 0;
4750
4751 /*
4752 * How many index blocks need to touch to map @lblocks logical blocks
4753 * to @pextents physical extents?
4754 */
4755 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4756
4757 ret = idxblocks;
4758
4759 /*
4760 * Now let's see how many group bitmaps and group descriptors need
4761 * to account
4762 */
4763 groups = idxblocks + pextents;
4764 gdpblocks = groups;
4765 if (groups > ngroups)
4766 groups = ngroups;
4767 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4768 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4769
4770 /* bitmaps and block group descriptor blocks */
4771 ret += groups + gdpblocks;
4772
4773 /* Blocks for super block, inode, quota and xattr blocks */
4774 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4775
4776 return ret;
4777 }
4778
4779 /*
4780 * Calculate the total number of credits to reserve to fit
4781 * the modification of a single pages into a single transaction,
4782 * which may include multiple chunks of block allocations.
4783 *
4784 * This could be called via ext4_write_begin()
4785 *
4786 * We need to consider the worse case, when
4787 * one new block per extent.
4788 */
4789 int ext4_writepage_trans_blocks(struct inode *inode)
4790 {
4791 int bpp = ext4_journal_blocks_per_page(inode);
4792 int ret;
4793
4794 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4795
4796 /* Account for data blocks for journalled mode */
4797 if (ext4_should_journal_data(inode))
4798 ret += bpp;
4799 return ret;
4800 }
4801
4802 /*
4803 * Calculate the journal credits for a chunk of data modification.
4804 *
4805 * This is called from DIO, fallocate or whoever calling
4806 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4807 *
4808 * journal buffers for data blocks are not included here, as DIO
4809 * and fallocate do no need to journal data buffers.
4810 */
4811 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4812 {
4813 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4814 }
4815
4816 /*
4817 * The caller must have previously called ext4_reserve_inode_write().
4818 * Give this, we know that the caller already has write access to iloc->bh.
4819 */
4820 int ext4_mark_iloc_dirty(handle_t *handle,
4821 struct inode *inode, struct ext4_iloc *iloc)
4822 {
4823 int err = 0;
4824
4825 if (IS_I_VERSION(inode))
4826 inode_inc_iversion(inode);
4827
4828 /* the do_update_inode consumes one bh->b_count */
4829 get_bh(iloc->bh);
4830
4831 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4832 err = ext4_do_update_inode(handle, inode, iloc);
4833 put_bh(iloc->bh);
4834 return err;
4835 }
4836
4837 /*
4838 * On success, We end up with an outstanding reference count against
4839 * iloc->bh. This _must_ be cleaned up later.
4840 */
4841
4842 int
4843 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4844 struct ext4_iloc *iloc)
4845 {
4846 int err;
4847
4848 err = ext4_get_inode_loc(inode, iloc);
4849 if (!err) {
4850 BUFFER_TRACE(iloc->bh, "get_write_access");
4851 err = ext4_journal_get_write_access(handle, iloc->bh);
4852 if (err) {
4853 brelse(iloc->bh);
4854 iloc->bh = NULL;
4855 }
4856 }
4857 ext4_std_error(inode->i_sb, err);
4858 return err;
4859 }
4860
4861 /*
4862 * Expand an inode by new_extra_isize bytes.
4863 * Returns 0 on success or negative error number on failure.
4864 */
4865 static int ext4_expand_extra_isize(struct inode *inode,
4866 unsigned int new_extra_isize,
4867 struct ext4_iloc iloc,
4868 handle_t *handle)
4869 {
4870 struct ext4_inode *raw_inode;
4871 struct ext4_xattr_ibody_header *header;
4872
4873 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4874 return 0;
4875
4876 raw_inode = ext4_raw_inode(&iloc);
4877
4878 header = IHDR(inode, raw_inode);
4879
4880 /* No extended attributes present */
4881 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4882 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4883 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4884 new_extra_isize);
4885 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4886 return 0;
4887 }
4888
4889 /* try to expand with EAs present */
4890 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4891 raw_inode, handle);
4892 }
4893
4894 /*
4895 * What we do here is to mark the in-core inode as clean with respect to inode
4896 * dirtiness (it may still be data-dirty).
4897 * This means that the in-core inode may be reaped by prune_icache
4898 * without having to perform any I/O. This is a very good thing,
4899 * because *any* task may call prune_icache - even ones which
4900 * have a transaction open against a different journal.
4901 *
4902 * Is this cheating? Not really. Sure, we haven't written the
4903 * inode out, but prune_icache isn't a user-visible syncing function.
4904 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4905 * we start and wait on commits.
4906 */
4907 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4908 {
4909 struct ext4_iloc iloc;
4910 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4911 static unsigned int mnt_count;
4912 int err, ret;
4913
4914 might_sleep();
4915 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4916 err = ext4_reserve_inode_write(handle, inode, &iloc);
4917 if (ext4_handle_valid(handle) &&
4918 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4919 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4920 /*
4921 * We need extra buffer credits since we may write into EA block
4922 * with this same handle. If journal_extend fails, then it will
4923 * only result in a minor loss of functionality for that inode.
4924 * If this is felt to be critical, then e2fsck should be run to
4925 * force a large enough s_min_extra_isize.
4926 */
4927 if ((jbd2_journal_extend(handle,
4928 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4929 ret = ext4_expand_extra_isize(inode,
4930 sbi->s_want_extra_isize,
4931 iloc, handle);
4932 if (ret) {
4933 ext4_set_inode_state(inode,
4934 EXT4_STATE_NO_EXPAND);
4935 if (mnt_count !=
4936 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4937 ext4_warning(inode->i_sb,
4938 "Unable to expand inode %lu. Delete"
4939 " some EAs or run e2fsck.",
4940 inode->i_ino);
4941 mnt_count =
4942 le16_to_cpu(sbi->s_es->s_mnt_count);
4943 }
4944 }
4945 }
4946 }
4947 if (!err)
4948 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4949 return err;
4950 }
4951
4952 /*
4953 * ext4_dirty_inode() is called from __mark_inode_dirty()
4954 *
4955 * We're really interested in the case where a file is being extended.
4956 * i_size has been changed by generic_commit_write() and we thus need
4957 * to include the updated inode in the current transaction.
4958 *
4959 * Also, dquot_alloc_block() will always dirty the inode when blocks
4960 * are allocated to the file.
4961 *
4962 * If the inode is marked synchronous, we don't honour that here - doing
4963 * so would cause a commit on atime updates, which we don't bother doing.
4964 * We handle synchronous inodes at the highest possible level.
4965 */
4966 void ext4_dirty_inode(struct inode *inode, int flags)
4967 {
4968 handle_t *handle;
4969
4970 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4971 if (IS_ERR(handle))
4972 goto out;
4973
4974 ext4_mark_inode_dirty(handle, inode);
4975
4976 ext4_journal_stop(handle);
4977 out:
4978 return;
4979 }
4980
4981 #if 0
4982 /*
4983 * Bind an inode's backing buffer_head into this transaction, to prevent
4984 * it from being flushed to disk early. Unlike
4985 * ext4_reserve_inode_write, this leaves behind no bh reference and
4986 * returns no iloc structure, so the caller needs to repeat the iloc
4987 * lookup to mark the inode dirty later.
4988 */
4989 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4990 {
4991 struct ext4_iloc iloc;
4992
4993 int err = 0;
4994 if (handle) {
4995 err = ext4_get_inode_loc(inode, &iloc);
4996 if (!err) {
4997 BUFFER_TRACE(iloc.bh, "get_write_access");
4998 err = jbd2_journal_get_write_access(handle, iloc.bh);
4999 if (!err)
5000 err = ext4_handle_dirty_metadata(handle,
5001 NULL,
5002 iloc.bh);
5003 brelse(iloc.bh);
5004 }
5005 }
5006 ext4_std_error(inode->i_sb, err);
5007 return err;
5008 }
5009 #endif
5010
5011 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5012 {
5013 journal_t *journal;
5014 handle_t *handle;
5015 int err;
5016
5017 /*
5018 * We have to be very careful here: changing a data block's
5019 * journaling status dynamically is dangerous. If we write a
5020 * data block to the journal, change the status and then delete
5021 * that block, we risk forgetting to revoke the old log record
5022 * from the journal and so a subsequent replay can corrupt data.
5023 * So, first we make sure that the journal is empty and that
5024 * nobody is changing anything.
5025 */
5026
5027 journal = EXT4_JOURNAL(inode);
5028 if (!journal)
5029 return 0;
5030 if (is_journal_aborted(journal))
5031 return -EROFS;
5032 /* We have to allocate physical blocks for delalloc blocks
5033 * before flushing journal. otherwise delalloc blocks can not
5034 * be allocated any more. even more truncate on delalloc blocks
5035 * could trigger BUG by flushing delalloc blocks in journal.
5036 * There is no delalloc block in non-journal data mode.
5037 */
5038 if (val && test_opt(inode->i_sb, DELALLOC)) {
5039 err = ext4_alloc_da_blocks(inode);
5040 if (err < 0)
5041 return err;
5042 }
5043
5044 /* Wait for all existing dio workers */
5045 ext4_inode_block_unlocked_dio(inode);
5046 inode_dio_wait(inode);
5047
5048 jbd2_journal_lock_updates(journal);
5049
5050 /*
5051 * OK, there are no updates running now, and all cached data is
5052 * synced to disk. We are now in a completely consistent state
5053 * which doesn't have anything in the journal, and we know that
5054 * no filesystem updates are running, so it is safe to modify
5055 * the inode's in-core data-journaling state flag now.
5056 */
5057
5058 if (val)
5059 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5060 else {
5061 jbd2_journal_flush(journal);
5062 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5063 }
5064 ext4_set_aops(inode);
5065
5066 jbd2_journal_unlock_updates(journal);
5067 ext4_inode_resume_unlocked_dio(inode);
5068
5069 /* Finally we can mark the inode as dirty. */
5070
5071 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5072 if (IS_ERR(handle))
5073 return PTR_ERR(handle);
5074
5075 err = ext4_mark_inode_dirty(handle, inode);
5076 ext4_handle_sync(handle);
5077 ext4_journal_stop(handle);
5078 ext4_std_error(inode->i_sb, err);
5079
5080 return err;
5081 }
5082
5083 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5084 {
5085 return !buffer_mapped(bh);
5086 }
5087
5088 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5089 {
5090 struct page *page = vmf->page;
5091 loff_t size;
5092 unsigned long len;
5093 int ret;
5094 struct file *file = vma->vm_file;
5095 struct inode *inode = file_inode(file);
5096 struct address_space *mapping = inode->i_mapping;
5097 handle_t *handle;
5098 get_block_t *get_block;
5099 int retries = 0;
5100
5101 sb_start_pagefault(inode->i_sb);
5102 file_update_time(vma->vm_file);
5103 /* Delalloc case is easy... */
5104 if (test_opt(inode->i_sb, DELALLOC) &&
5105 !ext4_should_journal_data(inode) &&
5106 !ext4_nonda_switch(inode->i_sb)) {
5107 do {
5108 ret = __block_page_mkwrite(vma, vmf,
5109 ext4_da_get_block_prep);
5110 } while (ret == -ENOSPC &&
5111 ext4_should_retry_alloc(inode->i_sb, &retries));
5112 goto out_ret;
5113 }
5114
5115 lock_page(page);
5116 size = i_size_read(inode);
5117 /* Page got truncated from under us? */
5118 if (page->mapping != mapping || page_offset(page) > size) {
5119 unlock_page(page);
5120 ret = VM_FAULT_NOPAGE;
5121 goto out;
5122 }
5123
5124 if (page->index == size >> PAGE_CACHE_SHIFT)
5125 len = size & ~PAGE_CACHE_MASK;
5126 else
5127 len = PAGE_CACHE_SIZE;
5128 /*
5129 * Return if we have all the buffers mapped. This avoids the need to do
5130 * journal_start/journal_stop which can block and take a long time
5131 */
5132 if (page_has_buffers(page)) {
5133 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5134 0, len, NULL,
5135 ext4_bh_unmapped)) {
5136 /* Wait so that we don't change page under IO */
5137 wait_for_stable_page(page);
5138 ret = VM_FAULT_LOCKED;
5139 goto out;
5140 }
5141 }
5142 unlock_page(page);
5143 /* OK, we need to fill the hole... */
5144 if (ext4_should_dioread_nolock(inode))
5145 get_block = ext4_get_block_write;
5146 else
5147 get_block = ext4_get_block;
5148 retry_alloc:
5149 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5150 ext4_writepage_trans_blocks(inode));
5151 if (IS_ERR(handle)) {
5152 ret = VM_FAULT_SIGBUS;
5153 goto out;
5154 }
5155 ret = __block_page_mkwrite(vma, vmf, get_block);
5156 if (!ret && ext4_should_journal_data(inode)) {
5157 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5158 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5159 unlock_page(page);
5160 ret = VM_FAULT_SIGBUS;
5161 ext4_journal_stop(handle);
5162 goto out;
5163 }
5164 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5165 }
5166 ext4_journal_stop(handle);
5167 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5168 goto retry_alloc;
5169 out_ret:
5170 ret = block_page_mkwrite_return(ret);
5171 out:
5172 sb_end_pagefault(inode->i_sb);
5173 return ret;
5174 }