]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
Merge tag 'for-linus-20150516' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
39
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "truncate.h"
44
45 #include <trace/events/ext4.h>
46
47 #define MPAGE_DA_EXTENT_TAIL 0x01
48
49 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50 struct ext4_inode_info *ei)
51 {
52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53 __u16 csum_lo;
54 __u16 csum_hi = 0;
55 __u32 csum;
56
57 csum_lo = le16_to_cpu(raw->i_checksum_lo);
58 raw->i_checksum_lo = 0;
59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61 csum_hi = le16_to_cpu(raw->i_checksum_hi);
62 raw->i_checksum_hi = 0;
63 }
64
65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66 EXT4_INODE_SIZE(inode->i_sb));
67
68 raw->i_checksum_lo = cpu_to_le16(csum_lo);
69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71 raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73 return csum;
74 }
75
76 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77 struct ext4_inode_info *ei)
78 {
79 __u32 provided, calculated;
80
81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82 cpu_to_le32(EXT4_OS_LINUX) ||
83 !ext4_has_metadata_csum(inode->i_sb))
84 return 1;
85
86 provided = le16_to_cpu(raw->i_checksum_lo);
87 calculated = ext4_inode_csum(inode, raw, ei);
88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91 else
92 calculated &= 0xFFFF;
93
94 return provided == calculated;
95 }
96
97 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98 struct ext4_inode_info *ei)
99 {
100 __u32 csum;
101
102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103 cpu_to_le32(EXT4_OS_LINUX) ||
104 !ext4_has_metadata_csum(inode->i_sb))
105 return;
106
107 csum = ext4_inode_csum(inode, raw, ei);
108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112 }
113
114 static inline int ext4_begin_ordered_truncate(struct inode *inode,
115 loff_t new_size)
116 {
117 trace_ext4_begin_ordered_truncate(inode, new_size);
118 /*
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
123 */
124 if (!EXT4_I(inode)->jinode)
125 return 0;
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127 EXT4_I(inode)->jinode,
128 new_size);
129 }
130
131 static void ext4_invalidatepage(struct page *page, unsigned int offset,
132 unsigned int length);
133 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136 int pextents);
137
138 /*
139 * Test whether an inode is a fast symlink.
140 */
141 int ext4_inode_is_fast_symlink(struct inode *inode)
142 {
143 int ea_blocks = EXT4_I(inode)->i_file_acl ?
144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146 if (ext4_has_inline_data(inode))
147 return 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158 int nblocks)
159 {
160 int ret;
161
162 /*
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 jbd_debug(2, "restarting handle %p\n", handle);
170 up_write(&EXT4_I(inode)->i_data_sem);
171 ret = ext4_journal_restart(handle, nblocks);
172 down_write(&EXT4_I(inode)->i_data_sem);
173 ext4_discard_preallocations(inode);
174
175 return ret;
176 }
177
178 /*
179 * Called at the last iput() if i_nlink is zero.
180 */
181 void ext4_evict_inode(struct inode *inode)
182 {
183 handle_t *handle;
184 int err;
185
186 trace_ext4_evict_inode(inode);
187
188 if (inode->i_nlink) {
189 /*
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
203 *
204 * Note that directories do not have this problem because they
205 * don't use page cache.
206 */
207 if (ext4_should_journal_data(inode) &&
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213 jbd2_complete_transaction(journal, commit_tid);
214 filemap_write_and_wait(&inode->i_data);
215 }
216 truncate_inode_pages_final(&inode->i_data);
217
218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219 goto no_delete;
220 }
221
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages_final(&inode->i_data);
229
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
239 if (IS_ERR(handle)) {
240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
246 ext4_orphan_del(NULL, inode);
247 sb_end_intwrite(inode->i_sb);
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
252 ext4_handle_sync(handle);
253 inode->i_size = 0;
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
260 if (inode->i_blocks)
261 ext4_truncate(inode);
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
269 if (!ext4_handle_has_enough_credits(handle, 3)) {
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
274 ext4_warning(inode->i_sb,
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
278 ext4_orphan_del(NULL, inode);
279 sb_end_intwrite(inode->i_sb);
280 goto no_delete;
281 }
282 }
283
284 /*
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
291 */
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
305 else
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 sb_end_intwrite(inode->i_sb);
309 return;
310 no_delete:
311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317 return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
324 */
325 void ext4_da_update_reserve_space(struct inode *inode,
326 int used, int quota_claim)
327 {
328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329 struct ext4_inode_info *ei = EXT4_I(inode);
330
331 spin_lock(&ei->i_block_reservation_lock);
332 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333 if (unlikely(used > ei->i_reserved_data_blocks)) {
334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335 "with only %d reserved data blocks",
336 __func__, inode->i_ino, used,
337 ei->i_reserved_data_blocks);
338 WARN_ON(1);
339 used = ei->i_reserved_data_blocks;
340 }
341
342 /* Update per-inode reservations */
343 ei->i_reserved_data_blocks -= used;
344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348 /* Update quota subsystem for data blocks */
349 if (quota_claim)
350 dquot_claim_block(inode, EXT4_C2B(sbi, used));
351 else {
352 /*
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
355 * not re-claim the quota for fallocated blocks.
356 */
357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358 }
359
360 /*
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
364 */
365 if ((ei->i_reserved_data_blocks == 0) &&
366 (atomic_read(&inode->i_writecount) == 0))
367 ext4_discard_preallocations(inode);
368 }
369
370 static int __check_block_validity(struct inode *inode, const char *func,
371 unsigned int line,
372 struct ext4_map_blocks *map)
373 {
374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375 map->m_len)) {
376 ext4_error_inode(inode, func, line, map->m_pblk,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map->m_lblk,
379 map->m_len);
380 return -EIO;
381 }
382 return 0;
383 }
384
385 #define check_block_validity(inode, map) \
386 __check_block_validity((inode), __func__, __LINE__, (map))
387
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t *handle,
390 struct inode *inode,
391 struct ext4_map_blocks *es_map,
392 struct ext4_map_blocks *map,
393 int flags)
394 {
395 int retval;
396
397 map->m_flags = 0;
398 /*
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
404 */
405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406 down_read(&EXT4_I(inode)->i_data_sem);
407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408 retval = ext4_ext_map_blocks(handle, inode, map, flags &
409 EXT4_GET_BLOCKS_KEEP_SIZE);
410 } else {
411 retval = ext4_ind_map_blocks(handle, inode, map, flags &
412 EXT4_GET_BLOCKS_KEEP_SIZE);
413 }
414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415 up_read((&EXT4_I(inode)->i_data_sem));
416
417 /*
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
420 */
421 if (es_map->m_lblk != map->m_lblk ||
422 es_map->m_flags != map->m_flags ||
423 es_map->m_pblk != map->m_pblk) {
424 printk("ES cache assertion failed for inode: %lu "
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode->i_ino, es_map->m_lblk, es_map->m_len,
428 es_map->m_pblk, es_map->m_flags, map->m_lblk,
429 map->m_len, map->m_pblk, map->m_flags,
430 retval, flags);
431 }
432 }
433 #endif /* ES_AGGRESSIVE_TEST */
434
435 /*
436 * The ext4_map_blocks() function tries to look up the requested blocks,
437 * and returns if the blocks are already mapped.
438 *
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
441 * mapped.
442 *
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445 * based files
446 *
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
451 *
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
453 * that case, buffer head is unmapped
454 *
455 * It returns the error in case of allocation failure.
456 */
457 int ext4_map_blocks(handle_t *handle, struct inode *inode,
458 struct ext4_map_blocks *map, int flags)
459 {
460 struct extent_status es;
461 int retval;
462 int ret = 0;
463 #ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map;
465
466 memcpy(&orig_map, map, sizeof(*map));
467 #endif
468
469 map->m_flags = 0;
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode->i_ino, flags, map->m_len,
472 (unsigned long) map->m_lblk);
473
474 /*
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
476 */
477 if (unlikely(map->m_len > INT_MAX))
478 map->m_len = INT_MAX;
479
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482 return -EIO;
483
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487 map->m_pblk = ext4_es_pblock(&es) +
488 map->m_lblk - es.es_lblk;
489 map->m_flags |= ext4_es_is_written(&es) ?
490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491 retval = es.es_len - (map->m_lblk - es.es_lblk);
492 if (retval > map->m_len)
493 retval = map->m_len;
494 map->m_len = retval;
495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496 retval = 0;
497 } else {
498 BUG_ON(1);
499 }
500 #ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle, inode, map,
502 &orig_map, flags);
503 #endif
504 goto found;
505 }
506
507 /*
508 * Try to see if we can get the block without requesting a new
509 * file system block.
510 */
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 down_read(&EXT4_I(inode)->i_data_sem);
513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514 retval = ext4_ext_map_blocks(handle, inode, map, flags &
515 EXT4_GET_BLOCKS_KEEP_SIZE);
516 } else {
517 retval = ext4_ind_map_blocks(handle, inode, map, flags &
518 EXT4_GET_BLOCKS_KEEP_SIZE);
519 }
520 if (retval > 0) {
521 unsigned int status;
522
523 if (unlikely(retval != map->m_len)) {
524 ext4_warning(inode->i_sb,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode->i_ino, retval, map->m_len);
528 WARN_ON(1);
529 }
530
531 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534 !(status & EXTENT_STATUS_WRITTEN) &&
535 ext4_find_delalloc_range(inode, map->m_lblk,
536 map->m_lblk + map->m_len - 1))
537 status |= EXTENT_STATUS_DELAYED;
538 ret = ext4_es_insert_extent(inode, map->m_lblk,
539 map->m_len, map->m_pblk, status);
540 if (ret < 0)
541 retval = ret;
542 }
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 up_read((&EXT4_I(inode)->i_data_sem));
545
546 found:
547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548 ret = check_block_validity(inode, map);
549 if (ret != 0)
550 return ret;
551 }
552
553 /* If it is only a block(s) look up */
554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555 return retval;
556
557 /*
558 * Returns if the blocks have already allocated
559 *
560 * Note that if blocks have been preallocated
561 * ext4_ext_get_block() returns the create = 0
562 * with buffer head unmapped.
563 */
564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565 /*
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
569 */
570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571 return retval;
572
573 /*
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
576 */
577 map->m_flags &= ~EXT4_MAP_FLAGS;
578
579 /*
580 * New blocks allocate and/or writing to unwritten extent
581 * will possibly result in updating i_data, so we take
582 * the write lock of i_data_sem, and call get_block()
583 * with create == 1 flag.
584 */
585 down_write(&EXT4_I(inode)->i_data_sem);
586
587 /*
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
590 */
591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592 retval = ext4_ext_map_blocks(handle, inode, map, flags);
593 } else {
594 retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597 /*
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
601 */
602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603 }
604
605 /*
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
610 */
611 if ((retval > 0) &&
612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613 ext4_da_update_reserve_space(inode, retval, 1);
614 }
615
616 if (retval > 0) {
617 unsigned int status;
618
619 if (unlikely(retval != map->m_len)) {
620 ext4_warning(inode->i_sb,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode->i_ino, retval, map->m_len);
624 WARN_ON(1);
625 }
626
627 /*
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
630 */
631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633 if (ext4_es_is_written(&es))
634 goto has_zeroout;
635 }
636 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639 !(status & EXTENT_STATUS_WRITTEN) &&
640 ext4_find_delalloc_range(inode, map->m_lblk,
641 map->m_lblk + map->m_len - 1))
642 status |= EXTENT_STATUS_DELAYED;
643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644 map->m_pblk, status);
645 if (ret < 0)
646 retval = ret;
647 }
648
649 has_zeroout:
650 up_write((&EXT4_I(inode)->i_data_sem));
651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652 ret = check_block_validity(inode, map);
653 if (ret != 0)
654 return ret;
655 }
656 return retval;
657 }
658
659 static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate)
660 {
661 struct inode *inode = bh->b_assoc_map->host;
662 /* XXX: breaks on 32-bit > 16GB. Is that even supported? */
663 loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits;
664 int err;
665 if (!uptodate)
666 return;
667 WARN_ON(!buffer_unwritten(bh));
668 err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size);
669 }
670
671 /* Maximum number of blocks we map for direct IO at once. */
672 #define DIO_MAX_BLOCKS 4096
673
674 static int _ext4_get_block(struct inode *inode, sector_t iblock,
675 struct buffer_head *bh, int flags)
676 {
677 handle_t *handle = ext4_journal_current_handle();
678 struct ext4_map_blocks map;
679 int ret = 0, started = 0;
680 int dio_credits;
681
682 if (ext4_has_inline_data(inode))
683 return -ERANGE;
684
685 map.m_lblk = iblock;
686 map.m_len = bh->b_size >> inode->i_blkbits;
687
688 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
689 /* Direct IO write... */
690 if (map.m_len > DIO_MAX_BLOCKS)
691 map.m_len = DIO_MAX_BLOCKS;
692 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
693 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
694 dio_credits);
695 if (IS_ERR(handle)) {
696 ret = PTR_ERR(handle);
697 return ret;
698 }
699 started = 1;
700 }
701
702 ret = ext4_map_blocks(handle, inode, &map, flags);
703 if (ret > 0) {
704 ext4_io_end_t *io_end = ext4_inode_aio(inode);
705
706 map_bh(bh, inode->i_sb, map.m_pblk);
707 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
708 if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) {
709 bh->b_assoc_map = inode->i_mapping;
710 bh->b_private = (void *)(unsigned long)iblock;
711 bh->b_end_io = ext4_end_io_unwritten;
712 }
713 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
714 set_buffer_defer_completion(bh);
715 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
716 ret = 0;
717 }
718 if (started)
719 ext4_journal_stop(handle);
720 return ret;
721 }
722
723 int ext4_get_block(struct inode *inode, sector_t iblock,
724 struct buffer_head *bh, int create)
725 {
726 return _ext4_get_block(inode, iblock, bh,
727 create ? EXT4_GET_BLOCKS_CREATE : 0);
728 }
729
730 /*
731 * `handle' can be NULL if create is zero
732 */
733 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
734 ext4_lblk_t block, int create)
735 {
736 struct ext4_map_blocks map;
737 struct buffer_head *bh;
738 int err;
739
740 J_ASSERT(handle != NULL || create == 0);
741
742 map.m_lblk = block;
743 map.m_len = 1;
744 err = ext4_map_blocks(handle, inode, &map,
745 create ? EXT4_GET_BLOCKS_CREATE : 0);
746
747 if (err == 0)
748 return create ? ERR_PTR(-ENOSPC) : NULL;
749 if (err < 0)
750 return ERR_PTR(err);
751
752 bh = sb_getblk(inode->i_sb, map.m_pblk);
753 if (unlikely(!bh))
754 return ERR_PTR(-ENOMEM);
755 if (map.m_flags & EXT4_MAP_NEW) {
756 J_ASSERT(create != 0);
757 J_ASSERT(handle != NULL);
758
759 /*
760 * Now that we do not always journal data, we should
761 * keep in mind whether this should always journal the
762 * new buffer as metadata. For now, regular file
763 * writes use ext4_get_block instead, so it's not a
764 * problem.
765 */
766 lock_buffer(bh);
767 BUFFER_TRACE(bh, "call get_create_access");
768 err = ext4_journal_get_create_access(handle, bh);
769 if (unlikely(err)) {
770 unlock_buffer(bh);
771 goto errout;
772 }
773 if (!buffer_uptodate(bh)) {
774 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
775 set_buffer_uptodate(bh);
776 }
777 unlock_buffer(bh);
778 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
779 err = ext4_handle_dirty_metadata(handle, inode, bh);
780 if (unlikely(err))
781 goto errout;
782 } else
783 BUFFER_TRACE(bh, "not a new buffer");
784 return bh;
785 errout:
786 brelse(bh);
787 return ERR_PTR(err);
788 }
789
790 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
791 ext4_lblk_t block, int create)
792 {
793 struct buffer_head *bh;
794
795 bh = ext4_getblk(handle, inode, block, create);
796 if (IS_ERR(bh))
797 return bh;
798 if (!bh || buffer_uptodate(bh))
799 return bh;
800 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
801 wait_on_buffer(bh);
802 if (buffer_uptodate(bh))
803 return bh;
804 put_bh(bh);
805 return ERR_PTR(-EIO);
806 }
807
808 int ext4_walk_page_buffers(handle_t *handle,
809 struct buffer_head *head,
810 unsigned from,
811 unsigned to,
812 int *partial,
813 int (*fn)(handle_t *handle,
814 struct buffer_head *bh))
815 {
816 struct buffer_head *bh;
817 unsigned block_start, block_end;
818 unsigned blocksize = head->b_size;
819 int err, ret = 0;
820 struct buffer_head *next;
821
822 for (bh = head, block_start = 0;
823 ret == 0 && (bh != head || !block_start);
824 block_start = block_end, bh = next) {
825 next = bh->b_this_page;
826 block_end = block_start + blocksize;
827 if (block_end <= from || block_start >= to) {
828 if (partial && !buffer_uptodate(bh))
829 *partial = 1;
830 continue;
831 }
832 err = (*fn)(handle, bh);
833 if (!ret)
834 ret = err;
835 }
836 return ret;
837 }
838
839 /*
840 * To preserve ordering, it is essential that the hole instantiation and
841 * the data write be encapsulated in a single transaction. We cannot
842 * close off a transaction and start a new one between the ext4_get_block()
843 * and the commit_write(). So doing the jbd2_journal_start at the start of
844 * prepare_write() is the right place.
845 *
846 * Also, this function can nest inside ext4_writepage(). In that case, we
847 * *know* that ext4_writepage() has generated enough buffer credits to do the
848 * whole page. So we won't block on the journal in that case, which is good,
849 * because the caller may be PF_MEMALLOC.
850 *
851 * By accident, ext4 can be reentered when a transaction is open via
852 * quota file writes. If we were to commit the transaction while thus
853 * reentered, there can be a deadlock - we would be holding a quota
854 * lock, and the commit would never complete if another thread had a
855 * transaction open and was blocking on the quota lock - a ranking
856 * violation.
857 *
858 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
859 * will _not_ run commit under these circumstances because handle->h_ref
860 * is elevated. We'll still have enough credits for the tiny quotafile
861 * write.
862 */
863 int do_journal_get_write_access(handle_t *handle,
864 struct buffer_head *bh)
865 {
866 int dirty = buffer_dirty(bh);
867 int ret;
868
869 if (!buffer_mapped(bh) || buffer_freed(bh))
870 return 0;
871 /*
872 * __block_write_begin() could have dirtied some buffers. Clean
873 * the dirty bit as jbd2_journal_get_write_access() could complain
874 * otherwise about fs integrity issues. Setting of the dirty bit
875 * by __block_write_begin() isn't a real problem here as we clear
876 * the bit before releasing a page lock and thus writeback cannot
877 * ever write the buffer.
878 */
879 if (dirty)
880 clear_buffer_dirty(bh);
881 BUFFER_TRACE(bh, "get write access");
882 ret = ext4_journal_get_write_access(handle, bh);
883 if (!ret && dirty)
884 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
885 return ret;
886 }
887
888 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
889 struct buffer_head *bh_result, int create);
890
891 #ifdef CONFIG_EXT4_FS_ENCRYPTION
892 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
893 get_block_t *get_block)
894 {
895 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
896 unsigned to = from + len;
897 struct inode *inode = page->mapping->host;
898 unsigned block_start, block_end;
899 sector_t block;
900 int err = 0;
901 unsigned blocksize = inode->i_sb->s_blocksize;
902 unsigned bbits;
903 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
904 bool decrypt = false;
905
906 BUG_ON(!PageLocked(page));
907 BUG_ON(from > PAGE_CACHE_SIZE);
908 BUG_ON(to > PAGE_CACHE_SIZE);
909 BUG_ON(from > to);
910
911 if (!page_has_buffers(page))
912 create_empty_buffers(page, blocksize, 0);
913 head = page_buffers(page);
914 bbits = ilog2(blocksize);
915 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
916
917 for (bh = head, block_start = 0; bh != head || !block_start;
918 block++, block_start = block_end, bh = bh->b_this_page) {
919 block_end = block_start + blocksize;
920 if (block_end <= from || block_start >= to) {
921 if (PageUptodate(page)) {
922 if (!buffer_uptodate(bh))
923 set_buffer_uptodate(bh);
924 }
925 continue;
926 }
927 if (buffer_new(bh))
928 clear_buffer_new(bh);
929 if (!buffer_mapped(bh)) {
930 WARN_ON(bh->b_size != blocksize);
931 err = get_block(inode, block, bh, 1);
932 if (err)
933 break;
934 if (buffer_new(bh)) {
935 unmap_underlying_metadata(bh->b_bdev,
936 bh->b_blocknr);
937 if (PageUptodate(page)) {
938 clear_buffer_new(bh);
939 set_buffer_uptodate(bh);
940 mark_buffer_dirty(bh);
941 continue;
942 }
943 if (block_end > to || block_start < from)
944 zero_user_segments(page, to, block_end,
945 block_start, from);
946 continue;
947 }
948 }
949 if (PageUptodate(page)) {
950 if (!buffer_uptodate(bh))
951 set_buffer_uptodate(bh);
952 continue;
953 }
954 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
955 !buffer_unwritten(bh) &&
956 (block_start < from || block_end > to)) {
957 ll_rw_block(READ, 1, &bh);
958 *wait_bh++ = bh;
959 decrypt = ext4_encrypted_inode(inode) &&
960 S_ISREG(inode->i_mode);
961 }
962 }
963 /*
964 * If we issued read requests, let them complete.
965 */
966 while (wait_bh > wait) {
967 wait_on_buffer(*--wait_bh);
968 if (!buffer_uptodate(*wait_bh))
969 err = -EIO;
970 }
971 if (unlikely(err))
972 page_zero_new_buffers(page, from, to);
973 else if (decrypt)
974 err = ext4_decrypt_one(inode, page);
975 return err;
976 }
977 #endif
978
979 static int ext4_write_begin(struct file *file, struct address_space *mapping,
980 loff_t pos, unsigned len, unsigned flags,
981 struct page **pagep, void **fsdata)
982 {
983 struct inode *inode = mapping->host;
984 int ret, needed_blocks;
985 handle_t *handle;
986 int retries = 0;
987 struct page *page;
988 pgoff_t index;
989 unsigned from, to;
990
991 trace_ext4_write_begin(inode, pos, len, flags);
992 /*
993 * Reserve one block more for addition to orphan list in case
994 * we allocate blocks but write fails for some reason
995 */
996 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
997 index = pos >> PAGE_CACHE_SHIFT;
998 from = pos & (PAGE_CACHE_SIZE - 1);
999 to = from + len;
1000
1001 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1002 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1003 flags, pagep);
1004 if (ret < 0)
1005 return ret;
1006 if (ret == 1)
1007 return 0;
1008 }
1009
1010 /*
1011 * grab_cache_page_write_begin() can take a long time if the
1012 * system is thrashing due to memory pressure, or if the page
1013 * is being written back. So grab it first before we start
1014 * the transaction handle. This also allows us to allocate
1015 * the page (if needed) without using GFP_NOFS.
1016 */
1017 retry_grab:
1018 page = grab_cache_page_write_begin(mapping, index, flags);
1019 if (!page)
1020 return -ENOMEM;
1021 unlock_page(page);
1022
1023 retry_journal:
1024 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1025 if (IS_ERR(handle)) {
1026 page_cache_release(page);
1027 return PTR_ERR(handle);
1028 }
1029
1030 lock_page(page);
1031 if (page->mapping != mapping) {
1032 /* The page got truncated from under us */
1033 unlock_page(page);
1034 page_cache_release(page);
1035 ext4_journal_stop(handle);
1036 goto retry_grab;
1037 }
1038 /* In case writeback began while the page was unlocked */
1039 wait_for_stable_page(page);
1040
1041 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1042 if (ext4_should_dioread_nolock(inode))
1043 ret = ext4_block_write_begin(page, pos, len,
1044 ext4_get_block_write);
1045 else
1046 ret = ext4_block_write_begin(page, pos, len,
1047 ext4_get_block);
1048 #else
1049 if (ext4_should_dioread_nolock(inode))
1050 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1051 else
1052 ret = __block_write_begin(page, pos, len, ext4_get_block);
1053 #endif
1054 if (!ret && ext4_should_journal_data(inode)) {
1055 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1056 from, to, NULL,
1057 do_journal_get_write_access);
1058 }
1059
1060 if (ret) {
1061 unlock_page(page);
1062 /*
1063 * __block_write_begin may have instantiated a few blocks
1064 * outside i_size. Trim these off again. Don't need
1065 * i_size_read because we hold i_mutex.
1066 *
1067 * Add inode to orphan list in case we crash before
1068 * truncate finishes
1069 */
1070 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1071 ext4_orphan_add(handle, inode);
1072
1073 ext4_journal_stop(handle);
1074 if (pos + len > inode->i_size) {
1075 ext4_truncate_failed_write(inode);
1076 /*
1077 * If truncate failed early the inode might
1078 * still be on the orphan list; we need to
1079 * make sure the inode is removed from the
1080 * orphan list in that case.
1081 */
1082 if (inode->i_nlink)
1083 ext4_orphan_del(NULL, inode);
1084 }
1085
1086 if (ret == -ENOSPC &&
1087 ext4_should_retry_alloc(inode->i_sb, &retries))
1088 goto retry_journal;
1089 page_cache_release(page);
1090 return ret;
1091 }
1092 *pagep = page;
1093 return ret;
1094 }
1095
1096 /* For write_end() in data=journal mode */
1097 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1098 {
1099 int ret;
1100 if (!buffer_mapped(bh) || buffer_freed(bh))
1101 return 0;
1102 set_buffer_uptodate(bh);
1103 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1104 clear_buffer_meta(bh);
1105 clear_buffer_prio(bh);
1106 return ret;
1107 }
1108
1109 /*
1110 * We need to pick up the new inode size which generic_commit_write gave us
1111 * `file' can be NULL - eg, when called from page_symlink().
1112 *
1113 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1114 * buffers are managed internally.
1115 */
1116 static int ext4_write_end(struct file *file,
1117 struct address_space *mapping,
1118 loff_t pos, unsigned len, unsigned copied,
1119 struct page *page, void *fsdata)
1120 {
1121 handle_t *handle = ext4_journal_current_handle();
1122 struct inode *inode = mapping->host;
1123 loff_t old_size = inode->i_size;
1124 int ret = 0, ret2;
1125 int i_size_changed = 0;
1126
1127 trace_ext4_write_end(inode, pos, len, copied);
1128 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1129 ret = ext4_jbd2_file_inode(handle, inode);
1130 if (ret) {
1131 unlock_page(page);
1132 page_cache_release(page);
1133 goto errout;
1134 }
1135 }
1136
1137 if (ext4_has_inline_data(inode)) {
1138 ret = ext4_write_inline_data_end(inode, pos, len,
1139 copied, page);
1140 if (ret < 0)
1141 goto errout;
1142 copied = ret;
1143 } else
1144 copied = block_write_end(file, mapping, pos,
1145 len, copied, page, fsdata);
1146 /*
1147 * it's important to update i_size while still holding page lock:
1148 * page writeout could otherwise come in and zero beyond i_size.
1149 */
1150 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1151 unlock_page(page);
1152 page_cache_release(page);
1153
1154 if (old_size < pos)
1155 pagecache_isize_extended(inode, old_size, pos);
1156 /*
1157 * Don't mark the inode dirty under page lock. First, it unnecessarily
1158 * makes the holding time of page lock longer. Second, it forces lock
1159 * ordering of page lock and transaction start for journaling
1160 * filesystems.
1161 */
1162 if (i_size_changed)
1163 ext4_mark_inode_dirty(handle, inode);
1164
1165 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166 /* if we have allocated more blocks and copied
1167 * less. We will have blocks allocated outside
1168 * inode->i_size. So truncate them
1169 */
1170 ext4_orphan_add(handle, inode);
1171 errout:
1172 ret2 = ext4_journal_stop(handle);
1173 if (!ret)
1174 ret = ret2;
1175
1176 if (pos + len > inode->i_size) {
1177 ext4_truncate_failed_write(inode);
1178 /*
1179 * If truncate failed early the inode might still be
1180 * on the orphan list; we need to make sure the inode
1181 * is removed from the orphan list in that case.
1182 */
1183 if (inode->i_nlink)
1184 ext4_orphan_del(NULL, inode);
1185 }
1186
1187 return ret ? ret : copied;
1188 }
1189
1190 static int ext4_journalled_write_end(struct file *file,
1191 struct address_space *mapping,
1192 loff_t pos, unsigned len, unsigned copied,
1193 struct page *page, void *fsdata)
1194 {
1195 handle_t *handle = ext4_journal_current_handle();
1196 struct inode *inode = mapping->host;
1197 loff_t old_size = inode->i_size;
1198 int ret = 0, ret2;
1199 int partial = 0;
1200 unsigned from, to;
1201 int size_changed = 0;
1202
1203 trace_ext4_journalled_write_end(inode, pos, len, copied);
1204 from = pos & (PAGE_CACHE_SIZE - 1);
1205 to = from + len;
1206
1207 BUG_ON(!ext4_handle_valid(handle));
1208
1209 if (ext4_has_inline_data(inode))
1210 copied = ext4_write_inline_data_end(inode, pos, len,
1211 copied, page);
1212 else {
1213 if (copied < len) {
1214 if (!PageUptodate(page))
1215 copied = 0;
1216 page_zero_new_buffers(page, from+copied, to);
1217 }
1218
1219 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1220 to, &partial, write_end_fn);
1221 if (!partial)
1222 SetPageUptodate(page);
1223 }
1224 size_changed = ext4_update_inode_size(inode, pos + copied);
1225 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1226 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1227 unlock_page(page);
1228 page_cache_release(page);
1229
1230 if (old_size < pos)
1231 pagecache_isize_extended(inode, old_size, pos);
1232
1233 if (size_changed) {
1234 ret2 = ext4_mark_inode_dirty(handle, inode);
1235 if (!ret)
1236 ret = ret2;
1237 }
1238
1239 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1240 /* if we have allocated more blocks and copied
1241 * less. We will have blocks allocated outside
1242 * inode->i_size. So truncate them
1243 */
1244 ext4_orphan_add(handle, inode);
1245
1246 ret2 = ext4_journal_stop(handle);
1247 if (!ret)
1248 ret = ret2;
1249 if (pos + len > inode->i_size) {
1250 ext4_truncate_failed_write(inode);
1251 /*
1252 * If truncate failed early the inode might still be
1253 * on the orphan list; we need to make sure the inode
1254 * is removed from the orphan list in that case.
1255 */
1256 if (inode->i_nlink)
1257 ext4_orphan_del(NULL, inode);
1258 }
1259
1260 return ret ? ret : copied;
1261 }
1262
1263 /*
1264 * Reserve a single cluster located at lblock
1265 */
1266 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267 {
1268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269 struct ext4_inode_info *ei = EXT4_I(inode);
1270 unsigned int md_needed;
1271 int ret;
1272
1273 /*
1274 * We will charge metadata quota at writeout time; this saves
1275 * us from metadata over-estimation, though we may go over by
1276 * a small amount in the end. Here we just reserve for data.
1277 */
1278 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1279 if (ret)
1280 return ret;
1281
1282 /*
1283 * recalculate the amount of metadata blocks to reserve
1284 * in order to allocate nrblocks
1285 * worse case is one extent per block
1286 */
1287 spin_lock(&ei->i_block_reservation_lock);
1288 /*
1289 * ext4_calc_metadata_amount() has side effects, which we have
1290 * to be prepared undo if we fail to claim space.
1291 */
1292 md_needed = 0;
1293 trace_ext4_da_reserve_space(inode, 0);
1294
1295 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1296 spin_unlock(&ei->i_block_reservation_lock);
1297 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1298 return -ENOSPC;
1299 }
1300 ei->i_reserved_data_blocks++;
1301 spin_unlock(&ei->i_block_reservation_lock);
1302
1303 return 0; /* success */
1304 }
1305
1306 static void ext4_da_release_space(struct inode *inode, int to_free)
1307 {
1308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309 struct ext4_inode_info *ei = EXT4_I(inode);
1310
1311 if (!to_free)
1312 return; /* Nothing to release, exit */
1313
1314 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1315
1316 trace_ext4_da_release_space(inode, to_free);
1317 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1318 /*
1319 * if there aren't enough reserved blocks, then the
1320 * counter is messed up somewhere. Since this
1321 * function is called from invalidate page, it's
1322 * harmless to return without any action.
1323 */
1324 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1325 "ino %lu, to_free %d with only %d reserved "
1326 "data blocks", inode->i_ino, to_free,
1327 ei->i_reserved_data_blocks);
1328 WARN_ON(1);
1329 to_free = ei->i_reserved_data_blocks;
1330 }
1331 ei->i_reserved_data_blocks -= to_free;
1332
1333 /* update fs dirty data blocks counter */
1334 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1335
1336 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1337
1338 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1339 }
1340
1341 static void ext4_da_page_release_reservation(struct page *page,
1342 unsigned int offset,
1343 unsigned int length)
1344 {
1345 int to_release = 0;
1346 struct buffer_head *head, *bh;
1347 unsigned int curr_off = 0;
1348 struct inode *inode = page->mapping->host;
1349 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1350 unsigned int stop = offset + length;
1351 int num_clusters;
1352 ext4_fsblk_t lblk;
1353
1354 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1355
1356 head = page_buffers(page);
1357 bh = head;
1358 do {
1359 unsigned int next_off = curr_off + bh->b_size;
1360
1361 if (next_off > stop)
1362 break;
1363
1364 if ((offset <= curr_off) && (buffer_delay(bh))) {
1365 to_release++;
1366 clear_buffer_delay(bh);
1367 }
1368 curr_off = next_off;
1369 } while ((bh = bh->b_this_page) != head);
1370
1371 if (to_release) {
1372 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1373 ext4_es_remove_extent(inode, lblk, to_release);
1374 }
1375
1376 /* If we have released all the blocks belonging to a cluster, then we
1377 * need to release the reserved space for that cluster. */
1378 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1379 while (num_clusters > 0) {
1380 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1381 ((num_clusters - 1) << sbi->s_cluster_bits);
1382 if (sbi->s_cluster_ratio == 1 ||
1383 !ext4_find_delalloc_cluster(inode, lblk))
1384 ext4_da_release_space(inode, 1);
1385
1386 num_clusters--;
1387 }
1388 }
1389
1390 /*
1391 * Delayed allocation stuff
1392 */
1393
1394 struct mpage_da_data {
1395 struct inode *inode;
1396 struct writeback_control *wbc;
1397
1398 pgoff_t first_page; /* The first page to write */
1399 pgoff_t next_page; /* Current page to examine */
1400 pgoff_t last_page; /* Last page to examine */
1401 /*
1402 * Extent to map - this can be after first_page because that can be
1403 * fully mapped. We somewhat abuse m_flags to store whether the extent
1404 * is delalloc or unwritten.
1405 */
1406 struct ext4_map_blocks map;
1407 struct ext4_io_submit io_submit; /* IO submission data */
1408 };
1409
1410 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1411 bool invalidate)
1412 {
1413 int nr_pages, i;
1414 pgoff_t index, end;
1415 struct pagevec pvec;
1416 struct inode *inode = mpd->inode;
1417 struct address_space *mapping = inode->i_mapping;
1418
1419 /* This is necessary when next_page == 0. */
1420 if (mpd->first_page >= mpd->next_page)
1421 return;
1422
1423 index = mpd->first_page;
1424 end = mpd->next_page - 1;
1425 if (invalidate) {
1426 ext4_lblk_t start, last;
1427 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1428 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1429 ext4_es_remove_extent(inode, start, last - start + 1);
1430 }
1431
1432 pagevec_init(&pvec, 0);
1433 while (index <= end) {
1434 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1435 if (nr_pages == 0)
1436 break;
1437 for (i = 0; i < nr_pages; i++) {
1438 struct page *page = pvec.pages[i];
1439 if (page->index > end)
1440 break;
1441 BUG_ON(!PageLocked(page));
1442 BUG_ON(PageWriteback(page));
1443 if (invalidate) {
1444 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1445 ClearPageUptodate(page);
1446 }
1447 unlock_page(page);
1448 }
1449 index = pvec.pages[nr_pages - 1]->index + 1;
1450 pagevec_release(&pvec);
1451 }
1452 }
1453
1454 static void ext4_print_free_blocks(struct inode *inode)
1455 {
1456 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1457 struct super_block *sb = inode->i_sb;
1458 struct ext4_inode_info *ei = EXT4_I(inode);
1459
1460 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1461 EXT4_C2B(EXT4_SB(inode->i_sb),
1462 ext4_count_free_clusters(sb)));
1463 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1464 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1465 (long long) EXT4_C2B(EXT4_SB(sb),
1466 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1467 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1468 (long long) EXT4_C2B(EXT4_SB(sb),
1469 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1470 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1471 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1472 ei->i_reserved_data_blocks);
1473 return;
1474 }
1475
1476 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1477 {
1478 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1479 }
1480
1481 /*
1482 * This function is grabs code from the very beginning of
1483 * ext4_map_blocks, but assumes that the caller is from delayed write
1484 * time. This function looks up the requested blocks and sets the
1485 * buffer delay bit under the protection of i_data_sem.
1486 */
1487 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1488 struct ext4_map_blocks *map,
1489 struct buffer_head *bh)
1490 {
1491 struct extent_status es;
1492 int retval;
1493 sector_t invalid_block = ~((sector_t) 0xffff);
1494 #ifdef ES_AGGRESSIVE_TEST
1495 struct ext4_map_blocks orig_map;
1496
1497 memcpy(&orig_map, map, sizeof(*map));
1498 #endif
1499
1500 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1501 invalid_block = ~0;
1502
1503 map->m_flags = 0;
1504 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1505 "logical block %lu\n", inode->i_ino, map->m_len,
1506 (unsigned long) map->m_lblk);
1507
1508 /* Lookup extent status tree firstly */
1509 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1510 if (ext4_es_is_hole(&es)) {
1511 retval = 0;
1512 down_read(&EXT4_I(inode)->i_data_sem);
1513 goto add_delayed;
1514 }
1515
1516 /*
1517 * Delayed extent could be allocated by fallocate.
1518 * So we need to check it.
1519 */
1520 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1521 map_bh(bh, inode->i_sb, invalid_block);
1522 set_buffer_new(bh);
1523 set_buffer_delay(bh);
1524 return 0;
1525 }
1526
1527 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1528 retval = es.es_len - (iblock - es.es_lblk);
1529 if (retval > map->m_len)
1530 retval = map->m_len;
1531 map->m_len = retval;
1532 if (ext4_es_is_written(&es))
1533 map->m_flags |= EXT4_MAP_MAPPED;
1534 else if (ext4_es_is_unwritten(&es))
1535 map->m_flags |= EXT4_MAP_UNWRITTEN;
1536 else
1537 BUG_ON(1);
1538
1539 #ifdef ES_AGGRESSIVE_TEST
1540 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1541 #endif
1542 return retval;
1543 }
1544
1545 /*
1546 * Try to see if we can get the block without requesting a new
1547 * file system block.
1548 */
1549 down_read(&EXT4_I(inode)->i_data_sem);
1550 if (ext4_has_inline_data(inode))
1551 retval = 0;
1552 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1553 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1554 else
1555 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1556
1557 add_delayed:
1558 if (retval == 0) {
1559 int ret;
1560 /*
1561 * XXX: __block_prepare_write() unmaps passed block,
1562 * is it OK?
1563 */
1564 /*
1565 * If the block was allocated from previously allocated cluster,
1566 * then we don't need to reserve it again. However we still need
1567 * to reserve metadata for every block we're going to write.
1568 */
1569 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1570 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1571 ret = ext4_da_reserve_space(inode, iblock);
1572 if (ret) {
1573 /* not enough space to reserve */
1574 retval = ret;
1575 goto out_unlock;
1576 }
1577 }
1578
1579 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1580 ~0, EXTENT_STATUS_DELAYED);
1581 if (ret) {
1582 retval = ret;
1583 goto out_unlock;
1584 }
1585
1586 map_bh(bh, inode->i_sb, invalid_block);
1587 set_buffer_new(bh);
1588 set_buffer_delay(bh);
1589 } else if (retval > 0) {
1590 int ret;
1591 unsigned int status;
1592
1593 if (unlikely(retval != map->m_len)) {
1594 ext4_warning(inode->i_sb,
1595 "ES len assertion failed for inode "
1596 "%lu: retval %d != map->m_len %d",
1597 inode->i_ino, retval, map->m_len);
1598 WARN_ON(1);
1599 }
1600
1601 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1602 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1603 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1604 map->m_pblk, status);
1605 if (ret != 0)
1606 retval = ret;
1607 }
1608
1609 out_unlock:
1610 up_read((&EXT4_I(inode)->i_data_sem));
1611
1612 return retval;
1613 }
1614
1615 /*
1616 * This is a special get_block_t callback which is used by
1617 * ext4_da_write_begin(). It will either return mapped block or
1618 * reserve space for a single block.
1619 *
1620 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1621 * We also have b_blocknr = -1 and b_bdev initialized properly
1622 *
1623 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1624 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1625 * initialized properly.
1626 */
1627 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1628 struct buffer_head *bh, int create)
1629 {
1630 struct ext4_map_blocks map;
1631 int ret = 0;
1632
1633 BUG_ON(create == 0);
1634 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1635
1636 map.m_lblk = iblock;
1637 map.m_len = 1;
1638
1639 /*
1640 * first, we need to know whether the block is allocated already
1641 * preallocated blocks are unmapped but should treated
1642 * the same as allocated blocks.
1643 */
1644 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1645 if (ret <= 0)
1646 return ret;
1647
1648 map_bh(bh, inode->i_sb, map.m_pblk);
1649 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1650
1651 if (buffer_unwritten(bh)) {
1652 /* A delayed write to unwritten bh should be marked
1653 * new and mapped. Mapped ensures that we don't do
1654 * get_block multiple times when we write to the same
1655 * offset and new ensures that we do proper zero out
1656 * for partial write.
1657 */
1658 set_buffer_new(bh);
1659 set_buffer_mapped(bh);
1660 }
1661 return 0;
1662 }
1663
1664 static int bget_one(handle_t *handle, struct buffer_head *bh)
1665 {
1666 get_bh(bh);
1667 return 0;
1668 }
1669
1670 static int bput_one(handle_t *handle, struct buffer_head *bh)
1671 {
1672 put_bh(bh);
1673 return 0;
1674 }
1675
1676 static int __ext4_journalled_writepage(struct page *page,
1677 unsigned int len)
1678 {
1679 struct address_space *mapping = page->mapping;
1680 struct inode *inode = mapping->host;
1681 struct buffer_head *page_bufs = NULL;
1682 handle_t *handle = NULL;
1683 int ret = 0, err = 0;
1684 int inline_data = ext4_has_inline_data(inode);
1685 struct buffer_head *inode_bh = NULL;
1686
1687 ClearPageChecked(page);
1688
1689 if (inline_data) {
1690 BUG_ON(page->index != 0);
1691 BUG_ON(len > ext4_get_max_inline_size(inode));
1692 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1693 if (inode_bh == NULL)
1694 goto out;
1695 } else {
1696 page_bufs = page_buffers(page);
1697 if (!page_bufs) {
1698 BUG();
1699 goto out;
1700 }
1701 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1702 NULL, bget_one);
1703 }
1704 /* As soon as we unlock the page, it can go away, but we have
1705 * references to buffers so we are safe */
1706 unlock_page(page);
1707
1708 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1709 ext4_writepage_trans_blocks(inode));
1710 if (IS_ERR(handle)) {
1711 ret = PTR_ERR(handle);
1712 goto out;
1713 }
1714
1715 BUG_ON(!ext4_handle_valid(handle));
1716
1717 if (inline_data) {
1718 BUFFER_TRACE(inode_bh, "get write access");
1719 ret = ext4_journal_get_write_access(handle, inode_bh);
1720
1721 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1722
1723 } else {
1724 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1725 do_journal_get_write_access);
1726
1727 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1728 write_end_fn);
1729 }
1730 if (ret == 0)
1731 ret = err;
1732 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1733 err = ext4_journal_stop(handle);
1734 if (!ret)
1735 ret = err;
1736
1737 if (!ext4_has_inline_data(inode))
1738 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1739 NULL, bput_one);
1740 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1741 out:
1742 brelse(inode_bh);
1743 return ret;
1744 }
1745
1746 /*
1747 * Note that we don't need to start a transaction unless we're journaling data
1748 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1749 * need to file the inode to the transaction's list in ordered mode because if
1750 * we are writing back data added by write(), the inode is already there and if
1751 * we are writing back data modified via mmap(), no one guarantees in which
1752 * transaction the data will hit the disk. In case we are journaling data, we
1753 * cannot start transaction directly because transaction start ranks above page
1754 * lock so we have to do some magic.
1755 *
1756 * This function can get called via...
1757 * - ext4_writepages after taking page lock (have journal handle)
1758 * - journal_submit_inode_data_buffers (no journal handle)
1759 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1760 * - grab_page_cache when doing write_begin (have journal handle)
1761 *
1762 * We don't do any block allocation in this function. If we have page with
1763 * multiple blocks we need to write those buffer_heads that are mapped. This
1764 * is important for mmaped based write. So if we do with blocksize 1K
1765 * truncate(f, 1024);
1766 * a = mmap(f, 0, 4096);
1767 * a[0] = 'a';
1768 * truncate(f, 4096);
1769 * we have in the page first buffer_head mapped via page_mkwrite call back
1770 * but other buffer_heads would be unmapped but dirty (dirty done via the
1771 * do_wp_page). So writepage should write the first block. If we modify
1772 * the mmap area beyond 1024 we will again get a page_fault and the
1773 * page_mkwrite callback will do the block allocation and mark the
1774 * buffer_heads mapped.
1775 *
1776 * We redirty the page if we have any buffer_heads that is either delay or
1777 * unwritten in the page.
1778 *
1779 * We can get recursively called as show below.
1780 *
1781 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1782 * ext4_writepage()
1783 *
1784 * But since we don't do any block allocation we should not deadlock.
1785 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1786 */
1787 static int ext4_writepage(struct page *page,
1788 struct writeback_control *wbc)
1789 {
1790 int ret = 0;
1791 loff_t size;
1792 unsigned int len;
1793 struct buffer_head *page_bufs = NULL;
1794 struct inode *inode = page->mapping->host;
1795 struct ext4_io_submit io_submit;
1796 bool keep_towrite = false;
1797
1798 trace_ext4_writepage(page);
1799 size = i_size_read(inode);
1800 if (page->index == size >> PAGE_CACHE_SHIFT)
1801 len = size & ~PAGE_CACHE_MASK;
1802 else
1803 len = PAGE_CACHE_SIZE;
1804
1805 page_bufs = page_buffers(page);
1806 /*
1807 * We cannot do block allocation or other extent handling in this
1808 * function. If there are buffers needing that, we have to redirty
1809 * the page. But we may reach here when we do a journal commit via
1810 * journal_submit_inode_data_buffers() and in that case we must write
1811 * allocated buffers to achieve data=ordered mode guarantees.
1812 */
1813 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1814 ext4_bh_delay_or_unwritten)) {
1815 redirty_page_for_writepage(wbc, page);
1816 if (current->flags & PF_MEMALLOC) {
1817 /*
1818 * For memory cleaning there's no point in writing only
1819 * some buffers. So just bail out. Warn if we came here
1820 * from direct reclaim.
1821 */
1822 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1823 == PF_MEMALLOC);
1824 unlock_page(page);
1825 return 0;
1826 }
1827 keep_towrite = true;
1828 }
1829
1830 if (PageChecked(page) && ext4_should_journal_data(inode))
1831 /*
1832 * It's mmapped pagecache. Add buffers and journal it. There
1833 * doesn't seem much point in redirtying the page here.
1834 */
1835 return __ext4_journalled_writepage(page, len);
1836
1837 ext4_io_submit_init(&io_submit, wbc);
1838 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1839 if (!io_submit.io_end) {
1840 redirty_page_for_writepage(wbc, page);
1841 unlock_page(page);
1842 return -ENOMEM;
1843 }
1844 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1845 ext4_io_submit(&io_submit);
1846 /* Drop io_end reference we got from init */
1847 ext4_put_io_end_defer(io_submit.io_end);
1848 return ret;
1849 }
1850
1851 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1852 {
1853 int len;
1854 loff_t size = i_size_read(mpd->inode);
1855 int err;
1856
1857 BUG_ON(page->index != mpd->first_page);
1858 if (page->index == size >> PAGE_CACHE_SHIFT)
1859 len = size & ~PAGE_CACHE_MASK;
1860 else
1861 len = PAGE_CACHE_SIZE;
1862 clear_page_dirty_for_io(page);
1863 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1864 if (!err)
1865 mpd->wbc->nr_to_write--;
1866 mpd->first_page++;
1867
1868 return err;
1869 }
1870
1871 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1872
1873 /*
1874 * mballoc gives us at most this number of blocks...
1875 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1876 * The rest of mballoc seems to handle chunks up to full group size.
1877 */
1878 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1879
1880 /*
1881 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1882 *
1883 * @mpd - extent of blocks
1884 * @lblk - logical number of the block in the file
1885 * @bh - buffer head we want to add to the extent
1886 *
1887 * The function is used to collect contig. blocks in the same state. If the
1888 * buffer doesn't require mapping for writeback and we haven't started the
1889 * extent of buffers to map yet, the function returns 'true' immediately - the
1890 * caller can write the buffer right away. Otherwise the function returns true
1891 * if the block has been added to the extent, false if the block couldn't be
1892 * added.
1893 */
1894 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1895 struct buffer_head *bh)
1896 {
1897 struct ext4_map_blocks *map = &mpd->map;
1898
1899 /* Buffer that doesn't need mapping for writeback? */
1900 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1901 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1902 /* So far no extent to map => we write the buffer right away */
1903 if (map->m_len == 0)
1904 return true;
1905 return false;
1906 }
1907
1908 /* First block in the extent? */
1909 if (map->m_len == 0) {
1910 map->m_lblk = lblk;
1911 map->m_len = 1;
1912 map->m_flags = bh->b_state & BH_FLAGS;
1913 return true;
1914 }
1915
1916 /* Don't go larger than mballoc is willing to allocate */
1917 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1918 return false;
1919
1920 /* Can we merge the block to our big extent? */
1921 if (lblk == map->m_lblk + map->m_len &&
1922 (bh->b_state & BH_FLAGS) == map->m_flags) {
1923 map->m_len++;
1924 return true;
1925 }
1926 return false;
1927 }
1928
1929 /*
1930 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1931 *
1932 * @mpd - extent of blocks for mapping
1933 * @head - the first buffer in the page
1934 * @bh - buffer we should start processing from
1935 * @lblk - logical number of the block in the file corresponding to @bh
1936 *
1937 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1938 * the page for IO if all buffers in this page were mapped and there's no
1939 * accumulated extent of buffers to map or add buffers in the page to the
1940 * extent of buffers to map. The function returns 1 if the caller can continue
1941 * by processing the next page, 0 if it should stop adding buffers to the
1942 * extent to map because we cannot extend it anymore. It can also return value
1943 * < 0 in case of error during IO submission.
1944 */
1945 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1946 struct buffer_head *head,
1947 struct buffer_head *bh,
1948 ext4_lblk_t lblk)
1949 {
1950 struct inode *inode = mpd->inode;
1951 int err;
1952 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1953 >> inode->i_blkbits;
1954
1955 do {
1956 BUG_ON(buffer_locked(bh));
1957
1958 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
1959 /* Found extent to map? */
1960 if (mpd->map.m_len)
1961 return 0;
1962 /* Everything mapped so far and we hit EOF */
1963 break;
1964 }
1965 } while (lblk++, (bh = bh->b_this_page) != head);
1966 /* So far everything mapped? Submit the page for IO. */
1967 if (mpd->map.m_len == 0) {
1968 err = mpage_submit_page(mpd, head->b_page);
1969 if (err < 0)
1970 return err;
1971 }
1972 return lblk < blocks;
1973 }
1974
1975 /*
1976 * mpage_map_buffers - update buffers corresponding to changed extent and
1977 * submit fully mapped pages for IO
1978 *
1979 * @mpd - description of extent to map, on return next extent to map
1980 *
1981 * Scan buffers corresponding to changed extent (we expect corresponding pages
1982 * to be already locked) and update buffer state according to new extent state.
1983 * We map delalloc buffers to their physical location, clear unwritten bits,
1984 * and mark buffers as uninit when we perform writes to unwritten extents
1985 * and do extent conversion after IO is finished. If the last page is not fully
1986 * mapped, we update @map to the next extent in the last page that needs
1987 * mapping. Otherwise we submit the page for IO.
1988 */
1989 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1990 {
1991 struct pagevec pvec;
1992 int nr_pages, i;
1993 struct inode *inode = mpd->inode;
1994 struct buffer_head *head, *bh;
1995 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
1996 pgoff_t start, end;
1997 ext4_lblk_t lblk;
1998 sector_t pblock;
1999 int err;
2000
2001 start = mpd->map.m_lblk >> bpp_bits;
2002 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2003 lblk = start << bpp_bits;
2004 pblock = mpd->map.m_pblk;
2005
2006 pagevec_init(&pvec, 0);
2007 while (start <= end) {
2008 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2009 PAGEVEC_SIZE);
2010 if (nr_pages == 0)
2011 break;
2012 for (i = 0; i < nr_pages; i++) {
2013 struct page *page = pvec.pages[i];
2014
2015 if (page->index > end)
2016 break;
2017 /* Up to 'end' pages must be contiguous */
2018 BUG_ON(page->index != start);
2019 bh = head = page_buffers(page);
2020 do {
2021 if (lblk < mpd->map.m_lblk)
2022 continue;
2023 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2024 /*
2025 * Buffer after end of mapped extent.
2026 * Find next buffer in the page to map.
2027 */
2028 mpd->map.m_len = 0;
2029 mpd->map.m_flags = 0;
2030 /*
2031 * FIXME: If dioread_nolock supports
2032 * blocksize < pagesize, we need to make
2033 * sure we add size mapped so far to
2034 * io_end->size as the following call
2035 * can submit the page for IO.
2036 */
2037 err = mpage_process_page_bufs(mpd, head,
2038 bh, lblk);
2039 pagevec_release(&pvec);
2040 if (err > 0)
2041 err = 0;
2042 return err;
2043 }
2044 if (buffer_delay(bh)) {
2045 clear_buffer_delay(bh);
2046 bh->b_blocknr = pblock++;
2047 }
2048 clear_buffer_unwritten(bh);
2049 } while (lblk++, (bh = bh->b_this_page) != head);
2050
2051 /*
2052 * FIXME: This is going to break if dioread_nolock
2053 * supports blocksize < pagesize as we will try to
2054 * convert potentially unmapped parts of inode.
2055 */
2056 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2057 /* Page fully mapped - let IO run! */
2058 err = mpage_submit_page(mpd, page);
2059 if (err < 0) {
2060 pagevec_release(&pvec);
2061 return err;
2062 }
2063 start++;
2064 }
2065 pagevec_release(&pvec);
2066 }
2067 /* Extent fully mapped and matches with page boundary. We are done. */
2068 mpd->map.m_len = 0;
2069 mpd->map.m_flags = 0;
2070 return 0;
2071 }
2072
2073 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2074 {
2075 struct inode *inode = mpd->inode;
2076 struct ext4_map_blocks *map = &mpd->map;
2077 int get_blocks_flags;
2078 int err, dioread_nolock;
2079
2080 trace_ext4_da_write_pages_extent(inode, map);
2081 /*
2082 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2083 * to convert an unwritten extent to be initialized (in the case
2084 * where we have written into one or more preallocated blocks). It is
2085 * possible that we're going to need more metadata blocks than
2086 * previously reserved. However we must not fail because we're in
2087 * writeback and there is nothing we can do about it so it might result
2088 * in data loss. So use reserved blocks to allocate metadata if
2089 * possible.
2090 *
2091 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2092 * the blocks in question are delalloc blocks. This indicates
2093 * that the blocks and quotas has already been checked when
2094 * the data was copied into the page cache.
2095 */
2096 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2097 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2098 dioread_nolock = ext4_should_dioread_nolock(inode);
2099 if (dioread_nolock)
2100 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2101 if (map->m_flags & (1 << BH_Delay))
2102 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2103
2104 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2105 if (err < 0)
2106 return err;
2107 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2108 if (!mpd->io_submit.io_end->handle &&
2109 ext4_handle_valid(handle)) {
2110 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2111 handle->h_rsv_handle = NULL;
2112 }
2113 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2114 }
2115
2116 BUG_ON(map->m_len == 0);
2117 if (map->m_flags & EXT4_MAP_NEW) {
2118 struct block_device *bdev = inode->i_sb->s_bdev;
2119 int i;
2120
2121 for (i = 0; i < map->m_len; i++)
2122 unmap_underlying_metadata(bdev, map->m_pblk + i);
2123 }
2124 return 0;
2125 }
2126
2127 /*
2128 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2129 * mpd->len and submit pages underlying it for IO
2130 *
2131 * @handle - handle for journal operations
2132 * @mpd - extent to map
2133 * @give_up_on_write - we set this to true iff there is a fatal error and there
2134 * is no hope of writing the data. The caller should discard
2135 * dirty pages to avoid infinite loops.
2136 *
2137 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2138 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2139 * them to initialized or split the described range from larger unwritten
2140 * extent. Note that we need not map all the described range since allocation
2141 * can return less blocks or the range is covered by more unwritten extents. We
2142 * cannot map more because we are limited by reserved transaction credits. On
2143 * the other hand we always make sure that the last touched page is fully
2144 * mapped so that it can be written out (and thus forward progress is
2145 * guaranteed). After mapping we submit all mapped pages for IO.
2146 */
2147 static int mpage_map_and_submit_extent(handle_t *handle,
2148 struct mpage_da_data *mpd,
2149 bool *give_up_on_write)
2150 {
2151 struct inode *inode = mpd->inode;
2152 struct ext4_map_blocks *map = &mpd->map;
2153 int err;
2154 loff_t disksize;
2155 int progress = 0;
2156
2157 mpd->io_submit.io_end->offset =
2158 ((loff_t)map->m_lblk) << inode->i_blkbits;
2159 do {
2160 err = mpage_map_one_extent(handle, mpd);
2161 if (err < 0) {
2162 struct super_block *sb = inode->i_sb;
2163
2164 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2165 goto invalidate_dirty_pages;
2166 /*
2167 * Let the uper layers retry transient errors.
2168 * In the case of ENOSPC, if ext4_count_free_blocks()
2169 * is non-zero, a commit should free up blocks.
2170 */
2171 if ((err == -ENOMEM) ||
2172 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2173 if (progress)
2174 goto update_disksize;
2175 return err;
2176 }
2177 ext4_msg(sb, KERN_CRIT,
2178 "Delayed block allocation failed for "
2179 "inode %lu at logical offset %llu with"
2180 " max blocks %u with error %d",
2181 inode->i_ino,
2182 (unsigned long long)map->m_lblk,
2183 (unsigned)map->m_len, -err);
2184 ext4_msg(sb, KERN_CRIT,
2185 "This should not happen!! Data will "
2186 "be lost\n");
2187 if (err == -ENOSPC)
2188 ext4_print_free_blocks(inode);
2189 invalidate_dirty_pages:
2190 *give_up_on_write = true;
2191 return err;
2192 }
2193 progress = 1;
2194 /*
2195 * Update buffer state, submit mapped pages, and get us new
2196 * extent to map
2197 */
2198 err = mpage_map_and_submit_buffers(mpd);
2199 if (err < 0)
2200 goto update_disksize;
2201 } while (map->m_len);
2202
2203 update_disksize:
2204 /*
2205 * Update on-disk size after IO is submitted. Races with
2206 * truncate are avoided by checking i_size under i_data_sem.
2207 */
2208 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2209 if (disksize > EXT4_I(inode)->i_disksize) {
2210 int err2;
2211 loff_t i_size;
2212
2213 down_write(&EXT4_I(inode)->i_data_sem);
2214 i_size = i_size_read(inode);
2215 if (disksize > i_size)
2216 disksize = i_size;
2217 if (disksize > EXT4_I(inode)->i_disksize)
2218 EXT4_I(inode)->i_disksize = disksize;
2219 err2 = ext4_mark_inode_dirty(handle, inode);
2220 up_write(&EXT4_I(inode)->i_data_sem);
2221 if (err2)
2222 ext4_error(inode->i_sb,
2223 "Failed to mark inode %lu dirty",
2224 inode->i_ino);
2225 if (!err)
2226 err = err2;
2227 }
2228 return err;
2229 }
2230
2231 /*
2232 * Calculate the total number of credits to reserve for one writepages
2233 * iteration. This is called from ext4_writepages(). We map an extent of
2234 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2235 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2236 * bpp - 1 blocks in bpp different extents.
2237 */
2238 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2239 {
2240 int bpp = ext4_journal_blocks_per_page(inode);
2241
2242 return ext4_meta_trans_blocks(inode,
2243 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2244 }
2245
2246 /*
2247 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2248 * and underlying extent to map
2249 *
2250 * @mpd - where to look for pages
2251 *
2252 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2253 * IO immediately. When we find a page which isn't mapped we start accumulating
2254 * extent of buffers underlying these pages that needs mapping (formed by
2255 * either delayed or unwritten buffers). We also lock the pages containing
2256 * these buffers. The extent found is returned in @mpd structure (starting at
2257 * mpd->lblk with length mpd->len blocks).
2258 *
2259 * Note that this function can attach bios to one io_end structure which are
2260 * neither logically nor physically contiguous. Although it may seem as an
2261 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2262 * case as we need to track IO to all buffers underlying a page in one io_end.
2263 */
2264 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2265 {
2266 struct address_space *mapping = mpd->inode->i_mapping;
2267 struct pagevec pvec;
2268 unsigned int nr_pages;
2269 long left = mpd->wbc->nr_to_write;
2270 pgoff_t index = mpd->first_page;
2271 pgoff_t end = mpd->last_page;
2272 int tag;
2273 int i, err = 0;
2274 int blkbits = mpd->inode->i_blkbits;
2275 ext4_lblk_t lblk;
2276 struct buffer_head *head;
2277
2278 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2279 tag = PAGECACHE_TAG_TOWRITE;
2280 else
2281 tag = PAGECACHE_TAG_DIRTY;
2282
2283 pagevec_init(&pvec, 0);
2284 mpd->map.m_len = 0;
2285 mpd->next_page = index;
2286 while (index <= end) {
2287 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2289 if (nr_pages == 0)
2290 goto out;
2291
2292 for (i = 0; i < nr_pages; i++) {
2293 struct page *page = pvec.pages[i];
2294
2295 /*
2296 * At this point, the page may be truncated or
2297 * invalidated (changing page->mapping to NULL), or
2298 * even swizzled back from swapper_space to tmpfs file
2299 * mapping. However, page->index will not change
2300 * because we have a reference on the page.
2301 */
2302 if (page->index > end)
2303 goto out;
2304
2305 /*
2306 * Accumulated enough dirty pages? This doesn't apply
2307 * to WB_SYNC_ALL mode. For integrity sync we have to
2308 * keep going because someone may be concurrently
2309 * dirtying pages, and we might have synced a lot of
2310 * newly appeared dirty pages, but have not synced all
2311 * of the old dirty pages.
2312 */
2313 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2314 goto out;
2315
2316 /* If we can't merge this page, we are done. */
2317 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2318 goto out;
2319
2320 lock_page(page);
2321 /*
2322 * If the page is no longer dirty, or its mapping no
2323 * longer corresponds to inode we are writing (which
2324 * means it has been truncated or invalidated), or the
2325 * page is already under writeback and we are not doing
2326 * a data integrity writeback, skip the page
2327 */
2328 if (!PageDirty(page) ||
2329 (PageWriteback(page) &&
2330 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2331 unlikely(page->mapping != mapping)) {
2332 unlock_page(page);
2333 continue;
2334 }
2335
2336 wait_on_page_writeback(page);
2337 BUG_ON(PageWriteback(page));
2338
2339 if (mpd->map.m_len == 0)
2340 mpd->first_page = page->index;
2341 mpd->next_page = page->index + 1;
2342 /* Add all dirty buffers to mpd */
2343 lblk = ((ext4_lblk_t)page->index) <<
2344 (PAGE_CACHE_SHIFT - blkbits);
2345 head = page_buffers(page);
2346 err = mpage_process_page_bufs(mpd, head, head, lblk);
2347 if (err <= 0)
2348 goto out;
2349 err = 0;
2350 left--;
2351 }
2352 pagevec_release(&pvec);
2353 cond_resched();
2354 }
2355 return 0;
2356 out:
2357 pagevec_release(&pvec);
2358 return err;
2359 }
2360
2361 static int __writepage(struct page *page, struct writeback_control *wbc,
2362 void *data)
2363 {
2364 struct address_space *mapping = data;
2365 int ret = ext4_writepage(page, wbc);
2366 mapping_set_error(mapping, ret);
2367 return ret;
2368 }
2369
2370 static int ext4_writepages(struct address_space *mapping,
2371 struct writeback_control *wbc)
2372 {
2373 pgoff_t writeback_index = 0;
2374 long nr_to_write = wbc->nr_to_write;
2375 int range_whole = 0;
2376 int cycled = 1;
2377 handle_t *handle = NULL;
2378 struct mpage_da_data mpd;
2379 struct inode *inode = mapping->host;
2380 int needed_blocks, rsv_blocks = 0, ret = 0;
2381 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2382 bool done;
2383 struct blk_plug plug;
2384 bool give_up_on_write = false;
2385
2386 trace_ext4_writepages(inode, wbc);
2387
2388 /*
2389 * No pages to write? This is mainly a kludge to avoid starting
2390 * a transaction for special inodes like journal inode on last iput()
2391 * because that could violate lock ordering on umount
2392 */
2393 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2394 goto out_writepages;
2395
2396 if (ext4_should_journal_data(inode)) {
2397 struct blk_plug plug;
2398
2399 blk_start_plug(&plug);
2400 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2401 blk_finish_plug(&plug);
2402 goto out_writepages;
2403 }
2404
2405 /*
2406 * If the filesystem has aborted, it is read-only, so return
2407 * right away instead of dumping stack traces later on that
2408 * will obscure the real source of the problem. We test
2409 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2410 * the latter could be true if the filesystem is mounted
2411 * read-only, and in that case, ext4_writepages should
2412 * *never* be called, so if that ever happens, we would want
2413 * the stack trace.
2414 */
2415 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2416 ret = -EROFS;
2417 goto out_writepages;
2418 }
2419
2420 if (ext4_should_dioread_nolock(inode)) {
2421 /*
2422 * We may need to convert up to one extent per block in
2423 * the page and we may dirty the inode.
2424 */
2425 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2426 }
2427
2428 /*
2429 * If we have inline data and arrive here, it means that
2430 * we will soon create the block for the 1st page, so
2431 * we'd better clear the inline data here.
2432 */
2433 if (ext4_has_inline_data(inode)) {
2434 /* Just inode will be modified... */
2435 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2436 if (IS_ERR(handle)) {
2437 ret = PTR_ERR(handle);
2438 goto out_writepages;
2439 }
2440 BUG_ON(ext4_test_inode_state(inode,
2441 EXT4_STATE_MAY_INLINE_DATA));
2442 ext4_destroy_inline_data(handle, inode);
2443 ext4_journal_stop(handle);
2444 }
2445
2446 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2447 range_whole = 1;
2448
2449 if (wbc->range_cyclic) {
2450 writeback_index = mapping->writeback_index;
2451 if (writeback_index)
2452 cycled = 0;
2453 mpd.first_page = writeback_index;
2454 mpd.last_page = -1;
2455 } else {
2456 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2457 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2458 }
2459
2460 mpd.inode = inode;
2461 mpd.wbc = wbc;
2462 ext4_io_submit_init(&mpd.io_submit, wbc);
2463 retry:
2464 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2465 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2466 done = false;
2467 blk_start_plug(&plug);
2468 while (!done && mpd.first_page <= mpd.last_page) {
2469 /* For each extent of pages we use new io_end */
2470 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2471 if (!mpd.io_submit.io_end) {
2472 ret = -ENOMEM;
2473 break;
2474 }
2475
2476 /*
2477 * We have two constraints: We find one extent to map and we
2478 * must always write out whole page (makes a difference when
2479 * blocksize < pagesize) so that we don't block on IO when we
2480 * try to write out the rest of the page. Journalled mode is
2481 * not supported by delalloc.
2482 */
2483 BUG_ON(ext4_should_journal_data(inode));
2484 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2485
2486 /* start a new transaction */
2487 handle = ext4_journal_start_with_reserve(inode,
2488 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2489 if (IS_ERR(handle)) {
2490 ret = PTR_ERR(handle);
2491 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2492 "%ld pages, ino %lu; err %d", __func__,
2493 wbc->nr_to_write, inode->i_ino, ret);
2494 /* Release allocated io_end */
2495 ext4_put_io_end(mpd.io_submit.io_end);
2496 break;
2497 }
2498
2499 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2500 ret = mpage_prepare_extent_to_map(&mpd);
2501 if (!ret) {
2502 if (mpd.map.m_len)
2503 ret = mpage_map_and_submit_extent(handle, &mpd,
2504 &give_up_on_write);
2505 else {
2506 /*
2507 * We scanned the whole range (or exhausted
2508 * nr_to_write), submitted what was mapped and
2509 * didn't find anything needing mapping. We are
2510 * done.
2511 */
2512 done = true;
2513 }
2514 }
2515 ext4_journal_stop(handle);
2516 /* Submit prepared bio */
2517 ext4_io_submit(&mpd.io_submit);
2518 /* Unlock pages we didn't use */
2519 mpage_release_unused_pages(&mpd, give_up_on_write);
2520 /* Drop our io_end reference we got from init */
2521 ext4_put_io_end(mpd.io_submit.io_end);
2522
2523 if (ret == -ENOSPC && sbi->s_journal) {
2524 /*
2525 * Commit the transaction which would
2526 * free blocks released in the transaction
2527 * and try again
2528 */
2529 jbd2_journal_force_commit_nested(sbi->s_journal);
2530 ret = 0;
2531 continue;
2532 }
2533 /* Fatal error - ENOMEM, EIO... */
2534 if (ret)
2535 break;
2536 }
2537 blk_finish_plug(&plug);
2538 if (!ret && !cycled && wbc->nr_to_write > 0) {
2539 cycled = 1;
2540 mpd.last_page = writeback_index - 1;
2541 mpd.first_page = 0;
2542 goto retry;
2543 }
2544
2545 /* Update index */
2546 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2547 /*
2548 * Set the writeback_index so that range_cyclic
2549 * mode will write it back later
2550 */
2551 mapping->writeback_index = mpd.first_page;
2552
2553 out_writepages:
2554 trace_ext4_writepages_result(inode, wbc, ret,
2555 nr_to_write - wbc->nr_to_write);
2556 return ret;
2557 }
2558
2559 static int ext4_nonda_switch(struct super_block *sb)
2560 {
2561 s64 free_clusters, dirty_clusters;
2562 struct ext4_sb_info *sbi = EXT4_SB(sb);
2563
2564 /*
2565 * switch to non delalloc mode if we are running low
2566 * on free block. The free block accounting via percpu
2567 * counters can get slightly wrong with percpu_counter_batch getting
2568 * accumulated on each CPU without updating global counters
2569 * Delalloc need an accurate free block accounting. So switch
2570 * to non delalloc when we are near to error range.
2571 */
2572 free_clusters =
2573 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2574 dirty_clusters =
2575 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2576 /*
2577 * Start pushing delalloc when 1/2 of free blocks are dirty.
2578 */
2579 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2580 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2581
2582 if (2 * free_clusters < 3 * dirty_clusters ||
2583 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2584 /*
2585 * free block count is less than 150% of dirty blocks
2586 * or free blocks is less than watermark
2587 */
2588 return 1;
2589 }
2590 return 0;
2591 }
2592
2593 /* We always reserve for an inode update; the superblock could be there too */
2594 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2595 {
2596 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2597 EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2598 return 1;
2599
2600 if (pos + len <= 0x7fffffffULL)
2601 return 1;
2602
2603 /* We might need to update the superblock to set LARGE_FILE */
2604 return 2;
2605 }
2606
2607 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2608 loff_t pos, unsigned len, unsigned flags,
2609 struct page **pagep, void **fsdata)
2610 {
2611 int ret, retries = 0;
2612 struct page *page;
2613 pgoff_t index;
2614 struct inode *inode = mapping->host;
2615 handle_t *handle;
2616
2617 index = pos >> PAGE_CACHE_SHIFT;
2618
2619 if (ext4_nonda_switch(inode->i_sb)) {
2620 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2621 return ext4_write_begin(file, mapping, pos,
2622 len, flags, pagep, fsdata);
2623 }
2624 *fsdata = (void *)0;
2625 trace_ext4_da_write_begin(inode, pos, len, flags);
2626
2627 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2628 ret = ext4_da_write_inline_data_begin(mapping, inode,
2629 pos, len, flags,
2630 pagep, fsdata);
2631 if (ret < 0)
2632 return ret;
2633 if (ret == 1)
2634 return 0;
2635 }
2636
2637 /*
2638 * grab_cache_page_write_begin() can take a long time if the
2639 * system is thrashing due to memory pressure, or if the page
2640 * is being written back. So grab it first before we start
2641 * the transaction handle. This also allows us to allocate
2642 * the page (if needed) without using GFP_NOFS.
2643 */
2644 retry_grab:
2645 page = grab_cache_page_write_begin(mapping, index, flags);
2646 if (!page)
2647 return -ENOMEM;
2648 unlock_page(page);
2649
2650 /*
2651 * With delayed allocation, we don't log the i_disksize update
2652 * if there is delayed block allocation. But we still need
2653 * to journalling the i_disksize update if writes to the end
2654 * of file which has an already mapped buffer.
2655 */
2656 retry_journal:
2657 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2658 ext4_da_write_credits(inode, pos, len));
2659 if (IS_ERR(handle)) {
2660 page_cache_release(page);
2661 return PTR_ERR(handle);
2662 }
2663
2664 lock_page(page);
2665 if (page->mapping != mapping) {
2666 /* The page got truncated from under us */
2667 unlock_page(page);
2668 page_cache_release(page);
2669 ext4_journal_stop(handle);
2670 goto retry_grab;
2671 }
2672 /* In case writeback began while the page was unlocked */
2673 wait_for_stable_page(page);
2674
2675 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2676 ret = ext4_block_write_begin(page, pos, len,
2677 ext4_da_get_block_prep);
2678 #else
2679 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2680 #endif
2681 if (ret < 0) {
2682 unlock_page(page);
2683 ext4_journal_stop(handle);
2684 /*
2685 * block_write_begin may have instantiated a few blocks
2686 * outside i_size. Trim these off again. Don't need
2687 * i_size_read because we hold i_mutex.
2688 */
2689 if (pos + len > inode->i_size)
2690 ext4_truncate_failed_write(inode);
2691
2692 if (ret == -ENOSPC &&
2693 ext4_should_retry_alloc(inode->i_sb, &retries))
2694 goto retry_journal;
2695
2696 page_cache_release(page);
2697 return ret;
2698 }
2699
2700 *pagep = page;
2701 return ret;
2702 }
2703
2704 /*
2705 * Check if we should update i_disksize
2706 * when write to the end of file but not require block allocation
2707 */
2708 static int ext4_da_should_update_i_disksize(struct page *page,
2709 unsigned long offset)
2710 {
2711 struct buffer_head *bh;
2712 struct inode *inode = page->mapping->host;
2713 unsigned int idx;
2714 int i;
2715
2716 bh = page_buffers(page);
2717 idx = offset >> inode->i_blkbits;
2718
2719 for (i = 0; i < idx; i++)
2720 bh = bh->b_this_page;
2721
2722 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2723 return 0;
2724 return 1;
2725 }
2726
2727 static int ext4_da_write_end(struct file *file,
2728 struct address_space *mapping,
2729 loff_t pos, unsigned len, unsigned copied,
2730 struct page *page, void *fsdata)
2731 {
2732 struct inode *inode = mapping->host;
2733 int ret = 0, ret2;
2734 handle_t *handle = ext4_journal_current_handle();
2735 loff_t new_i_size;
2736 unsigned long start, end;
2737 int write_mode = (int)(unsigned long)fsdata;
2738
2739 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2740 return ext4_write_end(file, mapping, pos,
2741 len, copied, page, fsdata);
2742
2743 trace_ext4_da_write_end(inode, pos, len, copied);
2744 start = pos & (PAGE_CACHE_SIZE - 1);
2745 end = start + copied - 1;
2746
2747 /*
2748 * generic_write_end() will run mark_inode_dirty() if i_size
2749 * changes. So let's piggyback the i_disksize mark_inode_dirty
2750 * into that.
2751 */
2752 new_i_size = pos + copied;
2753 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2754 if (ext4_has_inline_data(inode) ||
2755 ext4_da_should_update_i_disksize(page, end)) {
2756 ext4_update_i_disksize(inode, new_i_size);
2757 /* We need to mark inode dirty even if
2758 * new_i_size is less that inode->i_size
2759 * bu greater than i_disksize.(hint delalloc)
2760 */
2761 ext4_mark_inode_dirty(handle, inode);
2762 }
2763 }
2764
2765 if (write_mode != CONVERT_INLINE_DATA &&
2766 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2767 ext4_has_inline_data(inode))
2768 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2769 page);
2770 else
2771 ret2 = generic_write_end(file, mapping, pos, len, copied,
2772 page, fsdata);
2773
2774 copied = ret2;
2775 if (ret2 < 0)
2776 ret = ret2;
2777 ret2 = ext4_journal_stop(handle);
2778 if (!ret)
2779 ret = ret2;
2780
2781 return ret ? ret : copied;
2782 }
2783
2784 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2785 unsigned int length)
2786 {
2787 /*
2788 * Drop reserved blocks
2789 */
2790 BUG_ON(!PageLocked(page));
2791 if (!page_has_buffers(page))
2792 goto out;
2793
2794 ext4_da_page_release_reservation(page, offset, length);
2795
2796 out:
2797 ext4_invalidatepage(page, offset, length);
2798
2799 return;
2800 }
2801
2802 /*
2803 * Force all delayed allocation blocks to be allocated for a given inode.
2804 */
2805 int ext4_alloc_da_blocks(struct inode *inode)
2806 {
2807 trace_ext4_alloc_da_blocks(inode);
2808
2809 if (!EXT4_I(inode)->i_reserved_data_blocks)
2810 return 0;
2811
2812 /*
2813 * We do something simple for now. The filemap_flush() will
2814 * also start triggering a write of the data blocks, which is
2815 * not strictly speaking necessary (and for users of
2816 * laptop_mode, not even desirable). However, to do otherwise
2817 * would require replicating code paths in:
2818 *
2819 * ext4_writepages() ->
2820 * write_cache_pages() ---> (via passed in callback function)
2821 * __mpage_da_writepage() -->
2822 * mpage_add_bh_to_extent()
2823 * mpage_da_map_blocks()
2824 *
2825 * The problem is that write_cache_pages(), located in
2826 * mm/page-writeback.c, marks pages clean in preparation for
2827 * doing I/O, which is not desirable if we're not planning on
2828 * doing I/O at all.
2829 *
2830 * We could call write_cache_pages(), and then redirty all of
2831 * the pages by calling redirty_page_for_writepage() but that
2832 * would be ugly in the extreme. So instead we would need to
2833 * replicate parts of the code in the above functions,
2834 * simplifying them because we wouldn't actually intend to
2835 * write out the pages, but rather only collect contiguous
2836 * logical block extents, call the multi-block allocator, and
2837 * then update the buffer heads with the block allocations.
2838 *
2839 * For now, though, we'll cheat by calling filemap_flush(),
2840 * which will map the blocks, and start the I/O, but not
2841 * actually wait for the I/O to complete.
2842 */
2843 return filemap_flush(inode->i_mapping);
2844 }
2845
2846 /*
2847 * bmap() is special. It gets used by applications such as lilo and by
2848 * the swapper to find the on-disk block of a specific piece of data.
2849 *
2850 * Naturally, this is dangerous if the block concerned is still in the
2851 * journal. If somebody makes a swapfile on an ext4 data-journaling
2852 * filesystem and enables swap, then they may get a nasty shock when the
2853 * data getting swapped to that swapfile suddenly gets overwritten by
2854 * the original zero's written out previously to the journal and
2855 * awaiting writeback in the kernel's buffer cache.
2856 *
2857 * So, if we see any bmap calls here on a modified, data-journaled file,
2858 * take extra steps to flush any blocks which might be in the cache.
2859 */
2860 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2861 {
2862 struct inode *inode = mapping->host;
2863 journal_t *journal;
2864 int err;
2865
2866 /*
2867 * We can get here for an inline file via the FIBMAP ioctl
2868 */
2869 if (ext4_has_inline_data(inode))
2870 return 0;
2871
2872 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2873 test_opt(inode->i_sb, DELALLOC)) {
2874 /*
2875 * With delalloc we want to sync the file
2876 * so that we can make sure we allocate
2877 * blocks for file
2878 */
2879 filemap_write_and_wait(mapping);
2880 }
2881
2882 if (EXT4_JOURNAL(inode) &&
2883 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2884 /*
2885 * This is a REALLY heavyweight approach, but the use of
2886 * bmap on dirty files is expected to be extremely rare:
2887 * only if we run lilo or swapon on a freshly made file
2888 * do we expect this to happen.
2889 *
2890 * (bmap requires CAP_SYS_RAWIO so this does not
2891 * represent an unprivileged user DOS attack --- we'd be
2892 * in trouble if mortal users could trigger this path at
2893 * will.)
2894 *
2895 * NB. EXT4_STATE_JDATA is not set on files other than
2896 * regular files. If somebody wants to bmap a directory
2897 * or symlink and gets confused because the buffer
2898 * hasn't yet been flushed to disk, they deserve
2899 * everything they get.
2900 */
2901
2902 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2903 journal = EXT4_JOURNAL(inode);
2904 jbd2_journal_lock_updates(journal);
2905 err = jbd2_journal_flush(journal);
2906 jbd2_journal_unlock_updates(journal);
2907
2908 if (err)
2909 return 0;
2910 }
2911
2912 return generic_block_bmap(mapping, block, ext4_get_block);
2913 }
2914
2915 static int ext4_readpage(struct file *file, struct page *page)
2916 {
2917 int ret = -EAGAIN;
2918 struct inode *inode = page->mapping->host;
2919
2920 trace_ext4_readpage(page);
2921
2922 if (ext4_has_inline_data(inode))
2923 ret = ext4_readpage_inline(inode, page);
2924
2925 if (ret == -EAGAIN)
2926 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2927
2928 return ret;
2929 }
2930
2931 static int
2932 ext4_readpages(struct file *file, struct address_space *mapping,
2933 struct list_head *pages, unsigned nr_pages)
2934 {
2935 struct inode *inode = mapping->host;
2936
2937 /* If the file has inline data, no need to do readpages. */
2938 if (ext4_has_inline_data(inode))
2939 return 0;
2940
2941 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2942 }
2943
2944 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2945 unsigned int length)
2946 {
2947 trace_ext4_invalidatepage(page, offset, length);
2948
2949 /* No journalling happens on data buffers when this function is used */
2950 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2951
2952 block_invalidatepage(page, offset, length);
2953 }
2954
2955 static int __ext4_journalled_invalidatepage(struct page *page,
2956 unsigned int offset,
2957 unsigned int length)
2958 {
2959 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2960
2961 trace_ext4_journalled_invalidatepage(page, offset, length);
2962
2963 /*
2964 * If it's a full truncate we just forget about the pending dirtying
2965 */
2966 if (offset == 0 && length == PAGE_CACHE_SIZE)
2967 ClearPageChecked(page);
2968
2969 return jbd2_journal_invalidatepage(journal, page, offset, length);
2970 }
2971
2972 /* Wrapper for aops... */
2973 static void ext4_journalled_invalidatepage(struct page *page,
2974 unsigned int offset,
2975 unsigned int length)
2976 {
2977 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2978 }
2979
2980 static int ext4_releasepage(struct page *page, gfp_t wait)
2981 {
2982 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2983
2984 trace_ext4_releasepage(page);
2985
2986 /* Page has dirty journalled data -> cannot release */
2987 if (PageChecked(page))
2988 return 0;
2989 if (journal)
2990 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2991 else
2992 return try_to_free_buffers(page);
2993 }
2994
2995 /*
2996 * ext4_get_block used when preparing for a DIO write or buffer write.
2997 * We allocate an uinitialized extent if blocks haven't been allocated.
2998 * The extent will be converted to initialized after the IO is complete.
2999 */
3000 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3001 struct buffer_head *bh_result, int create)
3002 {
3003 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3004 inode->i_ino, create);
3005 return _ext4_get_block(inode, iblock, bh_result,
3006 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3007 }
3008
3009 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3010 struct buffer_head *bh_result, int create)
3011 {
3012 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3013 inode->i_ino, create);
3014 return _ext4_get_block(inode, iblock, bh_result,
3015 EXT4_GET_BLOCKS_NO_LOCK);
3016 }
3017
3018 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3019 ssize_t size, void *private)
3020 {
3021 ext4_io_end_t *io_end = iocb->private;
3022
3023 /* if not async direct IO just return */
3024 if (!io_end)
3025 return;
3026
3027 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3028 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3029 iocb->private, io_end->inode->i_ino, iocb, offset,
3030 size);
3031
3032 iocb->private = NULL;
3033 io_end->offset = offset;
3034 io_end->size = size;
3035 ext4_put_io_end(io_end);
3036 }
3037
3038 /*
3039 * For ext4 extent files, ext4 will do direct-io write to holes,
3040 * preallocated extents, and those write extend the file, no need to
3041 * fall back to buffered IO.
3042 *
3043 * For holes, we fallocate those blocks, mark them as unwritten
3044 * If those blocks were preallocated, we mark sure they are split, but
3045 * still keep the range to write as unwritten.
3046 *
3047 * The unwritten extents will be converted to written when DIO is completed.
3048 * For async direct IO, since the IO may still pending when return, we
3049 * set up an end_io call back function, which will do the conversion
3050 * when async direct IO completed.
3051 *
3052 * If the O_DIRECT write will extend the file then add this inode to the
3053 * orphan list. So recovery will truncate it back to the original size
3054 * if the machine crashes during the write.
3055 *
3056 */
3057 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3058 loff_t offset)
3059 {
3060 struct file *file = iocb->ki_filp;
3061 struct inode *inode = file->f_mapping->host;
3062 ssize_t ret;
3063 size_t count = iov_iter_count(iter);
3064 int overwrite = 0;
3065 get_block_t *get_block_func = NULL;
3066 int dio_flags = 0;
3067 loff_t final_size = offset + count;
3068 ext4_io_end_t *io_end = NULL;
3069
3070 /* Use the old path for reads and writes beyond i_size. */
3071 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3072 return ext4_ind_direct_IO(iocb, iter, offset);
3073
3074 BUG_ON(iocb->private == NULL);
3075
3076 /*
3077 * Make all waiters for direct IO properly wait also for extent
3078 * conversion. This also disallows race between truncate() and
3079 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3080 */
3081 if (iov_iter_rw(iter) == WRITE)
3082 inode_dio_begin(inode);
3083
3084 /* If we do a overwrite dio, i_mutex locking can be released */
3085 overwrite = *((int *)iocb->private);
3086
3087 if (overwrite) {
3088 down_read(&EXT4_I(inode)->i_data_sem);
3089 mutex_unlock(&inode->i_mutex);
3090 }
3091
3092 /*
3093 * We could direct write to holes and fallocate.
3094 *
3095 * Allocated blocks to fill the hole are marked as
3096 * unwritten to prevent parallel buffered read to expose
3097 * the stale data before DIO complete the data IO.
3098 *
3099 * As to previously fallocated extents, ext4 get_block will
3100 * just simply mark the buffer mapped but still keep the
3101 * extents unwritten.
3102 *
3103 * For non AIO case, we will convert those unwritten extents
3104 * to written after return back from blockdev_direct_IO.
3105 *
3106 * For async DIO, the conversion needs to be deferred when the
3107 * IO is completed. The ext4 end_io callback function will be
3108 * called to take care of the conversion work. Here for async
3109 * case, we allocate an io_end structure to hook to the iocb.
3110 */
3111 iocb->private = NULL;
3112 ext4_inode_aio_set(inode, NULL);
3113 if (!is_sync_kiocb(iocb)) {
3114 io_end = ext4_init_io_end(inode, GFP_NOFS);
3115 if (!io_end) {
3116 ret = -ENOMEM;
3117 goto retake_lock;
3118 }
3119 /*
3120 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3121 */
3122 iocb->private = ext4_get_io_end(io_end);
3123 /*
3124 * we save the io structure for current async direct
3125 * IO, so that later ext4_map_blocks() could flag the
3126 * io structure whether there is a unwritten extents
3127 * needs to be converted when IO is completed.
3128 */
3129 ext4_inode_aio_set(inode, io_end);
3130 }
3131
3132 if (overwrite) {
3133 get_block_func = ext4_get_block_write_nolock;
3134 } else {
3135 get_block_func = ext4_get_block_write;
3136 dio_flags = DIO_LOCKING;
3137 }
3138 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3139 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3140 #endif
3141 if (IS_DAX(inode))
3142 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3143 ext4_end_io_dio, dio_flags);
3144 else
3145 ret = __blockdev_direct_IO(iocb, inode,
3146 inode->i_sb->s_bdev, iter, offset,
3147 get_block_func,
3148 ext4_end_io_dio, NULL, dio_flags);
3149
3150 /*
3151 * Put our reference to io_end. This can free the io_end structure e.g.
3152 * in sync IO case or in case of error. It can even perform extent
3153 * conversion if all bios we submitted finished before we got here.
3154 * Note that in that case iocb->private can be already set to NULL
3155 * here.
3156 */
3157 if (io_end) {
3158 ext4_inode_aio_set(inode, NULL);
3159 ext4_put_io_end(io_end);
3160 /*
3161 * When no IO was submitted ext4_end_io_dio() was not
3162 * called so we have to put iocb's reference.
3163 */
3164 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3165 WARN_ON(iocb->private != io_end);
3166 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3167 ext4_put_io_end(io_end);
3168 iocb->private = NULL;
3169 }
3170 }
3171 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3172 EXT4_STATE_DIO_UNWRITTEN)) {
3173 int err;
3174 /*
3175 * for non AIO case, since the IO is already
3176 * completed, we could do the conversion right here
3177 */
3178 err = ext4_convert_unwritten_extents(NULL, inode,
3179 offset, ret);
3180 if (err < 0)
3181 ret = err;
3182 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3183 }
3184
3185 retake_lock:
3186 if (iov_iter_rw(iter) == WRITE)
3187 inode_dio_end(inode);
3188 /* take i_mutex locking again if we do a ovewrite dio */
3189 if (overwrite) {
3190 up_read(&EXT4_I(inode)->i_data_sem);
3191 mutex_lock(&inode->i_mutex);
3192 }
3193
3194 return ret;
3195 }
3196
3197 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3198 loff_t offset)
3199 {
3200 struct file *file = iocb->ki_filp;
3201 struct inode *inode = file->f_mapping->host;
3202 size_t count = iov_iter_count(iter);
3203 ssize_t ret;
3204
3205 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3206 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3207 return 0;
3208 #endif
3209
3210 /*
3211 * If we are doing data journalling we don't support O_DIRECT
3212 */
3213 if (ext4_should_journal_data(inode))
3214 return 0;
3215
3216 /* Let buffer I/O handle the inline data case. */
3217 if (ext4_has_inline_data(inode))
3218 return 0;
3219
3220 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3221 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3222 ret = ext4_ext_direct_IO(iocb, iter, offset);
3223 else
3224 ret = ext4_ind_direct_IO(iocb, iter, offset);
3225 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3226 return ret;
3227 }
3228
3229 /*
3230 * Pages can be marked dirty completely asynchronously from ext4's journalling
3231 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3232 * much here because ->set_page_dirty is called under VFS locks. The page is
3233 * not necessarily locked.
3234 *
3235 * We cannot just dirty the page and leave attached buffers clean, because the
3236 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3237 * or jbddirty because all the journalling code will explode.
3238 *
3239 * So what we do is to mark the page "pending dirty" and next time writepage
3240 * is called, propagate that into the buffers appropriately.
3241 */
3242 static int ext4_journalled_set_page_dirty(struct page *page)
3243 {
3244 SetPageChecked(page);
3245 return __set_page_dirty_nobuffers(page);
3246 }
3247
3248 static const struct address_space_operations ext4_aops = {
3249 .readpage = ext4_readpage,
3250 .readpages = ext4_readpages,
3251 .writepage = ext4_writepage,
3252 .writepages = ext4_writepages,
3253 .write_begin = ext4_write_begin,
3254 .write_end = ext4_write_end,
3255 .bmap = ext4_bmap,
3256 .invalidatepage = ext4_invalidatepage,
3257 .releasepage = ext4_releasepage,
3258 .direct_IO = ext4_direct_IO,
3259 .migratepage = buffer_migrate_page,
3260 .is_partially_uptodate = block_is_partially_uptodate,
3261 .error_remove_page = generic_error_remove_page,
3262 };
3263
3264 static const struct address_space_operations ext4_journalled_aops = {
3265 .readpage = ext4_readpage,
3266 .readpages = ext4_readpages,
3267 .writepage = ext4_writepage,
3268 .writepages = ext4_writepages,
3269 .write_begin = ext4_write_begin,
3270 .write_end = ext4_journalled_write_end,
3271 .set_page_dirty = ext4_journalled_set_page_dirty,
3272 .bmap = ext4_bmap,
3273 .invalidatepage = ext4_journalled_invalidatepage,
3274 .releasepage = ext4_releasepage,
3275 .direct_IO = ext4_direct_IO,
3276 .is_partially_uptodate = block_is_partially_uptodate,
3277 .error_remove_page = generic_error_remove_page,
3278 };
3279
3280 static const struct address_space_operations ext4_da_aops = {
3281 .readpage = ext4_readpage,
3282 .readpages = ext4_readpages,
3283 .writepage = ext4_writepage,
3284 .writepages = ext4_writepages,
3285 .write_begin = ext4_da_write_begin,
3286 .write_end = ext4_da_write_end,
3287 .bmap = ext4_bmap,
3288 .invalidatepage = ext4_da_invalidatepage,
3289 .releasepage = ext4_releasepage,
3290 .direct_IO = ext4_direct_IO,
3291 .migratepage = buffer_migrate_page,
3292 .is_partially_uptodate = block_is_partially_uptodate,
3293 .error_remove_page = generic_error_remove_page,
3294 };
3295
3296 void ext4_set_aops(struct inode *inode)
3297 {
3298 switch (ext4_inode_journal_mode(inode)) {
3299 case EXT4_INODE_ORDERED_DATA_MODE:
3300 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3301 break;
3302 case EXT4_INODE_WRITEBACK_DATA_MODE:
3303 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3304 break;
3305 case EXT4_INODE_JOURNAL_DATA_MODE:
3306 inode->i_mapping->a_ops = &ext4_journalled_aops;
3307 return;
3308 default:
3309 BUG();
3310 }
3311 if (test_opt(inode->i_sb, DELALLOC))
3312 inode->i_mapping->a_ops = &ext4_da_aops;
3313 else
3314 inode->i_mapping->a_ops = &ext4_aops;
3315 }
3316
3317 static int __ext4_block_zero_page_range(handle_t *handle,
3318 struct address_space *mapping, loff_t from, loff_t length)
3319 {
3320 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3321 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3322 unsigned blocksize, pos;
3323 ext4_lblk_t iblock;
3324 struct inode *inode = mapping->host;
3325 struct buffer_head *bh;
3326 struct page *page;
3327 int err = 0;
3328
3329 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3330 mapping_gfp_mask(mapping) & ~__GFP_FS);
3331 if (!page)
3332 return -ENOMEM;
3333
3334 blocksize = inode->i_sb->s_blocksize;
3335
3336 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3337
3338 if (!page_has_buffers(page))
3339 create_empty_buffers(page, blocksize, 0);
3340
3341 /* Find the buffer that contains "offset" */
3342 bh = page_buffers(page);
3343 pos = blocksize;
3344 while (offset >= pos) {
3345 bh = bh->b_this_page;
3346 iblock++;
3347 pos += blocksize;
3348 }
3349 if (buffer_freed(bh)) {
3350 BUFFER_TRACE(bh, "freed: skip");
3351 goto unlock;
3352 }
3353 if (!buffer_mapped(bh)) {
3354 BUFFER_TRACE(bh, "unmapped");
3355 ext4_get_block(inode, iblock, bh, 0);
3356 /* unmapped? It's a hole - nothing to do */
3357 if (!buffer_mapped(bh)) {
3358 BUFFER_TRACE(bh, "still unmapped");
3359 goto unlock;
3360 }
3361 }
3362
3363 /* Ok, it's mapped. Make sure it's up-to-date */
3364 if (PageUptodate(page))
3365 set_buffer_uptodate(bh);
3366
3367 if (!buffer_uptodate(bh)) {
3368 err = -EIO;
3369 ll_rw_block(READ, 1, &bh);
3370 wait_on_buffer(bh);
3371 /* Uhhuh. Read error. Complain and punt. */
3372 if (!buffer_uptodate(bh))
3373 goto unlock;
3374 if (S_ISREG(inode->i_mode) &&
3375 ext4_encrypted_inode(inode)) {
3376 /* We expect the key to be set. */
3377 BUG_ON(!ext4_has_encryption_key(inode));
3378 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3379 WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3380 }
3381 }
3382 if (ext4_should_journal_data(inode)) {
3383 BUFFER_TRACE(bh, "get write access");
3384 err = ext4_journal_get_write_access(handle, bh);
3385 if (err)
3386 goto unlock;
3387 }
3388 zero_user(page, offset, length);
3389 BUFFER_TRACE(bh, "zeroed end of block");
3390
3391 if (ext4_should_journal_data(inode)) {
3392 err = ext4_handle_dirty_metadata(handle, inode, bh);
3393 } else {
3394 err = 0;
3395 mark_buffer_dirty(bh);
3396 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3397 err = ext4_jbd2_file_inode(handle, inode);
3398 }
3399
3400 unlock:
3401 unlock_page(page);
3402 page_cache_release(page);
3403 return err;
3404 }
3405
3406 /*
3407 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3408 * starting from file offset 'from'. The range to be zero'd must
3409 * be contained with in one block. If the specified range exceeds
3410 * the end of the block it will be shortened to end of the block
3411 * that cooresponds to 'from'
3412 */
3413 static int ext4_block_zero_page_range(handle_t *handle,
3414 struct address_space *mapping, loff_t from, loff_t length)
3415 {
3416 struct inode *inode = mapping->host;
3417 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3418 unsigned blocksize = inode->i_sb->s_blocksize;
3419 unsigned max = blocksize - (offset & (blocksize - 1));
3420
3421 /*
3422 * correct length if it does not fall between
3423 * 'from' and the end of the block
3424 */
3425 if (length > max || length < 0)
3426 length = max;
3427
3428 if (IS_DAX(inode))
3429 return dax_zero_page_range(inode, from, length, ext4_get_block);
3430 return __ext4_block_zero_page_range(handle, mapping, from, length);
3431 }
3432
3433 /*
3434 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3435 * up to the end of the block which corresponds to `from'.
3436 * This required during truncate. We need to physically zero the tail end
3437 * of that block so it doesn't yield old data if the file is later grown.
3438 */
3439 static int ext4_block_truncate_page(handle_t *handle,
3440 struct address_space *mapping, loff_t from)
3441 {
3442 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3443 unsigned length;
3444 unsigned blocksize;
3445 struct inode *inode = mapping->host;
3446
3447 blocksize = inode->i_sb->s_blocksize;
3448 length = blocksize - (offset & (blocksize - 1));
3449
3450 return ext4_block_zero_page_range(handle, mapping, from, length);
3451 }
3452
3453 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3454 loff_t lstart, loff_t length)
3455 {
3456 struct super_block *sb = inode->i_sb;
3457 struct address_space *mapping = inode->i_mapping;
3458 unsigned partial_start, partial_end;
3459 ext4_fsblk_t start, end;
3460 loff_t byte_end = (lstart + length - 1);
3461 int err = 0;
3462
3463 partial_start = lstart & (sb->s_blocksize - 1);
3464 partial_end = byte_end & (sb->s_blocksize - 1);
3465
3466 start = lstart >> sb->s_blocksize_bits;
3467 end = byte_end >> sb->s_blocksize_bits;
3468
3469 /* Handle partial zero within the single block */
3470 if (start == end &&
3471 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3472 err = ext4_block_zero_page_range(handle, mapping,
3473 lstart, length);
3474 return err;
3475 }
3476 /* Handle partial zero out on the start of the range */
3477 if (partial_start) {
3478 err = ext4_block_zero_page_range(handle, mapping,
3479 lstart, sb->s_blocksize);
3480 if (err)
3481 return err;
3482 }
3483 /* Handle partial zero out on the end of the range */
3484 if (partial_end != sb->s_blocksize - 1)
3485 err = ext4_block_zero_page_range(handle, mapping,
3486 byte_end - partial_end,
3487 partial_end + 1);
3488 return err;
3489 }
3490
3491 int ext4_can_truncate(struct inode *inode)
3492 {
3493 if (S_ISREG(inode->i_mode))
3494 return 1;
3495 if (S_ISDIR(inode->i_mode))
3496 return 1;
3497 if (S_ISLNK(inode->i_mode))
3498 return !ext4_inode_is_fast_symlink(inode);
3499 return 0;
3500 }
3501
3502 /*
3503 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3504 * associated with the given offset and length
3505 *
3506 * @inode: File inode
3507 * @offset: The offset where the hole will begin
3508 * @len: The length of the hole
3509 *
3510 * Returns: 0 on success or negative on failure
3511 */
3512
3513 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3514 {
3515 struct super_block *sb = inode->i_sb;
3516 ext4_lblk_t first_block, stop_block;
3517 struct address_space *mapping = inode->i_mapping;
3518 loff_t first_block_offset, last_block_offset;
3519 handle_t *handle;
3520 unsigned int credits;
3521 int ret = 0;
3522
3523 if (!S_ISREG(inode->i_mode))
3524 return -EOPNOTSUPP;
3525
3526 trace_ext4_punch_hole(inode, offset, length, 0);
3527
3528 /*
3529 * Write out all dirty pages to avoid race conditions
3530 * Then release them.
3531 */
3532 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3533 ret = filemap_write_and_wait_range(mapping, offset,
3534 offset + length - 1);
3535 if (ret)
3536 return ret;
3537 }
3538
3539 mutex_lock(&inode->i_mutex);
3540
3541 /* No need to punch hole beyond i_size */
3542 if (offset >= inode->i_size)
3543 goto out_mutex;
3544
3545 /*
3546 * If the hole extends beyond i_size, set the hole
3547 * to end after the page that contains i_size
3548 */
3549 if (offset + length > inode->i_size) {
3550 length = inode->i_size +
3551 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3552 offset;
3553 }
3554
3555 if (offset & (sb->s_blocksize - 1) ||
3556 (offset + length) & (sb->s_blocksize - 1)) {
3557 /*
3558 * Attach jinode to inode for jbd2 if we do any zeroing of
3559 * partial block
3560 */
3561 ret = ext4_inode_attach_jinode(inode);
3562 if (ret < 0)
3563 goto out_mutex;
3564
3565 }
3566
3567 first_block_offset = round_up(offset, sb->s_blocksize);
3568 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3569
3570 /* Now release the pages and zero block aligned part of pages*/
3571 if (last_block_offset > first_block_offset)
3572 truncate_pagecache_range(inode, first_block_offset,
3573 last_block_offset);
3574
3575 /* Wait all existing dio workers, newcomers will block on i_mutex */
3576 ext4_inode_block_unlocked_dio(inode);
3577 inode_dio_wait(inode);
3578
3579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580 credits = ext4_writepage_trans_blocks(inode);
3581 else
3582 credits = ext4_blocks_for_truncate(inode);
3583 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584 if (IS_ERR(handle)) {
3585 ret = PTR_ERR(handle);
3586 ext4_std_error(sb, ret);
3587 goto out_dio;
3588 }
3589
3590 ret = ext4_zero_partial_blocks(handle, inode, offset,
3591 length);
3592 if (ret)
3593 goto out_stop;
3594
3595 first_block = (offset + sb->s_blocksize - 1) >>
3596 EXT4_BLOCK_SIZE_BITS(sb);
3597 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3598
3599 /* If there are no blocks to remove, return now */
3600 if (first_block >= stop_block)
3601 goto out_stop;
3602
3603 down_write(&EXT4_I(inode)->i_data_sem);
3604 ext4_discard_preallocations(inode);
3605
3606 ret = ext4_es_remove_extent(inode, first_block,
3607 stop_block - first_block);
3608 if (ret) {
3609 up_write(&EXT4_I(inode)->i_data_sem);
3610 goto out_stop;
3611 }
3612
3613 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614 ret = ext4_ext_remove_space(inode, first_block,
3615 stop_block - 1);
3616 else
3617 ret = ext4_ind_remove_space(handle, inode, first_block,
3618 stop_block);
3619
3620 up_write(&EXT4_I(inode)->i_data_sem);
3621 if (IS_SYNC(inode))
3622 ext4_handle_sync(handle);
3623
3624 /* Now release the pages again to reduce race window */
3625 if (last_block_offset > first_block_offset)
3626 truncate_pagecache_range(inode, first_block_offset,
3627 last_block_offset);
3628
3629 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3630 ext4_mark_inode_dirty(handle, inode);
3631 out_stop:
3632 ext4_journal_stop(handle);
3633 out_dio:
3634 ext4_inode_resume_unlocked_dio(inode);
3635 out_mutex:
3636 mutex_unlock(&inode->i_mutex);
3637 return ret;
3638 }
3639
3640 int ext4_inode_attach_jinode(struct inode *inode)
3641 {
3642 struct ext4_inode_info *ei = EXT4_I(inode);
3643 struct jbd2_inode *jinode;
3644
3645 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3646 return 0;
3647
3648 jinode = jbd2_alloc_inode(GFP_KERNEL);
3649 spin_lock(&inode->i_lock);
3650 if (!ei->jinode) {
3651 if (!jinode) {
3652 spin_unlock(&inode->i_lock);
3653 return -ENOMEM;
3654 }
3655 ei->jinode = jinode;
3656 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3657 jinode = NULL;
3658 }
3659 spin_unlock(&inode->i_lock);
3660 if (unlikely(jinode != NULL))
3661 jbd2_free_inode(jinode);
3662 return 0;
3663 }
3664
3665 /*
3666 * ext4_truncate()
3667 *
3668 * We block out ext4_get_block() block instantiations across the entire
3669 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3670 * simultaneously on behalf of the same inode.
3671 *
3672 * As we work through the truncate and commit bits of it to the journal there
3673 * is one core, guiding principle: the file's tree must always be consistent on
3674 * disk. We must be able to restart the truncate after a crash.
3675 *
3676 * The file's tree may be transiently inconsistent in memory (although it
3677 * probably isn't), but whenever we close off and commit a journal transaction,
3678 * the contents of (the filesystem + the journal) must be consistent and
3679 * restartable. It's pretty simple, really: bottom up, right to left (although
3680 * left-to-right works OK too).
3681 *
3682 * Note that at recovery time, journal replay occurs *before* the restart of
3683 * truncate against the orphan inode list.
3684 *
3685 * The committed inode has the new, desired i_size (which is the same as
3686 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3687 * that this inode's truncate did not complete and it will again call
3688 * ext4_truncate() to have another go. So there will be instantiated blocks
3689 * to the right of the truncation point in a crashed ext4 filesystem. But
3690 * that's fine - as long as they are linked from the inode, the post-crash
3691 * ext4_truncate() run will find them and release them.
3692 */
3693 void ext4_truncate(struct inode *inode)
3694 {
3695 struct ext4_inode_info *ei = EXT4_I(inode);
3696 unsigned int credits;
3697 handle_t *handle;
3698 struct address_space *mapping = inode->i_mapping;
3699
3700 /*
3701 * There is a possibility that we're either freeing the inode
3702 * or it's a completely new inode. In those cases we might not
3703 * have i_mutex locked because it's not necessary.
3704 */
3705 if (!(inode->i_state & (I_NEW|I_FREEING)))
3706 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3707 trace_ext4_truncate_enter(inode);
3708
3709 if (!ext4_can_truncate(inode))
3710 return;
3711
3712 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3713
3714 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3715 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3716
3717 if (ext4_has_inline_data(inode)) {
3718 int has_inline = 1;
3719
3720 ext4_inline_data_truncate(inode, &has_inline);
3721 if (has_inline)
3722 return;
3723 }
3724
3725 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3726 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3727 if (ext4_inode_attach_jinode(inode) < 0)
3728 return;
3729 }
3730
3731 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3732 credits = ext4_writepage_trans_blocks(inode);
3733 else
3734 credits = ext4_blocks_for_truncate(inode);
3735
3736 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3737 if (IS_ERR(handle)) {
3738 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3739 return;
3740 }
3741
3742 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3743 ext4_block_truncate_page(handle, mapping, inode->i_size);
3744
3745 /*
3746 * We add the inode to the orphan list, so that if this
3747 * truncate spans multiple transactions, and we crash, we will
3748 * resume the truncate when the filesystem recovers. It also
3749 * marks the inode dirty, to catch the new size.
3750 *
3751 * Implication: the file must always be in a sane, consistent
3752 * truncatable state while each transaction commits.
3753 */
3754 if (ext4_orphan_add(handle, inode))
3755 goto out_stop;
3756
3757 down_write(&EXT4_I(inode)->i_data_sem);
3758
3759 ext4_discard_preallocations(inode);
3760
3761 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3762 ext4_ext_truncate(handle, inode);
3763 else
3764 ext4_ind_truncate(handle, inode);
3765
3766 up_write(&ei->i_data_sem);
3767
3768 if (IS_SYNC(inode))
3769 ext4_handle_sync(handle);
3770
3771 out_stop:
3772 /*
3773 * If this was a simple ftruncate() and the file will remain alive,
3774 * then we need to clear up the orphan record which we created above.
3775 * However, if this was a real unlink then we were called by
3776 * ext4_evict_inode(), and we allow that function to clean up the
3777 * orphan info for us.
3778 */
3779 if (inode->i_nlink)
3780 ext4_orphan_del(handle, inode);
3781
3782 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3783 ext4_mark_inode_dirty(handle, inode);
3784 ext4_journal_stop(handle);
3785
3786 trace_ext4_truncate_exit(inode);
3787 }
3788
3789 /*
3790 * ext4_get_inode_loc returns with an extra refcount against the inode's
3791 * underlying buffer_head on success. If 'in_mem' is true, we have all
3792 * data in memory that is needed to recreate the on-disk version of this
3793 * inode.
3794 */
3795 static int __ext4_get_inode_loc(struct inode *inode,
3796 struct ext4_iloc *iloc, int in_mem)
3797 {
3798 struct ext4_group_desc *gdp;
3799 struct buffer_head *bh;
3800 struct super_block *sb = inode->i_sb;
3801 ext4_fsblk_t block;
3802 int inodes_per_block, inode_offset;
3803
3804 iloc->bh = NULL;
3805 if (!ext4_valid_inum(sb, inode->i_ino))
3806 return -EIO;
3807
3808 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3809 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3810 if (!gdp)
3811 return -EIO;
3812
3813 /*
3814 * Figure out the offset within the block group inode table
3815 */
3816 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3817 inode_offset = ((inode->i_ino - 1) %
3818 EXT4_INODES_PER_GROUP(sb));
3819 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3820 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3821
3822 bh = sb_getblk(sb, block);
3823 if (unlikely(!bh))
3824 return -ENOMEM;
3825 if (!buffer_uptodate(bh)) {
3826 lock_buffer(bh);
3827
3828 /*
3829 * If the buffer has the write error flag, we have failed
3830 * to write out another inode in the same block. In this
3831 * case, we don't have to read the block because we may
3832 * read the old inode data successfully.
3833 */
3834 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3835 set_buffer_uptodate(bh);
3836
3837 if (buffer_uptodate(bh)) {
3838 /* someone brought it uptodate while we waited */
3839 unlock_buffer(bh);
3840 goto has_buffer;
3841 }
3842
3843 /*
3844 * If we have all information of the inode in memory and this
3845 * is the only valid inode in the block, we need not read the
3846 * block.
3847 */
3848 if (in_mem) {
3849 struct buffer_head *bitmap_bh;
3850 int i, start;
3851
3852 start = inode_offset & ~(inodes_per_block - 1);
3853
3854 /* Is the inode bitmap in cache? */
3855 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3856 if (unlikely(!bitmap_bh))
3857 goto make_io;
3858
3859 /*
3860 * If the inode bitmap isn't in cache then the
3861 * optimisation may end up performing two reads instead
3862 * of one, so skip it.
3863 */
3864 if (!buffer_uptodate(bitmap_bh)) {
3865 brelse(bitmap_bh);
3866 goto make_io;
3867 }
3868 for (i = start; i < start + inodes_per_block; i++) {
3869 if (i == inode_offset)
3870 continue;
3871 if (ext4_test_bit(i, bitmap_bh->b_data))
3872 break;
3873 }
3874 brelse(bitmap_bh);
3875 if (i == start + inodes_per_block) {
3876 /* all other inodes are free, so skip I/O */
3877 memset(bh->b_data, 0, bh->b_size);
3878 set_buffer_uptodate(bh);
3879 unlock_buffer(bh);
3880 goto has_buffer;
3881 }
3882 }
3883
3884 make_io:
3885 /*
3886 * If we need to do any I/O, try to pre-readahead extra
3887 * blocks from the inode table.
3888 */
3889 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3890 ext4_fsblk_t b, end, table;
3891 unsigned num;
3892 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3893
3894 table = ext4_inode_table(sb, gdp);
3895 /* s_inode_readahead_blks is always a power of 2 */
3896 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3897 if (table > b)
3898 b = table;
3899 end = b + ra_blks;
3900 num = EXT4_INODES_PER_GROUP(sb);
3901 if (ext4_has_group_desc_csum(sb))
3902 num -= ext4_itable_unused_count(sb, gdp);
3903 table += num / inodes_per_block;
3904 if (end > table)
3905 end = table;
3906 while (b <= end)
3907 sb_breadahead(sb, b++);
3908 }
3909
3910 /*
3911 * There are other valid inodes in the buffer, this inode
3912 * has in-inode xattrs, or we don't have this inode in memory.
3913 * Read the block from disk.
3914 */
3915 trace_ext4_load_inode(inode);
3916 get_bh(bh);
3917 bh->b_end_io = end_buffer_read_sync;
3918 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3919 wait_on_buffer(bh);
3920 if (!buffer_uptodate(bh)) {
3921 EXT4_ERROR_INODE_BLOCK(inode, block,
3922 "unable to read itable block");
3923 brelse(bh);
3924 return -EIO;
3925 }
3926 }
3927 has_buffer:
3928 iloc->bh = bh;
3929 return 0;
3930 }
3931
3932 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3933 {
3934 /* We have all inode data except xattrs in memory here. */
3935 return __ext4_get_inode_loc(inode, iloc,
3936 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3937 }
3938
3939 void ext4_set_inode_flags(struct inode *inode)
3940 {
3941 unsigned int flags = EXT4_I(inode)->i_flags;
3942 unsigned int new_fl = 0;
3943
3944 if (flags & EXT4_SYNC_FL)
3945 new_fl |= S_SYNC;
3946 if (flags & EXT4_APPEND_FL)
3947 new_fl |= S_APPEND;
3948 if (flags & EXT4_IMMUTABLE_FL)
3949 new_fl |= S_IMMUTABLE;
3950 if (flags & EXT4_NOATIME_FL)
3951 new_fl |= S_NOATIME;
3952 if (flags & EXT4_DIRSYNC_FL)
3953 new_fl |= S_DIRSYNC;
3954 if (test_opt(inode->i_sb, DAX))
3955 new_fl |= S_DAX;
3956 inode_set_flags(inode, new_fl,
3957 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
3958 }
3959
3960 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3961 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3962 {
3963 unsigned int vfs_fl;
3964 unsigned long old_fl, new_fl;
3965
3966 do {
3967 vfs_fl = ei->vfs_inode.i_flags;
3968 old_fl = ei->i_flags;
3969 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3970 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3971 EXT4_DIRSYNC_FL);
3972 if (vfs_fl & S_SYNC)
3973 new_fl |= EXT4_SYNC_FL;
3974 if (vfs_fl & S_APPEND)
3975 new_fl |= EXT4_APPEND_FL;
3976 if (vfs_fl & S_IMMUTABLE)
3977 new_fl |= EXT4_IMMUTABLE_FL;
3978 if (vfs_fl & S_NOATIME)
3979 new_fl |= EXT4_NOATIME_FL;
3980 if (vfs_fl & S_DIRSYNC)
3981 new_fl |= EXT4_DIRSYNC_FL;
3982 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3983 }
3984
3985 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3986 struct ext4_inode_info *ei)
3987 {
3988 blkcnt_t i_blocks ;
3989 struct inode *inode = &(ei->vfs_inode);
3990 struct super_block *sb = inode->i_sb;
3991
3992 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3993 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3994 /* we are using combined 48 bit field */
3995 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3996 le32_to_cpu(raw_inode->i_blocks_lo);
3997 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3998 /* i_blocks represent file system block size */
3999 return i_blocks << (inode->i_blkbits - 9);
4000 } else {
4001 return i_blocks;
4002 }
4003 } else {
4004 return le32_to_cpu(raw_inode->i_blocks_lo);
4005 }
4006 }
4007
4008 static inline void ext4_iget_extra_inode(struct inode *inode,
4009 struct ext4_inode *raw_inode,
4010 struct ext4_inode_info *ei)
4011 {
4012 __le32 *magic = (void *)raw_inode +
4013 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4014 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4015 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4016 ext4_find_inline_data_nolock(inode);
4017 } else
4018 EXT4_I(inode)->i_inline_off = 0;
4019 }
4020
4021 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4022 {
4023 struct ext4_iloc iloc;
4024 struct ext4_inode *raw_inode;
4025 struct ext4_inode_info *ei;
4026 struct inode *inode;
4027 journal_t *journal = EXT4_SB(sb)->s_journal;
4028 long ret;
4029 int block;
4030 uid_t i_uid;
4031 gid_t i_gid;
4032
4033 inode = iget_locked(sb, ino);
4034 if (!inode)
4035 return ERR_PTR(-ENOMEM);
4036 if (!(inode->i_state & I_NEW))
4037 return inode;
4038
4039 ei = EXT4_I(inode);
4040 iloc.bh = NULL;
4041
4042 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4043 if (ret < 0)
4044 goto bad_inode;
4045 raw_inode = ext4_raw_inode(&iloc);
4046
4047 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4048 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4049 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4050 EXT4_INODE_SIZE(inode->i_sb)) {
4051 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4052 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4053 EXT4_INODE_SIZE(inode->i_sb));
4054 ret = -EIO;
4055 goto bad_inode;
4056 }
4057 } else
4058 ei->i_extra_isize = 0;
4059
4060 /* Precompute checksum seed for inode metadata */
4061 if (ext4_has_metadata_csum(sb)) {
4062 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4063 __u32 csum;
4064 __le32 inum = cpu_to_le32(inode->i_ino);
4065 __le32 gen = raw_inode->i_generation;
4066 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4067 sizeof(inum));
4068 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4069 sizeof(gen));
4070 }
4071
4072 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4073 EXT4_ERROR_INODE(inode, "checksum invalid");
4074 ret = -EIO;
4075 goto bad_inode;
4076 }
4077
4078 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4079 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4080 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4081 if (!(test_opt(inode->i_sb, NO_UID32))) {
4082 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4083 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4084 }
4085 i_uid_write(inode, i_uid);
4086 i_gid_write(inode, i_gid);
4087 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4088
4089 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4090 ei->i_inline_off = 0;
4091 ei->i_dir_start_lookup = 0;
4092 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4093 /* We now have enough fields to check if the inode was active or not.
4094 * This is needed because nfsd might try to access dead inodes
4095 * the test is that same one that e2fsck uses
4096 * NeilBrown 1999oct15
4097 */
4098 if (inode->i_nlink == 0) {
4099 if ((inode->i_mode == 0 ||
4100 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4101 ino != EXT4_BOOT_LOADER_INO) {
4102 /* this inode is deleted */
4103 ret = -ESTALE;
4104 goto bad_inode;
4105 }
4106 /* The only unlinked inodes we let through here have
4107 * valid i_mode and are being read by the orphan
4108 * recovery code: that's fine, we're about to complete
4109 * the process of deleting those.
4110 * OR it is the EXT4_BOOT_LOADER_INO which is
4111 * not initialized on a new filesystem. */
4112 }
4113 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4114 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4115 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4116 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4117 ei->i_file_acl |=
4118 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4119 inode->i_size = ext4_isize(raw_inode);
4120 ei->i_disksize = inode->i_size;
4121 #ifdef CONFIG_QUOTA
4122 ei->i_reserved_quota = 0;
4123 #endif
4124 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4125 ei->i_block_group = iloc.block_group;
4126 ei->i_last_alloc_group = ~0;
4127 /*
4128 * NOTE! The in-memory inode i_data array is in little-endian order
4129 * even on big-endian machines: we do NOT byteswap the block numbers!
4130 */
4131 for (block = 0; block < EXT4_N_BLOCKS; block++)
4132 ei->i_data[block] = raw_inode->i_block[block];
4133 INIT_LIST_HEAD(&ei->i_orphan);
4134
4135 /*
4136 * Set transaction id's of transactions that have to be committed
4137 * to finish f[data]sync. We set them to currently running transaction
4138 * as we cannot be sure that the inode or some of its metadata isn't
4139 * part of the transaction - the inode could have been reclaimed and
4140 * now it is reread from disk.
4141 */
4142 if (journal) {
4143 transaction_t *transaction;
4144 tid_t tid;
4145
4146 read_lock(&journal->j_state_lock);
4147 if (journal->j_running_transaction)
4148 transaction = journal->j_running_transaction;
4149 else
4150 transaction = journal->j_committing_transaction;
4151 if (transaction)
4152 tid = transaction->t_tid;
4153 else
4154 tid = journal->j_commit_sequence;
4155 read_unlock(&journal->j_state_lock);
4156 ei->i_sync_tid = tid;
4157 ei->i_datasync_tid = tid;
4158 }
4159
4160 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4161 if (ei->i_extra_isize == 0) {
4162 /* The extra space is currently unused. Use it. */
4163 ei->i_extra_isize = sizeof(struct ext4_inode) -
4164 EXT4_GOOD_OLD_INODE_SIZE;
4165 } else {
4166 ext4_iget_extra_inode(inode, raw_inode, ei);
4167 }
4168 }
4169
4170 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4171 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4172 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4173 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4174
4175 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4176 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4177 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4178 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4179 inode->i_version |=
4180 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4181 }
4182 }
4183
4184 ret = 0;
4185 if (ei->i_file_acl &&
4186 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4187 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4188 ei->i_file_acl);
4189 ret = -EIO;
4190 goto bad_inode;
4191 } else if (!ext4_has_inline_data(inode)) {
4192 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4193 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4194 (S_ISLNK(inode->i_mode) &&
4195 !ext4_inode_is_fast_symlink(inode))))
4196 /* Validate extent which is part of inode */
4197 ret = ext4_ext_check_inode(inode);
4198 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4199 (S_ISLNK(inode->i_mode) &&
4200 !ext4_inode_is_fast_symlink(inode))) {
4201 /* Validate block references which are part of inode */
4202 ret = ext4_ind_check_inode(inode);
4203 }
4204 }
4205 if (ret)
4206 goto bad_inode;
4207
4208 if (S_ISREG(inode->i_mode)) {
4209 inode->i_op = &ext4_file_inode_operations;
4210 inode->i_fop = &ext4_file_operations;
4211 ext4_set_aops(inode);
4212 } else if (S_ISDIR(inode->i_mode)) {
4213 inode->i_op = &ext4_dir_inode_operations;
4214 inode->i_fop = &ext4_dir_operations;
4215 } else if (S_ISLNK(inode->i_mode)) {
4216 if (ext4_inode_is_fast_symlink(inode) &&
4217 !ext4_encrypted_inode(inode)) {
4218 inode->i_op = &ext4_fast_symlink_inode_operations;
4219 nd_terminate_link(ei->i_data, inode->i_size,
4220 sizeof(ei->i_data) - 1);
4221 } else {
4222 inode->i_op = &ext4_symlink_inode_operations;
4223 ext4_set_aops(inode);
4224 }
4225 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4226 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4227 inode->i_op = &ext4_special_inode_operations;
4228 if (raw_inode->i_block[0])
4229 init_special_inode(inode, inode->i_mode,
4230 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4231 else
4232 init_special_inode(inode, inode->i_mode,
4233 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4234 } else if (ino == EXT4_BOOT_LOADER_INO) {
4235 make_bad_inode(inode);
4236 } else {
4237 ret = -EIO;
4238 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4239 goto bad_inode;
4240 }
4241 brelse(iloc.bh);
4242 ext4_set_inode_flags(inode);
4243 unlock_new_inode(inode);
4244 return inode;
4245
4246 bad_inode:
4247 brelse(iloc.bh);
4248 iget_failed(inode);
4249 return ERR_PTR(ret);
4250 }
4251
4252 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4253 {
4254 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4255 return ERR_PTR(-EIO);
4256 return ext4_iget(sb, ino);
4257 }
4258
4259 static int ext4_inode_blocks_set(handle_t *handle,
4260 struct ext4_inode *raw_inode,
4261 struct ext4_inode_info *ei)
4262 {
4263 struct inode *inode = &(ei->vfs_inode);
4264 u64 i_blocks = inode->i_blocks;
4265 struct super_block *sb = inode->i_sb;
4266
4267 if (i_blocks <= ~0U) {
4268 /*
4269 * i_blocks can be represented in a 32 bit variable
4270 * as multiple of 512 bytes
4271 */
4272 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4273 raw_inode->i_blocks_high = 0;
4274 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4275 return 0;
4276 }
4277 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4278 return -EFBIG;
4279
4280 if (i_blocks <= 0xffffffffffffULL) {
4281 /*
4282 * i_blocks can be represented in a 48 bit variable
4283 * as multiple of 512 bytes
4284 */
4285 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4286 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4287 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4288 } else {
4289 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4290 /* i_block is stored in file system block size */
4291 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4292 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4293 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4294 }
4295 return 0;
4296 }
4297
4298 struct other_inode {
4299 unsigned long orig_ino;
4300 struct ext4_inode *raw_inode;
4301 };
4302
4303 static int other_inode_match(struct inode * inode, unsigned long ino,
4304 void *data)
4305 {
4306 struct other_inode *oi = (struct other_inode *) data;
4307
4308 if ((inode->i_ino != ino) ||
4309 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4310 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4311 ((inode->i_state & I_DIRTY_TIME) == 0))
4312 return 0;
4313 spin_lock(&inode->i_lock);
4314 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4315 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4316 (inode->i_state & I_DIRTY_TIME)) {
4317 struct ext4_inode_info *ei = EXT4_I(inode);
4318
4319 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4320 spin_unlock(&inode->i_lock);
4321
4322 spin_lock(&ei->i_raw_lock);
4323 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4324 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4325 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4326 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4327 spin_unlock(&ei->i_raw_lock);
4328 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4329 return -1;
4330 }
4331 spin_unlock(&inode->i_lock);
4332 return -1;
4333 }
4334
4335 /*
4336 * Opportunistically update the other time fields for other inodes in
4337 * the same inode table block.
4338 */
4339 static void ext4_update_other_inodes_time(struct super_block *sb,
4340 unsigned long orig_ino, char *buf)
4341 {
4342 struct other_inode oi;
4343 unsigned long ino;
4344 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4345 int inode_size = EXT4_INODE_SIZE(sb);
4346
4347 oi.orig_ino = orig_ino;
4348 ino = (orig_ino & ~(inodes_per_block - 1)) + 1;
4349 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4350 if (ino == orig_ino)
4351 continue;
4352 oi.raw_inode = (struct ext4_inode *) buf;
4353 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4354 }
4355 }
4356
4357 /*
4358 * Post the struct inode info into an on-disk inode location in the
4359 * buffer-cache. This gobbles the caller's reference to the
4360 * buffer_head in the inode location struct.
4361 *
4362 * The caller must have write access to iloc->bh.
4363 */
4364 static int ext4_do_update_inode(handle_t *handle,
4365 struct inode *inode,
4366 struct ext4_iloc *iloc)
4367 {
4368 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4369 struct ext4_inode_info *ei = EXT4_I(inode);
4370 struct buffer_head *bh = iloc->bh;
4371 struct super_block *sb = inode->i_sb;
4372 int err = 0, rc, block;
4373 int need_datasync = 0, set_large_file = 0;
4374 uid_t i_uid;
4375 gid_t i_gid;
4376
4377 spin_lock(&ei->i_raw_lock);
4378
4379 /* For fields not tracked in the in-memory inode,
4380 * initialise them to zero for new inodes. */
4381 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4382 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4383
4384 ext4_get_inode_flags(ei);
4385 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4386 i_uid = i_uid_read(inode);
4387 i_gid = i_gid_read(inode);
4388 if (!(test_opt(inode->i_sb, NO_UID32))) {
4389 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4390 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4391 /*
4392 * Fix up interoperability with old kernels. Otherwise, old inodes get
4393 * re-used with the upper 16 bits of the uid/gid intact
4394 */
4395 if (!ei->i_dtime) {
4396 raw_inode->i_uid_high =
4397 cpu_to_le16(high_16_bits(i_uid));
4398 raw_inode->i_gid_high =
4399 cpu_to_le16(high_16_bits(i_gid));
4400 } else {
4401 raw_inode->i_uid_high = 0;
4402 raw_inode->i_gid_high = 0;
4403 }
4404 } else {
4405 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4406 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4407 raw_inode->i_uid_high = 0;
4408 raw_inode->i_gid_high = 0;
4409 }
4410 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4411
4412 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4413 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4414 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4415 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4416
4417 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4418 if (err) {
4419 spin_unlock(&ei->i_raw_lock);
4420 goto out_brelse;
4421 }
4422 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4423 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4424 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4425 raw_inode->i_file_acl_high =
4426 cpu_to_le16(ei->i_file_acl >> 32);
4427 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4428 if (ei->i_disksize != ext4_isize(raw_inode)) {
4429 ext4_isize_set(raw_inode, ei->i_disksize);
4430 need_datasync = 1;
4431 }
4432 if (ei->i_disksize > 0x7fffffffULL) {
4433 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4434 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4435 EXT4_SB(sb)->s_es->s_rev_level ==
4436 cpu_to_le32(EXT4_GOOD_OLD_REV))
4437 set_large_file = 1;
4438 }
4439 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4440 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4441 if (old_valid_dev(inode->i_rdev)) {
4442 raw_inode->i_block[0] =
4443 cpu_to_le32(old_encode_dev(inode->i_rdev));
4444 raw_inode->i_block[1] = 0;
4445 } else {
4446 raw_inode->i_block[0] = 0;
4447 raw_inode->i_block[1] =
4448 cpu_to_le32(new_encode_dev(inode->i_rdev));
4449 raw_inode->i_block[2] = 0;
4450 }
4451 } else if (!ext4_has_inline_data(inode)) {
4452 for (block = 0; block < EXT4_N_BLOCKS; block++)
4453 raw_inode->i_block[block] = ei->i_data[block];
4454 }
4455
4456 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4457 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4458 if (ei->i_extra_isize) {
4459 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4460 raw_inode->i_version_hi =
4461 cpu_to_le32(inode->i_version >> 32);
4462 raw_inode->i_extra_isize =
4463 cpu_to_le16(ei->i_extra_isize);
4464 }
4465 }
4466 ext4_inode_csum_set(inode, raw_inode, ei);
4467 spin_unlock(&ei->i_raw_lock);
4468 if (inode->i_sb->s_flags & MS_LAZYTIME)
4469 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4470 bh->b_data);
4471
4472 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4473 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4474 if (!err)
4475 err = rc;
4476 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4477 if (set_large_file) {
4478 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4479 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4480 if (err)
4481 goto out_brelse;
4482 ext4_update_dynamic_rev(sb);
4483 EXT4_SET_RO_COMPAT_FEATURE(sb,
4484 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4485 ext4_handle_sync(handle);
4486 err = ext4_handle_dirty_super(handle, sb);
4487 }
4488 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4489 out_brelse:
4490 brelse(bh);
4491 ext4_std_error(inode->i_sb, err);
4492 return err;
4493 }
4494
4495 /*
4496 * ext4_write_inode()
4497 *
4498 * We are called from a few places:
4499 *
4500 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4501 * Here, there will be no transaction running. We wait for any running
4502 * transaction to commit.
4503 *
4504 * - Within flush work (sys_sync(), kupdate and such).
4505 * We wait on commit, if told to.
4506 *
4507 * - Within iput_final() -> write_inode_now()
4508 * We wait on commit, if told to.
4509 *
4510 * In all cases it is actually safe for us to return without doing anything,
4511 * because the inode has been copied into a raw inode buffer in
4512 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4513 * writeback.
4514 *
4515 * Note that we are absolutely dependent upon all inode dirtiers doing the
4516 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4517 * which we are interested.
4518 *
4519 * It would be a bug for them to not do this. The code:
4520 *
4521 * mark_inode_dirty(inode)
4522 * stuff();
4523 * inode->i_size = expr;
4524 *
4525 * is in error because write_inode() could occur while `stuff()' is running,
4526 * and the new i_size will be lost. Plus the inode will no longer be on the
4527 * superblock's dirty inode list.
4528 */
4529 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4530 {
4531 int err;
4532
4533 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4534 return 0;
4535
4536 if (EXT4_SB(inode->i_sb)->s_journal) {
4537 if (ext4_journal_current_handle()) {
4538 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4539 dump_stack();
4540 return -EIO;
4541 }
4542
4543 /*
4544 * No need to force transaction in WB_SYNC_NONE mode. Also
4545 * ext4_sync_fs() will force the commit after everything is
4546 * written.
4547 */
4548 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4549 return 0;
4550
4551 err = ext4_force_commit(inode->i_sb);
4552 } else {
4553 struct ext4_iloc iloc;
4554
4555 err = __ext4_get_inode_loc(inode, &iloc, 0);
4556 if (err)
4557 return err;
4558 /*
4559 * sync(2) will flush the whole buffer cache. No need to do
4560 * it here separately for each inode.
4561 */
4562 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4563 sync_dirty_buffer(iloc.bh);
4564 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4565 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4566 "IO error syncing inode");
4567 err = -EIO;
4568 }
4569 brelse(iloc.bh);
4570 }
4571 return err;
4572 }
4573
4574 /*
4575 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4576 * buffers that are attached to a page stradding i_size and are undergoing
4577 * commit. In that case we have to wait for commit to finish and try again.
4578 */
4579 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4580 {
4581 struct page *page;
4582 unsigned offset;
4583 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4584 tid_t commit_tid = 0;
4585 int ret;
4586
4587 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4588 /*
4589 * All buffers in the last page remain valid? Then there's nothing to
4590 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4591 * blocksize case
4592 */
4593 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4594 return;
4595 while (1) {
4596 page = find_lock_page(inode->i_mapping,
4597 inode->i_size >> PAGE_CACHE_SHIFT);
4598 if (!page)
4599 return;
4600 ret = __ext4_journalled_invalidatepage(page, offset,
4601 PAGE_CACHE_SIZE - offset);
4602 unlock_page(page);
4603 page_cache_release(page);
4604 if (ret != -EBUSY)
4605 return;
4606 commit_tid = 0;
4607 read_lock(&journal->j_state_lock);
4608 if (journal->j_committing_transaction)
4609 commit_tid = journal->j_committing_transaction->t_tid;
4610 read_unlock(&journal->j_state_lock);
4611 if (commit_tid)
4612 jbd2_log_wait_commit(journal, commit_tid);
4613 }
4614 }
4615
4616 /*
4617 * ext4_setattr()
4618 *
4619 * Called from notify_change.
4620 *
4621 * We want to trap VFS attempts to truncate the file as soon as
4622 * possible. In particular, we want to make sure that when the VFS
4623 * shrinks i_size, we put the inode on the orphan list and modify
4624 * i_disksize immediately, so that during the subsequent flushing of
4625 * dirty pages and freeing of disk blocks, we can guarantee that any
4626 * commit will leave the blocks being flushed in an unused state on
4627 * disk. (On recovery, the inode will get truncated and the blocks will
4628 * be freed, so we have a strong guarantee that no future commit will
4629 * leave these blocks visible to the user.)
4630 *
4631 * Another thing we have to assure is that if we are in ordered mode
4632 * and inode is still attached to the committing transaction, we must
4633 * we start writeout of all the dirty pages which are being truncated.
4634 * This way we are sure that all the data written in the previous
4635 * transaction are already on disk (truncate waits for pages under
4636 * writeback).
4637 *
4638 * Called with inode->i_mutex down.
4639 */
4640 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4641 {
4642 struct inode *inode = d_inode(dentry);
4643 int error, rc = 0;
4644 int orphan = 0;
4645 const unsigned int ia_valid = attr->ia_valid;
4646
4647 error = inode_change_ok(inode, attr);
4648 if (error)
4649 return error;
4650
4651 if (is_quota_modification(inode, attr))
4652 dquot_initialize(inode);
4653 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4654 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4655 handle_t *handle;
4656
4657 /* (user+group)*(old+new) structure, inode write (sb,
4658 * inode block, ? - but truncate inode update has it) */
4659 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4660 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4661 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4662 if (IS_ERR(handle)) {
4663 error = PTR_ERR(handle);
4664 goto err_out;
4665 }
4666 error = dquot_transfer(inode, attr);
4667 if (error) {
4668 ext4_journal_stop(handle);
4669 return error;
4670 }
4671 /* Update corresponding info in inode so that everything is in
4672 * one transaction */
4673 if (attr->ia_valid & ATTR_UID)
4674 inode->i_uid = attr->ia_uid;
4675 if (attr->ia_valid & ATTR_GID)
4676 inode->i_gid = attr->ia_gid;
4677 error = ext4_mark_inode_dirty(handle, inode);
4678 ext4_journal_stop(handle);
4679 }
4680
4681 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4682 handle_t *handle;
4683
4684 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4686
4687 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4688 return -EFBIG;
4689 }
4690
4691 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4692 inode_inc_iversion(inode);
4693
4694 if (S_ISREG(inode->i_mode) &&
4695 (attr->ia_size < inode->i_size)) {
4696 if (ext4_should_order_data(inode)) {
4697 error = ext4_begin_ordered_truncate(inode,
4698 attr->ia_size);
4699 if (error)
4700 goto err_out;
4701 }
4702 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4703 if (IS_ERR(handle)) {
4704 error = PTR_ERR(handle);
4705 goto err_out;
4706 }
4707 if (ext4_handle_valid(handle)) {
4708 error = ext4_orphan_add(handle, inode);
4709 orphan = 1;
4710 }
4711 down_write(&EXT4_I(inode)->i_data_sem);
4712 EXT4_I(inode)->i_disksize = attr->ia_size;
4713 rc = ext4_mark_inode_dirty(handle, inode);
4714 if (!error)
4715 error = rc;
4716 /*
4717 * We have to update i_size under i_data_sem together
4718 * with i_disksize to avoid races with writeback code
4719 * running ext4_wb_update_i_disksize().
4720 */
4721 if (!error)
4722 i_size_write(inode, attr->ia_size);
4723 up_write(&EXT4_I(inode)->i_data_sem);
4724 ext4_journal_stop(handle);
4725 if (error) {
4726 ext4_orphan_del(NULL, inode);
4727 goto err_out;
4728 }
4729 } else {
4730 loff_t oldsize = inode->i_size;
4731
4732 i_size_write(inode, attr->ia_size);
4733 pagecache_isize_extended(inode, oldsize, inode->i_size);
4734 }
4735
4736 /*
4737 * Blocks are going to be removed from the inode. Wait
4738 * for dio in flight. Temporarily disable
4739 * dioread_nolock to prevent livelock.
4740 */
4741 if (orphan) {
4742 if (!ext4_should_journal_data(inode)) {
4743 ext4_inode_block_unlocked_dio(inode);
4744 inode_dio_wait(inode);
4745 ext4_inode_resume_unlocked_dio(inode);
4746 } else
4747 ext4_wait_for_tail_page_commit(inode);
4748 }
4749 /*
4750 * Truncate pagecache after we've waited for commit
4751 * in data=journal mode to make pages freeable.
4752 */
4753 truncate_pagecache(inode, inode->i_size);
4754 }
4755 /*
4756 * We want to call ext4_truncate() even if attr->ia_size ==
4757 * inode->i_size for cases like truncation of fallocated space
4758 */
4759 if (attr->ia_valid & ATTR_SIZE)
4760 ext4_truncate(inode);
4761
4762 if (!rc) {
4763 setattr_copy(inode, attr);
4764 mark_inode_dirty(inode);
4765 }
4766
4767 /*
4768 * If the call to ext4_truncate failed to get a transaction handle at
4769 * all, we need to clean up the in-core orphan list manually.
4770 */
4771 if (orphan && inode->i_nlink)
4772 ext4_orphan_del(NULL, inode);
4773
4774 if (!rc && (ia_valid & ATTR_MODE))
4775 rc = posix_acl_chmod(inode, inode->i_mode);
4776
4777 err_out:
4778 ext4_std_error(inode->i_sb, error);
4779 if (!error)
4780 error = rc;
4781 return error;
4782 }
4783
4784 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4785 struct kstat *stat)
4786 {
4787 struct inode *inode;
4788 unsigned long long delalloc_blocks;
4789
4790 inode = d_inode(dentry);
4791 generic_fillattr(inode, stat);
4792
4793 /*
4794 * If there is inline data in the inode, the inode will normally not
4795 * have data blocks allocated (it may have an external xattr block).
4796 * Report at least one sector for such files, so tools like tar, rsync,
4797 * others doen't incorrectly think the file is completely sparse.
4798 */
4799 if (unlikely(ext4_has_inline_data(inode)))
4800 stat->blocks += (stat->size + 511) >> 9;
4801
4802 /*
4803 * We can't update i_blocks if the block allocation is delayed
4804 * otherwise in the case of system crash before the real block
4805 * allocation is done, we will have i_blocks inconsistent with
4806 * on-disk file blocks.
4807 * We always keep i_blocks updated together with real
4808 * allocation. But to not confuse with user, stat
4809 * will return the blocks that include the delayed allocation
4810 * blocks for this file.
4811 */
4812 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4813 EXT4_I(inode)->i_reserved_data_blocks);
4814 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4815 return 0;
4816 }
4817
4818 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4819 int pextents)
4820 {
4821 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4822 return ext4_ind_trans_blocks(inode, lblocks);
4823 return ext4_ext_index_trans_blocks(inode, pextents);
4824 }
4825
4826 /*
4827 * Account for index blocks, block groups bitmaps and block group
4828 * descriptor blocks if modify datablocks and index blocks
4829 * worse case, the indexs blocks spread over different block groups
4830 *
4831 * If datablocks are discontiguous, they are possible to spread over
4832 * different block groups too. If they are contiguous, with flexbg,
4833 * they could still across block group boundary.
4834 *
4835 * Also account for superblock, inode, quota and xattr blocks
4836 */
4837 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4838 int pextents)
4839 {
4840 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4841 int gdpblocks;
4842 int idxblocks;
4843 int ret = 0;
4844
4845 /*
4846 * How many index blocks need to touch to map @lblocks logical blocks
4847 * to @pextents physical extents?
4848 */
4849 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4850
4851 ret = idxblocks;
4852
4853 /*
4854 * Now let's see how many group bitmaps and group descriptors need
4855 * to account
4856 */
4857 groups = idxblocks + pextents;
4858 gdpblocks = groups;
4859 if (groups > ngroups)
4860 groups = ngroups;
4861 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4862 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4863
4864 /* bitmaps and block group descriptor blocks */
4865 ret += groups + gdpblocks;
4866
4867 /* Blocks for super block, inode, quota and xattr blocks */
4868 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4869
4870 return ret;
4871 }
4872
4873 /*
4874 * Calculate the total number of credits to reserve to fit
4875 * the modification of a single pages into a single transaction,
4876 * which may include multiple chunks of block allocations.
4877 *
4878 * This could be called via ext4_write_begin()
4879 *
4880 * We need to consider the worse case, when
4881 * one new block per extent.
4882 */
4883 int ext4_writepage_trans_blocks(struct inode *inode)
4884 {
4885 int bpp = ext4_journal_blocks_per_page(inode);
4886 int ret;
4887
4888 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4889
4890 /* Account for data blocks for journalled mode */
4891 if (ext4_should_journal_data(inode))
4892 ret += bpp;
4893 return ret;
4894 }
4895
4896 /*
4897 * Calculate the journal credits for a chunk of data modification.
4898 *
4899 * This is called from DIO, fallocate or whoever calling
4900 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4901 *
4902 * journal buffers for data blocks are not included here, as DIO
4903 * and fallocate do no need to journal data buffers.
4904 */
4905 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4906 {
4907 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4908 }
4909
4910 /*
4911 * The caller must have previously called ext4_reserve_inode_write().
4912 * Give this, we know that the caller already has write access to iloc->bh.
4913 */
4914 int ext4_mark_iloc_dirty(handle_t *handle,
4915 struct inode *inode, struct ext4_iloc *iloc)
4916 {
4917 int err = 0;
4918
4919 if (IS_I_VERSION(inode))
4920 inode_inc_iversion(inode);
4921
4922 /* the do_update_inode consumes one bh->b_count */
4923 get_bh(iloc->bh);
4924
4925 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4926 err = ext4_do_update_inode(handle, inode, iloc);
4927 put_bh(iloc->bh);
4928 return err;
4929 }
4930
4931 /*
4932 * On success, We end up with an outstanding reference count against
4933 * iloc->bh. This _must_ be cleaned up later.
4934 */
4935
4936 int
4937 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4938 struct ext4_iloc *iloc)
4939 {
4940 int err;
4941
4942 err = ext4_get_inode_loc(inode, iloc);
4943 if (!err) {
4944 BUFFER_TRACE(iloc->bh, "get_write_access");
4945 err = ext4_journal_get_write_access(handle, iloc->bh);
4946 if (err) {
4947 brelse(iloc->bh);
4948 iloc->bh = NULL;
4949 }
4950 }
4951 ext4_std_error(inode->i_sb, err);
4952 return err;
4953 }
4954
4955 /*
4956 * Expand an inode by new_extra_isize bytes.
4957 * Returns 0 on success or negative error number on failure.
4958 */
4959 static int ext4_expand_extra_isize(struct inode *inode,
4960 unsigned int new_extra_isize,
4961 struct ext4_iloc iloc,
4962 handle_t *handle)
4963 {
4964 struct ext4_inode *raw_inode;
4965 struct ext4_xattr_ibody_header *header;
4966
4967 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4968 return 0;
4969
4970 raw_inode = ext4_raw_inode(&iloc);
4971
4972 header = IHDR(inode, raw_inode);
4973
4974 /* No extended attributes present */
4975 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4976 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4977 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4978 new_extra_isize);
4979 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4980 return 0;
4981 }
4982
4983 /* try to expand with EAs present */
4984 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4985 raw_inode, handle);
4986 }
4987
4988 /*
4989 * What we do here is to mark the in-core inode as clean with respect to inode
4990 * dirtiness (it may still be data-dirty).
4991 * This means that the in-core inode may be reaped by prune_icache
4992 * without having to perform any I/O. This is a very good thing,
4993 * because *any* task may call prune_icache - even ones which
4994 * have a transaction open against a different journal.
4995 *
4996 * Is this cheating? Not really. Sure, we haven't written the
4997 * inode out, but prune_icache isn't a user-visible syncing function.
4998 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4999 * we start and wait on commits.
5000 */
5001 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5002 {
5003 struct ext4_iloc iloc;
5004 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5005 static unsigned int mnt_count;
5006 int err, ret;
5007
5008 might_sleep();
5009 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5010 err = ext4_reserve_inode_write(handle, inode, &iloc);
5011 if (ext4_handle_valid(handle) &&
5012 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5013 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5014 /*
5015 * We need extra buffer credits since we may write into EA block
5016 * with this same handle. If journal_extend fails, then it will
5017 * only result in a minor loss of functionality for that inode.
5018 * If this is felt to be critical, then e2fsck should be run to
5019 * force a large enough s_min_extra_isize.
5020 */
5021 if ((jbd2_journal_extend(handle,
5022 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5023 ret = ext4_expand_extra_isize(inode,
5024 sbi->s_want_extra_isize,
5025 iloc, handle);
5026 if (ret) {
5027 ext4_set_inode_state(inode,
5028 EXT4_STATE_NO_EXPAND);
5029 if (mnt_count !=
5030 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5031 ext4_warning(inode->i_sb,
5032 "Unable to expand inode %lu. Delete"
5033 " some EAs or run e2fsck.",
5034 inode->i_ino);
5035 mnt_count =
5036 le16_to_cpu(sbi->s_es->s_mnt_count);
5037 }
5038 }
5039 }
5040 }
5041 if (!err)
5042 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5043 return err;
5044 }
5045
5046 /*
5047 * ext4_dirty_inode() is called from __mark_inode_dirty()
5048 *
5049 * We're really interested in the case where a file is being extended.
5050 * i_size has been changed by generic_commit_write() and we thus need
5051 * to include the updated inode in the current transaction.
5052 *
5053 * Also, dquot_alloc_block() will always dirty the inode when blocks
5054 * are allocated to the file.
5055 *
5056 * If the inode is marked synchronous, we don't honour that here - doing
5057 * so would cause a commit on atime updates, which we don't bother doing.
5058 * We handle synchronous inodes at the highest possible level.
5059 *
5060 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5061 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5062 * to copy into the on-disk inode structure are the timestamp files.
5063 */
5064 void ext4_dirty_inode(struct inode *inode, int flags)
5065 {
5066 handle_t *handle;
5067
5068 if (flags == I_DIRTY_TIME)
5069 return;
5070 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5071 if (IS_ERR(handle))
5072 goto out;
5073
5074 ext4_mark_inode_dirty(handle, inode);
5075
5076 ext4_journal_stop(handle);
5077 out:
5078 return;
5079 }
5080
5081 #if 0
5082 /*
5083 * Bind an inode's backing buffer_head into this transaction, to prevent
5084 * it from being flushed to disk early. Unlike
5085 * ext4_reserve_inode_write, this leaves behind no bh reference and
5086 * returns no iloc structure, so the caller needs to repeat the iloc
5087 * lookup to mark the inode dirty later.
5088 */
5089 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5090 {
5091 struct ext4_iloc iloc;
5092
5093 int err = 0;
5094 if (handle) {
5095 err = ext4_get_inode_loc(inode, &iloc);
5096 if (!err) {
5097 BUFFER_TRACE(iloc.bh, "get_write_access");
5098 err = jbd2_journal_get_write_access(handle, iloc.bh);
5099 if (!err)
5100 err = ext4_handle_dirty_metadata(handle,
5101 NULL,
5102 iloc.bh);
5103 brelse(iloc.bh);
5104 }
5105 }
5106 ext4_std_error(inode->i_sb, err);
5107 return err;
5108 }
5109 #endif
5110
5111 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5112 {
5113 journal_t *journal;
5114 handle_t *handle;
5115 int err;
5116
5117 /*
5118 * We have to be very careful here: changing a data block's
5119 * journaling status dynamically is dangerous. If we write a
5120 * data block to the journal, change the status and then delete
5121 * that block, we risk forgetting to revoke the old log record
5122 * from the journal and so a subsequent replay can corrupt data.
5123 * So, first we make sure that the journal is empty and that
5124 * nobody is changing anything.
5125 */
5126
5127 journal = EXT4_JOURNAL(inode);
5128 if (!journal)
5129 return 0;
5130 if (is_journal_aborted(journal))
5131 return -EROFS;
5132 /* We have to allocate physical blocks for delalloc blocks
5133 * before flushing journal. otherwise delalloc blocks can not
5134 * be allocated any more. even more truncate on delalloc blocks
5135 * could trigger BUG by flushing delalloc blocks in journal.
5136 * There is no delalloc block in non-journal data mode.
5137 */
5138 if (val && test_opt(inode->i_sb, DELALLOC)) {
5139 err = ext4_alloc_da_blocks(inode);
5140 if (err < 0)
5141 return err;
5142 }
5143
5144 /* Wait for all existing dio workers */
5145 ext4_inode_block_unlocked_dio(inode);
5146 inode_dio_wait(inode);
5147
5148 jbd2_journal_lock_updates(journal);
5149
5150 /*
5151 * OK, there are no updates running now, and all cached data is
5152 * synced to disk. We are now in a completely consistent state
5153 * which doesn't have anything in the journal, and we know that
5154 * no filesystem updates are running, so it is safe to modify
5155 * the inode's in-core data-journaling state flag now.
5156 */
5157
5158 if (val)
5159 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5160 else {
5161 err = jbd2_journal_flush(journal);
5162 if (err < 0) {
5163 jbd2_journal_unlock_updates(journal);
5164 ext4_inode_resume_unlocked_dio(inode);
5165 return err;
5166 }
5167 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5168 }
5169 ext4_set_aops(inode);
5170
5171 jbd2_journal_unlock_updates(journal);
5172 ext4_inode_resume_unlocked_dio(inode);
5173
5174 /* Finally we can mark the inode as dirty. */
5175
5176 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5177 if (IS_ERR(handle))
5178 return PTR_ERR(handle);
5179
5180 err = ext4_mark_inode_dirty(handle, inode);
5181 ext4_handle_sync(handle);
5182 ext4_journal_stop(handle);
5183 ext4_std_error(inode->i_sb, err);
5184
5185 return err;
5186 }
5187
5188 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5189 {
5190 return !buffer_mapped(bh);
5191 }
5192
5193 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5194 {
5195 struct page *page = vmf->page;
5196 loff_t size;
5197 unsigned long len;
5198 int ret;
5199 struct file *file = vma->vm_file;
5200 struct inode *inode = file_inode(file);
5201 struct address_space *mapping = inode->i_mapping;
5202 handle_t *handle;
5203 get_block_t *get_block;
5204 int retries = 0;
5205
5206 sb_start_pagefault(inode->i_sb);
5207 file_update_time(vma->vm_file);
5208 /* Delalloc case is easy... */
5209 if (test_opt(inode->i_sb, DELALLOC) &&
5210 !ext4_should_journal_data(inode) &&
5211 !ext4_nonda_switch(inode->i_sb)) {
5212 do {
5213 ret = __block_page_mkwrite(vma, vmf,
5214 ext4_da_get_block_prep);
5215 } while (ret == -ENOSPC &&
5216 ext4_should_retry_alloc(inode->i_sb, &retries));
5217 goto out_ret;
5218 }
5219
5220 lock_page(page);
5221 size = i_size_read(inode);
5222 /* Page got truncated from under us? */
5223 if (page->mapping != mapping || page_offset(page) > size) {
5224 unlock_page(page);
5225 ret = VM_FAULT_NOPAGE;
5226 goto out;
5227 }
5228
5229 if (page->index == size >> PAGE_CACHE_SHIFT)
5230 len = size & ~PAGE_CACHE_MASK;
5231 else
5232 len = PAGE_CACHE_SIZE;
5233 /*
5234 * Return if we have all the buffers mapped. This avoids the need to do
5235 * journal_start/journal_stop which can block and take a long time
5236 */
5237 if (page_has_buffers(page)) {
5238 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5239 0, len, NULL,
5240 ext4_bh_unmapped)) {
5241 /* Wait so that we don't change page under IO */
5242 wait_for_stable_page(page);
5243 ret = VM_FAULT_LOCKED;
5244 goto out;
5245 }
5246 }
5247 unlock_page(page);
5248 /* OK, we need to fill the hole... */
5249 if (ext4_should_dioread_nolock(inode))
5250 get_block = ext4_get_block_write;
5251 else
5252 get_block = ext4_get_block;
5253 retry_alloc:
5254 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5255 ext4_writepage_trans_blocks(inode));
5256 if (IS_ERR(handle)) {
5257 ret = VM_FAULT_SIGBUS;
5258 goto out;
5259 }
5260 ret = __block_page_mkwrite(vma, vmf, get_block);
5261 if (!ret && ext4_should_journal_data(inode)) {
5262 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5263 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5264 unlock_page(page);
5265 ret = VM_FAULT_SIGBUS;
5266 ext4_journal_stop(handle);
5267 goto out;
5268 }
5269 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5270 }
5271 ext4_journal_stop(handle);
5272 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5273 goto retry_alloc;
5274 out_ret:
5275 ret = block_page_mkwrite_return(ret);
5276 out:
5277 sb_end_pagefault(inode->i_sb);
5278 return ret;
5279 }