]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/ext4/inode.c
ext4: don't lock the next page in write_cache_pages if not needed
[mirror_ubuntu-jammy-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/ratelimit.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "ext4_extents.h"
50
51 #include <trace/events/ext4.h>
52
53 #define MPAGE_DA_EXTENT_TAIL 0x01
54
55 static inline int ext4_begin_ordered_truncate(struct inode *inode,
56 loff_t new_size)
57 {
58 trace_ext4_begin_ordered_truncate(inode, new_size);
59 /*
60 * If jinode is zero, then we never opened the file for
61 * writing, so there's no need to call
62 * jbd2_journal_begin_ordered_truncate() since there's no
63 * outstanding writes we need to flush.
64 */
65 if (!EXT4_I(inode)->jinode)
66 return 0;
67 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
68 EXT4_I(inode)->jinode,
69 new_size);
70 }
71
72 static void ext4_invalidatepage(struct page *page, unsigned long offset);
73 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
74 struct buffer_head *bh_result, int create);
75 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
76 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
77 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
78 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
79
80 /*
81 * Test whether an inode is a fast symlink.
82 */
83 static int ext4_inode_is_fast_symlink(struct inode *inode)
84 {
85 int ea_blocks = EXT4_I(inode)->i_file_acl ?
86 (inode->i_sb->s_blocksize >> 9) : 0;
87
88 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
89 }
90
91 /*
92 * Work out how many blocks we need to proceed with the next chunk of a
93 * truncate transaction.
94 */
95 static unsigned long blocks_for_truncate(struct inode *inode)
96 {
97 ext4_lblk_t needed;
98
99 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
100
101 /* Give ourselves just enough room to cope with inodes in which
102 * i_blocks is corrupt: we've seen disk corruptions in the past
103 * which resulted in random data in an inode which looked enough
104 * like a regular file for ext4 to try to delete it. Things
105 * will go a bit crazy if that happens, but at least we should
106 * try not to panic the whole kernel. */
107 if (needed < 2)
108 needed = 2;
109
110 /* But we need to bound the transaction so we don't overflow the
111 * journal. */
112 if (needed > EXT4_MAX_TRANS_DATA)
113 needed = EXT4_MAX_TRANS_DATA;
114
115 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
116 }
117
118 /*
119 * Truncate transactions can be complex and absolutely huge. So we need to
120 * be able to restart the transaction at a conventient checkpoint to make
121 * sure we don't overflow the journal.
122 *
123 * start_transaction gets us a new handle for a truncate transaction,
124 * and extend_transaction tries to extend the existing one a bit. If
125 * extend fails, we need to propagate the failure up and restart the
126 * transaction in the top-level truncate loop. --sct
127 */
128 static handle_t *start_transaction(struct inode *inode)
129 {
130 handle_t *result;
131
132 result = ext4_journal_start(inode, blocks_for_truncate(inode));
133 if (!IS_ERR(result))
134 return result;
135
136 ext4_std_error(inode->i_sb, PTR_ERR(result));
137 return result;
138 }
139
140 /*
141 * Try to extend this transaction for the purposes of truncation.
142 *
143 * Returns 0 if we managed to create more room. If we can't create more
144 * room, and the transaction must be restarted we return 1.
145 */
146 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
147 {
148 if (!ext4_handle_valid(handle))
149 return 0;
150 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
151 return 0;
152 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
153 return 0;
154 return 1;
155 }
156
157 /*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
162 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 int nblocks)
164 {
165 int ret;
166
167 /*
168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
174 jbd_debug(2, "restarting handle %p\n", handle);
175 up_write(&EXT4_I(inode)->i_data_sem);
176 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
177 down_write(&EXT4_I(inode)->i_data_sem);
178 ext4_discard_preallocations(inode);
179
180 return ret;
181 }
182
183 /*
184 * Called at the last iput() if i_nlink is zero.
185 */
186 void ext4_evict_inode(struct inode *inode)
187 {
188 handle_t *handle;
189 int err;
190
191 trace_ext4_evict_inode(inode);
192 if (inode->i_nlink) {
193 truncate_inode_pages(&inode->i_data, 0);
194 goto no_delete;
195 }
196
197 if (!is_bad_inode(inode))
198 dquot_initialize(inode);
199
200 if (ext4_should_order_data(inode))
201 ext4_begin_ordered_truncate(inode, 0);
202 truncate_inode_pages(&inode->i_data, 0);
203
204 if (is_bad_inode(inode))
205 goto no_delete;
206
207 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
208 if (IS_ERR(handle)) {
209 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 /*
211 * If we're going to skip the normal cleanup, we still need to
212 * make sure that the in-core orphan linked list is properly
213 * cleaned up.
214 */
215 ext4_orphan_del(NULL, inode);
216 goto no_delete;
217 }
218
219 if (IS_SYNC(inode))
220 ext4_handle_sync(handle);
221 inode->i_size = 0;
222 err = ext4_mark_inode_dirty(handle, inode);
223 if (err) {
224 ext4_warning(inode->i_sb,
225 "couldn't mark inode dirty (err %d)", err);
226 goto stop_handle;
227 }
228 if (inode->i_blocks)
229 ext4_truncate(inode);
230
231 /*
232 * ext4_ext_truncate() doesn't reserve any slop when it
233 * restarts journal transactions; therefore there may not be
234 * enough credits left in the handle to remove the inode from
235 * the orphan list and set the dtime field.
236 */
237 if (!ext4_handle_has_enough_credits(handle, 3)) {
238 err = ext4_journal_extend(handle, 3);
239 if (err > 0)
240 err = ext4_journal_restart(handle, 3);
241 if (err != 0) {
242 ext4_warning(inode->i_sb,
243 "couldn't extend journal (err %d)", err);
244 stop_handle:
245 ext4_journal_stop(handle);
246 ext4_orphan_del(NULL, inode);
247 goto no_delete;
248 }
249 }
250
251 /*
252 * Kill off the orphan record which ext4_truncate created.
253 * AKPM: I think this can be inside the above `if'.
254 * Note that ext4_orphan_del() has to be able to cope with the
255 * deletion of a non-existent orphan - this is because we don't
256 * know if ext4_truncate() actually created an orphan record.
257 * (Well, we could do this if we need to, but heck - it works)
258 */
259 ext4_orphan_del(handle, inode);
260 EXT4_I(inode)->i_dtime = get_seconds();
261
262 /*
263 * One subtle ordering requirement: if anything has gone wrong
264 * (transaction abort, IO errors, whatever), then we can still
265 * do these next steps (the fs will already have been marked as
266 * having errors), but we can't free the inode if the mark_dirty
267 * fails.
268 */
269 if (ext4_mark_inode_dirty(handle, inode))
270 /* If that failed, just do the required in-core inode clear. */
271 ext4_clear_inode(inode);
272 else
273 ext4_free_inode(handle, inode);
274 ext4_journal_stop(handle);
275 return;
276 no_delete:
277 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
278 }
279
280 typedef struct {
281 __le32 *p;
282 __le32 key;
283 struct buffer_head *bh;
284 } Indirect;
285
286 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
287 {
288 p->key = *(p->p = v);
289 p->bh = bh;
290 }
291
292 /**
293 * ext4_block_to_path - parse the block number into array of offsets
294 * @inode: inode in question (we are only interested in its superblock)
295 * @i_block: block number to be parsed
296 * @offsets: array to store the offsets in
297 * @boundary: set this non-zero if the referred-to block is likely to be
298 * followed (on disk) by an indirect block.
299 *
300 * To store the locations of file's data ext4 uses a data structure common
301 * for UNIX filesystems - tree of pointers anchored in the inode, with
302 * data blocks at leaves and indirect blocks in intermediate nodes.
303 * This function translates the block number into path in that tree -
304 * return value is the path length and @offsets[n] is the offset of
305 * pointer to (n+1)th node in the nth one. If @block is out of range
306 * (negative or too large) warning is printed and zero returned.
307 *
308 * Note: function doesn't find node addresses, so no IO is needed. All
309 * we need to know is the capacity of indirect blocks (taken from the
310 * inode->i_sb).
311 */
312
313 /*
314 * Portability note: the last comparison (check that we fit into triple
315 * indirect block) is spelled differently, because otherwise on an
316 * architecture with 32-bit longs and 8Kb pages we might get into trouble
317 * if our filesystem had 8Kb blocks. We might use long long, but that would
318 * kill us on x86. Oh, well, at least the sign propagation does not matter -
319 * i_block would have to be negative in the very beginning, so we would not
320 * get there at all.
321 */
322
323 static int ext4_block_to_path(struct inode *inode,
324 ext4_lblk_t i_block,
325 ext4_lblk_t offsets[4], int *boundary)
326 {
327 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
328 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
329 const long direct_blocks = EXT4_NDIR_BLOCKS,
330 indirect_blocks = ptrs,
331 double_blocks = (1 << (ptrs_bits * 2));
332 int n = 0;
333 int final = 0;
334
335 if (i_block < direct_blocks) {
336 offsets[n++] = i_block;
337 final = direct_blocks;
338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
339 offsets[n++] = EXT4_IND_BLOCK;
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
343 offsets[n++] = EXT4_DIND_BLOCK;
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 offsets[n++] = EXT4_TIND_BLOCK;
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
354 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks, inode->i_ino);
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361 }
362
363 static int __ext4_check_blockref(const char *function, unsigned int line,
364 struct inode *inode,
365 __le32 *p, unsigned int max)
366 {
367 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
368 __le32 *bref = p;
369 unsigned int blk;
370
371 while (bref < p+max) {
372 blk = le32_to_cpu(*bref++);
373 if (blk &&
374 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
375 blk, 1))) {
376 es->s_last_error_block = cpu_to_le64(blk);
377 ext4_error_inode(inode, function, line, blk,
378 "invalid block");
379 return -EIO;
380 }
381 }
382 return 0;
383 }
384
385
386 #define ext4_check_indirect_blockref(inode, bh) \
387 __ext4_check_blockref(__func__, __LINE__, inode, \
388 (__le32 *)(bh)->b_data, \
389 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
390
391 #define ext4_check_inode_blockref(inode) \
392 __ext4_check_blockref(__func__, __LINE__, inode, \
393 EXT4_I(inode)->i_data, \
394 EXT4_NDIR_BLOCKS)
395
396 /**
397 * ext4_get_branch - read the chain of indirect blocks leading to data
398 * @inode: inode in question
399 * @depth: depth of the chain (1 - direct pointer, etc.)
400 * @offsets: offsets of pointers in inode/indirect blocks
401 * @chain: place to store the result
402 * @err: here we store the error value
403 *
404 * Function fills the array of triples <key, p, bh> and returns %NULL
405 * if everything went OK or the pointer to the last filled triple
406 * (incomplete one) otherwise. Upon the return chain[i].key contains
407 * the number of (i+1)-th block in the chain (as it is stored in memory,
408 * i.e. little-endian 32-bit), chain[i].p contains the address of that
409 * number (it points into struct inode for i==0 and into the bh->b_data
410 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
411 * block for i>0 and NULL for i==0. In other words, it holds the block
412 * numbers of the chain, addresses they were taken from (and where we can
413 * verify that chain did not change) and buffer_heads hosting these
414 * numbers.
415 *
416 * Function stops when it stumbles upon zero pointer (absent block)
417 * (pointer to last triple returned, *@err == 0)
418 * or when it gets an IO error reading an indirect block
419 * (ditto, *@err == -EIO)
420 * or when it reads all @depth-1 indirect blocks successfully and finds
421 * the whole chain, all way to the data (returns %NULL, *err == 0).
422 *
423 * Need to be called with
424 * down_read(&EXT4_I(inode)->i_data_sem)
425 */
426 static Indirect *ext4_get_branch(struct inode *inode, int depth,
427 ext4_lblk_t *offsets,
428 Indirect chain[4], int *err)
429 {
430 struct super_block *sb = inode->i_sb;
431 Indirect *p = chain;
432 struct buffer_head *bh;
433
434 *err = 0;
435 /* i_data is not going away, no lock needed */
436 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
437 if (!p->key)
438 goto no_block;
439 while (--depth) {
440 bh = sb_getblk(sb, le32_to_cpu(p->key));
441 if (unlikely(!bh))
442 goto failure;
443
444 if (!bh_uptodate_or_lock(bh)) {
445 if (bh_submit_read(bh) < 0) {
446 put_bh(bh);
447 goto failure;
448 }
449 /* validate block references */
450 if (ext4_check_indirect_blockref(inode, bh)) {
451 put_bh(bh);
452 goto failure;
453 }
454 }
455
456 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
457 /* Reader: end */
458 if (!p->key)
459 goto no_block;
460 }
461 return NULL;
462
463 failure:
464 *err = -EIO;
465 no_block:
466 return p;
467 }
468
469 /**
470 * ext4_find_near - find a place for allocation with sufficient locality
471 * @inode: owner
472 * @ind: descriptor of indirect block.
473 *
474 * This function returns the preferred place for block allocation.
475 * It is used when heuristic for sequential allocation fails.
476 * Rules are:
477 * + if there is a block to the left of our position - allocate near it.
478 * + if pointer will live in indirect block - allocate near that block.
479 * + if pointer will live in inode - allocate in the same
480 * cylinder group.
481 *
482 * In the latter case we colour the starting block by the callers PID to
483 * prevent it from clashing with concurrent allocations for a different inode
484 * in the same block group. The PID is used here so that functionally related
485 * files will be close-by on-disk.
486 *
487 * Caller must make sure that @ind is valid and will stay that way.
488 */
489 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
490 {
491 struct ext4_inode_info *ei = EXT4_I(inode);
492 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
493 __le32 *p;
494 ext4_fsblk_t bg_start;
495 ext4_fsblk_t last_block;
496 ext4_grpblk_t colour;
497 ext4_group_t block_group;
498 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
499
500 /* Try to find previous block */
501 for (p = ind->p - 1; p >= start; p--) {
502 if (*p)
503 return le32_to_cpu(*p);
504 }
505
506 /* No such thing, so let's try location of indirect block */
507 if (ind->bh)
508 return ind->bh->b_blocknr;
509
510 /*
511 * It is going to be referred to from the inode itself? OK, just put it
512 * into the same cylinder group then.
513 */
514 block_group = ei->i_block_group;
515 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
516 block_group &= ~(flex_size-1);
517 if (S_ISREG(inode->i_mode))
518 block_group++;
519 }
520 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
521 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
522
523 /*
524 * If we are doing delayed allocation, we don't need take
525 * colour into account.
526 */
527 if (test_opt(inode->i_sb, DELALLOC))
528 return bg_start;
529
530 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
531 colour = (current->pid % 16) *
532 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
533 else
534 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
535 return bg_start + colour;
536 }
537
538 /**
539 * ext4_find_goal - find a preferred place for allocation.
540 * @inode: owner
541 * @block: block we want
542 * @partial: pointer to the last triple within a chain
543 *
544 * Normally this function find the preferred place for block allocation,
545 * returns it.
546 * Because this is only used for non-extent files, we limit the block nr
547 * to 32 bits.
548 */
549 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
550 Indirect *partial)
551 {
552 ext4_fsblk_t goal;
553
554 /*
555 * XXX need to get goal block from mballoc's data structures
556 */
557
558 goal = ext4_find_near(inode, partial);
559 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
560 return goal;
561 }
562
563 /**
564 * ext4_blks_to_allocate - Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
577 {
578 unsigned int count = 0;
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599 }
600
601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @handle: handle for this transaction
604 * @inode: inode which needs allocated blocks
605 * @iblock: the logical block to start allocated at
606 * @goal: preferred physical block of allocation
607 * @indirect_blks: the number of blocks need to allocate for indirect
608 * blocks
609 * @blks: number of desired blocks
610 * @new_blocks: on return it will store the new block numbers for
611 * the indirect blocks(if needed) and the first direct block,
612 * @err: on return it will store the error code
613 *
614 * This function will return the number of blocks allocated as
615 * requested by the passed-in parameters.
616 */
617 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
618 ext4_lblk_t iblock, ext4_fsblk_t goal,
619 int indirect_blks, int blks,
620 ext4_fsblk_t new_blocks[4], int *err)
621 {
622 struct ext4_allocation_request ar;
623 int target, i;
624 unsigned long count = 0, blk_allocated = 0;
625 int index = 0;
626 ext4_fsblk_t current_block = 0;
627 int ret = 0;
628
629 /*
630 * Here we try to allocate the requested multiple blocks at once,
631 * on a best-effort basis.
632 * To build a branch, we should allocate blocks for
633 * the indirect blocks(if not allocated yet), and at least
634 * the first direct block of this branch. That's the
635 * minimum number of blocks need to allocate(required)
636 */
637 /* first we try to allocate the indirect blocks */
638 target = indirect_blks;
639 while (target > 0) {
640 count = target;
641 /* allocating blocks for indirect blocks and direct blocks */
642 current_block = ext4_new_meta_blocks(handle, inode,
643 goal, &count, err);
644 if (*err)
645 goto failed_out;
646
647 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
648 EXT4_ERROR_INODE(inode,
649 "current_block %llu + count %lu > %d!",
650 current_block, count,
651 EXT4_MAX_BLOCK_FILE_PHYS);
652 *err = -EIO;
653 goto failed_out;
654 }
655
656 target -= count;
657 /* allocate blocks for indirect blocks */
658 while (index < indirect_blks && count) {
659 new_blocks[index++] = current_block++;
660 count--;
661 }
662 if (count > 0) {
663 /*
664 * save the new block number
665 * for the first direct block
666 */
667 new_blocks[index] = current_block;
668 printk(KERN_INFO "%s returned more blocks than "
669 "requested\n", __func__);
670 WARN_ON(1);
671 break;
672 }
673 }
674
675 target = blks - count ;
676 blk_allocated = count;
677 if (!target)
678 goto allocated;
679 /* Now allocate data blocks */
680 memset(&ar, 0, sizeof(ar));
681 ar.inode = inode;
682 ar.goal = goal;
683 ar.len = target;
684 ar.logical = iblock;
685 if (S_ISREG(inode->i_mode))
686 /* enable in-core preallocation only for regular files */
687 ar.flags = EXT4_MB_HINT_DATA;
688
689 current_block = ext4_mb_new_blocks(handle, &ar, err);
690 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
691 EXT4_ERROR_INODE(inode,
692 "current_block %llu + ar.len %d > %d!",
693 current_block, ar.len,
694 EXT4_MAX_BLOCK_FILE_PHYS);
695 *err = -EIO;
696 goto failed_out;
697 }
698
699 if (*err && (target == blks)) {
700 /*
701 * if the allocation failed and we didn't allocate
702 * any blocks before
703 */
704 goto failed_out;
705 }
706 if (!*err) {
707 if (target == blks) {
708 /*
709 * save the new block number
710 * for the first direct block
711 */
712 new_blocks[index] = current_block;
713 }
714 blk_allocated += ar.len;
715 }
716 allocated:
717 /* total number of blocks allocated for direct blocks */
718 ret = blk_allocated;
719 *err = 0;
720 return ret;
721 failed_out:
722 for (i = 0; i < index; i++)
723 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
724 return ret;
725 }
726
727 /**
728 * ext4_alloc_branch - allocate and set up a chain of blocks.
729 * @handle: handle for this transaction
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @goal: preferred place for allocation
734 * @offsets: offsets (in the blocks) to store the pointers to next.
735 * @branch: place to store the chain in.
736 *
737 * This function allocates blocks, zeroes out all but the last one,
738 * links them into chain and (if we are synchronous) writes them to disk.
739 * In other words, it prepares a branch that can be spliced onto the
740 * inode. It stores the information about that chain in the branch[], in
741 * the same format as ext4_get_branch() would do. We are calling it after
742 * we had read the existing part of chain and partial points to the last
743 * triple of that (one with zero ->key). Upon the exit we have the same
744 * picture as after the successful ext4_get_block(), except that in one
745 * place chain is disconnected - *branch->p is still zero (we did not
746 * set the last link), but branch->key contains the number that should
747 * be placed into *branch->p to fill that gap.
748 *
749 * If allocation fails we free all blocks we've allocated (and forget
750 * their buffer_heads) and return the error value the from failed
751 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
752 * as described above and return 0.
753 */
754 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
755 ext4_lblk_t iblock, int indirect_blks,
756 int *blks, ext4_fsblk_t goal,
757 ext4_lblk_t *offsets, Indirect *branch)
758 {
759 int blocksize = inode->i_sb->s_blocksize;
760 int i, n = 0;
761 int err = 0;
762 struct buffer_head *bh;
763 int num;
764 ext4_fsblk_t new_blocks[4];
765 ext4_fsblk_t current_block;
766
767 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
768 *blks, new_blocks, &err);
769 if (err)
770 return err;
771
772 branch[0].key = cpu_to_le32(new_blocks[0]);
773 /*
774 * metadata blocks and data blocks are allocated.
775 */
776 for (n = 1; n <= indirect_blks; n++) {
777 /*
778 * Get buffer_head for parent block, zero it out
779 * and set the pointer to new one, then send
780 * parent to disk.
781 */
782 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
783 if (unlikely(!bh)) {
784 err = -EIO;
785 goto failed;
786 }
787
788 branch[n].bh = bh;
789 lock_buffer(bh);
790 BUFFER_TRACE(bh, "call get_create_access");
791 err = ext4_journal_get_create_access(handle, bh);
792 if (err) {
793 /* Don't brelse(bh) here; it's done in
794 * ext4_journal_forget() below */
795 unlock_buffer(bh);
796 goto failed;
797 }
798
799 memset(bh->b_data, 0, blocksize);
800 branch[n].p = (__le32 *) bh->b_data + offsets[n];
801 branch[n].key = cpu_to_le32(new_blocks[n]);
802 *branch[n].p = branch[n].key;
803 if (n == indirect_blks) {
804 current_block = new_blocks[n];
805 /*
806 * End of chain, update the last new metablock of
807 * the chain to point to the new allocated
808 * data blocks numbers
809 */
810 for (i = 1; i < num; i++)
811 *(branch[n].p + i) = cpu_to_le32(++current_block);
812 }
813 BUFFER_TRACE(bh, "marking uptodate");
814 set_buffer_uptodate(bh);
815 unlock_buffer(bh);
816
817 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
818 err = ext4_handle_dirty_metadata(handle, inode, bh);
819 if (err)
820 goto failed;
821 }
822 *blks = num;
823 return err;
824 failed:
825 /* Allocation failed, free what we already allocated */
826 ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0);
827 for (i = 1; i <= n ; i++) {
828 /*
829 * branch[i].bh is newly allocated, so there is no
830 * need to revoke the block, which is why we don't
831 * need to set EXT4_FREE_BLOCKS_METADATA.
832 */
833 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1,
834 EXT4_FREE_BLOCKS_FORGET);
835 }
836 for (i = n+1; i < indirect_blks; i++)
837 ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0);
838
839 ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0);
840
841 return err;
842 }
843
844 /**
845 * ext4_splice_branch - splice the allocated branch onto inode.
846 * @handle: handle for this transaction
847 * @inode: owner
848 * @block: (logical) number of block we are adding
849 * @chain: chain of indirect blocks (with a missing link - see
850 * ext4_alloc_branch)
851 * @where: location of missing link
852 * @num: number of indirect blocks we are adding
853 * @blks: number of direct blocks we are adding
854 *
855 * This function fills the missing link and does all housekeeping needed in
856 * inode (->i_blocks, etc.). In case of success we end up with the full
857 * chain to new block and return 0.
858 */
859 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
860 ext4_lblk_t block, Indirect *where, int num,
861 int blks)
862 {
863 int i;
864 int err = 0;
865 ext4_fsblk_t current_block;
866
867 /*
868 * If we're splicing into a [td]indirect block (as opposed to the
869 * inode) then we need to get write access to the [td]indirect block
870 * before the splice.
871 */
872 if (where->bh) {
873 BUFFER_TRACE(where->bh, "get_write_access");
874 err = ext4_journal_get_write_access(handle, where->bh);
875 if (err)
876 goto err_out;
877 }
878 /* That's it */
879
880 *where->p = where->key;
881
882 /*
883 * Update the host buffer_head or inode to point to more just allocated
884 * direct blocks blocks
885 */
886 if (num == 0 && blks > 1) {
887 current_block = le32_to_cpu(where->key) + 1;
888 for (i = 1; i < blks; i++)
889 *(where->p + i) = cpu_to_le32(current_block++);
890 }
891
892 /* We are done with atomic stuff, now do the rest of housekeeping */
893 /* had we spliced it onto indirect block? */
894 if (where->bh) {
895 /*
896 * If we spliced it onto an indirect block, we haven't
897 * altered the inode. Note however that if it is being spliced
898 * onto an indirect block at the very end of the file (the
899 * file is growing) then we *will* alter the inode to reflect
900 * the new i_size. But that is not done here - it is done in
901 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
902 */
903 jbd_debug(5, "splicing indirect only\n");
904 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
905 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
906 if (err)
907 goto err_out;
908 } else {
909 /*
910 * OK, we spliced it into the inode itself on a direct block.
911 */
912 ext4_mark_inode_dirty(handle, inode);
913 jbd_debug(5, "splicing direct\n");
914 }
915 return err;
916
917 err_out:
918 for (i = 1; i <= num; i++) {
919 /*
920 * branch[i].bh is newly allocated, so there is no
921 * need to revoke the block, which is why we don't
922 * need to set EXT4_FREE_BLOCKS_METADATA.
923 */
924 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
925 EXT4_FREE_BLOCKS_FORGET);
926 }
927 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
928 blks, 0);
929
930 return err;
931 }
932
933 /*
934 * The ext4_ind_map_blocks() function handles non-extents inodes
935 * (i.e., using the traditional indirect/double-indirect i_blocks
936 * scheme) for ext4_map_blocks().
937 *
938 * Allocation strategy is simple: if we have to allocate something, we will
939 * have to go the whole way to leaf. So let's do it before attaching anything
940 * to tree, set linkage between the newborn blocks, write them if sync is
941 * required, recheck the path, free and repeat if check fails, otherwise
942 * set the last missing link (that will protect us from any truncate-generated
943 * removals - all blocks on the path are immune now) and possibly force the
944 * write on the parent block.
945 * That has a nice additional property: no special recovery from the failed
946 * allocations is needed - we simply release blocks and do not touch anything
947 * reachable from inode.
948 *
949 * `handle' can be NULL if create == 0.
950 *
951 * return > 0, # of blocks mapped or allocated.
952 * return = 0, if plain lookup failed.
953 * return < 0, error case.
954 *
955 * The ext4_ind_get_blocks() function should be called with
956 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
957 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
958 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
959 * blocks.
960 */
961 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
962 struct ext4_map_blocks *map,
963 int flags)
964 {
965 int err = -EIO;
966 ext4_lblk_t offsets[4];
967 Indirect chain[4];
968 Indirect *partial;
969 ext4_fsblk_t goal;
970 int indirect_blks;
971 int blocks_to_boundary = 0;
972 int depth;
973 int count = 0;
974 ext4_fsblk_t first_block = 0;
975
976 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
977 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
978 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
979 &blocks_to_boundary);
980
981 if (depth == 0)
982 goto out;
983
984 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
985
986 /* Simplest case - block found, no allocation needed */
987 if (!partial) {
988 first_block = le32_to_cpu(chain[depth - 1].key);
989 count++;
990 /*map more blocks*/
991 while (count < map->m_len && count <= blocks_to_boundary) {
992 ext4_fsblk_t blk;
993
994 blk = le32_to_cpu(*(chain[depth-1].p + count));
995
996 if (blk == first_block + count)
997 count++;
998 else
999 break;
1000 }
1001 goto got_it;
1002 }
1003
1004 /* Next simple case - plain lookup or failed read of indirect block */
1005 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1006 goto cleanup;
1007
1008 /*
1009 * Okay, we need to do block allocation.
1010 */
1011 goal = ext4_find_goal(inode, map->m_lblk, partial);
1012
1013 /* the number of blocks need to allocate for [d,t]indirect blocks */
1014 indirect_blks = (chain + depth) - partial - 1;
1015
1016 /*
1017 * Next look up the indirect map to count the totoal number of
1018 * direct blocks to allocate for this branch.
1019 */
1020 count = ext4_blks_to_allocate(partial, indirect_blks,
1021 map->m_len, blocks_to_boundary);
1022 /*
1023 * Block out ext4_truncate while we alter the tree
1024 */
1025 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1026 &count, goal,
1027 offsets + (partial - chain), partial);
1028
1029 /*
1030 * The ext4_splice_branch call will free and forget any buffers
1031 * on the new chain if there is a failure, but that risks using
1032 * up transaction credits, especially for bitmaps where the
1033 * credits cannot be returned. Can we handle this somehow? We
1034 * may need to return -EAGAIN upwards in the worst case. --sct
1035 */
1036 if (!err)
1037 err = ext4_splice_branch(handle, inode, map->m_lblk,
1038 partial, indirect_blks, count);
1039 if (err)
1040 goto cleanup;
1041
1042 map->m_flags |= EXT4_MAP_NEW;
1043
1044 ext4_update_inode_fsync_trans(handle, inode, 1);
1045 got_it:
1046 map->m_flags |= EXT4_MAP_MAPPED;
1047 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1048 map->m_len = count;
1049 if (count > blocks_to_boundary)
1050 map->m_flags |= EXT4_MAP_BOUNDARY;
1051 err = count;
1052 /* Clean up and exit */
1053 partial = chain + depth - 1; /* the whole chain */
1054 cleanup:
1055 while (partial > chain) {
1056 BUFFER_TRACE(partial->bh, "call brelse");
1057 brelse(partial->bh);
1058 partial--;
1059 }
1060 out:
1061 return err;
1062 }
1063
1064 #ifdef CONFIG_QUOTA
1065 qsize_t *ext4_get_reserved_space(struct inode *inode)
1066 {
1067 return &EXT4_I(inode)->i_reserved_quota;
1068 }
1069 #endif
1070
1071 /*
1072 * Calculate the number of metadata blocks need to reserve
1073 * to allocate a new block at @lblocks for non extent file based file
1074 */
1075 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1076 sector_t lblock)
1077 {
1078 struct ext4_inode_info *ei = EXT4_I(inode);
1079 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1080 int blk_bits;
1081
1082 if (lblock < EXT4_NDIR_BLOCKS)
1083 return 0;
1084
1085 lblock -= EXT4_NDIR_BLOCKS;
1086
1087 if (ei->i_da_metadata_calc_len &&
1088 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1089 ei->i_da_metadata_calc_len++;
1090 return 0;
1091 }
1092 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1093 ei->i_da_metadata_calc_len = 1;
1094 blk_bits = order_base_2(lblock);
1095 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1096 }
1097
1098 /*
1099 * Calculate the number of metadata blocks need to reserve
1100 * to allocate a block located at @lblock
1101 */
1102 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1103 {
1104 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1105 return ext4_ext_calc_metadata_amount(inode, lblock);
1106
1107 return ext4_indirect_calc_metadata_amount(inode, lblock);
1108 }
1109
1110 /*
1111 * Called with i_data_sem down, which is important since we can call
1112 * ext4_discard_preallocations() from here.
1113 */
1114 void ext4_da_update_reserve_space(struct inode *inode,
1115 int used, int quota_claim)
1116 {
1117 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1118 struct ext4_inode_info *ei = EXT4_I(inode);
1119
1120 spin_lock(&ei->i_block_reservation_lock);
1121 trace_ext4_da_update_reserve_space(inode, used);
1122 if (unlikely(used > ei->i_reserved_data_blocks)) {
1123 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1124 "with only %d reserved data blocks\n",
1125 __func__, inode->i_ino, used,
1126 ei->i_reserved_data_blocks);
1127 WARN_ON(1);
1128 used = ei->i_reserved_data_blocks;
1129 }
1130
1131 /* Update per-inode reservations */
1132 ei->i_reserved_data_blocks -= used;
1133 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1134 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1135 used + ei->i_allocated_meta_blocks);
1136 ei->i_allocated_meta_blocks = 0;
1137
1138 if (ei->i_reserved_data_blocks == 0) {
1139 /*
1140 * We can release all of the reserved metadata blocks
1141 * only when we have written all of the delayed
1142 * allocation blocks.
1143 */
1144 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1145 ei->i_reserved_meta_blocks);
1146 ei->i_reserved_meta_blocks = 0;
1147 ei->i_da_metadata_calc_len = 0;
1148 }
1149 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1150
1151 /* Update quota subsystem for data blocks */
1152 if (quota_claim)
1153 dquot_claim_block(inode, used);
1154 else {
1155 /*
1156 * We did fallocate with an offset that is already delayed
1157 * allocated. So on delayed allocated writeback we should
1158 * not re-claim the quota for fallocated blocks.
1159 */
1160 dquot_release_reservation_block(inode, used);
1161 }
1162
1163 /*
1164 * If we have done all the pending block allocations and if
1165 * there aren't any writers on the inode, we can discard the
1166 * inode's preallocations.
1167 */
1168 if ((ei->i_reserved_data_blocks == 0) &&
1169 (atomic_read(&inode->i_writecount) == 0))
1170 ext4_discard_preallocations(inode);
1171 }
1172
1173 static int __check_block_validity(struct inode *inode, const char *func,
1174 unsigned int line,
1175 struct ext4_map_blocks *map)
1176 {
1177 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1178 map->m_len)) {
1179 ext4_error_inode(inode, func, line, map->m_pblk,
1180 "lblock %lu mapped to illegal pblock "
1181 "(length %d)", (unsigned long) map->m_lblk,
1182 map->m_len);
1183 return -EIO;
1184 }
1185 return 0;
1186 }
1187
1188 #define check_block_validity(inode, map) \
1189 __check_block_validity((inode), __func__, __LINE__, (map))
1190
1191 /*
1192 * Return the number of contiguous dirty pages in a given inode
1193 * starting at page frame idx.
1194 */
1195 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1196 unsigned int max_pages)
1197 {
1198 struct address_space *mapping = inode->i_mapping;
1199 pgoff_t index;
1200 struct pagevec pvec;
1201 pgoff_t num = 0;
1202 int i, nr_pages, done = 0;
1203
1204 if (max_pages == 0)
1205 return 0;
1206 pagevec_init(&pvec, 0);
1207 while (!done) {
1208 index = idx;
1209 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1210 PAGECACHE_TAG_DIRTY,
1211 (pgoff_t)PAGEVEC_SIZE);
1212 if (nr_pages == 0)
1213 break;
1214 for (i = 0; i < nr_pages; i++) {
1215 struct page *page = pvec.pages[i];
1216 struct buffer_head *bh, *head;
1217
1218 lock_page(page);
1219 if (unlikely(page->mapping != mapping) ||
1220 !PageDirty(page) ||
1221 PageWriteback(page) ||
1222 page->index != idx) {
1223 done = 1;
1224 unlock_page(page);
1225 break;
1226 }
1227 if (page_has_buffers(page)) {
1228 bh = head = page_buffers(page);
1229 do {
1230 if (!buffer_delay(bh) &&
1231 !buffer_unwritten(bh))
1232 done = 1;
1233 bh = bh->b_this_page;
1234 } while (!done && (bh != head));
1235 }
1236 unlock_page(page);
1237 if (done)
1238 break;
1239 idx++;
1240 num++;
1241 if (num >= max_pages) {
1242 done = 1;
1243 break;
1244 }
1245 }
1246 pagevec_release(&pvec);
1247 }
1248 return num;
1249 }
1250
1251 /*
1252 * The ext4_map_blocks() function tries to look up the requested blocks,
1253 * and returns if the blocks are already mapped.
1254 *
1255 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1256 * and store the allocated blocks in the result buffer head and mark it
1257 * mapped.
1258 *
1259 * If file type is extents based, it will call ext4_ext_map_blocks(),
1260 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1261 * based files
1262 *
1263 * On success, it returns the number of blocks being mapped or allocate.
1264 * if create==0 and the blocks are pre-allocated and uninitialized block,
1265 * the result buffer head is unmapped. If the create ==1, it will make sure
1266 * the buffer head is mapped.
1267 *
1268 * It returns 0 if plain look up failed (blocks have not been allocated), in
1269 * that casem, buffer head is unmapped
1270 *
1271 * It returns the error in case of allocation failure.
1272 */
1273 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1274 struct ext4_map_blocks *map, int flags)
1275 {
1276 int retval;
1277
1278 map->m_flags = 0;
1279 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1280 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1281 (unsigned long) map->m_lblk);
1282 /*
1283 * Try to see if we can get the block without requesting a new
1284 * file system block.
1285 */
1286 down_read((&EXT4_I(inode)->i_data_sem));
1287 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1288 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1289 } else {
1290 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1291 }
1292 up_read((&EXT4_I(inode)->i_data_sem));
1293
1294 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1295 int ret = check_block_validity(inode, map);
1296 if (ret != 0)
1297 return ret;
1298 }
1299
1300 /* If it is only a block(s) look up */
1301 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1302 return retval;
1303
1304 /*
1305 * Returns if the blocks have already allocated
1306 *
1307 * Note that if blocks have been preallocated
1308 * ext4_ext_get_block() returns th create = 0
1309 * with buffer head unmapped.
1310 */
1311 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1312 return retval;
1313
1314 /*
1315 * When we call get_blocks without the create flag, the
1316 * BH_Unwritten flag could have gotten set if the blocks
1317 * requested were part of a uninitialized extent. We need to
1318 * clear this flag now that we are committed to convert all or
1319 * part of the uninitialized extent to be an initialized
1320 * extent. This is because we need to avoid the combination
1321 * of BH_Unwritten and BH_Mapped flags being simultaneously
1322 * set on the buffer_head.
1323 */
1324 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1325
1326 /*
1327 * New blocks allocate and/or writing to uninitialized extent
1328 * will possibly result in updating i_data, so we take
1329 * the write lock of i_data_sem, and call get_blocks()
1330 * with create == 1 flag.
1331 */
1332 down_write((&EXT4_I(inode)->i_data_sem));
1333
1334 /*
1335 * if the caller is from delayed allocation writeout path
1336 * we have already reserved fs blocks for allocation
1337 * let the underlying get_block() function know to
1338 * avoid double accounting
1339 */
1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1342 /*
1343 * We need to check for EXT4 here because migrate
1344 * could have changed the inode type in between
1345 */
1346 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1347 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1348 } else {
1349 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1350
1351 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1352 /*
1353 * We allocated new blocks which will result in
1354 * i_data's format changing. Force the migrate
1355 * to fail by clearing migrate flags
1356 */
1357 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1358 }
1359
1360 /*
1361 * Update reserved blocks/metadata blocks after successful
1362 * block allocation which had been deferred till now. We don't
1363 * support fallocate for non extent files. So we can update
1364 * reserve space here.
1365 */
1366 if ((retval > 0) &&
1367 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1368 ext4_da_update_reserve_space(inode, retval, 1);
1369 }
1370 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1371 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1372
1373 up_write((&EXT4_I(inode)->i_data_sem));
1374 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1375 int ret = check_block_validity(inode, map);
1376 if (ret != 0)
1377 return ret;
1378 }
1379 return retval;
1380 }
1381
1382 /* Maximum number of blocks we map for direct IO at once. */
1383 #define DIO_MAX_BLOCKS 4096
1384
1385 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1386 struct buffer_head *bh, int flags)
1387 {
1388 handle_t *handle = ext4_journal_current_handle();
1389 struct ext4_map_blocks map;
1390 int ret = 0, started = 0;
1391 int dio_credits;
1392
1393 map.m_lblk = iblock;
1394 map.m_len = bh->b_size >> inode->i_blkbits;
1395
1396 if (flags && !handle) {
1397 /* Direct IO write... */
1398 if (map.m_len > DIO_MAX_BLOCKS)
1399 map.m_len = DIO_MAX_BLOCKS;
1400 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1401 handle = ext4_journal_start(inode, dio_credits);
1402 if (IS_ERR(handle)) {
1403 ret = PTR_ERR(handle);
1404 return ret;
1405 }
1406 started = 1;
1407 }
1408
1409 ret = ext4_map_blocks(handle, inode, &map, flags);
1410 if (ret > 0) {
1411 map_bh(bh, inode->i_sb, map.m_pblk);
1412 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1413 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1414 ret = 0;
1415 }
1416 if (started)
1417 ext4_journal_stop(handle);
1418 return ret;
1419 }
1420
1421 int ext4_get_block(struct inode *inode, sector_t iblock,
1422 struct buffer_head *bh, int create)
1423 {
1424 return _ext4_get_block(inode, iblock, bh,
1425 create ? EXT4_GET_BLOCKS_CREATE : 0);
1426 }
1427
1428 /*
1429 * `handle' can be NULL if create is zero
1430 */
1431 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1432 ext4_lblk_t block, int create, int *errp)
1433 {
1434 struct ext4_map_blocks map;
1435 struct buffer_head *bh;
1436 int fatal = 0, err;
1437
1438 J_ASSERT(handle != NULL || create == 0);
1439
1440 map.m_lblk = block;
1441 map.m_len = 1;
1442 err = ext4_map_blocks(handle, inode, &map,
1443 create ? EXT4_GET_BLOCKS_CREATE : 0);
1444
1445 if (err < 0)
1446 *errp = err;
1447 if (err <= 0)
1448 return NULL;
1449 *errp = 0;
1450
1451 bh = sb_getblk(inode->i_sb, map.m_pblk);
1452 if (!bh) {
1453 *errp = -EIO;
1454 return NULL;
1455 }
1456 if (map.m_flags & EXT4_MAP_NEW) {
1457 J_ASSERT(create != 0);
1458 J_ASSERT(handle != NULL);
1459
1460 /*
1461 * Now that we do not always journal data, we should
1462 * keep in mind whether this should always journal the
1463 * new buffer as metadata. For now, regular file
1464 * writes use ext4_get_block instead, so it's not a
1465 * problem.
1466 */
1467 lock_buffer(bh);
1468 BUFFER_TRACE(bh, "call get_create_access");
1469 fatal = ext4_journal_get_create_access(handle, bh);
1470 if (!fatal && !buffer_uptodate(bh)) {
1471 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1472 set_buffer_uptodate(bh);
1473 }
1474 unlock_buffer(bh);
1475 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1476 err = ext4_handle_dirty_metadata(handle, inode, bh);
1477 if (!fatal)
1478 fatal = err;
1479 } else {
1480 BUFFER_TRACE(bh, "not a new buffer");
1481 }
1482 if (fatal) {
1483 *errp = fatal;
1484 brelse(bh);
1485 bh = NULL;
1486 }
1487 return bh;
1488 }
1489
1490 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1491 ext4_lblk_t block, int create, int *err)
1492 {
1493 struct buffer_head *bh;
1494
1495 bh = ext4_getblk(handle, inode, block, create, err);
1496 if (!bh)
1497 return bh;
1498 if (buffer_uptodate(bh))
1499 return bh;
1500 ll_rw_block(READ_META, 1, &bh);
1501 wait_on_buffer(bh);
1502 if (buffer_uptodate(bh))
1503 return bh;
1504 put_bh(bh);
1505 *err = -EIO;
1506 return NULL;
1507 }
1508
1509 static int walk_page_buffers(handle_t *handle,
1510 struct buffer_head *head,
1511 unsigned from,
1512 unsigned to,
1513 int *partial,
1514 int (*fn)(handle_t *handle,
1515 struct buffer_head *bh))
1516 {
1517 struct buffer_head *bh;
1518 unsigned block_start, block_end;
1519 unsigned blocksize = head->b_size;
1520 int err, ret = 0;
1521 struct buffer_head *next;
1522
1523 for (bh = head, block_start = 0;
1524 ret == 0 && (bh != head || !block_start);
1525 block_start = block_end, bh = next) {
1526 next = bh->b_this_page;
1527 block_end = block_start + blocksize;
1528 if (block_end <= from || block_start >= to) {
1529 if (partial && !buffer_uptodate(bh))
1530 *partial = 1;
1531 continue;
1532 }
1533 err = (*fn)(handle, bh);
1534 if (!ret)
1535 ret = err;
1536 }
1537 return ret;
1538 }
1539
1540 /*
1541 * To preserve ordering, it is essential that the hole instantiation and
1542 * the data write be encapsulated in a single transaction. We cannot
1543 * close off a transaction and start a new one between the ext4_get_block()
1544 * and the commit_write(). So doing the jbd2_journal_start at the start of
1545 * prepare_write() is the right place.
1546 *
1547 * Also, this function can nest inside ext4_writepage() ->
1548 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1549 * has generated enough buffer credits to do the whole page. So we won't
1550 * block on the journal in that case, which is good, because the caller may
1551 * be PF_MEMALLOC.
1552 *
1553 * By accident, ext4 can be reentered when a transaction is open via
1554 * quota file writes. If we were to commit the transaction while thus
1555 * reentered, there can be a deadlock - we would be holding a quota
1556 * lock, and the commit would never complete if another thread had a
1557 * transaction open and was blocking on the quota lock - a ranking
1558 * violation.
1559 *
1560 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1561 * will _not_ run commit under these circumstances because handle->h_ref
1562 * is elevated. We'll still have enough credits for the tiny quotafile
1563 * write.
1564 */
1565 static int do_journal_get_write_access(handle_t *handle,
1566 struct buffer_head *bh)
1567 {
1568 int dirty = buffer_dirty(bh);
1569 int ret;
1570
1571 if (!buffer_mapped(bh) || buffer_freed(bh))
1572 return 0;
1573 /*
1574 * __block_write_begin() could have dirtied some buffers. Clean
1575 * the dirty bit as jbd2_journal_get_write_access() could complain
1576 * otherwise about fs integrity issues. Setting of the dirty bit
1577 * by __block_write_begin() isn't a real problem here as we clear
1578 * the bit before releasing a page lock and thus writeback cannot
1579 * ever write the buffer.
1580 */
1581 if (dirty)
1582 clear_buffer_dirty(bh);
1583 ret = ext4_journal_get_write_access(handle, bh);
1584 if (!ret && dirty)
1585 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1586 return ret;
1587 }
1588
1589 /*
1590 * Truncate blocks that were not used by write. We have to truncate the
1591 * pagecache as well so that corresponding buffers get properly unmapped.
1592 */
1593 static void ext4_truncate_failed_write(struct inode *inode)
1594 {
1595 truncate_inode_pages(inode->i_mapping, inode->i_size);
1596 ext4_truncate(inode);
1597 }
1598
1599 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1600 struct buffer_head *bh_result, int create);
1601 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1602 loff_t pos, unsigned len, unsigned flags,
1603 struct page **pagep, void **fsdata)
1604 {
1605 struct inode *inode = mapping->host;
1606 int ret, needed_blocks;
1607 handle_t *handle;
1608 int retries = 0;
1609 struct page *page;
1610 pgoff_t index;
1611 unsigned from, to;
1612
1613 trace_ext4_write_begin(inode, pos, len, flags);
1614 /*
1615 * Reserve one block more for addition to orphan list in case
1616 * we allocate blocks but write fails for some reason
1617 */
1618 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1619 index = pos >> PAGE_CACHE_SHIFT;
1620 from = pos & (PAGE_CACHE_SIZE - 1);
1621 to = from + len;
1622
1623 retry:
1624 handle = ext4_journal_start(inode, needed_blocks);
1625 if (IS_ERR(handle)) {
1626 ret = PTR_ERR(handle);
1627 goto out;
1628 }
1629
1630 /* We cannot recurse into the filesystem as the transaction is already
1631 * started */
1632 flags |= AOP_FLAG_NOFS;
1633
1634 page = grab_cache_page_write_begin(mapping, index, flags);
1635 if (!page) {
1636 ext4_journal_stop(handle);
1637 ret = -ENOMEM;
1638 goto out;
1639 }
1640 *pagep = page;
1641
1642 if (ext4_should_dioread_nolock(inode))
1643 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1644 else
1645 ret = __block_write_begin(page, pos, len, ext4_get_block);
1646
1647 if (!ret && ext4_should_journal_data(inode)) {
1648 ret = walk_page_buffers(handle, page_buffers(page),
1649 from, to, NULL, do_journal_get_write_access);
1650 }
1651
1652 if (ret) {
1653 unlock_page(page);
1654 page_cache_release(page);
1655 /*
1656 * __block_write_begin may have instantiated a few blocks
1657 * outside i_size. Trim these off again. Don't need
1658 * i_size_read because we hold i_mutex.
1659 *
1660 * Add inode to orphan list in case we crash before
1661 * truncate finishes
1662 */
1663 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1664 ext4_orphan_add(handle, inode);
1665
1666 ext4_journal_stop(handle);
1667 if (pos + len > inode->i_size) {
1668 ext4_truncate_failed_write(inode);
1669 /*
1670 * If truncate failed early the inode might
1671 * still be on the orphan list; we need to
1672 * make sure the inode is removed from the
1673 * orphan list in that case.
1674 */
1675 if (inode->i_nlink)
1676 ext4_orphan_del(NULL, inode);
1677 }
1678 }
1679
1680 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1681 goto retry;
1682 out:
1683 return ret;
1684 }
1685
1686 /* For write_end() in data=journal mode */
1687 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1688 {
1689 if (!buffer_mapped(bh) || buffer_freed(bh))
1690 return 0;
1691 set_buffer_uptodate(bh);
1692 return ext4_handle_dirty_metadata(handle, NULL, bh);
1693 }
1694
1695 static int ext4_generic_write_end(struct file *file,
1696 struct address_space *mapping,
1697 loff_t pos, unsigned len, unsigned copied,
1698 struct page *page, void *fsdata)
1699 {
1700 int i_size_changed = 0;
1701 struct inode *inode = mapping->host;
1702 handle_t *handle = ext4_journal_current_handle();
1703
1704 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1705
1706 /*
1707 * No need to use i_size_read() here, the i_size
1708 * cannot change under us because we hold i_mutex.
1709 *
1710 * But it's important to update i_size while still holding page lock:
1711 * page writeout could otherwise come in and zero beyond i_size.
1712 */
1713 if (pos + copied > inode->i_size) {
1714 i_size_write(inode, pos + copied);
1715 i_size_changed = 1;
1716 }
1717
1718 if (pos + copied > EXT4_I(inode)->i_disksize) {
1719 /* We need to mark inode dirty even if
1720 * new_i_size is less that inode->i_size
1721 * bu greater than i_disksize.(hint delalloc)
1722 */
1723 ext4_update_i_disksize(inode, (pos + copied));
1724 i_size_changed = 1;
1725 }
1726 unlock_page(page);
1727 page_cache_release(page);
1728
1729 /*
1730 * Don't mark the inode dirty under page lock. First, it unnecessarily
1731 * makes the holding time of page lock longer. Second, it forces lock
1732 * ordering of page lock and transaction start for journaling
1733 * filesystems.
1734 */
1735 if (i_size_changed)
1736 ext4_mark_inode_dirty(handle, inode);
1737
1738 return copied;
1739 }
1740
1741 /*
1742 * We need to pick up the new inode size which generic_commit_write gave us
1743 * `file' can be NULL - eg, when called from page_symlink().
1744 *
1745 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1746 * buffers are managed internally.
1747 */
1748 static int ext4_ordered_write_end(struct file *file,
1749 struct address_space *mapping,
1750 loff_t pos, unsigned len, unsigned copied,
1751 struct page *page, void *fsdata)
1752 {
1753 handle_t *handle = ext4_journal_current_handle();
1754 struct inode *inode = mapping->host;
1755 int ret = 0, ret2;
1756
1757 trace_ext4_ordered_write_end(inode, pos, len, copied);
1758 ret = ext4_jbd2_file_inode(handle, inode);
1759
1760 if (ret == 0) {
1761 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1762 page, fsdata);
1763 copied = ret2;
1764 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1765 /* if we have allocated more blocks and copied
1766 * less. We will have blocks allocated outside
1767 * inode->i_size. So truncate them
1768 */
1769 ext4_orphan_add(handle, inode);
1770 if (ret2 < 0)
1771 ret = ret2;
1772 }
1773 ret2 = ext4_journal_stop(handle);
1774 if (!ret)
1775 ret = ret2;
1776
1777 if (pos + len > inode->i_size) {
1778 ext4_truncate_failed_write(inode);
1779 /*
1780 * If truncate failed early the inode might still be
1781 * on the orphan list; we need to make sure the inode
1782 * is removed from the orphan list in that case.
1783 */
1784 if (inode->i_nlink)
1785 ext4_orphan_del(NULL, inode);
1786 }
1787
1788
1789 return ret ? ret : copied;
1790 }
1791
1792 static int ext4_writeback_write_end(struct file *file,
1793 struct address_space *mapping,
1794 loff_t pos, unsigned len, unsigned copied,
1795 struct page *page, void *fsdata)
1796 {
1797 handle_t *handle = ext4_journal_current_handle();
1798 struct inode *inode = mapping->host;
1799 int ret = 0, ret2;
1800
1801 trace_ext4_writeback_write_end(inode, pos, len, copied);
1802 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1803 page, fsdata);
1804 copied = ret2;
1805 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1806 /* if we have allocated more blocks and copied
1807 * less. We will have blocks allocated outside
1808 * inode->i_size. So truncate them
1809 */
1810 ext4_orphan_add(handle, inode);
1811
1812 if (ret2 < 0)
1813 ret = ret2;
1814
1815 ret2 = ext4_journal_stop(handle);
1816 if (!ret)
1817 ret = ret2;
1818
1819 if (pos + len > inode->i_size) {
1820 ext4_truncate_failed_write(inode);
1821 /*
1822 * If truncate failed early the inode might still be
1823 * on the orphan list; we need to make sure the inode
1824 * is removed from the orphan list in that case.
1825 */
1826 if (inode->i_nlink)
1827 ext4_orphan_del(NULL, inode);
1828 }
1829
1830 return ret ? ret : copied;
1831 }
1832
1833 static int ext4_journalled_write_end(struct file *file,
1834 struct address_space *mapping,
1835 loff_t pos, unsigned len, unsigned copied,
1836 struct page *page, void *fsdata)
1837 {
1838 handle_t *handle = ext4_journal_current_handle();
1839 struct inode *inode = mapping->host;
1840 int ret = 0, ret2;
1841 int partial = 0;
1842 unsigned from, to;
1843 loff_t new_i_size;
1844
1845 trace_ext4_journalled_write_end(inode, pos, len, copied);
1846 from = pos & (PAGE_CACHE_SIZE - 1);
1847 to = from + len;
1848
1849 if (copied < len) {
1850 if (!PageUptodate(page))
1851 copied = 0;
1852 page_zero_new_buffers(page, from+copied, to);
1853 }
1854
1855 ret = walk_page_buffers(handle, page_buffers(page), from,
1856 to, &partial, write_end_fn);
1857 if (!partial)
1858 SetPageUptodate(page);
1859 new_i_size = pos + copied;
1860 if (new_i_size > inode->i_size)
1861 i_size_write(inode, pos+copied);
1862 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1863 if (new_i_size > EXT4_I(inode)->i_disksize) {
1864 ext4_update_i_disksize(inode, new_i_size);
1865 ret2 = ext4_mark_inode_dirty(handle, inode);
1866 if (!ret)
1867 ret = ret2;
1868 }
1869
1870 unlock_page(page);
1871 page_cache_release(page);
1872 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1873 /* if we have allocated more blocks and copied
1874 * less. We will have blocks allocated outside
1875 * inode->i_size. So truncate them
1876 */
1877 ext4_orphan_add(handle, inode);
1878
1879 ret2 = ext4_journal_stop(handle);
1880 if (!ret)
1881 ret = ret2;
1882 if (pos + len > inode->i_size) {
1883 ext4_truncate_failed_write(inode);
1884 /*
1885 * If truncate failed early the inode might still be
1886 * on the orphan list; we need to make sure the inode
1887 * is removed from the orphan list in that case.
1888 */
1889 if (inode->i_nlink)
1890 ext4_orphan_del(NULL, inode);
1891 }
1892
1893 return ret ? ret : copied;
1894 }
1895
1896 /*
1897 * Reserve a single block located at lblock
1898 */
1899 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1900 {
1901 int retries = 0;
1902 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1903 struct ext4_inode_info *ei = EXT4_I(inode);
1904 unsigned long md_needed;
1905 int ret;
1906
1907 /*
1908 * recalculate the amount of metadata blocks to reserve
1909 * in order to allocate nrblocks
1910 * worse case is one extent per block
1911 */
1912 repeat:
1913 spin_lock(&ei->i_block_reservation_lock);
1914 md_needed = ext4_calc_metadata_amount(inode, lblock);
1915 trace_ext4_da_reserve_space(inode, md_needed);
1916 spin_unlock(&ei->i_block_reservation_lock);
1917
1918 /*
1919 * We will charge metadata quota at writeout time; this saves
1920 * us from metadata over-estimation, though we may go over by
1921 * a small amount in the end. Here we just reserve for data.
1922 */
1923 ret = dquot_reserve_block(inode, 1);
1924 if (ret)
1925 return ret;
1926 /*
1927 * We do still charge estimated metadata to the sb though;
1928 * we cannot afford to run out of free blocks.
1929 */
1930 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1931 dquot_release_reservation_block(inode, 1);
1932 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1933 yield();
1934 goto repeat;
1935 }
1936 return -ENOSPC;
1937 }
1938 spin_lock(&ei->i_block_reservation_lock);
1939 ei->i_reserved_data_blocks++;
1940 ei->i_reserved_meta_blocks += md_needed;
1941 spin_unlock(&ei->i_block_reservation_lock);
1942
1943 return 0; /* success */
1944 }
1945
1946 static void ext4_da_release_space(struct inode *inode, int to_free)
1947 {
1948 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1949 struct ext4_inode_info *ei = EXT4_I(inode);
1950
1951 if (!to_free)
1952 return; /* Nothing to release, exit */
1953
1954 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1955
1956 trace_ext4_da_release_space(inode, to_free);
1957 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1958 /*
1959 * if there aren't enough reserved blocks, then the
1960 * counter is messed up somewhere. Since this
1961 * function is called from invalidate page, it's
1962 * harmless to return without any action.
1963 */
1964 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1965 "ino %lu, to_free %d with only %d reserved "
1966 "data blocks\n", inode->i_ino, to_free,
1967 ei->i_reserved_data_blocks);
1968 WARN_ON(1);
1969 to_free = ei->i_reserved_data_blocks;
1970 }
1971 ei->i_reserved_data_blocks -= to_free;
1972
1973 if (ei->i_reserved_data_blocks == 0) {
1974 /*
1975 * We can release all of the reserved metadata blocks
1976 * only when we have written all of the delayed
1977 * allocation blocks.
1978 */
1979 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1980 ei->i_reserved_meta_blocks);
1981 ei->i_reserved_meta_blocks = 0;
1982 ei->i_da_metadata_calc_len = 0;
1983 }
1984
1985 /* update fs dirty data blocks counter */
1986 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1987
1988 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1989
1990 dquot_release_reservation_block(inode, to_free);
1991 }
1992
1993 static void ext4_da_page_release_reservation(struct page *page,
1994 unsigned long offset)
1995 {
1996 int to_release = 0;
1997 struct buffer_head *head, *bh;
1998 unsigned int curr_off = 0;
1999
2000 head = page_buffers(page);
2001 bh = head;
2002 do {
2003 unsigned int next_off = curr_off + bh->b_size;
2004
2005 if ((offset <= curr_off) && (buffer_delay(bh))) {
2006 to_release++;
2007 clear_buffer_delay(bh);
2008 }
2009 curr_off = next_off;
2010 } while ((bh = bh->b_this_page) != head);
2011 ext4_da_release_space(page->mapping->host, to_release);
2012 }
2013
2014 /*
2015 * Delayed allocation stuff
2016 */
2017
2018 /*
2019 * mpage_da_submit_io - walks through extent of pages and try to write
2020 * them with writepage() call back
2021 *
2022 * @mpd->inode: inode
2023 * @mpd->first_page: first page of the extent
2024 * @mpd->next_page: page after the last page of the extent
2025 *
2026 * By the time mpage_da_submit_io() is called we expect all blocks
2027 * to be allocated. this may be wrong if allocation failed.
2028 *
2029 * As pages are already locked by write_cache_pages(), we can't use it
2030 */
2031 static int mpage_da_submit_io(struct mpage_da_data *mpd,
2032 struct ext4_map_blocks *map)
2033 {
2034 struct pagevec pvec;
2035 unsigned long index, end;
2036 int ret = 0, err, nr_pages, i;
2037 struct inode *inode = mpd->inode;
2038 struct address_space *mapping = inode->i_mapping;
2039 loff_t size = i_size_read(inode);
2040 unsigned int len, block_start;
2041 struct buffer_head *bh, *page_bufs = NULL;
2042 int journal_data = ext4_should_journal_data(inode);
2043 sector_t pblock = 0, cur_logical = 0;
2044 struct ext4_io_submit io_submit;
2045
2046 BUG_ON(mpd->next_page <= mpd->first_page);
2047 memset(&io_submit, 0, sizeof(io_submit));
2048 /*
2049 * We need to start from the first_page to the next_page - 1
2050 * to make sure we also write the mapped dirty buffer_heads.
2051 * If we look at mpd->b_blocknr we would only be looking
2052 * at the currently mapped buffer_heads.
2053 */
2054 index = mpd->first_page;
2055 end = mpd->next_page - 1;
2056
2057 pagevec_init(&pvec, 0);
2058 while (index <= end) {
2059 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2060 if (nr_pages == 0)
2061 break;
2062 for (i = 0; i < nr_pages; i++) {
2063 int commit_write = 0, skip_page = 0;
2064 struct page *page = pvec.pages[i];
2065
2066 index = page->index;
2067 if (index > end)
2068 break;
2069
2070 if (index == size >> PAGE_CACHE_SHIFT)
2071 len = size & ~PAGE_CACHE_MASK;
2072 else
2073 len = PAGE_CACHE_SIZE;
2074 if (map) {
2075 cur_logical = index << (PAGE_CACHE_SHIFT -
2076 inode->i_blkbits);
2077 pblock = map->m_pblk + (cur_logical -
2078 map->m_lblk);
2079 }
2080 index++;
2081
2082 BUG_ON(!PageLocked(page));
2083 BUG_ON(PageWriteback(page));
2084
2085 /*
2086 * If the page does not have buffers (for
2087 * whatever reason), try to create them using
2088 * __block_write_begin. If this fails,
2089 * skip the page and move on.
2090 */
2091 if (!page_has_buffers(page)) {
2092 if (__block_write_begin(page, 0, len,
2093 noalloc_get_block_write)) {
2094 skip_page:
2095 unlock_page(page);
2096 continue;
2097 }
2098 commit_write = 1;
2099 }
2100
2101 bh = page_bufs = page_buffers(page);
2102 block_start = 0;
2103 do {
2104 if (!bh)
2105 goto skip_page;
2106 if (map && (cur_logical >= map->m_lblk) &&
2107 (cur_logical <= (map->m_lblk +
2108 (map->m_len - 1)))) {
2109 if (buffer_delay(bh)) {
2110 clear_buffer_delay(bh);
2111 bh->b_blocknr = pblock;
2112 }
2113 if (buffer_unwritten(bh) ||
2114 buffer_mapped(bh))
2115 BUG_ON(bh->b_blocknr != pblock);
2116 if (map->m_flags & EXT4_MAP_UNINIT)
2117 set_buffer_uninit(bh);
2118 clear_buffer_unwritten(bh);
2119 }
2120
2121 /* skip page if block allocation undone */
2122 if (buffer_delay(bh) || buffer_unwritten(bh))
2123 skip_page = 1;
2124 bh = bh->b_this_page;
2125 block_start += bh->b_size;
2126 cur_logical++;
2127 pblock++;
2128 } while (bh != page_bufs);
2129
2130 if (skip_page)
2131 goto skip_page;
2132
2133 if (commit_write)
2134 /* mark the buffer_heads as dirty & uptodate */
2135 block_commit_write(page, 0, len);
2136
2137 clear_page_dirty_for_io(page);
2138 /*
2139 * Delalloc doesn't support data journalling,
2140 * but eventually maybe we'll lift this
2141 * restriction.
2142 */
2143 if (unlikely(journal_data && PageChecked(page)))
2144 err = __ext4_journalled_writepage(page, len);
2145 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2146 err = ext4_bio_write_page(&io_submit, page,
2147 len, mpd->wbc);
2148 else
2149 err = block_write_full_page(page,
2150 noalloc_get_block_write, mpd->wbc);
2151
2152 if (!err)
2153 mpd->pages_written++;
2154 /*
2155 * In error case, we have to continue because
2156 * remaining pages are still locked
2157 */
2158 if (ret == 0)
2159 ret = err;
2160 }
2161 pagevec_release(&pvec);
2162 }
2163 ext4_io_submit(&io_submit);
2164 return ret;
2165 }
2166
2167 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
2168 {
2169 int nr_pages, i;
2170 pgoff_t index, end;
2171 struct pagevec pvec;
2172 struct inode *inode = mpd->inode;
2173 struct address_space *mapping = inode->i_mapping;
2174
2175 index = mpd->first_page;
2176 end = mpd->next_page - 1;
2177 while (index <= end) {
2178 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2179 if (nr_pages == 0)
2180 break;
2181 for (i = 0; i < nr_pages; i++) {
2182 struct page *page = pvec.pages[i];
2183 if (page->index > end)
2184 break;
2185 BUG_ON(!PageLocked(page));
2186 BUG_ON(PageWriteback(page));
2187 block_invalidatepage(page, 0);
2188 ClearPageUptodate(page);
2189 unlock_page(page);
2190 }
2191 index = pvec.pages[nr_pages - 1]->index + 1;
2192 pagevec_release(&pvec);
2193 }
2194 return;
2195 }
2196
2197 static void ext4_print_free_blocks(struct inode *inode)
2198 {
2199 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2200 printk(KERN_CRIT "Total free blocks count %lld\n",
2201 ext4_count_free_blocks(inode->i_sb));
2202 printk(KERN_CRIT "Free/Dirty block details\n");
2203 printk(KERN_CRIT "free_blocks=%lld\n",
2204 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2205 printk(KERN_CRIT "dirty_blocks=%lld\n",
2206 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2207 printk(KERN_CRIT "Block reservation details\n");
2208 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2209 EXT4_I(inode)->i_reserved_data_blocks);
2210 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2211 EXT4_I(inode)->i_reserved_meta_blocks);
2212 return;
2213 }
2214
2215 /*
2216 * mpage_da_map_and_submit - go through given space, map them
2217 * if necessary, and then submit them for I/O
2218 *
2219 * @mpd - bh describing space
2220 *
2221 * The function skips space we know is already mapped to disk blocks.
2222 *
2223 */
2224 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2225 {
2226 int err, blks, get_blocks_flags;
2227 struct ext4_map_blocks map, *mapp = NULL;
2228 sector_t next = mpd->b_blocknr;
2229 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2230 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2231 handle_t *handle = NULL;
2232
2233 /*
2234 * If the blocks are mapped already, or we couldn't accumulate
2235 * any blocks, then proceed immediately to the submission stage.
2236 */
2237 if ((mpd->b_size == 0) ||
2238 ((mpd->b_state & (1 << BH_Mapped)) &&
2239 !(mpd->b_state & (1 << BH_Delay)) &&
2240 !(mpd->b_state & (1 << BH_Unwritten))))
2241 goto submit_io;
2242
2243 handle = ext4_journal_current_handle();
2244 BUG_ON(!handle);
2245
2246 /*
2247 * Call ext4_map_blocks() to allocate any delayed allocation
2248 * blocks, or to convert an uninitialized extent to be
2249 * initialized (in the case where we have written into
2250 * one or more preallocated blocks).
2251 *
2252 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2253 * indicate that we are on the delayed allocation path. This
2254 * affects functions in many different parts of the allocation
2255 * call path. This flag exists primarily because we don't
2256 * want to change *many* call functions, so ext4_map_blocks()
2257 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2258 * inode's allocation semaphore is taken.
2259 *
2260 * If the blocks in questions were delalloc blocks, set
2261 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2262 * variables are updated after the blocks have been allocated.
2263 */
2264 map.m_lblk = next;
2265 map.m_len = max_blocks;
2266 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2267 if (ext4_should_dioread_nolock(mpd->inode))
2268 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2269 if (mpd->b_state & (1 << BH_Delay))
2270 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2271
2272 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2273 if (blks < 0) {
2274 struct super_block *sb = mpd->inode->i_sb;
2275
2276 err = blks;
2277 /*
2278 * If get block returns EAGAIN or ENOSPC and there
2279 * appears to be free blocks we will just let
2280 * mpage_da_submit_io() unlock all of the pages.
2281 */
2282 if (err == -EAGAIN)
2283 goto submit_io;
2284
2285 if (err == -ENOSPC &&
2286 ext4_count_free_blocks(sb)) {
2287 mpd->retval = err;
2288 goto submit_io;
2289 }
2290
2291 /*
2292 * get block failure will cause us to loop in
2293 * writepages, because a_ops->writepage won't be able
2294 * to make progress. The page will be redirtied by
2295 * writepage and writepages will again try to write
2296 * the same.
2297 */
2298 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2299 ext4_msg(sb, KERN_CRIT,
2300 "delayed block allocation failed for inode %lu "
2301 "at logical offset %llu with max blocks %zd "
2302 "with error %d", mpd->inode->i_ino,
2303 (unsigned long long) next,
2304 mpd->b_size >> mpd->inode->i_blkbits, err);
2305 ext4_msg(sb, KERN_CRIT,
2306 "This should not happen!! Data will be lost\n");
2307 if (err == -ENOSPC)
2308 ext4_print_free_blocks(mpd->inode);
2309 }
2310 /* invalidate all the pages */
2311 ext4_da_block_invalidatepages(mpd);
2312
2313 /* Mark this page range as having been completed */
2314 mpd->io_done = 1;
2315 return;
2316 }
2317 BUG_ON(blks == 0);
2318
2319 mapp = &map;
2320 if (map.m_flags & EXT4_MAP_NEW) {
2321 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2322 int i;
2323
2324 for (i = 0; i < map.m_len; i++)
2325 unmap_underlying_metadata(bdev, map.m_pblk + i);
2326 }
2327
2328 if (ext4_should_order_data(mpd->inode)) {
2329 err = ext4_jbd2_file_inode(handle, mpd->inode);
2330 if (err)
2331 /* This only happens if the journal is aborted */
2332 return;
2333 }
2334
2335 /*
2336 * Update on-disk size along with block allocation.
2337 */
2338 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2339 if (disksize > i_size_read(mpd->inode))
2340 disksize = i_size_read(mpd->inode);
2341 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2342 ext4_update_i_disksize(mpd->inode, disksize);
2343 err = ext4_mark_inode_dirty(handle, mpd->inode);
2344 if (err)
2345 ext4_error(mpd->inode->i_sb,
2346 "Failed to mark inode %lu dirty",
2347 mpd->inode->i_ino);
2348 }
2349
2350 submit_io:
2351 mpage_da_submit_io(mpd, mapp);
2352 mpd->io_done = 1;
2353 }
2354
2355 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2356 (1 << BH_Delay) | (1 << BH_Unwritten))
2357
2358 /*
2359 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2360 *
2361 * @mpd->lbh - extent of blocks
2362 * @logical - logical number of the block in the file
2363 * @bh - bh of the block (used to access block's state)
2364 *
2365 * the function is used to collect contig. blocks in same state
2366 */
2367 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2368 sector_t logical, size_t b_size,
2369 unsigned long b_state)
2370 {
2371 sector_t next;
2372 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2373
2374 /*
2375 * XXX Don't go larger than mballoc is willing to allocate
2376 * This is a stopgap solution. We eventually need to fold
2377 * mpage_da_submit_io() into this function and then call
2378 * ext4_map_blocks() multiple times in a loop
2379 */
2380 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2381 goto flush_it;
2382
2383 /* check if thereserved journal credits might overflow */
2384 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2385 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2386 /*
2387 * With non-extent format we are limited by the journal
2388 * credit available. Total credit needed to insert
2389 * nrblocks contiguous blocks is dependent on the
2390 * nrblocks. So limit nrblocks.
2391 */
2392 goto flush_it;
2393 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2394 EXT4_MAX_TRANS_DATA) {
2395 /*
2396 * Adding the new buffer_head would make it cross the
2397 * allowed limit for which we have journal credit
2398 * reserved. So limit the new bh->b_size
2399 */
2400 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2401 mpd->inode->i_blkbits;
2402 /* we will do mpage_da_submit_io in the next loop */
2403 }
2404 }
2405 /*
2406 * First block in the extent
2407 */
2408 if (mpd->b_size == 0) {
2409 mpd->b_blocknr = logical;
2410 mpd->b_size = b_size;
2411 mpd->b_state = b_state & BH_FLAGS;
2412 return;
2413 }
2414
2415 next = mpd->b_blocknr + nrblocks;
2416 /*
2417 * Can we merge the block to our big extent?
2418 */
2419 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2420 mpd->b_size += b_size;
2421 return;
2422 }
2423
2424 flush_it:
2425 /*
2426 * We couldn't merge the block to our extent, so we
2427 * need to flush current extent and start new one
2428 */
2429 mpage_da_map_and_submit(mpd);
2430 return;
2431 }
2432
2433 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2434 {
2435 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2436 }
2437
2438 /*
2439 * This is a special get_blocks_t callback which is used by
2440 * ext4_da_write_begin(). It will either return mapped block or
2441 * reserve space for a single block.
2442 *
2443 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2444 * We also have b_blocknr = -1 and b_bdev initialized properly
2445 *
2446 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2447 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2448 * initialized properly.
2449 */
2450 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2451 struct buffer_head *bh, int create)
2452 {
2453 struct ext4_map_blocks map;
2454 int ret = 0;
2455 sector_t invalid_block = ~((sector_t) 0xffff);
2456
2457 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2458 invalid_block = ~0;
2459
2460 BUG_ON(create == 0);
2461 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2462
2463 map.m_lblk = iblock;
2464 map.m_len = 1;
2465
2466 /*
2467 * first, we need to know whether the block is allocated already
2468 * preallocated blocks are unmapped but should treated
2469 * the same as allocated blocks.
2470 */
2471 ret = ext4_map_blocks(NULL, inode, &map, 0);
2472 if (ret < 0)
2473 return ret;
2474 if (ret == 0) {
2475 if (buffer_delay(bh))
2476 return 0; /* Not sure this could or should happen */
2477 /*
2478 * XXX: __block_write_begin() unmaps passed block, is it OK?
2479 */
2480 ret = ext4_da_reserve_space(inode, iblock);
2481 if (ret)
2482 /* not enough space to reserve */
2483 return ret;
2484
2485 map_bh(bh, inode->i_sb, invalid_block);
2486 set_buffer_new(bh);
2487 set_buffer_delay(bh);
2488 return 0;
2489 }
2490
2491 map_bh(bh, inode->i_sb, map.m_pblk);
2492 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2493
2494 if (buffer_unwritten(bh)) {
2495 /* A delayed write to unwritten bh should be marked
2496 * new and mapped. Mapped ensures that we don't do
2497 * get_block multiple times when we write to the same
2498 * offset and new ensures that we do proper zero out
2499 * for partial write.
2500 */
2501 set_buffer_new(bh);
2502 set_buffer_mapped(bh);
2503 }
2504 return 0;
2505 }
2506
2507 /*
2508 * This function is used as a standard get_block_t calback function
2509 * when there is no desire to allocate any blocks. It is used as a
2510 * callback function for block_write_begin() and block_write_full_page().
2511 * These functions should only try to map a single block at a time.
2512 *
2513 * Since this function doesn't do block allocations even if the caller
2514 * requests it by passing in create=1, it is critically important that
2515 * any caller checks to make sure that any buffer heads are returned
2516 * by this function are either all already mapped or marked for
2517 * delayed allocation before calling block_write_full_page(). Otherwise,
2518 * b_blocknr could be left unitialized, and the page write functions will
2519 * be taken by surprise.
2520 */
2521 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2522 struct buffer_head *bh_result, int create)
2523 {
2524 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2525 return _ext4_get_block(inode, iblock, bh_result, 0);
2526 }
2527
2528 static int bget_one(handle_t *handle, struct buffer_head *bh)
2529 {
2530 get_bh(bh);
2531 return 0;
2532 }
2533
2534 static int bput_one(handle_t *handle, struct buffer_head *bh)
2535 {
2536 put_bh(bh);
2537 return 0;
2538 }
2539
2540 static int __ext4_journalled_writepage(struct page *page,
2541 unsigned int len)
2542 {
2543 struct address_space *mapping = page->mapping;
2544 struct inode *inode = mapping->host;
2545 struct buffer_head *page_bufs;
2546 handle_t *handle = NULL;
2547 int ret = 0;
2548 int err;
2549
2550 ClearPageChecked(page);
2551 page_bufs = page_buffers(page);
2552 BUG_ON(!page_bufs);
2553 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2554 /* As soon as we unlock the page, it can go away, but we have
2555 * references to buffers so we are safe */
2556 unlock_page(page);
2557
2558 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2559 if (IS_ERR(handle)) {
2560 ret = PTR_ERR(handle);
2561 goto out;
2562 }
2563
2564 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2565 do_journal_get_write_access);
2566
2567 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2568 write_end_fn);
2569 if (ret == 0)
2570 ret = err;
2571 err = ext4_journal_stop(handle);
2572 if (!ret)
2573 ret = err;
2574
2575 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2576 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2577 out:
2578 return ret;
2579 }
2580
2581 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2582 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2583
2584 /*
2585 * Note that we don't need to start a transaction unless we're journaling data
2586 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2587 * need to file the inode to the transaction's list in ordered mode because if
2588 * we are writing back data added by write(), the inode is already there and if
2589 * we are writing back data modified via mmap(), noone guarantees in which
2590 * transaction the data will hit the disk. In case we are journaling data, we
2591 * cannot start transaction directly because transaction start ranks above page
2592 * lock so we have to do some magic.
2593 *
2594 * This function can get called via...
2595 * - ext4_da_writepages after taking page lock (have journal handle)
2596 * - journal_submit_inode_data_buffers (no journal handle)
2597 * - shrink_page_list via pdflush (no journal handle)
2598 * - grab_page_cache when doing write_begin (have journal handle)
2599 *
2600 * We don't do any block allocation in this function. If we have page with
2601 * multiple blocks we need to write those buffer_heads that are mapped. This
2602 * is important for mmaped based write. So if we do with blocksize 1K
2603 * truncate(f, 1024);
2604 * a = mmap(f, 0, 4096);
2605 * a[0] = 'a';
2606 * truncate(f, 4096);
2607 * we have in the page first buffer_head mapped via page_mkwrite call back
2608 * but other bufer_heads would be unmapped but dirty(dirty done via the
2609 * do_wp_page). So writepage should write the first block. If we modify
2610 * the mmap area beyond 1024 we will again get a page_fault and the
2611 * page_mkwrite callback will do the block allocation and mark the
2612 * buffer_heads mapped.
2613 *
2614 * We redirty the page if we have any buffer_heads that is either delay or
2615 * unwritten in the page.
2616 *
2617 * We can get recursively called as show below.
2618 *
2619 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2620 * ext4_writepage()
2621 *
2622 * But since we don't do any block allocation we should not deadlock.
2623 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2624 */
2625 static int ext4_writepage(struct page *page,
2626 struct writeback_control *wbc)
2627 {
2628 int ret = 0, commit_write = 0;
2629 loff_t size;
2630 unsigned int len;
2631 struct buffer_head *page_bufs = NULL;
2632 struct inode *inode = page->mapping->host;
2633
2634 trace_ext4_writepage(inode, page);
2635 size = i_size_read(inode);
2636 if (page->index == size >> PAGE_CACHE_SHIFT)
2637 len = size & ~PAGE_CACHE_MASK;
2638 else
2639 len = PAGE_CACHE_SIZE;
2640
2641 /*
2642 * If the page does not have buffers (for whatever reason),
2643 * try to create them using __block_write_begin. If this
2644 * fails, redirty the page and move on.
2645 */
2646 if (!page_has_buffers(page)) {
2647 if (__block_write_begin(page, 0, len,
2648 noalloc_get_block_write)) {
2649 redirty_page:
2650 redirty_page_for_writepage(wbc, page);
2651 unlock_page(page);
2652 return 0;
2653 }
2654 commit_write = 1;
2655 }
2656 page_bufs = page_buffers(page);
2657 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2658 ext4_bh_delay_or_unwritten)) {
2659 /*
2660 * We don't want to do block allocation, so redirty
2661 * the page and return. We may reach here when we do
2662 * a journal commit via journal_submit_inode_data_buffers.
2663 * We can also reach here via shrink_page_list
2664 */
2665 goto redirty_page;
2666 }
2667 if (commit_write)
2668 /* now mark the buffer_heads as dirty and uptodate */
2669 block_commit_write(page, 0, len);
2670
2671 if (PageChecked(page) && ext4_should_journal_data(inode))
2672 /*
2673 * It's mmapped pagecache. Add buffers and journal it. There
2674 * doesn't seem much point in redirtying the page here.
2675 */
2676 return __ext4_journalled_writepage(page, len);
2677
2678 if (buffer_uninit(page_bufs)) {
2679 ext4_set_bh_endio(page_bufs, inode);
2680 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2681 wbc, ext4_end_io_buffer_write);
2682 } else
2683 ret = block_write_full_page(page, noalloc_get_block_write,
2684 wbc);
2685
2686 return ret;
2687 }
2688
2689 /*
2690 * This is called via ext4_da_writepages() to
2691 * calulate the total number of credits to reserve to fit
2692 * a single extent allocation into a single transaction,
2693 * ext4_da_writpeages() will loop calling this before
2694 * the block allocation.
2695 */
2696
2697 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2698 {
2699 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2700
2701 /*
2702 * With non-extent format the journal credit needed to
2703 * insert nrblocks contiguous block is dependent on
2704 * number of contiguous block. So we will limit
2705 * number of contiguous block to a sane value
2706 */
2707 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2708 (max_blocks > EXT4_MAX_TRANS_DATA))
2709 max_blocks = EXT4_MAX_TRANS_DATA;
2710
2711 return ext4_chunk_trans_blocks(inode, max_blocks);
2712 }
2713
2714 /*
2715 * write_cache_pages_da - walk the list of dirty pages of the given
2716 * address space and accumulate pages that need writing, and call
2717 * mpage_da_map_and_submit to map the pages and then write them.
2718 */
2719 static int write_cache_pages_da(struct address_space *mapping,
2720 struct writeback_control *wbc,
2721 struct mpage_da_data *mpd,
2722 pgoff_t *done_index)
2723 {
2724 struct buffer_head *bh, *head;
2725 struct inode *inode = mpd->inode;
2726 struct pagevec pvec;
2727 unsigned int nr_pages;
2728 sector_t logical;
2729 pgoff_t index, end;
2730 long nr_to_write = wbc->nr_to_write;
2731 int i, tag, ret = 0;
2732
2733 pagevec_init(&pvec, 0);
2734 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2735 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2736
2737 if (wbc->sync_mode == WB_SYNC_ALL)
2738 tag = PAGECACHE_TAG_TOWRITE;
2739 else
2740 tag = PAGECACHE_TAG_DIRTY;
2741
2742 *done_index = index;
2743 while (index <= end) {
2744 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2745 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2746 if (nr_pages == 0)
2747 return 0;
2748
2749 for (i = 0; i < nr_pages; i++) {
2750 struct page *page = pvec.pages[i];
2751
2752 /*
2753 * At this point, the page may be truncated or
2754 * invalidated (changing page->mapping to NULL), or
2755 * even swizzled back from swapper_space to tmpfs file
2756 * mapping. However, page->index will not change
2757 * because we have a reference on the page.
2758 */
2759 if (page->index > end)
2760 goto out;
2761
2762 *done_index = page->index + 1;
2763
2764 /*
2765 * If we can't merge this page, and we have
2766 * accumulated an contiguous region, write it
2767 */
2768 if ((mpd->next_page != page->index) &&
2769 (mpd->next_page != mpd->first_page)) {
2770 mpage_da_map_and_submit(mpd);
2771 goto ret_extent_tail;
2772 }
2773
2774 lock_page(page);
2775
2776 /*
2777 * If the page is no longer dirty, or its
2778 * mapping no longer corresponds to inode we
2779 * are writing (which means it has been
2780 * truncated or invalidated), or the page is
2781 * already under writeback and we are not
2782 * doing a data integrity writeback, skip the page
2783 */
2784 if (!PageDirty(page) ||
2785 (PageWriteback(page) &&
2786 (wbc->sync_mode == WB_SYNC_NONE)) ||
2787 unlikely(page->mapping != mapping)) {
2788 unlock_page(page);
2789 continue;
2790 }
2791
2792 if (PageWriteback(page))
2793 wait_on_page_writeback(page);
2794
2795 BUG_ON(PageWriteback(page));
2796
2797 if (mpd->next_page != page->index) {
2798 /*
2799 * Start next extent of pages and blocks
2800 */
2801 mpd->first_page = page->index;
2802 mpd->b_size = 0;
2803 mpd->b_state = 0;
2804 mpd->b_blocknr = 0;
2805 }
2806
2807 mpd->next_page = page->index + 1;
2808 logical = (sector_t) page->index <<
2809 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2810
2811 if (!page_has_buffers(page)) {
2812 mpage_add_bh_to_extent(mpd, logical,
2813 PAGE_CACHE_SIZE,
2814 (1 << BH_Dirty) | (1 << BH_Uptodate));
2815 if (mpd->io_done)
2816 goto ret_extent_tail;
2817 } else {
2818 /*
2819 * Page with regular buffer heads,
2820 * just add all dirty ones
2821 */
2822 head = page_buffers(page);
2823 bh = head;
2824 do {
2825 BUG_ON(buffer_locked(bh));
2826 /*
2827 * We need to try to allocate
2828 * unmapped blocks in the same page.
2829 * Otherwise we won't make progress
2830 * with the page in ext4_writepage
2831 */
2832 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2833 mpage_add_bh_to_extent(mpd, logical,
2834 bh->b_size,
2835 bh->b_state);
2836 if (mpd->io_done)
2837 goto ret_extent_tail;
2838 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2839 /*
2840 * mapped dirty buffer. We need
2841 * to update the b_state
2842 * because we look at b_state
2843 * in mpage_da_map_blocks. We
2844 * don't update b_size because
2845 * if we find an unmapped
2846 * buffer_head later we need to
2847 * use the b_state flag of that
2848 * buffer_head.
2849 */
2850 if (mpd->b_size == 0)
2851 mpd->b_state = bh->b_state & BH_FLAGS;
2852 }
2853 logical++;
2854 } while ((bh = bh->b_this_page) != head);
2855 }
2856
2857 if (nr_to_write > 0) {
2858 nr_to_write--;
2859 if (nr_to_write == 0 &&
2860 wbc->sync_mode == WB_SYNC_NONE)
2861 /*
2862 * We stop writing back only if we are
2863 * not doing integrity sync. In case of
2864 * integrity sync we have to keep going
2865 * because someone may be concurrently
2866 * dirtying pages, and we might have
2867 * synced a lot of newly appeared dirty
2868 * pages, but have not synced all of the
2869 * old dirty pages.
2870 */
2871 goto out;
2872 }
2873 }
2874 pagevec_release(&pvec);
2875 cond_resched();
2876 }
2877 return 0;
2878 ret_extent_tail:
2879 ret = MPAGE_DA_EXTENT_TAIL;
2880 out:
2881 pagevec_release(&pvec);
2882 cond_resched();
2883 return ret;
2884 }
2885
2886
2887 static int ext4_da_writepages(struct address_space *mapping,
2888 struct writeback_control *wbc)
2889 {
2890 pgoff_t index;
2891 int range_whole = 0;
2892 handle_t *handle = NULL;
2893 struct mpage_da_data mpd;
2894 struct inode *inode = mapping->host;
2895 int pages_written = 0;
2896 unsigned int max_pages;
2897 int range_cyclic, cycled = 1, io_done = 0;
2898 int needed_blocks, ret = 0;
2899 long desired_nr_to_write, nr_to_writebump = 0;
2900 loff_t range_start = wbc->range_start;
2901 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2902 pgoff_t done_index = 0;
2903 pgoff_t end;
2904
2905 trace_ext4_da_writepages(inode, wbc);
2906
2907 /*
2908 * No pages to write? This is mainly a kludge to avoid starting
2909 * a transaction for special inodes like journal inode on last iput()
2910 * because that could violate lock ordering on umount
2911 */
2912 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2913 return 0;
2914
2915 /*
2916 * If the filesystem has aborted, it is read-only, so return
2917 * right away instead of dumping stack traces later on that
2918 * will obscure the real source of the problem. We test
2919 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2920 * the latter could be true if the filesystem is mounted
2921 * read-only, and in that case, ext4_da_writepages should
2922 * *never* be called, so if that ever happens, we would want
2923 * the stack trace.
2924 */
2925 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2926 return -EROFS;
2927
2928 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2929 range_whole = 1;
2930
2931 range_cyclic = wbc->range_cyclic;
2932 if (wbc->range_cyclic) {
2933 index = mapping->writeback_index;
2934 if (index)
2935 cycled = 0;
2936 wbc->range_start = index << PAGE_CACHE_SHIFT;
2937 wbc->range_end = LLONG_MAX;
2938 wbc->range_cyclic = 0;
2939 end = -1;
2940 } else {
2941 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2942 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2943 }
2944
2945 /*
2946 * This works around two forms of stupidity. The first is in
2947 * the writeback code, which caps the maximum number of pages
2948 * written to be 1024 pages. This is wrong on multiple
2949 * levels; different architectues have a different page size,
2950 * which changes the maximum amount of data which gets
2951 * written. Secondly, 4 megabytes is way too small. XFS
2952 * forces this value to be 16 megabytes by multiplying
2953 * nr_to_write parameter by four, and then relies on its
2954 * allocator to allocate larger extents to make them
2955 * contiguous. Unfortunately this brings us to the second
2956 * stupidity, which is that ext4's mballoc code only allocates
2957 * at most 2048 blocks. So we force contiguous writes up to
2958 * the number of dirty blocks in the inode, or
2959 * sbi->max_writeback_mb_bump whichever is smaller.
2960 */
2961 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2962 if (!range_cyclic && range_whole) {
2963 if (wbc->nr_to_write == LONG_MAX)
2964 desired_nr_to_write = wbc->nr_to_write;
2965 else
2966 desired_nr_to_write = wbc->nr_to_write * 8;
2967 } else
2968 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2969 max_pages);
2970 if (desired_nr_to_write > max_pages)
2971 desired_nr_to_write = max_pages;
2972
2973 if (wbc->nr_to_write < desired_nr_to_write) {
2974 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2975 wbc->nr_to_write = desired_nr_to_write;
2976 }
2977
2978 mpd.wbc = wbc;
2979 mpd.inode = mapping->host;
2980
2981 retry:
2982 if (wbc->sync_mode == WB_SYNC_ALL)
2983 tag_pages_for_writeback(mapping, index, end);
2984
2985 while (!ret && wbc->nr_to_write > 0) {
2986
2987 /*
2988 * we insert one extent at a time. So we need
2989 * credit needed for single extent allocation.
2990 * journalled mode is currently not supported
2991 * by delalloc
2992 */
2993 BUG_ON(ext4_should_journal_data(inode));
2994 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2995
2996 /* start a new transaction*/
2997 handle = ext4_journal_start(inode, needed_blocks);
2998 if (IS_ERR(handle)) {
2999 ret = PTR_ERR(handle);
3000 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3001 "%ld pages, ino %lu; err %d", __func__,
3002 wbc->nr_to_write, inode->i_ino, ret);
3003 goto out_writepages;
3004 }
3005
3006 /*
3007 * Now call write_cache_pages_da() to find the next
3008 * contiguous region of logical blocks that need
3009 * blocks to be allocated by ext4 and submit them.
3010 */
3011 mpd.b_size = 0;
3012 mpd.b_state = 0;
3013 mpd.b_blocknr = 0;
3014 mpd.first_page = 0;
3015 mpd.next_page = 0;
3016 mpd.io_done = 0;
3017 mpd.pages_written = 0;
3018 mpd.retval = 0;
3019 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3020 /*
3021 * If we have a contiguous extent of pages and we
3022 * haven't done the I/O yet, map the blocks and submit
3023 * them for I/O.
3024 */
3025 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3026 mpage_da_map_and_submit(&mpd);
3027 ret = MPAGE_DA_EXTENT_TAIL;
3028 }
3029 trace_ext4_da_write_pages(inode, &mpd);
3030 wbc->nr_to_write -= mpd.pages_written;
3031
3032 ext4_journal_stop(handle);
3033
3034 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3035 /* commit the transaction which would
3036 * free blocks released in the transaction
3037 * and try again
3038 */
3039 jbd2_journal_force_commit_nested(sbi->s_journal);
3040 ret = 0;
3041 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3042 /*
3043 * got one extent now try with
3044 * rest of the pages
3045 */
3046 pages_written += mpd.pages_written;
3047 ret = 0;
3048 io_done = 1;
3049 } else if (wbc->nr_to_write)
3050 /*
3051 * There is no more writeout needed
3052 * or we requested for a noblocking writeout
3053 * and we found the device congested
3054 */
3055 break;
3056 }
3057 if (!io_done && !cycled) {
3058 cycled = 1;
3059 index = 0;
3060 wbc->range_start = index << PAGE_CACHE_SHIFT;
3061 wbc->range_end = mapping->writeback_index - 1;
3062 goto retry;
3063 }
3064
3065 /* Update index */
3066 wbc->range_cyclic = range_cyclic;
3067 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3068 /*
3069 * set the writeback_index so that range_cyclic
3070 * mode will write it back later
3071 */
3072 mapping->writeback_index = done_index;
3073
3074 out_writepages:
3075 wbc->nr_to_write -= nr_to_writebump;
3076 wbc->range_start = range_start;
3077 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3078 return ret;
3079 }
3080
3081 #define FALL_BACK_TO_NONDELALLOC 1
3082 static int ext4_nonda_switch(struct super_block *sb)
3083 {
3084 s64 free_blocks, dirty_blocks;
3085 struct ext4_sb_info *sbi = EXT4_SB(sb);
3086
3087 /*
3088 * switch to non delalloc mode if we are running low
3089 * on free block. The free block accounting via percpu
3090 * counters can get slightly wrong with percpu_counter_batch getting
3091 * accumulated on each CPU without updating global counters
3092 * Delalloc need an accurate free block accounting. So switch
3093 * to non delalloc when we are near to error range.
3094 */
3095 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3096 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3097 if (2 * free_blocks < 3 * dirty_blocks ||
3098 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3099 /*
3100 * free block count is less than 150% of dirty blocks
3101 * or free blocks is less than watermark
3102 */
3103 return 1;
3104 }
3105 /*
3106 * Even if we don't switch but are nearing capacity,
3107 * start pushing delalloc when 1/2 of free blocks are dirty.
3108 */
3109 if (free_blocks < 2 * dirty_blocks)
3110 writeback_inodes_sb_if_idle(sb);
3111
3112 return 0;
3113 }
3114
3115 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3116 loff_t pos, unsigned len, unsigned flags,
3117 struct page **pagep, void **fsdata)
3118 {
3119 int ret, retries = 0;
3120 struct page *page;
3121 pgoff_t index;
3122 struct inode *inode = mapping->host;
3123 handle_t *handle;
3124
3125 index = pos >> PAGE_CACHE_SHIFT;
3126
3127 if (ext4_nonda_switch(inode->i_sb)) {
3128 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3129 return ext4_write_begin(file, mapping, pos,
3130 len, flags, pagep, fsdata);
3131 }
3132 *fsdata = (void *)0;
3133 trace_ext4_da_write_begin(inode, pos, len, flags);
3134 retry:
3135 /*
3136 * With delayed allocation, we don't log the i_disksize update
3137 * if there is delayed block allocation. But we still need
3138 * to journalling the i_disksize update if writes to the end
3139 * of file which has an already mapped buffer.
3140 */
3141 handle = ext4_journal_start(inode, 1);
3142 if (IS_ERR(handle)) {
3143 ret = PTR_ERR(handle);
3144 goto out;
3145 }
3146 /* We cannot recurse into the filesystem as the transaction is already
3147 * started */
3148 flags |= AOP_FLAG_NOFS;
3149
3150 page = grab_cache_page_write_begin(mapping, index, flags);
3151 if (!page) {
3152 ext4_journal_stop(handle);
3153 ret = -ENOMEM;
3154 goto out;
3155 }
3156 *pagep = page;
3157
3158 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3159 if (ret < 0) {
3160 unlock_page(page);
3161 ext4_journal_stop(handle);
3162 page_cache_release(page);
3163 /*
3164 * block_write_begin may have instantiated a few blocks
3165 * outside i_size. Trim these off again. Don't need
3166 * i_size_read because we hold i_mutex.
3167 */
3168 if (pos + len > inode->i_size)
3169 ext4_truncate_failed_write(inode);
3170 }
3171
3172 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3173 goto retry;
3174 out:
3175 return ret;
3176 }
3177
3178 /*
3179 * Check if we should update i_disksize
3180 * when write to the end of file but not require block allocation
3181 */
3182 static int ext4_da_should_update_i_disksize(struct page *page,
3183 unsigned long offset)
3184 {
3185 struct buffer_head *bh;
3186 struct inode *inode = page->mapping->host;
3187 unsigned int idx;
3188 int i;
3189
3190 bh = page_buffers(page);
3191 idx = offset >> inode->i_blkbits;
3192
3193 for (i = 0; i < idx; i++)
3194 bh = bh->b_this_page;
3195
3196 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3197 return 0;
3198 return 1;
3199 }
3200
3201 static int ext4_da_write_end(struct file *file,
3202 struct address_space *mapping,
3203 loff_t pos, unsigned len, unsigned copied,
3204 struct page *page, void *fsdata)
3205 {
3206 struct inode *inode = mapping->host;
3207 int ret = 0, ret2;
3208 handle_t *handle = ext4_journal_current_handle();
3209 loff_t new_i_size;
3210 unsigned long start, end;
3211 int write_mode = (int)(unsigned long)fsdata;
3212
3213 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3214 if (ext4_should_order_data(inode)) {
3215 return ext4_ordered_write_end(file, mapping, pos,
3216 len, copied, page, fsdata);
3217 } else if (ext4_should_writeback_data(inode)) {
3218 return ext4_writeback_write_end(file, mapping, pos,
3219 len, copied, page, fsdata);
3220 } else {
3221 BUG();
3222 }
3223 }
3224
3225 trace_ext4_da_write_end(inode, pos, len, copied);
3226 start = pos & (PAGE_CACHE_SIZE - 1);
3227 end = start + copied - 1;
3228
3229 /*
3230 * generic_write_end() will run mark_inode_dirty() if i_size
3231 * changes. So let's piggyback the i_disksize mark_inode_dirty
3232 * into that.
3233 */
3234
3235 new_i_size = pos + copied;
3236 if (new_i_size > EXT4_I(inode)->i_disksize) {
3237 if (ext4_da_should_update_i_disksize(page, end)) {
3238 down_write(&EXT4_I(inode)->i_data_sem);
3239 if (new_i_size > EXT4_I(inode)->i_disksize) {
3240 /*
3241 * Updating i_disksize when extending file
3242 * without needing block allocation
3243 */
3244 if (ext4_should_order_data(inode))
3245 ret = ext4_jbd2_file_inode(handle,
3246 inode);
3247
3248 EXT4_I(inode)->i_disksize = new_i_size;
3249 }
3250 up_write(&EXT4_I(inode)->i_data_sem);
3251 /* We need to mark inode dirty even if
3252 * new_i_size is less that inode->i_size
3253 * bu greater than i_disksize.(hint delalloc)
3254 */
3255 ext4_mark_inode_dirty(handle, inode);
3256 }
3257 }
3258 ret2 = generic_write_end(file, mapping, pos, len, copied,
3259 page, fsdata);
3260 copied = ret2;
3261 if (ret2 < 0)
3262 ret = ret2;
3263 ret2 = ext4_journal_stop(handle);
3264 if (!ret)
3265 ret = ret2;
3266
3267 return ret ? ret : copied;
3268 }
3269
3270 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3271 {
3272 /*
3273 * Drop reserved blocks
3274 */
3275 BUG_ON(!PageLocked(page));
3276 if (!page_has_buffers(page))
3277 goto out;
3278
3279 ext4_da_page_release_reservation(page, offset);
3280
3281 out:
3282 ext4_invalidatepage(page, offset);
3283
3284 return;
3285 }
3286
3287 /*
3288 * Force all delayed allocation blocks to be allocated for a given inode.
3289 */
3290 int ext4_alloc_da_blocks(struct inode *inode)
3291 {
3292 trace_ext4_alloc_da_blocks(inode);
3293
3294 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3295 !EXT4_I(inode)->i_reserved_meta_blocks)
3296 return 0;
3297
3298 /*
3299 * We do something simple for now. The filemap_flush() will
3300 * also start triggering a write of the data blocks, which is
3301 * not strictly speaking necessary (and for users of
3302 * laptop_mode, not even desirable). However, to do otherwise
3303 * would require replicating code paths in:
3304 *
3305 * ext4_da_writepages() ->
3306 * write_cache_pages() ---> (via passed in callback function)
3307 * __mpage_da_writepage() -->
3308 * mpage_add_bh_to_extent()
3309 * mpage_da_map_blocks()
3310 *
3311 * The problem is that write_cache_pages(), located in
3312 * mm/page-writeback.c, marks pages clean in preparation for
3313 * doing I/O, which is not desirable if we're not planning on
3314 * doing I/O at all.
3315 *
3316 * We could call write_cache_pages(), and then redirty all of
3317 * the pages by calling redirty_page_for_writepage() but that
3318 * would be ugly in the extreme. So instead we would need to
3319 * replicate parts of the code in the above functions,
3320 * simplifying them becuase we wouldn't actually intend to
3321 * write out the pages, but rather only collect contiguous
3322 * logical block extents, call the multi-block allocator, and
3323 * then update the buffer heads with the block allocations.
3324 *
3325 * For now, though, we'll cheat by calling filemap_flush(),
3326 * which will map the blocks, and start the I/O, but not
3327 * actually wait for the I/O to complete.
3328 */
3329 return filemap_flush(inode->i_mapping);
3330 }
3331
3332 /*
3333 * bmap() is special. It gets used by applications such as lilo and by
3334 * the swapper to find the on-disk block of a specific piece of data.
3335 *
3336 * Naturally, this is dangerous if the block concerned is still in the
3337 * journal. If somebody makes a swapfile on an ext4 data-journaling
3338 * filesystem and enables swap, then they may get a nasty shock when the
3339 * data getting swapped to that swapfile suddenly gets overwritten by
3340 * the original zero's written out previously to the journal and
3341 * awaiting writeback in the kernel's buffer cache.
3342 *
3343 * So, if we see any bmap calls here on a modified, data-journaled file,
3344 * take extra steps to flush any blocks which might be in the cache.
3345 */
3346 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3347 {
3348 struct inode *inode = mapping->host;
3349 journal_t *journal;
3350 int err;
3351
3352 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3353 test_opt(inode->i_sb, DELALLOC)) {
3354 /*
3355 * With delalloc we want to sync the file
3356 * so that we can make sure we allocate
3357 * blocks for file
3358 */
3359 filemap_write_and_wait(mapping);
3360 }
3361
3362 if (EXT4_JOURNAL(inode) &&
3363 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3364 /*
3365 * This is a REALLY heavyweight approach, but the use of
3366 * bmap on dirty files is expected to be extremely rare:
3367 * only if we run lilo or swapon on a freshly made file
3368 * do we expect this to happen.
3369 *
3370 * (bmap requires CAP_SYS_RAWIO so this does not
3371 * represent an unprivileged user DOS attack --- we'd be
3372 * in trouble if mortal users could trigger this path at
3373 * will.)
3374 *
3375 * NB. EXT4_STATE_JDATA is not set on files other than
3376 * regular files. If somebody wants to bmap a directory
3377 * or symlink and gets confused because the buffer
3378 * hasn't yet been flushed to disk, they deserve
3379 * everything they get.
3380 */
3381
3382 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3383 journal = EXT4_JOURNAL(inode);
3384 jbd2_journal_lock_updates(journal);
3385 err = jbd2_journal_flush(journal);
3386 jbd2_journal_unlock_updates(journal);
3387
3388 if (err)
3389 return 0;
3390 }
3391
3392 return generic_block_bmap(mapping, block, ext4_get_block);
3393 }
3394
3395 static int ext4_readpage(struct file *file, struct page *page)
3396 {
3397 return mpage_readpage(page, ext4_get_block);
3398 }
3399
3400 static int
3401 ext4_readpages(struct file *file, struct address_space *mapping,
3402 struct list_head *pages, unsigned nr_pages)
3403 {
3404 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3405 }
3406
3407 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3408 {
3409 struct buffer_head *head, *bh;
3410 unsigned int curr_off = 0;
3411
3412 if (!page_has_buffers(page))
3413 return;
3414 head = bh = page_buffers(page);
3415 do {
3416 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3417 && bh->b_private) {
3418 ext4_free_io_end(bh->b_private);
3419 bh->b_private = NULL;
3420 bh->b_end_io = NULL;
3421 }
3422 curr_off = curr_off + bh->b_size;
3423 bh = bh->b_this_page;
3424 } while (bh != head);
3425 }
3426
3427 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3428 {
3429 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3430
3431 /*
3432 * free any io_end structure allocated for buffers to be discarded
3433 */
3434 if (ext4_should_dioread_nolock(page->mapping->host))
3435 ext4_invalidatepage_free_endio(page, offset);
3436 /*
3437 * If it's a full truncate we just forget about the pending dirtying
3438 */
3439 if (offset == 0)
3440 ClearPageChecked(page);
3441
3442 if (journal)
3443 jbd2_journal_invalidatepage(journal, page, offset);
3444 else
3445 block_invalidatepage(page, offset);
3446 }
3447
3448 static int ext4_releasepage(struct page *page, gfp_t wait)
3449 {
3450 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3451
3452 WARN_ON(PageChecked(page));
3453 if (!page_has_buffers(page))
3454 return 0;
3455 if (journal)
3456 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3457 else
3458 return try_to_free_buffers(page);
3459 }
3460
3461 /*
3462 * O_DIRECT for ext3 (or indirect map) based files
3463 *
3464 * If the O_DIRECT write will extend the file then add this inode to the
3465 * orphan list. So recovery will truncate it back to the original size
3466 * if the machine crashes during the write.
3467 *
3468 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3469 * crashes then stale disk data _may_ be exposed inside the file. But current
3470 * VFS code falls back into buffered path in that case so we are safe.
3471 */
3472 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3473 const struct iovec *iov, loff_t offset,
3474 unsigned long nr_segs)
3475 {
3476 struct file *file = iocb->ki_filp;
3477 struct inode *inode = file->f_mapping->host;
3478 struct ext4_inode_info *ei = EXT4_I(inode);
3479 handle_t *handle;
3480 ssize_t ret;
3481 int orphan = 0;
3482 size_t count = iov_length(iov, nr_segs);
3483 int retries = 0;
3484
3485 if (rw == WRITE) {
3486 loff_t final_size = offset + count;
3487
3488 if (final_size > inode->i_size) {
3489 /* Credits for sb + inode write */
3490 handle = ext4_journal_start(inode, 2);
3491 if (IS_ERR(handle)) {
3492 ret = PTR_ERR(handle);
3493 goto out;
3494 }
3495 ret = ext4_orphan_add(handle, inode);
3496 if (ret) {
3497 ext4_journal_stop(handle);
3498 goto out;
3499 }
3500 orphan = 1;
3501 ei->i_disksize = inode->i_size;
3502 ext4_journal_stop(handle);
3503 }
3504 }
3505
3506 retry:
3507 if (rw == READ && ext4_should_dioread_nolock(inode))
3508 ret = __blockdev_direct_IO(rw, iocb, inode,
3509 inode->i_sb->s_bdev, iov,
3510 offset, nr_segs,
3511 ext4_get_block, NULL, NULL, 0);
3512 else {
3513 ret = blockdev_direct_IO(rw, iocb, inode,
3514 inode->i_sb->s_bdev, iov,
3515 offset, nr_segs,
3516 ext4_get_block, NULL);
3517
3518 if (unlikely((rw & WRITE) && ret < 0)) {
3519 loff_t isize = i_size_read(inode);
3520 loff_t end = offset + iov_length(iov, nr_segs);
3521
3522 if (end > isize)
3523 vmtruncate(inode, isize);
3524 }
3525 }
3526 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3527 goto retry;
3528
3529 if (orphan) {
3530 int err;
3531
3532 /* Credits for sb + inode write */
3533 handle = ext4_journal_start(inode, 2);
3534 if (IS_ERR(handle)) {
3535 /* This is really bad luck. We've written the data
3536 * but cannot extend i_size. Bail out and pretend
3537 * the write failed... */
3538 ret = PTR_ERR(handle);
3539 if (inode->i_nlink)
3540 ext4_orphan_del(NULL, inode);
3541
3542 goto out;
3543 }
3544 if (inode->i_nlink)
3545 ext4_orphan_del(handle, inode);
3546 if (ret > 0) {
3547 loff_t end = offset + ret;
3548 if (end > inode->i_size) {
3549 ei->i_disksize = end;
3550 i_size_write(inode, end);
3551 /*
3552 * We're going to return a positive `ret'
3553 * here due to non-zero-length I/O, so there's
3554 * no way of reporting error returns from
3555 * ext4_mark_inode_dirty() to userspace. So
3556 * ignore it.
3557 */
3558 ext4_mark_inode_dirty(handle, inode);
3559 }
3560 }
3561 err = ext4_journal_stop(handle);
3562 if (ret == 0)
3563 ret = err;
3564 }
3565 out:
3566 return ret;
3567 }
3568
3569 /*
3570 * ext4_get_block used when preparing for a DIO write or buffer write.
3571 * We allocate an uinitialized extent if blocks haven't been allocated.
3572 * The extent will be converted to initialized after the IO is complete.
3573 */
3574 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3575 struct buffer_head *bh_result, int create)
3576 {
3577 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3578 inode->i_ino, create);
3579 return _ext4_get_block(inode, iblock, bh_result,
3580 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3581 }
3582
3583 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3584 ssize_t size, void *private, int ret,
3585 bool is_async)
3586 {
3587 ext4_io_end_t *io_end = iocb->private;
3588 struct workqueue_struct *wq;
3589 unsigned long flags;
3590 struct ext4_inode_info *ei;
3591
3592 /* if not async direct IO or dio with 0 bytes write, just return */
3593 if (!io_end || !size)
3594 goto out;
3595
3596 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3597 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3598 iocb->private, io_end->inode->i_ino, iocb, offset,
3599 size);
3600
3601 /* if not aio dio with unwritten extents, just free io and return */
3602 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3603 ext4_free_io_end(io_end);
3604 iocb->private = NULL;
3605 out:
3606 if (is_async)
3607 aio_complete(iocb, ret, 0);
3608 return;
3609 }
3610
3611 io_end->offset = offset;
3612 io_end->size = size;
3613 if (is_async) {
3614 io_end->iocb = iocb;
3615 io_end->result = ret;
3616 }
3617 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3618
3619 /* Add the io_end to per-inode completed aio dio list*/
3620 ei = EXT4_I(io_end->inode);
3621 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3622 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3623 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3624
3625 /* queue the work to convert unwritten extents to written */
3626 queue_work(wq, &io_end->work);
3627 iocb->private = NULL;
3628 }
3629
3630 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3631 {
3632 ext4_io_end_t *io_end = bh->b_private;
3633 struct workqueue_struct *wq;
3634 struct inode *inode;
3635 unsigned long flags;
3636
3637 if (!test_clear_buffer_uninit(bh) || !io_end)
3638 goto out;
3639
3640 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3641 printk("sb umounted, discard end_io request for inode %lu\n",
3642 io_end->inode->i_ino);
3643 ext4_free_io_end(io_end);
3644 goto out;
3645 }
3646
3647 io_end->flag = EXT4_IO_END_UNWRITTEN;
3648 inode = io_end->inode;
3649
3650 /* Add the io_end to per-inode completed io list*/
3651 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3652 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3653 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3654
3655 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3656 /* queue the work to convert unwritten extents to written */
3657 queue_work(wq, &io_end->work);
3658 out:
3659 bh->b_private = NULL;
3660 bh->b_end_io = NULL;
3661 clear_buffer_uninit(bh);
3662 end_buffer_async_write(bh, uptodate);
3663 }
3664
3665 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3666 {
3667 ext4_io_end_t *io_end;
3668 struct page *page = bh->b_page;
3669 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3670 size_t size = bh->b_size;
3671
3672 retry:
3673 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3674 if (!io_end) {
3675 pr_warn_ratelimited("%s: allocation fail\n", __func__);
3676 schedule();
3677 goto retry;
3678 }
3679 io_end->offset = offset;
3680 io_end->size = size;
3681 /*
3682 * We need to hold a reference to the page to make sure it
3683 * doesn't get evicted before ext4_end_io_work() has a chance
3684 * to convert the extent from written to unwritten.
3685 */
3686 io_end->page = page;
3687 get_page(io_end->page);
3688
3689 bh->b_private = io_end;
3690 bh->b_end_io = ext4_end_io_buffer_write;
3691 return 0;
3692 }
3693
3694 /*
3695 * For ext4 extent files, ext4 will do direct-io write to holes,
3696 * preallocated extents, and those write extend the file, no need to
3697 * fall back to buffered IO.
3698 *
3699 * For holes, we fallocate those blocks, mark them as uninitialized
3700 * If those blocks were preallocated, we mark sure they are splited, but
3701 * still keep the range to write as uninitialized.
3702 *
3703 * The unwrritten extents will be converted to written when DIO is completed.
3704 * For async direct IO, since the IO may still pending when return, we
3705 * set up an end_io call back function, which will do the convertion
3706 * when async direct IO completed.
3707 *
3708 * If the O_DIRECT write will extend the file then add this inode to the
3709 * orphan list. So recovery will truncate it back to the original size
3710 * if the machine crashes during the write.
3711 *
3712 */
3713 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3714 const struct iovec *iov, loff_t offset,
3715 unsigned long nr_segs)
3716 {
3717 struct file *file = iocb->ki_filp;
3718 struct inode *inode = file->f_mapping->host;
3719 ssize_t ret;
3720 size_t count = iov_length(iov, nr_segs);
3721
3722 loff_t final_size = offset + count;
3723 if (rw == WRITE && final_size <= inode->i_size) {
3724 /*
3725 * We could direct write to holes and fallocate.
3726 *
3727 * Allocated blocks to fill the hole are marked as uninitialized
3728 * to prevent paralel buffered read to expose the stale data
3729 * before DIO complete the data IO.
3730 *
3731 * As to previously fallocated extents, ext4 get_block
3732 * will just simply mark the buffer mapped but still
3733 * keep the extents uninitialized.
3734 *
3735 * for non AIO case, we will convert those unwritten extents
3736 * to written after return back from blockdev_direct_IO.
3737 *
3738 * for async DIO, the conversion needs to be defered when
3739 * the IO is completed. The ext4 end_io callback function
3740 * will be called to take care of the conversion work.
3741 * Here for async case, we allocate an io_end structure to
3742 * hook to the iocb.
3743 */
3744 iocb->private = NULL;
3745 EXT4_I(inode)->cur_aio_dio = NULL;
3746 if (!is_sync_kiocb(iocb)) {
3747 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3748 if (!iocb->private)
3749 return -ENOMEM;
3750 /*
3751 * we save the io structure for current async
3752 * direct IO, so that later ext4_map_blocks()
3753 * could flag the io structure whether there
3754 * is a unwritten extents needs to be converted
3755 * when IO is completed.
3756 */
3757 EXT4_I(inode)->cur_aio_dio = iocb->private;
3758 }
3759
3760 ret = blockdev_direct_IO(rw, iocb, inode,
3761 inode->i_sb->s_bdev, iov,
3762 offset, nr_segs,
3763 ext4_get_block_write,
3764 ext4_end_io_dio);
3765 if (iocb->private)
3766 EXT4_I(inode)->cur_aio_dio = NULL;
3767 /*
3768 * The io_end structure takes a reference to the inode,
3769 * that structure needs to be destroyed and the
3770 * reference to the inode need to be dropped, when IO is
3771 * complete, even with 0 byte write, or failed.
3772 *
3773 * In the successful AIO DIO case, the io_end structure will be
3774 * desctroyed and the reference to the inode will be dropped
3775 * after the end_io call back function is called.
3776 *
3777 * In the case there is 0 byte write, or error case, since
3778 * VFS direct IO won't invoke the end_io call back function,
3779 * we need to free the end_io structure here.
3780 */
3781 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3782 ext4_free_io_end(iocb->private);
3783 iocb->private = NULL;
3784 } else if (ret > 0 && ext4_test_inode_state(inode,
3785 EXT4_STATE_DIO_UNWRITTEN)) {
3786 int err;
3787 /*
3788 * for non AIO case, since the IO is already
3789 * completed, we could do the convertion right here
3790 */
3791 err = ext4_convert_unwritten_extents(inode,
3792 offset, ret);
3793 if (err < 0)
3794 ret = err;
3795 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3796 }
3797 return ret;
3798 }
3799
3800 /* for write the the end of file case, we fall back to old way */
3801 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3802 }
3803
3804 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3805 const struct iovec *iov, loff_t offset,
3806 unsigned long nr_segs)
3807 {
3808 struct file *file = iocb->ki_filp;
3809 struct inode *inode = file->f_mapping->host;
3810
3811 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3812 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3813
3814 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3815 }
3816
3817 /*
3818 * Pages can be marked dirty completely asynchronously from ext4's journalling
3819 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3820 * much here because ->set_page_dirty is called under VFS locks. The page is
3821 * not necessarily locked.
3822 *
3823 * We cannot just dirty the page and leave attached buffers clean, because the
3824 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3825 * or jbddirty because all the journalling code will explode.
3826 *
3827 * So what we do is to mark the page "pending dirty" and next time writepage
3828 * is called, propagate that into the buffers appropriately.
3829 */
3830 static int ext4_journalled_set_page_dirty(struct page *page)
3831 {
3832 SetPageChecked(page);
3833 return __set_page_dirty_nobuffers(page);
3834 }
3835
3836 static const struct address_space_operations ext4_ordered_aops = {
3837 .readpage = ext4_readpage,
3838 .readpages = ext4_readpages,
3839 .writepage = ext4_writepage,
3840 .sync_page = block_sync_page,
3841 .write_begin = ext4_write_begin,
3842 .write_end = ext4_ordered_write_end,
3843 .bmap = ext4_bmap,
3844 .invalidatepage = ext4_invalidatepage,
3845 .releasepage = ext4_releasepage,
3846 .direct_IO = ext4_direct_IO,
3847 .migratepage = buffer_migrate_page,
3848 .is_partially_uptodate = block_is_partially_uptodate,
3849 .error_remove_page = generic_error_remove_page,
3850 };
3851
3852 static const struct address_space_operations ext4_writeback_aops = {
3853 .readpage = ext4_readpage,
3854 .readpages = ext4_readpages,
3855 .writepage = ext4_writepage,
3856 .sync_page = block_sync_page,
3857 .write_begin = ext4_write_begin,
3858 .write_end = ext4_writeback_write_end,
3859 .bmap = ext4_bmap,
3860 .invalidatepage = ext4_invalidatepage,
3861 .releasepage = ext4_releasepage,
3862 .direct_IO = ext4_direct_IO,
3863 .migratepage = buffer_migrate_page,
3864 .is_partially_uptodate = block_is_partially_uptodate,
3865 .error_remove_page = generic_error_remove_page,
3866 };
3867
3868 static const struct address_space_operations ext4_journalled_aops = {
3869 .readpage = ext4_readpage,
3870 .readpages = ext4_readpages,
3871 .writepage = ext4_writepage,
3872 .sync_page = block_sync_page,
3873 .write_begin = ext4_write_begin,
3874 .write_end = ext4_journalled_write_end,
3875 .set_page_dirty = ext4_journalled_set_page_dirty,
3876 .bmap = ext4_bmap,
3877 .invalidatepage = ext4_invalidatepage,
3878 .releasepage = ext4_releasepage,
3879 .is_partially_uptodate = block_is_partially_uptodate,
3880 .error_remove_page = generic_error_remove_page,
3881 };
3882
3883 static const struct address_space_operations ext4_da_aops = {
3884 .readpage = ext4_readpage,
3885 .readpages = ext4_readpages,
3886 .writepage = ext4_writepage,
3887 .writepages = ext4_da_writepages,
3888 .sync_page = block_sync_page,
3889 .write_begin = ext4_da_write_begin,
3890 .write_end = ext4_da_write_end,
3891 .bmap = ext4_bmap,
3892 .invalidatepage = ext4_da_invalidatepage,
3893 .releasepage = ext4_releasepage,
3894 .direct_IO = ext4_direct_IO,
3895 .migratepage = buffer_migrate_page,
3896 .is_partially_uptodate = block_is_partially_uptodate,
3897 .error_remove_page = generic_error_remove_page,
3898 };
3899
3900 void ext4_set_aops(struct inode *inode)
3901 {
3902 if (ext4_should_order_data(inode) &&
3903 test_opt(inode->i_sb, DELALLOC))
3904 inode->i_mapping->a_ops = &ext4_da_aops;
3905 else if (ext4_should_order_data(inode))
3906 inode->i_mapping->a_ops = &ext4_ordered_aops;
3907 else if (ext4_should_writeback_data(inode) &&
3908 test_opt(inode->i_sb, DELALLOC))
3909 inode->i_mapping->a_ops = &ext4_da_aops;
3910 else if (ext4_should_writeback_data(inode))
3911 inode->i_mapping->a_ops = &ext4_writeback_aops;
3912 else
3913 inode->i_mapping->a_ops = &ext4_journalled_aops;
3914 }
3915
3916 /*
3917 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3918 * up to the end of the block which corresponds to `from'.
3919 * This required during truncate. We need to physically zero the tail end
3920 * of that block so it doesn't yield old data if the file is later grown.
3921 */
3922 int ext4_block_truncate_page(handle_t *handle,
3923 struct address_space *mapping, loff_t from)
3924 {
3925 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3926 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3927 unsigned blocksize, length, pos;
3928 ext4_lblk_t iblock;
3929 struct inode *inode = mapping->host;
3930 struct buffer_head *bh;
3931 struct page *page;
3932 int err = 0;
3933
3934 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3935 mapping_gfp_mask(mapping) & ~__GFP_FS);
3936 if (!page)
3937 return -EINVAL;
3938
3939 blocksize = inode->i_sb->s_blocksize;
3940 length = blocksize - (offset & (blocksize - 1));
3941 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3942
3943 if (!page_has_buffers(page))
3944 create_empty_buffers(page, blocksize, 0);
3945
3946 /* Find the buffer that contains "offset" */
3947 bh = page_buffers(page);
3948 pos = blocksize;
3949 while (offset >= pos) {
3950 bh = bh->b_this_page;
3951 iblock++;
3952 pos += blocksize;
3953 }
3954
3955 err = 0;
3956 if (buffer_freed(bh)) {
3957 BUFFER_TRACE(bh, "freed: skip");
3958 goto unlock;
3959 }
3960
3961 if (!buffer_mapped(bh)) {
3962 BUFFER_TRACE(bh, "unmapped");
3963 ext4_get_block(inode, iblock, bh, 0);
3964 /* unmapped? It's a hole - nothing to do */
3965 if (!buffer_mapped(bh)) {
3966 BUFFER_TRACE(bh, "still unmapped");
3967 goto unlock;
3968 }
3969 }
3970
3971 /* Ok, it's mapped. Make sure it's up-to-date */
3972 if (PageUptodate(page))
3973 set_buffer_uptodate(bh);
3974
3975 if (!buffer_uptodate(bh)) {
3976 err = -EIO;
3977 ll_rw_block(READ, 1, &bh);
3978 wait_on_buffer(bh);
3979 /* Uhhuh. Read error. Complain and punt. */
3980 if (!buffer_uptodate(bh))
3981 goto unlock;
3982 }
3983
3984 if (ext4_should_journal_data(inode)) {
3985 BUFFER_TRACE(bh, "get write access");
3986 err = ext4_journal_get_write_access(handle, bh);
3987 if (err)
3988 goto unlock;
3989 }
3990
3991 zero_user(page, offset, length);
3992
3993 BUFFER_TRACE(bh, "zeroed end of block");
3994
3995 err = 0;
3996 if (ext4_should_journal_data(inode)) {
3997 err = ext4_handle_dirty_metadata(handle, inode, bh);
3998 } else {
3999 if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4000 err = ext4_jbd2_file_inode(handle, inode);
4001 mark_buffer_dirty(bh);
4002 }
4003
4004 unlock:
4005 unlock_page(page);
4006 page_cache_release(page);
4007 return err;
4008 }
4009
4010 /*
4011 * Probably it should be a library function... search for first non-zero word
4012 * or memcmp with zero_page, whatever is better for particular architecture.
4013 * Linus?
4014 */
4015 static inline int all_zeroes(__le32 *p, __le32 *q)
4016 {
4017 while (p < q)
4018 if (*p++)
4019 return 0;
4020 return 1;
4021 }
4022
4023 /**
4024 * ext4_find_shared - find the indirect blocks for partial truncation.
4025 * @inode: inode in question
4026 * @depth: depth of the affected branch
4027 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4028 * @chain: place to store the pointers to partial indirect blocks
4029 * @top: place to the (detached) top of branch
4030 *
4031 * This is a helper function used by ext4_truncate().
4032 *
4033 * When we do truncate() we may have to clean the ends of several
4034 * indirect blocks but leave the blocks themselves alive. Block is
4035 * partially truncated if some data below the new i_size is refered
4036 * from it (and it is on the path to the first completely truncated
4037 * data block, indeed). We have to free the top of that path along
4038 * with everything to the right of the path. Since no allocation
4039 * past the truncation point is possible until ext4_truncate()
4040 * finishes, we may safely do the latter, but top of branch may
4041 * require special attention - pageout below the truncation point
4042 * might try to populate it.
4043 *
4044 * We atomically detach the top of branch from the tree, store the
4045 * block number of its root in *@top, pointers to buffer_heads of
4046 * partially truncated blocks - in @chain[].bh and pointers to
4047 * their last elements that should not be removed - in
4048 * @chain[].p. Return value is the pointer to last filled element
4049 * of @chain.
4050 *
4051 * The work left to caller to do the actual freeing of subtrees:
4052 * a) free the subtree starting from *@top
4053 * b) free the subtrees whose roots are stored in
4054 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4055 * c) free the subtrees growing from the inode past the @chain[0].
4056 * (no partially truncated stuff there). */
4057
4058 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4059 ext4_lblk_t offsets[4], Indirect chain[4],
4060 __le32 *top)
4061 {
4062 Indirect *partial, *p;
4063 int k, err;
4064
4065 *top = 0;
4066 /* Make k index the deepest non-null offset + 1 */
4067 for (k = depth; k > 1 && !offsets[k-1]; k--)
4068 ;
4069 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4070 /* Writer: pointers */
4071 if (!partial)
4072 partial = chain + k-1;
4073 /*
4074 * If the branch acquired continuation since we've looked at it -
4075 * fine, it should all survive and (new) top doesn't belong to us.
4076 */
4077 if (!partial->key && *partial->p)
4078 /* Writer: end */
4079 goto no_top;
4080 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4081 ;
4082 /*
4083 * OK, we've found the last block that must survive. The rest of our
4084 * branch should be detached before unlocking. However, if that rest
4085 * of branch is all ours and does not grow immediately from the inode
4086 * it's easier to cheat and just decrement partial->p.
4087 */
4088 if (p == chain + k - 1 && p > chain) {
4089 p->p--;
4090 } else {
4091 *top = *p->p;
4092 /* Nope, don't do this in ext4. Must leave the tree intact */
4093 #if 0
4094 *p->p = 0;
4095 #endif
4096 }
4097 /* Writer: end */
4098
4099 while (partial > p) {
4100 brelse(partial->bh);
4101 partial--;
4102 }
4103 no_top:
4104 return partial;
4105 }
4106
4107 /*
4108 * Zero a number of block pointers in either an inode or an indirect block.
4109 * If we restart the transaction we must again get write access to the
4110 * indirect block for further modification.
4111 *
4112 * We release `count' blocks on disk, but (last - first) may be greater
4113 * than `count' because there can be holes in there.
4114 */
4115 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4116 struct buffer_head *bh,
4117 ext4_fsblk_t block_to_free,
4118 unsigned long count, __le32 *first,
4119 __le32 *last)
4120 {
4121 __le32 *p;
4122 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4123 int err;
4124
4125 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4126 flags |= EXT4_FREE_BLOCKS_METADATA;
4127
4128 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4129 count)) {
4130 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4131 "blocks %llu len %lu",
4132 (unsigned long long) block_to_free, count);
4133 return 1;
4134 }
4135
4136 if (try_to_extend_transaction(handle, inode)) {
4137 if (bh) {
4138 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4139 err = ext4_handle_dirty_metadata(handle, inode, bh);
4140 if (unlikely(err)) {
4141 ext4_std_error(inode->i_sb, err);
4142 return 1;
4143 }
4144 }
4145 err = ext4_mark_inode_dirty(handle, inode);
4146 if (unlikely(err)) {
4147 ext4_std_error(inode->i_sb, err);
4148 return 1;
4149 }
4150 err = ext4_truncate_restart_trans(handle, inode,
4151 blocks_for_truncate(inode));
4152 if (unlikely(err)) {
4153 ext4_std_error(inode->i_sb, err);
4154 return 1;
4155 }
4156 if (bh) {
4157 BUFFER_TRACE(bh, "retaking write access");
4158 ext4_journal_get_write_access(handle, bh);
4159 }
4160 }
4161
4162 for (p = first; p < last; p++)
4163 *p = 0;
4164
4165 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
4166 return 0;
4167 }
4168
4169 /**
4170 * ext4_free_data - free a list of data blocks
4171 * @handle: handle for this transaction
4172 * @inode: inode we are dealing with
4173 * @this_bh: indirect buffer_head which contains *@first and *@last
4174 * @first: array of block numbers
4175 * @last: points immediately past the end of array
4176 *
4177 * We are freeing all blocks refered from that array (numbers are stored as
4178 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4179 *
4180 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4181 * blocks are contiguous then releasing them at one time will only affect one
4182 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4183 * actually use a lot of journal space.
4184 *
4185 * @this_bh will be %NULL if @first and @last point into the inode's direct
4186 * block pointers.
4187 */
4188 static void ext4_free_data(handle_t *handle, struct inode *inode,
4189 struct buffer_head *this_bh,
4190 __le32 *first, __le32 *last)
4191 {
4192 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4193 unsigned long count = 0; /* Number of blocks in the run */
4194 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4195 corresponding to
4196 block_to_free */
4197 ext4_fsblk_t nr; /* Current block # */
4198 __le32 *p; /* Pointer into inode/ind
4199 for current block */
4200 int err;
4201
4202 if (this_bh) { /* For indirect block */
4203 BUFFER_TRACE(this_bh, "get_write_access");
4204 err = ext4_journal_get_write_access(handle, this_bh);
4205 /* Important: if we can't update the indirect pointers
4206 * to the blocks, we can't free them. */
4207 if (err)
4208 return;
4209 }
4210
4211 for (p = first; p < last; p++) {
4212 nr = le32_to_cpu(*p);
4213 if (nr) {
4214 /* accumulate blocks to free if they're contiguous */
4215 if (count == 0) {
4216 block_to_free = nr;
4217 block_to_free_p = p;
4218 count = 1;
4219 } else if (nr == block_to_free + count) {
4220 count++;
4221 } else {
4222 if (ext4_clear_blocks(handle, inode, this_bh,
4223 block_to_free, count,
4224 block_to_free_p, p))
4225 break;
4226 block_to_free = nr;
4227 block_to_free_p = p;
4228 count = 1;
4229 }
4230 }
4231 }
4232
4233 if (count > 0)
4234 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4235 count, block_to_free_p, p);
4236
4237 if (this_bh) {
4238 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4239
4240 /*
4241 * The buffer head should have an attached journal head at this
4242 * point. However, if the data is corrupted and an indirect
4243 * block pointed to itself, it would have been detached when
4244 * the block was cleared. Check for this instead of OOPSing.
4245 */
4246 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4247 ext4_handle_dirty_metadata(handle, inode, this_bh);
4248 else
4249 EXT4_ERROR_INODE(inode,
4250 "circular indirect block detected at "
4251 "block %llu",
4252 (unsigned long long) this_bh->b_blocknr);
4253 }
4254 }
4255
4256 /**
4257 * ext4_free_branches - free an array of branches
4258 * @handle: JBD handle for this transaction
4259 * @inode: inode we are dealing with
4260 * @parent_bh: the buffer_head which contains *@first and *@last
4261 * @first: array of block numbers
4262 * @last: pointer immediately past the end of array
4263 * @depth: depth of the branches to free
4264 *
4265 * We are freeing all blocks refered from these branches (numbers are
4266 * stored as little-endian 32-bit) and updating @inode->i_blocks
4267 * appropriately.
4268 */
4269 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4270 struct buffer_head *parent_bh,
4271 __le32 *first, __le32 *last, int depth)
4272 {
4273 ext4_fsblk_t nr;
4274 __le32 *p;
4275
4276 if (ext4_handle_is_aborted(handle))
4277 return;
4278
4279 if (depth--) {
4280 struct buffer_head *bh;
4281 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4282 p = last;
4283 while (--p >= first) {
4284 nr = le32_to_cpu(*p);
4285 if (!nr)
4286 continue; /* A hole */
4287
4288 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4289 nr, 1)) {
4290 EXT4_ERROR_INODE(inode,
4291 "invalid indirect mapped "
4292 "block %lu (level %d)",
4293 (unsigned long) nr, depth);
4294 break;
4295 }
4296
4297 /* Go read the buffer for the next level down */
4298 bh = sb_bread(inode->i_sb, nr);
4299
4300 /*
4301 * A read failure? Report error and clear slot
4302 * (should be rare).
4303 */
4304 if (!bh) {
4305 EXT4_ERROR_INODE_BLOCK(inode, nr,
4306 "Read failure");
4307 continue;
4308 }
4309
4310 /* This zaps the entire block. Bottom up. */
4311 BUFFER_TRACE(bh, "free child branches");
4312 ext4_free_branches(handle, inode, bh,
4313 (__le32 *) bh->b_data,
4314 (__le32 *) bh->b_data + addr_per_block,
4315 depth);
4316 brelse(bh);
4317
4318 /*
4319 * Everything below this this pointer has been
4320 * released. Now let this top-of-subtree go.
4321 *
4322 * We want the freeing of this indirect block to be
4323 * atomic in the journal with the updating of the
4324 * bitmap block which owns it. So make some room in
4325 * the journal.
4326 *
4327 * We zero the parent pointer *after* freeing its
4328 * pointee in the bitmaps, so if extend_transaction()
4329 * for some reason fails to put the bitmap changes and
4330 * the release into the same transaction, recovery
4331 * will merely complain about releasing a free block,
4332 * rather than leaking blocks.
4333 */
4334 if (ext4_handle_is_aborted(handle))
4335 return;
4336 if (try_to_extend_transaction(handle, inode)) {
4337 ext4_mark_inode_dirty(handle, inode);
4338 ext4_truncate_restart_trans(handle, inode,
4339 blocks_for_truncate(inode));
4340 }
4341
4342 /*
4343 * The forget flag here is critical because if
4344 * we are journaling (and not doing data
4345 * journaling), we have to make sure a revoke
4346 * record is written to prevent the journal
4347 * replay from overwriting the (former)
4348 * indirect block if it gets reallocated as a
4349 * data block. This must happen in the same
4350 * transaction where the data blocks are
4351 * actually freed.
4352 */
4353 ext4_free_blocks(handle, inode, NULL, nr, 1,
4354 EXT4_FREE_BLOCKS_METADATA|
4355 EXT4_FREE_BLOCKS_FORGET);
4356
4357 if (parent_bh) {
4358 /*
4359 * The block which we have just freed is
4360 * pointed to by an indirect block: journal it
4361 */
4362 BUFFER_TRACE(parent_bh, "get_write_access");
4363 if (!ext4_journal_get_write_access(handle,
4364 parent_bh)){
4365 *p = 0;
4366 BUFFER_TRACE(parent_bh,
4367 "call ext4_handle_dirty_metadata");
4368 ext4_handle_dirty_metadata(handle,
4369 inode,
4370 parent_bh);
4371 }
4372 }
4373 }
4374 } else {
4375 /* We have reached the bottom of the tree. */
4376 BUFFER_TRACE(parent_bh, "free data blocks");
4377 ext4_free_data(handle, inode, parent_bh, first, last);
4378 }
4379 }
4380
4381 int ext4_can_truncate(struct inode *inode)
4382 {
4383 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4384 return 0;
4385 if (S_ISREG(inode->i_mode))
4386 return 1;
4387 if (S_ISDIR(inode->i_mode))
4388 return 1;
4389 if (S_ISLNK(inode->i_mode))
4390 return !ext4_inode_is_fast_symlink(inode);
4391 return 0;
4392 }
4393
4394 /*
4395 * ext4_truncate()
4396 *
4397 * We block out ext4_get_block() block instantiations across the entire
4398 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4399 * simultaneously on behalf of the same inode.
4400 *
4401 * As we work through the truncate and commmit bits of it to the journal there
4402 * is one core, guiding principle: the file's tree must always be consistent on
4403 * disk. We must be able to restart the truncate after a crash.
4404 *
4405 * The file's tree may be transiently inconsistent in memory (although it
4406 * probably isn't), but whenever we close off and commit a journal transaction,
4407 * the contents of (the filesystem + the journal) must be consistent and
4408 * restartable. It's pretty simple, really: bottom up, right to left (although
4409 * left-to-right works OK too).
4410 *
4411 * Note that at recovery time, journal replay occurs *before* the restart of
4412 * truncate against the orphan inode list.
4413 *
4414 * The committed inode has the new, desired i_size (which is the same as
4415 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4416 * that this inode's truncate did not complete and it will again call
4417 * ext4_truncate() to have another go. So there will be instantiated blocks
4418 * to the right of the truncation point in a crashed ext4 filesystem. But
4419 * that's fine - as long as they are linked from the inode, the post-crash
4420 * ext4_truncate() run will find them and release them.
4421 */
4422 void ext4_truncate(struct inode *inode)
4423 {
4424 handle_t *handle;
4425 struct ext4_inode_info *ei = EXT4_I(inode);
4426 __le32 *i_data = ei->i_data;
4427 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4428 struct address_space *mapping = inode->i_mapping;
4429 ext4_lblk_t offsets[4];
4430 Indirect chain[4];
4431 Indirect *partial;
4432 __le32 nr = 0;
4433 int n;
4434 ext4_lblk_t last_block;
4435 unsigned blocksize = inode->i_sb->s_blocksize;
4436
4437 if (!ext4_can_truncate(inode))
4438 return;
4439
4440 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4441
4442 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4443 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4444
4445 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4446 ext4_ext_truncate(inode);
4447 return;
4448 }
4449
4450 handle = start_transaction(inode);
4451 if (IS_ERR(handle))
4452 return; /* AKPM: return what? */
4453
4454 last_block = (inode->i_size + blocksize-1)
4455 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4456
4457 if (inode->i_size & (blocksize - 1))
4458 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4459 goto out_stop;
4460
4461 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4462 if (n == 0)
4463 goto out_stop; /* error */
4464
4465 /*
4466 * OK. This truncate is going to happen. We add the inode to the
4467 * orphan list, so that if this truncate spans multiple transactions,
4468 * and we crash, we will resume the truncate when the filesystem
4469 * recovers. It also marks the inode dirty, to catch the new size.
4470 *
4471 * Implication: the file must always be in a sane, consistent
4472 * truncatable state while each transaction commits.
4473 */
4474 if (ext4_orphan_add(handle, inode))
4475 goto out_stop;
4476
4477 /*
4478 * From here we block out all ext4_get_block() callers who want to
4479 * modify the block allocation tree.
4480 */
4481 down_write(&ei->i_data_sem);
4482
4483 ext4_discard_preallocations(inode);
4484
4485 /*
4486 * The orphan list entry will now protect us from any crash which
4487 * occurs before the truncate completes, so it is now safe to propagate
4488 * the new, shorter inode size (held for now in i_size) into the
4489 * on-disk inode. We do this via i_disksize, which is the value which
4490 * ext4 *really* writes onto the disk inode.
4491 */
4492 ei->i_disksize = inode->i_size;
4493
4494 if (n == 1) { /* direct blocks */
4495 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4496 i_data + EXT4_NDIR_BLOCKS);
4497 goto do_indirects;
4498 }
4499
4500 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4501 /* Kill the top of shared branch (not detached) */
4502 if (nr) {
4503 if (partial == chain) {
4504 /* Shared branch grows from the inode */
4505 ext4_free_branches(handle, inode, NULL,
4506 &nr, &nr+1, (chain+n-1) - partial);
4507 *partial->p = 0;
4508 /*
4509 * We mark the inode dirty prior to restart,
4510 * and prior to stop. No need for it here.
4511 */
4512 } else {
4513 /* Shared branch grows from an indirect block */
4514 BUFFER_TRACE(partial->bh, "get_write_access");
4515 ext4_free_branches(handle, inode, partial->bh,
4516 partial->p,
4517 partial->p+1, (chain+n-1) - partial);
4518 }
4519 }
4520 /* Clear the ends of indirect blocks on the shared branch */
4521 while (partial > chain) {
4522 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4523 (__le32*)partial->bh->b_data+addr_per_block,
4524 (chain+n-1) - partial);
4525 BUFFER_TRACE(partial->bh, "call brelse");
4526 brelse(partial->bh);
4527 partial--;
4528 }
4529 do_indirects:
4530 /* Kill the remaining (whole) subtrees */
4531 switch (offsets[0]) {
4532 default:
4533 nr = i_data[EXT4_IND_BLOCK];
4534 if (nr) {
4535 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4536 i_data[EXT4_IND_BLOCK] = 0;
4537 }
4538 case EXT4_IND_BLOCK:
4539 nr = i_data[EXT4_DIND_BLOCK];
4540 if (nr) {
4541 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4542 i_data[EXT4_DIND_BLOCK] = 0;
4543 }
4544 case EXT4_DIND_BLOCK:
4545 nr = i_data[EXT4_TIND_BLOCK];
4546 if (nr) {
4547 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4548 i_data[EXT4_TIND_BLOCK] = 0;
4549 }
4550 case EXT4_TIND_BLOCK:
4551 ;
4552 }
4553
4554 up_write(&ei->i_data_sem);
4555 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4556 ext4_mark_inode_dirty(handle, inode);
4557
4558 /*
4559 * In a multi-transaction truncate, we only make the final transaction
4560 * synchronous
4561 */
4562 if (IS_SYNC(inode))
4563 ext4_handle_sync(handle);
4564 out_stop:
4565 /*
4566 * If this was a simple ftruncate(), and the file will remain alive
4567 * then we need to clear up the orphan record which we created above.
4568 * However, if this was a real unlink then we were called by
4569 * ext4_delete_inode(), and we allow that function to clean up the
4570 * orphan info for us.
4571 */
4572 if (inode->i_nlink)
4573 ext4_orphan_del(handle, inode);
4574
4575 ext4_journal_stop(handle);
4576 }
4577
4578 /*
4579 * ext4_get_inode_loc returns with an extra refcount against the inode's
4580 * underlying buffer_head on success. If 'in_mem' is true, we have all
4581 * data in memory that is needed to recreate the on-disk version of this
4582 * inode.
4583 */
4584 static int __ext4_get_inode_loc(struct inode *inode,
4585 struct ext4_iloc *iloc, int in_mem)
4586 {
4587 struct ext4_group_desc *gdp;
4588 struct buffer_head *bh;
4589 struct super_block *sb = inode->i_sb;
4590 ext4_fsblk_t block;
4591 int inodes_per_block, inode_offset;
4592
4593 iloc->bh = NULL;
4594 if (!ext4_valid_inum(sb, inode->i_ino))
4595 return -EIO;
4596
4597 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4598 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4599 if (!gdp)
4600 return -EIO;
4601
4602 /*
4603 * Figure out the offset within the block group inode table
4604 */
4605 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4606 inode_offset = ((inode->i_ino - 1) %
4607 EXT4_INODES_PER_GROUP(sb));
4608 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4609 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4610
4611 bh = sb_getblk(sb, block);
4612 if (!bh) {
4613 EXT4_ERROR_INODE_BLOCK(inode, block,
4614 "unable to read itable block");
4615 return -EIO;
4616 }
4617 if (!buffer_uptodate(bh)) {
4618 lock_buffer(bh);
4619
4620 /*
4621 * If the buffer has the write error flag, we have failed
4622 * to write out another inode in the same block. In this
4623 * case, we don't have to read the block because we may
4624 * read the old inode data successfully.
4625 */
4626 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4627 set_buffer_uptodate(bh);
4628
4629 if (buffer_uptodate(bh)) {
4630 /* someone brought it uptodate while we waited */
4631 unlock_buffer(bh);
4632 goto has_buffer;
4633 }
4634
4635 /*
4636 * If we have all information of the inode in memory and this
4637 * is the only valid inode in the block, we need not read the
4638 * block.
4639 */
4640 if (in_mem) {
4641 struct buffer_head *bitmap_bh;
4642 int i, start;
4643
4644 start = inode_offset & ~(inodes_per_block - 1);
4645
4646 /* Is the inode bitmap in cache? */
4647 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4648 if (!bitmap_bh)
4649 goto make_io;
4650
4651 /*
4652 * If the inode bitmap isn't in cache then the
4653 * optimisation may end up performing two reads instead
4654 * of one, so skip it.
4655 */
4656 if (!buffer_uptodate(bitmap_bh)) {
4657 brelse(bitmap_bh);
4658 goto make_io;
4659 }
4660 for (i = start; i < start + inodes_per_block; i++) {
4661 if (i == inode_offset)
4662 continue;
4663 if (ext4_test_bit(i, bitmap_bh->b_data))
4664 break;
4665 }
4666 brelse(bitmap_bh);
4667 if (i == start + inodes_per_block) {
4668 /* all other inodes are free, so skip I/O */
4669 memset(bh->b_data, 0, bh->b_size);
4670 set_buffer_uptodate(bh);
4671 unlock_buffer(bh);
4672 goto has_buffer;
4673 }
4674 }
4675
4676 make_io:
4677 /*
4678 * If we need to do any I/O, try to pre-readahead extra
4679 * blocks from the inode table.
4680 */
4681 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4682 ext4_fsblk_t b, end, table;
4683 unsigned num;
4684
4685 table = ext4_inode_table(sb, gdp);
4686 /* s_inode_readahead_blks is always a power of 2 */
4687 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4688 if (table > b)
4689 b = table;
4690 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4691 num = EXT4_INODES_PER_GROUP(sb);
4692 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4693 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4694 num -= ext4_itable_unused_count(sb, gdp);
4695 table += num / inodes_per_block;
4696 if (end > table)
4697 end = table;
4698 while (b <= end)
4699 sb_breadahead(sb, b++);
4700 }
4701
4702 /*
4703 * There are other valid inodes in the buffer, this inode
4704 * has in-inode xattrs, or we don't have this inode in memory.
4705 * Read the block from disk.
4706 */
4707 get_bh(bh);
4708 bh->b_end_io = end_buffer_read_sync;
4709 submit_bh(READ_META, bh);
4710 wait_on_buffer(bh);
4711 if (!buffer_uptodate(bh)) {
4712 EXT4_ERROR_INODE_BLOCK(inode, block,
4713 "unable to read itable block");
4714 brelse(bh);
4715 return -EIO;
4716 }
4717 }
4718 has_buffer:
4719 iloc->bh = bh;
4720 return 0;
4721 }
4722
4723 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4724 {
4725 /* We have all inode data except xattrs in memory here. */
4726 return __ext4_get_inode_loc(inode, iloc,
4727 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4728 }
4729
4730 void ext4_set_inode_flags(struct inode *inode)
4731 {
4732 unsigned int flags = EXT4_I(inode)->i_flags;
4733
4734 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4735 if (flags & EXT4_SYNC_FL)
4736 inode->i_flags |= S_SYNC;
4737 if (flags & EXT4_APPEND_FL)
4738 inode->i_flags |= S_APPEND;
4739 if (flags & EXT4_IMMUTABLE_FL)
4740 inode->i_flags |= S_IMMUTABLE;
4741 if (flags & EXT4_NOATIME_FL)
4742 inode->i_flags |= S_NOATIME;
4743 if (flags & EXT4_DIRSYNC_FL)
4744 inode->i_flags |= S_DIRSYNC;
4745 }
4746
4747 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4748 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4749 {
4750 unsigned int vfs_fl;
4751 unsigned long old_fl, new_fl;
4752
4753 do {
4754 vfs_fl = ei->vfs_inode.i_flags;
4755 old_fl = ei->i_flags;
4756 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4757 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4758 EXT4_DIRSYNC_FL);
4759 if (vfs_fl & S_SYNC)
4760 new_fl |= EXT4_SYNC_FL;
4761 if (vfs_fl & S_APPEND)
4762 new_fl |= EXT4_APPEND_FL;
4763 if (vfs_fl & S_IMMUTABLE)
4764 new_fl |= EXT4_IMMUTABLE_FL;
4765 if (vfs_fl & S_NOATIME)
4766 new_fl |= EXT4_NOATIME_FL;
4767 if (vfs_fl & S_DIRSYNC)
4768 new_fl |= EXT4_DIRSYNC_FL;
4769 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4770 }
4771
4772 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4773 struct ext4_inode_info *ei)
4774 {
4775 blkcnt_t i_blocks ;
4776 struct inode *inode = &(ei->vfs_inode);
4777 struct super_block *sb = inode->i_sb;
4778
4779 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4780 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4781 /* we are using combined 48 bit field */
4782 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4783 le32_to_cpu(raw_inode->i_blocks_lo);
4784 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4785 /* i_blocks represent file system block size */
4786 return i_blocks << (inode->i_blkbits - 9);
4787 } else {
4788 return i_blocks;
4789 }
4790 } else {
4791 return le32_to_cpu(raw_inode->i_blocks_lo);
4792 }
4793 }
4794
4795 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4796 {
4797 struct ext4_iloc iloc;
4798 struct ext4_inode *raw_inode;
4799 struct ext4_inode_info *ei;
4800 struct inode *inode;
4801 journal_t *journal = EXT4_SB(sb)->s_journal;
4802 long ret;
4803 int block;
4804
4805 inode = iget_locked(sb, ino);
4806 if (!inode)
4807 return ERR_PTR(-ENOMEM);
4808 if (!(inode->i_state & I_NEW))
4809 return inode;
4810
4811 ei = EXT4_I(inode);
4812 iloc.bh = NULL;
4813
4814 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4815 if (ret < 0)
4816 goto bad_inode;
4817 raw_inode = ext4_raw_inode(&iloc);
4818 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4819 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4820 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4821 if (!(test_opt(inode->i_sb, NO_UID32))) {
4822 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4823 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4824 }
4825 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4826
4827 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4828 ei->i_dir_start_lookup = 0;
4829 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4830 /* We now have enough fields to check if the inode was active or not.
4831 * This is needed because nfsd might try to access dead inodes
4832 * the test is that same one that e2fsck uses
4833 * NeilBrown 1999oct15
4834 */
4835 if (inode->i_nlink == 0) {
4836 if (inode->i_mode == 0 ||
4837 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4838 /* this inode is deleted */
4839 ret = -ESTALE;
4840 goto bad_inode;
4841 }
4842 /* The only unlinked inodes we let through here have
4843 * valid i_mode and are being read by the orphan
4844 * recovery code: that's fine, we're about to complete
4845 * the process of deleting those. */
4846 }
4847 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4848 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4849 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4850 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4851 ei->i_file_acl |=
4852 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4853 inode->i_size = ext4_isize(raw_inode);
4854 ei->i_disksize = inode->i_size;
4855 #ifdef CONFIG_QUOTA
4856 ei->i_reserved_quota = 0;
4857 #endif
4858 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4859 ei->i_block_group = iloc.block_group;
4860 ei->i_last_alloc_group = ~0;
4861 /*
4862 * NOTE! The in-memory inode i_data array is in little-endian order
4863 * even on big-endian machines: we do NOT byteswap the block numbers!
4864 */
4865 for (block = 0; block < EXT4_N_BLOCKS; block++)
4866 ei->i_data[block] = raw_inode->i_block[block];
4867 INIT_LIST_HEAD(&ei->i_orphan);
4868
4869 /*
4870 * Set transaction id's of transactions that have to be committed
4871 * to finish f[data]sync. We set them to currently running transaction
4872 * as we cannot be sure that the inode or some of its metadata isn't
4873 * part of the transaction - the inode could have been reclaimed and
4874 * now it is reread from disk.
4875 */
4876 if (journal) {
4877 transaction_t *transaction;
4878 tid_t tid;
4879
4880 read_lock(&journal->j_state_lock);
4881 if (journal->j_running_transaction)
4882 transaction = journal->j_running_transaction;
4883 else
4884 transaction = journal->j_committing_transaction;
4885 if (transaction)
4886 tid = transaction->t_tid;
4887 else
4888 tid = journal->j_commit_sequence;
4889 read_unlock(&journal->j_state_lock);
4890 ei->i_sync_tid = tid;
4891 ei->i_datasync_tid = tid;
4892 }
4893
4894 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4895 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4896 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4897 EXT4_INODE_SIZE(inode->i_sb)) {
4898 ret = -EIO;
4899 goto bad_inode;
4900 }
4901 if (ei->i_extra_isize == 0) {
4902 /* The extra space is currently unused. Use it. */
4903 ei->i_extra_isize = sizeof(struct ext4_inode) -
4904 EXT4_GOOD_OLD_INODE_SIZE;
4905 } else {
4906 __le32 *magic = (void *)raw_inode +
4907 EXT4_GOOD_OLD_INODE_SIZE +
4908 ei->i_extra_isize;
4909 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4910 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4911 }
4912 } else
4913 ei->i_extra_isize = 0;
4914
4915 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4916 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4917 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4918 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4919
4920 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4921 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4922 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4923 inode->i_version |=
4924 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4925 }
4926
4927 ret = 0;
4928 if (ei->i_file_acl &&
4929 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4930 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4931 ei->i_file_acl);
4932 ret = -EIO;
4933 goto bad_inode;
4934 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4935 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4936 (S_ISLNK(inode->i_mode) &&
4937 !ext4_inode_is_fast_symlink(inode)))
4938 /* Validate extent which is part of inode */
4939 ret = ext4_ext_check_inode(inode);
4940 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4941 (S_ISLNK(inode->i_mode) &&
4942 !ext4_inode_is_fast_symlink(inode))) {
4943 /* Validate block references which are part of inode */
4944 ret = ext4_check_inode_blockref(inode);
4945 }
4946 if (ret)
4947 goto bad_inode;
4948
4949 if (S_ISREG(inode->i_mode)) {
4950 inode->i_op = &ext4_file_inode_operations;
4951 inode->i_fop = &ext4_file_operations;
4952 ext4_set_aops(inode);
4953 } else if (S_ISDIR(inode->i_mode)) {
4954 inode->i_op = &ext4_dir_inode_operations;
4955 inode->i_fop = &ext4_dir_operations;
4956 } else if (S_ISLNK(inode->i_mode)) {
4957 if (ext4_inode_is_fast_symlink(inode)) {
4958 inode->i_op = &ext4_fast_symlink_inode_operations;
4959 nd_terminate_link(ei->i_data, inode->i_size,
4960 sizeof(ei->i_data) - 1);
4961 } else {
4962 inode->i_op = &ext4_symlink_inode_operations;
4963 ext4_set_aops(inode);
4964 }
4965 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4966 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4967 inode->i_op = &ext4_special_inode_operations;
4968 if (raw_inode->i_block[0])
4969 init_special_inode(inode, inode->i_mode,
4970 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4971 else
4972 init_special_inode(inode, inode->i_mode,
4973 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4974 } else {
4975 ret = -EIO;
4976 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4977 goto bad_inode;
4978 }
4979 brelse(iloc.bh);
4980 ext4_set_inode_flags(inode);
4981 unlock_new_inode(inode);
4982 return inode;
4983
4984 bad_inode:
4985 brelse(iloc.bh);
4986 iget_failed(inode);
4987 return ERR_PTR(ret);
4988 }
4989
4990 static int ext4_inode_blocks_set(handle_t *handle,
4991 struct ext4_inode *raw_inode,
4992 struct ext4_inode_info *ei)
4993 {
4994 struct inode *inode = &(ei->vfs_inode);
4995 u64 i_blocks = inode->i_blocks;
4996 struct super_block *sb = inode->i_sb;
4997
4998 if (i_blocks <= ~0U) {
4999 /*
5000 * i_blocks can be represnted in a 32 bit variable
5001 * as multiple of 512 bytes
5002 */
5003 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5004 raw_inode->i_blocks_high = 0;
5005 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5006 return 0;
5007 }
5008 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5009 return -EFBIG;
5010
5011 if (i_blocks <= 0xffffffffffffULL) {
5012 /*
5013 * i_blocks can be represented in a 48 bit variable
5014 * as multiple of 512 bytes
5015 */
5016 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5017 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5018 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5019 } else {
5020 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5021 /* i_block is stored in file system block size */
5022 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5023 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5024 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5025 }
5026 return 0;
5027 }
5028
5029 /*
5030 * Post the struct inode info into an on-disk inode location in the
5031 * buffer-cache. This gobbles the caller's reference to the
5032 * buffer_head in the inode location struct.
5033 *
5034 * The caller must have write access to iloc->bh.
5035 */
5036 static int ext4_do_update_inode(handle_t *handle,
5037 struct inode *inode,
5038 struct ext4_iloc *iloc)
5039 {
5040 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5041 struct ext4_inode_info *ei = EXT4_I(inode);
5042 struct buffer_head *bh = iloc->bh;
5043 int err = 0, rc, block;
5044
5045 /* For fields not not tracking in the in-memory inode,
5046 * initialise them to zero for new inodes. */
5047 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5048 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5049
5050 ext4_get_inode_flags(ei);
5051 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5052 if (!(test_opt(inode->i_sb, NO_UID32))) {
5053 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5054 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5055 /*
5056 * Fix up interoperability with old kernels. Otherwise, old inodes get
5057 * re-used with the upper 16 bits of the uid/gid intact
5058 */
5059 if (!ei->i_dtime) {
5060 raw_inode->i_uid_high =
5061 cpu_to_le16(high_16_bits(inode->i_uid));
5062 raw_inode->i_gid_high =
5063 cpu_to_le16(high_16_bits(inode->i_gid));
5064 } else {
5065 raw_inode->i_uid_high = 0;
5066 raw_inode->i_gid_high = 0;
5067 }
5068 } else {
5069 raw_inode->i_uid_low =
5070 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5071 raw_inode->i_gid_low =
5072 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5073 raw_inode->i_uid_high = 0;
5074 raw_inode->i_gid_high = 0;
5075 }
5076 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5077
5078 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5079 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5080 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5081 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5082
5083 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5084 goto out_brelse;
5085 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5086 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5087 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5088 cpu_to_le32(EXT4_OS_HURD))
5089 raw_inode->i_file_acl_high =
5090 cpu_to_le16(ei->i_file_acl >> 32);
5091 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5092 ext4_isize_set(raw_inode, ei->i_disksize);
5093 if (ei->i_disksize > 0x7fffffffULL) {
5094 struct super_block *sb = inode->i_sb;
5095 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5096 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5097 EXT4_SB(sb)->s_es->s_rev_level ==
5098 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5099 /* If this is the first large file
5100 * created, add a flag to the superblock.
5101 */
5102 err = ext4_journal_get_write_access(handle,
5103 EXT4_SB(sb)->s_sbh);
5104 if (err)
5105 goto out_brelse;
5106 ext4_update_dynamic_rev(sb);
5107 EXT4_SET_RO_COMPAT_FEATURE(sb,
5108 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5109 sb->s_dirt = 1;
5110 ext4_handle_sync(handle);
5111 err = ext4_handle_dirty_metadata(handle, NULL,
5112 EXT4_SB(sb)->s_sbh);
5113 }
5114 }
5115 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5116 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5117 if (old_valid_dev(inode->i_rdev)) {
5118 raw_inode->i_block[0] =
5119 cpu_to_le32(old_encode_dev(inode->i_rdev));
5120 raw_inode->i_block[1] = 0;
5121 } else {
5122 raw_inode->i_block[0] = 0;
5123 raw_inode->i_block[1] =
5124 cpu_to_le32(new_encode_dev(inode->i_rdev));
5125 raw_inode->i_block[2] = 0;
5126 }
5127 } else
5128 for (block = 0; block < EXT4_N_BLOCKS; block++)
5129 raw_inode->i_block[block] = ei->i_data[block];
5130
5131 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5132 if (ei->i_extra_isize) {
5133 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5134 raw_inode->i_version_hi =
5135 cpu_to_le32(inode->i_version >> 32);
5136 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5137 }
5138
5139 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5140 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5141 if (!err)
5142 err = rc;
5143 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5144
5145 ext4_update_inode_fsync_trans(handle, inode, 0);
5146 out_brelse:
5147 brelse(bh);
5148 ext4_std_error(inode->i_sb, err);
5149 return err;
5150 }
5151
5152 /*
5153 * ext4_write_inode()
5154 *
5155 * We are called from a few places:
5156 *
5157 * - Within generic_file_write() for O_SYNC files.
5158 * Here, there will be no transaction running. We wait for any running
5159 * trasnaction to commit.
5160 *
5161 * - Within sys_sync(), kupdate and such.
5162 * We wait on commit, if tol to.
5163 *
5164 * - Within prune_icache() (PF_MEMALLOC == true)
5165 * Here we simply return. We can't afford to block kswapd on the
5166 * journal commit.
5167 *
5168 * In all cases it is actually safe for us to return without doing anything,
5169 * because the inode has been copied into a raw inode buffer in
5170 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5171 * knfsd.
5172 *
5173 * Note that we are absolutely dependent upon all inode dirtiers doing the
5174 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5175 * which we are interested.
5176 *
5177 * It would be a bug for them to not do this. The code:
5178 *
5179 * mark_inode_dirty(inode)
5180 * stuff();
5181 * inode->i_size = expr;
5182 *
5183 * is in error because a kswapd-driven write_inode() could occur while
5184 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5185 * will no longer be on the superblock's dirty inode list.
5186 */
5187 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5188 {
5189 int err;
5190
5191 if (current->flags & PF_MEMALLOC)
5192 return 0;
5193
5194 if (EXT4_SB(inode->i_sb)->s_journal) {
5195 if (ext4_journal_current_handle()) {
5196 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5197 dump_stack();
5198 return -EIO;
5199 }
5200
5201 if (wbc->sync_mode != WB_SYNC_ALL)
5202 return 0;
5203
5204 err = ext4_force_commit(inode->i_sb);
5205 } else {
5206 struct ext4_iloc iloc;
5207
5208 err = __ext4_get_inode_loc(inode, &iloc, 0);
5209 if (err)
5210 return err;
5211 if (wbc->sync_mode == WB_SYNC_ALL)
5212 sync_dirty_buffer(iloc.bh);
5213 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5214 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5215 "IO error syncing inode");
5216 err = -EIO;
5217 }
5218 brelse(iloc.bh);
5219 }
5220 return err;
5221 }
5222
5223 /*
5224 * ext4_setattr()
5225 *
5226 * Called from notify_change.
5227 *
5228 * We want to trap VFS attempts to truncate the file as soon as
5229 * possible. In particular, we want to make sure that when the VFS
5230 * shrinks i_size, we put the inode on the orphan list and modify
5231 * i_disksize immediately, so that during the subsequent flushing of
5232 * dirty pages and freeing of disk blocks, we can guarantee that any
5233 * commit will leave the blocks being flushed in an unused state on
5234 * disk. (On recovery, the inode will get truncated and the blocks will
5235 * be freed, so we have a strong guarantee that no future commit will
5236 * leave these blocks visible to the user.)
5237 *
5238 * Another thing we have to assure is that if we are in ordered mode
5239 * and inode is still attached to the committing transaction, we must
5240 * we start writeout of all the dirty pages which are being truncated.
5241 * This way we are sure that all the data written in the previous
5242 * transaction are already on disk (truncate waits for pages under
5243 * writeback).
5244 *
5245 * Called with inode->i_mutex down.
5246 */
5247 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5248 {
5249 struct inode *inode = dentry->d_inode;
5250 int error, rc = 0;
5251 int orphan = 0;
5252 const unsigned int ia_valid = attr->ia_valid;
5253
5254 error = inode_change_ok(inode, attr);
5255 if (error)
5256 return error;
5257
5258 if (is_quota_modification(inode, attr))
5259 dquot_initialize(inode);
5260 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5261 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5262 handle_t *handle;
5263
5264 /* (user+group)*(old+new) structure, inode write (sb,
5265 * inode block, ? - but truncate inode update has it) */
5266 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5267 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5268 if (IS_ERR(handle)) {
5269 error = PTR_ERR(handle);
5270 goto err_out;
5271 }
5272 error = dquot_transfer(inode, attr);
5273 if (error) {
5274 ext4_journal_stop(handle);
5275 return error;
5276 }
5277 /* Update corresponding info in inode so that everything is in
5278 * one transaction */
5279 if (attr->ia_valid & ATTR_UID)
5280 inode->i_uid = attr->ia_uid;
5281 if (attr->ia_valid & ATTR_GID)
5282 inode->i_gid = attr->ia_gid;
5283 error = ext4_mark_inode_dirty(handle, inode);
5284 ext4_journal_stop(handle);
5285 }
5286
5287 if (attr->ia_valid & ATTR_SIZE) {
5288 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5289 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5290
5291 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5292 return -EFBIG;
5293 }
5294 }
5295
5296 if (S_ISREG(inode->i_mode) &&
5297 attr->ia_valid & ATTR_SIZE &&
5298 (attr->ia_size < inode->i_size ||
5299 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5300 handle_t *handle;
5301
5302 handle = ext4_journal_start(inode, 3);
5303 if (IS_ERR(handle)) {
5304 error = PTR_ERR(handle);
5305 goto err_out;
5306 }
5307 if (ext4_handle_valid(handle)) {
5308 error = ext4_orphan_add(handle, inode);
5309 orphan = 1;
5310 }
5311 EXT4_I(inode)->i_disksize = attr->ia_size;
5312 rc = ext4_mark_inode_dirty(handle, inode);
5313 if (!error)
5314 error = rc;
5315 ext4_journal_stop(handle);
5316
5317 if (ext4_should_order_data(inode)) {
5318 error = ext4_begin_ordered_truncate(inode,
5319 attr->ia_size);
5320 if (error) {
5321 /* Do as much error cleanup as possible */
5322 handle = ext4_journal_start(inode, 3);
5323 if (IS_ERR(handle)) {
5324 ext4_orphan_del(NULL, inode);
5325 goto err_out;
5326 }
5327 ext4_orphan_del(handle, inode);
5328 orphan = 0;
5329 ext4_journal_stop(handle);
5330 goto err_out;
5331 }
5332 }
5333 /* ext4_truncate will clear the flag */
5334 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5335 ext4_truncate(inode);
5336 }
5337
5338 if ((attr->ia_valid & ATTR_SIZE) &&
5339 attr->ia_size != i_size_read(inode))
5340 rc = vmtruncate(inode, attr->ia_size);
5341
5342 if (!rc) {
5343 setattr_copy(inode, attr);
5344 mark_inode_dirty(inode);
5345 }
5346
5347 /*
5348 * If the call to ext4_truncate failed to get a transaction handle at
5349 * all, we need to clean up the in-core orphan list manually.
5350 */
5351 if (orphan && inode->i_nlink)
5352 ext4_orphan_del(NULL, inode);
5353
5354 if (!rc && (ia_valid & ATTR_MODE))
5355 rc = ext4_acl_chmod(inode);
5356
5357 err_out:
5358 ext4_std_error(inode->i_sb, error);
5359 if (!error)
5360 error = rc;
5361 return error;
5362 }
5363
5364 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5365 struct kstat *stat)
5366 {
5367 struct inode *inode;
5368 unsigned long delalloc_blocks;
5369
5370 inode = dentry->d_inode;
5371 generic_fillattr(inode, stat);
5372
5373 /*
5374 * We can't update i_blocks if the block allocation is delayed
5375 * otherwise in the case of system crash before the real block
5376 * allocation is done, we will have i_blocks inconsistent with
5377 * on-disk file blocks.
5378 * We always keep i_blocks updated together with real
5379 * allocation. But to not confuse with user, stat
5380 * will return the blocks that include the delayed allocation
5381 * blocks for this file.
5382 */
5383 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5384
5385 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5386 return 0;
5387 }
5388
5389 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5390 int chunk)
5391 {
5392 int indirects;
5393
5394 /* if nrblocks are contiguous */
5395 if (chunk) {
5396 /*
5397 * With N contiguous data blocks, it need at most
5398 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5399 * 2 dindirect blocks
5400 * 1 tindirect block
5401 */
5402 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5403 return indirects + 3;
5404 }
5405 /*
5406 * if nrblocks are not contiguous, worse case, each block touch
5407 * a indirect block, and each indirect block touch a double indirect
5408 * block, plus a triple indirect block
5409 */
5410 indirects = nrblocks * 2 + 1;
5411 return indirects;
5412 }
5413
5414 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5415 {
5416 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5417 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5418 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5419 }
5420
5421 /*
5422 * Account for index blocks, block groups bitmaps and block group
5423 * descriptor blocks if modify datablocks and index blocks
5424 * worse case, the indexs blocks spread over different block groups
5425 *
5426 * If datablocks are discontiguous, they are possible to spread over
5427 * different block groups too. If they are contiuguous, with flexbg,
5428 * they could still across block group boundary.
5429 *
5430 * Also account for superblock, inode, quota and xattr blocks
5431 */
5432 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5433 {
5434 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5435 int gdpblocks;
5436 int idxblocks;
5437 int ret = 0;
5438
5439 /*
5440 * How many index blocks need to touch to modify nrblocks?
5441 * The "Chunk" flag indicating whether the nrblocks is
5442 * physically contiguous on disk
5443 *
5444 * For Direct IO and fallocate, they calls get_block to allocate
5445 * one single extent at a time, so they could set the "Chunk" flag
5446 */
5447 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5448
5449 ret = idxblocks;
5450
5451 /*
5452 * Now let's see how many group bitmaps and group descriptors need
5453 * to account
5454 */
5455 groups = idxblocks;
5456 if (chunk)
5457 groups += 1;
5458 else
5459 groups += nrblocks;
5460
5461 gdpblocks = groups;
5462 if (groups > ngroups)
5463 groups = ngroups;
5464 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5465 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5466
5467 /* bitmaps and block group descriptor blocks */
5468 ret += groups + gdpblocks;
5469
5470 /* Blocks for super block, inode, quota and xattr blocks */
5471 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5472
5473 return ret;
5474 }
5475
5476 /*
5477 * Calulate the total number of credits to reserve to fit
5478 * the modification of a single pages into a single transaction,
5479 * which may include multiple chunks of block allocations.
5480 *
5481 * This could be called via ext4_write_begin()
5482 *
5483 * We need to consider the worse case, when
5484 * one new block per extent.
5485 */
5486 int ext4_writepage_trans_blocks(struct inode *inode)
5487 {
5488 int bpp = ext4_journal_blocks_per_page(inode);
5489 int ret;
5490
5491 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5492
5493 /* Account for data blocks for journalled mode */
5494 if (ext4_should_journal_data(inode))
5495 ret += bpp;
5496 return ret;
5497 }
5498
5499 /*
5500 * Calculate the journal credits for a chunk of data modification.
5501 *
5502 * This is called from DIO, fallocate or whoever calling
5503 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5504 *
5505 * journal buffers for data blocks are not included here, as DIO
5506 * and fallocate do no need to journal data buffers.
5507 */
5508 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5509 {
5510 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5511 }
5512
5513 /*
5514 * The caller must have previously called ext4_reserve_inode_write().
5515 * Give this, we know that the caller already has write access to iloc->bh.
5516 */
5517 int ext4_mark_iloc_dirty(handle_t *handle,
5518 struct inode *inode, struct ext4_iloc *iloc)
5519 {
5520 int err = 0;
5521
5522 if (test_opt(inode->i_sb, I_VERSION))
5523 inode_inc_iversion(inode);
5524
5525 /* the do_update_inode consumes one bh->b_count */
5526 get_bh(iloc->bh);
5527
5528 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5529 err = ext4_do_update_inode(handle, inode, iloc);
5530 put_bh(iloc->bh);
5531 return err;
5532 }
5533
5534 /*
5535 * On success, We end up with an outstanding reference count against
5536 * iloc->bh. This _must_ be cleaned up later.
5537 */
5538
5539 int
5540 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5541 struct ext4_iloc *iloc)
5542 {
5543 int err;
5544
5545 err = ext4_get_inode_loc(inode, iloc);
5546 if (!err) {
5547 BUFFER_TRACE(iloc->bh, "get_write_access");
5548 err = ext4_journal_get_write_access(handle, iloc->bh);
5549 if (err) {
5550 brelse(iloc->bh);
5551 iloc->bh = NULL;
5552 }
5553 }
5554 ext4_std_error(inode->i_sb, err);
5555 return err;
5556 }
5557
5558 /*
5559 * Expand an inode by new_extra_isize bytes.
5560 * Returns 0 on success or negative error number on failure.
5561 */
5562 static int ext4_expand_extra_isize(struct inode *inode,
5563 unsigned int new_extra_isize,
5564 struct ext4_iloc iloc,
5565 handle_t *handle)
5566 {
5567 struct ext4_inode *raw_inode;
5568 struct ext4_xattr_ibody_header *header;
5569
5570 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5571 return 0;
5572
5573 raw_inode = ext4_raw_inode(&iloc);
5574
5575 header = IHDR(inode, raw_inode);
5576
5577 /* No extended attributes present */
5578 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5579 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5580 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5581 new_extra_isize);
5582 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5583 return 0;
5584 }
5585
5586 /* try to expand with EAs present */
5587 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5588 raw_inode, handle);
5589 }
5590
5591 /*
5592 * What we do here is to mark the in-core inode as clean with respect to inode
5593 * dirtiness (it may still be data-dirty).
5594 * This means that the in-core inode may be reaped by prune_icache
5595 * without having to perform any I/O. This is a very good thing,
5596 * because *any* task may call prune_icache - even ones which
5597 * have a transaction open against a different journal.
5598 *
5599 * Is this cheating? Not really. Sure, we haven't written the
5600 * inode out, but prune_icache isn't a user-visible syncing function.
5601 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5602 * we start and wait on commits.
5603 *
5604 * Is this efficient/effective? Well, we're being nice to the system
5605 * by cleaning up our inodes proactively so they can be reaped
5606 * without I/O. But we are potentially leaving up to five seconds'
5607 * worth of inodes floating about which prune_icache wants us to
5608 * write out. One way to fix that would be to get prune_icache()
5609 * to do a write_super() to free up some memory. It has the desired
5610 * effect.
5611 */
5612 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5613 {
5614 struct ext4_iloc iloc;
5615 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5616 static unsigned int mnt_count;
5617 int err, ret;
5618
5619 might_sleep();
5620 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5621 err = ext4_reserve_inode_write(handle, inode, &iloc);
5622 if (ext4_handle_valid(handle) &&
5623 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5624 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5625 /*
5626 * We need extra buffer credits since we may write into EA block
5627 * with this same handle. If journal_extend fails, then it will
5628 * only result in a minor loss of functionality for that inode.
5629 * If this is felt to be critical, then e2fsck should be run to
5630 * force a large enough s_min_extra_isize.
5631 */
5632 if ((jbd2_journal_extend(handle,
5633 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5634 ret = ext4_expand_extra_isize(inode,
5635 sbi->s_want_extra_isize,
5636 iloc, handle);
5637 if (ret) {
5638 ext4_set_inode_state(inode,
5639 EXT4_STATE_NO_EXPAND);
5640 if (mnt_count !=
5641 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5642 ext4_warning(inode->i_sb,
5643 "Unable to expand inode %lu. Delete"
5644 " some EAs or run e2fsck.",
5645 inode->i_ino);
5646 mnt_count =
5647 le16_to_cpu(sbi->s_es->s_mnt_count);
5648 }
5649 }
5650 }
5651 }
5652 if (!err)
5653 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5654 return err;
5655 }
5656
5657 /*
5658 * ext4_dirty_inode() is called from __mark_inode_dirty()
5659 *
5660 * We're really interested in the case where a file is being extended.
5661 * i_size has been changed by generic_commit_write() and we thus need
5662 * to include the updated inode in the current transaction.
5663 *
5664 * Also, dquot_alloc_block() will always dirty the inode when blocks
5665 * are allocated to the file.
5666 *
5667 * If the inode is marked synchronous, we don't honour that here - doing
5668 * so would cause a commit on atime updates, which we don't bother doing.
5669 * We handle synchronous inodes at the highest possible level.
5670 */
5671 void ext4_dirty_inode(struct inode *inode)
5672 {
5673 handle_t *handle;
5674
5675 handle = ext4_journal_start(inode, 2);
5676 if (IS_ERR(handle))
5677 goto out;
5678
5679 ext4_mark_inode_dirty(handle, inode);
5680
5681 ext4_journal_stop(handle);
5682 out:
5683 return;
5684 }
5685
5686 #if 0
5687 /*
5688 * Bind an inode's backing buffer_head into this transaction, to prevent
5689 * it from being flushed to disk early. Unlike
5690 * ext4_reserve_inode_write, this leaves behind no bh reference and
5691 * returns no iloc structure, so the caller needs to repeat the iloc
5692 * lookup to mark the inode dirty later.
5693 */
5694 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5695 {
5696 struct ext4_iloc iloc;
5697
5698 int err = 0;
5699 if (handle) {
5700 err = ext4_get_inode_loc(inode, &iloc);
5701 if (!err) {
5702 BUFFER_TRACE(iloc.bh, "get_write_access");
5703 err = jbd2_journal_get_write_access(handle, iloc.bh);
5704 if (!err)
5705 err = ext4_handle_dirty_metadata(handle,
5706 NULL,
5707 iloc.bh);
5708 brelse(iloc.bh);
5709 }
5710 }
5711 ext4_std_error(inode->i_sb, err);
5712 return err;
5713 }
5714 #endif
5715
5716 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5717 {
5718 journal_t *journal;
5719 handle_t *handle;
5720 int err;
5721
5722 /*
5723 * We have to be very careful here: changing a data block's
5724 * journaling status dynamically is dangerous. If we write a
5725 * data block to the journal, change the status and then delete
5726 * that block, we risk forgetting to revoke the old log record
5727 * from the journal and so a subsequent replay can corrupt data.
5728 * So, first we make sure that the journal is empty and that
5729 * nobody is changing anything.
5730 */
5731
5732 journal = EXT4_JOURNAL(inode);
5733 if (!journal)
5734 return 0;
5735 if (is_journal_aborted(journal))
5736 return -EROFS;
5737
5738 jbd2_journal_lock_updates(journal);
5739 jbd2_journal_flush(journal);
5740
5741 /*
5742 * OK, there are no updates running now, and all cached data is
5743 * synced to disk. We are now in a completely consistent state
5744 * which doesn't have anything in the journal, and we know that
5745 * no filesystem updates are running, so it is safe to modify
5746 * the inode's in-core data-journaling state flag now.
5747 */
5748
5749 if (val)
5750 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5751 else
5752 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5753 ext4_set_aops(inode);
5754
5755 jbd2_journal_unlock_updates(journal);
5756
5757 /* Finally we can mark the inode as dirty. */
5758
5759 handle = ext4_journal_start(inode, 1);
5760 if (IS_ERR(handle))
5761 return PTR_ERR(handle);
5762
5763 err = ext4_mark_inode_dirty(handle, inode);
5764 ext4_handle_sync(handle);
5765 ext4_journal_stop(handle);
5766 ext4_std_error(inode->i_sb, err);
5767
5768 return err;
5769 }
5770
5771 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5772 {
5773 return !buffer_mapped(bh);
5774 }
5775
5776 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5777 {
5778 struct page *page = vmf->page;
5779 loff_t size;
5780 unsigned long len;
5781 int ret = -EINVAL;
5782 void *fsdata;
5783 struct file *file = vma->vm_file;
5784 struct inode *inode = file->f_path.dentry->d_inode;
5785 struct address_space *mapping = inode->i_mapping;
5786
5787 /*
5788 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5789 * get i_mutex because we are already holding mmap_sem.
5790 */
5791 down_read(&inode->i_alloc_sem);
5792 size = i_size_read(inode);
5793 if (page->mapping != mapping || size <= page_offset(page)
5794 || !PageUptodate(page)) {
5795 /* page got truncated from under us? */
5796 goto out_unlock;
5797 }
5798 ret = 0;
5799 if (PageMappedToDisk(page))
5800 goto out_unlock;
5801
5802 if (page->index == size >> PAGE_CACHE_SHIFT)
5803 len = size & ~PAGE_CACHE_MASK;
5804 else
5805 len = PAGE_CACHE_SIZE;
5806
5807 lock_page(page);
5808 /*
5809 * return if we have all the buffers mapped. This avoid
5810 * the need to call write_begin/write_end which does a
5811 * journal_start/journal_stop which can block and take
5812 * long time
5813 */
5814 if (page_has_buffers(page)) {
5815 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5816 ext4_bh_unmapped)) {
5817 unlock_page(page);
5818 goto out_unlock;
5819 }
5820 }
5821 unlock_page(page);
5822 /*
5823 * OK, we need to fill the hole... Do write_begin write_end
5824 * to do block allocation/reservation.We are not holding
5825 * inode.i__mutex here. That allow * parallel write_begin,
5826 * write_end call. lock_page prevent this from happening
5827 * on the same page though
5828 */
5829 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5830 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5831 if (ret < 0)
5832 goto out_unlock;
5833 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5834 len, len, page, fsdata);
5835 if (ret < 0)
5836 goto out_unlock;
5837 ret = 0;
5838 out_unlock:
5839 if (ret)
5840 ret = VM_FAULT_SIGBUS;
5841 up_read(&inode->i_alloc_sem);
5842 return ret;
5843 }