]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/ext4/inode.c
Merge tag 'mfd-3.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/sameo/mfd...
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53 {
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75 return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80 {
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102 {
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120 {
121 trace_ext4_begin_ordered_truncate(inode, new_size);
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
141
142 /*
143 * Test whether an inode is a fast symlink.
144 */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 int nblocks)
160 {
161 int ret;
162
163 /*
164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 jbd_debug(2, "restarting handle %p\n", handle);
171 up_write(&EXT4_I(inode)->i_data_sem);
172 ret = ext4_journal_restart(handle, nblocks);
173 down_write(&EXT4_I(inode)->i_data_sem);
174 ext4_discard_preallocations(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called at the last iput() if i_nlink is zero.
181 */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 handle_t *handle;
185 int err;
186
187 trace_ext4_evict_inode(inode);
188
189 if (inode->i_nlink) {
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214 jbd2_complete_transaction(journal, commit_tid);
215 filemap_write_and_wait(&inode->i_data);
216 }
217 truncate_inode_pages(&inode->i_data, 0);
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220 goto no_delete;
221 }
222
223 if (!is_bad_inode(inode))
224 dquot_initialize(inode);
225
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
228 truncate_inode_pages(&inode->i_data, 0);
229
230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231 if (is_bad_inode(inode))
232 goto no_delete;
233
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
241 if (IS_ERR(handle)) {
242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
248 ext4_orphan_del(NULL, inode);
249 sb_end_intwrite(inode->i_sb);
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
254 ext4_handle_sync(handle);
255 inode->i_size = 0;
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
258 ext4_warning(inode->i_sb,
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
262 if (inode->i_blocks)
263 ext4_truncate(inode);
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
271 if (!ext4_handle_has_enough_credits(handle, 3)) {
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
276 ext4_warning(inode->i_sb,
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
280 ext4_orphan_del(NULL, inode);
281 sb_end_intwrite(inode->i_sb);
282 goto no_delete;
283 }
284 }
285
286 /*
287 * Kill off the orphan record which ext4_truncate created.
288 * AKPM: I think this can be inside the above `if'.
289 * Note that ext4_orphan_del() has to be able to cope with the
290 * deletion of a non-existent orphan - this is because we don't
291 * know if ext4_truncate() actually created an orphan record.
292 * (Well, we could do this if we need to, but heck - it works)
293 */
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
304 if (ext4_mark_inode_dirty(handle, inode))
305 /* If that failed, just do the required in-core inode clear. */
306 ext4_clear_inode(inode);
307 else
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
310 sb_end_intwrite(inode->i_sb);
311 return;
312 no_delete:
313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319 return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324 * Calculate the number of metadata blocks need to reserve
325 * to allocate a block located at @lblock
326 */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332 return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
339 void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
341 {
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343 struct ext4_inode_info *ei = EXT4_I(inode);
344
345 spin_lock(&ei->i_block_reservation_lock);
346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347 if (unlikely(used > ei->i_reserved_data_blocks)) {
348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349 "with only %d reserved data blocks",
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
355
356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371 used + ei->i_allocated_meta_blocks);
372 ei->i_allocated_meta_blocks = 0;
373
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381 ei->i_reserved_meta_blocks);
382 ei->i_reserved_meta_blocks = 0;
383 ei->i_da_metadata_calc_len = 0;
384 }
385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 else {
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
394 * not re-claim the quota for fallocated blocks.
395 */
396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397 }
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
406 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410 unsigned int line,
411 struct ext4_map_blocks *map)
412 {
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
419 return -EIO;
420 }
421 return 0;
422 }
423
424 #define check_block_validity(inode, map) \
425 __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433 {
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
468 printk("ES cache assertion failed for inode: %lu "
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480 * The ext4_map_blocks() function tries to look up the requested blocks,
481 * and returns if the blocks are already mapped.
482 *
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, buffer head is unmapped
498 *
499 * It returns the error in case of allocation failure.
500 */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
503 {
504 struct extent_status es;
505 int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
516
517 /* Lookup extent status tree firstly */
518 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519 ext4_es_lru_add(inode);
520 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521 map->m_pblk = ext4_es_pblock(&es) +
522 map->m_lblk - es.es_lblk;
523 map->m_flags |= ext4_es_is_written(&es) ?
524 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525 retval = es.es_len - (map->m_lblk - es.es_lblk);
526 if (retval > map->m_len)
527 retval = map->m_len;
528 map->m_len = retval;
529 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530 retval = 0;
531 } else {
532 BUG_ON(1);
533 }
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537 #endif
538 goto found;
539 }
540
541 /*
542 * Try to see if we can get the block without requesting a new
543 * file system block.
544 */
545 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546 down_read((&EXT4_I(inode)->i_data_sem));
547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549 EXT4_GET_BLOCKS_KEEP_SIZE);
550 } else {
551 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552 EXT4_GET_BLOCKS_KEEP_SIZE);
553 }
554 if (retval > 0) {
555 int ret;
556 unsigned int status;
557
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
564 }
565
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569 ext4_find_delalloc_range(inode, map->m_lblk,
570 map->m_lblk + map->m_len - 1))
571 status |= EXTENT_STATUS_DELAYED;
572 ret = ext4_es_insert_extent(inode, map->m_lblk,
573 map->m_len, map->m_pblk, status);
574 if (ret < 0)
575 retval = ret;
576 }
577 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582 int ret = check_block_validity(inode, map);
583 if (ret != 0)
584 return ret;
585 }
586
587 /* If it is only a block(s) look up */
588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
595 * ext4_ext_get_block() returns the create = 0
596 * with buffer head unmapped.
597 */
598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599 return retval;
600
601 /*
602 * Here we clear m_flags because after allocating an new extent,
603 * it will be set again.
604 */
605 map->m_flags &= ~EXT4_MAP_FLAGS;
606
607 /*
608 * New blocks allocate and/or writing to uninitialized extent
609 * will possibly result in updating i_data, so we take
610 * the write lock of i_data_sem, and call get_blocks()
611 * with create == 1 flag.
612 */
613 down_write((&EXT4_I(inode)->i_data_sem));
614
615 /*
616 * if the caller is from delayed allocation writeout path
617 * we have already reserved fs blocks for allocation
618 * let the underlying get_block() function know to
619 * avoid double accounting
620 */
621 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623 /*
624 * We need to check for EXT4 here because migrate
625 * could have changed the inode type in between
626 */
627 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629 } else {
630 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633 /*
634 * We allocated new blocks which will result in
635 * i_data's format changing. Force the migrate
636 * to fail by clearing migrate flags
637 */
638 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639 }
640
641 /*
642 * Update reserved blocks/metadata blocks after successful
643 * block allocation which had been deferred till now. We don't
644 * support fallocate for non extent files. So we can update
645 * reserve space here.
646 */
647 if ((retval > 0) &&
648 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649 ext4_da_update_reserve_space(inode, retval, 1);
650 }
651 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654 if (retval > 0) {
655 int ret;
656 unsigned int status;
657
658 if (unlikely(retval != map->m_len)) {
659 ext4_warning(inode->i_sb,
660 "ES len assertion failed for inode "
661 "%lu: retval %d != map->m_len %d",
662 inode->i_ino, retval, map->m_len);
663 WARN_ON(1);
664 }
665
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
685 }
686
687 has_zeroout:
688 up_write((&EXT4_I(inode)->i_data_sem));
689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690 int ret = check_block_validity(inode, map);
691 if (ret != 0)
692 return ret;
693 }
694 return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
702 {
703 handle_t *handle = ext4_journal_current_handle();
704 struct ext4_map_blocks map;
705 int ret = 0, started = 0;
706 int dio_credits;
707
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715 /* Direct IO write... */
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
721 if (IS_ERR(handle)) {
722 ret = PTR_ERR(handle);
723 return ret;
724 }
725 started = 1;
726 }
727
728 ret = ext4_map_blocks(handle, inode, &map, flags);
729 if (ret > 0) {
730 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
732 map_bh(bh, inode->i_sb, map.m_pblk);
733 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735 set_buffer_defer_completion(bh);
736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737 ret = 0;
738 }
739 if (started)
740 ext4_journal_stop(handle);
741 return ret;
742 }
743
744 int ext4_get_block(struct inode *inode, sector_t iblock,
745 struct buffer_head *bh, int create)
746 {
747 return _ext4_get_block(inode, iblock, bh,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750
751 /*
752 * `handle' can be NULL if create is zero
753 */
754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755 ext4_lblk_t block, int create, int *errp)
756 {
757 struct ext4_map_blocks map;
758 struct buffer_head *bh;
759 int fatal = 0, err;
760
761 J_ASSERT(handle != NULL || create == 0);
762
763 map.m_lblk = block;
764 map.m_len = 1;
765 err = ext4_map_blocks(handle, inode, &map,
766 create ? EXT4_GET_BLOCKS_CREATE : 0);
767
768 /* ensure we send some value back into *errp */
769 *errp = 0;
770
771 if (create && err == 0)
772 err = -ENOSPC; /* should never happen */
773 if (err < 0)
774 *errp = err;
775 if (err <= 0)
776 return NULL;
777
778 bh = sb_getblk(inode->i_sb, map.m_pblk);
779 if (unlikely(!bh)) {
780 *errp = -ENOMEM;
781 return NULL;
782 }
783 if (map.m_flags & EXT4_MAP_NEW) {
784 J_ASSERT(create != 0);
785 J_ASSERT(handle != NULL);
786
787 /*
788 * Now that we do not always journal data, we should
789 * keep in mind whether this should always journal the
790 * new buffer as metadata. For now, regular file
791 * writes use ext4_get_block instead, so it's not a
792 * problem.
793 */
794 lock_buffer(bh);
795 BUFFER_TRACE(bh, "call get_create_access");
796 fatal = ext4_journal_get_create_access(handle, bh);
797 if (!fatal && !buffer_uptodate(bh)) {
798 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799 set_buffer_uptodate(bh);
800 }
801 unlock_buffer(bh);
802 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803 err = ext4_handle_dirty_metadata(handle, inode, bh);
804 if (!fatal)
805 fatal = err;
806 } else {
807 BUFFER_TRACE(bh, "not a new buffer");
808 }
809 if (fatal) {
810 *errp = fatal;
811 brelse(bh);
812 bh = NULL;
813 }
814 return bh;
815 }
816
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818 ext4_lblk_t block, int create, int *err)
819 {
820 struct buffer_head *bh;
821
822 bh = ext4_getblk(handle, inode, block, create, err);
823 if (!bh)
824 return bh;
825 if (buffer_uptodate(bh))
826 return bh;
827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828 wait_on_buffer(bh);
829 if (buffer_uptodate(bh))
830 return bh;
831 put_bh(bh);
832 *err = -EIO;
833 return NULL;
834 }
835
836 int ext4_walk_page_buffers(handle_t *handle,
837 struct buffer_head *head,
838 unsigned from,
839 unsigned to,
840 int *partial,
841 int (*fn)(handle_t *handle,
842 struct buffer_head *bh))
843 {
844 struct buffer_head *bh;
845 unsigned block_start, block_end;
846 unsigned blocksize = head->b_size;
847 int err, ret = 0;
848 struct buffer_head *next;
849
850 for (bh = head, block_start = 0;
851 ret == 0 && (bh != head || !block_start);
852 block_start = block_end, bh = next) {
853 next = bh->b_this_page;
854 block_end = block_start + blocksize;
855 if (block_end <= from || block_start >= to) {
856 if (partial && !buffer_uptodate(bh))
857 *partial = 1;
858 continue;
859 }
860 err = (*fn)(handle, bh);
861 if (!ret)
862 ret = err;
863 }
864 return ret;
865 }
866
867 /*
868 * To preserve ordering, it is essential that the hole instantiation and
869 * the data write be encapsulated in a single transaction. We cannot
870 * close off a transaction and start a new one between the ext4_get_block()
871 * and the commit_write(). So doing the jbd2_journal_start at the start of
872 * prepare_write() is the right place.
873 *
874 * Also, this function can nest inside ext4_writepage(). In that case, we
875 * *know* that ext4_writepage() has generated enough buffer credits to do the
876 * whole page. So we won't block on the journal in that case, which is good,
877 * because the caller may be PF_MEMALLOC.
878 *
879 * By accident, ext4 can be reentered when a transaction is open via
880 * quota file writes. If we were to commit the transaction while thus
881 * reentered, there can be a deadlock - we would be holding a quota
882 * lock, and the commit would never complete if another thread had a
883 * transaction open and was blocking on the quota lock - a ranking
884 * violation.
885 *
886 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887 * will _not_ run commit under these circumstances because handle->h_ref
888 * is elevated. We'll still have enough credits for the tiny quotafile
889 * write.
890 */
891 int do_journal_get_write_access(handle_t *handle,
892 struct buffer_head *bh)
893 {
894 int dirty = buffer_dirty(bh);
895 int ret;
896
897 if (!buffer_mapped(bh) || buffer_freed(bh))
898 return 0;
899 /*
900 * __block_write_begin() could have dirtied some buffers. Clean
901 * the dirty bit as jbd2_journal_get_write_access() could complain
902 * otherwise about fs integrity issues. Setting of the dirty bit
903 * by __block_write_begin() isn't a real problem here as we clear
904 * the bit before releasing a page lock and thus writeback cannot
905 * ever write the buffer.
906 */
907 if (dirty)
908 clear_buffer_dirty(bh);
909 ret = ext4_journal_get_write_access(handle, bh);
910 if (!ret && dirty)
911 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 return ret;
913 }
914
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 struct buffer_head *bh_result, int create);
917 static int ext4_write_begin(struct file *file, struct address_space *mapping,
918 loff_t pos, unsigned len, unsigned flags,
919 struct page **pagep, void **fsdata)
920 {
921 struct inode *inode = mapping->host;
922 int ret, needed_blocks;
923 handle_t *handle;
924 int retries = 0;
925 struct page *page;
926 pgoff_t index;
927 unsigned from, to;
928
929 trace_ext4_write_begin(inode, pos, len, flags);
930 /*
931 * Reserve one block more for addition to orphan list in case
932 * we allocate blocks but write fails for some reason
933 */
934 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
935 index = pos >> PAGE_CACHE_SHIFT;
936 from = pos & (PAGE_CACHE_SIZE - 1);
937 to = from + len;
938
939 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941 flags, pagep);
942 if (ret < 0)
943 return ret;
944 if (ret == 1)
945 return 0;
946 }
947
948 /*
949 * grab_cache_page_write_begin() can take a long time if the
950 * system is thrashing due to memory pressure, or if the page
951 * is being written back. So grab it first before we start
952 * the transaction handle. This also allows us to allocate
953 * the page (if needed) without using GFP_NOFS.
954 */
955 retry_grab:
956 page = grab_cache_page_write_begin(mapping, index, flags);
957 if (!page)
958 return -ENOMEM;
959 unlock_page(page);
960
961 retry_journal:
962 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
963 if (IS_ERR(handle)) {
964 page_cache_release(page);
965 return PTR_ERR(handle);
966 }
967
968 lock_page(page);
969 if (page->mapping != mapping) {
970 /* The page got truncated from under us */
971 unlock_page(page);
972 page_cache_release(page);
973 ext4_journal_stop(handle);
974 goto retry_grab;
975 }
976 /* In case writeback began while the page was unlocked */
977 wait_for_stable_page(page);
978
979 if (ext4_should_dioread_nolock(inode))
980 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
981 else
982 ret = __block_write_begin(page, pos, len, ext4_get_block);
983
984 if (!ret && ext4_should_journal_data(inode)) {
985 ret = ext4_walk_page_buffers(handle, page_buffers(page),
986 from, to, NULL,
987 do_journal_get_write_access);
988 }
989
990 if (ret) {
991 unlock_page(page);
992 /*
993 * __block_write_begin may have instantiated a few blocks
994 * outside i_size. Trim these off again. Don't need
995 * i_size_read because we hold i_mutex.
996 *
997 * Add inode to orphan list in case we crash before
998 * truncate finishes
999 */
1000 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1001 ext4_orphan_add(handle, inode);
1002
1003 ext4_journal_stop(handle);
1004 if (pos + len > inode->i_size) {
1005 ext4_truncate_failed_write(inode);
1006 /*
1007 * If truncate failed early the inode might
1008 * still be on the orphan list; we need to
1009 * make sure the inode is removed from the
1010 * orphan list in that case.
1011 */
1012 if (inode->i_nlink)
1013 ext4_orphan_del(NULL, inode);
1014 }
1015
1016 if (ret == -ENOSPC &&
1017 ext4_should_retry_alloc(inode->i_sb, &retries))
1018 goto retry_journal;
1019 page_cache_release(page);
1020 return ret;
1021 }
1022 *pagep = page;
1023 return ret;
1024 }
1025
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 {
1029 int ret;
1030 if (!buffer_mapped(bh) || buffer_freed(bh))
1031 return 0;
1032 set_buffer_uptodate(bh);
1033 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034 clear_buffer_meta(bh);
1035 clear_buffer_prio(bh);
1036 return ret;
1037 }
1038
1039 /*
1040 * We need to pick up the new inode size which generic_commit_write gave us
1041 * `file' can be NULL - eg, when called from page_symlink().
1042 *
1043 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1044 * buffers are managed internally.
1045 */
1046 static int ext4_write_end(struct file *file,
1047 struct address_space *mapping,
1048 loff_t pos, unsigned len, unsigned copied,
1049 struct page *page, void *fsdata)
1050 {
1051 handle_t *handle = ext4_journal_current_handle();
1052 struct inode *inode = mapping->host;
1053 int ret = 0, ret2;
1054 int i_size_changed = 0;
1055
1056 trace_ext4_write_end(inode, pos, len, copied);
1057 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058 ret = ext4_jbd2_file_inode(handle, inode);
1059 if (ret) {
1060 unlock_page(page);
1061 page_cache_release(page);
1062 goto errout;
1063 }
1064 }
1065
1066 if (ext4_has_inline_data(inode)) {
1067 ret = ext4_write_inline_data_end(inode, pos, len,
1068 copied, page);
1069 if (ret < 0)
1070 goto errout;
1071 copied = ret;
1072 } else
1073 copied = block_write_end(file, mapping, pos,
1074 len, copied, page, fsdata);
1075
1076 /*
1077 * No need to use i_size_read() here, the i_size
1078 * cannot change under us because we hole i_mutex.
1079 *
1080 * But it's important to update i_size while still holding page lock:
1081 * page writeout could otherwise come in and zero beyond i_size.
1082 */
1083 if (pos + copied > inode->i_size) {
1084 i_size_write(inode, pos + copied);
1085 i_size_changed = 1;
1086 }
1087
1088 if (pos + copied > EXT4_I(inode)->i_disksize) {
1089 /* We need to mark inode dirty even if
1090 * new_i_size is less that inode->i_size
1091 * but greater than i_disksize. (hint delalloc)
1092 */
1093 ext4_update_i_disksize(inode, (pos + copied));
1094 i_size_changed = 1;
1095 }
1096 unlock_page(page);
1097 page_cache_release(page);
1098
1099 /*
1100 * Don't mark the inode dirty under page lock. First, it unnecessarily
1101 * makes the holding time of page lock longer. Second, it forces lock
1102 * ordering of page lock and transaction start for journaling
1103 * filesystems.
1104 */
1105 if (i_size_changed)
1106 ext4_mark_inode_dirty(handle, inode);
1107
1108 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109 /* if we have allocated more blocks and copied
1110 * less. We will have blocks allocated outside
1111 * inode->i_size. So truncate them
1112 */
1113 ext4_orphan_add(handle, inode);
1114 errout:
1115 ret2 = ext4_journal_stop(handle);
1116 if (!ret)
1117 ret = ret2;
1118
1119 if (pos + len > inode->i_size) {
1120 ext4_truncate_failed_write(inode);
1121 /*
1122 * If truncate failed early the inode might still be
1123 * on the orphan list; we need to make sure the inode
1124 * is removed from the orphan list in that case.
1125 */
1126 if (inode->i_nlink)
1127 ext4_orphan_del(NULL, inode);
1128 }
1129
1130 return ret ? ret : copied;
1131 }
1132
1133 static int ext4_journalled_write_end(struct file *file,
1134 struct address_space *mapping,
1135 loff_t pos, unsigned len, unsigned copied,
1136 struct page *page, void *fsdata)
1137 {
1138 handle_t *handle = ext4_journal_current_handle();
1139 struct inode *inode = mapping->host;
1140 int ret = 0, ret2;
1141 int partial = 0;
1142 unsigned from, to;
1143 loff_t new_i_size;
1144
1145 trace_ext4_journalled_write_end(inode, pos, len, copied);
1146 from = pos & (PAGE_CACHE_SIZE - 1);
1147 to = from + len;
1148
1149 BUG_ON(!ext4_handle_valid(handle));
1150
1151 if (ext4_has_inline_data(inode))
1152 copied = ext4_write_inline_data_end(inode, pos, len,
1153 copied, page);
1154 else {
1155 if (copied < len) {
1156 if (!PageUptodate(page))
1157 copied = 0;
1158 page_zero_new_buffers(page, from+copied, to);
1159 }
1160
1161 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162 to, &partial, write_end_fn);
1163 if (!partial)
1164 SetPageUptodate(page);
1165 }
1166 new_i_size = pos + copied;
1167 if (new_i_size > inode->i_size)
1168 i_size_write(inode, pos+copied);
1169 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171 if (new_i_size > EXT4_I(inode)->i_disksize) {
1172 ext4_update_i_disksize(inode, new_i_size);
1173 ret2 = ext4_mark_inode_dirty(handle, inode);
1174 if (!ret)
1175 ret = ret2;
1176 }
1177
1178 unlock_page(page);
1179 page_cache_release(page);
1180 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181 /* if we have allocated more blocks and copied
1182 * less. We will have blocks allocated outside
1183 * inode->i_size. So truncate them
1184 */
1185 ext4_orphan_add(handle, inode);
1186
1187 ret2 = ext4_journal_stop(handle);
1188 if (!ret)
1189 ret = ret2;
1190 if (pos + len > inode->i_size) {
1191 ext4_truncate_failed_write(inode);
1192 /*
1193 * If truncate failed early the inode might still be
1194 * on the orphan list; we need to make sure the inode
1195 * is removed from the orphan list in that case.
1196 */
1197 if (inode->i_nlink)
1198 ext4_orphan_del(NULL, inode);
1199 }
1200
1201 return ret ? ret : copied;
1202 }
1203
1204 /*
1205 * Reserve a metadata for a single block located at lblock
1206 */
1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 {
1209 int retries = 0;
1210 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211 struct ext4_inode_info *ei = EXT4_I(inode);
1212 unsigned int md_needed;
1213 ext4_lblk_t save_last_lblock;
1214 int save_len;
1215
1216 /*
1217 * recalculate the amount of metadata blocks to reserve
1218 * in order to allocate nrblocks
1219 * worse case is one extent per block
1220 */
1221 repeat:
1222 spin_lock(&ei->i_block_reservation_lock);
1223 /*
1224 * ext4_calc_metadata_amount() has side effects, which we have
1225 * to be prepared undo if we fail to claim space.
1226 */
1227 save_len = ei->i_da_metadata_calc_len;
1228 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1229 md_needed = EXT4_NUM_B2C(sbi,
1230 ext4_calc_metadata_amount(inode, lblock));
1231 trace_ext4_da_reserve_space(inode, md_needed);
1232
1233 /*
1234 * We do still charge estimated metadata to the sb though;
1235 * we cannot afford to run out of free blocks.
1236 */
1237 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1238 ei->i_da_metadata_calc_len = save_len;
1239 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1240 spin_unlock(&ei->i_block_reservation_lock);
1241 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1242 cond_resched();
1243 goto repeat;
1244 }
1245 return -ENOSPC;
1246 }
1247 ei->i_reserved_meta_blocks += md_needed;
1248 spin_unlock(&ei->i_block_reservation_lock);
1249
1250 return 0; /* success */
1251 }
1252
1253 /*
1254 * Reserve a single cluster located at lblock
1255 */
1256 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258 int retries = 0;
1259 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260 struct ext4_inode_info *ei = EXT4_I(inode);
1261 unsigned int md_needed;
1262 int ret;
1263 ext4_lblk_t save_last_lblock;
1264 int save_len;
1265
1266 /*
1267 * We will charge metadata quota at writeout time; this saves
1268 * us from metadata over-estimation, though we may go over by
1269 * a small amount in the end. Here we just reserve for data.
1270 */
1271 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1272 if (ret)
1273 return ret;
1274
1275 /*
1276 * recalculate the amount of metadata blocks to reserve
1277 * in order to allocate nrblocks
1278 * worse case is one extent per block
1279 */
1280 repeat:
1281 spin_lock(&ei->i_block_reservation_lock);
1282 /*
1283 * ext4_calc_metadata_amount() has side effects, which we have
1284 * to be prepared undo if we fail to claim space.
1285 */
1286 save_len = ei->i_da_metadata_calc_len;
1287 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1288 md_needed = EXT4_NUM_B2C(sbi,
1289 ext4_calc_metadata_amount(inode, lblock));
1290 trace_ext4_da_reserve_space(inode, md_needed);
1291
1292 /*
1293 * We do still charge estimated metadata to the sb though;
1294 * we cannot afford to run out of free blocks.
1295 */
1296 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1297 ei->i_da_metadata_calc_len = save_len;
1298 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299 spin_unlock(&ei->i_block_reservation_lock);
1300 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1301 cond_resched();
1302 goto repeat;
1303 }
1304 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1305 return -ENOSPC;
1306 }
1307 ei->i_reserved_data_blocks++;
1308 ei->i_reserved_meta_blocks += md_needed;
1309 spin_unlock(&ei->i_block_reservation_lock);
1310
1311 return 0; /* success */
1312 }
1313
1314 static void ext4_da_release_space(struct inode *inode, int to_free)
1315 {
1316 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1317 struct ext4_inode_info *ei = EXT4_I(inode);
1318
1319 if (!to_free)
1320 return; /* Nothing to release, exit */
1321
1322 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1323
1324 trace_ext4_da_release_space(inode, to_free);
1325 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1326 /*
1327 * if there aren't enough reserved blocks, then the
1328 * counter is messed up somewhere. Since this
1329 * function is called from invalidate page, it's
1330 * harmless to return without any action.
1331 */
1332 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1333 "ino %lu, to_free %d with only %d reserved "
1334 "data blocks", inode->i_ino, to_free,
1335 ei->i_reserved_data_blocks);
1336 WARN_ON(1);
1337 to_free = ei->i_reserved_data_blocks;
1338 }
1339 ei->i_reserved_data_blocks -= to_free;
1340
1341 if (ei->i_reserved_data_blocks == 0) {
1342 /*
1343 * We can release all of the reserved metadata blocks
1344 * only when we have written all of the delayed
1345 * allocation blocks.
1346 * Note that in case of bigalloc, i_reserved_meta_blocks,
1347 * i_reserved_data_blocks, etc. refer to number of clusters.
1348 */
1349 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1350 ei->i_reserved_meta_blocks);
1351 ei->i_reserved_meta_blocks = 0;
1352 ei->i_da_metadata_calc_len = 0;
1353 }
1354
1355 /* update fs dirty data blocks counter */
1356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1357
1358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1359
1360 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1361 }
1362
1363 static void ext4_da_page_release_reservation(struct page *page,
1364 unsigned int offset,
1365 unsigned int length)
1366 {
1367 int to_release = 0;
1368 struct buffer_head *head, *bh;
1369 unsigned int curr_off = 0;
1370 struct inode *inode = page->mapping->host;
1371 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372 unsigned int stop = offset + length;
1373 int num_clusters;
1374 ext4_fsblk_t lblk;
1375
1376 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377
1378 head = page_buffers(page);
1379 bh = head;
1380 do {
1381 unsigned int next_off = curr_off + bh->b_size;
1382
1383 if (next_off > stop)
1384 break;
1385
1386 if ((offset <= curr_off) && (buffer_delay(bh))) {
1387 to_release++;
1388 clear_buffer_delay(bh);
1389 }
1390 curr_off = next_off;
1391 } while ((bh = bh->b_this_page) != head);
1392
1393 if (to_release) {
1394 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395 ext4_es_remove_extent(inode, lblk, to_release);
1396 }
1397
1398 /* If we have released all the blocks belonging to a cluster, then we
1399 * need to release the reserved space for that cluster. */
1400 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1401 while (num_clusters > 0) {
1402 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1403 ((num_clusters - 1) << sbi->s_cluster_bits);
1404 if (sbi->s_cluster_ratio == 1 ||
1405 !ext4_find_delalloc_cluster(inode, lblk))
1406 ext4_da_release_space(inode, 1);
1407
1408 num_clusters--;
1409 }
1410 }
1411
1412 /*
1413 * Delayed allocation stuff
1414 */
1415
1416 struct mpage_da_data {
1417 struct inode *inode;
1418 struct writeback_control *wbc;
1419
1420 pgoff_t first_page; /* The first page to write */
1421 pgoff_t next_page; /* Current page to examine */
1422 pgoff_t last_page; /* Last page to examine */
1423 /*
1424 * Extent to map - this can be after first_page because that can be
1425 * fully mapped. We somewhat abuse m_flags to store whether the extent
1426 * is delalloc or unwritten.
1427 */
1428 struct ext4_map_blocks map;
1429 struct ext4_io_submit io_submit; /* IO submission data */
1430 };
1431
1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1433 bool invalidate)
1434 {
1435 int nr_pages, i;
1436 pgoff_t index, end;
1437 struct pagevec pvec;
1438 struct inode *inode = mpd->inode;
1439 struct address_space *mapping = inode->i_mapping;
1440
1441 /* This is necessary when next_page == 0. */
1442 if (mpd->first_page >= mpd->next_page)
1443 return;
1444
1445 index = mpd->first_page;
1446 end = mpd->next_page - 1;
1447 if (invalidate) {
1448 ext4_lblk_t start, last;
1449 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451 ext4_es_remove_extent(inode, start, last - start + 1);
1452 }
1453
1454 pagevec_init(&pvec, 0);
1455 while (index <= end) {
1456 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1457 if (nr_pages == 0)
1458 break;
1459 for (i = 0; i < nr_pages; i++) {
1460 struct page *page = pvec.pages[i];
1461 if (page->index > end)
1462 break;
1463 BUG_ON(!PageLocked(page));
1464 BUG_ON(PageWriteback(page));
1465 if (invalidate) {
1466 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1467 ClearPageUptodate(page);
1468 }
1469 unlock_page(page);
1470 }
1471 index = pvec.pages[nr_pages - 1]->index + 1;
1472 pagevec_release(&pvec);
1473 }
1474 }
1475
1476 static void ext4_print_free_blocks(struct inode *inode)
1477 {
1478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1479 struct super_block *sb = inode->i_sb;
1480 struct ext4_inode_info *ei = EXT4_I(inode);
1481
1482 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1483 EXT4_C2B(EXT4_SB(inode->i_sb),
1484 ext4_count_free_clusters(sb)));
1485 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1486 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1487 (long long) EXT4_C2B(EXT4_SB(sb),
1488 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1489 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1490 (long long) EXT4_C2B(EXT4_SB(sb),
1491 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1492 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1493 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1494 ei->i_reserved_data_blocks);
1495 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1496 ei->i_reserved_meta_blocks);
1497 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1498 ei->i_allocated_meta_blocks);
1499 return;
1500 }
1501
1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1503 {
1504 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1505 }
1506
1507 /*
1508 * This function is grabs code from the very beginning of
1509 * ext4_map_blocks, but assumes that the caller is from delayed write
1510 * time. This function looks up the requested blocks and sets the
1511 * buffer delay bit under the protection of i_data_sem.
1512 */
1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1514 struct ext4_map_blocks *map,
1515 struct buffer_head *bh)
1516 {
1517 struct extent_status es;
1518 int retval;
1519 sector_t invalid_block = ~((sector_t) 0xffff);
1520 #ifdef ES_AGGRESSIVE_TEST
1521 struct ext4_map_blocks orig_map;
1522
1523 memcpy(&orig_map, map, sizeof(*map));
1524 #endif
1525
1526 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1527 invalid_block = ~0;
1528
1529 map->m_flags = 0;
1530 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531 "logical block %lu\n", inode->i_ino, map->m_len,
1532 (unsigned long) map->m_lblk);
1533
1534 /* Lookup extent status tree firstly */
1535 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1536 ext4_es_lru_add(inode);
1537 if (ext4_es_is_hole(&es)) {
1538 retval = 0;
1539 down_read((&EXT4_I(inode)->i_data_sem));
1540 goto add_delayed;
1541 }
1542
1543 /*
1544 * Delayed extent could be allocated by fallocate.
1545 * So we need to check it.
1546 */
1547 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548 map_bh(bh, inode->i_sb, invalid_block);
1549 set_buffer_new(bh);
1550 set_buffer_delay(bh);
1551 return 0;
1552 }
1553
1554 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555 retval = es.es_len - (iblock - es.es_lblk);
1556 if (retval > map->m_len)
1557 retval = map->m_len;
1558 map->m_len = retval;
1559 if (ext4_es_is_written(&es))
1560 map->m_flags |= EXT4_MAP_MAPPED;
1561 else if (ext4_es_is_unwritten(&es))
1562 map->m_flags |= EXT4_MAP_UNWRITTEN;
1563 else
1564 BUG_ON(1);
1565
1566 #ifdef ES_AGGRESSIVE_TEST
1567 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 #endif
1569 return retval;
1570 }
1571
1572 /*
1573 * Try to see if we can get the block without requesting a new
1574 * file system block.
1575 */
1576 down_read((&EXT4_I(inode)->i_data_sem));
1577 if (ext4_has_inline_data(inode)) {
1578 /*
1579 * We will soon create blocks for this page, and let
1580 * us pretend as if the blocks aren't allocated yet.
1581 * In case of clusters, we have to handle the work
1582 * of mapping from cluster so that the reserved space
1583 * is calculated properly.
1584 */
1585 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586 ext4_find_delalloc_cluster(inode, map->m_lblk))
1587 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588 retval = 0;
1589 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590 retval = ext4_ext_map_blocks(NULL, inode, map,
1591 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592 else
1593 retval = ext4_ind_map_blocks(NULL, inode, map,
1594 EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595
1596 add_delayed:
1597 if (retval == 0) {
1598 int ret;
1599 /*
1600 * XXX: __block_prepare_write() unmaps passed block,
1601 * is it OK?
1602 */
1603 /*
1604 * If the block was allocated from previously allocated cluster,
1605 * then we don't need to reserve it again. However we still need
1606 * to reserve metadata for every block we're going to write.
1607 */
1608 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609 ret = ext4_da_reserve_space(inode, iblock);
1610 if (ret) {
1611 /* not enough space to reserve */
1612 retval = ret;
1613 goto out_unlock;
1614 }
1615 } else {
1616 ret = ext4_da_reserve_metadata(inode, iblock);
1617 if (ret) {
1618 /* not enough space to reserve */
1619 retval = ret;
1620 goto out_unlock;
1621 }
1622 }
1623
1624 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625 ~0, EXTENT_STATUS_DELAYED);
1626 if (ret) {
1627 retval = ret;
1628 goto out_unlock;
1629 }
1630
1631 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632 * and it should not appear on the bh->b_state.
1633 */
1634 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635
1636 map_bh(bh, inode->i_sb, invalid_block);
1637 set_buffer_new(bh);
1638 set_buffer_delay(bh);
1639 } else if (retval > 0) {
1640 int ret;
1641 unsigned int status;
1642
1643 if (unlikely(retval != map->m_len)) {
1644 ext4_warning(inode->i_sb,
1645 "ES len assertion failed for inode "
1646 "%lu: retval %d != map->m_len %d",
1647 inode->i_ino, retval, map->m_len);
1648 WARN_ON(1);
1649 }
1650
1651 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1652 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1654 map->m_pblk, status);
1655 if (ret != 0)
1656 retval = ret;
1657 }
1658
1659 out_unlock:
1660 up_read((&EXT4_I(inode)->i_data_sem));
1661
1662 return retval;
1663 }
1664
1665 /*
1666 * This is a special get_blocks_t callback which is used by
1667 * ext4_da_write_begin(). It will either return mapped block or
1668 * reserve space for a single block.
1669 *
1670 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671 * We also have b_blocknr = -1 and b_bdev initialized properly
1672 *
1673 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675 * initialized properly.
1676 */
1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1678 struct buffer_head *bh, int create)
1679 {
1680 struct ext4_map_blocks map;
1681 int ret = 0;
1682
1683 BUG_ON(create == 0);
1684 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685
1686 map.m_lblk = iblock;
1687 map.m_len = 1;
1688
1689 /*
1690 * first, we need to know whether the block is allocated already
1691 * preallocated blocks are unmapped but should treated
1692 * the same as allocated blocks.
1693 */
1694 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1695 if (ret <= 0)
1696 return ret;
1697
1698 map_bh(bh, inode->i_sb, map.m_pblk);
1699 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700
1701 if (buffer_unwritten(bh)) {
1702 /* A delayed write to unwritten bh should be marked
1703 * new and mapped. Mapped ensures that we don't do
1704 * get_block multiple times when we write to the same
1705 * offset and new ensures that we do proper zero out
1706 * for partial write.
1707 */
1708 set_buffer_new(bh);
1709 set_buffer_mapped(bh);
1710 }
1711 return 0;
1712 }
1713
1714 static int bget_one(handle_t *handle, struct buffer_head *bh)
1715 {
1716 get_bh(bh);
1717 return 0;
1718 }
1719
1720 static int bput_one(handle_t *handle, struct buffer_head *bh)
1721 {
1722 put_bh(bh);
1723 return 0;
1724 }
1725
1726 static int __ext4_journalled_writepage(struct page *page,
1727 unsigned int len)
1728 {
1729 struct address_space *mapping = page->mapping;
1730 struct inode *inode = mapping->host;
1731 struct buffer_head *page_bufs = NULL;
1732 handle_t *handle = NULL;
1733 int ret = 0, err = 0;
1734 int inline_data = ext4_has_inline_data(inode);
1735 struct buffer_head *inode_bh = NULL;
1736
1737 ClearPageChecked(page);
1738
1739 if (inline_data) {
1740 BUG_ON(page->index != 0);
1741 BUG_ON(len > ext4_get_max_inline_size(inode));
1742 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1743 if (inode_bh == NULL)
1744 goto out;
1745 } else {
1746 page_bufs = page_buffers(page);
1747 if (!page_bufs) {
1748 BUG();
1749 goto out;
1750 }
1751 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1752 NULL, bget_one);
1753 }
1754 /* As soon as we unlock the page, it can go away, but we have
1755 * references to buffers so we are safe */
1756 unlock_page(page);
1757
1758 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1759 ext4_writepage_trans_blocks(inode));
1760 if (IS_ERR(handle)) {
1761 ret = PTR_ERR(handle);
1762 goto out;
1763 }
1764
1765 BUG_ON(!ext4_handle_valid(handle));
1766
1767 if (inline_data) {
1768 ret = ext4_journal_get_write_access(handle, inode_bh);
1769
1770 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1771
1772 } else {
1773 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1774 do_journal_get_write_access);
1775
1776 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777 write_end_fn);
1778 }
1779 if (ret == 0)
1780 ret = err;
1781 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1782 err = ext4_journal_stop(handle);
1783 if (!ret)
1784 ret = err;
1785
1786 if (!ext4_has_inline_data(inode))
1787 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1788 NULL, bput_one);
1789 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1790 out:
1791 brelse(inode_bh);
1792 return ret;
1793 }
1794
1795 /*
1796 * Note that we don't need to start a transaction unless we're journaling data
1797 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798 * need to file the inode to the transaction's list in ordered mode because if
1799 * we are writing back data added by write(), the inode is already there and if
1800 * we are writing back data modified via mmap(), no one guarantees in which
1801 * transaction the data will hit the disk. In case we are journaling data, we
1802 * cannot start transaction directly because transaction start ranks above page
1803 * lock so we have to do some magic.
1804 *
1805 * This function can get called via...
1806 * - ext4_writepages after taking page lock (have journal handle)
1807 * - journal_submit_inode_data_buffers (no journal handle)
1808 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1809 * - grab_page_cache when doing write_begin (have journal handle)
1810 *
1811 * We don't do any block allocation in this function. If we have page with
1812 * multiple blocks we need to write those buffer_heads that are mapped. This
1813 * is important for mmaped based write. So if we do with blocksize 1K
1814 * truncate(f, 1024);
1815 * a = mmap(f, 0, 4096);
1816 * a[0] = 'a';
1817 * truncate(f, 4096);
1818 * we have in the page first buffer_head mapped via page_mkwrite call back
1819 * but other buffer_heads would be unmapped but dirty (dirty done via the
1820 * do_wp_page). So writepage should write the first block. If we modify
1821 * the mmap area beyond 1024 we will again get a page_fault and the
1822 * page_mkwrite callback will do the block allocation and mark the
1823 * buffer_heads mapped.
1824 *
1825 * We redirty the page if we have any buffer_heads that is either delay or
1826 * unwritten in the page.
1827 *
1828 * We can get recursively called as show below.
1829 *
1830 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1831 * ext4_writepage()
1832 *
1833 * But since we don't do any block allocation we should not deadlock.
1834 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1835 */
1836 static int ext4_writepage(struct page *page,
1837 struct writeback_control *wbc)
1838 {
1839 int ret = 0;
1840 loff_t size;
1841 unsigned int len;
1842 struct buffer_head *page_bufs = NULL;
1843 struct inode *inode = page->mapping->host;
1844 struct ext4_io_submit io_submit;
1845
1846 trace_ext4_writepage(page);
1847 size = i_size_read(inode);
1848 if (page->index == size >> PAGE_CACHE_SHIFT)
1849 len = size & ~PAGE_CACHE_MASK;
1850 else
1851 len = PAGE_CACHE_SIZE;
1852
1853 page_bufs = page_buffers(page);
1854 /*
1855 * We cannot do block allocation or other extent handling in this
1856 * function. If there are buffers needing that, we have to redirty
1857 * the page. But we may reach here when we do a journal commit via
1858 * journal_submit_inode_data_buffers() and in that case we must write
1859 * allocated buffers to achieve data=ordered mode guarantees.
1860 */
1861 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862 ext4_bh_delay_or_unwritten)) {
1863 redirty_page_for_writepage(wbc, page);
1864 if (current->flags & PF_MEMALLOC) {
1865 /*
1866 * For memory cleaning there's no point in writing only
1867 * some buffers. So just bail out. Warn if we came here
1868 * from direct reclaim.
1869 */
1870 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1871 == PF_MEMALLOC);
1872 unlock_page(page);
1873 return 0;
1874 }
1875 }
1876
1877 if (PageChecked(page) && ext4_should_journal_data(inode))
1878 /*
1879 * It's mmapped pagecache. Add buffers and journal it. There
1880 * doesn't seem much point in redirtying the page here.
1881 */
1882 return __ext4_journalled_writepage(page, len);
1883
1884 ext4_io_submit_init(&io_submit, wbc);
1885 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1886 if (!io_submit.io_end) {
1887 redirty_page_for_writepage(wbc, page);
1888 unlock_page(page);
1889 return -ENOMEM;
1890 }
1891 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1892 ext4_io_submit(&io_submit);
1893 /* Drop io_end reference we got from init */
1894 ext4_put_io_end_defer(io_submit.io_end);
1895 return ret;
1896 }
1897
1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1899 {
1900 int len;
1901 loff_t size = i_size_read(mpd->inode);
1902 int err;
1903
1904 BUG_ON(page->index != mpd->first_page);
1905 if (page->index == size >> PAGE_CACHE_SHIFT)
1906 len = size & ~PAGE_CACHE_MASK;
1907 else
1908 len = PAGE_CACHE_SIZE;
1909 clear_page_dirty_for_io(page);
1910 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1911 if (!err)
1912 mpd->wbc->nr_to_write--;
1913 mpd->first_page++;
1914
1915 return err;
1916 }
1917
1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1919
1920 /*
1921 * mballoc gives us at most this number of blocks...
1922 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1923 * The rest of mballoc seems to handle chunks up to full group size.
1924 */
1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1926
1927 /*
1928 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1929 *
1930 * @mpd - extent of blocks
1931 * @lblk - logical number of the block in the file
1932 * @bh - buffer head we want to add to the extent
1933 *
1934 * The function is used to collect contig. blocks in the same state. If the
1935 * buffer doesn't require mapping for writeback and we haven't started the
1936 * extent of buffers to map yet, the function returns 'true' immediately - the
1937 * caller can write the buffer right away. Otherwise the function returns true
1938 * if the block has been added to the extent, false if the block couldn't be
1939 * added.
1940 */
1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1942 struct buffer_head *bh)
1943 {
1944 struct ext4_map_blocks *map = &mpd->map;
1945
1946 /* Buffer that doesn't need mapping for writeback? */
1947 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1948 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1949 /* So far no extent to map => we write the buffer right away */
1950 if (map->m_len == 0)
1951 return true;
1952 return false;
1953 }
1954
1955 /* First block in the extent? */
1956 if (map->m_len == 0) {
1957 map->m_lblk = lblk;
1958 map->m_len = 1;
1959 map->m_flags = bh->b_state & BH_FLAGS;
1960 return true;
1961 }
1962
1963 /* Don't go larger than mballoc is willing to allocate */
1964 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1965 return false;
1966
1967 /* Can we merge the block to our big extent? */
1968 if (lblk == map->m_lblk + map->m_len &&
1969 (bh->b_state & BH_FLAGS) == map->m_flags) {
1970 map->m_len++;
1971 return true;
1972 }
1973 return false;
1974 }
1975
1976 /*
1977 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978 *
1979 * @mpd - extent of blocks for mapping
1980 * @head - the first buffer in the page
1981 * @bh - buffer we should start processing from
1982 * @lblk - logical number of the block in the file corresponding to @bh
1983 *
1984 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985 * the page for IO if all buffers in this page were mapped and there's no
1986 * accumulated extent of buffers to map or add buffers in the page to the
1987 * extent of buffers to map. The function returns 1 if the caller can continue
1988 * by processing the next page, 0 if it should stop adding buffers to the
1989 * extent to map because we cannot extend it anymore. It can also return value
1990 * < 0 in case of error during IO submission.
1991 */
1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1993 struct buffer_head *head,
1994 struct buffer_head *bh,
1995 ext4_lblk_t lblk)
1996 {
1997 struct inode *inode = mpd->inode;
1998 int err;
1999 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2000 >> inode->i_blkbits;
2001
2002 do {
2003 BUG_ON(buffer_locked(bh));
2004
2005 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2006 /* Found extent to map? */
2007 if (mpd->map.m_len)
2008 return 0;
2009 /* Everything mapped so far and we hit EOF */
2010 break;
2011 }
2012 } while (lblk++, (bh = bh->b_this_page) != head);
2013 /* So far everything mapped? Submit the page for IO. */
2014 if (mpd->map.m_len == 0) {
2015 err = mpage_submit_page(mpd, head->b_page);
2016 if (err < 0)
2017 return err;
2018 }
2019 return lblk < blocks;
2020 }
2021
2022 /*
2023 * mpage_map_buffers - update buffers corresponding to changed extent and
2024 * submit fully mapped pages for IO
2025 *
2026 * @mpd - description of extent to map, on return next extent to map
2027 *
2028 * Scan buffers corresponding to changed extent (we expect corresponding pages
2029 * to be already locked) and update buffer state according to new extent state.
2030 * We map delalloc buffers to their physical location, clear unwritten bits,
2031 * and mark buffers as uninit when we perform writes to uninitialized extents
2032 * and do extent conversion after IO is finished. If the last page is not fully
2033 * mapped, we update @map to the next extent in the last page that needs
2034 * mapping. Otherwise we submit the page for IO.
2035 */
2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2037 {
2038 struct pagevec pvec;
2039 int nr_pages, i;
2040 struct inode *inode = mpd->inode;
2041 struct buffer_head *head, *bh;
2042 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2043 pgoff_t start, end;
2044 ext4_lblk_t lblk;
2045 sector_t pblock;
2046 int err;
2047
2048 start = mpd->map.m_lblk >> bpp_bits;
2049 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2050 lblk = start << bpp_bits;
2051 pblock = mpd->map.m_pblk;
2052
2053 pagevec_init(&pvec, 0);
2054 while (start <= end) {
2055 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2056 PAGEVEC_SIZE);
2057 if (nr_pages == 0)
2058 break;
2059 for (i = 0; i < nr_pages; i++) {
2060 struct page *page = pvec.pages[i];
2061
2062 if (page->index > end)
2063 break;
2064 /* Up to 'end' pages must be contiguous */
2065 BUG_ON(page->index != start);
2066 bh = head = page_buffers(page);
2067 do {
2068 if (lblk < mpd->map.m_lblk)
2069 continue;
2070 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2071 /*
2072 * Buffer after end of mapped extent.
2073 * Find next buffer in the page to map.
2074 */
2075 mpd->map.m_len = 0;
2076 mpd->map.m_flags = 0;
2077 /*
2078 * FIXME: If dioread_nolock supports
2079 * blocksize < pagesize, we need to make
2080 * sure we add size mapped so far to
2081 * io_end->size as the following call
2082 * can submit the page for IO.
2083 */
2084 err = mpage_process_page_bufs(mpd, head,
2085 bh, lblk);
2086 pagevec_release(&pvec);
2087 if (err > 0)
2088 err = 0;
2089 return err;
2090 }
2091 if (buffer_delay(bh)) {
2092 clear_buffer_delay(bh);
2093 bh->b_blocknr = pblock++;
2094 }
2095 clear_buffer_unwritten(bh);
2096 } while (lblk++, (bh = bh->b_this_page) != head);
2097
2098 /*
2099 * FIXME: This is going to break if dioread_nolock
2100 * supports blocksize < pagesize as we will try to
2101 * convert potentially unmapped parts of inode.
2102 */
2103 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2104 /* Page fully mapped - let IO run! */
2105 err = mpage_submit_page(mpd, page);
2106 if (err < 0) {
2107 pagevec_release(&pvec);
2108 return err;
2109 }
2110 start++;
2111 }
2112 pagevec_release(&pvec);
2113 }
2114 /* Extent fully mapped and matches with page boundary. We are done. */
2115 mpd->map.m_len = 0;
2116 mpd->map.m_flags = 0;
2117 return 0;
2118 }
2119
2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2121 {
2122 struct inode *inode = mpd->inode;
2123 struct ext4_map_blocks *map = &mpd->map;
2124 int get_blocks_flags;
2125 int err;
2126
2127 trace_ext4_da_write_pages_extent(inode, map);
2128 /*
2129 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130 * to convert an uninitialized extent to be initialized (in the case
2131 * where we have written into one or more preallocated blocks). It is
2132 * possible that we're going to need more metadata blocks than
2133 * previously reserved. However we must not fail because we're in
2134 * writeback and there is nothing we can do about it so it might result
2135 * in data loss. So use reserved blocks to allocate metadata if
2136 * possible.
2137 *
2138 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139 * in question are delalloc blocks. This affects functions in many
2140 * different parts of the allocation call path. This flag exists
2141 * primarily because we don't want to change *many* call functions, so
2142 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143 * once the inode's allocation semaphore is taken.
2144 */
2145 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147 if (ext4_should_dioread_nolock(inode))
2148 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2149 if (map->m_flags & (1 << BH_Delay))
2150 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2151
2152 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2153 if (err < 0)
2154 return err;
2155 if (map->m_flags & EXT4_MAP_UNINIT) {
2156 if (!mpd->io_submit.io_end->handle &&
2157 ext4_handle_valid(handle)) {
2158 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2159 handle->h_rsv_handle = NULL;
2160 }
2161 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2162 }
2163
2164 BUG_ON(map->m_len == 0);
2165 if (map->m_flags & EXT4_MAP_NEW) {
2166 struct block_device *bdev = inode->i_sb->s_bdev;
2167 int i;
2168
2169 for (i = 0; i < map->m_len; i++)
2170 unmap_underlying_metadata(bdev, map->m_pblk + i);
2171 }
2172 return 0;
2173 }
2174
2175 /*
2176 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177 * mpd->len and submit pages underlying it for IO
2178 *
2179 * @handle - handle for journal operations
2180 * @mpd - extent to map
2181 *
2182 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2183 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2184 * them to initialized or split the described range from larger unwritten
2185 * extent. Note that we need not map all the described range since allocation
2186 * can return less blocks or the range is covered by more unwritten extents. We
2187 * cannot map more because we are limited by reserved transaction credits. On
2188 * the other hand we always make sure that the last touched page is fully
2189 * mapped so that it can be written out (and thus forward progress is
2190 * guaranteed). After mapping we submit all mapped pages for IO.
2191 */
2192 static int mpage_map_and_submit_extent(handle_t *handle,
2193 struct mpage_da_data *mpd,
2194 bool *give_up_on_write)
2195 {
2196 struct inode *inode = mpd->inode;
2197 struct ext4_map_blocks *map = &mpd->map;
2198 int err;
2199 loff_t disksize;
2200
2201 mpd->io_submit.io_end->offset =
2202 ((loff_t)map->m_lblk) << inode->i_blkbits;
2203 do {
2204 err = mpage_map_one_extent(handle, mpd);
2205 if (err < 0) {
2206 struct super_block *sb = inode->i_sb;
2207
2208 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2209 goto invalidate_dirty_pages;
2210 /*
2211 * Let the uper layers retry transient errors.
2212 * In the case of ENOSPC, if ext4_count_free_blocks()
2213 * is non-zero, a commit should free up blocks.
2214 */
2215 if ((err == -ENOMEM) ||
2216 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2217 return err;
2218 ext4_msg(sb, KERN_CRIT,
2219 "Delayed block allocation failed for "
2220 "inode %lu at logical offset %llu with"
2221 " max blocks %u with error %d",
2222 inode->i_ino,
2223 (unsigned long long)map->m_lblk,
2224 (unsigned)map->m_len, -err);
2225 ext4_msg(sb, KERN_CRIT,
2226 "This should not happen!! Data will "
2227 "be lost\n");
2228 if (err == -ENOSPC)
2229 ext4_print_free_blocks(inode);
2230 invalidate_dirty_pages:
2231 *give_up_on_write = true;
2232 return err;
2233 }
2234 /*
2235 * Update buffer state, submit mapped pages, and get us new
2236 * extent to map
2237 */
2238 err = mpage_map_and_submit_buffers(mpd);
2239 if (err < 0)
2240 return err;
2241 } while (map->m_len);
2242
2243 /* Update on-disk size after IO is submitted */
2244 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2245 if (disksize > EXT4_I(inode)->i_disksize) {
2246 int err2;
2247
2248 ext4_wb_update_i_disksize(inode, disksize);
2249 err2 = ext4_mark_inode_dirty(handle, inode);
2250 if (err2)
2251 ext4_error(inode->i_sb,
2252 "Failed to mark inode %lu dirty",
2253 inode->i_ino);
2254 if (!err)
2255 err = err2;
2256 }
2257 return err;
2258 }
2259
2260 /*
2261 * Calculate the total number of credits to reserve for one writepages
2262 * iteration. This is called from ext4_writepages(). We map an extent of
2263 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2264 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2265 * bpp - 1 blocks in bpp different extents.
2266 */
2267 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2268 {
2269 int bpp = ext4_journal_blocks_per_page(inode);
2270
2271 return ext4_meta_trans_blocks(inode,
2272 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2273 }
2274
2275 /*
2276 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2277 * and underlying extent to map
2278 *
2279 * @mpd - where to look for pages
2280 *
2281 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2282 * IO immediately. When we find a page which isn't mapped we start accumulating
2283 * extent of buffers underlying these pages that needs mapping (formed by
2284 * either delayed or unwritten buffers). We also lock the pages containing
2285 * these buffers. The extent found is returned in @mpd structure (starting at
2286 * mpd->lblk with length mpd->len blocks).
2287 *
2288 * Note that this function can attach bios to one io_end structure which are
2289 * neither logically nor physically contiguous. Although it may seem as an
2290 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2291 * case as we need to track IO to all buffers underlying a page in one io_end.
2292 */
2293 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2294 {
2295 struct address_space *mapping = mpd->inode->i_mapping;
2296 struct pagevec pvec;
2297 unsigned int nr_pages;
2298 pgoff_t index = mpd->first_page;
2299 pgoff_t end = mpd->last_page;
2300 int tag;
2301 int i, err = 0;
2302 int blkbits = mpd->inode->i_blkbits;
2303 ext4_lblk_t lblk;
2304 struct buffer_head *head;
2305
2306 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2307 tag = PAGECACHE_TAG_TOWRITE;
2308 else
2309 tag = PAGECACHE_TAG_DIRTY;
2310
2311 pagevec_init(&pvec, 0);
2312 mpd->map.m_len = 0;
2313 mpd->next_page = index;
2314 while (index <= end) {
2315 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2316 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2317 if (nr_pages == 0)
2318 goto out;
2319
2320 for (i = 0; i < nr_pages; i++) {
2321 struct page *page = pvec.pages[i];
2322
2323 /*
2324 * At this point, the page may be truncated or
2325 * invalidated (changing page->mapping to NULL), or
2326 * even swizzled back from swapper_space to tmpfs file
2327 * mapping. However, page->index will not change
2328 * because we have a reference on the page.
2329 */
2330 if (page->index > end)
2331 goto out;
2332
2333 /* If we can't merge this page, we are done. */
2334 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2335 goto out;
2336
2337 lock_page(page);
2338 /*
2339 * If the page is no longer dirty, or its mapping no
2340 * longer corresponds to inode we are writing (which
2341 * means it has been truncated or invalidated), or the
2342 * page is already under writeback and we are not doing
2343 * a data integrity writeback, skip the page
2344 */
2345 if (!PageDirty(page) ||
2346 (PageWriteback(page) &&
2347 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2348 unlikely(page->mapping != mapping)) {
2349 unlock_page(page);
2350 continue;
2351 }
2352
2353 wait_on_page_writeback(page);
2354 BUG_ON(PageWriteback(page));
2355
2356 if (mpd->map.m_len == 0)
2357 mpd->first_page = page->index;
2358 mpd->next_page = page->index + 1;
2359 /* Add all dirty buffers to mpd */
2360 lblk = ((ext4_lblk_t)page->index) <<
2361 (PAGE_CACHE_SHIFT - blkbits);
2362 head = page_buffers(page);
2363 err = mpage_process_page_bufs(mpd, head, head, lblk);
2364 if (err <= 0)
2365 goto out;
2366 err = 0;
2367
2368 /*
2369 * Accumulated enough dirty pages? This doesn't apply
2370 * to WB_SYNC_ALL mode. For integrity sync we have to
2371 * keep going because someone may be concurrently
2372 * dirtying pages, and we might have synced a lot of
2373 * newly appeared dirty pages, but have not synced all
2374 * of the old dirty pages.
2375 */
2376 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2377 mpd->next_page - mpd->first_page >=
2378 mpd->wbc->nr_to_write)
2379 goto out;
2380 }
2381 pagevec_release(&pvec);
2382 cond_resched();
2383 }
2384 return 0;
2385 out:
2386 pagevec_release(&pvec);
2387 return err;
2388 }
2389
2390 static int __writepage(struct page *page, struct writeback_control *wbc,
2391 void *data)
2392 {
2393 struct address_space *mapping = data;
2394 int ret = ext4_writepage(page, wbc);
2395 mapping_set_error(mapping, ret);
2396 return ret;
2397 }
2398
2399 static int ext4_writepages(struct address_space *mapping,
2400 struct writeback_control *wbc)
2401 {
2402 pgoff_t writeback_index = 0;
2403 long nr_to_write = wbc->nr_to_write;
2404 int range_whole = 0;
2405 int cycled = 1;
2406 handle_t *handle = NULL;
2407 struct mpage_da_data mpd;
2408 struct inode *inode = mapping->host;
2409 int needed_blocks, rsv_blocks = 0, ret = 0;
2410 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2411 bool done;
2412 struct blk_plug plug;
2413 bool give_up_on_write = false;
2414
2415 trace_ext4_writepages(inode, wbc);
2416
2417 /*
2418 * No pages to write? This is mainly a kludge to avoid starting
2419 * a transaction for special inodes like journal inode on last iput()
2420 * because that could violate lock ordering on umount
2421 */
2422 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2423 return 0;
2424
2425 if (ext4_should_journal_data(inode)) {
2426 struct blk_plug plug;
2427 int ret;
2428
2429 blk_start_plug(&plug);
2430 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2431 blk_finish_plug(&plug);
2432 return ret;
2433 }
2434
2435 /*
2436 * If the filesystem has aborted, it is read-only, so return
2437 * right away instead of dumping stack traces later on that
2438 * will obscure the real source of the problem. We test
2439 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2440 * the latter could be true if the filesystem is mounted
2441 * read-only, and in that case, ext4_writepages should
2442 * *never* be called, so if that ever happens, we would want
2443 * the stack trace.
2444 */
2445 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2446 return -EROFS;
2447
2448 if (ext4_should_dioread_nolock(inode)) {
2449 /*
2450 * We may need to convert up to one extent per block in
2451 * the page and we may dirty the inode.
2452 */
2453 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2454 }
2455
2456 /*
2457 * If we have inline data and arrive here, it means that
2458 * we will soon create the block for the 1st page, so
2459 * we'd better clear the inline data here.
2460 */
2461 if (ext4_has_inline_data(inode)) {
2462 /* Just inode will be modified... */
2463 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2464 if (IS_ERR(handle)) {
2465 ret = PTR_ERR(handle);
2466 goto out_writepages;
2467 }
2468 BUG_ON(ext4_test_inode_state(inode,
2469 EXT4_STATE_MAY_INLINE_DATA));
2470 ext4_destroy_inline_data(handle, inode);
2471 ext4_journal_stop(handle);
2472 }
2473
2474 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2475 range_whole = 1;
2476
2477 if (wbc->range_cyclic) {
2478 writeback_index = mapping->writeback_index;
2479 if (writeback_index)
2480 cycled = 0;
2481 mpd.first_page = writeback_index;
2482 mpd.last_page = -1;
2483 } else {
2484 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2485 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2486 }
2487
2488 mpd.inode = inode;
2489 mpd.wbc = wbc;
2490 ext4_io_submit_init(&mpd.io_submit, wbc);
2491 retry:
2492 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2493 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2494 done = false;
2495 blk_start_plug(&plug);
2496 while (!done && mpd.first_page <= mpd.last_page) {
2497 /* For each extent of pages we use new io_end */
2498 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2499 if (!mpd.io_submit.io_end) {
2500 ret = -ENOMEM;
2501 break;
2502 }
2503
2504 /*
2505 * We have two constraints: We find one extent to map and we
2506 * must always write out whole page (makes a difference when
2507 * blocksize < pagesize) so that we don't block on IO when we
2508 * try to write out the rest of the page. Journalled mode is
2509 * not supported by delalloc.
2510 */
2511 BUG_ON(ext4_should_journal_data(inode));
2512 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2513
2514 /* start a new transaction */
2515 handle = ext4_journal_start_with_reserve(inode,
2516 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2517 if (IS_ERR(handle)) {
2518 ret = PTR_ERR(handle);
2519 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2520 "%ld pages, ino %lu; err %d", __func__,
2521 wbc->nr_to_write, inode->i_ino, ret);
2522 /* Release allocated io_end */
2523 ext4_put_io_end(mpd.io_submit.io_end);
2524 break;
2525 }
2526
2527 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2528 ret = mpage_prepare_extent_to_map(&mpd);
2529 if (!ret) {
2530 if (mpd.map.m_len)
2531 ret = mpage_map_and_submit_extent(handle, &mpd,
2532 &give_up_on_write);
2533 else {
2534 /*
2535 * We scanned the whole range (or exhausted
2536 * nr_to_write), submitted what was mapped and
2537 * didn't find anything needing mapping. We are
2538 * done.
2539 */
2540 done = true;
2541 }
2542 }
2543 ext4_journal_stop(handle);
2544 /* Submit prepared bio */
2545 ext4_io_submit(&mpd.io_submit);
2546 /* Unlock pages we didn't use */
2547 mpage_release_unused_pages(&mpd, give_up_on_write);
2548 /* Drop our io_end reference we got from init */
2549 ext4_put_io_end(mpd.io_submit.io_end);
2550
2551 if (ret == -ENOSPC && sbi->s_journal) {
2552 /*
2553 * Commit the transaction which would
2554 * free blocks released in the transaction
2555 * and try again
2556 */
2557 jbd2_journal_force_commit_nested(sbi->s_journal);
2558 ret = 0;
2559 continue;
2560 }
2561 /* Fatal error - ENOMEM, EIO... */
2562 if (ret)
2563 break;
2564 }
2565 blk_finish_plug(&plug);
2566 if (!ret && !cycled) {
2567 cycled = 1;
2568 mpd.last_page = writeback_index - 1;
2569 mpd.first_page = 0;
2570 goto retry;
2571 }
2572
2573 /* Update index */
2574 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2575 /*
2576 * Set the writeback_index so that range_cyclic
2577 * mode will write it back later
2578 */
2579 mapping->writeback_index = mpd.first_page;
2580
2581 out_writepages:
2582 trace_ext4_writepages_result(inode, wbc, ret,
2583 nr_to_write - wbc->nr_to_write);
2584 return ret;
2585 }
2586
2587 static int ext4_nonda_switch(struct super_block *sb)
2588 {
2589 s64 free_clusters, dirty_clusters;
2590 struct ext4_sb_info *sbi = EXT4_SB(sb);
2591
2592 /*
2593 * switch to non delalloc mode if we are running low
2594 * on free block. The free block accounting via percpu
2595 * counters can get slightly wrong with percpu_counter_batch getting
2596 * accumulated on each CPU without updating global counters
2597 * Delalloc need an accurate free block accounting. So switch
2598 * to non delalloc when we are near to error range.
2599 */
2600 free_clusters =
2601 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2602 dirty_clusters =
2603 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2604 /*
2605 * Start pushing delalloc when 1/2 of free blocks are dirty.
2606 */
2607 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2608 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2609
2610 if (2 * free_clusters < 3 * dirty_clusters ||
2611 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2612 /*
2613 * free block count is less than 150% of dirty blocks
2614 * or free blocks is less than watermark
2615 */
2616 return 1;
2617 }
2618 return 0;
2619 }
2620
2621 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2622 loff_t pos, unsigned len, unsigned flags,
2623 struct page **pagep, void **fsdata)
2624 {
2625 int ret, retries = 0;
2626 struct page *page;
2627 pgoff_t index;
2628 struct inode *inode = mapping->host;
2629 handle_t *handle;
2630
2631 index = pos >> PAGE_CACHE_SHIFT;
2632
2633 if (ext4_nonda_switch(inode->i_sb)) {
2634 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2635 return ext4_write_begin(file, mapping, pos,
2636 len, flags, pagep, fsdata);
2637 }
2638 *fsdata = (void *)0;
2639 trace_ext4_da_write_begin(inode, pos, len, flags);
2640
2641 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2642 ret = ext4_da_write_inline_data_begin(mapping, inode,
2643 pos, len, flags,
2644 pagep, fsdata);
2645 if (ret < 0)
2646 return ret;
2647 if (ret == 1)
2648 return 0;
2649 }
2650
2651 /*
2652 * grab_cache_page_write_begin() can take a long time if the
2653 * system is thrashing due to memory pressure, or if the page
2654 * is being written back. So grab it first before we start
2655 * the transaction handle. This also allows us to allocate
2656 * the page (if needed) without using GFP_NOFS.
2657 */
2658 retry_grab:
2659 page = grab_cache_page_write_begin(mapping, index, flags);
2660 if (!page)
2661 return -ENOMEM;
2662 unlock_page(page);
2663
2664 /*
2665 * With delayed allocation, we don't log the i_disksize update
2666 * if there is delayed block allocation. But we still need
2667 * to journalling the i_disksize update if writes to the end
2668 * of file which has an already mapped buffer.
2669 */
2670 retry_journal:
2671 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2672 if (IS_ERR(handle)) {
2673 page_cache_release(page);
2674 return PTR_ERR(handle);
2675 }
2676
2677 lock_page(page);
2678 if (page->mapping != mapping) {
2679 /* The page got truncated from under us */
2680 unlock_page(page);
2681 page_cache_release(page);
2682 ext4_journal_stop(handle);
2683 goto retry_grab;
2684 }
2685 /* In case writeback began while the page was unlocked */
2686 wait_for_stable_page(page);
2687
2688 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2689 if (ret < 0) {
2690 unlock_page(page);
2691 ext4_journal_stop(handle);
2692 /*
2693 * block_write_begin may have instantiated a few blocks
2694 * outside i_size. Trim these off again. Don't need
2695 * i_size_read because we hold i_mutex.
2696 */
2697 if (pos + len > inode->i_size)
2698 ext4_truncate_failed_write(inode);
2699
2700 if (ret == -ENOSPC &&
2701 ext4_should_retry_alloc(inode->i_sb, &retries))
2702 goto retry_journal;
2703
2704 page_cache_release(page);
2705 return ret;
2706 }
2707
2708 *pagep = page;
2709 return ret;
2710 }
2711
2712 /*
2713 * Check if we should update i_disksize
2714 * when write to the end of file but not require block allocation
2715 */
2716 static int ext4_da_should_update_i_disksize(struct page *page,
2717 unsigned long offset)
2718 {
2719 struct buffer_head *bh;
2720 struct inode *inode = page->mapping->host;
2721 unsigned int idx;
2722 int i;
2723
2724 bh = page_buffers(page);
2725 idx = offset >> inode->i_blkbits;
2726
2727 for (i = 0; i < idx; i++)
2728 bh = bh->b_this_page;
2729
2730 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2731 return 0;
2732 return 1;
2733 }
2734
2735 static int ext4_da_write_end(struct file *file,
2736 struct address_space *mapping,
2737 loff_t pos, unsigned len, unsigned copied,
2738 struct page *page, void *fsdata)
2739 {
2740 struct inode *inode = mapping->host;
2741 int ret = 0, ret2;
2742 handle_t *handle = ext4_journal_current_handle();
2743 loff_t new_i_size;
2744 unsigned long start, end;
2745 int write_mode = (int)(unsigned long)fsdata;
2746
2747 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2748 return ext4_write_end(file, mapping, pos,
2749 len, copied, page, fsdata);
2750
2751 trace_ext4_da_write_end(inode, pos, len, copied);
2752 start = pos & (PAGE_CACHE_SIZE - 1);
2753 end = start + copied - 1;
2754
2755 /*
2756 * generic_write_end() will run mark_inode_dirty() if i_size
2757 * changes. So let's piggyback the i_disksize mark_inode_dirty
2758 * into that.
2759 */
2760 new_i_size = pos + copied;
2761 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2762 if (ext4_has_inline_data(inode) ||
2763 ext4_da_should_update_i_disksize(page, end)) {
2764 down_write(&EXT4_I(inode)->i_data_sem);
2765 if (new_i_size > EXT4_I(inode)->i_disksize)
2766 EXT4_I(inode)->i_disksize = new_i_size;
2767 up_write(&EXT4_I(inode)->i_data_sem);
2768 /* We need to mark inode dirty even if
2769 * new_i_size is less that inode->i_size
2770 * bu greater than i_disksize.(hint delalloc)
2771 */
2772 ext4_mark_inode_dirty(handle, inode);
2773 }
2774 }
2775
2776 if (write_mode != CONVERT_INLINE_DATA &&
2777 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2778 ext4_has_inline_data(inode))
2779 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2780 page);
2781 else
2782 ret2 = generic_write_end(file, mapping, pos, len, copied,
2783 page, fsdata);
2784
2785 copied = ret2;
2786 if (ret2 < 0)
2787 ret = ret2;
2788 ret2 = ext4_journal_stop(handle);
2789 if (!ret)
2790 ret = ret2;
2791
2792 return ret ? ret : copied;
2793 }
2794
2795 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2796 unsigned int length)
2797 {
2798 /*
2799 * Drop reserved blocks
2800 */
2801 BUG_ON(!PageLocked(page));
2802 if (!page_has_buffers(page))
2803 goto out;
2804
2805 ext4_da_page_release_reservation(page, offset, length);
2806
2807 out:
2808 ext4_invalidatepage(page, offset, length);
2809
2810 return;
2811 }
2812
2813 /*
2814 * Force all delayed allocation blocks to be allocated for a given inode.
2815 */
2816 int ext4_alloc_da_blocks(struct inode *inode)
2817 {
2818 trace_ext4_alloc_da_blocks(inode);
2819
2820 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2821 !EXT4_I(inode)->i_reserved_meta_blocks)
2822 return 0;
2823
2824 /*
2825 * We do something simple for now. The filemap_flush() will
2826 * also start triggering a write of the data blocks, which is
2827 * not strictly speaking necessary (and for users of
2828 * laptop_mode, not even desirable). However, to do otherwise
2829 * would require replicating code paths in:
2830 *
2831 * ext4_writepages() ->
2832 * write_cache_pages() ---> (via passed in callback function)
2833 * __mpage_da_writepage() -->
2834 * mpage_add_bh_to_extent()
2835 * mpage_da_map_blocks()
2836 *
2837 * The problem is that write_cache_pages(), located in
2838 * mm/page-writeback.c, marks pages clean in preparation for
2839 * doing I/O, which is not desirable if we're not planning on
2840 * doing I/O at all.
2841 *
2842 * We could call write_cache_pages(), and then redirty all of
2843 * the pages by calling redirty_page_for_writepage() but that
2844 * would be ugly in the extreme. So instead we would need to
2845 * replicate parts of the code in the above functions,
2846 * simplifying them because we wouldn't actually intend to
2847 * write out the pages, but rather only collect contiguous
2848 * logical block extents, call the multi-block allocator, and
2849 * then update the buffer heads with the block allocations.
2850 *
2851 * For now, though, we'll cheat by calling filemap_flush(),
2852 * which will map the blocks, and start the I/O, but not
2853 * actually wait for the I/O to complete.
2854 */
2855 return filemap_flush(inode->i_mapping);
2856 }
2857
2858 /*
2859 * bmap() is special. It gets used by applications such as lilo and by
2860 * the swapper to find the on-disk block of a specific piece of data.
2861 *
2862 * Naturally, this is dangerous if the block concerned is still in the
2863 * journal. If somebody makes a swapfile on an ext4 data-journaling
2864 * filesystem and enables swap, then they may get a nasty shock when the
2865 * data getting swapped to that swapfile suddenly gets overwritten by
2866 * the original zero's written out previously to the journal and
2867 * awaiting writeback in the kernel's buffer cache.
2868 *
2869 * So, if we see any bmap calls here on a modified, data-journaled file,
2870 * take extra steps to flush any blocks which might be in the cache.
2871 */
2872 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2873 {
2874 struct inode *inode = mapping->host;
2875 journal_t *journal;
2876 int err;
2877
2878 /*
2879 * We can get here for an inline file via the FIBMAP ioctl
2880 */
2881 if (ext4_has_inline_data(inode))
2882 return 0;
2883
2884 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2885 test_opt(inode->i_sb, DELALLOC)) {
2886 /*
2887 * With delalloc we want to sync the file
2888 * so that we can make sure we allocate
2889 * blocks for file
2890 */
2891 filemap_write_and_wait(mapping);
2892 }
2893
2894 if (EXT4_JOURNAL(inode) &&
2895 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2896 /*
2897 * This is a REALLY heavyweight approach, but the use of
2898 * bmap on dirty files is expected to be extremely rare:
2899 * only if we run lilo or swapon on a freshly made file
2900 * do we expect this to happen.
2901 *
2902 * (bmap requires CAP_SYS_RAWIO so this does not
2903 * represent an unprivileged user DOS attack --- we'd be
2904 * in trouble if mortal users could trigger this path at
2905 * will.)
2906 *
2907 * NB. EXT4_STATE_JDATA is not set on files other than
2908 * regular files. If somebody wants to bmap a directory
2909 * or symlink and gets confused because the buffer
2910 * hasn't yet been flushed to disk, they deserve
2911 * everything they get.
2912 */
2913
2914 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2915 journal = EXT4_JOURNAL(inode);
2916 jbd2_journal_lock_updates(journal);
2917 err = jbd2_journal_flush(journal);
2918 jbd2_journal_unlock_updates(journal);
2919
2920 if (err)
2921 return 0;
2922 }
2923
2924 return generic_block_bmap(mapping, block, ext4_get_block);
2925 }
2926
2927 static int ext4_readpage(struct file *file, struct page *page)
2928 {
2929 int ret = -EAGAIN;
2930 struct inode *inode = page->mapping->host;
2931
2932 trace_ext4_readpage(page);
2933
2934 if (ext4_has_inline_data(inode))
2935 ret = ext4_readpage_inline(inode, page);
2936
2937 if (ret == -EAGAIN)
2938 return mpage_readpage(page, ext4_get_block);
2939
2940 return ret;
2941 }
2942
2943 static int
2944 ext4_readpages(struct file *file, struct address_space *mapping,
2945 struct list_head *pages, unsigned nr_pages)
2946 {
2947 struct inode *inode = mapping->host;
2948
2949 /* If the file has inline data, no need to do readpages. */
2950 if (ext4_has_inline_data(inode))
2951 return 0;
2952
2953 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2954 }
2955
2956 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2957 unsigned int length)
2958 {
2959 trace_ext4_invalidatepage(page, offset, length);
2960
2961 /* No journalling happens on data buffers when this function is used */
2962 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2963
2964 block_invalidatepage(page, offset, length);
2965 }
2966
2967 static int __ext4_journalled_invalidatepage(struct page *page,
2968 unsigned int offset,
2969 unsigned int length)
2970 {
2971 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2972
2973 trace_ext4_journalled_invalidatepage(page, offset, length);
2974
2975 /*
2976 * If it's a full truncate we just forget about the pending dirtying
2977 */
2978 if (offset == 0 && length == PAGE_CACHE_SIZE)
2979 ClearPageChecked(page);
2980
2981 return jbd2_journal_invalidatepage(journal, page, offset, length);
2982 }
2983
2984 /* Wrapper for aops... */
2985 static void ext4_journalled_invalidatepage(struct page *page,
2986 unsigned int offset,
2987 unsigned int length)
2988 {
2989 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2990 }
2991
2992 static int ext4_releasepage(struct page *page, gfp_t wait)
2993 {
2994 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2995
2996 trace_ext4_releasepage(page);
2997
2998 /* Page has dirty journalled data -> cannot release */
2999 if (PageChecked(page))
3000 return 0;
3001 if (journal)
3002 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3003 else
3004 return try_to_free_buffers(page);
3005 }
3006
3007 /*
3008 * ext4_get_block used when preparing for a DIO write or buffer write.
3009 * We allocate an uinitialized extent if blocks haven't been allocated.
3010 * The extent will be converted to initialized after the IO is complete.
3011 */
3012 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3013 struct buffer_head *bh_result, int create)
3014 {
3015 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3016 inode->i_ino, create);
3017 return _ext4_get_block(inode, iblock, bh_result,
3018 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3019 }
3020
3021 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3022 struct buffer_head *bh_result, int create)
3023 {
3024 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3025 inode->i_ino, create);
3026 return _ext4_get_block(inode, iblock, bh_result,
3027 EXT4_GET_BLOCKS_NO_LOCK);
3028 }
3029
3030 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3031 ssize_t size, void *private)
3032 {
3033 ext4_io_end_t *io_end = iocb->private;
3034
3035 /* if not async direct IO just return */
3036 if (!io_end)
3037 return;
3038
3039 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3040 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3041 iocb->private, io_end->inode->i_ino, iocb, offset,
3042 size);
3043
3044 iocb->private = NULL;
3045 io_end->offset = offset;
3046 io_end->size = size;
3047 ext4_put_io_end(io_end);
3048 }
3049
3050 /*
3051 * For ext4 extent files, ext4 will do direct-io write to holes,
3052 * preallocated extents, and those write extend the file, no need to
3053 * fall back to buffered IO.
3054 *
3055 * For holes, we fallocate those blocks, mark them as uninitialized
3056 * If those blocks were preallocated, we mark sure they are split, but
3057 * still keep the range to write as uninitialized.
3058 *
3059 * The unwritten extents will be converted to written when DIO is completed.
3060 * For async direct IO, since the IO may still pending when return, we
3061 * set up an end_io call back function, which will do the conversion
3062 * when async direct IO completed.
3063 *
3064 * If the O_DIRECT write will extend the file then add this inode to the
3065 * orphan list. So recovery will truncate it back to the original size
3066 * if the machine crashes during the write.
3067 *
3068 */
3069 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3070 const struct iovec *iov, loff_t offset,
3071 unsigned long nr_segs)
3072 {
3073 struct file *file = iocb->ki_filp;
3074 struct inode *inode = file->f_mapping->host;
3075 ssize_t ret;
3076 size_t count = iov_length(iov, nr_segs);
3077 int overwrite = 0;
3078 get_block_t *get_block_func = NULL;
3079 int dio_flags = 0;
3080 loff_t final_size = offset + count;
3081 ext4_io_end_t *io_end = NULL;
3082
3083 /* Use the old path for reads and writes beyond i_size. */
3084 if (rw != WRITE || final_size > inode->i_size)
3085 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3086
3087 BUG_ON(iocb->private == NULL);
3088
3089 /*
3090 * Make all waiters for direct IO properly wait also for extent
3091 * conversion. This also disallows race between truncate() and
3092 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3093 */
3094 if (rw == WRITE)
3095 atomic_inc(&inode->i_dio_count);
3096
3097 /* If we do a overwrite dio, i_mutex locking can be released */
3098 overwrite = *((int *)iocb->private);
3099
3100 if (overwrite) {
3101 down_read(&EXT4_I(inode)->i_data_sem);
3102 mutex_unlock(&inode->i_mutex);
3103 }
3104
3105 /*
3106 * We could direct write to holes and fallocate.
3107 *
3108 * Allocated blocks to fill the hole are marked as
3109 * uninitialized to prevent parallel buffered read to expose
3110 * the stale data before DIO complete the data IO.
3111 *
3112 * As to previously fallocated extents, ext4 get_block will
3113 * just simply mark the buffer mapped but still keep the
3114 * extents uninitialized.
3115 *
3116 * For non AIO case, we will convert those unwritten extents
3117 * to written after return back from blockdev_direct_IO.
3118 *
3119 * For async DIO, the conversion needs to be deferred when the
3120 * IO is completed. The ext4 end_io callback function will be
3121 * called to take care of the conversion work. Here for async
3122 * case, we allocate an io_end structure to hook to the iocb.
3123 */
3124 iocb->private = NULL;
3125 ext4_inode_aio_set(inode, NULL);
3126 if (!is_sync_kiocb(iocb)) {
3127 io_end = ext4_init_io_end(inode, GFP_NOFS);
3128 if (!io_end) {
3129 ret = -ENOMEM;
3130 goto retake_lock;
3131 }
3132 /*
3133 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3134 */
3135 iocb->private = ext4_get_io_end(io_end);
3136 /*
3137 * we save the io structure for current async direct
3138 * IO, so that later ext4_map_blocks() could flag the
3139 * io structure whether there is a unwritten extents
3140 * needs to be converted when IO is completed.
3141 */
3142 ext4_inode_aio_set(inode, io_end);
3143 }
3144
3145 if (overwrite) {
3146 get_block_func = ext4_get_block_write_nolock;
3147 } else {
3148 get_block_func = ext4_get_block_write;
3149 dio_flags = DIO_LOCKING;
3150 }
3151 ret = __blockdev_direct_IO(rw, iocb, inode,
3152 inode->i_sb->s_bdev, iov,
3153 offset, nr_segs,
3154 get_block_func,
3155 ext4_end_io_dio,
3156 NULL,
3157 dio_flags);
3158
3159 /*
3160 * Put our reference to io_end. This can free the io_end structure e.g.
3161 * in sync IO case or in case of error. It can even perform extent
3162 * conversion if all bios we submitted finished before we got here.
3163 * Note that in that case iocb->private can be already set to NULL
3164 * here.
3165 */
3166 if (io_end) {
3167 ext4_inode_aio_set(inode, NULL);
3168 ext4_put_io_end(io_end);
3169 /*
3170 * When no IO was submitted ext4_end_io_dio() was not
3171 * called so we have to put iocb's reference.
3172 */
3173 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3174 WARN_ON(iocb->private != io_end);
3175 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3176 ext4_put_io_end(io_end);
3177 iocb->private = NULL;
3178 }
3179 }
3180 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3181 EXT4_STATE_DIO_UNWRITTEN)) {
3182 int err;
3183 /*
3184 * for non AIO case, since the IO is already
3185 * completed, we could do the conversion right here
3186 */
3187 err = ext4_convert_unwritten_extents(NULL, inode,
3188 offset, ret);
3189 if (err < 0)
3190 ret = err;
3191 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3192 }
3193
3194 retake_lock:
3195 if (rw == WRITE)
3196 inode_dio_done(inode);
3197 /* take i_mutex locking again if we do a ovewrite dio */
3198 if (overwrite) {
3199 up_read(&EXT4_I(inode)->i_data_sem);
3200 mutex_lock(&inode->i_mutex);
3201 }
3202
3203 return ret;
3204 }
3205
3206 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3207 const struct iovec *iov, loff_t offset,
3208 unsigned long nr_segs)
3209 {
3210 struct file *file = iocb->ki_filp;
3211 struct inode *inode = file->f_mapping->host;
3212 ssize_t ret;
3213
3214 /*
3215 * If we are doing data journalling we don't support O_DIRECT
3216 */
3217 if (ext4_should_journal_data(inode))
3218 return 0;
3219
3220 /* Let buffer I/O handle the inline data case. */
3221 if (ext4_has_inline_data(inode))
3222 return 0;
3223
3224 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3225 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3226 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3227 else
3228 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3229 trace_ext4_direct_IO_exit(inode, offset,
3230 iov_length(iov, nr_segs), rw, ret);
3231 return ret;
3232 }
3233
3234 /*
3235 * Pages can be marked dirty completely asynchronously from ext4's journalling
3236 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3237 * much here because ->set_page_dirty is called under VFS locks. The page is
3238 * not necessarily locked.
3239 *
3240 * We cannot just dirty the page and leave attached buffers clean, because the
3241 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3242 * or jbddirty because all the journalling code will explode.
3243 *
3244 * So what we do is to mark the page "pending dirty" and next time writepage
3245 * is called, propagate that into the buffers appropriately.
3246 */
3247 static int ext4_journalled_set_page_dirty(struct page *page)
3248 {
3249 SetPageChecked(page);
3250 return __set_page_dirty_nobuffers(page);
3251 }
3252
3253 static const struct address_space_operations ext4_aops = {
3254 .readpage = ext4_readpage,
3255 .readpages = ext4_readpages,
3256 .writepage = ext4_writepage,
3257 .writepages = ext4_writepages,
3258 .write_begin = ext4_write_begin,
3259 .write_end = ext4_write_end,
3260 .bmap = ext4_bmap,
3261 .invalidatepage = ext4_invalidatepage,
3262 .releasepage = ext4_releasepage,
3263 .direct_IO = ext4_direct_IO,
3264 .migratepage = buffer_migrate_page,
3265 .is_partially_uptodate = block_is_partially_uptodate,
3266 .error_remove_page = generic_error_remove_page,
3267 };
3268
3269 static const struct address_space_operations ext4_journalled_aops = {
3270 .readpage = ext4_readpage,
3271 .readpages = ext4_readpages,
3272 .writepage = ext4_writepage,
3273 .writepages = ext4_writepages,
3274 .write_begin = ext4_write_begin,
3275 .write_end = ext4_journalled_write_end,
3276 .set_page_dirty = ext4_journalled_set_page_dirty,
3277 .bmap = ext4_bmap,
3278 .invalidatepage = ext4_journalled_invalidatepage,
3279 .releasepage = ext4_releasepage,
3280 .direct_IO = ext4_direct_IO,
3281 .is_partially_uptodate = block_is_partially_uptodate,
3282 .error_remove_page = generic_error_remove_page,
3283 };
3284
3285 static const struct address_space_operations ext4_da_aops = {
3286 .readpage = ext4_readpage,
3287 .readpages = ext4_readpages,
3288 .writepage = ext4_writepage,
3289 .writepages = ext4_writepages,
3290 .write_begin = ext4_da_write_begin,
3291 .write_end = ext4_da_write_end,
3292 .bmap = ext4_bmap,
3293 .invalidatepage = ext4_da_invalidatepage,
3294 .releasepage = ext4_releasepage,
3295 .direct_IO = ext4_direct_IO,
3296 .migratepage = buffer_migrate_page,
3297 .is_partially_uptodate = block_is_partially_uptodate,
3298 .error_remove_page = generic_error_remove_page,
3299 };
3300
3301 void ext4_set_aops(struct inode *inode)
3302 {
3303 switch (ext4_inode_journal_mode(inode)) {
3304 case EXT4_INODE_ORDERED_DATA_MODE:
3305 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3306 break;
3307 case EXT4_INODE_WRITEBACK_DATA_MODE:
3308 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3309 break;
3310 case EXT4_INODE_JOURNAL_DATA_MODE:
3311 inode->i_mapping->a_ops = &ext4_journalled_aops;
3312 return;
3313 default:
3314 BUG();
3315 }
3316 if (test_opt(inode->i_sb, DELALLOC))
3317 inode->i_mapping->a_ops = &ext4_da_aops;
3318 else
3319 inode->i_mapping->a_ops = &ext4_aops;
3320 }
3321
3322 /*
3323 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3324 * up to the end of the block which corresponds to `from'.
3325 * This required during truncate. We need to physically zero the tail end
3326 * of that block so it doesn't yield old data if the file is later grown.
3327 */
3328 int ext4_block_truncate_page(handle_t *handle,
3329 struct address_space *mapping, loff_t from)
3330 {
3331 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3332 unsigned length;
3333 unsigned blocksize;
3334 struct inode *inode = mapping->host;
3335
3336 blocksize = inode->i_sb->s_blocksize;
3337 length = blocksize - (offset & (blocksize - 1));
3338
3339 return ext4_block_zero_page_range(handle, mapping, from, length);
3340 }
3341
3342 /*
3343 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3344 * starting from file offset 'from'. The range to be zero'd must
3345 * be contained with in one block. If the specified range exceeds
3346 * the end of the block it will be shortened to end of the block
3347 * that cooresponds to 'from'
3348 */
3349 int ext4_block_zero_page_range(handle_t *handle,
3350 struct address_space *mapping, loff_t from, loff_t length)
3351 {
3352 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3353 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3354 unsigned blocksize, max, pos;
3355 ext4_lblk_t iblock;
3356 struct inode *inode = mapping->host;
3357 struct buffer_head *bh;
3358 struct page *page;
3359 int err = 0;
3360
3361 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3362 mapping_gfp_mask(mapping) & ~__GFP_FS);
3363 if (!page)
3364 return -ENOMEM;
3365
3366 blocksize = inode->i_sb->s_blocksize;
3367 max = blocksize - (offset & (blocksize - 1));
3368
3369 /*
3370 * correct length if it does not fall between
3371 * 'from' and the end of the block
3372 */
3373 if (length > max || length < 0)
3374 length = max;
3375
3376 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3377
3378 if (!page_has_buffers(page))
3379 create_empty_buffers(page, blocksize, 0);
3380
3381 /* Find the buffer that contains "offset" */
3382 bh = page_buffers(page);
3383 pos = blocksize;
3384 while (offset >= pos) {
3385 bh = bh->b_this_page;
3386 iblock++;
3387 pos += blocksize;
3388 }
3389 if (buffer_freed(bh)) {
3390 BUFFER_TRACE(bh, "freed: skip");
3391 goto unlock;
3392 }
3393 if (!buffer_mapped(bh)) {
3394 BUFFER_TRACE(bh, "unmapped");
3395 ext4_get_block(inode, iblock, bh, 0);
3396 /* unmapped? It's a hole - nothing to do */
3397 if (!buffer_mapped(bh)) {
3398 BUFFER_TRACE(bh, "still unmapped");
3399 goto unlock;
3400 }
3401 }
3402
3403 /* Ok, it's mapped. Make sure it's up-to-date */
3404 if (PageUptodate(page))
3405 set_buffer_uptodate(bh);
3406
3407 if (!buffer_uptodate(bh)) {
3408 err = -EIO;
3409 ll_rw_block(READ, 1, &bh);
3410 wait_on_buffer(bh);
3411 /* Uhhuh. Read error. Complain and punt. */
3412 if (!buffer_uptodate(bh))
3413 goto unlock;
3414 }
3415 if (ext4_should_journal_data(inode)) {
3416 BUFFER_TRACE(bh, "get write access");
3417 err = ext4_journal_get_write_access(handle, bh);
3418 if (err)
3419 goto unlock;
3420 }
3421 zero_user(page, offset, length);
3422 BUFFER_TRACE(bh, "zeroed end of block");
3423
3424 if (ext4_should_journal_data(inode)) {
3425 err = ext4_handle_dirty_metadata(handle, inode, bh);
3426 } else {
3427 err = 0;
3428 mark_buffer_dirty(bh);
3429 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3430 err = ext4_jbd2_file_inode(handle, inode);
3431 }
3432
3433 unlock:
3434 unlock_page(page);
3435 page_cache_release(page);
3436 return err;
3437 }
3438
3439 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3440 loff_t lstart, loff_t length)
3441 {
3442 struct super_block *sb = inode->i_sb;
3443 struct address_space *mapping = inode->i_mapping;
3444 unsigned partial_start, partial_end;
3445 ext4_fsblk_t start, end;
3446 loff_t byte_end = (lstart + length - 1);
3447 int err = 0;
3448
3449 partial_start = lstart & (sb->s_blocksize - 1);
3450 partial_end = byte_end & (sb->s_blocksize - 1);
3451
3452 start = lstart >> sb->s_blocksize_bits;
3453 end = byte_end >> sb->s_blocksize_bits;
3454
3455 /* Handle partial zero within the single block */
3456 if (start == end &&
3457 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3458 err = ext4_block_zero_page_range(handle, mapping,
3459 lstart, length);
3460 return err;
3461 }
3462 /* Handle partial zero out on the start of the range */
3463 if (partial_start) {
3464 err = ext4_block_zero_page_range(handle, mapping,
3465 lstart, sb->s_blocksize);
3466 if (err)
3467 return err;
3468 }
3469 /* Handle partial zero out on the end of the range */
3470 if (partial_end != sb->s_blocksize - 1)
3471 err = ext4_block_zero_page_range(handle, mapping,
3472 byte_end - partial_end,
3473 partial_end + 1);
3474 return err;
3475 }
3476
3477 int ext4_can_truncate(struct inode *inode)
3478 {
3479 if (S_ISREG(inode->i_mode))
3480 return 1;
3481 if (S_ISDIR(inode->i_mode))
3482 return 1;
3483 if (S_ISLNK(inode->i_mode))
3484 return !ext4_inode_is_fast_symlink(inode);
3485 return 0;
3486 }
3487
3488 /*
3489 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3490 * associated with the given offset and length
3491 *
3492 * @inode: File inode
3493 * @offset: The offset where the hole will begin
3494 * @len: The length of the hole
3495 *
3496 * Returns: 0 on success or negative on failure
3497 */
3498
3499 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3500 {
3501 struct super_block *sb = inode->i_sb;
3502 ext4_lblk_t first_block, stop_block;
3503 struct address_space *mapping = inode->i_mapping;
3504 loff_t first_block_offset, last_block_offset;
3505 handle_t *handle;
3506 unsigned int credits;
3507 int ret = 0;
3508
3509 if (!S_ISREG(inode->i_mode))
3510 return -EOPNOTSUPP;
3511
3512 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3513 /* TODO: Add support for bigalloc file systems */
3514 return -EOPNOTSUPP;
3515 }
3516
3517 trace_ext4_punch_hole(inode, offset, length);
3518
3519 /*
3520 * Write out all dirty pages to avoid race conditions
3521 * Then release them.
3522 */
3523 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3524 ret = filemap_write_and_wait_range(mapping, offset,
3525 offset + length - 1);
3526 if (ret)
3527 return ret;
3528 }
3529
3530 mutex_lock(&inode->i_mutex);
3531 /* It's not possible punch hole on append only file */
3532 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3533 ret = -EPERM;
3534 goto out_mutex;
3535 }
3536 if (IS_SWAPFILE(inode)) {
3537 ret = -ETXTBSY;
3538 goto out_mutex;
3539 }
3540
3541 /* No need to punch hole beyond i_size */
3542 if (offset >= inode->i_size)
3543 goto out_mutex;
3544
3545 /*
3546 * If the hole extends beyond i_size, set the hole
3547 * to end after the page that contains i_size
3548 */
3549 if (offset + length > inode->i_size) {
3550 length = inode->i_size +
3551 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3552 offset;
3553 }
3554
3555 if (offset & (sb->s_blocksize - 1) ||
3556 (offset + length) & (sb->s_blocksize - 1)) {
3557 /*
3558 * Attach jinode to inode for jbd2 if we do any zeroing of
3559 * partial block
3560 */
3561 ret = ext4_inode_attach_jinode(inode);
3562 if (ret < 0)
3563 goto out_mutex;
3564
3565 }
3566
3567 first_block_offset = round_up(offset, sb->s_blocksize);
3568 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3569
3570 /* Now release the pages and zero block aligned part of pages*/
3571 if (last_block_offset > first_block_offset)
3572 truncate_pagecache_range(inode, first_block_offset,
3573 last_block_offset);
3574
3575 /* Wait all existing dio workers, newcomers will block on i_mutex */
3576 ext4_inode_block_unlocked_dio(inode);
3577 inode_dio_wait(inode);
3578
3579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580 credits = ext4_writepage_trans_blocks(inode);
3581 else
3582 credits = ext4_blocks_for_truncate(inode);
3583 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3584 if (IS_ERR(handle)) {
3585 ret = PTR_ERR(handle);
3586 ext4_std_error(sb, ret);
3587 goto out_dio;
3588 }
3589
3590 ret = ext4_zero_partial_blocks(handle, inode, offset,
3591 length);
3592 if (ret)
3593 goto out_stop;
3594
3595 first_block = (offset + sb->s_blocksize - 1) >>
3596 EXT4_BLOCK_SIZE_BITS(sb);
3597 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3598
3599 /* If there are no blocks to remove, return now */
3600 if (first_block >= stop_block)
3601 goto out_stop;
3602
3603 down_write(&EXT4_I(inode)->i_data_sem);
3604 ext4_discard_preallocations(inode);
3605
3606 ret = ext4_es_remove_extent(inode, first_block,
3607 stop_block - first_block);
3608 if (ret) {
3609 up_write(&EXT4_I(inode)->i_data_sem);
3610 goto out_stop;
3611 }
3612
3613 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3614 ret = ext4_ext_remove_space(inode, first_block,
3615 stop_block - 1);
3616 else
3617 ret = ext4_free_hole_blocks(handle, inode, first_block,
3618 stop_block);
3619
3620 ext4_discard_preallocations(inode);
3621 up_write(&EXT4_I(inode)->i_data_sem);
3622 if (IS_SYNC(inode))
3623 ext4_handle_sync(handle);
3624 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3625 ext4_mark_inode_dirty(handle, inode);
3626 out_stop:
3627 ext4_journal_stop(handle);
3628 out_dio:
3629 ext4_inode_resume_unlocked_dio(inode);
3630 out_mutex:
3631 mutex_unlock(&inode->i_mutex);
3632 return ret;
3633 }
3634
3635 int ext4_inode_attach_jinode(struct inode *inode)
3636 {
3637 struct ext4_inode_info *ei = EXT4_I(inode);
3638 struct jbd2_inode *jinode;
3639
3640 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3641 return 0;
3642
3643 jinode = jbd2_alloc_inode(GFP_KERNEL);
3644 spin_lock(&inode->i_lock);
3645 if (!ei->jinode) {
3646 if (!jinode) {
3647 spin_unlock(&inode->i_lock);
3648 return -ENOMEM;
3649 }
3650 ei->jinode = jinode;
3651 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3652 jinode = NULL;
3653 }
3654 spin_unlock(&inode->i_lock);
3655 if (unlikely(jinode != NULL))
3656 jbd2_free_inode(jinode);
3657 return 0;
3658 }
3659
3660 /*
3661 * ext4_truncate()
3662 *
3663 * We block out ext4_get_block() block instantiations across the entire
3664 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3665 * simultaneously on behalf of the same inode.
3666 *
3667 * As we work through the truncate and commit bits of it to the journal there
3668 * is one core, guiding principle: the file's tree must always be consistent on
3669 * disk. We must be able to restart the truncate after a crash.
3670 *
3671 * The file's tree may be transiently inconsistent in memory (although it
3672 * probably isn't), but whenever we close off and commit a journal transaction,
3673 * the contents of (the filesystem + the journal) must be consistent and
3674 * restartable. It's pretty simple, really: bottom up, right to left (although
3675 * left-to-right works OK too).
3676 *
3677 * Note that at recovery time, journal replay occurs *before* the restart of
3678 * truncate against the orphan inode list.
3679 *
3680 * The committed inode has the new, desired i_size (which is the same as
3681 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3682 * that this inode's truncate did not complete and it will again call
3683 * ext4_truncate() to have another go. So there will be instantiated blocks
3684 * to the right of the truncation point in a crashed ext4 filesystem. But
3685 * that's fine - as long as they are linked from the inode, the post-crash
3686 * ext4_truncate() run will find them and release them.
3687 */
3688 void ext4_truncate(struct inode *inode)
3689 {
3690 struct ext4_inode_info *ei = EXT4_I(inode);
3691 unsigned int credits;
3692 handle_t *handle;
3693 struct address_space *mapping = inode->i_mapping;
3694
3695 /*
3696 * There is a possibility that we're either freeing the inode
3697 * or it completely new indode. In those cases we might not
3698 * have i_mutex locked because it's not necessary.
3699 */
3700 if (!(inode->i_state & (I_NEW|I_FREEING)))
3701 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3702 trace_ext4_truncate_enter(inode);
3703
3704 if (!ext4_can_truncate(inode))
3705 return;
3706
3707 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3708
3709 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3710 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3711
3712 if (ext4_has_inline_data(inode)) {
3713 int has_inline = 1;
3714
3715 ext4_inline_data_truncate(inode, &has_inline);
3716 if (has_inline)
3717 return;
3718 }
3719
3720 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3721 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3722 if (ext4_inode_attach_jinode(inode) < 0)
3723 return;
3724 }
3725
3726 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3727 credits = ext4_writepage_trans_blocks(inode);
3728 else
3729 credits = ext4_blocks_for_truncate(inode);
3730
3731 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3732 if (IS_ERR(handle)) {
3733 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3734 return;
3735 }
3736
3737 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3738 ext4_block_truncate_page(handle, mapping, inode->i_size);
3739
3740 /*
3741 * We add the inode to the orphan list, so that if this
3742 * truncate spans multiple transactions, and we crash, we will
3743 * resume the truncate when the filesystem recovers. It also
3744 * marks the inode dirty, to catch the new size.
3745 *
3746 * Implication: the file must always be in a sane, consistent
3747 * truncatable state while each transaction commits.
3748 */
3749 if (ext4_orphan_add(handle, inode))
3750 goto out_stop;
3751
3752 down_write(&EXT4_I(inode)->i_data_sem);
3753
3754 ext4_discard_preallocations(inode);
3755
3756 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3757 ext4_ext_truncate(handle, inode);
3758 else
3759 ext4_ind_truncate(handle, inode);
3760
3761 up_write(&ei->i_data_sem);
3762
3763 if (IS_SYNC(inode))
3764 ext4_handle_sync(handle);
3765
3766 out_stop:
3767 /*
3768 * If this was a simple ftruncate() and the file will remain alive,
3769 * then we need to clear up the orphan record which we created above.
3770 * However, if this was a real unlink then we were called by
3771 * ext4_delete_inode(), and we allow that function to clean up the
3772 * orphan info for us.
3773 */
3774 if (inode->i_nlink)
3775 ext4_orphan_del(handle, inode);
3776
3777 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3778 ext4_mark_inode_dirty(handle, inode);
3779 ext4_journal_stop(handle);
3780
3781 trace_ext4_truncate_exit(inode);
3782 }
3783
3784 /*
3785 * ext4_get_inode_loc returns with an extra refcount against the inode's
3786 * underlying buffer_head on success. If 'in_mem' is true, we have all
3787 * data in memory that is needed to recreate the on-disk version of this
3788 * inode.
3789 */
3790 static int __ext4_get_inode_loc(struct inode *inode,
3791 struct ext4_iloc *iloc, int in_mem)
3792 {
3793 struct ext4_group_desc *gdp;
3794 struct buffer_head *bh;
3795 struct super_block *sb = inode->i_sb;
3796 ext4_fsblk_t block;
3797 int inodes_per_block, inode_offset;
3798
3799 iloc->bh = NULL;
3800 if (!ext4_valid_inum(sb, inode->i_ino))
3801 return -EIO;
3802
3803 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3804 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3805 if (!gdp)
3806 return -EIO;
3807
3808 /*
3809 * Figure out the offset within the block group inode table
3810 */
3811 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3812 inode_offset = ((inode->i_ino - 1) %
3813 EXT4_INODES_PER_GROUP(sb));
3814 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3815 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3816
3817 bh = sb_getblk(sb, block);
3818 if (unlikely(!bh))
3819 return -ENOMEM;
3820 if (!buffer_uptodate(bh)) {
3821 lock_buffer(bh);
3822
3823 /*
3824 * If the buffer has the write error flag, we have failed
3825 * to write out another inode in the same block. In this
3826 * case, we don't have to read the block because we may
3827 * read the old inode data successfully.
3828 */
3829 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3830 set_buffer_uptodate(bh);
3831
3832 if (buffer_uptodate(bh)) {
3833 /* someone brought it uptodate while we waited */
3834 unlock_buffer(bh);
3835 goto has_buffer;
3836 }
3837
3838 /*
3839 * If we have all information of the inode in memory and this
3840 * is the only valid inode in the block, we need not read the
3841 * block.
3842 */
3843 if (in_mem) {
3844 struct buffer_head *bitmap_bh;
3845 int i, start;
3846
3847 start = inode_offset & ~(inodes_per_block - 1);
3848
3849 /* Is the inode bitmap in cache? */
3850 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3851 if (unlikely(!bitmap_bh))
3852 goto make_io;
3853
3854 /*
3855 * If the inode bitmap isn't in cache then the
3856 * optimisation may end up performing two reads instead
3857 * of one, so skip it.
3858 */
3859 if (!buffer_uptodate(bitmap_bh)) {
3860 brelse(bitmap_bh);
3861 goto make_io;
3862 }
3863 for (i = start; i < start + inodes_per_block; i++) {
3864 if (i == inode_offset)
3865 continue;
3866 if (ext4_test_bit(i, bitmap_bh->b_data))
3867 break;
3868 }
3869 brelse(bitmap_bh);
3870 if (i == start + inodes_per_block) {
3871 /* all other inodes are free, so skip I/O */
3872 memset(bh->b_data, 0, bh->b_size);
3873 set_buffer_uptodate(bh);
3874 unlock_buffer(bh);
3875 goto has_buffer;
3876 }
3877 }
3878
3879 make_io:
3880 /*
3881 * If we need to do any I/O, try to pre-readahead extra
3882 * blocks from the inode table.
3883 */
3884 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3885 ext4_fsblk_t b, end, table;
3886 unsigned num;
3887 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3888
3889 table = ext4_inode_table(sb, gdp);
3890 /* s_inode_readahead_blks is always a power of 2 */
3891 b = block & ~((ext4_fsblk_t) ra_blks - 1);
3892 if (table > b)
3893 b = table;
3894 end = b + ra_blks;
3895 num = EXT4_INODES_PER_GROUP(sb);
3896 if (ext4_has_group_desc_csum(sb))
3897 num -= ext4_itable_unused_count(sb, gdp);
3898 table += num / inodes_per_block;
3899 if (end > table)
3900 end = table;
3901 while (b <= end)
3902 sb_breadahead(sb, b++);
3903 }
3904
3905 /*
3906 * There are other valid inodes in the buffer, this inode
3907 * has in-inode xattrs, or we don't have this inode in memory.
3908 * Read the block from disk.
3909 */
3910 trace_ext4_load_inode(inode);
3911 get_bh(bh);
3912 bh->b_end_io = end_buffer_read_sync;
3913 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3914 wait_on_buffer(bh);
3915 if (!buffer_uptodate(bh)) {
3916 EXT4_ERROR_INODE_BLOCK(inode, block,
3917 "unable to read itable block");
3918 brelse(bh);
3919 return -EIO;
3920 }
3921 }
3922 has_buffer:
3923 iloc->bh = bh;
3924 return 0;
3925 }
3926
3927 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3928 {
3929 /* We have all inode data except xattrs in memory here. */
3930 return __ext4_get_inode_loc(inode, iloc,
3931 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3932 }
3933
3934 void ext4_set_inode_flags(struct inode *inode)
3935 {
3936 unsigned int flags = EXT4_I(inode)->i_flags;
3937
3938 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3939 if (flags & EXT4_SYNC_FL)
3940 inode->i_flags |= S_SYNC;
3941 if (flags & EXT4_APPEND_FL)
3942 inode->i_flags |= S_APPEND;
3943 if (flags & EXT4_IMMUTABLE_FL)
3944 inode->i_flags |= S_IMMUTABLE;
3945 if (flags & EXT4_NOATIME_FL)
3946 inode->i_flags |= S_NOATIME;
3947 if (flags & EXT4_DIRSYNC_FL)
3948 inode->i_flags |= S_DIRSYNC;
3949 }
3950
3951 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3952 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3953 {
3954 unsigned int vfs_fl;
3955 unsigned long old_fl, new_fl;
3956
3957 do {
3958 vfs_fl = ei->vfs_inode.i_flags;
3959 old_fl = ei->i_flags;
3960 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3961 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3962 EXT4_DIRSYNC_FL);
3963 if (vfs_fl & S_SYNC)
3964 new_fl |= EXT4_SYNC_FL;
3965 if (vfs_fl & S_APPEND)
3966 new_fl |= EXT4_APPEND_FL;
3967 if (vfs_fl & S_IMMUTABLE)
3968 new_fl |= EXT4_IMMUTABLE_FL;
3969 if (vfs_fl & S_NOATIME)
3970 new_fl |= EXT4_NOATIME_FL;
3971 if (vfs_fl & S_DIRSYNC)
3972 new_fl |= EXT4_DIRSYNC_FL;
3973 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3974 }
3975
3976 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3977 struct ext4_inode_info *ei)
3978 {
3979 blkcnt_t i_blocks ;
3980 struct inode *inode = &(ei->vfs_inode);
3981 struct super_block *sb = inode->i_sb;
3982
3983 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3984 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3985 /* we are using combined 48 bit field */
3986 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3987 le32_to_cpu(raw_inode->i_blocks_lo);
3988 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3989 /* i_blocks represent file system block size */
3990 return i_blocks << (inode->i_blkbits - 9);
3991 } else {
3992 return i_blocks;
3993 }
3994 } else {
3995 return le32_to_cpu(raw_inode->i_blocks_lo);
3996 }
3997 }
3998
3999 static inline void ext4_iget_extra_inode(struct inode *inode,
4000 struct ext4_inode *raw_inode,
4001 struct ext4_inode_info *ei)
4002 {
4003 __le32 *magic = (void *)raw_inode +
4004 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4005 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4006 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4007 ext4_find_inline_data_nolock(inode);
4008 } else
4009 EXT4_I(inode)->i_inline_off = 0;
4010 }
4011
4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4013 {
4014 struct ext4_iloc iloc;
4015 struct ext4_inode *raw_inode;
4016 struct ext4_inode_info *ei;
4017 struct inode *inode;
4018 journal_t *journal = EXT4_SB(sb)->s_journal;
4019 long ret;
4020 int block;
4021 uid_t i_uid;
4022 gid_t i_gid;
4023
4024 inode = iget_locked(sb, ino);
4025 if (!inode)
4026 return ERR_PTR(-ENOMEM);
4027 if (!(inode->i_state & I_NEW))
4028 return inode;
4029
4030 ei = EXT4_I(inode);
4031 iloc.bh = NULL;
4032
4033 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4034 if (ret < 0)
4035 goto bad_inode;
4036 raw_inode = ext4_raw_inode(&iloc);
4037
4038 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4039 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4040 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4041 EXT4_INODE_SIZE(inode->i_sb)) {
4042 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4043 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4044 EXT4_INODE_SIZE(inode->i_sb));
4045 ret = -EIO;
4046 goto bad_inode;
4047 }
4048 } else
4049 ei->i_extra_isize = 0;
4050
4051 /* Precompute checksum seed for inode metadata */
4052 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4053 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4054 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4055 __u32 csum;
4056 __le32 inum = cpu_to_le32(inode->i_ino);
4057 __le32 gen = raw_inode->i_generation;
4058 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4059 sizeof(inum));
4060 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4061 sizeof(gen));
4062 }
4063
4064 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4065 EXT4_ERROR_INODE(inode, "checksum invalid");
4066 ret = -EIO;
4067 goto bad_inode;
4068 }
4069
4070 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4071 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4072 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4073 if (!(test_opt(inode->i_sb, NO_UID32))) {
4074 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4075 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4076 }
4077 i_uid_write(inode, i_uid);
4078 i_gid_write(inode, i_gid);
4079 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4080
4081 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4082 ei->i_inline_off = 0;
4083 ei->i_dir_start_lookup = 0;
4084 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4085 /* We now have enough fields to check if the inode was active or not.
4086 * This is needed because nfsd might try to access dead inodes
4087 * the test is that same one that e2fsck uses
4088 * NeilBrown 1999oct15
4089 */
4090 if (inode->i_nlink == 0) {
4091 if ((inode->i_mode == 0 ||
4092 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4093 ino != EXT4_BOOT_LOADER_INO) {
4094 /* this inode is deleted */
4095 ret = -ESTALE;
4096 goto bad_inode;
4097 }
4098 /* The only unlinked inodes we let through here have
4099 * valid i_mode and are being read by the orphan
4100 * recovery code: that's fine, we're about to complete
4101 * the process of deleting those.
4102 * OR it is the EXT4_BOOT_LOADER_INO which is
4103 * not initialized on a new filesystem. */
4104 }
4105 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4106 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4107 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4108 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4109 ei->i_file_acl |=
4110 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4111 inode->i_size = ext4_isize(raw_inode);
4112 ei->i_disksize = inode->i_size;
4113 #ifdef CONFIG_QUOTA
4114 ei->i_reserved_quota = 0;
4115 #endif
4116 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4117 ei->i_block_group = iloc.block_group;
4118 ei->i_last_alloc_group = ~0;
4119 /*
4120 * NOTE! The in-memory inode i_data array is in little-endian order
4121 * even on big-endian machines: we do NOT byteswap the block numbers!
4122 */
4123 for (block = 0; block < EXT4_N_BLOCKS; block++)
4124 ei->i_data[block] = raw_inode->i_block[block];
4125 INIT_LIST_HEAD(&ei->i_orphan);
4126
4127 /*
4128 * Set transaction id's of transactions that have to be committed
4129 * to finish f[data]sync. We set them to currently running transaction
4130 * as we cannot be sure that the inode or some of its metadata isn't
4131 * part of the transaction - the inode could have been reclaimed and
4132 * now it is reread from disk.
4133 */
4134 if (journal) {
4135 transaction_t *transaction;
4136 tid_t tid;
4137
4138 read_lock(&journal->j_state_lock);
4139 if (journal->j_running_transaction)
4140 transaction = journal->j_running_transaction;
4141 else
4142 transaction = journal->j_committing_transaction;
4143 if (transaction)
4144 tid = transaction->t_tid;
4145 else
4146 tid = journal->j_commit_sequence;
4147 read_unlock(&journal->j_state_lock);
4148 ei->i_sync_tid = tid;
4149 ei->i_datasync_tid = tid;
4150 }
4151
4152 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4153 if (ei->i_extra_isize == 0) {
4154 /* The extra space is currently unused. Use it. */
4155 ei->i_extra_isize = sizeof(struct ext4_inode) -
4156 EXT4_GOOD_OLD_INODE_SIZE;
4157 } else {
4158 ext4_iget_extra_inode(inode, raw_inode, ei);
4159 }
4160 }
4161
4162 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4163 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4164 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4165 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4166
4167 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4168 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4169 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4170 inode->i_version |=
4171 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4172 }
4173
4174 ret = 0;
4175 if (ei->i_file_acl &&
4176 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4177 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4178 ei->i_file_acl);
4179 ret = -EIO;
4180 goto bad_inode;
4181 } else if (!ext4_has_inline_data(inode)) {
4182 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4183 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4184 (S_ISLNK(inode->i_mode) &&
4185 !ext4_inode_is_fast_symlink(inode))))
4186 /* Validate extent which is part of inode */
4187 ret = ext4_ext_check_inode(inode);
4188 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4189 (S_ISLNK(inode->i_mode) &&
4190 !ext4_inode_is_fast_symlink(inode))) {
4191 /* Validate block references which are part of inode */
4192 ret = ext4_ind_check_inode(inode);
4193 }
4194 }
4195 if (ret)
4196 goto bad_inode;
4197
4198 if (S_ISREG(inode->i_mode)) {
4199 inode->i_op = &ext4_file_inode_operations;
4200 inode->i_fop = &ext4_file_operations;
4201 ext4_set_aops(inode);
4202 } else if (S_ISDIR(inode->i_mode)) {
4203 inode->i_op = &ext4_dir_inode_operations;
4204 inode->i_fop = &ext4_dir_operations;
4205 } else if (S_ISLNK(inode->i_mode)) {
4206 if (ext4_inode_is_fast_symlink(inode)) {
4207 inode->i_op = &ext4_fast_symlink_inode_operations;
4208 nd_terminate_link(ei->i_data, inode->i_size,
4209 sizeof(ei->i_data) - 1);
4210 } else {
4211 inode->i_op = &ext4_symlink_inode_operations;
4212 ext4_set_aops(inode);
4213 }
4214 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4215 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4216 inode->i_op = &ext4_special_inode_operations;
4217 if (raw_inode->i_block[0])
4218 init_special_inode(inode, inode->i_mode,
4219 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4220 else
4221 init_special_inode(inode, inode->i_mode,
4222 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4223 } else if (ino == EXT4_BOOT_LOADER_INO) {
4224 make_bad_inode(inode);
4225 } else {
4226 ret = -EIO;
4227 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4228 goto bad_inode;
4229 }
4230 brelse(iloc.bh);
4231 ext4_set_inode_flags(inode);
4232 unlock_new_inode(inode);
4233 return inode;
4234
4235 bad_inode:
4236 brelse(iloc.bh);
4237 iget_failed(inode);
4238 return ERR_PTR(ret);
4239 }
4240
4241 static int ext4_inode_blocks_set(handle_t *handle,
4242 struct ext4_inode *raw_inode,
4243 struct ext4_inode_info *ei)
4244 {
4245 struct inode *inode = &(ei->vfs_inode);
4246 u64 i_blocks = inode->i_blocks;
4247 struct super_block *sb = inode->i_sb;
4248
4249 if (i_blocks <= ~0U) {
4250 /*
4251 * i_blocks can be represented in a 32 bit variable
4252 * as multiple of 512 bytes
4253 */
4254 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4255 raw_inode->i_blocks_high = 0;
4256 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4257 return 0;
4258 }
4259 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4260 return -EFBIG;
4261
4262 if (i_blocks <= 0xffffffffffffULL) {
4263 /*
4264 * i_blocks can be represented in a 48 bit variable
4265 * as multiple of 512 bytes
4266 */
4267 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4268 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4269 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270 } else {
4271 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4272 /* i_block is stored in file system block size */
4273 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4274 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4275 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4276 }
4277 return 0;
4278 }
4279
4280 /*
4281 * Post the struct inode info into an on-disk inode location in the
4282 * buffer-cache. This gobbles the caller's reference to the
4283 * buffer_head in the inode location struct.
4284 *
4285 * The caller must have write access to iloc->bh.
4286 */
4287 static int ext4_do_update_inode(handle_t *handle,
4288 struct inode *inode,
4289 struct ext4_iloc *iloc)
4290 {
4291 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4292 struct ext4_inode_info *ei = EXT4_I(inode);
4293 struct buffer_head *bh = iloc->bh;
4294 int err = 0, rc, block;
4295 int need_datasync = 0;
4296 uid_t i_uid;
4297 gid_t i_gid;
4298
4299 /* For fields not not tracking in the in-memory inode,
4300 * initialise them to zero for new inodes. */
4301 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4302 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4303
4304 ext4_get_inode_flags(ei);
4305 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4306 i_uid = i_uid_read(inode);
4307 i_gid = i_gid_read(inode);
4308 if (!(test_opt(inode->i_sb, NO_UID32))) {
4309 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4310 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4311 /*
4312 * Fix up interoperability with old kernels. Otherwise, old inodes get
4313 * re-used with the upper 16 bits of the uid/gid intact
4314 */
4315 if (!ei->i_dtime) {
4316 raw_inode->i_uid_high =
4317 cpu_to_le16(high_16_bits(i_uid));
4318 raw_inode->i_gid_high =
4319 cpu_to_le16(high_16_bits(i_gid));
4320 } else {
4321 raw_inode->i_uid_high = 0;
4322 raw_inode->i_gid_high = 0;
4323 }
4324 } else {
4325 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4326 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4327 raw_inode->i_uid_high = 0;
4328 raw_inode->i_gid_high = 0;
4329 }
4330 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4331
4332 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4333 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4334 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4335 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4336
4337 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4338 goto out_brelse;
4339 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4340 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4341 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4342 cpu_to_le32(EXT4_OS_HURD))
4343 raw_inode->i_file_acl_high =
4344 cpu_to_le16(ei->i_file_acl >> 32);
4345 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4346 if (ei->i_disksize != ext4_isize(raw_inode)) {
4347 ext4_isize_set(raw_inode, ei->i_disksize);
4348 need_datasync = 1;
4349 }
4350 if (ei->i_disksize > 0x7fffffffULL) {
4351 struct super_block *sb = inode->i_sb;
4352 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4353 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4354 EXT4_SB(sb)->s_es->s_rev_level ==
4355 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4356 /* If this is the first large file
4357 * created, add a flag to the superblock.
4358 */
4359 err = ext4_journal_get_write_access(handle,
4360 EXT4_SB(sb)->s_sbh);
4361 if (err)
4362 goto out_brelse;
4363 ext4_update_dynamic_rev(sb);
4364 EXT4_SET_RO_COMPAT_FEATURE(sb,
4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4366 ext4_handle_sync(handle);
4367 err = ext4_handle_dirty_super(handle, sb);
4368 }
4369 }
4370 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4371 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4372 if (old_valid_dev(inode->i_rdev)) {
4373 raw_inode->i_block[0] =
4374 cpu_to_le32(old_encode_dev(inode->i_rdev));
4375 raw_inode->i_block[1] = 0;
4376 } else {
4377 raw_inode->i_block[0] = 0;
4378 raw_inode->i_block[1] =
4379 cpu_to_le32(new_encode_dev(inode->i_rdev));
4380 raw_inode->i_block[2] = 0;
4381 }
4382 } else if (!ext4_has_inline_data(inode)) {
4383 for (block = 0; block < EXT4_N_BLOCKS; block++)
4384 raw_inode->i_block[block] = ei->i_data[block];
4385 }
4386
4387 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4388 if (ei->i_extra_isize) {
4389 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4390 raw_inode->i_version_hi =
4391 cpu_to_le32(inode->i_version >> 32);
4392 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4393 }
4394
4395 ext4_inode_csum_set(inode, raw_inode, ei);
4396
4397 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4398 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4399 if (!err)
4400 err = rc;
4401 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4402
4403 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4404 out_brelse:
4405 brelse(bh);
4406 ext4_std_error(inode->i_sb, err);
4407 return err;
4408 }
4409
4410 /*
4411 * ext4_write_inode()
4412 *
4413 * We are called from a few places:
4414 *
4415 * - Within generic_file_write() for O_SYNC files.
4416 * Here, there will be no transaction running. We wait for any running
4417 * transaction to commit.
4418 *
4419 * - Within sys_sync(), kupdate and such.
4420 * We wait on commit, if tol to.
4421 *
4422 * - Within prune_icache() (PF_MEMALLOC == true)
4423 * Here we simply return. We can't afford to block kswapd on the
4424 * journal commit.
4425 *
4426 * In all cases it is actually safe for us to return without doing anything,
4427 * because the inode has been copied into a raw inode buffer in
4428 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4429 * knfsd.
4430 *
4431 * Note that we are absolutely dependent upon all inode dirtiers doing the
4432 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4433 * which we are interested.
4434 *
4435 * It would be a bug for them to not do this. The code:
4436 *
4437 * mark_inode_dirty(inode)
4438 * stuff();
4439 * inode->i_size = expr;
4440 *
4441 * is in error because a kswapd-driven write_inode() could occur while
4442 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4443 * will no longer be on the superblock's dirty inode list.
4444 */
4445 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4446 {
4447 int err;
4448
4449 if (current->flags & PF_MEMALLOC)
4450 return 0;
4451
4452 if (EXT4_SB(inode->i_sb)->s_journal) {
4453 if (ext4_journal_current_handle()) {
4454 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4455 dump_stack();
4456 return -EIO;
4457 }
4458
4459 if (wbc->sync_mode != WB_SYNC_ALL)
4460 return 0;
4461
4462 err = ext4_force_commit(inode->i_sb);
4463 } else {
4464 struct ext4_iloc iloc;
4465
4466 err = __ext4_get_inode_loc(inode, &iloc, 0);
4467 if (err)
4468 return err;
4469 if (wbc->sync_mode == WB_SYNC_ALL)
4470 sync_dirty_buffer(iloc.bh);
4471 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4472 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4473 "IO error syncing inode");
4474 err = -EIO;
4475 }
4476 brelse(iloc.bh);
4477 }
4478 return err;
4479 }
4480
4481 /*
4482 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4483 * buffers that are attached to a page stradding i_size and are undergoing
4484 * commit. In that case we have to wait for commit to finish and try again.
4485 */
4486 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4487 {
4488 struct page *page;
4489 unsigned offset;
4490 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4491 tid_t commit_tid = 0;
4492 int ret;
4493
4494 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4495 /*
4496 * All buffers in the last page remain valid? Then there's nothing to
4497 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4498 * blocksize case
4499 */
4500 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4501 return;
4502 while (1) {
4503 page = find_lock_page(inode->i_mapping,
4504 inode->i_size >> PAGE_CACHE_SHIFT);
4505 if (!page)
4506 return;
4507 ret = __ext4_journalled_invalidatepage(page, offset,
4508 PAGE_CACHE_SIZE - offset);
4509 unlock_page(page);
4510 page_cache_release(page);
4511 if (ret != -EBUSY)
4512 return;
4513 commit_tid = 0;
4514 read_lock(&journal->j_state_lock);
4515 if (journal->j_committing_transaction)
4516 commit_tid = journal->j_committing_transaction->t_tid;
4517 read_unlock(&journal->j_state_lock);
4518 if (commit_tid)
4519 jbd2_log_wait_commit(journal, commit_tid);
4520 }
4521 }
4522
4523 /*
4524 * ext4_setattr()
4525 *
4526 * Called from notify_change.
4527 *
4528 * We want to trap VFS attempts to truncate the file as soon as
4529 * possible. In particular, we want to make sure that when the VFS
4530 * shrinks i_size, we put the inode on the orphan list and modify
4531 * i_disksize immediately, so that during the subsequent flushing of
4532 * dirty pages and freeing of disk blocks, we can guarantee that any
4533 * commit will leave the blocks being flushed in an unused state on
4534 * disk. (On recovery, the inode will get truncated and the blocks will
4535 * be freed, so we have a strong guarantee that no future commit will
4536 * leave these blocks visible to the user.)
4537 *
4538 * Another thing we have to assure is that if we are in ordered mode
4539 * and inode is still attached to the committing transaction, we must
4540 * we start writeout of all the dirty pages which are being truncated.
4541 * This way we are sure that all the data written in the previous
4542 * transaction are already on disk (truncate waits for pages under
4543 * writeback).
4544 *
4545 * Called with inode->i_mutex down.
4546 */
4547 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4548 {
4549 struct inode *inode = dentry->d_inode;
4550 int error, rc = 0;
4551 int orphan = 0;
4552 const unsigned int ia_valid = attr->ia_valid;
4553
4554 error = inode_change_ok(inode, attr);
4555 if (error)
4556 return error;
4557
4558 if (is_quota_modification(inode, attr))
4559 dquot_initialize(inode);
4560 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4561 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4562 handle_t *handle;
4563
4564 /* (user+group)*(old+new) structure, inode write (sb,
4565 * inode block, ? - but truncate inode update has it) */
4566 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4567 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4568 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4569 if (IS_ERR(handle)) {
4570 error = PTR_ERR(handle);
4571 goto err_out;
4572 }
4573 error = dquot_transfer(inode, attr);
4574 if (error) {
4575 ext4_journal_stop(handle);
4576 return error;
4577 }
4578 /* Update corresponding info in inode so that everything is in
4579 * one transaction */
4580 if (attr->ia_valid & ATTR_UID)
4581 inode->i_uid = attr->ia_uid;
4582 if (attr->ia_valid & ATTR_GID)
4583 inode->i_gid = attr->ia_gid;
4584 error = ext4_mark_inode_dirty(handle, inode);
4585 ext4_journal_stop(handle);
4586 }
4587
4588 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4589 handle_t *handle;
4590 loff_t oldsize = inode->i_size;
4591
4592 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4593 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4594
4595 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4596 return -EFBIG;
4597 }
4598 if (S_ISREG(inode->i_mode) &&
4599 (attr->ia_size < inode->i_size)) {
4600 if (ext4_should_order_data(inode)) {
4601 error = ext4_begin_ordered_truncate(inode,
4602 attr->ia_size);
4603 if (error)
4604 goto err_out;
4605 }
4606 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4607 if (IS_ERR(handle)) {
4608 error = PTR_ERR(handle);
4609 goto err_out;
4610 }
4611 if (ext4_handle_valid(handle)) {
4612 error = ext4_orphan_add(handle, inode);
4613 orphan = 1;
4614 }
4615 down_write(&EXT4_I(inode)->i_data_sem);
4616 EXT4_I(inode)->i_disksize = attr->ia_size;
4617 rc = ext4_mark_inode_dirty(handle, inode);
4618 if (!error)
4619 error = rc;
4620 /*
4621 * We have to update i_size under i_data_sem together
4622 * with i_disksize to avoid races with writeback code
4623 * running ext4_wb_update_i_disksize().
4624 */
4625 if (!error)
4626 i_size_write(inode, attr->ia_size);
4627 up_write(&EXT4_I(inode)->i_data_sem);
4628 ext4_journal_stop(handle);
4629 if (error) {
4630 ext4_orphan_del(NULL, inode);
4631 goto err_out;
4632 }
4633 } else
4634 i_size_write(inode, attr->ia_size);
4635
4636 /*
4637 * Blocks are going to be removed from the inode. Wait
4638 * for dio in flight. Temporarily disable
4639 * dioread_nolock to prevent livelock.
4640 */
4641 if (orphan) {
4642 if (!ext4_should_journal_data(inode)) {
4643 ext4_inode_block_unlocked_dio(inode);
4644 inode_dio_wait(inode);
4645 ext4_inode_resume_unlocked_dio(inode);
4646 } else
4647 ext4_wait_for_tail_page_commit(inode);
4648 }
4649 /*
4650 * Truncate pagecache after we've waited for commit
4651 * in data=journal mode to make pages freeable.
4652 */
4653 truncate_pagecache(inode, oldsize, inode->i_size);
4654 }
4655 /*
4656 * We want to call ext4_truncate() even if attr->ia_size ==
4657 * inode->i_size for cases like truncation of fallocated space
4658 */
4659 if (attr->ia_valid & ATTR_SIZE)
4660 ext4_truncate(inode);
4661
4662 if (!rc) {
4663 setattr_copy(inode, attr);
4664 mark_inode_dirty(inode);
4665 }
4666
4667 /*
4668 * If the call to ext4_truncate failed to get a transaction handle at
4669 * all, we need to clean up the in-core orphan list manually.
4670 */
4671 if (orphan && inode->i_nlink)
4672 ext4_orphan_del(NULL, inode);
4673
4674 if (!rc && (ia_valid & ATTR_MODE))
4675 rc = ext4_acl_chmod(inode);
4676
4677 err_out:
4678 ext4_std_error(inode->i_sb, error);
4679 if (!error)
4680 error = rc;
4681 return error;
4682 }
4683
4684 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4685 struct kstat *stat)
4686 {
4687 struct inode *inode;
4688 unsigned long long delalloc_blocks;
4689
4690 inode = dentry->d_inode;
4691 generic_fillattr(inode, stat);
4692
4693 /*
4694 * We can't update i_blocks if the block allocation is delayed
4695 * otherwise in the case of system crash before the real block
4696 * allocation is done, we will have i_blocks inconsistent with
4697 * on-disk file blocks.
4698 * We always keep i_blocks updated together with real
4699 * allocation. But to not confuse with user, stat
4700 * will return the blocks that include the delayed allocation
4701 * blocks for this file.
4702 */
4703 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4704 EXT4_I(inode)->i_reserved_data_blocks);
4705
4706 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4707 return 0;
4708 }
4709
4710 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4711 int pextents)
4712 {
4713 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4714 return ext4_ind_trans_blocks(inode, lblocks);
4715 return ext4_ext_index_trans_blocks(inode, pextents);
4716 }
4717
4718 /*
4719 * Account for index blocks, block groups bitmaps and block group
4720 * descriptor blocks if modify datablocks and index blocks
4721 * worse case, the indexs blocks spread over different block groups
4722 *
4723 * If datablocks are discontiguous, they are possible to spread over
4724 * different block groups too. If they are contiguous, with flexbg,
4725 * they could still across block group boundary.
4726 *
4727 * Also account for superblock, inode, quota and xattr blocks
4728 */
4729 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4730 int pextents)
4731 {
4732 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4733 int gdpblocks;
4734 int idxblocks;
4735 int ret = 0;
4736
4737 /*
4738 * How many index blocks need to touch to map @lblocks logical blocks
4739 * to @pextents physical extents?
4740 */
4741 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4742
4743 ret = idxblocks;
4744
4745 /*
4746 * Now let's see how many group bitmaps and group descriptors need
4747 * to account
4748 */
4749 groups = idxblocks + pextents;
4750 gdpblocks = groups;
4751 if (groups > ngroups)
4752 groups = ngroups;
4753 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4754 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4755
4756 /* bitmaps and block group descriptor blocks */
4757 ret += groups + gdpblocks;
4758
4759 /* Blocks for super block, inode, quota and xattr blocks */
4760 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4761
4762 return ret;
4763 }
4764
4765 /*
4766 * Calculate the total number of credits to reserve to fit
4767 * the modification of a single pages into a single transaction,
4768 * which may include multiple chunks of block allocations.
4769 *
4770 * This could be called via ext4_write_begin()
4771 *
4772 * We need to consider the worse case, when
4773 * one new block per extent.
4774 */
4775 int ext4_writepage_trans_blocks(struct inode *inode)
4776 {
4777 int bpp = ext4_journal_blocks_per_page(inode);
4778 int ret;
4779
4780 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4781
4782 /* Account for data blocks for journalled mode */
4783 if (ext4_should_journal_data(inode))
4784 ret += bpp;
4785 return ret;
4786 }
4787
4788 /*
4789 * Calculate the journal credits for a chunk of data modification.
4790 *
4791 * This is called from DIO, fallocate or whoever calling
4792 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4793 *
4794 * journal buffers for data blocks are not included here, as DIO
4795 * and fallocate do no need to journal data buffers.
4796 */
4797 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4798 {
4799 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4800 }
4801
4802 /*
4803 * The caller must have previously called ext4_reserve_inode_write().
4804 * Give this, we know that the caller already has write access to iloc->bh.
4805 */
4806 int ext4_mark_iloc_dirty(handle_t *handle,
4807 struct inode *inode, struct ext4_iloc *iloc)
4808 {
4809 int err = 0;
4810
4811 if (IS_I_VERSION(inode))
4812 inode_inc_iversion(inode);
4813
4814 /* the do_update_inode consumes one bh->b_count */
4815 get_bh(iloc->bh);
4816
4817 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4818 err = ext4_do_update_inode(handle, inode, iloc);
4819 put_bh(iloc->bh);
4820 return err;
4821 }
4822
4823 /*
4824 * On success, We end up with an outstanding reference count against
4825 * iloc->bh. This _must_ be cleaned up later.
4826 */
4827
4828 int
4829 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4830 struct ext4_iloc *iloc)
4831 {
4832 int err;
4833
4834 err = ext4_get_inode_loc(inode, iloc);
4835 if (!err) {
4836 BUFFER_TRACE(iloc->bh, "get_write_access");
4837 err = ext4_journal_get_write_access(handle, iloc->bh);
4838 if (err) {
4839 brelse(iloc->bh);
4840 iloc->bh = NULL;
4841 }
4842 }
4843 ext4_std_error(inode->i_sb, err);
4844 return err;
4845 }
4846
4847 /*
4848 * Expand an inode by new_extra_isize bytes.
4849 * Returns 0 on success or negative error number on failure.
4850 */
4851 static int ext4_expand_extra_isize(struct inode *inode,
4852 unsigned int new_extra_isize,
4853 struct ext4_iloc iloc,
4854 handle_t *handle)
4855 {
4856 struct ext4_inode *raw_inode;
4857 struct ext4_xattr_ibody_header *header;
4858
4859 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4860 return 0;
4861
4862 raw_inode = ext4_raw_inode(&iloc);
4863
4864 header = IHDR(inode, raw_inode);
4865
4866 /* No extended attributes present */
4867 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4868 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4869 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4870 new_extra_isize);
4871 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4872 return 0;
4873 }
4874
4875 /* try to expand with EAs present */
4876 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4877 raw_inode, handle);
4878 }
4879
4880 /*
4881 * What we do here is to mark the in-core inode as clean with respect to inode
4882 * dirtiness (it may still be data-dirty).
4883 * This means that the in-core inode may be reaped by prune_icache
4884 * without having to perform any I/O. This is a very good thing,
4885 * because *any* task may call prune_icache - even ones which
4886 * have a transaction open against a different journal.
4887 *
4888 * Is this cheating? Not really. Sure, we haven't written the
4889 * inode out, but prune_icache isn't a user-visible syncing function.
4890 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4891 * we start and wait on commits.
4892 */
4893 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4894 {
4895 struct ext4_iloc iloc;
4896 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4897 static unsigned int mnt_count;
4898 int err, ret;
4899
4900 might_sleep();
4901 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4902 err = ext4_reserve_inode_write(handle, inode, &iloc);
4903 if (ext4_handle_valid(handle) &&
4904 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4905 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4906 /*
4907 * We need extra buffer credits since we may write into EA block
4908 * with this same handle. If journal_extend fails, then it will
4909 * only result in a minor loss of functionality for that inode.
4910 * If this is felt to be critical, then e2fsck should be run to
4911 * force a large enough s_min_extra_isize.
4912 */
4913 if ((jbd2_journal_extend(handle,
4914 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4915 ret = ext4_expand_extra_isize(inode,
4916 sbi->s_want_extra_isize,
4917 iloc, handle);
4918 if (ret) {
4919 ext4_set_inode_state(inode,
4920 EXT4_STATE_NO_EXPAND);
4921 if (mnt_count !=
4922 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4923 ext4_warning(inode->i_sb,
4924 "Unable to expand inode %lu. Delete"
4925 " some EAs or run e2fsck.",
4926 inode->i_ino);
4927 mnt_count =
4928 le16_to_cpu(sbi->s_es->s_mnt_count);
4929 }
4930 }
4931 }
4932 }
4933 if (!err)
4934 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4935 return err;
4936 }
4937
4938 /*
4939 * ext4_dirty_inode() is called from __mark_inode_dirty()
4940 *
4941 * We're really interested in the case where a file is being extended.
4942 * i_size has been changed by generic_commit_write() and we thus need
4943 * to include the updated inode in the current transaction.
4944 *
4945 * Also, dquot_alloc_block() will always dirty the inode when blocks
4946 * are allocated to the file.
4947 *
4948 * If the inode is marked synchronous, we don't honour that here - doing
4949 * so would cause a commit on atime updates, which we don't bother doing.
4950 * We handle synchronous inodes at the highest possible level.
4951 */
4952 void ext4_dirty_inode(struct inode *inode, int flags)
4953 {
4954 handle_t *handle;
4955
4956 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4957 if (IS_ERR(handle))
4958 goto out;
4959
4960 ext4_mark_inode_dirty(handle, inode);
4961
4962 ext4_journal_stop(handle);
4963 out:
4964 return;
4965 }
4966
4967 #if 0
4968 /*
4969 * Bind an inode's backing buffer_head into this transaction, to prevent
4970 * it from being flushed to disk early. Unlike
4971 * ext4_reserve_inode_write, this leaves behind no bh reference and
4972 * returns no iloc structure, so the caller needs to repeat the iloc
4973 * lookup to mark the inode dirty later.
4974 */
4975 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4976 {
4977 struct ext4_iloc iloc;
4978
4979 int err = 0;
4980 if (handle) {
4981 err = ext4_get_inode_loc(inode, &iloc);
4982 if (!err) {
4983 BUFFER_TRACE(iloc.bh, "get_write_access");
4984 err = jbd2_journal_get_write_access(handle, iloc.bh);
4985 if (!err)
4986 err = ext4_handle_dirty_metadata(handle,
4987 NULL,
4988 iloc.bh);
4989 brelse(iloc.bh);
4990 }
4991 }
4992 ext4_std_error(inode->i_sb, err);
4993 return err;
4994 }
4995 #endif
4996
4997 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4998 {
4999 journal_t *journal;
5000 handle_t *handle;
5001 int err;
5002
5003 /*
5004 * We have to be very careful here: changing a data block's
5005 * journaling status dynamically is dangerous. If we write a
5006 * data block to the journal, change the status and then delete
5007 * that block, we risk forgetting to revoke the old log record
5008 * from the journal and so a subsequent replay can corrupt data.
5009 * So, first we make sure that the journal is empty and that
5010 * nobody is changing anything.
5011 */
5012
5013 journal = EXT4_JOURNAL(inode);
5014 if (!journal)
5015 return 0;
5016 if (is_journal_aborted(journal))
5017 return -EROFS;
5018 /* We have to allocate physical blocks for delalloc blocks
5019 * before flushing journal. otherwise delalloc blocks can not
5020 * be allocated any more. even more truncate on delalloc blocks
5021 * could trigger BUG by flushing delalloc blocks in journal.
5022 * There is no delalloc block in non-journal data mode.
5023 */
5024 if (val && test_opt(inode->i_sb, DELALLOC)) {
5025 err = ext4_alloc_da_blocks(inode);
5026 if (err < 0)
5027 return err;
5028 }
5029
5030 /* Wait for all existing dio workers */
5031 ext4_inode_block_unlocked_dio(inode);
5032 inode_dio_wait(inode);
5033
5034 jbd2_journal_lock_updates(journal);
5035
5036 /*
5037 * OK, there are no updates running now, and all cached data is
5038 * synced to disk. We are now in a completely consistent state
5039 * which doesn't have anything in the journal, and we know that
5040 * no filesystem updates are running, so it is safe to modify
5041 * the inode's in-core data-journaling state flag now.
5042 */
5043
5044 if (val)
5045 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5046 else {
5047 jbd2_journal_flush(journal);
5048 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5049 }
5050 ext4_set_aops(inode);
5051
5052 jbd2_journal_unlock_updates(journal);
5053 ext4_inode_resume_unlocked_dio(inode);
5054
5055 /* Finally we can mark the inode as dirty. */
5056
5057 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5058 if (IS_ERR(handle))
5059 return PTR_ERR(handle);
5060
5061 err = ext4_mark_inode_dirty(handle, inode);
5062 ext4_handle_sync(handle);
5063 ext4_journal_stop(handle);
5064 ext4_std_error(inode->i_sb, err);
5065
5066 return err;
5067 }
5068
5069 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5070 {
5071 return !buffer_mapped(bh);
5072 }
5073
5074 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5075 {
5076 struct page *page = vmf->page;
5077 loff_t size;
5078 unsigned long len;
5079 int ret;
5080 struct file *file = vma->vm_file;
5081 struct inode *inode = file_inode(file);
5082 struct address_space *mapping = inode->i_mapping;
5083 handle_t *handle;
5084 get_block_t *get_block;
5085 int retries = 0;
5086
5087 sb_start_pagefault(inode->i_sb);
5088 file_update_time(vma->vm_file);
5089 /* Delalloc case is easy... */
5090 if (test_opt(inode->i_sb, DELALLOC) &&
5091 !ext4_should_journal_data(inode) &&
5092 !ext4_nonda_switch(inode->i_sb)) {
5093 do {
5094 ret = __block_page_mkwrite(vma, vmf,
5095 ext4_da_get_block_prep);
5096 } while (ret == -ENOSPC &&
5097 ext4_should_retry_alloc(inode->i_sb, &retries));
5098 goto out_ret;
5099 }
5100
5101 lock_page(page);
5102 size = i_size_read(inode);
5103 /* Page got truncated from under us? */
5104 if (page->mapping != mapping || page_offset(page) > size) {
5105 unlock_page(page);
5106 ret = VM_FAULT_NOPAGE;
5107 goto out;
5108 }
5109
5110 if (page->index == size >> PAGE_CACHE_SHIFT)
5111 len = size & ~PAGE_CACHE_MASK;
5112 else
5113 len = PAGE_CACHE_SIZE;
5114 /*
5115 * Return if we have all the buffers mapped. This avoids the need to do
5116 * journal_start/journal_stop which can block and take a long time
5117 */
5118 if (page_has_buffers(page)) {
5119 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5120 0, len, NULL,
5121 ext4_bh_unmapped)) {
5122 /* Wait so that we don't change page under IO */
5123 wait_for_stable_page(page);
5124 ret = VM_FAULT_LOCKED;
5125 goto out;
5126 }
5127 }
5128 unlock_page(page);
5129 /* OK, we need to fill the hole... */
5130 if (ext4_should_dioread_nolock(inode))
5131 get_block = ext4_get_block_write;
5132 else
5133 get_block = ext4_get_block;
5134 retry_alloc:
5135 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5136 ext4_writepage_trans_blocks(inode));
5137 if (IS_ERR(handle)) {
5138 ret = VM_FAULT_SIGBUS;
5139 goto out;
5140 }
5141 ret = __block_page_mkwrite(vma, vmf, get_block);
5142 if (!ret && ext4_should_journal_data(inode)) {
5143 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5144 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5145 unlock_page(page);
5146 ret = VM_FAULT_SIGBUS;
5147 ext4_journal_stop(handle);
5148 goto out;
5149 }
5150 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5151 }
5152 ext4_journal_stop(handle);
5153 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5154 goto retry_alloc;
5155 out_ret:
5156 ret = block_page_mkwrite_return(ret);
5157 out:
5158 sb_end_pagefault(inode->i_sb);
5159 return ret;
5160 }